
Installation Instructions

1. Download the latest and greatest Eclipse version – or simply use the distribution of your
choice. Anything newer than Eclipse 3.5 will do.

2. Add the Xtext milestone update site – preferably the one from itemis as it contains the Antlr
generator:
http://download.itemis.com/updates/milestones/

3. Select the Xtext SDK and hit Install.

Tutorial Outline

1. Use the scaffolded tutorial language to get used to the editor.

2. Allow to use Java types in the DSL.

3. Get familiar with the Java types model and Xtend.

Coffee Break

4. Make Java types and entities usable interchangeably.

5. Introduce operations with expression bodies.

Where do we want to go today?

In this tutorial you will learn how to create a domain-specific language that tightly integrates with
the Java development tools, allows to use Java classes together with the domain-specific
abstractions, supports behavioral expressions, and compiles to executable Java code. Concepts such
as the JVM model inference and the scoping of expressions will be explained along with the big
picture of the Xtext framework.

import java.util.*

package tutorial {
 entity Person {
 firstName: String
 lastName: String
 friends: List<Person>
 birthday: Date
 op getFullName(): String {
 	 firstName + " " + lastName
 }
 op getSortedFriends(): List<Person> {
 	 friends.sortBy[p | p.fullName]
 }
 }
}

DSLs for
Java Developers

(c) itemis

http://download.itemis.com/updates/nightly/
http://download.itemis.com/updates/nightly/

Exercise 1: Scaffold the Tutorial Language

1. Select the Step By Step Xtext Tutorial from the New Example wizard.

1. Choose File > New ...

2. Navigate to Example...

3. Select the Xtext Examples > Step By Step Xtext Tutorial and Finish the wizard.

2. Find the file Tutorial.xtext in the newly created projects.

3. Choose Run > Generate Artifacts from the context menu.

4. Try the editor of the tutorial language.

1. Go to the context menu of one of the projects.

2. Select Run > RunConfigurations and run Eclipse Application > Launch Runtime
Eclipse.

3. Create a new Java project sample in the spawned Eclipse instance.

4. Select the src-folder in that project and create a new file sample.tutorial. It’s
important to use the file extension ‘tutorial’. When asked for adding the Xtext
nature select Yes.

5. Try the editor features and create some example content.

import types.*
	 	
package tutorial {
 entity Person {
 firstName: String
 lastName: String
 }
}
	 	
package types {
 type String
}

DSLs for Java Developers with Xtext

 2

You may want to study the grammar file Tutorial.xtext to become familiar with the syntax
and semantics of a language definition. Things you may need in the next exercises:
• Alternatives: The bar operator | is used to describe alternatives in a production rule. Note that

the following two examples have exactly the same semantics:

a b | c d
(a b) | (c d)

• Cardinalities: The question mark is used as a cardinality operator to denote zero or one
occurrences. The star means zero or many while the plus operator means one or more. If there is
no cardinality specified exactly one occurrence is valid:

	 a?	 a*	 a+	 a

• Assignments: Assignments can be used to populate the objects that the parser produces in
memory. Important distinctions are the multi value assignment and the single value assignment.
While the former adds values to a list of things, the latter will assign a single value by means of a
setter:

	 properties+=Property 	 	 name=ID

DSLs for Java Developers with Xtext

 3

Exercise 2: Replace simple data types by real Java classes and allow entities to extend
Java types

For now the tutorial languages feels sort of alien in a Java project. Even the simplest things such as
a the types String or Date have to be redefined. We want to use existing Java types instead.

	
1. Remove all occurrences of the parser rules DataType and Type.

2. Replace the cross references to Entity and Type with invocations of the inherited production
rule JvmTypeReference. This rule encapsulates the logic to parse and create type references
as you are used from Java. All the fluff with generics, primitives and arrays is supported.

3. Regenerate the language and try to update your model files.

✴You will notice that the Java development tools of Eclipse are aware of the type references that
you use in your tutorial files. It is possible to refer to own classes, too. You may want to try to
create an enum type Gender to define the sex of a person. Try Find references on the Gender class
afterwards.

package tutorial {
 import java.util.Date
 entity Person {
 firstName: String
 lastName: String
 birthday: Date
 }
}

DSLs for Java Developers with Xtext

 4

package tutorial {
 import java.util.Date
 import tutorial.types.*
 entity Person {
 firstName: String
 lastName: String
 birthday: Date
 gender: Gender
 }
}

package tutorial.types;

public enum Gender {
 MALE, FEMALE
}

Exercise 3: Learn how to instantiate artificial Java types

Part of the Xtext framework is the JvmTypesBuilder, a powerful API to create Java types on the fly.
The idea is to derive a number of JVM elements from parsed source elements.

1. The JvmTypesBuilder can be used to construct the Java class that you would usually write
manually to implement a concept such as Person. Take a look at the generated Xtend file
TutorialJvmModelInferrer. Notice how the JvmTypesBuilder is used to create a JVM
model.

2. The TypesBuilderExercise in the test plug-in is a JUnit 4 test also written in Xtend. It checks
if your JVM model is complete by comparing the inferred Java code to the expected Java
code below. Note how easy that is using Xtend’s multiline string literals. You can run it with
Run As > JUnit Test.

3. Your task is to implement the creation of a JVM model conforming to the Java code below,
ignoring the sourceElement for now. The TypesBuilderExercise will help you to get the
TutorialJvmModelInferrer right step by step.

✴ It is possible to associate arbitrary expression code with the produced structures. Try to play
around with support for property change listeners or invariants, e.g. fields may not become null.

package tutorial;

import java.util.Date;

/**
 * A simple entity to describe a Person
 */
public class Person {
 private String firstName;

 public String getFirstName() {
 return this.firstName;
 }

 public void setFirstName(final String firstName) {
 this.firstName = firstName;
 }
...
 private Date birthday;

 public Date getBirthday() {
 return this.birthday;
 }

 public void setBirthday(final Date birthday) {
 this.birthday = birthday;
 }
}

DSLs for Java Developers with Xtext

 5

Exercise 4: Translate entities to Java

Now that you are familiar with the JvmTypesBuilder, it is time to translate the actual entities to
Java classes automatically. This will save a lot of typing and opens the door to a tight integration of
the DSL with the Java development tools.

1. Specialize the method infer in the TutorialJvmModelInferrer to take an Entity instead of an
instance of DomainModelTutorial. The multiple dispatch logic of Xtend will invoke the
method with the right arguments.

2. Transform the given Entity to a JvmGenericType and its properties to fields, getters and
setters. To calculate the qualified name of an Entity you can use the
IQualifiedNameProvider. Mind documentation comments that should not get lost.

3. Restart Eclipse and try the new features, such as using entities as type arguments for lists.

✴ If you are keen on hacking more Xtend code, try to synthesize additional elements in the Java
class such as

• a constructor that takes arguments,

• an equals or a hashCode routine or

• annotations such as JDTs new @NonNull or @Nullable stuff.

✴✴ Think about more options that should be available for entities. Do you want to define abstract
entities? Mandatory fields could be useful, too? Go ahead and update the grammar definition
along with the model inferrer.

package tutorial {
 import java.util.*
 import tutorial.types.*

 entity Person {
 firstName: String
 lastName: String
 friends: List<Person>

 birthday: Date
 gender: Gender
 }
}

DSLs for Java Developers with Xtext

 6

Exercise 5: Putting it all together – Allow to use expressions in entities

To make the language really powerful, it’s time to facilitate expressions and allow to define
operations for entities. An operation defines a number of formal parameters, a return type and a
body.

1. Add Operation as an alternative to the Property concept of the tutorial language.
Note that the Xbase super grammar already provides a definition of the concrete syntax for
FullJvmParameter and XBlockExpression.

2. Don’t forget to regenerate the language infrastructure.

3. Update the model inferrer to create Java methods from your operation concept. Also
transfer the body of the operation to the body of the newly produced method. This assigns
the logical container to the block and allows to resolve the parameters and type arguments
and to apply visibility rules.

4. The expressions inside the operation bodies rely on a runtime library. The project sample in
your runtime Eclipse needs to have that library on its classpath. To accomplish this, right
click on the project, go to Properties > Java Build Path > Libraries, and choose Add Library
> Xtend Library.

5. Try the editor and see how Java and your own language interact with each other.

import java.util.*

package tutorial {
 entity Person {
 firstName: String
 lastName: String
 friends: List<Person>
 birthday: Date
 op getFullName(): String {
 	 firstName + " " + lastName
 }
 op getSortedFriends(): List<Person> {
 	 friends.sortBy[p | p.fullName]
 }
 }
}

DSLs for Java Developers with Xtext

 7

