The following example determines a presentation for the cohomology ring H^∗(Syl_2(M_12), Z_2). The Lyndon-Hochschild-Serre spectral sequence, and Groebner basis routines from Singular, are used to determine how much of a resolution to compute for the presentation.
gap> G:=SylowSubgroup(MathieuGroup(12),2);; gap> Mod2CohomologyRingPresentation(G); Graded algebra GF(2)[ x_1, x_2, x_3, x_4, x_5, x_6, x_7 ] / [ x_2*x_3, x_1*x_2, x_2*x_4, x_3^3+x_3*x_5, x_1^2*x_4+x_1*x_3*x_4+x_3^2*x_4+x_3^2*x_5+x_1*x_6+x_4^2+x_4*x_5, x_1^2*x_3^2+x_1*x_3*x_5+x_3^2*x_5+x_3*x_6, x_1^3*x_3+x_3^2*x_4+x_3^2*x_5+x_1*x_6+x_3*x_6+x_4*x_5, x_1*x_3^2*x_4+x_1*x_3*x_6+x_1*x_4*x_5+x_3*x_4^2+x_3*x_4*x_5+x_3*x_5^\ 2+x_4*x_6, x_1^2*x_3*x_5+x_1*x_3^2*x_5+x_3^2*x_6+x_3*x_5^2, x_3^2*x_4^2+x_3^2*x_5^2+x_1*x_5*x_6+x_3*x_4*x_6+x_4*x_5^2, x_1*x_3*x_4^2+x_1*x_3*x_4*x_5+x_1*x_3*x_5^2+x_3^2*x_5^2+x_1*x_4*x_6+\ x_2^2*x_7+x_2*x_5*x_6+x_3*x_4*x_6+x_3*x_5*x_6+x_4^2*x_5+x_4*x_5^2+x_6^\ 2, x_1*x_3^2*x_6+x_3^2*x_4*x_5+x_1*x_5*x_6+x_4*x_5^2, x_1^2*x_3*x_6+x_1*x_5*x_6+x_2^2*x_7+x_2*x_5*x_6+x_3*x_5*x_6+x_6^2 ] with indeterminate degrees [ 1, 1, 1, 2, 2, 3, 4 ]
The command CohomologicalData(G,n)
prints complete information for the cohomology ring H^∗(G, Z_2 ) of a 2-group G provided that the integer n is at least the maximal degree of a relator in a minimal set of relators for the ring. Groebner basis routines from Singular are called involved in the example.
The following example produces complete information on the Steenrod algebra of group number 8 in GAP's library of groups of order 32.
Group number: 8 Group description: C2 . ((C4 x C2) : C2) = (C2 x C2) . (C4 x C2) Cohomology generators Degree 1: a, b Degree 2: c, d Degree 3: e Degree 5: f, g Degree 6: h Degree 8: p Cohomology relations 1: f^2 2: c*h+e*f 3: c*f 4: b*h+c*g 5: b*e+c*d 6: a*h 7: a*g 8: a*f+b*f 9: a*e+c^2 10: a*c 11: a*b 12: a^2 13: d*e*h+e^2*g+f*h 14: d^2*h+d*e*f+d*e*g+f*g 15: c^2*d+b*f 16: b*c*g+e*f 17: b*c*d+c*e 18: b^2*g+d*f 19: b^2*c+c^2 20: b^3+a*d 21: c*d^2*e+c*d*g+d^2*f+e*h 22: c*d^3+d*e^2+d*h+e*f+e*g 23: b^2*d^2+c*d^2+b*f+e^2 24: b^3*d 25: d^3*e^2+d^2*e*f+c^2*p+h^2 26: d^4*e+b*c*p+e^2*g+g*h 27: d^5+b*d^2*g+b^2*p+f*g+g^2 Poincare series (x^5+x^2+1)/(x^8-2*x^7+2*x^6-2*x^5+2*x^4-2*x^3+2*x^2-2*x+1) Steenrod squares Sq^1(c)=0 Sq^1(d)=b*b*b+d*b Sq^1(e)=c*b*b Sq^2(e)=e*d+f Sq^1(f)=c*d*b*b+d*d*b*b Sq^2(f)=g*b*b Sq^4(f)=p*a Sq^1(g)=d*d*d+g*b Sq^2(g)=0 Sq^4(g)=c*d*d*d*b+g*d*b*b+g*d*d+p*a+p*b Sq^1(h)=c*d*d*b+e*d*d Sq^2(h)=d*d*d*b*b+c*d*d*d+g*c*b Sq^4(h)=d*d*d*d*b*b+g*e*d+p*c Sq^1(p)=c*d*d*d*b Sq^2(p)=d*d*d*d*b*b+c*d*d*d*d Sq^4(p)=d*d*d*d*d*b*b+d*d*d*d*d*d+g*d*d*d*b+g*g*d+p*d*d
The following example constructs the first eight degrees of the mod-3 cohomology ring H^∗(G, Z_3) for the group G number 4 in GAP's library of groups of order 81. It determines a minimal set of ring generators lying in degree ≤ 8 and it evaluates the Bockstein operator on these generators. Steenrod powers for p≥ 3 are not implemented as no efficient method of implementation is known.
gap> G:=SmallGroup(81,4);; gap> A:=ModPSteenrodAlgebra(G,8);; gap> List(ModPRingGenerators(A),x->Bockstein(A,x)); [ 0*v.1, 0*v.1, v.5, 0*v.1, (Z(3))*v.7+v.8+(Z(3))*v.9 ]
generated by GAPDoc2HTML