It is possible to compute the low degree (co)homology of a finite group or monoid of small order directly from the bar resolution. The following commands take this approach to computing the fifth integral homology
\(H_5(Q_4,\mathbb Z) = \mathbb Z_2\oplus\mathbb Z_2\)
of the quaternion group \(G=Q_4\) of order \(8\).
gap> Q:=QuaternionGroup(8);; gap> B:=BarComplexOfMonoid(Q,6);; gap> C:=ContractedComplex(B);; gap> Homology(C,5); [ 2, 2 ]
However, this approach is of limited applicability since the bar resolution involves \(|G|^k\) free generators in degree \(k\). A range of techniques, tailored to specific classes of groups, can be used to compute the (co)homology of larger finite groups.
The following example computes the fourth integral cohomomogy of the Mathieu group \(M_{24}\).
\(H^4(M_{24},\mathbb Z) = \mathbb Z_{12}\)
gap> GroupCohomology(MathieuGroup(24),4); [ 4, 3 ]
The following example computes the third integral homology of the Weyl group \(W=Weyl(E_8)\), a group of order \(696729600\).
\(H_3(Weyl(E_8),\mathbb Z) = \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_{12}\)
p> L:=SimpleLieAlgebra("E",8,Rationals);; gap> W:=WeylGroup(RootSystem(L));; gap> Order(W); 696729600 gap> GroupHomology(W,3); [ 2, 2, 4, 3 ]
The preceding calculation could be achieved more quickly by noting that \(W=Weyl(E_8)\) is a Coxeter group, and by using the associated Coxeter polytope. The following example uses this approach to compute the fourth integral homology of \(W\). It begins by displaying the Coxeter diagram of \(W\), and then computes
\(H_4(Weyl(E_8),\mathbb Z) = \mathbb Z_2 \oplus \mathbb Z_2 \oplus Z_2 \oplus \mathbb Z_2\).
gap> D:=[[1,[2,3]],[2,[3,3]],[3,[4,3],[5,3]],[5,[6,3]],[6,[7,3]],[7,[8,3]]];; gap> CoxeterDiagramDisplay(D);
gap> polytope:=CoxeterComplex_alt(D,5);; gap> R:=FreeGResolution(polytope,5); Resolution of length 5 in characteristic 0 for <matrix group with 8 generators> . No contracting homotopy available. gap> C:=TensorWithIntegers(R); Chain complex of length 5 in characteristic 0 . gap> Homology(C,4); [ 2, 2, 2, 2 ]
The following example computes the sixth mod-\(2\) homology of the Sylow \(2\)-subgroup \(Syl_2(M_{24})\) of the Mathieu group \(M_{24}\).
\(H_6(Syl_2(M_{24}),\mathbb Z_2) = \mathbb Z_2^{143}\)
gap> GroupHomology(SylowSubgroup(MathieuGroup(24),2),6,2); [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
The following example constructs the Poincare polynomial
\(p(x)=\frac{1}{-x^3+3*x^2-3*x+1}\)
for the cohomology \(H^\ast(Syl_2(M_{12},\mathbb F_2)\). The coefficient of \(x^n\) in the expansion of \(p(x)\) is equal to the dimension of the vector space \(H^n(Syl_2(M_{12},\mathbb F_2)\). The computation involves Singular's Groebner basis algorithms and the Lyndon-Hochschild-Serre spectral sequence.
gap> G:=SylowSubgroup(MathieuGroup(12),2);; gap> PoincareSeriesLHS(G); (1)/(-x_1^3+3*x_1^2-3*x_1+1)
The following example constructs the polynomial
\(p(x)=\frac{x^4-x^3+x^2-x+1}{x^6-x^5+x^4-2*x^3+x^2-x+1}\)
whose coefficient of \(x^n\) is equal to the dimension of the vector space \(H^n(M_{11},\mathbb F_2)\) for all \(n\) in the range \(0\le n\le 14\). The coefficient is not guaranteed correct for \(n\ge 15\).
gap> PoincareSeriesPrimePart(MathieuGroup(11),2,14); (x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)
The following example computes
\(H_4(N,\mathbb Z) = \mathbb (Z_3)^4 \oplus \mathbb Z^{84}\)
for the free nilpotent group \(N\) of class \(2\) on four generators.
gap> F:=FreeGroup(4);; N:=NilpotentQuotient(F,2);; gap> GroupHomology(N,4); [ 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
The following example computes
\(H_5(G,\mathbb Z) = \mathbb Z_2 \oplus \mathbb Z_2\)
for the \(3\)-dimensional crystallographic space group \(G\) with Hermann-Mauguin symbol "P62"
gap> GroupHomology(SpaceGroupBBNWZ("P62"),5); [ 2, 2 ]
The following example computes
\(H_6(SL_2({\cal O},\mathbb Z) = \mathbb Z_2\)
for \({\cal O}\) the ring of integers of the number field \(\mathbb Q(\sqrt{-2})\).
gap> C:=ContractibleGcomplex("SL(2,O-2)");; gap> R:=FreeGResolution(C,7);; gap> Homology(TensorWithIntegers(R),6); [ 2, 12 ]
The following example computes
\(H_5(G,\mathbb Z) = \mathbb Z_3\)
for \(G\) the classical braid group on eight strings.
gap> D:=[[1,[2,3]],[2,[3,3]],[3,[4,3]],[4,[5,3]],[5,[6,3]],[6,[7,3]]];; gap> CoxeterDiagramDisplay(D);;
gap> R:=ResolutionArtinGroup(D,6);; gap> C:=TensorWithIntegers(R);; gap> Homology(C,5); [ 3 ]
The following example computes
\(H_5(G,\mathbb Z) = \mathbb Z_2\oplus Z_2\oplus Z_2 \oplus Z_2 \oplus Z_2\)
for \(G\) the graph of groups corresponding to the amalgamated product \(G=S_5*_{S_3}S_4\) of the symmetric groups \(S_5\) and \(S_4\) over the canonical subgroup \(S_3\).
gap> S5:=SymmetricGroup(5);SetName(S5,"S5"); gap> S4:=SymmetricGroup(4);SetName(S4,"S4"); gap> A:=SymmetricGroup(3);SetName(A,"S3"); gap> AS5:=GroupHomomorphismByFunction(A,S5,x->x); gap> AS4:=GroupHomomorphismByFunction(A,S4,x->x); gap> D:=[S5,S4,[AS5,AS4]]; gap> GraphOfGroupsDisplay(D);
gap> R:=ResolutionGraphOfGroups(D,6);; gap> Homology(TensorWithIntegers(R),5); [ 2, 2, 2, 2, 2 ]
There are various ways to represent a \(\mathbb ZG\)-module \(A\) with action \(G\times A \rightarrow A, (g,a)\mapsto \alpha(g,a)\).
One possibility is to use the data type of a \(G\)-Outer Group which involves three components: an \(ActedGroup\) \(A\); an \(Acting Group\) \(G\); a \(Mapping\) \((g,a)\mapsto \alpha(g,a)\). The following example uses this data type to compute the cohomology \(H^4(G,A) =\mathbb Z_5 \oplus \mathbb Z_{10}\) of the symmetric group \(G=S_6\) with coefficients in the integers \(A=\mathbb Z\) where odd permutations act non-trivially on \(A\).
gap> G:=SymmetricGroup(6);; gap> A:=AbelianPcpGroup([0]);; gap> alpha:=function(g,a); return a^SignPerm(g); end;; gap> A:=GModuleAsGOuterGroup(G,A,alpha); ZG-module with abelian invariants [ 0 ] and G= SymmetricGroup( [ 1 .. 6 ] ) gap> R:=ResolutionFiniteGroup(G,5);; gap> C:=HomToGModule(R,A); G-cocomplex of length 5 . gap> Cohomology(C,4); [ 2, 2, 5 ]
If \(A=\mathbb Z^n\) and \(G\) acts as
\(G\times A \rightarrow A, (g, (x_1,x_2,\ldots,x_n)) \mapsto (x_{\pi(g)^{-1}(1)}, x_{\pi(g)^{-1}(2)}, \ldots, x_{\pi(g)^{-1}(n)})\)
where \(\pi\colon G\rightarrow S_n\) is a (not necessarily faithful) permutation representation of degree \(n\) then we can avoid the use of \(G\)-outer groups and use just the homomorphism \(\pi\) instead. The following example uses this data type to compute the cohomology
\(H^6(G,A) =\mathbb Z_2 \oplus \mathbb Z_{6}\)
and the homology
\(H_6(G,A) =\mathbb Z_2 \)
of the alternating group \(G=A_6\) with coefficients in \(A=\mathbb Z^5\) where elements of \(G\) act on \(\mathbb Z^5\) via the canonical permutation of basis elements.
gap> G:=AlternatingGroup(5);; gap> pi:=PermToMatrixGroup(SymmetricGroup(5),5);; gap> R:=ResolutionFiniteGroup(G,7);; gap> C:=HomToIntegralModule(R,pi);; gap> Cohomology(C,6); [ 2, 6 ] gap> D:=TensorWithIntegralModule(R,pi);; gap> Homology(D,6); [ 2 ]
A short exact sequence of \(\mathbb ZG\)-modules \(A \rightarrowtail B \twoheadrightarrow C\) induces a long exact sequence of cohomology groups
\( \rightarrow H^n(G,A) \rightarrow H^n(G,B) \rightarrow H^n(G,C) \rightarrow H^{n+1}(G,A) \rightarrow \) .
Consider the symmetric group \(G=S_4\) and the sequence \( \mathbb Z_4 \rightarrowtail \mathbb Z_8 \twoheadrightarrow \mathbb Z_2\) of trivial \(\mathbb ZG\)-modules. The following commands compute the induced cohomology homomorphism
\(f\colon H^3(S_4,\mathbb Z_4) \rightarrow H^3(S_4,\mathbb Z_8)\)
and determine that the image of this induced homomorphism has order \(8\) and that its kernel has order \(2\).
gap> G:=SymmetricGroup(4);; gap> x:=(1,2,3,4,5,6,7,8);; gap> a:=Group(x^2);; gap> b:=Group(x);; gap> ahomb:=GroupHomomorphismByFunction(a,b,y->y);; gap> A:=TrivialGModuleAsGOuterGroup(G,a);; gap> B:=TrivialGModuleAsGOuterGroup(G,b);; gap> phi:=GOuterGroupHomomorphism();; gap> phi!.Source:=A;; gap> phi!.Target:=B;; gap> phi!.Mapping:=ahomb;; gap> Hphi:=CohomologyHomomorphism(phi,3);; gap> Size(ImageOfGOuterGroupHomomorphism(Hphi)); 8 gap> Size(KernelOfGOuterGroupHomomorphism(Hphi)); 2
The following commands then compute the homomorphism
\(H^3(S_4,\mathbb Z_8) \rightarrow H^3(S_4,\mathbb Z_2)\)
induced by \(\mathbb Z_4 \rightarrowtail \mathbb Z_8 \twoheadrightarrow \mathbb Z_2\), and determine that the kernel of this homomorphsim has order \(8\).
gap> bhomc:=NaturalHomomorphismByNormalSubgroup(b,a); gap> B:=TrivialGModuleAsGOuterGroup(G,b); gap> C:=TrivialGModuleAsGOuterGroup(G,Image(bhomc)); gap> psi:=GOuterGroupHomomorphism(); gap> psi!.Source:=B; gap> psi!.Target:=C; gap> psi!.Mapping:=bhomc; gap> Hpsi:=CohomologyHomomorphism(psi,3); gap> Size(KernelOfGOuterGroupHomomorphism(Hpsi)); 8
The following commands then compute the connecting homomorphism
\(H^2(S_4,\mathbb Z_2) \rightarrow H^3(S_4,\mathbb Z_4)\)
and determine that the image of this homomorphism has order \(2\).
gap> delta:=ConnectingCohomologyHomomorphism(psi,2);; gap> Size(ImageOfGOuterGroupHomomorphism(delta));
Note that the various orders are consistent with exactness of the sequence
\(H^2(S_4,\mathbb Z_2) \rightarrow H^3(S_4,\mathbb Z_4) \rightarrow H^3(S_4,\mathbb Z_8) \rightarrow H^3(S_4,\mathbb Z_2) \) .
A spherical 3-manifold is a 3-manifold arising as the quotient \(S^3/\Gamma\) of the 3-sphere \(S^3\) by a finite subgroup \(\Gamma\) of \(SO(4)\) acting freely as rotations. The geometrization conjecture, proved by Grigori Perelman, implies that every closed connected 3-manifold with a finite fundamental group is homeomorphic to a spherical 3-manifold.
A spherical 3-manifold \(S^3/\Gamma\) has finite fundamental group isomorphic to \(\Gamma\). This fundamental group is one of:
\(\Gamma=C_m=\langle x\ |\ x^m\rangle\) (cyclic fundamental group)
\(\Gamma=C_m\times \langle x,y \ |\ xyx^{-1}=y^{-1}, x^{2^k}=y^n \rangle\) for integers \(k, m\ge 1, n\ge 2\) and \(m\) coprime to \(2n\) (prism manifold case)
\(\Gamma= C_m\times \langle x,y, z \ |\ (xy)^2=x^2=y^2, zxz^{-1}=y, zyz^{-1}=xy, z^{3^k}=1\rangle \) for integers \(k,m\ge 1\) and \(m\) coprime to 6 (tetrahedral case)
\(\Gamma=C_m\times\langle x,y\ |\ (xy)^2=x^3=y^4\rangle \) for \(m\ge 1\) coprime to 6 (octahedral case)
\(\Gamma=C_m\times \langle x,y\ |\ (xy)^2=x^3=y^5\rangle \) for \(m\ge 1\) coprime to 30 (icosahedral case).
This list of cases is taken from the Wikipedia pages. The group \(\Gamma\) has periodic cohomology since it acts on a sphere. The cyclic group has period 2 and in the other four cases it has period 4. (Recall that in general a finite group \(G\) has periodic cohomology of period \(n\) if there is an element \(u\in H^n(G,\mathbb Z)\) such that the cup product \(-\ \cup u\colon H^k(G,\mathbb Z) \rightarrow H^{k+n}(G,\mathbb Z)\) is an isomorphism for all \(k\ge 1\). It can be shown that \(G\) has periodic cohomology of period \(n\) if and only if \(H^{n}(G,\mathbb Z)=\mathbb Z_{|G|}\).)
The cohomology of the cyclic group is well-known, and the cohomology of a direct product can be obtained from that of the factors using the Kunneth formula.
In the icosahedral case with \(m=1\) the following commands yield $$H^\ast(\Gamma,\mathbb Z)=Z[t]/(120t=0)$$ with generator \(t\) of degree 4. The final command demonstrates that a periodic resolution is used in the computation.
gap> F:=FreeGroup(2);;x:=F.1;;y:=F.2;; gap> G:=F/[(x*y)^2*x^-3, x^3*y^-5];; gap> Order(G); 120 gap> R:=ResolutionSmallGroup(G,5);; gap> n:=0;;Cohomology(HomToIntegers(R),n); [ 0 ] gap> n:=1;;Cohomology(HomToIntegers(R),n); [ ] gap> n:=2;;Cohomology(HomToIntegers(R),n); [ ] gap> n:=3;;Cohomology(HomToIntegers(R),n); [ ] gap> n:=4;;Cohomology(HomToIntegers(R),n); [ 120 ] gap> List([0..5],k->R!.dimension(k)); [ 1, 2, 2, 1, 1, 2 ]
In the octahedral case with \(m=1\) we obtain $$H^\ast(\Gamma,\mathbb Z) = \mathbb Z[s,t]/(s^2=24t, 2s=0, 48t=0)$$ where \(s\) has degree 2 and \(t\) has degree 4, from the following commands.
gap> F:=FreeGroup(2);;x:=F.1;;y:=F.2;; gap> G:=F/[(x*y)^2*x^-3, x^3*y^-4];; gap> Order(G); 48 gap> R:=ResolutionFiniteGroup(G,5);; gap> n:=0;;Cohomology(HomToIntegers(R),n); [ 0 ] gap> n:=1;;Cohomology(HomToIntegers(R),n); [ ] gap> n:=2;;Cohomology(HomToIntegers(R),n); [ 2 ] gap> n:=3;;Cohomology(HomToIntegers(R),n); [ ] gap> n:=4;;Cohomology(HomToIntegers(R),n); [ 48 ] gap> IntegralCupProduct(R,[1],[1],2,2); [ 24 ]
In the tetrahedral case with \(m=1\) we obtain $$H^\ast(\Gamma,\mathbb Z) = \mathbb Z[s,t]/(s^2=16t, 3s=0, 24t=0)$$ where \(s\) has degree 2 and \(t\) has degree 4, from the following commands.
gap> F:=FreeGroup(3);;x:=F.1;;y:=F.2;;z:=F.3;; gap> G:=F/[(x*y)^2*x^-2, x^2*y^-2, z*x*z^-1*y^-1, z*y*z^-1*y^-1*x^-1,z^3];; gap> Order(G); 24 gap> R:=ResolutionFiniteGroup(G,5);; gap> n:=1;;Cohomology(HomToIntegers(R),n); [ ] gap> n:=2;;Cohomology(HomToIntegers(R),n); [ 3 ] gap> n:=3;;Cohomology(HomToIntegers(R),n); [ ] gap> n:=4;;Cohomology(HomToIntegers(R),n); [ 24 ] gap> IntegralCupProduct(R,[1],[1],2,2); [ 16 ]
A theoretical calculation of the integral and mod-p cohomology rings of all of these fundamental groups of spherical 3-manifolds is given in [TZ08].
generated by GAPDoc2HTML