uDialog Editor — Version 0.8

Behaviour of "ask_nam

File Open Dialog

Dialog windows

Mode
Create| Layout Eun

Behaviour Mudell

L Kangaroo a

T

|

PceDraw: src/xpcefmanfuserg

Protn Edit Seftings Savedtitle.pd

Programming in

XPCE/Prolog

Jan ielemaker
Anjo Anjewierden

University of Amsterdam

msg_ohject
msg_ohject
msg_ohject
meg_send_por
msg_connection
circle

rmodel msg_connection
circle
msg_connection
editable_text
msg_constant_paort

msg_get.

razc_connaction

Al |

META-SHIFT-CONTROL-Y adds ohject to

Heln

Print Quit

‘-Q*

Left-click in the main window for a new kangaroo

editor(text_buffer, width, height, margin_width)
devic:

nhjem<visual—graphical 5 margin
text_buffer

1 file Saving a
W editor <Hile: file* Associate
M editar->load: file=file Clear edit
M editor-»save: file=[file] Savetoo
W editor->save_buffer. ahways=[int] Savetoc
2 caret Moving tl
W editor->point_to_bottom_of_file: [inf] Moveto e
M editor->point_to_top_of_file: [inf] Mowveto s

X

X

X
UNIVERSITEIT VAN AMSTERDAM

o Dept. of Social Science Informatics (SWI)

Roetersstraat 15, 1018 WB Amsterdam
The Netherlands
http://www.swi.psy.uva.nl

Programming in XPCE/Prolog

Jan Wielemaker wielemak@science.uva.nl
Anjo Anjewierden anjo@science.uva.nl

XPCE/Prolog is a hybrid environment integrating logic programming and object-oriented
programming for Graphical User Interfaces. Applications in XPCE/Prolog are fully compatible
across the supported X11 and Win32 (NT/2000/XP) platforms.

This document also applies to XPCE/Prolog 6.6.37 distributed as integrated
packages to SWI-Prolog. Sources and binaries may be downloaded from
http://www.swi-prolog.org

XPCE is distributed as Free Software with sufficient escapes to allow for producing non-free
applications. The kernel is distributed under the Lesser GNU Public License (LGPL) and the
Prolog sources under the GNU Public License (GPL) with explicit permission to generate
non-free executables.

Product information, documentation and additional resources specific to XPCE are available
from http://www.swi.psy.uva.nl/products/xpce/.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the (Lesser) GNU General Public License for more details.

Titlepage created using XPCE 4.8.10 on Windows-NT 4.0

Last updated February 2002 for XPCE version 6.6.37

Copyright © 1992-2005 University of Amsterdam

Contents

1 Introduction 1
1.1 Organisation of the XPCE documentation 1
1.2 Other sources of information 2
1.3 Languageinterfaces 2
1.4 Portability e 3

1.4.1 Unix/X-windows e 3
1.4.2 Win32 (Windows 95and NT) 3
1.5 Look-and-feel e 3
1.6 Abriefhistoryof (X)PCE e 4
1.7 Aboutthismanual e 4
1.8 Acknowledgements. L 5

2 Getting started 7
2.1 Starting XPCE/Prolog o e e 7
2.2 Prolog..andwhat? 7

2.2.1 Creatingobjects:new 8
2.2.2 Modifying objectstate:send oL, 8
2.2.3 Queryingobjects:get 9
2.2.4 Removingobjects: free Lo L 10
2.3 Optionalarguments e 10
2.4 Namedarguments e e 11
2.5 Argumentconversion. e e 11
2.6 Sendand getwithmorearguments 12
2.7 Notation e 12
2.8 Example: showfilesindirectory 12
2.9 SUMMAry e e 15

3 Using the online manual 17
3.1 Overview e e e 17
3.2 Notational conventions 18

3.2.1 Argumenttypes. 19
3.3 Guidedtour e e e 20
3.3.1 Classbrowser 20
3.32 Readingcards 23
3.3.3 Searchtool e 24
3.34 Classhierarchy e 24
3.4 Summary ... e 26

4 Dialog (controller) windows 27

41 Anexample L e 27

XPCE 6.6.37

ii Programming in XPCE/Prolog
4.2 Built-indialogitems 28
4.3 Layoutindialogwindows 28

4.3.1 Practicalusageandproblems 31
4.4 Modal dialogs: prompting foranswers, 32
441 Example: a simple editor for multiplefonts 33
45 Editing attributes e 35
4.5.1 Example: editing attributes of a graphical 36

5 Simple graphics 39

5.1 Graphical buildingblocks 39

5.1.1 Available primitive graphical objects 41
5.2 Compoundgraphicals e 41
5.3 Connecting graphicalobjects, 41
54 Constraints e 43
5.5 Activating graphicals usingthemouse 43
5.6 Summary e e e e 44

6 XPCE and Prolog 45
6.1 XPCEisnotProlog! 45
6.2 Dealingwith Prologdata 46

6.2.1 Life-time of Prologtermsin XPCE 47
7 Defining classes 49
7.1 Theclass definition skeleton o 0 . 49
7.1.1 Definition of the template elements 49
7.2 Accessing instance variables (slots)o o L. 52
7.3 Refining and redefiningmethods 54
7.3.1 General redefinitions 55
7.3.2 Redefinition in graphicalclasses 56
7.4 Handling defaultarguments o L. 59
7.5 AdvancedtopiCs 59
7.5.1 Moreontype declarations, 59
7.5.2 Methods with variable number of arguments 60
7.5.3 Implementationnotes 62

8 Class Variables 65
8.1 AccessingClass Variables 65
8.2 Class variable and instance variables 65
8.3 TheDefaults’file 66
8.4 Class variables in User DefinedClasses 67

9 Program resources 69

10 Programming techniques 71
10.1 Control-structure of XPCE/Prolog applications 73

10.1.1 Event-driven applications 73
10.1.2 XPCE and existing applications 75
10.2 Executable objects 77

XPCE 6.6.37

Contents iii

10.2.1 Procedures 77
10.2.2 Functions 78
10.2.3 Example 1: Findingobjects 80
10.2.4 Example 2: Internal behaviour of dialog window 80
10.3 Defining global named objects, 83
10.3.1 Using directives e 83
10.3.2 Inlinetesting 83
10.3.3 The ‘pce_global’ directive 84
10.3.4 Global objects forrecognisers 84
10.4 Using object references: “Who’s Who?” 87
10.4.1 Global named references 87
10.4.2 Using the prologdatabase 88
10.4.3 Using object-level attributeso oL 89
10.4.4 Using window and graphical behaviour 90
10.4.5 Using user definedclasses 90
10.4.6 SUMMANY o 91
10.5 Relatingframes e 93
10.5.1 Class application 93
10.5.2 Transientframes 93
10.5.3 Modal operation 94
10.6 Window layoutinaframe 95
10.6.1 Windows sizes and automatic adjustment 96
10.6.2 Manipulatinganopenframe 96
10.7 Informing theuser L 99
10.7.1 Aim of the report mechanism 99
10.7.2 Thereportinterface 99
10.7.3 Redefiningreporthandling 100
10.7.4 Example 100
10.8 ErrOrs o o e 103
10.8.1 Handling errors in the application 103
10.8.2 Raising errors e e 104
10.8.3 Repairableerrors e 105
10.9 Specifyingfonts L 107
10.9.1 Physicalfonts 107
10.9.2 Logicalfonts 108
10.10Using images and CUrsors v v v v v e e e e e e e e e e e e 111
10.10.1Colourhandling. 111
10.10.2Supported Image Formats 112
10.11Using hyper links to relate objects 115
10.11.1Programming existence dependencies 115
10.11.2Methods for handling hyperobjects 117
10.12User defined graphicals 119
10.12.1(Re)defining the repaint method 119
10.12.2Example-l: a window withagrid 120
10.12.3Example-ll: a shape withtext 122
10.13FPrinting from XPCE applications oL 125
10.13.10ptions for document generation L. 125

XPCE 6.6.37

iv Programming in XPCE/Prolog

11 Commonly used libraries 127
11.1 Library “find_file” 129
11.2 Showing help-balloons 131
11.3 Dialog support libraries 133

11.3.1 Reporting errorsandwarnings 133
11.3.2 Toolbar support 133
11.3.3 Example e 134
11.4 Library “pce_toc”: displaying hierarchies 137
11.5 Tabularlayout e 141
11.5.1 Using format i i e e e 141
11.5.2 Using table using the “tabular” library 142
11.6 Plotting graphs and barcharts, 147
11.6.1 Paintingaxis 147
11.6.2 Plottinggraphs 149
11.6.3 Drawing barcharts using “plot/barchart” 151
11.7 Multi-lingual applications o 157
11.8 Draganddropinterface 161
11.8.1 Relatedmethods 162
11.9 Playing WEB (HTTP) server i 165
11.9.1 Class httpd v i e e e e e e e e e e e 168
11.1Mocument rendering primitives o 171
11.10.1Therendering library 172
11.10.2Predefinedobjects 173
11.10.3Class and method reference 173
11.10.4Using the “doc/emit” library 178

12 Development and debugging tools 181
12.1 Object-base consistency 181
12.2 Tracingmethods e 181
12.3 Breaking (spy) onmethods oL 182
12.4 Visual hierarchy tool 182
125 Inspectortool 182

A The dialog editor 187
A1 Guidedtour o L 187

A.1.1 Creating the target dialogwindow 187
A.1.2 Adding controlstothe newwindow 188
A.1.3 Definingthelayout 189
A.1.4 Specifying the behaviour oo L. 189
A1.5 Generatingsourcecode 190
A.1.6 Linkingthesourcecode, 190
A7 SUMMAry . .. o 193
A2 Miscellaneoustopics L 193
A.2.1 Specifying callbacktoprolog 193
A.2.2 Advanced example of behaviour 193
A.2.3 Specifying conditional actions L. 196
A24 Loadandsaveformats, 196

XPCE 6.6.37

Contents v

A3 Statusandproblems 198
A4 Summary and Conclusionso e 198

B Notes on XPCE for MS-Windows 199
B.1 Currently unsupported features in the Win32 version 199
B.2 Interprocess communication, extensions and interaction 199
B.3 Accessing Windows Graphics Resources 200
B.4 Accessing Windows Colours, 200
B.5 AccessingWindows Fonts 200
B.6 Accessing Windows Cursors i e 203

C xpcE/prolog architecture 205
C.1 Whatis “Object-Oriented”? i i 205
C.2 XPCE'sobjects e 205
C.21 Classes v v v i i e e e 206

C.3 Objectsandintegers i i i e e 206
C.4 Delegation e 206
C.5 Prolog e 208
C.6 Executableobjects 209
C.7 Summary 209

D Interface predicate definition 21
D.1 Basicpredicates 211
D.1.1 Portable declaration of required library predicates 216

D.2 Additional interface libraries 216
D.2.1 Library “pce_util” 216

D.2.2 Library “pce.debug” 218

D.2.3 Accessingthe XPCEmanual 219

E Memory management 221
E.1 Lifetimeofanobject 221
E.2 Practical considerations e 222
E.3 Memoryusageofobjects o o 222

F Commonly encountered problems 225
G Glossary 227
H Class summary descriptions 231

XPCE 6.6.37

Vi Programming in XPCE/Prolog

XPCE 6.6.37

Introduction

XPCE is an object-oriented library for building Graphical User Interfaces (GUI’s) for symbolic
or strongly typed languages. It provides high level GUI specification primitives and dynamic
modification of the program to allow for rapid development of interfaces. It integrates a graph-
ical tool for the specification of interfaces, in addition to powerful and uniform mechanisms to
facilitate automatic generation of GUI’s.

XPCE is not a programming language in the traditional sense. Language constructs and
objects of the system do not have a direct textual representation. The interface to the ‘host-
ing’ language defines what XPCE looks like from the programmers point of view. As a conse-
quence, the programmer will first of all experience XPCE as a library.

XPCE however, does provide all semantic elements that can be found in many object-
oriented programming languages: classes, objects, methods, instance-variables, inheri-
tance, statements, conditions, iteration, etc.

All the above primitives are represented by first-class objects that may be created, mod-
ified, inspected and destroyed. This allows the programmer to extend the XPCE object-
oriented system with new methods and classes from the host-language. In addition, proce-
dures can be expressed as objects and then given to XPCE for execution.

The interface between XPCE and its hosting language is small, which makes XPCE espe-
cially a good GUI candidate for special-purpose languages.

The main target language for XPCE is Prolog and this document concentrates on
XPCE/Prolog rather then XPCE/Lisp or XPCE/C++. XPCE/Prolog comes with a graphical
programming environment that allows for quick browsing of the source-code, provides de-
bugging tools and allows for the graphical construction of dialog boxes (graphical windows
with controllers). XPCE’s built-in editor is modelled after the standard (GNU-)Emacs editor
and can be programmed in XPCE/Prolog.

1.1 Organisation of the XPCE documentation

This document describes the basics of XPCE and its relation to Prolog. Besides the written
version, this document is also available as an HTML document from the URL below. The
second URL may be used to download the entire WWW tree for installation on a local host.

http://www.swi.psy.uva.nl/projects/xpce/UserGuide/
ftp://ftp.swi.psy.uva.nl/xpce/HTML/UserGuide.tgz

This document provides the background material needed to understand the other documen-
tation:

e The XPCE Reference Manual
[] The reference manual is available by means of the

XPCE 6.6.37

2 CHAPTER 1. INTRODUCTION

Prolog predicate manpce/0. The reference manual provides detailed descriptions of
all classes, methods, etc. which may be accessed from various viewpoints. See also
chapter 3.

e PceDraw: An example of using XPCE
[] This document contains the annotated sources of the drawing tool
PceDraw. It illustrates the (graphical) functionality of XPCE and is useful as a source of
examples.

e XPCE/Prolog Course Notes
[] Course-notes, examples and exercises for programming
XPCE/Prolog. The course-notes have a large overlap in contents with this user guide,
but the material is more concise. If you are familiar with object-oriented systems, Pro-
log and graphical user interfaces the course-notes might be a quick alternative to this
user guide.

1.2 Other sources of information
Various other information can be found on or through the XxPCE WEB-home:
http://www.swi.psy.uva.nl/projects/xpce/

Utility programs, recent examples, documentation, etc. can be found in the primary XPCE
anonymous ftp archive:

ftp://ftp.swi.psy.uva.nl/xpce/

There is a mailing list for exchanging information and problems between programmers
as well as for us to announce new releases and developments. The address is
xpcelswi.psy.uva.nl. Please send mail to xpce-request@swi.psy.uva.nl to sub-
scribe or unsubscribe to this list. This E-mail address can also be used to communicate
with the authors. The address xpce-bugs@swi.psy.uva.nl should be used for reporting
bugs.

1.3 Language interfaces

The interface between XPCE and the application (host) language is very small. This feature
makes it easy to connect XPCE to a new language. XPCE fits best with dynamically typed or
strongly statically typed languages with type-conversion facilities that can be programmed.
XPCE itself is dynamically typed. Cooperating with languages with the named properties
avoid the need for explicitly programmed type-conversion. For a dynamically typed host-
language such as Prolog or Lisp, the interface determines the type of the host-language
construct passed and translates it into the corresponding XPCE object. For C++, the rules
for translating C data structures to XPCE objects can be handled by the programmable type-
casting mechanism of C++.

XPCE 6.6.37

1.4. PORTABILITY 3

1.4 Portability

The XPCE virtual machine and built-in class library is written in standard ANSI-C and is
portable to any machine offering a flat, sufficiently large, memory model (32 or 64 bits).
XPCE’s graphical classes (including windows, etc.) interface to XPCE Virtual Windows Sys-
tem (VWS). Currently there are VWS implementations for X11 and the Microsoft Win32 API.
Please contact the authors if you are interested in other implementations.

1.4.1 Unix/X-windows

XPCE runs on most Unix/X11 platforms. Tested platforms include SunQOs, Solaris, AlX,
HPUX, IRIX, OSF/1 and Linux. Platform configuration is realised using GNU autoconf with
an extensive test-suite.

1.4.2 Win32 (Windows 95 and NT)

The same binary version of XPCE runs on both Windows 95 and NT. Its functionality is very
close to the Unix/X11 version, making applications source-code compatible between the two
platforms. .

A detailed description of the differences between the Unix/X11 version and the Windows
version as well as additions to the Windows version to access Windows-specific resources
is in appendix B.

1.5 Look-and-feel

XPCE is not implemented on top of a standard Ul library such as Motif, OpenWindows, or
Win32. Instead, it is built on top of its own VWS defining primitives to create and manipulate
windows, draw primitives such as lines, circles, text and handle user-events.

As a consequence, XPCE programs are fully compatible over the available platforms,
except that some (almost exclusively obscure) features may have a different or have no
effect on some implementations.

The implementation of all of XPCE on top of its primitive graphicals guarantees there are
no platform-specific limitations in the manipulation and semantics of certain controllers. XPCE
defines the look-and-feel for each of the controllers. As a consequence, XPCE controllers
may not behave exactly the same as controllers of other applications in the same windowing
environment.

All good things come at a price-tag and portability based on a virtual environment is no
exception to this rule. XPCE builds high-level controllers (called dialog-items in its jargon)
on top of the virtual machine and therefore bypasses the graphical libraries of the hosting
system. The same technique is used by many other portable GUI toolkits, among which
Java.

The visual feedback (look) and to some extend the reactions to user actions (feel) of the
XPCE controllers is determined by XPCE’s defaults file, located in (pcehome)/Defaults.
See section 8.

XPCE 6.6.37

4 CHAPTER 1. INTRODUCTION

1.6 A brief history of (X)PCE

The “PCE Project” was started in 1985 by Anjo Anjewierden. His aim was to develop a high-
level Ul environment for (C-)Prolog. The requirements for this environment came from the
“Thermodynamics Coach” project in which Paul Kamsteeg used PCE/Prolog to implement
the Ul for a courseware system for thermodynamics. This system included a ‘scratch-pad’
that allowed the student to create structured drawings of component configurations. The
application had to be able to analyse the drawing made by the student.

PCE has been redesigned and largely re-implemented on a SUN workstation using Quin-

tus Prolog and later SWI-Prolog [] in the Esprit project P1098 (KADS).
This project used PCE to implement a knowledge engineering workbench called Shelley
[]. During this period PCE/Prolog has been used by various re-

search groups to implement graphical interfaces for applications implemented in Prolog.
Most of these interfaces stressed the use of direct-manipulation graphical interfaces. Feed-
back from these projects has made PCE generally useful and mature.

During the versions 4.0 to 4.5, XPCE was moved from SunView to X-windows and since
4.7 compatibility to the Win32 platform is maintained. In addition, the virtual machine has
been made available to the application programmer, allowing for the definition of new XPCE
classes. These versions have been used mainly for small internal case-studies to validate
the new approach. Larger-scale external usage started from version 4.6 and introduced the
vital requirement to reduce incompatible changes to the absolute minimum.

In version 5, the XPCE/Prolog interface was revisited, improving performance and making
it possible to pass native Prolog data to XPCE classes defined in Prolog as well as associate
native Prolog data with XPCE objects. Various new graphical primitives, among which HTML-
4 like tables and graphical primitives for rendering markup containing a mixture of graphics
and text.

As of XPCE 5.1, the license terms have been changed from a proprietary license schema
to the open source GPL-2 licence.

As of XPCE 6.0, the licence terms have been changed from GPL to the more permissive
LGPL for the XPCE kernel (compiled C-part) and GPL with an exception allowing for gener-
ating non-free applications with XPCE for the Prolog libraries. Please visit the SWI-Prolog
home page at http://www.swi-prolog.org for details.

1.7 About this manual

gThis userguide introduces the basics of XPCE/Prolog and its development environment.
Chapter 2, “Getting Started” explains the interface. Chapter 3, “Using the online manual”
introduces the online documentation tools. These are introduced early, as many of the ex-
amples in this manual introduce classes and methods without explaining them. The online
manual tool can be used to find the definitions of these constructs quickly. The chapter 5
and chapter 4, “Dialog (controller) windows” and “Simple Graphics” introduce the various
controller and graphical primitives.

With the material of the above described chapters, the user is sufficiently informed to
create simple GUI's from predefined XPCE objects. The remaining chapters provide the
background information and techniques that allow for the design of larger graphical systems.

XPCE 6.6.37

1.8. ACKNOWLEDGEMENTS 5

Chapter 6, “The relation between XPCE and Prolog” is a brief intermezzo, explaining the
relation between XPCE and Prolog data in more detail. Chapter 7, “Defining classes” explain
the definition of new XPCE classes from Prolog and thus brings object-oriented programming
to the user. Chapter 10, “Programming techniques” is an assorted collection of hints on how
XPCE can be used to solve real-world problems elegantly. Chapter 11, “Commonly used
libraries” documents some of the commonly used XPCE/Prolog libraries.

Chapter 12, “Development and debugging tools” introduces the XPCE debugger. The
current debugger is powerful, but not very intuitive and requires a nice-looking front-end.

Of the appendices, appendix H is probably the most useful, providing a short description
of each class and its relation to other classes. Many of the classes are accompanied with a
small example.

1.8 Acknowledgements

The development of XPCE was started by Anjo Anjewierden. The package was then called
PCE. He designed and implemented version 1 and 2. Version 3 is the result of a joint effort
by Anjo Anjewierden and Jan Wielemaker.

XPCE-4, offering support for X-windows and user-defined classes, has been imple-
mented by Jan Wielemaker. The implementation of user-defined classes was initiated when
Jan Wielemaker was guest at SERC (Software Engineering Research Centre). Gert Florijn
has contributed in the initial discussions on user-defined classes. Frans Heeman has been
the first user.

The interface to SICStus Prolog has been implemented in cooperation with Stefan An-
dersson and Mats Carlsson from SICS.

The interface to Quintus Prolog was initiated by Paul-Holmes Higgins. The project was
realised by James Little, Mike Vines and Simon Heywood from AlIL.

Luca Passani has bothered us with many questions, but was so kind to organise this
material and make it available to other XPCE programmers in the form of a FAQ.

Gertjan van Heijst has commented on XPCE as well as earlier drafts of this documents.

(X)PCE is used by many people. They have often been puzzled by bugs, incompatibilities
with older versions, etc. We would like to thank them for their patience and remarks.

XPCE 6.6.37

6 CHAPTER 1. INTRODUCTION

XPCE 6.6.37

Getting started

This section introduces programming the XPCE/Prolog environment: the entities (objects),
referencing objects and manipulating objects. Most of the material is introduced with exam-
ples. A complete definition of the interface primitives is given in appendix D.

2.1 Starting XPCE/Prolog

XPCE is distributed as a library on top of the hosting Prolog system. For use with SWI-Prolog,
this library is auto-loaded as soon as one of its predicates (such as new/2) is accessed or it
can be loaded explicitly using

:— use_module (library (pce)) .

In Unix XPCE/SWI-Prolog distribution the program xpce is a symbolic link to p1 and causes
the system to pull in and announce the XPCE library with the banner:

o

% xpce
XPCE 6.0.0, February 2002 for i1686-gnu-linux—gnu and X11R6
Copyright (C) 1993-2002 University of Amsterdam.

XPCE comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
The host-language is SWI-Prolog version 5.0.0

For HELP on prolog, please type help. or apropos (topic).
on xpce, please type manpce.

1 »-

SWI-Prolog’s prompt is “(n) ?-” where (n) is the history-number of the command. The banner
indicates the XPCE version. The indicated version is 5.1 and the patch-level is 0.

On MS-Windows, Prolog programs are normally loaded and started by double-clicking
a ..pl file. XPCE, being a normal library, does not change this. Note that XPCE can only
be used fully with the GUI-based plwin.exe. Using the the console-based plcon.exe
program only the non-GUI functionality of XPCE is accessible.

2.2 Prolog ... and what?

This section describes the four basic Prolog predicates used to control XPCE from Prolog.
These four predicates map onto the basic functions of XPCE’s virtual machine: creating,
destroying, manipulating and querying objects, the basic entities of XPCE.

XPCE 6.6.37

8 CHAPTER 2. GETTING STARTED

For those not familiar with this jargon, an object is an entity with a state and associated
procedures, called methods. Objects may represent just about anything. In XPCE’s world
there are objects representing a position in a two-dimensional plane as well as an entire
window on your screen. Each object belongs to a class. The class defines the constituents
of the state as well as the procedures associated with the object. For example, a position
in a two-dimensional plane is represented by an object of class point. The state of a
point object consists of its X- and Y-coordinates. A point has methods to set the X- and
Y-coordinate, mirror the point over a reference point, compute its distance to another point,
etc.

2.2.1 Creating objects: new

The predicate new/2 (new(?Reference, +NewTerm)) creates an object in the XPCE world and
either assigns the given reference to it or unifies the first argument with a XPCE generated
reference. An (object-) reference is a unique handle used in further communication with the
object. Below are some examples (?- is the Prolog prompt):

1 ?- new(P, point(10,20)).
P = @772024

2 ?- new(@demo, dialog(’Demo Window’)) .

The first example creates an instance of class point from the arguments ‘10’ and ‘20°. The
reference is represented in Prolog using the prefix operator @/1. For XPCE generated ref-
erences the argument of this term is a XPCE generated integer value. These integers are
guaranteed to be unique. The second example creates a dialog object. A dialog is a window
that is specialised for displaying controllers such as buttons, text-entry-fields, etc. In this ex-
ample we have specified the reference. Such a reference must be of the form @At om. XPCE
will associate the created object with this reference.’

As illustrated by the examples above, the second argument to new/2 is a term. The
principal functor denotes the name of the class of which an instance is created and the
arguments are the initialisation parameters. The complete transformation rules are given in
appendix D.

As stated before, an object has a state. At creation time, the initial state is defined by the
class from which the object is created and the initialisation arguments. In our example, the
point is assigned an x-value of 10 and and y-value of 20. The dialog is assigned the label
‘Demo Window’. A dialog window has many slots® The example defines the ‘label’. All the
other slots are set to the default value described in the class definition.

2.2.2 Modifying object state: send

The state of an object may be manipulated using the predicate send/2 (send(+Receiver,
+Selector(...Args...))). The first argument of this predicate is an object reference. The second

"Normal applications use almost exclusively XPCE generated references. Many of the examples in this manual
are typed from the terminal and Prolog specified references are easier to type.

2The attributes of an object state are called slots. In other languages they may be called instance variables
or fields.

XPCE 6.6.37

2.2. PROLOG ... AND WHAT? 9

Figure 2.1: Example Dialog Window

is a term. The principal functor of which is the name of the method to invoke (selector) and
the arguments are arguments to the operation.

3 ?— send(@772024, x(15)).
4 ?- send(@demo, append(text_item(name))).

The first example invokes the method ‘X’ of the point object. It sets the instance variable x
of the corresponding point object to the argument value. The second example invokes the
method ‘append’ of class dialog. This method appends a Ul component to the dialog window.
The component is specified by the term ‘text_item(name)’, which is converted into an object
just as the second argument of new/2. The query below opens the dialog window.

5 ?- send(@demo, open).

If everything is ok, a window as shown in figure 2.1 appears on your screen. The border
(in the figure this is the title-bar displayed above the window) is determined by the window
manager you are using. It should look the same as any other window on your terminal. If an
error of any kind appears, please refer to appendix F.

2.2.3 Querying objects: get

The next fundamental interface predicate is get /3. It is used to obtain information on the
state of objects. The first two arguments are the same as for send/2. The last argument
is unified with the return-value. The return value is normally an object reference, except
for XPCE name objects, that are returned as a Prolog atom, XPCE integers (int) that are
translated to Prolog integers and XPCE real objects, that are translated to Prolog floating
point numbers. Examples:

?—- get (@772024, vy, Y).

= 20

?— get (@demo, display, D).

= @display/display

?— get (@772024, distance(point (100,100)), Distance).
Distance = 117

w O J K o

The first example just obtains the value of the ‘y’ instance variable. The second example
returns the display object on which @demo is displayed. This is the reference to an object
of class display that represents your screen.® The last example again shows the creation of

3Prolog would normally print ‘édisplay’. The pce_portray defines a clause for the Prolog predicate
portray/1 that prints object references as ‘@Reference/Class’. This library is used throughout all the ex-
amples of this manual.

XPCE 6.6.37

10 CHAPTER 2. GETTING STARTED

objects from the arguments to send/2 and get /3 and also shows that the returned value
does not need to be a direct instance variable of the object. The return value is an integer
representing the (rounded) distance between @772024 and point(100,100).

The second example illustrates that get /3 returns objects by their reference. This refer-
ence may be used for further queries. The example below computes the width and height of
your screen.

9 ?- get(Q@display, size, Size),
get (Size, width, W),
get (Size, height, H).

Size = @4653322, W = 1152, H = 900

As a final example, type something in the text entry field and try the following:

10 ?- get (@demo, member (name), TextItem),
get (TextItem, selection, Text).
TextItem = @573481/text_item, Text = hello

The first get operation requests a member of the dialog with the given name (‘name’). This
will return the object reference of the text_item object appended to the dialog. The next
request obtains the ‘selection’ of the text_item. This is the text typed in by the user.

2.2.4 Removing objects: free

The final principal interface predicate is free/1. lts argument is an object reference as
returned by new/2 or get /3. It will remove the object from the XPCE object base. Examples:

12 72— free(Q@772024).
13 ?- free (@demo) .

14 ?- free(@display).
No

The second example not only removed the dialog window object from the XPCE object base,
it also removes the associated window from the screen. The last example illustrates that
certain system objects have been protected against freeing.

2.3 Optional arguments

Arguments to XPCE methods are identified by their position. Many methods have both obliga-
tory and optional arguments. If obligatory arguments are omitted XPCE will generate an error.
If optional arguments are omitted XPCE fills the argument with the constant @default. The
interpretation of @default is left to the implementation of the receiving method. See also
chapter 3.

XPCE 6.6.37

2.4. NAMED ARGUMENTS 11

2.4 Named arguments

Some methods take a lot of arguments of which you generally only want to specify a few.
A good example is the creation of a style object. A style is an object used to con-
trol the attributes of displayed text: font, fore- and background colour, underline, etc. Its
—initialise method, serving the same role the constructor in C++, takes 7 arguments.
Both calls below create a style object representing an underlined text-fragment:

1 ?- new(X, style(@default, @default, @default, @default, @on)).
2 ?- new (X, style(underline := @on)).

The names of arguments are specified in the reference manual. For example, the method
‘area — set’, used to set one or more of the X-, Y-, H- and W-attributes of a rectangle,
has the specification given below. For each argument that is specified as @default, the
corresponding slot will not be changed.

area->set: x=[int], y=[int], width=[int], height=[int]
The following example illustrates the usage of this method:

1 ?- new (A, area),
send (A, set(y := 10, height := 50)).

2.5 Argument conversion

Arguments to XPCE methods are typed and variables are dynamically typed. This combina-
tion is used for two purposes: automatic conversion and raising exceptions at the earliest
possible point if conversion is not defined.

For example, the send-method ‘colour’ on class graphical specifies accepts a single
argument of type ‘colour’. A colour in XPCE is represented by a colour object. Colour objects
may be created from their name. The natural way to specify a box should be coloured ‘red’
is:

A 4

send (Box, colour (colour(red))),

Because the —colour method knows that it expects an instance of class colour, and be-
cause class colour defines the conversion from a name to a colour (see section 7.3.1), the
following message achieves the same goal:

4

send (Box, colour (red)),

Some other examples of classes defining type conversion are font, image, name, string,
real and the non-object data item int. The following messages are thus valid:

XPCE 6.6.37

12 CHAPTER 2. GETTING STARTED

.

send (Box, x("710")), % atom ——> int
send (Box, selected(true)), % atom —-—-> boolean
send (Text, font (bold)), % atom ——> font
send (Text, string(10)), % int --> string

2.6 Send and get with more arguments

Though the principal predicates for invoking behaviour are send/2 and get /3, XPCE pro-
vides an alternative using send/[2-12] and get/[3-13]. The following goals are all
identical.

send (Box, width (100)) send (Box, width, 100)

get (Point, distance(point(10,10), D) get(Point, distance, point (10,1),

This alternative is provided for compatibility to pre-5.0 versions as well as to support users
that dislike the new-style send/2 and get /3. It is realised using goal_expansion/2 and
thus poses only a small compile-time overhead.

2.7 Notation

This manual, as well as all other XPCE documentation both printed and online uses some
notational conventions. Instead of speaking of ‘the send-method colour of class box’, we
write

‘box — colour’
Similar, instead of ‘the get-method height of class window’, we write

‘window <« height’
In some cases, the arguments and/or the return type of the method are specified:

‘box — colour: colour

‘window <« height —int’

2.8 Example: show files in directory

In this section we illustrate the above with some simple examples. We also show how the
GUI can call procedures in the Prolog system.

The demo creates a list of files from a given directory and allows the user to view a file.
Figure 2.2 shows the result.

XPCE 6.6.37

D)

2.8. EXAMPLE: SHOW FILES IN DIRECTORY 13

memory, doc
namedref, doc
online, doc
pceprolog, doc
report, doc
reportdemp, ps

ztarting, doc
=tarting, doc”
technigues, doc
the=sis, sty

R EIR

Wiy Gt

“zectionfExample! show filesz in directoryl =

In thisz =zection we will illustrate the above with some s=mall examples,
e will alszo show how the GUI can call procedures in the Prolog system.

The demo creates a list of files from the given directory and allows
the user to wiew a file, “Figrefifileviewer? shows the result,

“postscriptfiglwidth=“textwidth?{fileviewer3iThe FileYiewer l:;iemn:!?rmL

“heginipcecodel

Fileviewer{Dir}) - -
newiF. framei{"File Viewer™).
L

zend{F. append. newi{B. browser}}.
zendi{new{d, dialog!. below. B}.
zend{l. append.
bhutton{view., messzage{Bprologz. wview,
BYzelectionYkeyl .
zend{D. append.
button{guit, message{F. destroyrii. e

Figure 2.2: The FileViewer demo

XPCE 6.6.37

14 CHAPTER 2. GETTING STARTED

fileviewer (Dir) :-—
new (DirObj, directory(Dir)),
new (F, frame('File Viewer’)),
send (F, append (new (B, browser))),
send (new (D, dialog), below(B)),
send (D, append (button (view,
message (@prolog, view,
DirObj, B?selection?key)))),
send (D, append(button (quit,
message (F, destroy)))),
send (B, members (DirObj?files)),
send (F, open).

view (DirObj, F) :-—
send (new(V, view(F)), open),
get (DirObj, file(F), FileObij),
send(V, load(FileOb3j)).

The main window of the application consists of a frame holding two specialised window
instances. A frame is a collection of tiled windows. Any opened window in XPCE is enclosed
in a frame. The windows are positioned using the methods —above, —below, —right
and —1eft. The frame ensures that its member windows are properly aligned and handles
resizing of the frame. See also section 10.6.

In line 3, a browser is —appended to the frame object. A browser is a window spe-
cialised for displaying a list of objects. Next, a dialog is positioned below the browser. A
dialog is a window specialised in handling the layout of controllers, or dialog_item objects
as XPCE calls them.

Line 5 adds a button to the dialog. ‘view’ specifies the name of the button. XPCE
defines a central mapping from ‘dialog_item <name’ to the label displayed. The default
mapping capitalises the name and replaces underscores with spaces. In section 11.7, we
describe how this can be used to realise multi-lingual applications. The second argument of
the button specifies the action associated with the button. A message is a dormant send-
operation. When pressed, the button executes

send (@prolog, view, DirObj, B?selection?key)

If a message is sent to @prolog, this calls a predicate with the name of the selector of the
message and an arity that equals the number of arguments to the message (2 here).

The second argument is a term with principal functor ? and defines an ‘obtainer’, a
dormant get-operation. It is defined as a Prolog infix operator of type y £ x, priority 500. This
implies that B?selection?key should be read as*

?(? (B, selection), key)

The result of the get-operation «—selection on a browser returns the dict_item object
currently selected. Dict-items are the elements of a dict, the underlying data object of a

“Initial versions of XPGE lacked the obtainer. In this case the browser B would be passed to the predicate
view/1, which would extract the current filename from the browser. Obtainers improve the readability and avoid
the need to mix Ul related code with application code.

XPCE 6.6.37

2.9. SUMMARY 15

browser. A dict_item consists of a «—key (its identifier), a < 1abel (the visual text) and
optionally an associated «—object.

Line 8 appends a second button to the dialog window. The dialog window will automat-
ically align this one to the right of the first. The action sends a message directly to another
XPCE object and —destroys the frame object if the quit button is pressed. Note that this
will erase all Ul objects associated with the frame. The garbage collector destroys all related
objects.

Line 10 fills the browser with the files from the specified directory. The expression
DirObj?files defines an obtainer operating on an instance of class directory. The
obtainer evaluates to a chain, XPCE’s notion of a list, holding the names of all files in the
directory. This chain is sent to the members-method of the browser B.

Again, the garbage collector takes care of the directory and chain objects. The browser
automatically converts the given names to dict_item objects.’

Finally, the frame is —opened. This will cause the frame to ask each of the windows
to compute its desired size, after which the frame aligns the windows, decides on their final
geometry and creates the Window-system counterpart.

The view/2 callback predicate opens an instance of view, a window specialised in text-
editing, gets the file-object for the given filename F. and loads the file into the view. The
method ‘'view — load’ expects an instance of class file. Again, the type-conversion will
deal with this.

2.9 Summary

XPCE’s world consists of objects. An object is an entity with persistent state that belongs to
a class. The XPCE/Prolog interface defines four basic predicates, new/2 to create objects
from a description and returns an object reference, send/ [2-12] to change the state of
an object and succeeds if the requested change could be made, get/[3-13] to request
an object to compute a value and return it, and free/1 to remove objects from the XPCE
database.

Objects of the message are ‘dormant’ send operations. They may be activated by other
objects (button, text_item, ...). In this case a send operation is started. Objects of class 2 are
called obtainer and represent ‘dormant’ get operations. The ‘?’ sign is defined as a prolog
infix operator, allowing for constructs as:

send (Frame, height, Frame?display?height)

The object @prolog (class host) allows calling Prolog predicates from the XPCE environ-
ment.

5This conversion is implemented with class dict_item. In fact, the browser just specifies the desired type
and the message passing kernel invokes the conversion method of class dict_item.

XPCE 6.6.37

16 CHAPTER 2. GETTING STARTED

XPCE 6.6.37

Using the online manual

In the previous sections we have introduced XPCE using examples. The language primitives
of XPCE are simple, but XPCE as a whole is a massive library of very diverse classes with
many methods. The current system contains about 160 classes defining over 2700 methods.

To help you finding your way around in the package as well as in libraries and private
code loaded in XPCE, an integrated manual is provided. This manual extracts all information,
except for a natural language description of the class, method or slot from the system and
thus guarantees exact and consistent information on available classes, methods, slots, types,
inheritance in the system.

The manual consists of a number of search tools using different entry points to the ma-
terial. A successful query displays the summary information for the relevant hyper-cards.
Clicking on the summary displays the cards themselves and hyper-links between the cards
aid to quickly browse the environment of related material.

3.1 Overview

The online manual consists of a large set of tools to examine different aspects of the
XPCE/Prolog environment and to navigate through the available material from different view-
points.

The inheritance hierarchy Browsers/Class Hierarchy
The ‘Class Hierarchy’ tool allows the user to examine XPCE’s class hierarchy. This
tool reads the inheritance relations from the class objects and thus also visualises
application or library classes. Figure C.2 is created using this tool.

The structure of a class Browsers/Class Browser
The most important tool is the ‘Class Browser’. It provides the user with a view of

material related to a class. As everything in XPCE is an object and thus an instance of
a class this tool provides access to everything in XPCE, except for the Prolog interface.

Search Tool Browsers/Search
This tool provides full search capabilities on the entire manual contents, including com-
bined search specifications.

Globally available object references Browsers/Global Objects
The XPCE environment provides predefined objects (epce, @prolog, Rargl, etc.).
The tool allows the user to find these objects.

Prolog interface predicates Browsers/Prolog Predicates
This tool documents all the XPCE/Prolog predicates.

XPCE 6.6.37

18 CHAPTER 3. USING THE ONLINE MANUAL

Instances Tools/Inspector
This tool is part of the runtime support system. It allows you to inspect the persistent
state associated with objects.

Structure of User Interface Tools/Visual Hierarchy
This tool provides a ‘consists-of’ view of all displayed visual objects. It provides a quick
overview of the structure of an interface. It is a useful for finding object-references,
examining the structure of an unknown Ul and verifying that your program created the
expected structure.

The manual itself (help) File/Help
The manual tools are documented by itself. Each tool has a ‘Help’ button that docu-
ments the tool.

XPCE Demo programs File/Demo Programs

The ‘Demo Programs’ entry of the ‘File’ menu starts an overview of the available demo
programs. A demo can be started by double-clicking it. The sources of the demos
may be found in (home)/prolog/demo, where (home) refers to the XPCE installation
directory, which may be obtained using

1 ?- get (@pce, home, Home).
Home = ' /usr/local/lib/pl-4.0.0/xpce’

Note that the DemoBrowser allows to view the sources of the main file of a demo
application immediately. Also consider using the VisualHierarchy and ClassBrowser to
analyse the structure of the demo programs.

3.2 Notational conventions

The text shown by the online manual uses some notational conventions. The various
overview tools indicate candidate documentation cards with a summary line. This line is
of the form:

(Identifier) (Formal Description) [“(Summary)”]

The ‘Identifier’ is a single letter indicating the nature of the documentation card. The defined
identifiers are: Browser (Manual Tool), Class, Example, Keyword, Method, Object, Predicate,
Resource, Topic and Variable (instance-variable).

The ‘Formal Description’ is a short description derived from the described object itself:

XPCE 6.6.37

3.2. NOTATIONAL CONVENTIONS

19

v class - selector: type Variable that cannot be accessed directly

V class <- selector: type Variable that may be read, but not written

V class <->selector: type Variable that may be read and written

V class ->selector: type Variable that may only be written

M class ->selector: type ... Send-Method with argument-types

M class <— selector: type ... ——>type | Get-Method with argument-types returning
value of type

R Class.attribute: type Class-variable with type

The same notational conventions are used in the running text of a card. See section 3.3.2.

3.2.1 Argument types

XPCE is a partially typed language. Types may be defined for both method arguments and
instance variables. A type is represented by an instance of class type. XPCE defines a
conversion to create type objects from a textual representation. A full description of this con-
version may be found in the online manual (method ‘type <« convert’). In this document
we will summarise the most important types:

e int

XPCE integer datum.

e (low)..(high), (low).., ..(high)

Range of integers (including (low) and (high)). The latter two constructs indicate one-
side-unbound integer. Both (low) and (high) can also be floating point numbers, indi-
cation a ‘real-range’.

any
Both integers and objects. Function objects will be evaluated. See section 10.2.2.

(class-name)

Any instance of this class or one of its sub-classes. Class object is the root of the in-
heritance hierarchy. The type object is interpreted slightly different, as it does not ac-
cept instances of class function or its subclasses. This implies that the type object
forces functions to be evaluated.

[(type)]
Either this type or @default. Trailing arguments to methods that accept @default
may be omitted.

(type)
Either this type or @nil.

(type) . ..
Methods with this type specification accept any number of arguments that satisfy
(type).

{(atom1),(atom2),. ..}
Any of these name objects.

XPCE 6.6.37

20 CHAPTER 3. USING THE ONLINE MANUAL

Inheritance and delegation
Only show these - Click on superclass to extend search

Enter class-name to categories - Double-click: apply search
switch to a new class ->initialise arguments
S 000
Grouping \, done editnr(text=[}xt_huffer], dth=[int], height=[int], margin=[int]}
- q device —
Class: ; ; visual —graphical <, =
: 7 ohject <fayour fatertace B
Fiter: [Basic | [advanced SOUITE. Sink—taxt_ BLTer
Rare ’ Internal = = —
= - 1 components Parts I'm built from
ias'l? Qt_o iﬁ*’ame’d DO |y oditor <-tex_cursar text_cursor Thea = q
pplication | ? read 1Read Open Car
. A M editor <—read line ——sline=strind 2826t — |a< o1 Start Class Browser o related card | ¥
Display: |Self Sub class | 3 indentation Clees bromsay ﬁ; View/edit implementation
Mariakle Class var | b editor -=align: column=int, index— &lignr Set/clear Prolog spy-point
Send method | Get methad 4 scroll {fgﬂ Set/clear XPCE trace-point
M editor -=line_to_top_of_window: Spy FOIFCaTET 0 TOE o e or]
Search: caref, W editor -=recenter: [ini] Scroll caret to center of window (+)
5 caret Moving the insertion point
.. In: [Mame [Summary W editor <-caret int Trace 0-based caret index [+)
Description K editor -=caret: index=[in] - Putthe caret at 0-hased index (+)
K editor —=column: column=int Move caret to column at current line (+)
) _Help] Quit] M editor - =exchange_point_and_mars Exchange caretwith mark (+)
—

Select on pattern in specified fields

Figure 3.1: The Class Browser

For example, the —initialise method of a graphical text object has type declaration:
[char_array], [{left,center,right}], [font]

The first argument is an instance of class char_array, the super-class of name and
string. The second argument either ‘left’, ‘center’ or ‘right’ and the last argument is a
font object. All arguments are between square brackets and may thus be omitted.

3.3 Guided tour

This section provides a ‘guided tour’ through the manual system. If you have XPCE/Prolog
at hand, please start it and try the examples. For each of the central tools of the manual we
will present a screendump in a typical situation and explain the purpose and some common
ways to use the tool.

3.3.1 Class browser

The “Class Browser” is the central tool of the online manual. It provides an overview of the
functionality of a class and options to limit the displayed information. Figure 3.1 shows this
tool in a typical situation. In this example the user is interested in methods dealing with ‘caret’
inan editor.

The dialog to the left-side of the tool specifies what information is displayed. The top-right
window displays the class together with the initialisation arguments (the arguments needed
to create an instance of this class). Double-left-click on this text will open the description for
—initialise.

Below this text a hierarchy is displayed that indicates the place in the inheritance hierar-
chy as well as the classes to which messages are delegated (see section C.4). The user can

XPCE 6.6.37

3.3. GUIDED TOUR 21

select multiple classes only if there is delegation and the tree actually has branches. Use
class editor or class view to explore these facilities. After the user has selected one or
more classes, the Apply button makes the class-browser search for methods in all classes
below the selected classes. If a method is found in multiple classes the class-browser will
automatically display only the one method that will actually be used by this class.

The large right window displays a list of matching classes, variables, methods and class-
variables. If an item is tagged with a “(+)” there is additional information that may be obtained
by (double-) clicking the card to start the “Card Viewer” (see section 3.3.2).

The ClassBrowser dialog

The Class text_item (text-entry-field) may be used to switch to a new class. Note that this
text_item implements completion (bound to the space-bar).

The Filter menu filters the candidate objects according to their categorisation. Selecting
all switches off filtering, which is often useful in combination with Search. Clicking all again
switches back to the old selection of categories. The meaning of the categories is:

e Basic
Principal methods that are used very often. This is, together with Application, the
default selection of this menu.

e Advanced
Less often used and sometimes complicated methods.

e Rare
Infrequently used methods. Note that does not mean they are complicated or do things
youd hardly ever want to use. For example, most of the caret-manipulation of class
editor is in this category. It is essential and commonly used behaviour of the editor, but
rarely used directly from program-control.

e Internal
Behaviour that is not directly intended for public usage. It may be useful to understand
how other methods interact. Try to avoid using these methods or variables in your
code.

e Basic OO
Methods intended to be redefined in user-defined classes. See chapter 7.

e Advanced OO
Methods that may be redefined in user-defined classes, but for which this is far less
common.

e Application
Methods implemented in the host-language.

The Display menu determines the objects searched for. Self refers to the class itself,
Sub Class refers to the direct sub classes of this class. The other fields refer to instance-
variables, methods with send- and get-access and class-variables.

XPCE 6.6.37

22 CHAPTER 3. USING THE ONLINE MANUAL

The Search and ... In controllers limit the displayed cards to those that have the specified
search string in one of the specified fields. While searching, the case of the characters is
ignored (i.e. lower- and uppercase versions of the same letter match). Searching in the
Name field is useful to find a particular method if the name (or part of it) is known.

Example queries to the classbrowser

Below we illustrate how some commonly asked questions may be answered with the class
browser.

e What are variables of a bitmap?
Select variable in the Display menu, clear Search, and set Filter to All. Then type
‘bitmap’ in Class and hit return. Note that by double-clicking on class graphical in
the inheritance display not only the variables of class bitmap itself are shown, but also
those of class graphical.

e How can | position the caret in an editor?
The caret can only be changed using send-methods. Either the name or the summary
is likely to have ‘caret’ as a substring. Thus, Display is set to Send Method, Field to
Name and Summary, search ‘caret’.

Methods with special meaning

This section describes the role of the ‘special’ methods. These are methods that are not
used directly, but they define the behaviour of new/2, type conversion, etc. and knowing
about them is therefore essential for understanding an XPCE class.

object — initialise: (Class-Defined)
The —initialise method of a class defines what happens when an instance of this
class is created. It may be compared to the constructor in C++. Note that double-
clicking the class description in the class-browser (top-right window) opens the refer-
ence card forthe —initialise method. See also new/2, section 2.2.1.

object — unlink
The —unlink method describes what happens when an instance of this class is re-
moved from the object-base and may be compared to the C++ destructor.

object — lookup: (Class-Defined) — object
If defined, this method describes the lookup an already defined instance instead of
object creation. For example

?— new (X, font (screen, roman, 13)).
= @screen_roman_13
- new (Y, font(screen, roman, 13)).
@screen_roman_13

KON X e
V)

The same instance of the reusable font instance is returned on a second attempt to
create a font from the same parameters. Examples of classes with this capability are:
name, font, colour, image and modifier.

XPCE 6.6.37

3.3. GUIDED TOUR 23

If multiple titles are above one description,
underline indicates the source of the description.
Hyper-link.

Double-click to follow

Card Title

Selection /
M, device->selection: graphical [chain®

Set the member graphicals that have “graphical <-=selectep_Soen’

Functional group

If the argument is a graphical, this graphical will be setecteq Jump to related fragment
is a chain of graphicals, W Go back to previous card _
If the argument is @nil, r o — fcted. +Start ClassBrowser on associated class
Frevious ; i
View/Edit source
all graphicals displayed | Class Browser e ihdiei Consult selection
will he deselected. Show key-bindings
M device<-selection ===>c —
Feturns a new chain wit{ Show Key Bindings—le *Graphical «-selected:
@aon®. Ifthere are no such graphicals, an empty chain is returned.
—
Help Gt | Goto: view-zcaret ra: Mo Match

Type card name and jump to it
Does completion on SPACE

Figure 3.2: The Card Viewer

object — convert: (Class-Defined) — object
Defines what can be converted into an instance of this type. If an instance of this
class is requested by a type but another object is provided XPCE will call this method
to translate the given argument into an instance of this class.

object — catch_all: (Class-Defined)
The —catch_all method defines what happens with messages invoked on this object
that are not implemented by any other method.

object — catch_all: (Class-Defined) — any
As —catch_all, but for get-operations.

3.3.2 Reading cards

The other tools of the manual allow the user to find cards with documentation on the topic(s)
the user is looking for. The information provided by the summary-lists often suffices for this
purpose. Whenever a card is marked with a “(+)” in the summary list it may be opened by
double-clicking it. This starts the “Card Viewer” tool. Figure 3.2 is a screendump of this tool
showing the ‘selection’ group of class ‘device’.

The “Card Viewer” displays the formal information and all available attributes from the
card related to the displayed object (method, variable, class, ...). It uses patterns to deter-

XPCE 6.6.37

24 CHAPTER 3. USING THE ONLINE MANUAL

mine relations to other manual material from the text. Each hit of these patterns is high-
lighted. When the user double-clicks on highlighted text the “Card Viewer” will jump to the
related material.

If the user double-clicks a group-title in the ClassBrowser, all cards in the group will be
displayed in the CardViewer. Some objects share their documentation with another object.
Opening the card for such an object will show two titles above the card. The card from which
the documentation originates will have an underlined type-indicator.

The Goto field allows for switching to a new card. The syntax for this field is similar to
manpce/1, tracepce/1 and editpce/1 predicates description in section 12. It consists
of a classname, followed by —> to indicate a send-method, <- for a get-method and - to
specify an instance-variable without considering associated methods.

The item performs completion bound to the space-bar. The first word is completed to
a class-name. The second to a send-method, variable or get-method. Method completion
considers inheritance and delegation.’

3.3.3 Search tool

The search tool is shown in figure 3.3. It allows the user to search through all XPCE manual
cards in an efficient manner with queries similar to that what is found in WAIS tools. A search
specification is an expression formed from the following primitives:

e Word
Specifies all cards containing a word for which the search specification is the prefix.
Case is ignored.

e <Word>
Specifies all cards that contain the indicated word. Case is ignored.

e Expr1 and Expr2
Specifies all cards satisfying both conditions.

e Expr1 or Expr2
Specifies all cards satisfying either condition.

As a special shorthand, just specifying multiple words refers to all cards containing all these
words.

If the user stops typing for more than a second, the system will parse the expression and
display the number of matching cards.

The browser window on the left contains all words occurring anywhere in the manual.
The window on the right is used to display the card summaries of all matching cards.

3.3.4 Class hierarchy

The “Class Hierachy” tool shown in figure 3.4 may be used to get an overview of XPCE’s
class hierarchy or to find the (inheritance) relations of a particular class with other classes.

'Given the dynamic nature of delegation, the system cannot possibly determine all methods available through
delegation. Consider a slot specified with type graphical. The system can infer it will surely be able to use
behaviour defined at class graphical. If at runtime, the slot is filled with a box, all methods defined at class
box will be available too.

XPCE 6.6.37

select_modifier

selected
selected_campletion
selected_fragment
selected_fragment_style
selected_item

selectini

selection_end
selection_extend
selection_feedhack
selection_handles
selection_origin
selection_owner

Quit 1 Help)

Sear

3.3. GUIDED TOUR 25
- PCE Manual --- Search =115
select_middle_message = class The classes themselves =

constraint(from, to, relation)
menu_bar(label)
slider{label, low, high, selection, message)

Binary constraint (+)
List of pulldown menus (+)
Dialogltem ta select from a numeric range {

visualisation Making data visible
text_item «—value_text: text Graphical text object for selection {+)
selection Manipulation and query of selections

device «-inside: area - -=chain
editar <-selected - - =string

Mewy chain with graphicals inside area (+)
Mews string with cantents of selaction {+
If @on, (+)

TTwaNOnO=

b list_hrowser -=selected: memberdict_item Test if item is selected (+)
td menu <-zselected: item=memhermenu_item - -=selected=hool Find out if menu_item ar valu
Y graphical <-selected: bool If @aon, I'm selected (+)
t browser - =selection: memberdict_item|chain® Set selacted items (+)
k- browser <-selection - -=chain|dict_item™ Get selected items (+)
ch Fnrj graphical and selection, Grouping ... done

built-in class —

user class

FHE] box

@ device

|

EH

Help |

(&) parbox
& o=

Figure 3.3: Manual search tool

o

L

circle

dialog_group
editar
figure
EHE tree
Lep T Documentation
list_brawse
tah_stack
window
browser
dialog
picture
- Ve
@& window_decaratar

ENE toc_window

Open manual page

Open class details

Expand the whole tree below this node
edit the sources of this class (user classes)

Class browser Prune all subclasses

Source

Frune

GQuit | CQass: graphical,

Figure 3.4: Class Hierachy Tool

XPCE 6.6.37

26 CHAPTER 3. USING THE ONLINE MANUAL

Note that XPCE’s inheritance hierarchy has a technical foundation rather than a conceptual.
Super-classes are motivated by the need for code-sharing.

3.4 Summary

The online manuals integrate visualisation of XPCE’s internal structure with a hyper-text sys-
tem. This approach guarantees consistency between the documentation and the actual
system and integrates overview and documentation of library and user-defined classes in
one system.

The online manual tools provides various entry-points (classes, global objects, predicate
overview, keywords, etc.) to obtain a list of card summaries. Cards may be opened from
these summary lists to examine its contents.

XPCE 6.6.37

© O N o o » W0 N =

24

Dialog (controller) windows

XPCE Dialog windows are normally used to display a number of controllers, named
dialog_items in XPCE’s jargon. Class dialog is a subclass of window with specialised
methods for positioning controllers. Dialog items are graphical objects specialised for dis-
playing and/or editing particular data. Figure 4.1 illustrates the inheritance relations relevant
to dialog windows and the locations of the most important methods.

Dialogs can be created both by using the new/2 and send/ [2-12] operations as well
as by using the Dialog Editor which is described in appendix A. This section describes the
first mechanism. Reading this chapter will help you understanding the dialog editor.

4.1 An example

Before diving into the complexities we will illustrate normal usage through an example. The
following Prolog predicate creates a dialog for entering information on an employee. The
result, running on Windows-NT, is shown in figure 4.2.

ask_employee :-—
new (Dialog, dialog(’Define employee’)),
send_list (Dialog, append,
[new(N1l, text_item(first_name)),
new (N2, text_item(family_name)),
new (S, new (S, menu(sex))),
new (4, int_item(age, low := 18, high := 65)),
new (D, menu(department, cycle)),
button (cancel, message (Dialog, destroy)),
button (enter, and(message (@prolog,
assert_employee,
Nl?selection,
N2?selection,
S?selection,
A?selection,
D?selection),
message (Dialog, destroy)))
1)
send_list (S, append, [male, female]),
send_list (D, append, [research, development, marketing]),
send(Dialog, default_button, enter),
send(Dialog, open).

assert_employee (FirstName, FamilyName, Sex, Age, Depth) :-

format ("Adding "w "w "w, age “w, working at "w'n’,
[Sex, FirstName, FamilyName, Age, Depth]).

XPCE 6.6.37

28 CHAPTER 4. DIALOG (CONTROLLER) WINDOWS

—= above
—= below
—= left
—= right

graphical

—= append_dialog_item

i [i i —= event
— = Jayout_dialog device dialog_item

window

—= append .
— > layout dialog
——=_compute_desired_size

Figure 4.1: Dialog Inheritance Hierarchy

This example shows the layout capabilities of dialog andits dialog_item objects. Simply
appending items will place items vertically and group buttons in rows. Labels are properly
aligned. The enter button defines a call-back on the predicate assert_employee/5 using
the values from the various controllers. Section 10.2 explains the use of message objects in
detail.

4.2 Built-in dialog items

Table 4.1 provides an overview of the built-in dialog items. The XPCE/Prolog library defines
various additional items as Prolog classes. See the file Overview in the library directory.

4.3 Layout in dialog windows

The layout inside a dialog window may be specified by two means, either using pixel-
coordinates or using symbolic layout descriptions. The latter is strongly encouraged, both
because it is generally much easier and because the layout will work properly if the end-user
uses different preferences (see chapter 8) than the application developer.

The following methods can be used to define the layout of a dialog. All methods actually
have both send- and get-versions. The methods listed only as ‘—send’ methods are unlikely
to be used as get-methods in application code.

dialog_item — above: dialog_item

dialog.item — below: dialog_item

dialog_item — left: dialog_item

dialog_item — rigth: dialog_item
These relations built a two-dimensional grid of dialog-items and determine the relative
positioning of the dialog items. It suffices to relate each dialog item to one other item.

device — append_dialog_item: graphical, [{below,right,next_row}]
dialog — append: graphical, [{below,right,next_row}]

XPCE 6.6.37

4.3. LAYOUT IN DIALOG WINDOWS

sMDefine employee

=10] x|

Family name:

First name: |Bohb

Woarker

* Male

42,

Eesearch

Sex: " Female

Age:

[

Enter I

Department:

Cancel |

Figure 4.2: Enter employee

button

Simple push-button. Executes «message when pressed.

text_item

A text-entry field. Editable or non-editable, built-in type conversion
(for example to enter a numerical value), completion using the
space-bar if a value-set is provided.

int_item Like a text_item, but providing properly sized field, buttons for
one-up/down, type- and range-checking.

slider Select numerical value in a range. Handles both integers and floating
point values.

menu Implements various styles of menus with different visual feedback.

Realises radio-button, tick-box, combo-box and much more.

menu_bar

Row of pulldown (popup) menus. Normally displayed in a small
dialog above the other windows in the frame.

label

Image or textual label. Normally not sensitive to user actions.

list_browser

Shows a list of items. List-browsers have been designed to handle
lists with many items. Class browser is a window-based version.

editor

Powerful text-editor. Handles multiple and proportional fonts,
text-attributes, fragment marking, etc. Class view is a window based
version.

tab

tab_stack
dialog_group

Tagged sub-dialog, that may be combined with other tabs into a
tab_stack, realising a tabbed controller-window. Often seen in
modern applications to deal with many setting options.

Stack of tab objects.

Group of dialog items, possible with border and label.

Table 4.1: Built-in dialog items

XPCE 6.6.37

29

30 CHAPTER 4. DIALOG (CONTROLLER) WINDOWS

Append a dialog item relative to the last one appended. This method is the principal
methods used to fill dialog windows. For the first item, the last argument is ignored. If
the last argument is be 1 ow, this item is placed below the previous one. If the argument
is right, it is placed right of the previous one and if the argument is next_row, the
item is placed below the first one of the current row of dialog items. If the last argu-
ment is @default, dialog objects are placed next_row, except for buttons, which are
placed in rows, left to right.

dialog — gap: size
Defines the distance between rows and columns of items as well as the distance be-
tween the bounding box of all items and the window border.

dialog_item < reference: point
Point relative to the top-left corner that defines the reference-point of the dialog item. If
two items are aligned horizontally or vertically, it are actually their reference points that
are aligned.

dialog_item — alignment: {column,left,center,right}
This attribute controls how items are aligned left-to-right in their row. An item with
—alignment: column Will be alignment horizontally using the references of its upper
or lower neighbour. Horizontally adjacent items with the same alignment will be flushed
left, centered or flushed right if the alignment is one of 1eft, center or right. The
alignment value is normally specified as a class-variable and used to determine the
layout of rows of button objects.

dialog_item — hor_stretch
0..100 After completing the initial layout, possibly remaining horizontal space is dis-
tributed proportionally over items that return a non-zero value for this attribute. By
default, class text_item yields 100 for this value, normally extending text_items as far
as possible to the right.

The methods above deal with the placement of items relative to each other. The methods
below ensure that columns of items have properly aligned labels and values.

dialog_item < label width: [0..]
If the item has a visible label, the label_width is the width of the box in which the label
is printed. The dialog layout mechanism will align the labels of items that are placed
above each other if «—auto_label_align is @on. The argument @default assigns
the minimum width of the label, the width required by the text of the label.

dialog_item < label_format: {left,center,right}
Determines how the label is aligned in its box. The values are 1eft, center and
right. This value is normally defined by the look and feel.

dialog_item < value_width: [0..]
If the item displays multiple values left-to-right (only class menu at the moment),
‘dialog_item — value_width’is used to negotiate equal width of the value-boxes
similarto —label _width if «—auto_value_alignis @Gon.

XPCE 6.6.37

© 0 N o o »~ 0 N =

4.3. LAYOUT IN DIALOG WINDOWS 31

The methods listed below activate the layout mechanism. Normally, only
‘device — layout_dialog’ needs to be called by the user.

dialog — layout: [size]

device — layout_dialog: gap=[size], size=[size], border=[size]
Implements the dialog layout mechanism. ‘Dialog — layout’
simply calls ‘device — layout_dialog’ using ‘dialog « gap.
‘Device — layout_dialog’ first uses the «—above, etc. attributes to build a
two-dimensional array of items. Next, it will align the labels and value of items placed
in the same column. Then it will determine the size and reference point for each of the
items and determine the cell-size. It will then align all items vertically and afterwards
horizontally, while considering the ‘dialog_item « alignment’.

dialog — _.compute_desired_size
Sent from ‘frame — fit’ to each of the member windows. For class dialog, this
activates —1ayout and then computes the desired size of the window.

4.3.1 Practical usage and problems

Most of the above methods are only used rarely for fine-tuning the layout. Almost all dialog
windows used in the development environment, demo applications and Prolog library simply
use ‘dialog — append’, sometimes specifying the last argument.

Two problems are currently not taken care of very well. Aligning multiple objects with a
single third object can only be achieved using a sub-dialog in the form of a device and often
requires some additional messages. The dialog of figure 4.3 is created using the following
code:

layoutdemol :-—

new (D, dialog(’Layout Demo 17)),

send (D, append,
new (BTS, dialog_group (buttons, group))),
BTS, gap, size(0, 30)),
BTS, append, button(add)),
BTS, append, button(rename), below),
send (BTS, append, button(delete), below),
send (BTS, layout_dialog),

send (
(
(
(
(

send (D, append, new (LB, list_browser), right)
(D
(L
(D
(
(L
(D

send
send

4
4

send append, new (TI, text_item(name, "’)))
send alignment, left),
send layout)

send LB bottom_side, BTS?bottom_side),
send
send

right_side, TI?right_side),
open).

In line 3, a device is added to the dialog to contain the stack of buttons. This device is
sent an explicit -1ayout_dialog to position the buttons. Next, the list_browser is placed
to the right of this stack and the text_item on the next row.

If you try this layout, the first column will hold the device and the text.item and the
list_browser will be placed right of this column and thus right of the text.item. Using

XPCE 6.6.37

32 CHAPTER 4. DIALOG (CONTROLLER) WINDOWS

Layout Demo 1

> |

Add)

Rename

|| | 4 |

Celete |

Hame: &

Figure 4.3: Aligning multiple items

‘dialog_item — alignment: left’ enforces the list_browser to flush left towards the de-
vice. Now we enforce the layout and adjust the bottom and right sides of the list_browser to
the device and text_item.

Dialog windows do not reposition their contents if the window is resized in the current
implementation. If the window is enlarged, the items stay in the top-left corner. If the window
is made smaller, part of the items may become invisible. Resizing can be implemented by
the user by trapping the ‘window — resize message’.

4.4 Modal dialogs: prompting for answers

A modal dialog is a dialog that is displayed and blocks the application until the user has
finished answering the questions posed in the dialog. Modal dialogs are often used to prompt
for values needed to create a new entity in the application or for changing settings.

Modal windows are implemented using the methods ‘frame « confirm’ and
‘frame — return’. Frame « confirm invokes ‘frame — open’ if the frame is not
visible and then starts reading events and processing them. ‘Frame — return: value’
causes ‘frame « confirm’ to return with the value passed as argument to —return.
The following code is a very simple example opening a dialog and waiting for the user to
enter a name and press RETURN or the Ok button.

ask_name (Name) :-—
new (D, dialog(’'Prompting for name’)),
send (D, append,
new (TI, text_item(name, "7))),
send (D, append,
button (ok, message (D, return,
TI?selection))),
send (D, append,

XPCE 6.6.37

4.4. MODAL DIALOGS: PROMPTING FOR ANSWERS 33

(Define Style Style: Bold | talic | Title |
|
Contents -
This directary contains XPCE, an object-oriented symbolic programming -
environment for User Interfaces. ¥PCE has been designed to cooperate oy
with sy mibedi i
Hame: underling,
.ﬁ.llthﬂj O Has Font Al Al e
The deve| = Has lcon
was then Attributes: Highlight |Underline Bold |Grey |
Yersion 3
Wielemak Cik j Cancelj
been des
object orfeTmew mECTENTST: GMWETTYIY ot avdiddie 10 Mg FIomy o
Lisp programmer and is hased on X-windows rather than Sun'iew.
Copyrights
—

Figure 4.4: Very simple WYSIWYG editor

button (cancel, message (D, return, @nil))),
send (D, default_button, ok), Ok: default button
get (D, confirm, Answer), This blocks!
send (D, destroy),
Answer \== @nil,
Name = Answer.

o\°

o\°

canceled

o\°

?— ask_name (X) .
X = '"Bob Worker’

See also section 10.5 for a discussion on how frames may be related, as well as alternatives
for keeping control in Prolog.
4.4.1 Example: a simple editor for multiple fonts

The following example allows the user to select text in an editor and change its appearance.
The application is shown in figure 4.4.

A typical XPCE/Prolog module header. Always make sure to load module library(pce) explic-
itly if you want to write modules portable to the various Prolog dialects supported by XPCE.

XPCE 6.6.37

a H» W N =

24
25
26
27
28
29
30
31

32
33
34

35
36
37
38
39
40
41

34 CHAPTER 4. DIALOG (CONTROLLER) WINDOWS

:— module (wysiwyg,
[wysiwyg/1 % +File
1.

:— use_module (library (pce)) .

:— use_module (library (pce_style_item)) .

Create the main window, consisting of a frame holding a dialog window with a button for
defining new styles and a menu for setting the style of the selection. Both dialog items use

call-back to @prolog.

wysiwyg(File) :-
new (Fr, frame (File)),
send(Fr, append, new(D, dialog)),
send (new (V, view), below, D),
send (V, font, normal),
send (D, append,
button (define_style,
message (@prolog, define_style, Fr))),
send (D, append,
menu (style, toggle,
and (message (@prolog, set_style, Fr, @argl),
message (V, selection, 0, 0),
message (Qreceiver, clear_selection))),
right),
append_style (Fr, bold, style(font := bold)),
append_style (Fr, italic, style(font italic)),
send (V, load, File),
send (Fr, open).

Set the style for the current selection. Simply pick the selection start and end and make a

fragment using the selection parameters and the style-name.

set_style(Fr, Style) :-
get (Fr, member, view, V),
get (V, selection, point (Start, End)),
(Start == End
-> send(Fr, report, warning, ’"No selection’)
; get (V, text_buffer, TB),
new(_, fragment (TB, Start, End-Start, Style))
) .

Define a new style and add it to the menu and the view.

define_style (Fr) :-—
ask_style (Fr, Name, Style),
append_style (Fr, Name, Style).

append_style (Fr, Name, Style) :-—
get (Fr, member, dialog, D),
get (D, member, style, Menu),
send (Menu, append, Name),
send (Menu, active, (@on),
get (Fr, member, view, View),
send (View, style, Name, Style).

XPCE 6.6.37

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

4.5. EDITING ATTRIBUTES 35

Prompt for the style-name and style-object. Class style_.item is defined in the li-
brary(pce_style_item). ‘frame —transient_for’ tells the window manager the dialog is
a supporting frame for the main application. ‘frame «confirm_centered’ opens the frame
centered around the given location and starts processing events until ‘frame —return’is
activated.

ask_style (Fr, Name, Style) :-
new (D, dialog(’Define Style’)),
send (D, append,

new (N, text_item(name, '7))),
send (D, append,
new (S, style_item(style))),
send (D, append,
button (ok, message (D, return, ok))),
send (D, append,
button (cancel, message (D, return, cancel))),

send (D, default_button, ok),
send (D, transient_for, Fr),
repeat,
get (D, confirm_centered, Fr?area?center, Answer),
(Answer == ok
-> get (N, selection, Name),
(Name == '’
-> send (D, report, error,
"Please enter a name’),
fail
i Ly
get (S, selection, Style),
send (Style, lock_object, @on),
send (D, destroy)

)

. |
’ -7

send (D, destroy),
fail

4.5 Editing attributes

In the previous section, we discussed dialogs for entering values. Another typical use of
dialog windows is to modify setting of the application, or more in general, edit attributes of
existing entities in the application. These entities may both be represented as XPCE ob-
jects or as constructs in the host language (dynamic predicates or the recorded database in
Prolog).

Such dialog windows first show the current settings. It allows for modifying the controls
showing the various aspects of the current state and three buttons providing the following
functions:

e Apply

XPCE 6.6.37

© 00 N oo O » W N =

36 CHAPTER 4. DIALOG (CONTROLLER) WINDOWS

Apply the current controls, which implies invoking some behaviour on the application
to realise the setting of the—modified— controls.

e Restore
Reset the controls to the current status of the application.

e Cancel
Destroy the dialog and do not modify the current settings of the application.

The following methods are defined on all primitive controls as well as on the dialog win-
dow faciliate the implementations of dialog windows as described above.

dialog_item — default: any|function

dialog_item — restore
For most dialog items, the <sdefault value is the second initialisation argument. In-
stead of a plain value, this can be a function object. The initial «—selection is set
by evaluating this function. In addition, —restore will evaluate the function again and
reset the selection.

dialog_item — apply: always:bool
Execute the —message of each dialog item for which ‘dialog_item «modified’ yields
@on. If the argument is @Qon, the modified flag is not checked.

dialog — apply
dialog — restore
Broadcasts —apply or —restore to each item in the dialog.

4.5.1 Example: editing attributes of a graphical

We will illustrate these methods described above in this example, which implements a dialog
for editing the colour of the interior and thickness of the line around a graphical. Double-
clicking on a graphical pops up a dialog window for changing these values. The result is
show in figure 4.5.

colour (white) .
colour (red) .
colour (green) .
colour (blue) .
colour (black) .

append_colour (M, C) :-—
new (Img, pixmap(@nil, white, black, 32, 16)),
send (Img, fill, colour(C)),
send (M, append, menu_item(colour(C), label := Img)).

edit_graphical (Gr) :-—
new (D, dialog(string(’Edit graphical %s’, Gr?name))),
send (D, append,
new (M, menu(colour, choice,
message (Gr, fill_pattern, @argl)))),
send (M, layout, horizontal),

XPCE 6.6.37

4.5. EDITING ATTRIBUTES 37

colour: | N I
[[== Pen: [0] 0 f 10
Apply) Restore) cwit

|

e]

Figure 4.5: Attribute editor for graphical objects

18 forall (colour(C), append_colour (M, C)),

19 send (M, default, Gr?fill_pattern),

20 send (D, append, slider(pen, 0, 10, Gr?pen,

21 message (Gr, pen, @argl))),
22 send (D, append, button(apply)),

23 send (D, append, button(restore)),

24 send (D, append, button(quit, message (D, destroy))),
25 send (D, default_button, apply),

26 send (D, open).

27

28 attributedemo :-

29 send (new (P, picture(’Attribute Demo’)), open),

30 send (P, display,

31 new (B, box (100, 100)), point (20, 20)),

32 send (P, display,

33 new(E, ellipse (100, 50)), point (150, 20)),
34 send_list ([B, E], fill_pattern, colour (white)),
35 new (C, click_gesture(left, ’’, double,

36 message (@prolog, edit_graphical,
37 @receiver))),

38 send (B, recogniser, C),

39 send(E, recogniser, C).

XPCE 6.6.37

38 CHAPTER 4. DIALOG (CONTROLLER) WINDOWS

XPCE 6.6.37

Simple graphics

In chapter 2 we introduced the principal predicates of XPCE. For the examples we used
controllers, because these are relatively easy to use. In this section we present the basic
graphical components. These are more general and therefore can be applied in many more
situations, but they are also more difficult to use.

This section only introduces the basics of graphics in XPCE. See also | 1
The online manual and the demo programs provide more information on using XPCE’s graph-
ics.

5.1 Graphical building blocks

A window is the most generic window class of XPCE. Drawings are often displayed on
a picture, which is a window with scrollbars. The drawing area of a window is two-
dimensional and infinitely large (both positive and negative). The query below creates a
picture and opens it on the screen.

1 ?- new(@p, picture(’Demo Picture’)),
send (@p, open) .

The following queries draw various primitive graphicals on this picture.

2 ?- send(@p, display,
new (@bo, box (100,100))).
3 ?- send(@p, display,
new (@ci, circle(50)), point (25,25)).
4 ?- send(@p, display,
new (@bm, bitmap (’32x32/books.xpm’)), point (100,100)).
5 ?- send(@p, display,
new (@tx, text (’Hello’)), point (120, 50)).
6 ?—- send(@p, display,
new (@bz, bezier_curve (point (50,100),
point (120,132),
point (50, 160),
point (120, 200)))).

XPCE’s graphics infrastructure automatically takes care of the necessary repaint operations
when graphical objects are manipulated. Try the queries below to appreciate this. The result
is shown in figure 5.1.

XPCE 6.6.37

40 CHAPTER 5. SIMPLE GRAPHICS

[FDEE 008

Hello

e

Figure 5.1: Example graphics

7 ?- send(@bo, radius, 10).

?— send(@ci, fill_pattern, colour (orange)).
9 ?- send(@tx, font, font(times, bold, 18)).
10 ?- send(@bz, arrows, both).

XPCE avoids unnecessary repaint operations and expensive computations involved in
updating the screen. The screen is only updated after all available input has been pro-
cessed or on an explicit request to update it. The following code illustrates this. Running
?— square_to_circle (@bo) . will show the box immediately as a circle without showing
any of the intermediate results.

:— require ([between/3, forall/2]).

square_to_circle (Box) :-
get (Box, height, H),
MaxRadius is H // 2,
forall (between (0, MaxRadius, Radius),
send (Box, radius, Radius)).

To get the intended animating behaviour, use ‘graphical — flush’ to explicitly force
redraw right now:

:— require ([between/3, forall/2]).

square_to_circle (Box) :-
get (Box, height, H),
MaxRadius is H // 2,
forall (between (0, MaxRadius, Radius),
(send (Box, radius, Radius),
send (Box, flush)
)) .

XPCE 6.6.37

5.2. COMPOUND GRAPHICALS 41

arrow Arrow-head. Normally used implicitly by class 1ine.

bezier | Bezier curve. Both quadratic and cubic Biezer curves are supported.
bitmap | Visualisation of an image. Both monochrome and full-colour images are
supported. Images can have shape. See section 10.10.

pixmap | Subclass of bitmap only for coloured images.

box Rectangle. Can be rounded and filled.

circle | Special case of ellipse.

ellipse | Elliptical shape. May be filled.

arc Part of an ellipse. Can have arrows. Can show as pie-slice.

line Straight line segment. Can have arrows.

path Poly-line through multiple points. Can have arrows. Can be smooth.
text Visualisation of a string in some font. Can have various attributes, can be

clipped, formatted, etc.

Table 5.1: Primitive graphical objects

5.1.1 Available primitive graphical objects

An overview of the available primitive graphical classes is most easily obtained using the
Class Hierarchy tool described in section 3.3.4. Table table 5.1 provides an overview of the
primitive graphicals.

5.2 Compound graphicals

Often one would like to combine two or more primitive graphical objects into a single unit.
This is achieved using class device. Below we create an icon, consisting of a bitmap and a
textual label displayed below it.

9 ?- new(Qic, device),
send (@ic, display, bitmap (’happy.bm’)),
send (@ic, display, text (’Happy’), point (0, 64)),
send (@p, display, @ic, point (250, 20)).

A compound graphical may be treated as a unit. It may be moved, erased, coloured, etc. by
sending a single message to the compound. Compound graphicals are normal graphicals
and thus may de displayed on other compound graphicals, resulting in a consists-of hierarchy
of nested graphicals. See also section 12.4. The classes related to compound graphical
objects are shown in table 5.2.

5.3 Connecting graphical objects

The primary application domain of XPCE is handling graphical modelling languages. Drawing
in such languages often entails connecting graphical objects using lines. Instead of adding
an instance of 1ine to the graphical device at the proper place, it is much better to declare
two graphical objects to be connected. Class connection provides for this.

XPCE 6.6.37

© 00 N o O » WO N =

42 CHAPTER 5. SIMPLE GRAPHICS

device | Most generic compound graphical object. The window is a subclass of
device and all graphical operations are defined on class device.

figure | Subclass of device, provides clipping, background, containing rectangle,
border and the possibility to show a subset of the displayed graphical objects.
format | A format object specifies a two-dimensional table layout. Formats may be
associated to graphical devices using ‘device — format’.

table | The successor of format realises tabular layout compatible to the HTML-3
model for tables. See section 11.5.

Table 5.2: Compound graphical classes

Linked Box demo a1
1
F
I
1
1o |v] d

Figure 5.2: A connection between two boxes

To prepare an object for making connections, the object should first define handles.
Below is a simple example. The link is a reusable object and therefore defined as a global
reference. See section 10.3. The screendump is shown in figure 5.2.

:— pce_global (@in_out_link, make_in_out_link).

make_in_out_link (L) :-—
new (L, link(in, out, line(arrows := second))).

linked_box_demo :-
new (P, picture(’Linked Box demo’)),
send (P, open),
send (P, display, new(Bl, box(50,50)), point (20,20)),
send (P, display, new (B2, box(25,25)), point (100,100)),
send (Bl, handle, handle(w, h/2, in))
send (B2, handle, handle(w/2, 0, out)),
send_list ([Bl, B2], recogniser, new(move_gesture)),
send (Bl, connect, B2, @in_out_link)

4

XPCE 6.6.37

5.4. CONSTRAINTS 43

connection Subclass of class 1ine. A connection can connect two graphicals
on the same window that have handles. The line is automatically
updated if either of the graphicals is moved, resized, changed
from device, (un)displayed, hidden/exposed or destroyed.
handle Defines the location, nature and name of a connection point for a
connection. Handles can be attached to individual graphicals as
well as to their class.

link Defines the generic properties of a connection: the nature (‘kind’)
of the handle at either side and the line attributes (arrows, pen
and colour).

connect_gesture | Event-processing object (see section 5.5) used to connect two
graphical objects.

Table 5.3: Classes used to define connections

If there are multiple handles of the same ‘kind’ on a graphical, a connection will automat-
ically try to connect to the ‘best’ handle.

The classes related to making connections are summarised in table 5.3.

Note that, as class connection is a subclass of graphical, connections can be cre-
ated between connections. Class graphical defines various methods to help reading the
relations expressed with connections and/or refine the generic connect _gesture.

5.4 Constraints

XPCE allows the user to specify constraints between pairs of objects. In the example above
we would like the text to be centered relative to the bitmap. This may be achieved using:

10 ?- get(@ic, member, bitmap, Bitmap),
get (@ic, member, text, Text),
new(_, constraint (Bitmap, Text, identity(center_x))).

Each time either the bitmap or the text changes this constraint will invoke «—center_x on the
changed object and —center_x with the return value on the other object. Class spatial
defines more general geometrical constraints between graphicals.

Constraints are high-level, but potentially expensive means to specify graphical relations.
An alternative is the redefinition of the —geomet ry method of (compound) graphical objects.
See chapter 7.

5.5 Activating graphicals using the mouse

Recogniser objects enable detection of mouse- and keyboard activities. XPCE defines both
primitive and complex recognisers. The first (called handler) processes a single event. The
latter processes a gesture: sequence of events starting with a mouse-button-down up to
the corresponding mouse-button-up. The following example allows us to move the icon by
dragging with the middle mouse button:

XPCE 6.6.37

44 CHAPTER 5. SIMPLE GRAPHICS

handler Binds a single event to a message.
handler_group Combines multiple recognisers into a single.

key binding Maps keyboard sequences to commands.
click_gesture Maps a mouse-click to a message. Allows to specify

modifiers (alt/meta, control, shift), button and multi
(single, double, triple).

connect_gesture Connect two graphicals dragging from the first to the
second.

move_gesture Move graphical by dragging it.

move_outline _gesture Move graphical by dragging an outline.

resize_gesture Resize graphical by dragging a side or corner.

resize_outline_gesture | Resize graphical by dragging a side or corner of the
outline.

Table 5.4: Recogniser classes

11 ?- send(@ic, recogniser, new(move_gesture)) .

The second example allows us to double-click on the icon. This is a common way to ‘open’
an icon. In the example we will just print 'hello’ in the Prolog window.

12 ?- send(@ic, recogniser,
click_gesture (left, ’’, double,
message (@pce, write_1ln, hello))).

The predefined recogniser classes are summarised in table 5.4. Besides the built-in recog-
nisers, the XPCE/Prolog library defines various additional ones. See also section 11.8.

5.6 Summary

In this section we have introduced some of the graphics capabilities of XPCE. XPCE'’s graph-
ics are built from primitive and compound graphicals. A compound graphical has its own
coordinate system in which it can display any graphical object including other compound ob-
jects. Graphical objects can be connected to each others using a connection. This facility
makes the generation of graphs relatively simple. It also makes it very simple to extract the
graph represented by a drawing made by the user.

Graphical objects are made sensitive to mouse and keyboard activities by attaching
recogniser objects to them. XPCE defines standard recognisers for various complex oper-
ations such as moving, resizing, popup-menu’s, linking graphicals and clicking on graphicals.

XPCE 6.6.37

XPCE and Prolog

XPCE and Prolog are very different systems based on a very different programming
paradigm. XPCE objects have global state and use destructive assignment. XPCE pro-
gramming constructs use both procedures (code objects and send-methods) and functions
(function objects and get-methods). XPCE has no notion of non-determinism as Prolog has.

The hybrid XPCE/Prolog environment allows the user to express functionality both in Pro-
log and in XPCE. This chapter discusses representation of data and dealing with object-
references in XPCE/Prolog.

6.1 XPCE is not Prolog!

Data managed by Prolog consists of logical variables, atoms, integers, floats and compound
terms (including lists). XPCE has natural counterparts for atoms (a name object), integers (a
XPCE int) and floating point numbers (a real object). Prolog logical variables and compound
terms however have no direct counterpart in the XPCE environment. XPCE has variables
(class var), but these obey totally different scoping and binding rules.

Where Prolog uses a compound term to represent data that belongs together (e.g. per-
son(Name, Age, Address)), XPCE uses objects for this purpose:’

:— pce_begin_class (person(name, age, address), object).

variable (name, name, both, "Name of the person").
variable (age, int, both, "Age in years").
variable (address, string, both, "Full address").

initialise (P, Name:name, Age:int, Address:string) :—>
"Create from name, age and address"::
send (P, name, Name),
send (P, age, Age),
send (P, address, Address).

:— pce_end_class.

1 ?- new(P, person(fred, 30, "Long Street 457)).
P = Q3664437 /person

These two representations have very different properties:

"This example uses XPCE user-defined classes. The details of this mechanism do not matter for the argument
in this section. User-defined classes are described in chapter 7.

XPCE 6.6.37

46 CHAPTER 6. XPCE AND PROLOG

e Equality
Prolog cannot distinguish between ‘person (' Fred’, 30, ’'Long Street 457)’
and a second instance of the same term. In XPCE two instances of the same class
having the same state are different entities.

o Attributes
Whereas an attribute (argument) of a Prolog term is either a logical variable or in-
stantiated to a Prolog data object, an attribute of an object may be assigned to. The
assignment is destructive.

e Types
XPCE is a dynamically typed language and XPCE object attributes may have types.
Prolog is untyped.

6.2 Dealing with Prolog data

By nature, XPCE data is not Prolog data. This implies that anything passed to a XPCE
method must be converted from Prolog to something suitable for XPCE. A natural mapping
with fast and automatic translation is defined for atoms, and numbers (both integers and
floating point). As we have seen in section 2, compound terms are translated into instances
using the functor-name as class-name.

In XPCE 5.0 we added the possibility to embed arbitrary Prolog data in an object. There
are three cases where Prolog data is passed natively embedded in a instance of the class
prolog_term.

e Explicit usage of prolog(Data)
By tagging a Prolog term using the functor prolog/1, Data is embedded in an in-
stance of prolog_term. This term is passed unaltered unless it is passed to a method
that does not accept the type Any, in which case translation to an object is enforced.

o When passed to a method typed Prolog
Prolog defined methods and instance-variables (see section 7) can define their type as
Prolog. In this case the data is packed in a prolog_term object.

e When passed to a method typed unchecked
A few methods in the system don’t do type-checking themselves.

We will explain the complications using examples. First we create a code object:

1 ?- new(@m, and(message(@prolog, write, @argl),
message (@prolog, nl))).

This code object will print the provided argument in the Prolog window followed by a newline:

2 ?- send(@m, forward, hello).
hello

From this example one might expect that XPCE is transparent to Prolog data. This is true
for integers, floats and atoms as these have a natural representation in both languages.
However:

XPCE 6.6.37

N o g A WO =

N o g A WwoN =

6.2. DEALING WITH PROLOG DATA 47

3 ?- send(@m, forward, chain(hello)).

@774516

4 ?- send(@m, forward, 3 + 4).

7

5 ?- send(@m, forward, [hello, world]).
@608322

In all these examples the argument is a Prolog compound term which —according to the
definition of send/3— is translated into a XPCE instance of the class of the principal functor.
In 3) this is an instance of class chain. In 4) this is an instance of class +. Class + however
is a subclass of the XPCE class function and function objects are evaluated when given to
a method that does not accept a function-type argument. Example 5) illustrates that a list is
converted to a XPCE chain.

We can fix these problems using the prolog/1 functor. Example 7) illustrates that also
non-ground terms may be passed.

6 ?- send(@m, forward, prolog(chain(hello))).
chain(hello)

7 ?- send(@m, forward, prolog(X)).

_G335

X = _G335

Below is a another realistic example of this misconception.

?— new (D, dialog(’Bug’)),
send (D, append, button (verbose,
message (@prolog, assert,
verbose (on)))),
send (D, open).
[PCE warning: new: Unknown class: verbose
in: new (verbose (on))]

One correct solution for this task is below. An alternative is to call a predicate
set_verbose/0 that realises the assertion.

make_verbose_dialog :-
new (D, dialog(’Correct’)),
send (D, append,
button (verbose,
message (@prolog, assert,
prolog(verbose(on))))),
send (D, open).

6.2.1 Life-time of Prolog terms in XPCE

XPCE is connected to Prolog through the foreign language interface. Its interface predi-
cates are passed Prolog terms by reference. Such a reference however is only valid during

XPCE 6.6.37

48 CHAPTER 6. XPCE AND PROLOG

the execution of the foreign procedure. So, why does the example above work? As soon
as the send/3 in make_verbose_dialog/0 returns the term-reference holding the term
verbose(on) is no longer valid!

To solve this problem, prolog_term has two alternative representations. It is created
from a term-reference. After the interface call (send/3 in this case) returns, it checks whether
it has created Prolog term objects. If it finds such an object that is not referenced, it destroys
the object. If it finds an object that is referenced it records Prolog terms into the database
and stores a reference to the recorded database record.

Summarising, Prolog terms are copied as soon as the method to which they are passed
returns. Normally this is the case if a Prolog terms is used to fill an instance-variable in
XPCE.

XPCE 6.6.37

Defining classes

The user defined class interface provides a natural way to define new XPCE classes. It is
both used to create higher level libraries that have the same interface as the built-in XPCE
classes as to define entire applications. Many of the library modules and XPCE/Prolog demo
programs are implemented as user-defined classes. The PceDraw demo is an elaborate
example defined entirely in user-defined classes.

A user defined class lives in XPCE, just as any other XPCE class. There is no difference.
Both use dynamic resolution of messages to method objects and then execute the method
object. Both use the same object-management and storage facilities.

XPCE/Prolog user-defined classes have their methods implemented in Prolog. This pro-
vides a neat and transparent interface between the two systems.’

User defined classes are defined using Prolog syntax, where some operators have spe-
cial meaning. The definition of an XPCE/Prolog class is enclosed in

:— pce_begin_class (<Class>, <Super> [, <Comment>]).
<Class definition>
:— pce_end_class.

Multiple classes may be defined in the same Prolog source file, but class definitions may not
be nested.

7.1 The class definition skeleton

We introduce the syntax for user-defined classes using a skeleton. Except for the
pce_begin_class/[2,3] and pce_end_class/0, everything in the skeleton is optional
and may be repeated multiple times. The order of declarations is not important, but the order
of the skeleton is the proposed order. An exception to this rule is the pce_group/1 directive,
that may be placed anywhere and defines the group-identifier for the declarations that follow.
The skeleton is given in figure 7.1.

7.1.1 Definition of the template elements

:- pce_begin_class(+/Meta:]Class, +Super, [+Summary])
Start the definition of an XPCE user-defined class. This directive can appear anywhere
in a Prolog source file. The definition must be closed using pce_end_class/0 and

'XPCE defines four implementation techniques for methods. C-function pointers are used for al-
most all the built-in behaviour. C++-function pointers are used when classes are defined in C++
(I]). Instances of c_pointer are left to the host object for interpretation and
finally, code objects are executed.

XPCE 6.6.37

50 CHAPTER 7. DEFINING CLASSES

:- pce_begin_class([(Meta) :J(Class)[({(TermName) })], (Super)[, (Summary)]).

:- use_class_template((TemplateClass)).
.- send(@class, (Selector){, (Arg)}).
:- pce_class _directive({Goal)).

variable((Name), (Type)[:= (Value)], (Access) [, (Summary)])).
delegate_to((VarName)).

class_variable((Name), (Type), (Default) [, (Summary)]).
handle((X), (Y), (Kind), (Name)).

:- pce_group({Group)).

(SendSelector)((Receiver){, (Arg)[[[(AName)=](Type)]}) : —>
[(Summary):]
(PrologBody).

(GetSelector)({Receiven{, (Arg)[:[[AName)=](Type)]}, (RVah[:(Type)]) : <-
[(Summary):;]
(PrologBody).

- pce_end_class.

Figure 7.1: Skeleton for user-defined classes

XPCE 6.6.37

7.1. THE CLASS DEFINITION SKELETON 51

definitions may not be nested. Class describes the class to be created. Besides giving
the class-name, the meta-class (class of the class) may be specified. When omit-
ted, the meta-class of the Super will be used, which is normally class class. An
example of meta-class programming can be found in PceDraw’s file shape.pl, see

[1

The class-name may be followed by a list of TermNames that define the result of
object/2. object/2 unifies its second argument with a term whose functor is the
name of the class and whose arguments are the result of a ‘get’ operation using the
TermName as selector. For example, point (x,y) specifies that object(P, T) unifies
T to a term point/2 with the «+x and <y of the point instance as arguments. When
omitted, the term-description of the super-class is inherited.

:- use_class_template(7TemplateClass)
Import a class template. See section 7.5.2.

-send(@Gclass, ...)
Directives like this may be used to invoke methods on the class under construction.
This can be used to modify the class in ways that are not defined by this prepro-
cessor. The following example tells the system that the ‘visual’ attribute of an imag-
inary user-defined class should not be saved to file when the object is saved using
‘object — _save_in_file’.

:— send(@class, save_style_variable, nil).

See also pce_class_directive/1 and section 7.5.3.

:- pce_class _directive(+:Goal)
Define Goalto be a goal that manipulates the class instance directly. See section 7.5.3.

variable(Name, Type, Access, [Summary])

Define a new instance variable. Name is the name of the variable, which is local to the
class and its subclasses. Type defines the type. See section 3.2.1 and section 7.5.1.
The type may be postfixed with : = Value to specify an initial value. If Value can be mod-
ified (i.e. is not a constant, int or name) it is often desirable to use : = new(NewTerm)
to force each instance to create its own unique copy of the initial value. Access de-
fines which implicit universal methods will be associated with the variable. A universal
method is defined to be a method that reads or writes the slot, without performing any
additional actions. See also section 7.2.

delegate_to(VariableName)
Declares the variable named VariableName to be a candidate for delegation. See
section C.4.

class_variable(Name, Type, Default, [Summary])
Declare a class-variable for the class. Class-variables describe common properties for
all instances of the class. The Default value for a class-variable can de defined in the
Defaults file. See chapter 8 for details.

The Default entry describes the default value if there is no value specified in the
Defaults file. Example:

XPCE 6.6.37

52 CHAPTER 7. DEFINING CLASSES

class_variable(size, size, size(400,200), "Default size of object").

handle(X, Y, Kind, Name)
Equivalent to the expression below. See also section 5.3.

:— send(@class, handle, handle (X, Y, Kind, Name)).

:- pce_group(Groupldentifier)
Sets the ‘behaviour < group’ attribute of any variable or method definition follow-
ing this directive. Groups are used to organise methods by the ClassBrowser. Groups
have no semantic implications. : - pce_group (@default) . makes methods inherit
their group from the method that is re(de)fined. If no method is re(de)fined, the group
will be miscellaneous.

:- pce_end_class(Class)
End the definition of the named Class. Class must be the same as the class-name used
by the most recent pce_begin_class/[2,3]. This variation of pce_end_class/0
provides better documentation and error correction.

:- pce_begin_class()
Close the definition of the most recently started class. See also pce_end_class/1.

Syntax details

Table table 7.1 describes the details of the non-terminals in the above skeleton in more detail.
The notation is an incomplete BNF notation.

7.2 Accessing instance variables (slots)

The method ‘object < slot’isused to access slots directly, bypassing possible methods
with the same name. Normally, it should only be used in —initialise (see below) and
when defining a method with the same name as a variable. Below is a fragment where
a type slot is displayed by a text object named type in a graphical object. This variable
has access get, associating a universal method «type that yields the current value of the
slot. The implementation of —type uses the —slot method to write the argument in the
—type slot and subsequently performs the required side-effects. The ... indicate where the
fragment is incomplete.

variable (type, name, get, "Epistemological type").

initialise (D, Type:name, ...) :—>
send_super (D, initialise),
send (D, slot, type, Type),
send (D, display, new(T, text (Type))),
send (T, name, type),

XPCE 6.6.37

7.2. ACCESSING INSTANCE VARIABLES (SLOTS)

53

(Meta)

(Class)
(TermName)

(Super)

(Summary)

(
(Selector)
(X

(v
(Kind)
(Access)

(VarName)
(Group)

SendSelector)
GetSelector)

TemplateClass)

(Name)

(Name)
(Name)

IntExpr)
IntExpr)
(Name)
both |
get |
send |

none
(Name)

(Name)

(Name)
(Name)
(Variable)
(Variable)
(Variable)

(Name)

Name of the class this class will be an in-
stance of. Default is the meta-class of the
super-class

Name of the class to be defined

Selector name to fetch object/2 argu-
ment. For example, a point is translated
into point((X), (Y)) and the description is
point (x,vVy)

Name of the super-class.
the most general class
Summary description as appearing in the on-
line manual. < 40 characters, no newlines,
Prolog string

Import a template class. See section 7.5.2
Name of a method

See class handle

See class handle

Category indicator. See class handle
Defines the access right to this variable

object refers to

Name of variable used for delegation
Functional group of the following methods or
variables. Used to organise the ClassBrowser
Name of send-method to define

Name of get-method to define

Prolog variable bound to the receiver

Prolog variable bound to argument

Prolog variable that should be bound to the re-
turn value

XPCE name for named argument

See section 3.2.1 and section 7.5.1

Ordinary Prolog code

Initial value for the instance variable. At this
moment, only using constants is supported
(int, name, bool)

Table 7.1: Syntax details for User Defined Classes

XPCE 6.6.37

54 CHAPTER 7. DEFINING CLASSES

type (D, Type:type) :—>
"Modify the epistemological type"::
send (D, slot, type, Type),
get (D, member, type, Text),
send (Text, string, Type).

object — slot: name, unchecked

object — slot: name — unchecked
Read or write slot without side-effects. The value will be converted to the type of the
instance variable addressed. An error is raised if this conversion is not defined or if the
slot does not exist.

7.3 Refining and redefining methods

Re(de)fining methods is a common technique in object-oriented programming. This section
describes how methods can be re(de)fined and what methods have special meaning in XPCE
and are commonly redefined.

The method definition for a re(de)fined method is exactly the same as for a new method.
The redefined method will inherit its group (see pce_group/1) from the method of the super-
class.

When refining a method we often want to call the method of our super-class. For this
reason there are two additional interface predicates to access the behaviour of a specific
class. In 99% of the cases we wish to invoke a method of the immediate super-class. For
this reason the class-compiler realises compile-time rewrite of send_super/[2-12] and
get_super/[3-13] t0 send_class/2 and get_class/3

send_class(+Object, +Class, +Message)
Invoke Message on Object using the implementation defined with class Class. Class
must be the actual class of Object or one of its super-classes or an error is raised.

get_class(+Object, +Class, +Message, -Resull)
This is the get-equivalent of send_class/3.

send_super(+Object, +Message)
The class-compiler converts goals of this format to an appropriate send_class/3 call.
Note that it is not possible to provide predicates as an alternative to the compile-time
expansion and therefore meta-calls cannot use send_super/2.

get_super(+Object, +Message, -Result)
This is the get-equivalent of send_super/2.

Similar as the predicates send/2 and get/3 may be written as send/[3-12] and
get/ [4-13] this is possible for send_super/2 and get_super/3. In addition the pre-5.0
‘object — send_super’ and ‘object <« get_super’ are expandedto send.class/2
and get_class/3. The following calls are all equivalent. The last one should not be used
by new code.

XPCE 6.6.37

7.3. REFINING AND REDEFINING METHODS 55

send_super (Object, my_method(Argl))
send_super (Object, my_method, Argl)
send (Object, send_super, my_method, Argl)

7.3.1 General redefinitions

The most commonly redefined methods are —initialise and —unlink to redefine ob-
ject creation and destruction. Note that none of these methods should ever be invoked
directly on an object, because the implementation often makes assumptions that are only
true in the context they are normally invoked by the kernel.

object — initialise: (Class-Defined)
Initialise a new instance of the class. The initialisation is not allowed to access be-
haviour or slots of the super-class without invoking the —initialise on th super-
class. Omitting is a common source of errors, often leading to crashes.

The initialise method should initialise all slots declared in this class that have no spec-
ified value in the variable declaration and cannot have the value @nil. See also
checkpce/0.

If —initialise fails, the exception initialise_failed will be raised, passing
the instance and the argument vector. Afterwards, the (possible named) reference is
destroyed and the object’s slots are reset to @nil. Finally, the instance is deallocated.
—unlink (see below) is not called. In general, it is not good programming style to let
—initialise fail.

object — unlink
Called from the object-management system if the object is to be destroyed. This
method must call —unlink of the super-class somewhere in the process. It is an
error if —unlink fails.

This method is normally used to unlink the object from related objects. For example,
graphical objects use it to remove themselves from their device if they are displayed.
There is no need to reset slot-values as dereferencing the slot-values will be done by
the object-management system after —unlink has finished.

—unlink is always called, whether the object was destroyed using —free or by the
garbage-collector.

object — convert: (Class-Defined) — Instance
This get method converts another object into an object of this class. It is called by the
type-checker. Suppose an object Xis handed to the type checker for checking against
this class. If Xis not already an instance of this class or any of its subclasses, the type
checker will:

e Check X against the (Class-Defined) type.
¢ Run this method, passing the (possibly converted) X.

The receiver is not defined during the execution of this method. The method should
either fail or succeed and return an instance of the requested class or one of its super-
classes. The argument vector consists of a single argument. The type-conversion

XPCE 6.6.37

56

CHAPTER 7. DEFINING CLASSES

system guarantees the argument is of the satisfied type. It is allowed, but not obligatory
to use the method of the super-class.

For example, suppose we are defining a class person, who has a unique name. There
is a table @persons, that maps the name onto the person. We would like to be able
to pass the name rather then a person instance to a method argument with the type
person. If no such person exist, a new person instance is created. Below is the
implementation for this:

convert (_, Name:name, P:person) :<-
"Lookup from @persons or create a new one"::
(get (@persons, member, Name, P)
-> true
; new (P, person (Name))

) .

See also +1ookup described below.

object — lookup: (Class-Defined) — Instance

Called from the new() virtual machine operation to deal with reusable objects be-
fore —initialise is considered. The arguments are normally the same as for
—initialise. If this method returns an instance, this will be the value returned
by new(). If it fails, a new instance is allocated and —initialised.

7.3.2 Redefinition in graphical classes

The generic graphical class graphical is prepared to have several of its methods redefined
in subclasses. This section describes the most important of these methods.

graphical — event: event

Called when a user-event needs to be dispatched. This message is initially sent to the
window object receiving the event. Graphical devices (and thus windows) collect all
graphicals for which ‘graphical —in_event_area’ succeeds. These are normally all
graphicals that overlap with the current position of the pointer. It will sort these objects
to their stacking order, the topmost object first. See ‘device < pointed’. Next the
device will use ‘event — post’ to post the event to each of these graphicals until
one accepts the event, after which the method immediately returns success. If none of
the «—pointed objects is prepared to accept the event, ‘graphical — event’ will
be invoked, trying all he recogniser objects associated with this graphical.

Notably most subclasses of class dialog_item, the standard controllers, refine
—event.

The method —event is commonly redefined in user-defined graphicals to make them
sensitive to the mouse. The following fragment of a class definition makes it possible
to resize and move instances.

:— pce_global (@resize_and_move_recogniser,
new (handler_group (new(resize_gesture),

XPCE 6.6.37

7.3. REFINING AND REDEFINING METHODS 57

new (move_gesture)))) .

event (Gr, Ev:event) :->
"Make the object re-sizeable and movable"::
(send_super (Gr, event, Ev)
; send (@resize_and_move_recogniser, event, Ev)

) .

Note that the implementation first tries the super-class. If the super-class has no
specific event-handling, this allows recognisers to be attached that overrule the re-
size/move behaviour. Also, if itis a device, invoking the super-class behaviour will test
components displayed on the device to be considered before the device as a whole.

It is not obligatory to use —event on the super-class and if it is used, no specific
ordering is required. If there is no behaviour of the super-class that conflicts with your
extension we recommend to try the super-class first, to ensure recognisers and local
event-processing in graphicals displayed on a device with redefined event-processing
are considered before your extensions.

Note the way recognisers are activated from event methods. The graphical ob-
ject itself is not passed. Instead, ‘recogniser — event’ reads the receiver from
‘event « receiver’ setby‘event — post’.

As a consequence, do not call ‘graphical — event’ directly. An event is directed
to a graphical using ‘event — post’. For example, the event-method of a device
displaying an editable text object may decide to forward all button and keyboard events
to the text. The following accomplishes this:

event (D, Ev:event) :->
((send (Ev, is_a, button)

; send (Ev, is_a, keyboard)

)

% assumes text is named ‘text’
get (D, member, text, Text),
send (Ev, post, Text)

; send_super (D, event, Ev)

graphical — geometry: X:[int], Y:[int], W:[int], H:[int]
Requests the receiver to position itself at the X, Y and to be W x H pixels in size. Any
of these values may be @default, indicating that the specific parameter is not to be
changed.

Redefining —geometry is the proper way to interfere with positioning or resizing as
this is the central method called by all move and resize methods.

The example below takes the text-box to ensure proper geometry handling by this
class. Note that (I) the size of a device is by definition the bounding box of all displayed
graphicals and (ll) the text must be centered again.

XPCE 6.6.37

58 CHAPTER 7. DEFINING CLASSES

geometry (D, X:[int], Y:[int], W:[int], H:[int]) :—>
get (D, member, box, B),
get (D, member, text, T),
send (B, set, @default, @default, W, H),
send (T, center, B?center),
send_super (D, geometry, X, Y).

Note that the relation between the text and the box could also be maintained using
a constraint object. The above implementation however is only executed when
the geometry of the device is changed, while constraints will be executed whenever a
message arrives on the box or text.

graphical — request_geometry: X:[int], Y:[int], W:[int], H:[int]
Is much like —geomet ry, except that the interpretation of the units is left to the graph-
ical. For example editor will use the current font to translate W and H to pixels and
then invoke —geometry. Not used very often.

graphical — compute
This method cooperates with —request_compute and may be used to delay expen-
sive graphical operations. Suppose we have a graphical representation and a database
object linked using a hyper like this:

new(_, hyper (Db, Gr, controller, model))

If the database object (model) is modified, it could use the following to inform all asso-
ciated controllers about the change:

send (Db, send_hyper, controller, request_compute)

XPCE remembers that the state of this graphical is not consistent. If XPCE requires the
graphical to be in a consistent state, either because it needs to paint the graphical or
because it requires information about the geometry of the graphical, it will invoke the
method —compute on the graphical.

This mechanism is used by graphicals that have a complicated structure and are dif-
ficult to update. An example in the built-in classes is class text_image, displaying
the text of an editor. Any modification to the text in the displayed region of the
text_image requires expensive computation to recompute the layout of the text. Sup-
pose the —request_compute and —compute mechanism is not available. It this
case, multiple modifications by the program to the text would require this expensive
process to run several times. Now, after modifying the text, —request_compute is
invoked on the text_image. Whenever XPCE has processed all pending events, it will
invoke —compute to the text.image and then repaint it.

The method below is a far to simple example, where the —compute method simply
copies the name of the represented object into the text object displayed on the device
—compute is defined on.

XPCE 6.6.37

7.4. HANDLING DEFAULT ARGUMENTS 59

compute (C) :—>
"Update according to model"::
get (C, get_hyper, model, name, Name),
get (C, member, text, T),
send (T, string, Name),
send_super (C, compute) .

graphical — redraw_area: area

7.4

Called by the graphical repaint thread. Its task is to repaint itself. Area indicates the
area in the device coordinate system that needs to be repainted. This area overlaps
with the «——area of the device.

Exploitation of this method to realise new graphical primitives is explained in sec-
tion 10.12.

Handling default arguments

The predicate default/3 provides a comfortable way to specify the meaning of default
arguments. Future versions may incorporate the default value in the type object itself.

default(+Argument, +Default, -Value)

7.5

7.5.1

Used to specify and compute defaults for arguments. Argument is the actual argument
passed to the method implementation, Default is any valid XPCE object description
(reference, integer, real, atom or compound ground term describing an object, see
send/ [2—-12]). Default can also be the term

resource (<Object>, <Name>)

In which case the «resource_value: (Name) from (Object) will be used as default
value. Value is unified with Argument if Argument is not @default and with Default
otherwise.

The following is an example that sets the volume to a specified value or the value of
the resource ‘volume’ if @default is passed as an argument.

resource (volume, 0..130, 75, "Volume in decibels").
volume (X, Vol:[0..130]) :—>

default (Vol, resource (X, volume), V),
<set the volume here>.

Advanced topics

More on type declarations

The basic XPCE type-syntax is described in section 3.2.1 of this manual. Types are first-

class

reusable XPCE objects that are created from the type-declaration in arguments and

XPCE 6.6.37

© O N o o »~ W0 N =

o

11

60 CHAPTER 7. DEFINING CLASSES

variables. The conversion from the textual representation to the object is performed by XPCE
itself (together with the resource syntax, one of the few places where XPCE defines syntax).
All types can be specified as Prolog quoted atoms. For example:

mymethod (Me, A:’graphicall|dict_item|0..") :—>

For most cases however, this is not necessary. If the type is not an atom, the class-compiler
will convert the Prolog term into an atom suitable for XPCE’s type system. Hence, [point]
will translate to the atom ’[point]’, which is interpreted by XPCE as “an instance of class point
or the constant edefault”. The atoms » and ... are defined as postfix operators, while

. is an infix operator. This makes ‘any ...’ a valid notation for “any number of anything”
(see section 7.5.2 below) and ‘0. .5’ a valid expression for “an integer in the range 0 to 5
(including the boundaries).

Also, [box|circle] is avalid description for “an instance of box or circle or the con-
stant @default. Note however that [box|circle|ellipse] is not valid Prolog syntax
and should be written as ’ [box |circle|ellipse]’. Whenever you are in doubt, use
quotes to prevent surprises.

7.5.2 Methods with variable number of arguments

Methods such as ‘chain — initialise’and ‘string — format’ handle an arbitrary
number of arguments. The argument declaration for such a method first defines a num-
ber (possibly zero) of ‘normal’ arguments. The last argument is postfixed with *. . .". The
arguments assigned to the ‘vararg’ type are passed in a Prolog list.

Below is a refinement of ‘1abel — report’ that will colour the label depending on the
nature of the message. The —report method takes two obligatory arguments, the kind of
the report and a format string, as well as an undefined number of arguments required by the
format specification.

:— pce_begin_class(coloured_reporter, label,
"Coloured reporter label").

report (L, Kind:name, Format:char_array, Args:any ...) :—>
Msg =.. [report, Kind, Format | Args],
send_super (L, Msqg),
get (L, colour_from report_category, Kind, Colour),
send (L, colour, Colour).

colour_from_report_category (L, Kind:name, Colour:colour) :<-
<left to the user>.

:— pce_end_class.

Using class templates

XPCE provides two alternatives to multiple inheritance. Delegation is discussed in sec-
tion C.4. See also the directive delegate_to/1 for user-defined class definitions. The

XPCE 6.6.37

© o N o o~ WO N =

© 0o N o o »~ W N o=

7.5. ADVANCED TOPICS

61

template mechanism is much closer to real multiple inheritance. A template is a named par-

tial class-definition that may be included in other classes. It behaves as if the source-code

of the template definition was literally included at the place of the use_class_template/1

directive.

In fact, the class-attributes (variables, method objects) are copied, while the implemen-

tation (the Prolog clauses) are shared between multiple references to the same template.

Templates itself form a hierarchy below class template, which is an immediate subclass
of object. Including a template will make all variables and methods defined between the

template class and class template available to the receiving class.

We illustrate the example below, making both editable boxes as editable ellipses. First

we define the template class.

:— use_module (library (pce_template)) .
:— pce_begin_class (editable_graphical, template).

:— pce_global (Geditable_graphical_recogniser,
make_editable_graphical_recogniser).

make_editable_graphical_recogniser (G) :-—
Gr = Qargl,
new (Dev, Gr?device),
new (P, popup),
send_list (P, append,
[menu_item(cut, message (Gr, free)),
menu_item (duplicate,

message (Dev, display, Gr?clone,
? (Gr?position, plus,

point (10,10))))

1),
new (G, handler_group (new (resize_gesture),
new (move_gesture),
popup_gesture (P))) .

event (G, Ev:event) :—>
(send_super (G, event, Ev)

; send (@editable_graphical_recogniser, event,

).

:— pce_end_class.

The main program can now be defined as:

:— require ([use_class_template/1]).

:— pce_begin_class (editable_box, box).

:— use_class_template (editable_graphical).

:— pce_end_class.

:— pce_begin_class (editable_ellipse, ellipse).

:— use_class_template (editable_graphical).
:— pce_end_class.

Ev)

XPCE 6.6.37

© 0 N o o &~ 0w N o=

o

62 CHAPTER 7. DEFINING CLASSES

test :-—-
send (new (P, picture (' Template Demo’)), open),
send (P, display,
editable_box (100,50), point(20,20)),
send (P, display,
editable_ellipse (100, 50), point (20, 90)).

Note that use_class_template/1 imports the definitions from the template
in the current class. Thus, the following will not extend further on the
‘editable_graphical — event’ definition, but instead replace this definition. Of
course it is allowed to subclass the definition of editable_box above and further refine the
event method in the subclass.

:— require ([use_class_template/1]).

:— pce_begin_class(editable_box, box).
:— use_class_template (editable_graphical).

event (Gr, Ev:event) :—>
(send_super (Gr, event, Ev)
7
) .

:— pce_end_class.

7.5.3 Implementation notes

The xPCE/Prolog class-compilation is defined using the Prolog preprocessing capabilities of
term_expansion/2. While the class is compiled, Prolog gathers the expressions belonging
to the class. The expansion of :— pce_end_class (Class) emits the actual code for the
class.

The method implementation is realised by the predicates
pce_principal:send_implementation/3 and pce_principal:get_implementation/4. that take
the form:

send_implementation(Methodld, Method(Arg...), Object)
Where Methodld is unique identifier for the class and method, Method is the method
implemented, Arg... are the arguments accepted by the method and Object is the
receiving object.

get_implementation(Methodld, Method(Arg...), Object, -Result)
This is the get-equivalent of send_implementation/3.

:— pce_begin_class (gnus,
gnu (X, A:int) :->

gnats (X, A:name, B:int) :->

is translated into

XPCE 6.6.37

7.5. ADVANCED TOPICS 63

pce_principal:send_implementation (' gnus$+$->gnu’, gnu(A), O) :—
pce_principal:send_implementation (’gnats$+$->gnu’, gnats (A, B), O)

The remainder of the class specification is translated into a number of Prolog clauses de-
scribing the class. No XPCE class is created. If XPCE generates an undefined class
exception, it will scan for the class-description in the Prolog database and create the XPCE
class instance. No methods are associated with the new class. Instead, all method binding
is again based on exception handling.

Modifications to the class beyond what is provided by the preprocessing facilities (for ex-
ample changing the ‘variable — clone_style’) cannot be made by sending messages
to the class inside the class definition body as this would address the not-yet-existing class.
Instead, they should be embedded in the pce_class_directive/1 directive.?. The Goal
argument of pce_class_directive/1 should refer to the class using the XPCE var object
@class. When the class is realised the exception system will bind @class to the current
class while running Goal. Goalis called from the Prolog module in which the class is defined.

The main reason for the above approach is to exploit the runtime-generation facilities
of the hosting Prolog system to create fast-starting portable and (depending on the hosting
Prolog’s capabilities) stand-alone executables.

One of the consequences of the chosen approach is that the class-building directives are
not accessible as predicates. There is no preprocessing support for the dynamic creation
of classes and the programmer should thus fall back to raw manipulation of the XPCE class
objects.

2To facilitate the translation of old code, the construct : - send (@class, ... is treated automatically as if
it was embedded using pce_class_directive/1

XPCE 6.6.37

64 CHAPTER 7. DEFINING CLASSES

XPCE 6.6.37

Class Variables

Class variables act as read-only storage for class-constants. They are normally used for
storing setting information, such as fonts, colours etc. For this reason, the default value for
a class_variable is defined with the declaration of it, but this default my be overruled
using the Defaults file. The system defaults file is located in the XPCE home directory
(‘epce <« home’). This file contains an include statement, including the file ~/.xpce/
Defaults,' which may be used by the developer and application user to specify defaults.

Many XPCE built-in classes define class-variables. These can be examined using the
ClassBrowser (see section 3.3.1) from the online manual tools.

8.1 Accessing Class Variables

Class variables define get-behaviour and can be accessed using the normal get/[3-13]
call. Class variables are the last type of behaviour checked when resolving a get-method.
Below are the most commonly used methods to access class-variables.

object — class_variable_value: name — any
Return the value of the named class-variable. Fails silently if the class does not define
the given class-variable.

class — class_variable: name — class_variable
Return the class_variable object with the given name. Fails silently if the class
does not define the given class-variable.

class_variable < value: any
Reads or writes the class-variable value. The argument is type-checked using
‘class_variable « type’ if the value is written. Writing class-variables should
be handled with care, as existing instances of the class are not notified of the
change, and may not be prepared deal with changes of the class-variable value.
pce_image directory/1 is an example of a predicate modifying the image.path
class-variable.

8.2 Class variable and instance variables

Class-variables may be used as defaults for instance-variables that can be modified through
the Defaults file. For example, class text defines both the instance- and clas