
The Use of Dynamic Analysis for Generation of Input Data that

Demonstrates Critical Bugs and Vulnerabilities in Programs

Ildar Isaev, Denis Sidorov

Abstract

The article presents Avalanche � a dynamic analysis defect detection tool. Avalanche uses dynamic
instrumentation provided by Valgrind [1], to collect and analyze the trace of program execution. The result
of such an analysis is a set of input data which either shows an error in the program or allows next iteration
to cover fragments of the program that were not yet executed and, therefore, checked. Thus, starting from
a single test case, Avalanche implements iterative dynamic analysis, repeatedly executing the program with
various automatically generated test data, while each execution increases the coverage of code. The article
describes Avalanche internals, and discusses the results of analysis of several open source projects with
Avalanche, which resulted in detection of over 15 bugs. Many of the detected bugs are con�rmed and �xed
by developers.

1 Introduction

Dynamic program analysis was long considered to be a too heavyweight approach to defect detection; its
results didn't justify the e�ort and resources required. However, there are two important trends in the modern
software development industry which allow a new look at this problem. On the one hand, as the size and
complexity of software steadily increase, any automatic defect detection tool can prove to be helpful. On the
other hand, the steady increase in the performance of modern computer systems makes it possible to solve
more and more complicated computational problems e�ciently. The recent surveys in the �eld of dynamic
analysis, such as SAGE [3], EXE [4] and Flayer [6] show that, despite the complexity inherent in the dynamic
analysis approach, it can be successfully applied for at least a certain kind of programs. In addition to these
research projects, we should note Valgrind [1] � one of the most successful open source projects in this �eld.
Its popularity on Linux platform proves that the use of dynamic analysis is justi�ed in the case if it is able
to reliably detect actual bugs and can work completely automatically, that is, without any interference of
programmer or tester.

Static analysis is often considered to be a more e�cient alternative to dynamic analysis. Following this
approach, defect detection is carried out without running the program but rather by analyzing the program
source code. Typically, an abstract model of the program is constructed, which is an actual object of the
analysis. We would like to highlight the following key features of static analysis:

• Separate analysis of di�erent program pieces (typically, functions or procedures) is possible, which pro-
vides a rather e�cient way of dealing with the nonlinear growth of the complexity of the analysis.

• False positives are possible. They may occur due to either the loss of some details during the model
construction or incomplete analysis of the model.

• There are two problems when a bug is reported. First, it should be checked whether it is true or false
positive. Second, the input data for reproduction of the bug sometimes need to be found.

Unlike the static analysis, the dynamic analysis is performed during the program execution. In this case

• The program needs some input data to run

• The dynamic analysis can detect bugs only on the trace determined by the provided input data; the bugs
in the other parts of the program are not going to be detected.

• In most implementations false positives are impossible because a bug is detected at the moment of its
occurrence; therefore, the detected bug is not a prediction made as a result of analysis of the program
model but rather a statement of the fact.

1



Thus, the problem of input data selection is rather important for defect detection. If static analysis tools
are used, the input data for detected bugs should be found in order to check their true positiveness and locate
the best place for the �x. In the case of dynamic analysis, the input data is chosen from the considerations
of either the maximum code coverage or the possibility of analysis of the most interesting places. So, the
successful choice of the input data is crucial for the e�ciency of the dynamic analysis.

Various methods that make it possible to use dynamic analysis both for defect detection and for generation
of input data reproducing the defect have been proposed recently. The essence of these methods may be
described as follows. They introduce the notion of symbolic or tainted data � any data that program obtains
from an external source (standard input stream, �les, environment variables, etc.). All the information about
the uses of tainted data in the program is somehow collected; then this information is written in the form of
boolean constraints on the tainted data values (this constraints may include information about all conditional
jumps depending on the tainted data and information about the usages of tainted data in potentially dangerous
places of the program). If the values satisfying the above constraints may be calculated, this may indicate
either the possibility of an error occurrence or the ability to cover other parts of the program than those that
were covered in the previous runs of the program.

In this paper, we describe Avalanche � the tool that implements such an approach on the basis of the
open source dynamic binary instrumentation framework Valgrind [1] and the constraint checking solver STP
[2]. The following features were our main targets:

• The analysis should be as complete as possible.

• The bugs should be detected e�ectively and without any false positives.

• The input data which reproduces detected bugs should be generated.

At the initial stage of the development, it was decided to restrict the probable set of analyzed programs;
Avalanche may analyze only the programs that read input data from a single input �le. Any data received
from other sources (other �les, network sockets, environment variables) is ignored. Below we assume that the
program under analysis deals with a single input �le.

The paper is organized as follows. In Section 2 we brie�y present the general scheme of the tool. Sections 3
� 5 give more detailed description of the components of the tool (Section 3 describes the tracking of the tainted
data �ow in the program, the modeling of Valgrind intermediate representation with STP declarations, the
generation of constraints for the traversal of new parts of program, dangerous operations of the Valgrind inter-
mediate representation and generation of constraints for their veri�cation. Section 4 introduces the strategy
for the traversal of the conditional jumps tree of the program.) In Section 6 we discuss the results of applying
Avalanche to ten open source projects; we provide the detailed statistics about the results of the analysis and
list detected bugs.

2 General work�ow scheme

Avalanche consists of four main components: two Valgrind plugins � Tracegrind and Covgrind, constraint
checking solver STP and the driver module. Tracegrind dynamically tracks the �ow of tainted data in the
program and collects conditions for traversing previously not traversed parts of the program and for the
execution of dangerous operations. The driver passes these conditions to STP to check their satis�ability. If
some condition is satis�able, then STP determines the values of all the variables involved (including the values
of the bytes of the input �le) that turn those conditions true.

• If some of the conditions for checking the execution of dangerous operations is satis�able, the driver
runs the program once more (this time, without any instrumentation) with the corresponding input �le
in order to con�rm the detected bug.If some of the conditions for checking the execution of dangerous
operations is satis�able, the driver runs the program once more (this time, without any instrumentation)
with the corresponding input �le in order to con�rm the detected bug.

• The satis�able conditions for the traversal of not traversed parts of the program determine a set of input
�les for new runs of the program. Thus, after each run, STP automatically generates a set of input �les
for the subsequent runs of the analyzer. Therefore, there is a problem of selecting the most interesting

2



input data from this set. The data, which is more likely to trigger a bug should be handled �rst. To solve
this problem Avalanche uses a heuristic metric � the number of previously not traversed basic blocks
(the notion of basic block is the same as in Valgrind framework [1]). For calculation of the heuristic
value Covgrind plugin is used, which also registers the occurrence of possible run-time errors. Covgrind
is a much more lightweight plugin than Tracegrind; therefore, it is possible to calculate the heuristics
for all the candidate input �les relatively fast and select an input �le with its greatest value. Below, we
consider each of the listed components in more details.

Fig. 1. Avalanche. General work�ow scheme.

3 Tracegrind: tracking the �ow of tainted data

The main tasks solved by this component are as follows:

• Tracking the �ow of tainted data in program.

• Composition of conditions that de�ne

1. the possibility to execute (or not to execute) a conditional jump in the program

2. the possibility to execute a potentially dangerous operation.

Whether or not an operation is considered to be potentially dangerous, depends on the types of defects
that need to be detected. For instance, if null pointer dereferences are to be detected, then each memory
access operation (read or write) should be considered as dangerous. Currently, Avalanche keeps track of the
following operations

• all divisions (possible division by zero);

• all memory read and write operations (possible null pointer dereference).

In both cases, the use of a zero value as operand of these operations causes termination of the program
(the former results in a segmentation fault, the latter � in a �oating point exception). Therefore, the con-
ditions composed by Tracegrind should re�ect the fact of a divisor or memory access address being equal to zero.

Let us discuss the ways to solve these tasks.

3.1 The Flow of Tainted Data

To track the sources of tainted data, Tracegrind uses the feature of Valgrind, which allows interception of
system calls in the instrumented program. In particular, the following �le handling system calls are intercepted:

• open

• close

3



• lseek

• read

• map

The name of the �le which the program reads the data from must be passed over to Avalanche as an
option (later, driver passes this option to Tracegrind each time it is executed). Tracegrind keeps track of the
interaction of the program with only this �le, and all the data read from it is marked as tainted. The data that
is read from other �les is not marked as tainted. Currently, Tracegrind supports only single �le as a source of
tainted data; later we hope to overcome this restriction.

The �ow of tainted data is tracked by explicitly checking the operands of every instruction in the Valgrind
intermediate representation. If any of the operands is tainted, then the result of the operation is marked as
tainted as well. Initially, all the memory locations which are �lled with data during the execution of read and
map system calls are marked as tainted. Then, if any of these values is read into a temporary variable, this
variable is marked as tainted as well. The use of tainted variables as operands of various operations (arithmetic,
bitwise, and so on) also causes the resulting temporary variable to become tainted. Memory write and register
read and write operations are handled in the same way. If a tainted value is rewritten (e.g., a constant or the
value of an untainted variable is stored to a register), the corresponding object (memory location or register;
a temporary variable can be written only once) is not marked as tainted any longer.

Such an approach to tracking the �ow of tainted data in a program is simple and rather e�cient. However,
a program can contain implicitly tainted values, that is, values that does depend on the contents of the input
�le but which has no explicit assignments that make it possible to track their dependence on the data read
from the input �le. Example:

int len, fd;

...

read(fd, &len, sizeof(int));

int i = 0;

for (int j = 0; j < len; j++) {

i++;

}

In this example, the value of 'i' is de�nitely determined by the contents of the �le; however, it is impossible
to establish this fact using the approach described above; the value of 'i' is (erroneously) assumed to be
untainted. Another example of implicitly tainted value is the size of the input �le.

3.2 Composition of STP Declarations

To compose conditions in order to later check them by the means of STP, every instruction of the Valgrind
intermediate representation that operates on tainted data is translated into an input declaration for STP. Let
us consider the principles of this translation. The translation is performed �on the �y� at run time by the
instrumentation code of Tracegrind. The instrumented program produces two traces. Each trace is a text �le
containing a sequence of declarations for the STP. The contents of the traces have much in common; the only
di�erence is that the �rst trace contains the conditions for checking the possibility of traversing previously not
traversed parts of the program (below this trace is referred as �the conditional jumps trace� and is referred by
trace.log); the second trace includes conditions for checking possible errors while executing dangerous division
and memory access operations (below this trace is referred as �the trace with dangerous operations� and is
denoted by dangertrace.log). The driver parses these traces and emits separate queries to the STP. Consider
the creation of declarations in more details (below, we assume, if no otherwise speci�ed, that the declarations
fall into both traces).

3.2.1 Modeling of Entities

The input �le, the set of registers, and the address space (memory) of the program are represented by
arrays in STP. The elements of all three arrays are eight-bit vectors. The arrays representing the address
space and the input �le are indexed by 32-bit indices, and the array of registers is indexed by eight-bit indices.
This is how declarations of a memory array and a register array look:

4



memory_0 : ARRAY BITVECTOR(32) OF BITVECTOR(8);

registers_0: ARRAY BITVECTOR(8) OF BITVECTOR(8);

The array representing the input �le is declared similarly; its name includes the name of the input �le
(input.txt):

file_input_dot_txt : ARRAY BITVECTOR(32) OF BITVECTOR(8);

The temporary variables are represented by bit vectors of corresponding length (1, 8, 16, 32, or 64). The
name of each variable (according to the STP syntax, all the declared objects must have unique names) includes
the address of the basic block where the variable belongs, the number of the variable within this block, and
the number of the current execution of the block:

t_409f9d8_59_2 : BITVECTOR(8);

This declaration corresponds to the one-byte variable with number 59 in the basic block with the initial
address 409f9d8, besides, the declaration was created during the third execution of the basic block (this is
indicated by the last digit 2 because executions are enumerated starting from zero).

3.2.2 Declarations for System Calls

When the read and map system calls are intercepted, a bunch of declarations is created; these declarations
represent the equality of the values read from input �le to the values in those memory cells, where the input
data was written.

memory_1 : ARRAY BITVECTOR(32) OF BITVECTOR(8) = memory_0

WITH [0hex04057000] := file_input_dot_txt[0hex00000000];

This declaration models the reading of the �rst byte from the �le input.txt into the memory cell with
the address 0x04057000. Generally, every use of read and map results in the appearance of a chain of such
declarations. The number of such declarations is equal to the number of the bytes read.

3.2.3 Declarations for Instructions Operating on Tainted Data

All instructions are also modeled in a quite an obvious way. For example, the memory read instruction t17
= LDle:I8(t15) (the one byte value from the cell with the address contained in the t15 variable is loaded into
t17 variable) produces the declaration

ASSERT(t_40d1ff8_17_0=memory_712[0hex04057000]);

If the variable t15 is tainted, the declaration representing the condition of t15 being equal to zero is added
to the trace with dangerous operations. Furthermore, the syntactic directive QUERY(FALSE) which is a hint
for STP to check the satis�ability of the formula is also added there:

ASSERT(t_40d1ff8_15_0=0hex00000000);

QUERY(FALSE);

Translation of instructions that read or write more than one byte at once is a bit more complicated.
Since the elements in the modeling arrays are only one byte long, the value of a long variable has to be
either decomposed into separate bytes (using the selection operation) or assembled from individual bytes using
concatenation and bitwise disjunction. Assume that the variable t0 in the instruction STle(t22) = t0 is tainted
and is four bytes long. The following declarations are created.

memory_717 : ARRAY BITVECTOR(32) OF BITVECTOR(8) = memory_716

WITH [0hexbec91560] := t_40139a0_0_22[7:0];

memory_718 : ARRAY BITVECTOR(32) OF BITVECTOR(8) = memory_717

WITH [0hexbec91561] := t_40139a0_0_22[15:8];

memory_719 : ARRAY BITVECTOR(32) OF BITVECTOR(8) = memory_718

WITH [0hexbec91562] := t_40139a0_0_22[23:16];

memory_720 : ARRAY BITVECTOR(32) OF BITVECTOR(8) = memory_719

WITH [0hexbec91563] := t_40139a0_0_22[31:24];

5



Here, the lower bytes of the variable t22 are written to the bytes at lower addresses. This is modeled by
using the selection of the corresponding bits. In the case of reading, the inverse operation is performed; a long
value is assembled from the pieces. For example, the instruction t2 = GET:I32(0) (suppose register 0 contains
a tainted value) produces the following:

ASSERT(t_40d3cab_2_0=((0hex000000 @ registers_4[0hex00]) |

(0hex0000 @ registers_4[0hex01] @ 0hex00) |

(0hex00 @ registers_4[0hex02] @ 0hex0000) |

(registers_4[0hex03] @ 0hex000000)));

Register eax is associated with register 0 in the Valgrind representation; register al is also associated with
zero (as the lower part of eax), register ah is associated with one, etc. Each of the four bytes is obtained from
the array; then, the vectors are concatenated with null vectors of the corresponding length and joined using
the bitwise disjunction.

Arithmetic, bitwise and type conversion operations in the Valgrind intermediate representation are modeled
by the corresponding STP operations. For comparison operations, the IF THEN ELSE operation is also used.
For example, the operation t10 = CmpEQ32(t11, 0x0:I32) produces the declaration

ASSERT(t_40d3cab_10_0=IF t_40d3cab_11_0=0hex00000000

THEN 0bin1 ELSE 0bin0 ENDIF);

The addition operation t11 = Add32(t2, 0x1:I32) generates the declaration

ASSERT(t_40d3cab_0_0=BVPLUS(32,t_40d3cab_2_0,0hex00000001));

The signed type conversion operation is modeled by the analogous STP operation. For example, the
operation t16 = 8Sto32(t17) corresponds to the declaration

ASSERT(t_40d1ff8_16_0=BVSOX(t_40d1ff8_17_0, 32));

If the second operand of the division operation is tainted, the declaration representing the condition
of divisor being equal to zero is added to the trace with dangerous operations; furthermore, the directive
QUERY(FALSE) is also added. For example, the operation t18 = DivModU64to32(0x3B9AC9F4:I64, t16)
produces the following declaration in the trace with dangerous operations:

ASSERT(t_4053000_16_0=0hex00000000);

QUERY(FALSE);

At the current stage of development, only integer operations are instrumented and cause the generation
of STP declarations. Floating point operations apparently are not going to be supported as they are hard to
model by the available STP operations.

3.2.4 Conditional Jumps

If the conditional jump instruction is executed and the condition depends on the tainted variable, then,
depending on the outcome of the jump, the declaration saying that the variable is true or false is produced.
Besides, the directive QUERY(FALSE); is added to the conditional jumps trace. For example, the instruction
of not taken conditional jump if (t3) goto 0x40D3CC1:I32 produces the declarations

ASSERT(t_40d3cab_3_0=0bin0);

QUERY(FALSE);

4 Driver Module

The driver integrates all the other Avalanche components together. Its main functions are as follows:

• coordination of the interaction between the processes of the other components;

• control of the traversal of the conditional jumps tree of the program

6



After the Tracegrind module has �nished, the driver parses the two traces produced by Tracegrind.
Schematically, their contents look approximately as follows:

trace.log dangertrace.log
ASSERT(t1=1); ASSERT(t1=1);

QUERY(FALSE); ASSERT(t2=1);

ASSERT(t2=1); ASSERT(t_div=0);

QUERY(FALSE); QUERY(FALSE);

ASSERT(t3=0); ASSERT(t3=0);

QUERY(FALSE); ASSERT(t_deref=0);

... QUERY(FALSE);

ASSERT(tn=0); ...

QUERY(FALSE); ASSERT(tn=0);

Here, ASSERT(ti=1(0)) denotes the conditions corresponding to the outcome of conditional jumps that
depend on the tainted data; ASSERT(t_div=0) (ASSERT(t_deref=0)) denote the conditions of divisor (mem-
ory access address) being equal to zero. The declarations generated by other instructions are omitted for the
sake of clarity and because of space limitations.

First, the driver parses dangertrace.log and constructs the following queries according to its contents:

ASSERT(t1=1); ASSERT(t1=1);

ASSERT(t2=1); ASSERT(t2=1);

ASSERT(t_div=0); ASSERT(t3=0);

QUERY(FALSE); ASSERT(t_deref=0);

QUERY(FALSE);

Note that the satis�ability of these queries means the occurrence of errors in the dangerous operations on
the same trace of the program. If STP decides that the queries are satis�able, then, given the values of the
variables that satisfy them, the driver constructs the new contents of the input �le and runs the program with
it to check the actual occurrence of error. If the error is con�rmed, the exploit input �le is saved by the driver.

Next, the driver parses trace.log and passes the following queries to STP in order to check their satis�ability

ASSERT(t1=0); ASSERT(t1=1); ASSERT(t1=1); ASSERT(t1=1);

QUERY(FALSE); ASSERT(t2=0); ASSERT(t2=1); ASSERT(t2=1);

QUERY(FALSE); ASSERT(t3=1); ... ASSERT(t3=0);

QUERY(FALSE); ...

ASSERT(tn=1);

QUERY(FALSE);

Note that in the i'th query the �rst i � 1 conditions of the conditional jumps remain direct (i.e., they have
the same outcome as during the execution of the program), and the i'th condition is inverted (i.e., if the jump
was not taken, then ASSERT(ti=1) is added to the query; otherwise, the condition ASSERT(ti=0) is added).
If the request is satis�able, the driver saves the contents of a new input �le which enables the execution of a
new trace of the program. After checking the satis�ability of all the requests, the driver has a set of new input
�les.

Figure 2 shows the conditional jumps tree of the program. The conditional jumps are depicted by vertices,
the lower outgoing edge denotes the direct execution of the program, the upper outgoing edge denotes the
inverted execution (i.e., the execution de�ned by the data obtained as a result of the successful satis�ability
checking of the corresponding query to the STP). The very �rst execution of the program is associated with the
path 1-2-4-8-16... Suppose that after the �rst execution all the queries to invert the outcome of the conditional
jumps turned out to be successful. Then, at the next step, the driver has the values of the input data needed to
traverse the branches 1-3-6-12-24..., 1-2-5-10-20..., 1-2-4-9-18..., 1-2-4-8-17..., and so on. For that reason, the
�rst execution is depicted by a dashed line that cuts o� the lowest branch of the tree. As it has already been
mentioned, from the set of all possible inputs the driver selects the �le which achieves the greatest increase
of coverage measured in previously uncovered basic blocks of the analyzed program. To count the number of
such blocks, the driver runs the analyzed program with Covgrind plugin and each of the available input �les.

7



Fig. 2. Conditional jumps tree of the program

Suppose that the branch 1-3-6-12-24... gives the greatest increase of coverage. Then, after the second run
of the program with Tracegrind, the driver acquires new input �les that cover the branches 1-3-7-14-28...,
1-3-6-13-26..., and 1-3-6-12-25... (in addition to the �les generated after the �rst run and not yet used for the
program execution). Among them, the �le providing the best coverage is again selected, and the program is
run with Tracegrind once more, and so on. Thus, the branch-by-branch traversal of the conditional jumps
tree is performed, and the �les that provide the coverage of previously not traversed branches are collected.
Obviously, the complete traversal of the tree requires an exponential number of runs (2n−2, where @n is the
depth of the tree or, in other words, the number of conditional jumps that depend on the tainted data).

Besides, each node requires to solve the NP-complete problem to check the satis�ability of the corresponding
boolean formula. Therefore, even processing of a single branch can be very time consuming. To speedup the
traversal of the tree, the threshold value of lookup depth may be speci�ed as one of the Avalanche options;
then, not more than the speci�ed number of conditional jumps will be inverted on each branch, while the jumps
laying deeper than the speci�ed threshold will generate no queries to the STP (this behavior corresponds to
cutting o� the lower parts of the tree).

5 Covgrind: Measuring the Coverage Achieved by Test Cases

The component Covgrind is extremely simple. It dumps a list of addresses of the executed basic blocks.
The driver uses this list to calculate the number of previously uncovered blocks. Furthermore, at the startup
Covgrind sets up a timer. If the timer �res while the program is executed (that is, the speci�ed time has
elapsed), Avalanche interprets it as the presence of an in�nite loop in the program. The timer value is an
Avalanche starting option. If Covgrind terminates abnormally (exit on a signal), it is assumed that an error

8



in the program occurred. In both cases (in�nite loop and abnormal termination), the driver saves the input
�le used to execute the program.

6 Results of Analysis of Real-Life Applications

6.1 Projects Analyzed

The e�ectiveness of Avalanche in detecting bugs was explored using a large number of open source projects.
In this paper, we examine the results obtained for the following ten projects.

qtdump (libquicktime-1.1.3)
Libquicktime is a library for reading and writing quicktime/avi/mp4 �les. Qtdump is a wrapper for the
library function quicktime_dump(�le) that prints the parsed contents of the input �le.

�vdumper (gnash-0.8.6)
Gnash is a GNU �ash player. The program �vdumper prints the internal information contained within
an �v video�le.

cjpeg (libjpeg7)
Libjpeg is a library for handling JPEG �les. Cjpeg converts bmp �les into jpeg.

snd�le-mix-to-mono (snd�le-tools-1.02)
Libsnd�le is a library for reading and writing MS Windows WAV and Apple/SGI AIFF �les. Snd�le-tools
is a set of utilities using libsnd�le. Snd�le-mix-to-mono converts a multi-channel input �le to a mono
output �le, by mixing all input channels into one.

swfdump (swftools-0.9.0)
SWFTools is a collection of utilities for working with Adobe Flash �les (SWF �les). Swfdump prints
out various information about SWF �les, like contained images/fonts/sounds, disassembly of contained
code, cross-reference and so on.

avibench (avi�le)
Avi�le is a player and library for working with multimedia AVI �les. Avibench is used to collect bench-
marks for the functions of the avi�le library.

xmllint (libxml2-2.7.6)
Libxml2 is a library for parsing xml-�les. Xmllint is a parser based on libxml2.

mpeg2dec (libmpeg2-0.5.1)
Libmpeg2 is a library for decoding mpeg-2 and mpeg-1 video streams. Mpeg2dec is a simple test utility
for libmpeg2, it decodes mpeg-1 and mpeg-2.

mpeg3dump (libmpeg3-1.8)
Libmpeg3 is a library for decoding compressed MPEG �les. Mpeg3dump is an utility used for dumping
data into a 24-bit PCM �le or extracting audio from it.

speexenc (speex-1.2rc1)
Speex is an open source format designed for speech. Speexenc compresses WAV and uncompressed �les
into the speex format.

6.2 Analysis Parameters and the Detailed Results

The programs were run using two types of input �les. The �les of the �rst type were short (712 bytes) and
did not match the format expected by the analyzed programs; i.e. they were malformed. On the contrary,
the �les of the second type were formed correctly (i.e. they matched the expected format), but they were
cut to make them 712 bytes long. The size of the input �les was limited in order to reduce the number of
constraints produced and speedup the checking of their satis�ability. The option for the lookup depth was set
to 100 conditions (depending on the tainted data). The option for the timeout value (for detection of in�nite
loops) was set to 300 s. Avalanche worked for 7500 seconds on each of the above projects, then it was forced
to terminate (i.e. the conditional jumps tree of the program was never traversed completely).

9



The results are presented in Tables 1 and 2.

Total number of runs is the number of program runs with the Tracegrind plugin (this number is also equal
to the number of partially traversed branches of the conditional jumps tree).

Prediction accuracy is the percentage of runs when the execution followed exactly the branch predicted
according to the satis�ability of the constraint obtained by inverting the outcome of one of the conditional
jumps (as compared with the preceding run of the program). Let us make some conjectures that could explain
why the prediction accuracy does not reach 100%.

• Approximations made during the translation of Valgrind intermediate representation into STP decla-
rations. For instance, the syntax of STP declarations requires the second operand of the binary shift
operation to be speci�ed as an explicit number. If during the execution of the program the second
operand turns out to be a tainted variable, the value of this variable has to be speci�ed, which can cause
an inexact result when the satis�ability of the resulting formula is checked.

• Nondeterminism of program execution. For example, if the program uses arithmetic operations dealing
with addresses located in dynamic memory, it can can result in di�erent traces even if the program is
run on the same input data.

• The existence of implicitly tainted data.

Initial coverage is the number of basic blocks executed at the �rst run of the program.

Increase of coverage is the total number of basic blocks executed during the analysis done by by Avalanche
(i.e. it is the number of basic blocks that were not executed during the �rst run of the program but were
executed during later runs). The coverage includes not only the basic blocks of the program itself, but also the
basic blocks of the libraries used in the program. The ratio of the increase of coverage to the initial coverage
is also given measured in percents.

Tracegrind time, STP time and Covgrind time are the ratios of the execution time of each of these compo-
nents to the total execution time measured in percents.

Dangerous operations is the overall number of formulas checked to �nd bugs in dangerous operations.

Test cases is the total number of exploits generated by Avalanche during the analysis (input �les that cause
exit on signal or an in�nite loop).

Number of defects is the number of unique defects reproduced using the test cases generated by Avalanche.
The reason for the fact that the number of test cases exceeds the number of unique defects is that the same
bug may happen on di�erent traces.

tmin is the time (in seconds) elapsed from the start of Avalanche until the �rst bug was found.

tmax is the time (in seconds) elapsed from the start of Avalanche until the last unique bug was found.

10



qtdump �v-
dumper

cjpeg snd�le-
mix-
to-
mono

swf-
dump

avi-
bench

xmllint mpeg2-
dec

mpeg3-
dump

speex-
enc

total number
of runs

126 97 112 10 355 37 60 147 34 5

initial
coverage

2927 5853 2259 2395 2202 6037 3918 2503 2757 3507

increase
of coverage

1667
(57%)

16
(<1%)

1188
(53%)

821
(34%)

2010
(91%)

1357
(22%)

2231
(57%)

206
(8%)

1885
(68%)

32
(1%)

prediction
accuracy

95% 100% 96% 100% 70% 86% 100% 100% 93% 100%

tracegrind
time

4% 84% 3% <1% 10% 3% 2% 4% 5% 1%

STP
time

61% 4% 96% 99% 54% 80% 93% 50% 73% <1%

covgrind
time

34% 11% 1% <1% 35% 17% 4% 46% 21% 98%

dangeraous
operations

173 0 404 0 159 1576 81 0 585 0

number of
defects

5 0 1 1 2 1 0 0 2 0

test
cases

82 0 35 1 437 2 0 0 3136 24

tmin 491 � 252 8 55 3041 � � 5 �
tmax 5827 � 252 8 684 3041 � � 5 -

Table 1. Statistics for the analysis with initially incorrect input data

qtdump �v-
dumper

cjpeg snd�le-
mix-
to-
mono

swf-
dump

avi-
bench

xmllint mpeg2-
dec

mpeg3-
dump

speex-
enc

total number
of runs

3 83 20 1 293 28 58 145 62 3

initial
coverage

3060 6994 3098 2497 2770 6077 4617 5131 3195 3537

increase
of coverage

103
(4%)

569
(8%)

311
(10%)

0 2350
(85%)

1135
(19%)

1953
(42%)

25
(<1%)

1457
(46%)

54
(2%)

prediction
accuracy

100% 89% 95% � 68% 86% 100% 100% 94% 100%

tracegrind
time

<1% 58% <1% <1% 9% 3% 2% 5% 5% <1%

STP
time

1% 28% 99% >99% 61% 80% 93% 73% 75% 3%

covgrind
time

99% 10% <1% <1% 29% 17% 4% 21% 20% 97%

dangeraous
operations

0 663 214 1 231 3075 104 0 585 0

number of
defects

1 1 1 0 2 1 0 1 2 0

test
cases

24 2 37 0 933 2 0 127 3136 25

tmin 314 156 3 � 59 2919 � 12 1 �
tmax 314 156 3 � 248 2919 � 12 9 �

Table 2. Statistics for the analysis with partially correct input data

11



For qtdump, the analysis with initially malformed input data proved to be more e�ective than the analysis
with partially correct data � the former resulted in detection of �ve defects, while the latter found only one
bug, which was already included in the list of bugs detected in the �rst run of analysis. The situation for
snd�le-mix-to-mono is similar: when the analysis began with partially correct data, the checking of satis�a-
bility of the generated conditions took too long time; as a result, the coverage didn't increase in the assigned
amount of time and, therefore, no bugs were detected. On the contrary, the analysis of snd�le-mix-to-mono
started with incorrect input data caused a detection of a bug.

For �vdumper and mpeg2dec, the situation is completely reverse. The analysis started with initially incor-
rect input data did not detect any bugs, while the analysis started with partially correct data found certain
defects. In general, the initial execution of the analyzed application with the expected input data immediately
increases the part of the tree of conditional jumps that need to be explored further. This can result either
in a faster detection of bugs or in a slowdown of the analysis due to the expansion of size and amount of the
constraints that need to be checked.

For swfdump, avibench, xmllint, mpeg3dump, and speexenc the two runs showed no signi�cant di�erence.
In cjpeg a bug was found much faster when the analysis started with partially correct data.

Note that a relatively large proportion of the analysis time is taken by Covgrind. This can be due to the
fact that in order to measure the metric Covgrind is executed much more often than Tracegrind. The other
factor is the use of the timer for detecting in�nite loops. If the program may enter the same in�nite loop on
di�erent traces, it may cause a signi�cant waste of time because when executing each of these traces Covgrind
awaits for the expiration of the assigned timer.

6.3 Brief Review of Detected Bugs

qtdump (libquicktime-1.1.3)
Three bugs are null pointer dereferences, another one is an in�nite loop, and, the last one causes a
segmentation fault. Some of these bugs were �xed by the developer.

�vdumper (gnash-0.8.6)
The direct cause of the bug is the occurrence of exception in the boost library used in the program (one
of the internal boost pointers turns out to be null). Since the program does not handle this exception,
the program receives SIGABRT and exits. The bug was �xed by the developer.

cjpeg (libjpeg7)
The program reads a zero value from the input �le and then uses it as a divisor without checking it in a
proper way; as a result a �oating point exception occurs, and the program receives SIGFPE and exits.
The bug was �xed by the developer.

snd�le-mix-to-mono (snd�le-tools-1.02)
As in the preceding program, division by zero is performed. The developer informed us that the bug has
been already �xed in the current development version.

swfdump (swftools-0.9.0)
Both bugs are null pointer dereferences.

avibench (avi�le)
Null pointer dereference.

xmllint (libxml2-2.7.6)
No bugs detected.

mpeg2dec (libmpeg2-0.5.1)
As in cjpeg and snd�le-mix-to-mono, the detected bug is a possible division by zero.

mpeg3dump (libmpeg3-1.8)
Both bugs are null pointer dereferences.

12



speexenc (speex-1.2rc1)
No actual defects were found. Avalanche reports about 24 detected bugs because the timer expires (300
seconds) when application is run with each of these �les. However, in none of the cases the loop is
actually in�nite; therefore, we can consider the reported defects as false positives.

7 Related Works

The general principles of Avalanche (generation of test cases in order to cover new fragments of program,
the strategy for traversing the conditional jumps tree and increase of coverage metrics) are similar to those
used in the SAGE tool described in [3]. However, in contrast to Avalanche, SAGE does not search the bugs
purposefully; it is rather focused on traversal of as large part of the conditional jumps tree as possible. In
Avalanche, the purposeful reproduction of bugs is achieved by creating and checking constraints for dangerous
operations. Other signi�cant distinctions of Avalanche from SAGE are as follows.

• SAGE generates constraints while processing previously collected execution trace saved in the form of
a sequence of x86 instructions. Avalanche generates constraints during the execution of dynamically
instrumented program. The use of the Valgrind intermediate representation as an input language for
translation into STP declarations signi�cantly simpli�es the constraint generation. Simultaneous con-
straint generation and program execution considerably speeds up the analysis.

• Avalanche has a much higher prediction accuracy (for SAGE, the prediction accuracy does not exceed
40%).

• Avalanche allows specifying a threshold value for the lookup depth.

The tool EXE described in [4] is also similar to Avalanche. A signi�cant feature of EXE is the instru-
mentation of the source code (in contrast to the instrumentation of the executable binaries in the case of
Valgrind) and requirement to manually mark up all the sources of tainted data in the program. One of the
main advantages of EXE is the easier generation of constraints for checking various dangerous operations. For
example, EXE may generate constraints for checking bu�er over�ows because both the array length and the
index are always explicitly speci�ed in the source code.

Like Avalanche, Catchconv [5] uses Valgrind�STP chain for collecting constraints and checking their satis�-
ability. However, Catchconv generates constraints only for checking a relatively narrow class of bugs � signed
and unsigned type conversion errors. Moreover, the analysis is preformed only on a single trace determined
by the input data; no input data for traversing other possible traces is generated.

Flayer [6] is very di�erent from Avalanche. Flayer also uses Valgrind for tracing the �ow of tainted data
in the program. However, Flayer does not generate and check any constraints; instead, it instruments the
code in such a way that the conditional jumps are executed (or not executed) without actual checking of the
corresponding conditions. This approach, �rstly, requires the human involvement for controlling the analyzer,
secondly, makes possible the appearance of false positives, and, thirdly, doesn't provide input data reproducing
even the true positive defect.

Constraint checking is also used in static analyzers. The article [7] describes a static analysis tool that
models the control �ow, the data �ow and all dynamic memory allocations using boolean formulas.

8 Future Work

The defects detected as the result of the analysis of several open source projects has proved e�ectiveness of
Avalanche. However, the exponential complexity of the problems that need to be solved (satis�ability checking
and traversal of the tree of conditional jumps) is a signi�cant limitation. This limitation explains why only
the bugs that are relatively close to the entry point of the program are detected e�ectively. For that reason,
the development of techniques that make it possible to detect bugs in other parts of programs seems to be the
most promising direction for further research.

In particular, we plan to explore the problem of parallelization of di�erent Avalanche components. Many
stages of the analysis are completely independent of each other. In particular, all the constraints produced

13



during the execution of a certain branch of the tree of conditional jumps can be checked independently; the
non overlapping branches of the tree can also be executed simultaneously. This makes us hope that parallel
work of di�erent components of Avalanche can be organized e�ectively.

Furthermore, we are going to examine the possibility of performing partial analysis of programs preferably
without considerable decrease in the accuracy of bug detection. It would be interesting to consider various
variants of traversing separate fragments of the tree of conditional jumps. For example, functions in the pro-
gram can be analyzed individually. Another possibility is to use heuristics to determine the most interesting
(in the sense of defect detection) parts of the program. We also consider the suggestion of combining static
and dynamic analysis: a static analyzer can somehow mark certain parts of the program which are to be then
analyzed by Avalanche.

These methods promise to speedup Avalanche. Another interesting direction of development is improving
the accuracy of bug detection. Currently, Avalanche performs a purposeful search (by checking the correspond-
ing constraints using STP) of a rather narrow class of defects � division by zero and null pointer dereference.
Obviously, the list of possible bugs contains bugs of many other types:

• bu�er over�ow

• uninitialized variables

• signed/unsigned type conversion errors

• dynamic memory errors � memory leaks, double free, etc.

• security vulnerabilities

First, it is necessary to examine the problem of purposeful generation of conditions for checking the oc-
currence of these errors (like in the case of division by zero and null pointer dereferencing). There is a reason
to assume that such conditions can be created for detecting signed/unsigned type conversion errors [5] and
for certain cases of bu�er over�ow. Second, a tool for detecting such bugs need to be developed. (Recall that
presently Avalanche detects only those errors that lead to abnormal termination of the program. However, if
the program contains a bug that does not lead to abnormal termination, such a bug is not detected.) In order
to do that Avalanche should probably be integrated with other Valgrind tools.

Besides, the present functionality of Avalanche can be optimized. The list of supported sources of tainted
data can be extended. Recall that currently only a single �le can be a source of tainted data. In fact,
there are many other sources; indeed, a program can work with several �les, get information from command
line arguments, or environment variables. All this data should be considered as tainted. Sockets can be an
especially interesting source of tainted data. Support of sockets as a source of tainted data will enable Avalanche
to analyze network applications, which will certainly make Avalanche even more useful and probably make it
possible to detect new types of defects.

9 Conclusion

We described dynamic defect detection tool Avalanche. We explained the general principles of creating
input data for the purposeful reproduction of errors and for the analysis of initially unreachable parts of pro-
gram, described the strategy for traversing the conditional jumps tree, the heuristics used to select the branch
for the further analysis, the model for translating Valgrind intermediate representation into STP declarations
and its implementation as a Valgrind plugin.

We examined the results obtained by applying Avalanche for the analysis of open source projects and listed
the detected bugs. We also indicated the main limitations that prevent the enhancement of the e�ciency of
bug detection and completeness of the analysis (the exponential complexity of algorithms for the traversal of
the conditional jumps tree and satis�ability checking) and discussed directions of further research.

14



References

[1] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic binary instrumentation. In
PLDI, 2007.

[2] V. Ganesh and D. Dill. A decision procedure for bit-vectors and arrays. In CAV 2007, LNCS 4590, pages
519�531.

[3] P. Godefroid, M. Levin, and D. Molnar. Automated whitebox fuzz testing. In NDSS, 2008.

[4] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE: automatically generating inputs

of death. In CCS '06: Proceedings of the 13th ACM conference on Computer and communications security,
pages 322�335, New York, NY, USA, 2006. ACM Press.

[5] D. Molnar and D. Wagner. Catchconv: Symbolic execution and run-time type inference for integer conver-

sion errors, 2007. UC Berkeley EECS, 2007-23.

[6] W. Drewry and T. Ormandy. Flayer: Exposing application internals. In First Workshop On O�ensive
Technologies (WOOT), 2007.

[7] Y. Xie and A. Aiken. Scalable Error Detection using Boolean Satis�ability. In Proceedings of POPL 2005,
Long Beach, CA

15


