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Abstract. Confronted with real life and full-scale operational deployment, model-based 
engineering languages and tools may fail to address the wide variety of practices situations can 
require. This paper describes issues encountered with SysML in the context of systems 
architectural design. It gives an overview of the adapted language and practices that form the 
foundations of Arcadia and Capella, a field-proven model-based engineering method and its 
associated open source workbench. Relying on concrete examples, this paper focuses on 
modeling constructs supporting functional analysis and addresses the problematics of 
modeling at instance level. 

Introduction 
Model-based systems engineering (MBSE) is the formalized application of modeling to 
support system requirements, design, analysis, verification and validation activities, beginning 
in the conceptual design phase and continuing throughout development and later life cycle 
phases. While MBSE is expected to become the norm for systems engineering execution in the 
next ten years (INCOSE, 2014), modeling is not a guaranty of success.  

Numerous modeling languages have been available for decades. These languages can be 
classified based on their scope of purpose, level of semantic formalization, scope of 
distribution, degree of standardization, their adaptation to users’ cultural background, and the 
existence of an ecosystem (Aracic and Roques, 2010).  

Successful implementations of MBSE approaches are typically the result of several factors, the 
first of which being a clear definition of modeling objectives. Different objectives likely mean 
different means: language, size of effort, organization, tools, etc.   

In 2005, Thales identified MBSE as a key lever for engineering performance improvement and 
initiated an ambitious rollout program, investing massively on both methodological and 
tooling aspects. Nearly ten years later, the results include a model-based engineering method – 
Arcadia – and a supporting modeling workbench – Capella – deployed on various domains in 
all Thales Business Units worldwide and made open source in 2014 (Capella, 2014).  

Arcadia and Capella primarily focus on architectural design – justification of 
components/interfaces through functional analysis, architecture non-functional early 
evaluation, and preparation of integration and validation activities – excluding low-level 



 

behavioral modeling or simulation. This paper explains a few choices integral to development 
of Arcadia and Capella, based on both experimentations and system engineers’ feedback. In 
particular, it describes the original means it provides to perform functional analysis and 
manage type-instances, which are different from SysML1 approaches.  

Arcadia and Capella, quick introduction 
Arcadia (Voirin, 2010; Arcadia, 2014) is a model-based method devoted to systems, software, 
hardware architecture engineering. It describes the detailed reasoning to understand the real 
customer need, define and share the product architecture among all engineering stakeholders, 
early validate its design and justify it, ease and master integration, validation, verification 
(IVV). 

Arcadia can be applied to complex systems, equipment, software or hardware architecture 
definition, especially those dealing with strong constraints to be reconciled (cost, performance, 
safety, security, reuse, consumption, weight…). It is intended to be embraced by most 
stakeholders in system/product/software/hardware definition, and by IVV actors, as their 
common engineering reference. 

Arcadia has been experimented and validated in many real life contexts for several years now, 
in most Thales operational units. Its large adoption in many different engineering contexts 
witnesses of an industry-proven comprehensive method for system engineering, adapting to 
each context in a dedicated manner, and yet being tooled by the same powerful tools 
capitalizing knowledge. 

 
Figure 1: Arcadia engineering phases 

Arcadia intensively relies on functional analysis. It introduces several engineering phases and 
promotes a clear distinction between the expression of the need and the expression of the 
solution.  

The field-proven modelling workbench Capella has been developed both to guide users in 
applying the Arcadia method and to assist them in managing complexity of systems design 
with automated simplification mechanisms. A model is built for each Arcadia engineering step. 

                                                 
1 SysML: Systems Modeling Language 



 

All of these models are related by justification links and are processed as a whole for impact 
analysis. Arcadia is now partially published and a full publication is on its way. Capella is 
available as open source software. 

Capella is not a SysML tool. Because it targets a wide variety of domains, it cannot be 
considered a Domain Specific Modeling Language (DSML) either. Instead, Capella is a hybrid 
approach: it is strongly inspired by SysML, that it simultaneously simplifies, modifies, and 
enriches. 

The original audience for the Arcadia/Capella solution is primarily System engineering teams 
confronted to the “wall” of complexity. Their close involvement in the solution specification 
and maturation has led to a workbench which capabilities focus on helping design better 
architectures through: 

• An embedded methodology browser 

• Advanced mechanisms to manage complexity through computed simplifications and 
abstractions 

• Productivity tools including model-to-model transformations, libraries of replicable 
elements, system to subsystem automated transition, etc. 

• An ability to extend and/or specialize the core environment with add-ons addressing 
particular engineering concerns (e.g. performance, safety, cost, mass, product line, etc.) 
and carry out multi-criteria analyses of target architectures to find the best trade-offs. 

While hundreds of Thales engineers have been using Capella as their main daily design 
workbench for a few years already, the Clarity consortium now aims at building an ecosystem 
around Capella (Clarity Consortium, 2015). Several major industrial organizations, tool 
providers, and consulting organizations have already joined the consortium. 

The following sections elaborate on two significant differences between Arcadia/Capella and 
SysML solutions. The approaches described in this paper only reflect the Thales experience in 
the field of system architectural design. Because the scope of an MBSE method has direct 
consequences on the tooling, they should not be taken as universal, one-size-fits-all solutions. 

Support of functional analysis 
Functional analysis addresses the activities that the system must achieve to produce its desired 
outputs (Sage and Rouse, 1999). It allows translation of functional requirements into a 
formalized set of system functions having well-defined inputs and outputs. Functional analysis 
is a cornerstone in the Arcadia method. Therefore, great attention was paid to get the best 
adaptation to operational needs in large scale, complex programs and organisations.  

Concepts and rules 
Several lessons learnt from real life applications are described in (Voirin, 2012). That paper 
lists most frequent approaches for functional analysis building in Thales units, and explains 
why many traditional, top-down, delegation-based approaches and tools appear to be unable to 
support all these different lifecycles. Figure 2 summarizes five operational scenarios used by 
Thales units, many of them mixed during one project. It is equally important to be able to refine 
an existing function than to be able to group existing ones to provide a higher level of 
abstraction. 



 

 
Figure 2: Five different approaches to functional analysis (functions in green,  

numbers give the order of modelling tasks) 

Rules and concepts for functional analysis in Arcadia are meant to be compatible with these 
different building processes for functional analysis: 

• Definition of input and output ports on functions, expressing the contracts of the 
function, only in terms of function production/consumption. 

• Functions are linked to one another, forming a dependency graph that only formalizes 
functional dependencies between functions. These dependencies are expressed by 
oriented functional exchanges connecting the function ports. 

• Nature of data, information, signals, and flows exchanged between functions is 
specified on both exchanges and ports. 

• Definition of functions, functional exchanges, and ports is shared among all uses and 
diagrams. 

• The functional decomposition does not rely on port delegations between parent and 
children functions.  

This description of functional dependency graph is essential in architecture definition, because 
it carries the major engineering items that can define and justify architecture components 
contents, and their interface definition. Arcadia recommends to first create functional flows 
independently from components architecture, then to allocate functions to components, and 
finally to deduce components interfaces from functional exchanges and their contents (Voirin, 
2010). 

 

Functional decomposition 
While being one of the most established modeling techniques in systems engineering, 
functional analysis is actually not strictly supported by SysML, which does not define the 



 

concepts of “functions” and “function hierarchy”. Function-oriented approach can however be 
implemented in SysML (OMG, 2012):  

• Functions modeled as actions/activities diagrams. SysML actions/activities are 
semantically close to Arcadia functions as they are behavior elements – identified by 
verbs – intended to be allocated to structural elements 

• Functions modeled as blocks (Lamm and Weilkiens, 2010). The functional tree is 
captured as a hierarchy of blocks with dataflow being represented as Internal Block 
Diagrams. 

None of these two options met the Arcadia requirements of simplicity and scalability, as 
exhaustively detailed in (Voirin, 2010). Activity diagrams come with a multitude of complex 
constructs that are far beyond the needs of a simple Arcadia function hierarchy: activities, 
numerous different kinds of actions, pins, parameters, nodes, etc. Using blocks to model 
functions appears semantically wrong; it does not enforce the conceptual difference between 
structural elements and functions. 

 
Figure 3: Equivalent functional decompositions in Capella and SysML 

 

The main obstacle to rely on SysML as a support to Arcadia functional analysis is the 
encapsulation mechanism exploited in both cases to support nested functions. Figure 3 
describes the fundamental difference between SysML activity diagrams and Capella functional 



 

models. It shows how a simple functional breakdown can rapidly become complex with 
SysML,   

In SysML activity diagrams, object flows can only be created between functions at the same 
level. This means that two leaf functions in the hierarchy can only communicate through 
delegation constructs going through their respective owning activities. Maintaining the 
consistency of object flows across several levels of decomposition is a tedious and error-prone 
task that seriously jeopardizes scalability. 

In Arcadia functional models, only leaf functions can ultimately have input and output object 
flows, own ports, and be allocated to structural elements. Ports and object flows appearing on 
non-leaf functions either reflect an intermediate design that is not yet finalized, or are a 
computed synthesis. In the Capella workbench, the ports owned by children functions can be 
artificially displayed on parent functions. This makes the production of synthetic views 
possible at no cost (Figure 4).  

 

 
Figure 4: Computed synthetic views 

The Capella implementation is well adapted to approaches described by Figure 2. Refinement 
work consists in creating sub functions and drag-dropping existing ports. Bottom-up 
approaches simply consists of grouping leaf functions in parent ones and relying on the 
automated production of synthetic views.   

Specific focus on sequence and control flows 
Beyond the functional dependency and flow-oriented views, there might sometimes be a need 
to describe in which order functions have to be executed. In these cases, there is a great 
temptation to either use functional exchanges of the dependency graph to express this 
sequencing order, or to add a new kind of sequence link between functions, in functional 
dependency graphs. 

This is acceptable if the following conditions are met: 

• There is a real exchange (of data, information, event, material…) between the ordered 
functions. Without such an explicit exchange, there is no architectural means (i.e. no 
reflection on interfaces) to ensure this kind of synchronization between the functions. 

• This exchange is clearly identified as “activating” or “triggering” the target function (a 
kind of event, or request…). 



 

• The global behavior consistency is ensured and described, especially taking into 
account other inputs and outputs of the ordered functions. 

Other kinds of purely sequencing links, not associated to any exchange, raise problems. In the 
scope of architecture modeling as covered by Arcadia, this is identified as a wrong practice: 
data/control flow and sequence links do not have the same use and should not be mixed into the 
functional dependency graph. 

In SysML, the semantics of control flows implies that control tokens that are transmitted from 
one activity to another (OMG, 2012). Because this concept of token is somehow implicit and 
not materialized in models, the risk of seeing these control flows misused (i.e. used as purely 
sequencing links) cannot be ignored. To ensure that dependency graphs are truly based on 
information exchanges, Capella does not provide the exact equivalent of SysML control flows 
between activities.  

A sample scenario. These principles are illustrated hereunder with the very simple example of 
a vehicle service checkup: Mr. Jones and Mr. Smith come to the repair station for a checkup, at 
the same time. 

Mr. Jones' vehicle is taken over as soon as Mr. Jones arrives: engine is hot, so it is more 
efficient to start by changing the oil (supposed to be done when hot and thus more fluid), before 
checking coolant (which requires a cold engine). 

 
Hot engine scenario: 

1. Change the oil 
2. Wait for engine to be cold 
3. Check coolant 

Mr. Smith' vehicle is taken over after Mr. Jones' one is processed: engine is cold, so it is more 
efficient to start by checking coolant, then to heat engine, so as to be able to change oil. 

 
Cold engine scenario: 

1. Check coolant 
2. Warm engine up 
3. Change the oil 

The way to build the associated functional analysis can be good or not, depending on either 
considering real data/control flow as defined above (i.e. pure functional dependencies between 
functions), or corrupting the data flow with (contextual) misused flows representing sequences: 
three different examples of the misusage of dependency graphs are discussed below. 

An erroneous dependency graph. The use of dependency graph to express ordering is wrong. 
First, because the order is not necessarily always the same: Mr. Jones and Mr. Smith scenarios, 
as represented in Figure 5, appear contradictory. The dependency graph should only describe 
dependencies between functions that are always necessary, not occasional. In contrast, 
sequencing order is mostly contextual (and sequence diagrams and functional chains are meant 
to reflect that). 

 



 

  
Figure 5: Erroneous dependency graph, confused with a (contextual) sequence order: two different (and 

incorrect) uses of dependency graphs for the same expected functions 

Second, from a functional point of view, how does this view help define functional 
expectations? 

• What could the “Change the oil” function need as an input, coming from ''Check tire 
pressure”? And from “Check tire pressure” point of view, how to justify this output? 

• More problematic, this view tends to hide the real input needs of each function: as an 
example, “Change the oil” requires a hot engine, so would need temperature (or 
clearance) as an input; similarly, “Check & add coolant” requires a cool engine. When 
focusing on sequence order, this analysis tends to be forgotten. 

Improving the dependency graph. In order to improve the dependency graph, input needs 
and output capabilities of each function can be specified. Linking them to one another 
accordingly let a correct dependency graph emerge (Figure 6, information exchanges added). 

 
Figure 6: A correct dependency graph, with enhanced function definition  

and no artificial ordering links 
 



 

This vision is better than the former one from a functional point of view. Dependencies are 
expressed in terms of data or control dependencies representing actual information exchanges 
between the functions. The better definition of each function inputs and outputs explicitly 
shows that there is no predefined order for the operations. However, modeling a proper data 
dependency graph is no guarantee of good design. Among others, this scheme leads to heating 
and cooling the engine systematically, which is not necessary in any situation, depending on 
order of operations. Therefore, the dependency graph as depicted by Figure 6 restricts 
possibilities and harms efficiency. 

A much better dependency graph. The third version illustrated by Figure 7 corrects former 
flaws:  

• Each function clearly shows what it needs to perform;  

• Dependencies are correctly expressed, only based on what each function requires or is 
able to deliver;  

• There are no contextual sequence constraints, such as ordering functions execution 

 
Figure 7: A more realistic and useful dependency graph 

Expressing contextual ordering. Once the above pure dependency graph is correctly defined, 
different situations can be described with an emphasis on ordering concerns. This can be 
achieved by means of sequence diagrams or others formalisms (eFFBD-like2, or even SysML 
activity diagrams), provided that: 

• They are clearly associated to one use case in a given context, and not described as 
immanent. 

• They separate real flows and pure sequence links, with different concepts / notations. 

• No pure sequence link is involved between two functions that are allocated to two 
different architecture components. If this rule is transgressed, then there will be no real 

                                                 
2 Extended Functional Flow Block Diagram 



 

means to ensure the ordering. Should this need appear, a real data dependency flow 
would have to be defined between the two functions. 

In the vehicle checkup example, both scenarios could be described in Arcadia/Capella, each in 
its context, as shown in Figure 8 and Figure 9 (here, sequence diagrams lifelines represent 
functions instead of blocks). 

 
Figure 8: Mr. Jones' vehicle checkup with hot engine 

 

 
Figure 9: Mr Smith’ vehicle checkup with cold engine 

 



 

Management of types and instances 
In Thales at least, a significant cultural difference exists between systems and software 
engineers. The former are more likely to think first in terms of instances. By default, everything 
is considered an instance; the concept of type only emerges when replication becomes 
necessary. Software engineers on the other hand typically start with types and instantiate them 
later on when modeling deployments. 

Issue: How to model instances? 

The remainder if this section takes a simple but typical example of the kind of analysis 
performed in Arcadia. Figure 10 illustrates an extremely simplified redundancy architecture 
allowing to capture and transmit attitude and heading (A&H) information to the crew of an 
aircraft.  

One of the major objectives of Arcadia models is to constitute a reference for non-functional 
analyses such as performance, safety, etc. Being able to distinguish each occurrence of 
architecture elements and to associate different characteristics to each of them is mandatory. 

 
Figure 10: Basic architecture involving redundancy 

Conceptually, SysML types, parts, and instances are meant to provide all required constructs to 
support these kinds of analyses (OMG, 2010). Instead of creating several occurrences of 
“AHRS” and “Computation Unit”, two types can be used and referenced by parts (Figure 11). 

 
Figure 11: SysML-like Internal Block Diagram 

While these mechanisms work reasonably well for structural elements, they do not scale well 
when functional elements are to be taken into account. Even though SysML actions can be 
allocated to partitions representing either parts either blocks, the management of elements at 



 

instance level is today considered a weakness of SysML: the FAQ of the SysML Forum3 states, 
“Instance Specifications are ambiguously defined and poorly integrated with the rest of 
SysML.”. The multiplication of meta-model concepts (functions, instances of functions, 
function ports, instances of function ports, functional exchanges, instances of functional 
exchanges, components, instances of components, component ports, instances of component 
ports, etc.) is far too complex to most system engineers with no strong UML background.  

For the sake of simplicity, functions (instances) in Arcadia are allocated to components (types). 
Figure 12 shows what the preceding diagram becomes when functions are displayed:  a same 
function is represented by several graphical boxes and a same functional exchange is 
represented by several graphical links. In this example, the connection between “Elaborate 
A&H” in “ahrs1” and “Choose A&H Source” in “cu2” is a valid one contributing to the 
redundancy scheme. But the one between “Choose A&H Source” in “cu2” and “Compute A&H 
Graphics” in “cu1” is not.  

In Arcadia, functional chains are sets of functions traversals and exchanges, emphasizing 
specific paths subject to latency constraints, safety expectations etc. Representing a functional 
chain on such a diagram would be extremely complex, as no distinction can easily be made 
between the multiple graphical objects representing the same model element.   

 
Figure 12: Problems with functions when types and parts are used for components 

Figure 13 illustrates a model where the ambiguities of Figure 12 are resolved. Each green box is 
a unique occurrence of function, each graphically appearing function port and functional 
exchange is a distinct model element to which specific property values can be given. Links 
connect occurrences. Functional chains can easily be defined and visualized: each of them 
traverse given occurrences of each function and functional exchange. This model would be 
precise enough to support, for example, safety rules checking and failure propagation analysis. 
For the sake of readability, only two functional chains are displayed on the Figure, but two 
other equivalent ones can also be defined using “Elaborate A&H 2” as an input.  

                                                 
3 SysML Forum: http://sysmlforum.com/sysml-faq/sysml-as-architecture-modeling-language.html 



 

 
Figure 13: Instance-level architecture diagram  

The Capella solution: replicable elements 

The concept of part exists but is actually hidden in Capella, as illustrated by Figure 14. Each 
component is considered as an instance by default. From an implementation point of view, this 
choice is equivalent of applying the SysML “PropertySpecificType” stereotype on each part. In 
SysML, the property-specific type implicitly creates a block subclass that types the part in 
order to add the unique characteristics (Friedenthal et al., 2012).   

 

Figure 14: Hidden part concept in Capella 

This approach enables simple native instance-level modeling. However, being able to reuse 
elements and have the equivalent of “types” or “definitions” for these elements is a must-have 
in any architectural design solution. In Capella, this is implemented with the concepts of 
Replicable Elements Collections (REC) and Replicas (RPL). An analogy can be made with 
RECord and RePLay. A REC is the definition of a reusable set of model elements while a RPL 
is one single usage of a REC in a given context.   

 

Figure 15: RECs and RPLs 



 

Conceptually, the relationship between a REC and a RPL is close to an instantiation one. A 
customizable conformity relationship is defined between REC and RPLs, as shown in Figure 
15. Black-box conformity means no deviation is tolerated on the RPLs. Constrained-reuse 
conformity means potential changes are restricted (for example, allocating additional functions 
to a component without changing its interfaces). Inheritance could be another kind of 
conformity.  

RECs are can be stored in libraries and shared between projects. RECs and RPLs are kept 
synchronized with dedicated tooling. Figure 16 provides examples of RECs: a REC can be as 
simple as a single function or component, or as rich as two functions interacting with one 
another, a functional chain, a group of components, or even an interaction model (sequence 
diagram). This enables powerful reuse constructs.  

 

Figure 16: Examples of RECs 

Apart from the relationship between a REC and a RPL, the Capella meta-model does not 
explicitly distinguish types and instances for functions, components, ports, etc. Instead, the 
nature of a model element is given by its context of usage: a component used to define REC is 
a type; a component part of a RPL is an instance.  

It is interesting to note that a tool like SysML-based Scade Systems4 also introduced additional 
reusable/unique blocks mechanisms to overcome the SysML limitations regarding 
management of instances. 

Conclusion 
The adequacy of modeling objectives and the means to reach them is critical for the 
deployment and the adoption of MBSE solutions. After a brief introduction of the 
Arcadia/Capella solution dedicated to architectural design, this paper elaborates on two 
concrete problems faced when embracing MBSE approaches on operational projects in Thales.   

Functional analysis is a standard practice in systems engineering. There are several ways to 
implement a functional decomposition, and SysML provides at least two. However, not all are 
flexible enough to support every situation. The same modeling constructs have to be 
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compatible with different workflows: abstracting low-level legacy to build synthetic high-level 
views or refining in the context of an iterative design, among others. Capella provides efficient, 
straightforward, field-proven means to conduct large functional analyses. Because the focus of 
Arcadia is architectural design and thus definition of interfaces, this paper explains why the 
method prohibits the use of certain common constructs like SysML control flows when mixed 
with dataflow dependencies between functions.  

The type/instance paradigm is widely known and easy to understand. However, when 
confronted with the reality of systems engineering practices and the complexity of the systems 
to be modeled, the paradigm is difficult to implement. Since Arcadia promotes the evaluation 
of architectures according to multiple engineering specialties, non-functional viewpoints 
typically require models at instance level. Managing types and instance on both structural and 
functional levels does not scale well and SysML shows clear limits. This paper describes the 
Capella strategy: no real distinction between types and instances at meta-model level and usage 
of advanced tooling for replication and synchronization of sets of model elements.  

The “issues” identified in this paper should not be considered a criticism of SysML. Instead, 
they are just considered as weaknesses in the context of the Arcadia methodological objectives 
and of the cultural background of most systems engineers in Thales. The language and 
diagrams in Capella are actually very close to those of SysML, but are most of the time 
simplified. 

Note that wider aspects like requirements elicitation, concept of operation, system architecture 
design, modes & states or product line engineering aspects are out of scope of this paper, but 
they are addressed similarly, based on a DSL approach, focusing on instances and REC/RPL, 
linked and/or justified against functional analysis. See (Arcadia, 2014) for further details. 
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