The R Environment for Statistical
Computing and Graphics

Reference Index

The R Development Core Team

Version 1.8.1 (2003-11-21)

Copyright (©) 1999-2003 R Development Core Team.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be
stated in a translation approved by the R Development Core Team.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to
redistribute it under the terms of the GNU General Public License. For more information
about these matters, see http://www.gnu.org/copyleft/gpl.html.

ISBN 3-900051-00-3

Contents

1 The base package 1
Machine L e 1
Platform . . . 0 0 e 3
Script .o 4
abbreviate L e 4
abline e 5
abs . . e 7
addl . . . 7
aggregate L L oL e 9
< 11
ATC . e 13
airmiles 14
alrquality L e e e 14
alias . . . L e 15
all . 17
alllequal L 18
allnames e e e 19
ANOVA « v v v e 20
anova.glm e e 21
anova.m L 22
anscombe ... e e 24
AILY © 0 v e e e e e e e e e e e e e e 25
AOV o vt e e e e e e e e e e e e e e e 26
APETIIL « v v v e e e e e e e e e e e e e e e e e 27
append e e 28
apply . . . e 29
approxfun L 30
APTOPOS « « v v v e e e e e e e 32
i 33
Arithmetic e 34
AITAY « ¢ v v v e 35
ATTOWS © v v v v v v v e e e e e e e e e e e e e e e e e e 36
as.data.frame L 37
as.environment L L L. Lo 38
as.function Lo 39
as.POSIX™ . . . e 40
AsIS . . e 41
ASSIEIL « . L L e e e e 42
assignOPs L 43
assocplot 45
atbach L 46

ii

CONTENTS

attenu 47
attitude L 48
attr . e e e e e e e e e 49
attributes 50
autoload L 51
AVE © v i e e e e e e e e e e e e e e e e e e e 52
AXIS . . e e e e e e e e e e e e e e e 53
axis. POSIXct e 54
axTicks e 55
backsolve L 57
bandwidth 58
barplot e 59
basename L 62
BATCH e 63
Bessel e 63
Beta 65
bindenv e 66
Binomial e 68
birthday 69
body e e 70
boX . . . 71
boxplot 72
boxplot.stats 75
bquote 76
browseEnv e 7
Drowser e e e 78
browseURL e 79
bug.report 80
builtins e e 82
DXD . . o 83
DY 84
C o e 85
C oo e e e e e e e e e e e 86
call . . . e 87
capabilities L L 88
capture.outputo e 89
CATS © v v v e e e e e e e e e e e e e e e 90
case/variablenames Lo 91
cab . . e e e e e e e 92
Cauchy e 93
chind 94
charexpand L 96
character e 96
charmatch 97
chartr L e e 98
check.options L 99
chickwts e 100
Chisquare e 101
chol . . . 103
chol2inv 104
chull e 105

citation e e 106

CONTENTS iii

class . . . L e 107
close.socket 108
COZ . o i e e e e 109
codes-deprecated L 110
coef . oL 111
col . e 112
col2rgbo 112
COlOTS e 114
ColSUMS e 115
commandArgs L 116
COMMENT v o e 117
Comparison e e e 117
COMPILE e 118
complete.cases L 119
complex 120
conditions 121
confint e 124
conflicts 125
CconnNections e e e e e e e 126
Constants e e 130
constrOptim L 131
CONLOUT o vt e 133
contrast L L e e e e e 135
contrasts e e e e e e e 137
contributors L e e 138
Control e 138
convolveo 139
coplot . . . L 140
copyright L 143
7 143
count.fields 145
COV.WE . o o o e e e e e e e e e e 146
Crossprod e e 147
CUMSUINL .« v v v v v e 148
CUTVE & . v v o e v e 148
CUL . . o e e e e e e e 150
cut.POSIXt e 151
data 152
data.class e e 154
data.frame L 155
data.matrix L 156
dataentry oL 157
dataframeHelpers 159
date . . . L 159
DateTimeClasses e e 160
def o 162
debug 163
debugger L 164
Defunct e 165
delayo 167
delete.response Lo e 168

demo 169

v

CONTENTS

density e 170
deparse 173
Deprecated 174
deriv . . . e 175
det . . e 177
detach e 178
AdeV.XXX . s 179
dev2 .o e 181
dev2bitmap oL e 182
deviance L 184
Devices e 184
diresidual e 186
diag 186
diff . . e 187
difftime 188
dim .. 190
dimnames L e e 191
discoveries e e e 192
do.call L 192
dotchart e e 193
double 194
download.file 195
dput . . . e 197
drop 198
dummy.coefo 198
dump 200
duplicated L 201
dynldoad 202
edit . . . L 204
edit.data.frame 205
effaovlist e 207
effects L 208
GIZEN . . . L. 209
environment L L L L L e e e e e e e e e e e e e 211
esOph . . L L 212
CUTO + . v v v e v e e e e e e e e e e e e e e e e e e 213
eurodiSt L. e e e 214
eval . Lo 215
example 216
eXiStS . . . e e e e e 218
expand.grid 219
expand.model.frame L 220
Exponential 221
EXPIESSION . . . v v e e e e e e e e e e e 222
Extract e e 223
Extract.data.frame L 225
Extract.factor 227
extractAIC 228
Extremes e e 229
factor e 230
factor.scope e 233

faithful o 234

CONTENTS v

family 235
FDist . . . o 237
Tt . 238
file.access e e 239
file.choose L 240
fileinfo. 240
filepath 242
fileshow L 242
files . . . 243
filled.contour e e 245
findInterval L 247
fitted 248
fivenum e e 249
X 249
force e 250
Foreign 251
Formaldehyde L 253
formals e 254
format 255
format.info 257
formatC e 258
formatDLo 260
formula 261
fourfoldplot 263
frame 265
freeny 265
ftable L 266
ftable.formula 268
function e 269
GammaDist L 270
BC v o e e 271
gebime . . Lo L 272
getorture ... L. L 273
Geometric 273
get . L 274
getAnywhere 276
getFromNamespace 277
getNativeSymbollnfoo 278
getNumCConverters e 279
getpid . . . L 281
getS3method 281
getwd ... L e e 282
Bl 283
glm . . L 283
glm.control 287
glm.summaries oL e e 289
GROME e e 290
LAY o v o e e e e e e e e e e e e e e e e 291
BIED + v e e e e e 291
grid . .. 293
groupGeneric Lo 295

BZCOIL . o v v v i e e e e e e e 297

vi

CONTENTS

HairEyeColor 298
help . . . o e 299
help.search L 302
help.starto 304
Hershey o 305
hist 308
hist. POSIXt o e 311
hsv . e 312
Hyperbolic o 313
Hypergeometric L 314
identicalo 315
identify 316
ifelse e 318
IMAZE . . v o v o e e e e e e 318
index.search e e e 320
infert e e 321
influence.measures L 322
InsectSprays o L 325
INSTALL e 325
Integer e 327
integrate L .. 328
interaction Lo e 330
interaction.plot 330
interactive L e e e 332
Internal 333
InternalMethods L 333
invisible 334
IQR . . o e 334
ITIS . . o o o o e e e e e e e e e 335
is.empty.model Lo 336
isfinite. 337
isfunction e e 338
isdanguage 338
is.object . . .o L 339
ISR 340
IS.TECUTSIVE . . v v v v o o e e e e e 340
is.single 341
islands 342
Japanese oL e 342
Jitter © oL 343
kappa 344
kronecker 345
labels e 346
lapply o 347
Last.value oL o 348
layout e 349
legend 351
length e 354
levels e 355
library 356
library.dynam L 361

License 362

CONTENTS vii

LifeCycleSavings e 363
Hnes e 364
LINK .. e 365
LSt . . e 365
list.files 367
Im . e 368
Im At . . 370
Im.influence 372
Im.summaries e e e e e 373
load 375
localeconv e 376
locales e e e 377
locator 378
log . . o e 379
Logic o 380
logical 381
Logistic« . . 382
logLik o o 383
logLik.glm 384
logLik.Im o o 385
loglin e 386
Lognormal L 387
longley e 389
lower.tri L 390
LoWesS e 390
IS o e 391
Is.ddiag e 393
ls.print L 394
Isfit . . . 394
mad e e e 396
mahalanobis e 397
makelink 398
make.names e e 398
make.packages.htmlo Lo 399
make.socket L L 400
make.tables L 401
make.unique L e e e 401
makepredictcall Lo 402
manglePackageName oL L 403
MANOVA .« v« o v v e 404
mapply . ..o e 405
margin.tableo L oL 405
Mat.Or.VEC o . o o e e e e e e e e e e e e e e e 406
match 407
match.arg Lo 408
match.call 409
match.fun L 410
matmult e e e 411
matplot 412
MAatTixX o e e e e e e e e e e e e e e e e e e e 414
maxCol e 415

viii

CONTENTS

median e e e e e 417
Memory L 417
memory.profile 419
IEINU & . v v v v v e 419
METZE . . v o v v e e e e e e e e e e e 420
methods L e e 422
mMiSSINg 423
mode e 424
model.extract e e e 425
model.frame L 426
model.matrix e e e 427
model.tables L e 429
morley 430
mosaicplot L. 431
MECATS o o e e e e e e e e e e e e e e e 433
mtext . . . e e e e e e e e 434
Multinomial 436
n2mirow 437
NA e 438
na.action L L e e e e e e e e e e e e e 439
na.failo 440
072 50 L P 441
072 50 0 T P 442
naprint e e 443
naresid L L 443
NATES « .« o v o v e e e e e e e e e e e e e e e e 444
nchar 445
nclass ..o e 446
NegBinomial L 447
NeXtn . . . L e e e e e e e e e 448
nhtemp L 449
nlevels 450
nlm ..o e 450
NOQUOLE o o e e e e e e 452
Normal e 453
NotYet e 455
NTOW . . v v v v e 456
ns-alt ..o 457
ns-dblcolon L e 458
ns-internals L L e e e 459
ns-lowlev . .o 460
nsreflect. Rd L 461
NS-tOPENV e e e e e e e 462
nsl . . 462
NULL . . . e 463
OUINETIC . . . v v v v e e e e e e e e e e e e e e 464
object.size L 465
octmode L e e e 465
offset . . . L L 466
OMLeXIt e e e e e e 467
optim 467

CONTENTS

OPLIONS .« . . L e e
OrchardSprays« . .
OTder o o i

padjust
package.contents L
package.dependencieso
package.skeleton
packageStatus L.
DAZE .« o o e e e e e e e e e e
PAITS . . . o e
palette
Palettes L
panel.smooth e

Paste . . . oL e e e e e e e

PAf . e e

PkgUtils o o
PlantGrowth
plot . . e
plot.data.frame
plot.default
plot.density L
plot.design L
plot.factor
plot.formula
plot.histogram L
plot.dm oL
plot.table e
plot.ts . . L e
plot.window oL
PlOt.Xy . o o e e
plotmath L
pmatch

points . . . oL e e
Poisson e

POLY o e

POLyZOn
POlyrooto e e e

POS.to.enVv . . L L L e e e e
postscript L e
POWET . o o o vt it e e e e e e e e e
pPoints
103 1§ o T

ix

CONTENTS

predict
D v 546
el 546
S REEREE 548
D 550
D 550
I 551
DIOLLY o 551
print””””””: 553
D bt 554
o I 555
Pl 556
D oot || 557
ol 558
SRR 559
PIOGHINE 560
e 561
e 562
R R 562
D et 564
e AR 566
e R 567
SRR 567
QUOTIL (oo 568
il 570
CRHIIES 572
RN 573
e 574
QU 575
QI 576
OO |+ 577
RARISION (- o577
dtoble 578
RARCOTL . 579
Mandomuser - 583
e 584
TIBC 585
T 586
B 587
read QUIAEE 588
PAGAbIe . 589
PAGVE 590
POAGSOCREL o 592
Al 593
OB 596
POAINE < 598
POALINGS - 599
AL 600
Mecall 601
eCOIPION 601
PECOVET - 602
............................... 604

reg.finalizer
.......................... 605

CONTENTS xi

ey - 606
relevelo L 609
REMOVE e e e 610
TEINOVE . . v v v v e v e 611
remove.packages L 612
) 0 612
replace . . . oL L e 614
replications oL L 615
reshape 616
residuals L 618
TEV v v v e 619
TED e 620
RHOME e 620
TIVETS . . . v v o o o i e e e e e e e e e e e e e e e e 621
rle . . e 621
Round e 622
round. POSIXt e 623
0 624
0 0 0 U 625
row/colnameso 626
TOWSUIL . v v v v v e 627
Rprof 628
TUEZ « v v o v e e e e e e e e e e e e e 629
sample 630
SAVE v v e 631
savehistory L L 633
scale 634
SCAIL + v v v v e 635
SCTEEIL . v v v v v e e e e e e e e e e e e e e e e e e 637
SA . e 639
SE.AOV . v v e 640
se.contrast L e e e e e e e e 640
search L 641
SeeK . oL e 642
Segments . . . o. ... L 643
T 644
seq.POSIXt o e 646
SEQUENICE .« « v v v v v et e e e e e e e e e e e e e e e e 647
serialize L L 647
SEES e e e e e e e e e 648
SHLIB e 649
showConnections e 650
SIBN . . L 651
Signals L e 652
SignRank 652
SINK .. e 653
sleep . . . 655
slicedndex L L e e 655
slotOp o e 656
socketSelect L 657
SOIVE . . e e 657

xii

CONTENTS
SOULCE . v v v v v i e e e e e e e e e e e e e 661
Special 662
splinefun 663
SPLt . . 665
sprintf L 666
SQUOte . . . L 668
stack . .o L e 669
stackloss L L 670
standardGenerico 671
stars L e e e e e e e e 672
start ..o e 675
Startup e 675
stat.anovao L L Lo e e 678
state . . oL e 679
Stem . . L L e e e e e e e 680
SEED . e 680
10 o 683
stopifnot 684
SET . e 685
stripchart L Lo 687
strptime oL e e e e 688
strsplit o 691
structure Lo 692
strwidth L 693
SETWTAD e 694
subset . ..o e e 695
substitute Lo 696
substr . .. L e e 698
SUITL + v v v e 699
SUININATY .+« v o v v v v v e e e v e e e e e e e e e 700
SUIMIMATY. A0V .+« v v v v e v v v e e e e e e e e e e e e e e 701
summary.glm L 702
summary.lm oL 704
SUMMATY.IMANOVA .+« « o v v v v v o e e e et e e e e e e e e e 706
summaryRprof 707
sunflowerplot L 708
SUNSPOTS « v v v v v et e e e e e e e e 710
SVA . . o 711
SWEED © v v v e e e e e e e e e e e e e e e 712
SWISS © v v v v o e 713
switch oL 714
symbols . . .o L e 715
SYIIUIL .« . v v v v vt e e e e e e e e e e e e e e 717
Syntax . ..o e 719
Sys.getenv 720
Sys.anfo . . . L. 721
Sys.parent e e e 722
Sys.putenvo e e 724
Sys.sleep . . o oL 724
SYS.SOUICE + v v v v v v v e e e e e e e e e e e e e e e e 725
Sys.time 726

CONTENTS xiii

system.file L. 728
system.time L 728
b e 729
table . . . L e 730
tabulate e 732
tapply . .o 733
taskCallback 734
taskCallbackManager L 736
taskCallbackNames e 738
TDISt e 739
tempfile L 740
termplot L e 741
TEIMS e e e e e e e e e 743
terms.formula L L 744
terms.objecto L oL 745
teXt . . e 746
textConnection 747
time e e e e e e e 749
Titanic e e e 750
title . . e e 751
ToothGrowth 753
tOStIing 753
TTACE . . . o o e e 754
tracebacko 757
transform 758
Trees e e e e e e s 759
Trig . o o e 760
1 760
B . e e e e e e e 761
ts-methods 763
TSP o o e 764
Tukey o 765
TukeyHSD e 766
type.convert L. 767
typeof . .o 768
UCBAdmissions e e 769
Uniform e 770
UNIQUE .« v o v ot e e e e e e e e e e e e 771
UNITOOL . . . o o o o e e e e e e e e e e e e e e e e 772
UNIES e e e e e e e e 773
unlinko 774
unlist 775
UNNAIME . . o v v v e e v e 776
updateo L T
update.formulao 778
update.packages L 778
url.show e 780
USATTests o o e e 781
UseMethod 782
USJudgeRatings L 783
USPersonalExpenditure 784

USPOD ¢ v v v e e e e e e e e e e e e e e e e 785

xiv

2 The

CONTENTS

VADeaths 785
VCOV o v o e e e e e e e e e e e e e e e e 786
VECEOT . . . L e e e 787
vignette 788
volcano Lo e 789
WaIDINg Lo e e e e 789
WaIDINGS o 790
warpbreaks L L 791
weekdays L 792
Weibullo 793
weighted.mean L L L 794
weighted.residuals Lo 795
which e 796
which.min 797
Wilcoxon L 798
wWindow e e e 799
with . . 800
WOINEIL &« o v v v e et e e e e e e e e e e e e e e e 802
WIIte . . . e 803
write.table Lo 804
writelines Lo Lo 805
XL1 oo e 806
XAE . . e 807
Xtabs . . . e e 808
XY.CoOTAdS . . . oo e e 809
XYZ.COOTAS o v v v v v e e e e e e e 811
zebind ..o L L 812
zipfile.extract L. 813
grid package 815
absolute.size L. 815
convertNative L 816
current. viewport Lo oL 817
dataViewport 818
BPAT . . e e e e e e e e 819
Grid . . . e 820
grid-internal oL oL 821
grid. artows oL e e 821
grid.circle L 823
grid.collection Lo 824
gridiconvert 825
grid.copy 827
grid.display.list oL Lo 828
grid.ddraw . . . Lo e e 828
grideedito 829
gridframe Lo 830
grid.get 831
gridegrillo 832
grid.grob L 833
griddayouto oL 834
griddineso 835
griddocator 836

gridmove.to L 837

CONTENTS XV

3 The

grid.newpage e e 838
gridipack 838
grid.place oL 840
grid.plot.and.legend L 841
grid.pointso 841
grid.polygon L. e 842
grid.pretty L. 843
gridirect 844
gridisegments L 845
gridiset . . L. 846
grid.show layout Lo 847
grid.show.viewport L L 848
gridatext L 849
grid.xaxis 850
gridiyaxis L. 851
height.details 852
plotViewport 853
POP.VIEWDOTt L e e e 853
push.viewport L 854
Uit .. e e 855
UNIL.C o . e e e 857
unit.lengtho 857
unit.pmin . ..o Lo e 858
unit.rep ..o oL 859
VIEWDOTE o o e e e e 859
width.details 862
methods package 863
BasicFunsList Lo 863
AS o e e e e e e e e 863
BasicClasses e 867
callNextMethod 868
Classes . . .« o o 870
classRepresentation-class e 871
Documentation Lo 872
EmptyMethodsList-class L 874
environment-class oL oL Lo 875
ixPrel.8 876
genericFunction-classo 877
GenericFunctions 878
getClass e 882
getMethod L 883
getPackageName Lo 886
hasArg 887
initialize-methods L 888
IS o o 889
isSealedMethod 892
language-class 893
languageEl oL 894
LinearMethodsList-class L 895
makeClassRepresentation L oL oL 896
MethodDefinition-class 897

Methods e 898

xvi

3.1

4 The

Index

MethodsList
MethodsList-class
MethodSupport
methodUtilities
MethodWithNext-class
NEW © v v v e e e e e e
ObjectsWithPackage-class
oldGet
promptClass
promptMethods
RClassUtils

representation

RMethodUtils

SClassExtension-class
Session L.
setClass,

setClassUnion

showMethods

signature-class
slot
StructureClasses
substituteDirect

TraceClasses

validObject

tools package
buildVignettes

checkFF
checkMDb5sums
checkTnF
checkVignettes
codoc
delimMatch
fileutils
mdbsum
QC
Rdindex
Rtangle

RweaveLatex

Sweave
SweaveSyntConv
texi2dvi Lo L

tools-internal

undoc

setGeneric
setMethod
setOldClass
setOldClass
show

CONTENTS

Chapter 1

The base package

.Machine

Numerical Characteristics of the Machine

Description

.Machine is a variable holding information on the numerical characteristics of the machine
R is running on, such as the largest double or integer and the machine’s precision.

Usage

.Machine

Details

The algorithm is based on Cody’s (1988) subroutine MACHAR.

Value

A list with components (for simplicity, the prefix “double” is omitted in the explanations)

double.

double

double

double

double

eps

.neg.eps

.Xmin

. Xmax

.base

the smallest positive floating-point number x such that 1 + x !'= 1. It
equals base~ulp.digits if either base is 2 or rounding is 0; otherwise,
it is (base”ulp.digits) / 2.

a small positive floating-point number x such that 1 - x !'= 1. It
equals base"neg.ulp.digits if base is 2 or round is 0; otherwise, it
is (base"neg.ulp.digits) / 2. As neg.ulp.digits is bounded below
by -(digits + 3), neg.eps may not be the smallest number that can
alter 1 by subtraction.

the smallest non-vanishing normalized floating-point power of the radix,
i.e., base"min.exp.

the largest finite floating-point number. Typically, it is equal to (1 -
neg.eps) * base"max.exp, but on some machines it is only the second,
or perhaps third, largest number, being too small by 1 or 2 units in the
last digit of the significand.

the radix for the floating-point representation

2 .Machine

double.digits the number of base digits in the floating-point significand
double.rounding
the rounding action.
0 if floating-point addition chops;
1 if floating-point addition rounds, but not in the IEEE style;
2 if floating-point addition rounds in the IEEE style;
3 if floating-point addition chops, and there is partial underflow;
4 if floating-point addition rounds, but not in the IEEE style, and there
is partial underflow;
5 if floating-point addition rounds in the IEEE style, and there is partial
underflow

double.guard the number of guard digits for multiplication with truncating arithmetic.
It is 1 if floating-point arithmetic truncates and more than digits base
base digits participate in the post-normalization shift of the floating-point
significand in multiplication, and 0 otherwise.

double.ulp.digits
the largest negative integer i such that 1 + base”i != 1, except that it
is bounded below by -(digits + 3).

double.neg.ulp.digits
the largest negative integer i such that 1 - base”i != 1, except that it
is bounded below by -(digits + 3).

double.exponent
the number of bits (decimal places if base is 10) reserved for the repre-
sentation of the exponent (including the bias or sign) of a floating-point

number
double.min.exp

the largest in magnitude negative integer i such that base = i is positive

and normalized.
double.max.exp

the smallest positive power of base that overflows.
integer.max the largest integer which can be represented.
sizeof.long the number of bytes in a C long type.
sizeof.longlong
the number of bytes in a C long long type. Will be zero if there is no

such type.

sizeof.longdouble
the number of bytes in a C long double type. Will be zero if there is no
such type.

sizeof.pointer

the number of bytes in a C SEXP type.

References

Cody, W. J. (1988) MACHAR: A subroutine to dynamically determine machine parameters.
Transactions on Mathematical Software, 14, 4, 303-311.

See Also

.Platform for details of the platform.

Examples

str(.Machine)

.Platform 3

.Platform Platform Specific Variables

Description

.Platform is a list with some details of the platform under which R was built. This provides
means to write OS portable R code.

Usage

.Platform

Value

A list with at least the following components:

0S.type character, giving the Operating System (family) of the computer. One of
"unix" or "windows".

file.sep character, giving the file separator, used on your platform, e.g., "/" on
Unix alikes.

dynlib.ext character, giving the file name extension of dynamically loadable
libraries, e.g., ".d11" on Windows.

GUI character, giving the type of GUI in use, or "unknown" if no GUI can be
assumed.
endian character, "big" or "little", giving the endianness of the processor in
use.
See Also

R.version and Sys.info give more details about the OS. In particular,
R.version$platform is the canonical name of the platform under which R was compiled.

.Machine for details of the arithmetic used, and system for invoking platform-specific sys-
tem commands.

Examples

Note: this can be done in a system-independent way by file.info()$isdir

if (.Platform$0S.type == "unix") {
system.test <- function(...) { system(paste("test", ...)) == 0 }
dir.exists <- function(dir) sapply(dir, function(d)system.test("-d", d))
dir.exists(c(R.home(), "/tmp", "~", "/NO")# >TTTF

}

4 abbreviate

.Script Scripting Language Interface

Description

Run a script through its interpreter with given arguments.

Usage
.Script(interpreter, script, args, ...)
Arguments
interpreter a character string naming the interpreter for the script.
script a character string with the base file name of the script, which must be
located in the ‘interpreter’ subdirectory of ‘R_HOME/share’.
args a character string giving the arguments to pass to the script.
further arguments to be passed to system when invoking the interpreter
on the script.
Note

This function is for R internal use only.

Examples

.Script("perl", "massage-Examples.pl",
paste("tools", system.file("R-ex", package = "tools")))

abbreviate Abbreviate Strings

Description

Abbreviate strings to at least minlength characters, such that they remain unique (if they

were).
Usage
abbreviate(names.arg, minlength = 4, use.classes = TRUE,
dot = FALSE)
Arguments
names.arg a vector of names to be abbreviated.
minlength the minimum length of the abbreviations.
use.classes logical (currently ignored by R).

dot logical; should a dot (".") be appended?

abline 5

Details

The algorithm used is similar to that of S. First spaces at the beginning of the word are
stripped. Then any other spaces are stripped. Next lower case vowels are removed followed
by lower case consonants. Finally if the abbreviation is still longer than minlength upper
case letters are stripped.

Letters are always stripped from the end of the word first. If an element of names.arg
contains more than one word (words are separated by space) then at least one letter from
each word will be retained. If a single string is passed it is abbreviated in the same manner
as a vector of strings.

Missing (NA) values are not abbreviated.

If use.classes is FALSE then the only distinction is to be between letters and space. This
has NOT been implemented.

Value

A character vector containing abbreviations for the strings in its first argument. Duplicates
in the original names.arg will be given identical abbreviations. If any non-duplicated
elements have the same minlength abbreviations then minlength is incremented by one
and new abbreviations are found for those elements only. This process is repeated until all
unique elements of names.arg have unique abbreviations.

The character version of names.arg is attached to the returned value as a names argument.

See Also

substr.

Examples

x <- c("abcd", "efgh", "abce")
abbreviate(x, 2)

data(state)
(st.abb <- abbreviate(state.name, 2))
table(nchar(st.abb))# out of 50, 3 need 4 letters

abline Add a Straight Line to a Plot

Description

This function adds one or more straight lines through the current plot.

Usage

abline(a, b, untf = FALSE, ...)
abline(h=, untf = FALSE, ...)
abline(v=, untf = FALSE, ...)
abline(coef=, untf = FALSE, ...)
abline(reg=, untf = FALSE, ...)

6 abline

Arguments
a,b the intercept and slope.
untf logical asking to untransform. See Details.
h the y-value for a horizontal line.
v the x-value for a vertical line.
coef a vector of length two giving the intercept and slope.
reg an object with a coef component. See Details.
graphical parameters.
Details

The first form specifies the line in intercept/slope form (alternatively a can be specified on
its own and is taken to contain the slope and intercept in vector form).

The h= and v= forms draw horizontal and vertical lines at the specified coordinates.
The coef form specifies the line by a vector containing the slope and intercept.

reg is a regression object which contains reg$coef. If it is of length 1 then the value is
taken to be the slope of a line through the origin, otherwise, the first 2 values are taken to
be the intercept and slope.

If untf is true, and one or both axes are log-transformed, then a curve is drawn correspond-
ing to a line in original coordinates, otherwise a line is drawn in the transformed coordinate
system. The h and v parameters always refer to original coordinates.

The graphical parameters col and 1ty can be specified as arguments to abline; see par
for details.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

lines and segments for connected and arbitrary lines given by their endpoints. par.

Examples

data(cars)
z <- Im(dist ~ speed, data = cars)
plot(cars)
abline(z)

abs 7

abs Miscellaneous Mathematical Functions

Description
These functions compute miscellaneous mathematical functions. The naming follows the
standard for computer languages such as C or Fortran.
Usage
abs (x)
sqrt(x)
Arguments

X a numeric vector

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

Arithmetic for simple, log for logarithmic, sin for trigonometric, and Special for special
mathematical functions.

Examples

xx <- -9:9
plot(xx, sqrt(abs(xx)), col = "red")
lines(spline(xx, sqrt(abs(xx)), n=101), col = "pink")

add1 Add or Drop All Possible Single Terms to a Model

Description
Compute all the single terms in the scope argument that can be added to or dropped from
the model, fit those models and compute a table of the changes in fit.
Usage
add1(object, scope, ...)
Default S3 method:

addl(object, scope, scale = 0, test
k = 2, trace = FALSE, ...)

c("none", "Chisq"),

S3 method for class 'Ilm':
add1l(object, scope, scale = 0, test = c("none", "Chisq", "F"),

8 addl

x = NULL, k = 2, ...)

S3 method for class 'glm':
addl(object, scope, scale = 0, test = c("none", "Chisq", "F"),
x = NULL, k =2, ...)

dropl(object, scope, ...)
Default S3 method:

dropl(object, scope, scale = 0, test = c("none", "Chisq"),
k = 2, trace = FALSE, ...)

S3 method for class 'Ilm':
dropl(object, scope, scale 0, all.cols = TRUE,
test=c("none", "Chisq", "F"),k =2, ...)

S3 method for class 'glm':
dropl(object, scope, scale = 0, test = c("none", "Chisq", "F"),

k=2, ...)
Arguments
object a fitted model object.
scope a formula giving the terms to be considered for adding or dropping.
scale an estimate of the residual mean square to be used in computing C,.

Ignored if 0 or NULL.

test should the results include a test statistic relative to the original model?
The F test is only appropriate for 1m and aov models or perhaps for glm
fits with estimated dispersion. The x? test can be an exact test (1m models
with known scale) or a likelihood-ratio test or a test of the reduction in
scaled deviance depending on the method.

k the penalty constant in AIC / C,,.
trace if TRUE, print out progress reports.
X a model matrix containing columns for the fitted model and all terms in

the upper scope. Useful if add1 is to be called repeatedly.

all.cols (Provided for compatibility with S.) Logical to specify whether all columns
of the design matrix should be used. If FALSE then non-estimable columns
are dropped, but the result is not usually statistically meaningful.

further arguments passed to or from other methods.

Detalils

For dropl methods, a missing scope is taken to be all terms in the model. The hierarchy
is respected when considering terms to be added or dropped: all main effects contained in
a second-order interaction must remain, and so on.

The methods for 1m and glm are more efficient in that they do not recompute the model
matrix and call the fit methods directly.

The default output table gives AIC, defined as minus twice log likelihood plus 2p where p
is the rank of the model (the number of effective parameters). This is only defined up to
an additive constant (like log-likelihoods). For linear Gaussian models with fixed scale, the

aggregate 9

constant is chosen to give Mallows’ C,,, RSS/scale 4+ 2p —n. Where C), is used, the column
is labelled as Cp rather than AIC.
Value

An object of class "anova" summarizing the differences in fit between the models.

Warning

The model fitting must apply the models to the same dataset. Most methods will at-
tempt to use a subset of the data with no missing values for any of the variables if
na.action=na.omit, but this may give biased results. Only use these functions with data
containing missing values with great care.

Note

These are not fully equivalent to the functions in S. There is no keep argument, and the
methods used are not quite so computationally efficient.

Their authors’ definitions of Mallows’ C, and Akaike’s AIC are used, not those of the
authors of the models chapter of S.
Author(s)

The design was inspired by the S functions of the same names described in Chambers (1992).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

step, aov, 1m, extractAIC, anova

Examples

example(step)#-> swiss
add1(1m1, ~ I(Education~2) + ."2)
drop1(lml, test="F") # So called 'type II' anova

example (glm)
drop1(glm.D93, test="Chisq")
dropl(glm.D93, test="F")

aggregate Compute Summary Statistics of Data Subsets

Description

Splits the data into subsets, computes summary statistics for each, and returns the result
in a convenient form.

10 aggregate

Usage

aggregate(x, ...)

Default S3 method:
aggregate(x, ...)

S3 method for class 'data.frame':
aggregate(x, by, FUN, ...)

S3 method for class 'ts':
aggregate(x, nfrequency = 1, FUN = sum, ndeltat = 1,
ts.eps = getOption("ts.eps"), ...)

Arguments
X an R object.
by a list of grouping elements, each as long as the variables in x. Names for
the grouping variables are provided if they are not given. The elements
of the list will be coerced to factors (if they are not already factors).
FUN a scalar function to compute the summary statistics which can be applied
to all data subsets.
nfrequency new number of observations per unit of time; must be a divisor of the
frequency of x.
ndeltat new fraction of the sampling period between successive observations; must
be a divisor of the sampling interval of x.
ts.eps tolerance used to decide if nfrequency is a sub-multiple of the original
frequency.
further arguments passed to or used by methods.
Details

aggregate is a generic function with methods for data frames and time series.

The default method aggregate.default uses the time series method if x is a time series,
and otherwise coerces x to a data frame and calls the data frame method.

aggregate.data.frame is the data frame method. If x is not a data frame, it is coerced
to one. Then, each of the variables (columns) in x is split into subsets of cases (rows) of
identical combinations of the components of by, and FUN is applied to each such subset with
further arguments in ... passed to it. (L.e., tapply(VAR, by, FUN, ..., simplify =
FALSE) is done for each variable VAR in x, conveniently wrapped into one call to lapply().)
Empty subsets are removed, and the result is reformatted into a data frame containing the
variables in by and x. The ones arising from by contain the unique combinations of grouping
values used for determining the subsets, and the ones arising from x the corresponding
summary statistics for the subset of the respective variables in x.

aggregate.ts is the time series method. If x is not a time series, it is coerced to one. Then,
the variables in x are split into appropriate blocks of length frequency(x) / nfrequency,
and FUN is applied to each such block, with further (named) arguments in ... passed to
it. The result returned is a time series with frequency nfrequency holding the aggregated
values.

agrep 11

Author(s)
Kurt Hornik

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

apply, lapply, tapply.

Examples

data(state)

Compute the averages for the variables in 'state.x77', grouped

according to the region (Northeast, South, North Central, West) that
each state belongs to.

aggregate(state.x77, list(Region = state.region), mean)

Compute the averages according to region and the occurrence of more
than 130 days of frost.
aggregate(state.x77,
list(Region = state.region,
Cold = state.x77[,"Frost"] > 130),
mean)
(Note that no state in 'South' is THAT cold.)

data(presidents)

Compute the average annual approval ratings for American presidents.
aggregate(presidents, nf = 1, FUN = mean)

Give the summer less weight.

aggregate(presidents, nf = 1, FUN = weighted.mean, w = c(1, 1, 0.5, 1))

agrep Approzimate String Matching (Fuzzy Matching)

Description
Searches for approximate matches to pattern (the first argument) within the string x (the
second argument) using the Levenshtein edit distance.

Usage

agrep(pattern, x, ignore.case = FALSE, value = FALSE, max.distance = 0.1)

Arguments
pattern a non-empty character string to be matched (not a regular expression!)
X character vector where matches are sought.
ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored

during matching.

12

value

max.distance

Detalils

agrep

if FALSE, a vector containing the (integer) indices of the matches deter-
mined is returned and if TRUE, a vector containing the matching elements
themselves is returned.

Maximum distance allowed for a match. Expressed either as integer,
or as a fraction of the pattern length (will be replaced by the smallest
integer not less than the corresponding fraction), or a list with possible
components

all: maximal (overall) distance

insertions: maximum number/fraction of insertions

deletions: maximum number/fraction of deletions

substitutions: maximum number/fraction of substitutions

If all is missing, it is set to 10%, the other components default to all.
The component names can be abbreviated.

The Levensthein edit distance is used as measure of approximateness: it is the the total
number of insertions, deletions and substitutions required to transform one string into

another.

The function is a simple interface to the apse library developed by Jarkko Hietaniemi (also
used in the Perl String:: Approx module).

Value

Either a vector giving the indices of the elements that yielded a match, of, if value is TRUE,
the matched elements.

Author(s)

David Meyer (David.Meyer@ci.tuwien.ac.at) (based on C code by Jarkko Hietaniemi); mod-
ifications by Kurt Hornik

See Also

grep

Examples

agrep("lasy", "1 lazy 2")
agrep("lasy", "1 lazy 2", max = list(sub = 0))
agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2)

agrep("laysy", c("1 lazy", "1", "1 LAZY"), max

2, value = TRUE)

agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, ignore.case = TRUE)

AIC 13

AIC Akaike’s An Information Criterion

Description

Generic function calculating the Akaike information criterion for one or several fitted
model objects for which a log-likelihood value can be obtained, according to the formula
—2log-likelihood + knpq,, where np,, represents the number of parameters in the fitted
model, and k = 2 for the usual AIC, or k = log(n) (n the number of observations) for the
so-called BIC or SBC (Schwarz’s Bayesian criterion).

Usage
AIC(object, ..., k = 2)
Arguments
object a fitted model object, for which there exists a logLik method to ex-
tract the corresponding log-likelihood, or an object inheriting from class
logLik.
optionally more fitted model objects.
k numeric, the “penalty” per parameter to be used; the default k = 2 is the
classical AIC.
Details

The default method for AIC, AIC.default () entirely relies on the existence of a logLik
method computing the log-likelihood for the given class.

When comparing fitted objects, the smaller the AIC, the better the fit.

Value

If just one object is provided, returns a numeric value with the corresponding AIC (or BIC,
or ..., depending on k); if more than one object are provided, returns a data.frame with
rows corresponding to the objects and columns representing the number of parameters in
the model (df) and the AIC.

Author(s)

Jose Pinheiro and Douglas Bates

References
Sakamoto, Y., Ishiguro, M., and Kitagawa G. (1986). Akaike Information Criterion Statis-
tics. D. Reidel Publishing Company.

See Also

extractAIC, logLik.

14 airquality

Examples
data(swiss)
Iml <- Im(Fertility ~ . , data = swiss)
AIC(1m1)
stopifnot(all.equal (AIC(1m1),

AIC(logLik(1m1))))
a version of BIC or Schwarz' BC :
AIC(1ml, k = log(nrow(swiss)))

airmiles Passenger Miles on Commercial US Airlines, 1937-1960

Description
The revenue passenger miles flown by commercial airlines in the United States for each year
from 1937 to 1960.

Usage

data(airmiles)

Format

A time-series of 24 observations; yearly, 1937-1960.

Source

F.A.A. Statistical Handbook of Aviation.

References

Brown, R. G. (1963) Smoothing, Forecasting and Prediction of Discrete Time Series.
Prentice-Hall.

Examples
data(airmiles)
plot(airmiles, main = "airmiles data",
xlab = "Passenger-miles flown by U.S. commercial airlines", col = 4)
airquality New York Air Quality Measurements
Description

Daily air quality measurements in New York, May to September 1973.

Usage

data(airquality)

Format

A data frame with 154 observations on 6 variables.

alias 15

[,11 0Ozone numeric Ozone (ppb)

[,2] Solar.R numeric Solar R (lang)

[,3] Wind numeric Wind (mph)

[,4] Temp numeric Temperature (degrees F)
[,5] Month numeric Month (1-12)

[,6] Day numeric Day of month (1-31)

Detalils

Daily readings of the following air quality values for May 1, 1973 (a Tuesday) to September
30, 1973.

e Ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island

e Solar.R: Solar radiation in Langleys in the frequency band 4000-7700 Angstroms from
0800 to 1200 hours at Central Park

e Wind: Average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia
Airport

e Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport.

Source

The data were obtained from the New York State Department of Conservation (ozone data)
and the National Weather Service (meteorological data).

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods
for Data Analysis. Belmont, CA: Wadsworth.

Examples
data(airquality)
pairs(airquality, panel = panel.smooth, main = "airquality data")
alias Find Aliases (Dependencies) in a Model
Description

Find aliases (linearly dependent terms) in a linear model specified by a formula.

Usage
alias(object, ...)

S3 method for class 'formula':
alias(object, data, ...)

S3 method for class 'Ilm':
alias(object, complete = TRUE, partial = FALSE,
partial.pattern = FALSE, ...)

16 alias

Arguments
object A fitted model object, for example from 1lm or aov, or a formula for
alias.formula.
data Optionally, a data frame to search for the objects in the formula.
complete Should information on complete aliasing be included?
partial Should information on partial aliasing be included?

partial.pattern

Should partial aliasing be presented in a schematic way? If this is done,
the results are presented in a more compact way, usually giving the deciles
of the coefficients.

further arguments passed to or from other methods.

Details

Although the main method is for class "1m", alias is most useful for experimental designs
and so is used with fits from aov. Complete aliasing refers to effects in linear models that
cannot be estimated independently of the terms which occur earlier in the model and so
have their coefficients omitted from the fit. Partial aliasing refers to effects that can be
estimated less precisely because of correlations induced by the design.

Value

A list (of class "listof") containing components

Model Description of the model; usually the formula.

Complete A matrix with columns corresponding to effects that are linearly depen-
dent on the rows; may be of class "mtable" which has its own print
method.

Partial The correlations of the estimable effects, with a zero diagonal.

Note

The aliasing pattern may depend on the contrasts in use: Helmert contrasts are probably
most useful.

The defaults are different from those in S.

Author(s)
The design was inspired by the S function of the same name described in Chambers et al.
(1992).

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed
experiments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie,
Wadsworth & Brooks/Cole.

all 17

Examples

had.VR <- "package:MASS" %in} search()
The next line is for fractions() which gives neater results
if ('had.VR) res <- require(MASS)

From Venables and Ripley (2002) p.165.

N <- ¢(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- ¢(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- ¢(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,568.5,556.5,56.0,62.8,55.8,69.5,55.0
62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

op <- options(contrasts=c("contr.helmert", "contr.poly"))
npk.aov <- aov(yield ~ block + N*P*K, npk)

alias(npk.aov)

if('had.VR && res) detach(package:MASS)

options(op)# reset

all Are All Values True?

Description

Given a set of logical vectors, are all of the values true?

Usage

all(..., na.rm = FALSE)

Arguments
one or more logical vectors.
na.rm logical. If true NA values are removed before the result is computed.
Value

Given a sequence of logical arguments, a logical value indicating whether or not all of the
elements of x are TRUE.

The value returned is TRUE if all the values in x are TRUE, and FALSE if any the values in x
are FALSE.

If x consists of a mix of TRUE and NA values, then value is NA.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

any, the “complement” of all, and stopifnot (*) which is an all(*) “insurance”.

18 all.equal

Examples

range(x <- sort(round(rnorm(10) - 1.2,1)))
if(all(x < 0)) cat("all x values are negative\n")

all.equal Test if Two Objects are (Nearly) Equal

Description

all.equal(x,y) is a utility to compare R objects x and y testing “near equality”. If they are
different, comparison is still made to some extent, and a report of the differences is returned.
Don’t use all.equal directly in if expressions—either use identical or combine the two,
as shown in the documentation for identical.

Usage
all.equal(target, current, ...)
S3 method for class 'numeric':

all.equal(target, current,
tolerance= .Machine$double.eps ~ 0.5, scale=NULL, ...)

Arguments
target R object.
current other R object, to be compared with target.
Further arguments for different methods, notably the following two, for
numerical comparison:
tolerance numeric > 0. Differences smaller than tolerance are not considered.
scale numeric scalar > 0 (or NULL). See Details.
Details

There are several methods available, most of which are dispatched by the default method, see
methods("all.equal"). all.equal.list and all.equal.language provide comparison
of recursive objects.

Numerical comparisons for scale = NULL (the default) are done by first computing the
mean absolute difference of the two numerical vectors. If this is smaller than tolerance or
not finite, absolute differences are used, otherwise relative differences scaled by the mean
absolute difference.

If scale is positive, absolute comparisons are after scaling (dividing) by scale.
For complex arguments, Mod of difference is used.

attr.all.equal is used for comparing attributes, returning NULL or character.

Value

Either TRUE or a vector of mode "character" describing the differences between target
and current.

Numerical differences are reported by relative error

all.names 19

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer
(for =).

See Also

==, and all for exact equality testing.

Examples

all.equal(pi, 355/113) # not precise enough (default tol) > relative error

d45 <- pi*x(1/4 + 1:10)

stopifnot(
all.equal(tan(d45), rep(1,10))) # TRUE, but
all (tan(d45) == rep(1,10)) # FALSE, since not exactly

all.equal(tan(d45), rep(1,10), tol=0) # to see difference

all.equal(options(), .Options)
all.equal(options(), as.list(.Options))# TRUE
.Options $ myopt <- TRUE

all.equal(options(), as.list(.Options))
rm(.Options)

all.names Find All Names in an Expression

Description

Return a character vector containing all the names which occur in an expression or call.

Usage
all.names(expr, functions = TRUE, max.names = 200, unique = FALSE)
all.vars(expr, functions = FALSE, max.names = 200, unique = TRUE)
Arguments
expr an expression or call from which the names are to be extracted.
functions a logical value indicating whether function names should be included in
the result.
max.names the maximum number of names to be returned.
unique a logical value which indicates whether duplicate names should be re-
moved from the value.
Details

These functions differ only in the default values for their arguments.

Value

A character vector with the extracted names.

20 anova

Examples

all.names (expression(sin(x+y)))
all.vars(expression(sin(x+y)))

anova Anova Tables

Description

Compute analysis of variance (or deviance) tables for one or more fitted model objects.

Usage
anova(object, ...)
Arguments
object an object containing the results returned by a model fitting function (e.g.,
1m or glm).
additional objects of the same type.
Value

This (generic) function returns an object of class anova. These objects represent analysis-
of-variance and analysis-of-deviance tables. When given a single argument it produces a
table which tests whether the model terms are significant.

When given a sequence of objects, anova tests the models against one another in the order
specified.

The print method for anova objects prints tables in a “pretty” form.

Warning

The comparison between two or more models will only be valid if they are fitted to the same
dataset. This may be a problem if there are missing values and R’s default of na.action
= na.omit is used.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S, Wadsworth &
Brooks/Cole.

See Also

coefficients, effects, fitted.values, residuals, summary, dropl, addl.

anova.glm 21

anova.glm Analysis of Deviance for Generalized Linear Model Fits

Description

Compute an analysis of deviance table for one or more generalized linear model fits.

Usage
S3 method for class 'glm':
anova(object, ..., dispersion = NULL, test = NULL)
Arguments
object, ... objects of class glm, typically the result of a call to glm, or a list of

objects for the "glmlist" method.

dispersion the dispersion parameter for the fitting family. By default it is obtained
from glm.obj.

test a character string, (partially) matching one of "Chisq", "F" or "Cp". See
stat.anova.

Details

Specifying a single object gives a sequential analysis of deviance table for that fit. That
is, the reductions in the residual deviance as each term of the formula is added in turn are
given in as the rows of a table, plus the residual deviances themselves.

If more than one object is specified, the table has a row for the residual degrees of freedom
and deviance for each model. For all but the first model, the change in degrees of freedom
and deviance is also given. (This only make statistical sense if the models are nested.) Tt
is conventional to list the models from smallest to largest, but this is up to the user.

The table will optionally contain test statistics (and P values) comparing the reduction in
deviance for the row to the residuals. For models with known dispersion (e.g., binomial
and Poisson fits) the chi-squared test is most appropriate, and for those with dispersion
estimated by moments (e.g., gaussian, quasibinomial and quasipoisson fits) the F test
is most appropriate. Mallows’ C), statistic is the residual deviance plus twice the estimate
of 02 times the residual degrees of freedom, which is closely related to AIC (and a multiple
of it if the dispersion is known).

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models by anova or anova.glmlist will only be valid
if they are fitted to the same dataset. This may be a problem if there are missing values
and R’s default of na.action = na.omit is used, and anova.glmlist will detect this with
an error.

22 anova.lm

References

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical
Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

glm, anova.

dropl for so-called ‘type II’ anova where each term is dropped one at a time respecting
their hierarchy.

Examples
--- Continuing the Example from '7glm':
anova(glm.D93)

anova(glm.D93, test = "Cp")
anova(glm.D93, test = "Chisq")

anova.lm ANOVA for Linear Model Fits

Description

Compute an analysis of variance table for one or more linear model fits.

Usage
S3 method for class 'lm':
anova(object, ...)
anova.lmlist(object, ..., scale = 0, test = "F")
Arguments
object, ... objects of class 1m, usually, a result of a call to 1m.
test a character string specifying the test statistic to be used. Can be one of

"F" "Chisq" or "Cp", with partial matching allowed, or NULL for no test.

2

scale numeric. An estimate of the noise variance o<. If zero this will be esti-

mated from the largest model considered.

Details

Specifying a single object gives a sequential analysis of variance table for that fit. That is,
the reductions in the residual sum of squares as each term of the formula is added in turn
are given in as the rows of a table, plus the residual sum of squares.

The table will contain F statistics (and P values) comparing the mean square for the row
to the residual mean square.

If more than one object is specified, the table has a row for the residual degrees of freedom
and sum of squares for each model. For all but the first model, the change in degrees of
freedom and sum of squares is also given. (This only make statistical sense if the models

anova.lm 23

are nested.) It is conventional to list the models from smallest to largest, but this is up to
the user.

Optionally the table can include test statistics. Normally the F statistic is most appropriate,
which compares the mean square for a row to the residual sum of squares for the largest
model considered. If scale is specified chi-squared tests can be used. Mallows’ C, statistic
is the residual sum of squares plus twice the estimate of o2 times the residual degrees of
freedom.

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models will only be valid if they are fitted to the same
dataset. This may be a problem if there are missing values and R’s default of na.action
= na.omit is used, and anova.lmlist will detect this with an error.

Note

Versions of R prior to 1.2.0 based F tests on pairwise comparisons, and this behaviour can
still be obtained by a direct call to anovalist.1lm.

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

The model fitting function 1m, anova.

drop1 for so-called ‘type II’” anova where each term is dropped one at a time respecting
their hierarchy.

Examples

sequential table

data(LifeCycleSavings)

fit <- Im(sr ~ ., data = LifeCycleSavings)
anova(fit)

same effect via separate models
fit0 <- lm(sr ~ 1, data = LifeCycleSavings)

fitl <- update(fit0, . ~ . + popilb)
fit2 <- update(fitl, . ~ . + pop75)
fit3 <- update(fit2, . = . + dpi)
fit4 <- update(fit3, . ~ . + ddpi)

anova(fitO, fitl, fit2, fit3, fit4, test="F")

anova(fit4, fit2, fitO, test="F") # unconventional order

24 anscombe

anscombe Anscombe’s Quartet of “Identical” Simple Linear Regressions

Description

Four z-y datasets which have the same traditional statistical properties (mean, variance,
correlation, regression line, etc.), yet are quite different.

Usage

data(anscombe)

Format

A data frame with 11 observations on 8 variables.

x1 == x2 == x3 the integers 4:14, specially arranged
x4 values 8 and 19
yl, ¥y2, y3, y4 numbers in (3, 12.5) with mean 7.5 and sdev 2.03

Source

Tufte, Edward R. (1989) The Visual Display of Quantitative Information, 13-14. Graphics
Press.

References

Anscombe, Francis J. (1973) Graphs in statistical analysis. American Statistician, 27,
17-21.

Examples

data(anscombe)
summary (anscombe)

##-- now some "magic" to do the 4 regressions in a loop:

ff <-y " x

for(i in 1:4) {
f£[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)
or ff[[2]] <- as.name(paste("y", i, sep=""))
#i ff[[3]] <- as.name(paste("x", i, sep=""))
assign(paste("lm.",i,sep=""), lmi <- 1lm(ff, data= anscombe))
print(anova(lmi))

}

See how close they are (numerically!)
sapply(objects(pat="1m\.[1-4]1$"), function(n) coef (get(n)))
lapply(objects(pat="1m\. [1-4]1$"), function(n) summary(get(n))$coef)

Now, do what you should have done in the first place: PLOTS
op <- par(mfrow=c(2,2), mar=.1+c(4,4,1,1), oma= c(0,0,2,0))
for(i in 1:4) {
f£[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)
plot(ff, data =anscombe, col="red", pch=21, bg = "orange", cex = 1.2,

any 25

x1lim=c(3,19), ylim=c(3,13))
abline(get(paste("lm.",i,sep="")), col="blue")
}

mtext ("Anscombe's 4 Regression data sets", outer = TRUE, cex=1.5)
par (op)

any Are Some Values True?

Description

Given a set of logical vectors, are any of the values true?

Usage

any(..., na.rm = FALSE)

Arguments
one or more logical vectors.
na.rm logical. If true NA values are removed before the result is computed.
Value

Given a sequence of logical arguments, a logical value indicating whether or not any of the
elements of x are TRUE.

The value returned is TRUE if any the values in x are TRUE, and FALSE if all the values in x
are FALSE.

If x consists of a mix of FALSE and NA values, the value is NA.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

all, the “complement” of any.

Examples

range(x <- sort(round(rnorm(10) - 1.2,1)))
if(any(x < 0)) cat("x contains negative values\n")

26 aov

aov Fit an Analysis of Variance Model

Description

Fit an analysis of variance model by a call to 1m for each stratum.

Usage
aov(formula, data = NULL, projections = FALSE, qr = TRUE,
contrasts = NULL, ...)
Arguments
formula A formula specifying the model.
data A data frame in which the variables specified in the formula will be found.

If missing, the variables are searched for in the standard way.

projections Logical flag: should the projections be returned?
qr Logical flag: should the QR decomposition be returned?
contrasts A list of contrasts to be used for some of the factors in the formula. These

are not used for any Error term, and supplying contrasts for factors only
in the Error term will give a warning.

Arguments to be passed to 1m, such as subset or na.action.

Details

This provides a wrapper to 1m for fitting linear models to balanced or unbalanced experi-
mental designs.

The main difference from 1m is in the way print, summary and so on handle the fit: this
is expressed in the traditional language of the analysis of variance rather than of linear
models.

If the formula contains a single Error term, this is used to specify error strata, and appro-
priate models are fitted within each error stratum.

The formula can specify multiple responses.

Weights can be specified by a weights argument, but should not be used with an Error
term, and are incompletely supported (e.g., not by model.tables).

Value

An object of class c("aov", "1m") or for multiple responses of class c("maov", "aov",
"mlm", "1m") or for multiple error strata of class "aovlist". There are print and summary
methods available for these.

Author(s)

The design was inspired by the S function of the same name described in Chambers et al.
(1992).

aperm 27

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed
experiments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie,

Wadsworth & Brooks/Cole.

See Also

1m, summary.aov, alias, proj, model.tables, TukeyHSD

Examples
From Venables and Ripley (2002) p.165.
N <- ¢(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- ¢(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
K <- ¢(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,55.0,
62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),
K=factor(X), yield=yield)

(npk.aov <- aov(yield ~ block + N*P*K, npk))
summary (npk.aov)
coefficients(npk.aov)

as a test, not particularly sensible statistically

op <- options(contrasts=c("contr.helmert", "contr.treatment"))
npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

npk.aovE

summary (npk.aovE)

options(op)# reset to previous

aperm Array Transposition

Description

Transpose an array by permuting its dimensions and optionally resizing it.

Usage

aperm(a, perm, resize = TRUE)

Arguments
a the array to be transposed.
perm the subscript permutation vector, which must be a permutation of the
integers 1:n, where n is the number of dimensions of a. The default is to
reverse the order of the dimensions.
resize a flag indicating whether the vector should be resized as well as having

its elements reordered (default TRUE).

28 append

Value

A transposed version of array a, with subscripts permuted as indicated by the array perm. If
resize is TRUE, the array is reshaped as well as having its elements permuted, the dimnames
are also permuted; if FALSE then the returned object has the same dimensions as a, and
the dimnames are dropped.

The function t provides a faster and more convenient way of transposing matrices.

Author(s)

Jonathan Rougier, (J.C.Rougier@durham.ac.uk) did the faster C implementation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

t, to transpose matrices.

Examples

interchange the first two subscripts on a 3-way array x
x <- array(1:24, 2:4)
xt <- aperm(x, c(2,1,3))
stopifnot (t(xt[,,2]) == x[,,2],
t(xtl[,,3]) == x[,,3],
t(xtl,,4]) == x[,,4])

append Vector Merging

Description

Add elements to a vector.

Usage

append(x, values, after=length(x))

Arguments

X the vector to be modified.

values to be included in the modified vector.

after a subscript, after which the values are to be appended.
Value

A vector containing the values in x with the elements of values appended after the specified
element of x.

apply 29

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

append(1:5, 0:1, after=3)

apply Apply Functions Over Array Margins

Description
Returns a vector or array or list of values obtained by applying a function to margins of an
array.

Usage
apply (X, MARGIN, FUN, ...)

Arguments
X the array to be used.
MARGIN a vector giving the subscripts which the function will be applied over. 1
indicates rows, 2 indicates columns, c(1,2) indicates rows and columns.
FUN the function to be applied. In the case of functions like +, %*%, etc., the
function name must be quoted.
optional arguments to FUN.
Detalils

If X is not an array but has a dimension attribute, apply attempts to coerce it to an array
via as.matrix if it is two-dimensional (e.g., data frames) or via as.array.

Value

If each call to FUN returns a vector of length n, then apply returns an array of dimension
c(n, dim(X) [MARGIN]) if n > 1. If n equals 1, apply returns a vector if MARGIN has length
1 and an array of dimension dim(X) [MARGIN] otherwise. If n is O, the result has length 0
but not necessarily the “correct” dimension.

If the calls to FUN return vectors of different lengths, apply returns a list of length
dim(X) [MARGIN].

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

lapply, tapply, and convenience functions sweep and aggregate.

30 approxfun

Examples

Compute row and column sums for a matrix:

x <- cbind(x1l = 3, x2 = c(4:1, 2:5))

dimnames (x) [[1]] <- letters[1:8]

apply(x, 2, mean, trim = .2)

col.sums <- apply(x, 2, sum)

row.sums <- apply(x, 1, sum)

rbind(cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot(apply(x,2, is.vector)) # not ok in R <= 0.63.2

Sort the columns of a matrix
apply(x, 2, sort)

##- function with extra args:
cave <- function(x, c1,c2) c(mean(x[c1]),mean(x[c2]))
apply(x,1, cave, c1="x1", c2=c("x1","x2"))

ma <- matrix(c(1:4, 1, 6:8), nr = 2)

ma

apply(ma, 1, table) #--> a list of length 2
apply(ma, 1, quantile)# 5 x n matrix with rownames

stopifnot(dim(ma) == dim(apply(ma, 1:2, sum)))## wasn't ok before R 0.63.1

approxfun Interpolation Functions

Description
Return a list of points which linearly interpolate given data points, or a function performing
the linear (or constant) interpolation.

Usage
approx (x, y = NULL, xout, method="linear", n=50,

yleft, yright, rule = 1, f=0, ties = mean)

approxfun(x, y = NULL, method="1linear",
yleft, yright, rule = 1, f=0, ties = mean)

Arguments
X,y vectors giving the coordinates of the points to be interpolated. Alterna-
tively a single plotting structure can be specified: see xy.coords.
xout an optional set of values specifying where interpolation is to take place.
method specifies the interpolation method to be used. Choices are "linear" or
"constant".
n If xout is not specified, interpolation takes place at n equally spaced

points spanning the interval min(x), max (x)].

approxfun

yleft

yright

rule

ties

Details

31

the value to be returned when input x values less than min(x). The
default is defined by the value of rule given below.

the value to be returned when input x values greater than max(x). The
default is defined by the value of rule given below.

an integer describing how interpolation is to take place outside the interval
[min(x), max(x)]. If rule is 1 then NAs are returned for such points and
if it is 2, the value at the closest data extreme is used.

For method="constant" a number between 0 and 1 inclusive, indicating
a compromise between left- and right-continuous step functions. If yO
and y1 are the values to the left and right of the point then the value is
yO* (1-f)+y1*f so that £=0 is right-continuous and £=1 is left-continuous.

Handling of tied x values. Either a function with a single vector argument
returning a single number result or the string "ordered".

The inputs can contain missing values which are deleted, so at least two complete (x, y)
pairs are required. If there are duplicated (tied) x values and ties is a function it is applied
to the y values for each distinct x value. Useful functions in this context include mean, min,
and max. If ties="ordered" the x values are assumed to be already ordered. The first y
value will be used for interpolation to the left and the last one for interpolation to the right.

Value

approx returns a list with components x and y, containing n coordinates which interpolate
the given data points according to the method (and rule) desired.

The function approxfun returns a function performing (linear or constant) interpolation of
the given data points. For a given set of x values, this function will return the corresponding
interpolated values. This is often more useful than approx.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth

& Brooks/Cole.

See Also

spline and splinefun for spline interpolation.

Examples

x <- 1:10

y <- rnorm(10)
par (mfrow
plot(x, y, main

c(2,1))
= "approx(.) and approxfun(.)")

points(approx(x, y), col = 2, pch = "%")
points(approx(x, y, method = "constant"), col = 4, pch = "x*")

f <- approxfun(x, y)
curve(f(x), 0, 10, col = "green")

points(x, y)

is.function(fc <- approxfun(x, y, method = "const")) # TRUE
curve(fc(x), 0, 10, col = "darkblue", add = TRUE)

32 apropos

Show treatment of 'ties'

x <- ¢(2,2:4,4,4,5,5,7,7,7)

y <- c(1:6, 5:4, 3:1)

approx(x,y, xout=x)$y # warning

(ay <- approx(x,y, xout=x, ties = "ordered")$y)
stopifnot(ay == c(2,2,3,6,6,6,4,4,1,1,1))
approx(x,y, xout=x, ties = min)$y

approx(x,y, xout=x, ties = max)$y

apropos Find Objects by (Partial) Name

Description

apropos returns a character vector giving the names of all objects in the search list matching
what.

find is a different user interface to the same task as apropos.

Usage

apropos(what, where = FALSE, mode = "any")

find(what, mode = "any", numeric. = FALSE, simple.words = TRUE)

Arguments

what name of an object, or regular expression to match against
where, numeric.

a logical indicating whether positions in the search list should also be
returned

mode character; if not "any", only objects who’s mode equals mode are searched.

simple.words logical; if TRUE, the what argument is only searched as whole only word.

Details

If mode !'= "any" only those objects which are of mode mode are considered. If where is
TRUE, the positions in the search list are returned as the names attribute.

find is a different user interface for the same task as apropos. However, by default
(simple.words == TRUE), only full words are searched.

Author(s)
Kurt Hornik and Martin Maechler (May 1997).

See Also

objects for listing objects from one place, help.search for searching the help system,
search for the search path.

args 33

Examples

Not run: apropos("lm")
apropos(1ls)
apropos("1q")

Im <- 1:pi

find (1m) #> ".GlobalEnv" ‘"package:base"
find(1m, num=TRUE) # numbers with these names

find(lm, num=TRUE, mode="function")# only the second one
rm(1lm)

Not run: apropos(".", mode="list") # a long list

need a DOUBLE backslash '"\\' (in case you don't see it anymore)
apropos ("\\[")

Not run: # everything
length(apropos("."))

those starting with 'pr'
apropos("“pr")

the 1-letter things
apropos("~.$")

the 1-2-letter things
apropos("~..7$")

the 2-to-4 letter things
apropos ("~.{2,4}$")

the 8-and-more letter things
apropos("~.{8,}$")

table (nchar (apropos("~.{8,}$")))
End(Not run)

args Argument List of a Function

Description

Displays the argument names and corresponding default values of a function.

Usage

args (name)

Arguments
name an interpreted function. If name is a character string then the function
with that name is found and used.
Details

This function is mainly used interactively. For programming, use formals instead.

34 Arithmetic

Value
A function with identical formal argument list but an empty body if given an interpreted
function; NULL in case of a variable or primitive (non-interpreted) function.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

formals, help.

Examples

args(c) # -> NULL (c is a 'primitive' function)
args(plot.default)

Arithmetic Arithmetic Operators

Description

These binary operators perform arithmetic on vector objects.

Usage

+

LT T T B T
> NN ¥
<Y< <

%hy
x Why

Details

1~ yandy ~ Oarel, always. x ~ y should also give the proper “limit” result when either
argument is infinite (i.e., +- Inf).

Objects such as arrays or time-series can be operated on this way provided they are con-
formable.

Value

They return numeric vectors containing the result of the element by element operations. The
elements of shorter vectors are recycled as necessary (with a warning when they are recycled
only fractionally). The operators are + for addition, - for subtraction * for multiplication,
/ for division and ~ for exponentiation.

%% indicates x mod y and %/% indicates integer division. It is guaranteed that x == (x
Why) +y * (x %/% y) unlessy == 0 where the result is NA or NaN (depending on the
typeof of the arguments).

array

References

35

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth

& Brooks/Cole.

See Also

sqrt for miscellaneous and Special for special mathematical functions.

Syntax for operator precedence.

Examples

<- -1:12

+ 1

* x + 3

%% 2 #-- is periodic
Wh 5

MoK N XM

array Multi-way Arrays

Description

Creates or tests for arrays.

Usage

array(data = NA, dim = length(data), dimnames = NULL)
as.array(x)
is.array(x)

Arguments
data a vector giving data to fill the array.
dim the dim attribute for the array to be created, that is a vector of length
one or more giving the maximal indices in each dimension.
dimnames the names for the dimensions. This is a list with one component for each
dimension, either NULL or a character vector of the length given by dim
for that dimension. The list can be names, and the names will be used as
names for the dimensions.
X an R object.
Value

array returns an array with the extents specified in dim and naming information in
dimnames. The values in data are taken to be those in the array with the leftmost subscript
moving fastest. If there are too few elements in data to fill the array, then the elements in

data are recycled.

as.array() coerces its argument to be an array by attaching a dim attribute to it. It also
attaches dimnames if x has names. The sole purpose of this is to make it possible to access

the dim[names] attribute at a later time.

36 arrows

is.array returns TRUE or FALSE depending on whether its argument is an array (i.e., has
a dim attribute) or not. It is generic: you can write methods to handle of specific classes of
objects, see InternalMethods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

aperm, matrix, dim, dimnames.

Examples

dim(as.array(letters))

array(1:3, c(2,4)) # recycle 1:3 "2 2/3 times"
(.11 [,2] [,3] [,4]

#[1,] 1 3 2 1

#[2,] 2 1 3 2

funny object:
str(a0 <- array(1:3, 0))

arrows Add Arrows to a Plot

Description

Draw arrows between pairs of points.

Usage

arrows(x0, yO, x1, y1, length = 0.25, angle = 30, code = 2,
col = par("fg"), 1ty = NULL, lwd = par("lwd"), xpd = NULL)

Arguments
x0, yo coordinates of points from which to draw.
x1, yi coordinates of points to which to draw.
length length of the edges of the arrow head (in inches).
angle angle from the shaft of the arrow to the edge of the arrow head.
code integer code, determining kind of arrows to be drawn.

col, 1lty, lwd, xpd
usual graphical parameters as in par.

as.data.frame 37

Details

For each i, an arrow is drawn between the point (x0[i], yO[i]) and the point
(x1[i],y1[i1).

If code=2 an arrowhead is drawn at (x0[i],y0[i]) and if code=1 an arrowhead is drawn
at (x1[i],y1[i]). If code=3 a head is drawn at both ends of the arrow. Unless length =
0, when no head is drawn.

The graphical parameters col and 1ty can be used to specify a color and line texture for
the line segments which make up the arrows (col may be a vector).

The direction of a zero-length arrow is indeterminate, and hence so is the direction of the
arrowheads. To allow for rounding error, arrowheads are omitted (with a warning) on any
arrow of length less than 1/1000 inch.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

segments to draw segments.

Examples

x <- runif(12); y <- rnorm(12)

i <- order(x,y); x <- x[i]; y <- y[il

plot(x,y, main="arrows(.) and segments(.)")

draw arrows from point to point :

s <- seq(length(x)-1)# one shorter than data
arrows(x[s], yl[s], x[s+1], y[s+1], col= 1:3)

s <- s[-length(s)]

segments(x[s], y[sl, x[s+2], y[s+2], col= 'pink")

as.data.frame Coerce to a Data Frame

Description

Functions to check if an object is a data frame, or coerce it if possible.

Usage

as.data.frame(x, row.names = NULL, optional = FALSE)
is.data.frame(x)

Arguments
X any R object.
row.names NULL or a character vector giving the row names for the data frame. Miss-
ing values are not allowed.
optional logical. If TRUE, setting row names and converting column names (to

syntactic names) is optional.

38 as.environment

Details

as.data.frame is a generic function with many methods, and users and packages can supply
further methods.

If a list is supplied, each element is converted to a column in the data frame. Similarly,
each column of a matrix is converted separately. This can be overridden if the object
has a class which has a method for as.data.frame: two examples are matrices of class
"model.matrix" (which are included as a single column) and list objects of class "POSIX1t"
which are coerced to class "POSIXct"

Character variables are converted to factor columns unless protected by I.

If a data frame is supplied, all classes preceding "data.frame" are stripped, and the row
names are changed if that argument is supplied.

If row.names = NULL, row names are constructed from the names or dimnames of x, oth-
erwise are the integer sequence starting at one. Few of the methods check for duplicated
row names.

Value

as.data.frame returns a data frame, normally with all row names "" if optional = TRUE.
is.data.frame returns TRUE if its argument is a data frame (that is, has "data.frame"
amongst its classes) and FALSE otherwise.

Note
In versions of R prior to 1.4.0 logical columns were converted to factors (as in S3 but not

s4).

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame

as.environment Coerce to an Environment Object

Description

Converts a number or a character string to the corresponding environment on the search
path.

Usage

as.environment (object)

as.function 39

Arguments
object the object to convert. If it is already an environment, just return it. If
it is a number, return the environment corresponding to that position on
the search list. If it is a character string, match the string to the names
on the search list.
Value

The corresponding environment object.

Author(s)
John Chambers

See Also

environment for creation and manipulation, search.

Examples

as.environment (1) ## the global environment
identical(globalenv(), as.environment(1)) ## is TRUE

try(as.environment ("package:ctest")) ## ctest need not be loaded
as.function Convert Object to Function
Description

as.function is a generic function which is used to convert objects to functions.

as.function.default works on a list x, which should contain the concatenation of a formal
argument list and an expression or an object of mode "call" which will become the function
body. The function will be defined in a specified environment, by default that of the caller.

Usage

as.function(x, ...)

Default S3 method:

as.function(x, envir = parent.frame(), ...)
Arguments
X object to convert, a list for the default method.

additional arguments, depending on object

envir environment in which the function should be defined

Value

The desired function.

40 as.POSIX*

Author(s)

Peter Dalgaard

See Also

function; alist which is handy for the construction of argument lists, etc.

Examples

as.function(alist(a=,b=2,a+b))
as.function(alist(a=,b=2,a+b)) (3)

as.POSIX* Date-time Conversion Functions

Description

Functions to manipulate objects of classes "POSIX1t" and "POSIXct" representing calendar
dates and times (to the nearest second).

Usage
as.POSIXct(x, tz = "")
as.POSIX1t(x, tz = "")
Arguments
X An object to be converted.
tz A timezone specification to be used for the conversion, if one is required.
System-specific, but "" is the current timezone, and "GMT" is UTC (Co-
ordinated Universal Time, in French).
Details

The as.POSIX* functions convert an object to one of the two classes used to represent
date/times (calendar dates plus time to the nearest second). They can take convert a
wide variety of objects, including objects of the other class and of classes "date" (from
package [date:as.date]date or [date:as.date]survival), "chron" and "dates" (from package
[chron]chron) to these classes. They can also convert character strings of the formats
"2001-02-03" and "2001/02/03" optionally followed by white space and a time in the
format "14:52" or "14:52:03". (Formats such as "01/02/03" are ambiguous but can be
converted via a format specification by strptime.)

Logical NAs can be converted to either of the classes, but no other logical vectors can be.

Value

as.P0SIXct and as.POSIX1t return an object of the appropriate class. If tz was specified,
as.POSIX1t will give an appropriate "tzone" attribute.

Asls 41

Note

If you want to extract specific aspects of a time (such as the day of the week) just convert
it to class "POSIX1t" and extract the relevant component(s) of the list, or if you want
a character representation (such as a named day of the week) use format.POSIX1t or
format.POSIXct.

If a timezone is needed and that specified is invalid on your system, what happens is system-
specific but it will probably be ignored.

See Also

DateTimeClasses for details of the classes; strptime for conversion to and from character
representations.

Examples

(z <- Sys.time()) # the current date, as class "POSIXct"
unclass(z) # a large integer

floor (unclass(z)/86400) # the number of days since 1970-01-01
(z <- as.POSIX1t(Sys.time())) # the current date, as class "POSIX1lt"
unlist(unclass(z)) # a list shown as a named vector

as.POSIX1t(Sys.time(), "GMT") # the current time in GMT

AsIs Inhibit Interpretation/Conversion of Objects

Description

Change the class of an object to indicate that it should be treated “as is”.

Usage
I(x)

Arguments

X an object

Detalils

Function I has two main uses.

e In function data.frame. Protecting an object by enclosing it in I() in a call to
data.frame inhibits the conversion of character vectors to factors. I can also be used
to protect objects which are to be added to a data frame, or converted to a data frame
via as.data.frame.

It achieves this by prepending the class "AsIs" to the object’s classes. Class "AsIs"
has a few of its own methods, including for [, as.data.frame, print and format.

e In function formula. There it is used to inhibit the interpretation of operators such as
M om-n otk and "' as formula operators, so they are used as arithmetical operators.
This is interpreted as a symbol by terms.formula.

42 assign

Value

A copy of the object with class "AsIs" prepended to the class(es).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, formula

assign Assign a Value to a Name

Description

Assign a value to a name in an environment.

Usage
assign(x, value, pos = -1, envir = as.environment(pos),
inherits = FALSE, immediate = TRUE)
Arguments
X a variable name (given as a quoted string in the function call).
value a value to be assigned to x.
pos where to do the assignment. By default, assigns into the current environ-
ment. See the details for other possibilities.
envir the environment to use. See the details section.
inherits should the enclosing frames of the environment be inspected?
immediate an ignored compatibility feature.
Details

The pos argument can specify the environment in which to assign the object in any of
several ways: as an integer (the position in the search list); as the character string name of
an element in the search list; or as an environment (including using sys.frame to access
the currently active function calls). The envir argument is an alternative way to specify
an environment, but is primarily there for back compatibility.

assign does not dispatch assignment methods, so it cannot be used to set elements of
vectors, names, attributes, etc.

Note that assignment to an attached list or data frame changes the attached copy and not
the orginal object: see attach.

assignOps 43

Value

This function is invoked for its side effect, which is assigning value to the variable x. If no
envir is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE, enclosing environments of the supplied environment are searched until
the variable x is encountered. The value is then assigned in the environment in which the
variable is encountered. If the symbol is not encountered then assignment takes place in
the user’s workspace (the global environment).

If inherits is FALSE, assignment takes place in the initial frame of envir.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

<-, get, exists, environment.

Examples
for(i in 1:6) { #-- Create objects 'r1', 'r2', ... 'r6' --
nam <- paste("r",i, sep=".")
assign(nam, 1:i)
}

ls(pat=""r..$")

##-- Global assignment within a function:
myf <- function(x) {

innerf <- function(x) assign("Global.res", x"2, env = .GlobalEnv)
innerf (x+1)

}

myf (3)

Global.res # 16

a <- 1:4
assign("a[1]", 2)
a[1] == #FALSE
get("al1l") == #TRUE
assignOps Assignment Operators
Description

Assign a value to a name.

44 assignOps

Usage

x <- value
x <<- value
value -> x
value ->> x

x = value

Arguments
X a variable name (possibly quoted).
value a value to be assigned to x.
Details

There are three different assignment operators: two of them have leftwards and rightwards
forms.

The operators <- and = assign into the environment in which they are evaluated. The <-
can be used anywhere, but the = is only allowed at the top level (that is, in the complete
expression typed by the user) or as one of the subexpressions in a braced list of expressions.

The operators <<- and ->> cause a search to made through the environment for an existing
definition of the variable being assigned. If such a variable is found then its value is redefined,
otherwise assignment takes place globally. Note that their semantics differ from that in the
S language, but is useful in conjunction with the scoping rules of R.

In all the assignment operator expressions, x can be a name or an expression defining a part
of an object to be replaced (e.g., z[[1]]). The name does not need to be quoted, though
it can be.

The leftwards forms of assignment <- = <<- group right to left, the other from left to right.

Value

value. Thus one can use a <- b <- ¢ <- 6.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Chamber, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for
=).

See Also

assign, environment.

assocplot 45

assocplot Association Plots

Description
Produce a Cohen-Friendly association plot indicating deviations from independence of rows
and columns in a 2-dimensional contingency table.

Usage

assocplot(x, col = c("black", "red"), space = 0.3,
main = NULL, xlab = NULL, ylab = NULL)

Arguments
X a two-dimensional contingency table in matrix form.
col a character vector of length two giving the colors used for drawing positive
and negative Pearson residuals, respectively.
space the amount of space (as a fraction of the average rectangle width and
height) left between each rectange.
main overall title for the plot.
x1lab a label for the x axis. Defaults to the name of the row variable in x if
non-NULL.
ylab a label for the y axis. Defaults to the column names of the column variable
in x if non-NULL.
Details

For a two-way contingency table, the signed contribution to Pearson’s x? for cell 4,7 is

to the cell. In the Cohen-Friendly association plot, each cell is represented by a rectangle
that has (signed) height proportional to d;; and width proportional to V/€ij, so that the
area of the box is proportional to the difference in observed and expected frequencies.
The rectangles in each row are positioned relative to a baseline indicating independence
(di; = 0). If the observed frequency of a cell is greater than the expected one, the box rises
above the baseline and is shaded in the color specified by the first element of col, which
defaults to black; otherwise, the box falls below the baseline and is shaded in the color
specified by the second element of col, which defaults to red.

References

Cohen, A. (1980), On the graphical display of the significant components in a two-way
contingency table. Communications in Statistics— Theory and Methods, A9, 1025-1041.

Friendly, M. (1992), Graphical methods for categorical data. SAS User Group Inter-
national Conference Proceedings, 17, 190-200. http://www.math.yorku.ca/SCS/sugi/
sugil7-paper.html

See Also

mosaicplot; chisq.test.

http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html

46 attach

Examples

data(HairEyeColor)

Aggregate over sex:

x <- margin.table(HairEyeColor, c(1, 2))
X

assocplot(x, main = "Relation between hair and eye color")
attach Attach Set of R Objects to Search Path
Description

The database is attached to the R search path. This means that the database is searched by
R when evaluating a variable, so objects in the database can be accessed by simply giving
their names.

Usage

attach(what, pos = 2, name = deparse(substitute(what)))

Arguments
what “database”. This may currently be a data.frame or list or a R data file
created with save.
pos integer specifying position in search() where to attach.
name alternative way to specify the database to be attached.
Details

When evaluating a variable or function name R searches for that name in the databases
listed by search. The first name of the appropriate type is used.

By attaching a data frame to the search path it is possible to refer to the variables in the
data frame by their names alone, rather than as components of the data frame (eg in the
example below, height rather than women$height).

By default the database is attached in position 2 in the search path, immediately after
the user’s workspace and before all previously loaded packages and previously attached
databases. This can be altered to attach later in the search path with the pos option, but
you cannot attach at pos=1.

Note that by default assignment is not performed in an attached database. Attempting
to modify a variable or function in an attached database will actually create a modified
version in the user’s workspace (the R global environment). If you use assign to assign to
an attached list or data frame, you only alter the attached copy, not the original object.
For this reason attach can lead to confusion.

Value

The environment is returned invisibly with a "name" attribute.

attenu 47

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

library, detach, search, objects, environment, with.

Examples
data(women)
summary (women$height) ## refers to variable 'height' in the data frame
attach(women)
summary (height) ## The same variable now available by name

height <- height*2.54 #i# Don't do this. It creates a new variable
detach("women")

summary (height) ## The new variable created by modifying 'height'
rm(height)
attenu The Joyner—Boore Attenuation Data
Description

This data gives peak accelerations measured at various observation stations for 23 earth-
quakes in California. The data have been used by various workers to estimate the attenu-
ating affect of distance on ground acceleration.

Usage

data(attenu)

Format

A data frame with 182 observations on 5 variables.

[[1] event numeric Event Number

[,2] mag numeric Moment Magnitude

[,3] station factor Station Number

[4] dist numeric Station-hypocenter distance (km)
[,5] accel numeric Peak acceleration (g)

Source

Joyner, W.B., D.M. Boore and R.D. Porcella (1981). Peak horizontal acceleration and veloc-
ity from strong-motion records including records from the 1979 Imperial Valley, California
earthquake. USGS Open File report 81-365. Menlo Park, Ca.

References

Boore, D. M. and Joyner, W.B.(1982) The empirical prediction of ground motion, Bull.
Seism. Soc. Am., 72, S269-5268.

48

attitude

Bolt, B. A. and Abrahamson, N. A. (1982) New attenuation relations for peak and expected
accelerations of strong ground motion, Bull. Seism. Soc. Am., 72, 2307-2321.

Bolt B. A. and Abrahamson, N. A. (1983) Reply to W. B. Joyner & D. M. Boore’s “Com-
ments on: New attenuation relations for peak and expected accelerations for peak and
expected accelerations of strong ground motion”, Bull. Seism. Soc. Am., 73, 1481-1483.

Brillinger, D. R. and Preisler, H. K. (1984) An exploratory analysis of the Joyner-Boore
attenuation data, Bull. Seism. Soc. Am., T4, 1441-1449.

Brillinger, D. R. and Preisler, H. K. (1984) Further analysis of the Joyner-Boore attenuation
data. Manuscript.

Examples

data(attenu)
check the data class of the variables
sapply(attenu, data.class)
summary (attenu)
pairs(attenu, main = "attenu data")
coplot(accel ~ dist | as.factor(event), data = attenu, show = FALSE)
coplot(log(accel) ~ log(dist) | as.factor(event),
data = attenu, panel = panel.smooth, show.given = FALSE)

attitude The Chatterjee—Price Attitude Data

Description

From a survey of the clerical employees of a large financial organization, the data are aggre-
gated from the questionnaires of the approximately 35 employees for each of 30 (randomly
selected) departments. The numbers give the percent proportion of favourable responses to
seven questions in each department.

Usage

data(attitude)

Format

A dataframe with 30 observations on 7 variables. The first column are the short names
from the reference, the second one the variable names in the data frame:

Y rating numeric Overall rating
X[1] complaints numeric Handling of employee complaints
X[2] privileges numeric Does not allow special privileges
X[3] learning numeric Opportunity to learn
X[4] raises numeric Raises based on performance
X[5] critical numeric Too critical
X[6] advancel numeric Advancement

Source

Chatterjee, S. and Price, B. (1977) Regression Analysis by FEzample. New York: Wiley.
(Section 3.7, p.68ff of 2nd ed.(1991).)

attr 49

Examples
data(attitude)
pairs(attitude, main = "attitude data")
summary (attitude)
summary (fml <- lm(rating ~ ., data = attitude))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
summary (fm2 <- lm(rating ~ complaints, data = attitude))
plot (fm2)
par (opar)

attr Object Attributes

Description

Get or set specific attributes of an object.

Usage

attr(x, which)
attr(x, which) <- value

Arguments
X an object whose attributes are to be accessed.
which a character string specifying which attribute is to be accessed.
value an object, the new value of the attribute.

Value

This function provides access to a single object attribute. The simple form above returns
the value of the named attribute. The assignment form causes the named attribute to take
the value on the right of the assignment symbol.

The first form first looks for an exact match to code amongst the attributed of x, then a
partial match. If no exact match is found and more than one partial match is found, the
result is NULL.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

attributes

Examples

create a 2 by 5 matrix
x <- 1:10
attr(x,"dim") <- c(2, 5)

50 attributes

attributes Object Attribute Lists

Description

These functions access an object’s attribute list. The first form above returns the an object’s
attribute list. The assignment forms make the list on the right-hand side of the assignment
the object’s attribute list (if appropriate).

Usage

attributes(obj)
attributes(obj) <- value
mostattributes(obj) <- value

Arguments

obj an object

value an appropriate attribute list, or NULL.
Details

The mostattributes assignment takes special care for the dim, names and dimnames at-
tributes, and assigns them only when that is valid whereas as attributes assignment would
give an error in that case.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

attr.

Examples

X <- cbind(a=1:3, pi=pi) # simple matrix w/ dimnames
str(attributes(x))

strip an object's attributes:
attributes(x) <- NULL
x # now just a vector of length 6

mostattributes(x) <- list(mycomment = "really special", dim = 3:2,
dimnames = 1ist(LETTERS[1:3], letters[1:5]), names = paste(1:6))
x # dim(), but not {dim}names

autoload 51

autoload On-demand Loading of Packages

Description

autoload creates a promise-to-evaluate autoloader and stores it with name name in
.AutoloadEnv environment. When R attempts to evaluate name, autoloader is run, the
package is loaded and name is re-evaluated in the new package’s environment. The result is
that R behaves as if file was loaded but it does not occupy memory.

Usage
autoload(name, package, ...)
autoloader (name, package, ...)
.AutoloadEnv
Arguments
name string giving the name of an object.
package string giving the name of a package containing the object.
other arguments to library.
Value

This function is invoked for its side-effect. It has no return value as of R 1.7.0.

See Also

delay, library

Examples

autoload("line","eda")
search()
1s("Autoloads")

data(cars)

plot(cars)
z<-line(cars)
abline(coef(z))
search()
detach("package:eda")
search()
z<-line(cars)
search()

52 ave

ave Group Averages Over Level Combinations of Factors

Description

Subsets of x[] are averaged, where each subset consist of those observations with the same
factor levels.

Usage
ave(x, ..., FUN = mean)
Arguments
x A numeric.
Grouping variables, typically factors, all of the same length as x.
FUN Function to apply for each factor level combination.
Value
A numeric vector, say y of length length(x). If ... is gl,g2, e.g., y[i] is equal to

FUN(x[j], for all j with g1 [j1==g1[i] and g2[jl==g2[i]l).

See Also

mean, median.

Examples
ave(1:3)# no grouping -> grand mean

data(warpbreaks)
attach(warpbreaks)
ave (breaks, wool)
ave(breaks, tension)
ave(breaks, tension, FUN = function(x)mean(x, trim=.1))
plot(breaks, main =

"ave(Warpbreaks) for wool x tension combinations")
lines(ave(breaks, wool, tension), type='s', col = "blue")
lines(ave(breaks, wool, tension, FUN=median), type='s', col = "green")
legend (40,70, c("mean","median"), lty=1,col=c("blue","green"), bg="gray90")
detach()

axis

53

axis

Add an Azis to a Plot

Description

Adds an axis to the current plot, allowing the specification of the side, position, labels, and

other options.

Usage

axis(side, at = NULL, labels = TRUE, tick = TRUE, line = NA,
pos = NA, outer = FALSE, font = NA, vfont = NULL,
lty = "solid", 1lwd = 1, col = NULL, ...)

Arguments

side

at

labels

tick

line

pos

outer

font
viont
lty, 1lwd

col

Details

an integer specifying which side of the plot the axis is to be drawn on.
The axis is placed as follows: 1=below, 2=left, 3=above and 4=right.

the points at which tick-marks are to be drawn. Non-finite (infinite, NaN
or NA) values are omitted. By default, when NULL, tickmark locations are
computed, see Details below.

this can either be a logical value specifying whether (numerical) annota-
tions are to be made at the tickmarks, or a vector of character strings to
be placed at the tickpoints.

a logical value specifying whether tickmarks should be drawn

the number of lines into the margin which the axis will be drawn. This
overrides the value of the graphical parameter mgp[3]. The relative plac-
ing of tickmarks and tick labels is unchanged.

the coordinate at which the axis line is to be drawn. this overrides the
value of both 1line and mgp[3].

a logical value indicating whether the axis should be drawn in the outer
plot margin, rather than the standard plot margin.

font for text.

vector font for text.

line type, width for the axis line and the tick marks.

color for the axis line and the tick marks. The default NULL means to use
par("fg").

other graphical parameters may also be passed as arguments to this func-

tion, e.g., las for vertical/horizontal label orientation, or fg instead of
col, see par on these.

The axis line is drawn from the lowest to the highest value of at, but will be clipped at
the plot region. Only ticks which are drawn from points within the plot region (up to a
tolerance for rounding error) are plotted, but the ticks and their labels may well extend
outside the plot region.

When at = NULL, pretty tick mark locations are computed internally, the same
axTicks(side) would, from par("usr","lab"), and par("xlog") (or ylog respectively).

54 axis.POSIXct

Value

This function is invoked for its side effect, which is to add an axis to an already existing
plot.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

axTicks returns the axis tick locations corresponding to at=NULL; pretty is more flexible
for computing pretty tick coordinates and does not depend on (nor adapt to) the coordinate
system in use.

Examples

plot(1:4, rnorm(4), axes=FALSE)
axis(1, 1:4, LETTERS[1:4])

axis(2)

box() #- to make it look "as usual"

plot(1:7, rnorm(7), main = "axis() examples",

type = "s", xaxt="n", frame = FALSE, col = "red")
axis(1, 1:7, LETTERS[1:7], col.axis = "blue")
unusual options:
axis(4, col = "violet", col.axis="dark violet",lwd = 2)
axis(3, col = "gold", 1ty = 2, lwd = 0.5)

axis.P0OSIXct Date-time Plotting Functions

Description
Functions to plot objects of classes "POSIX1t" and "POSIXct" representing calendar dates
and times.

Usage

axis.P0SIXct(side, x, at, format, ...)

S3 method for class 'POSIXct':
plot(x, y, xlab = "", ...)

S3 method for class 'POSIX1t':
plot(x, y, xlab = "", ...)

axTicks 55

Arguments
x, at A date-time object.
y numeric values to be plotted against x.
xlab a character string giving the label for the x axis.
side See axis.
format See strptime.
Further arguments to be passed from or to other methods, typically graph-
ical parameters or arguments of plot.default.
Details

The functions plot against an x-axis of date-times. axis.P0SIXct works quite hard to
choose suitable time units (years, months, days, hours, minutes or seconds) and a sensible
output format, but this can be overridden by supplying a format specification.

If at is supplied for axis.POSIXct it specifies the locations of the ticks and labels: if x is
specified a suitable grid of labels is chosen.

See Also

DateTimeClasses for details of the classes.

Examples

res <- try(data(beavl, package = "MASS"))

if (!inherits(res, "try-error")) {

attach(beavl)

time <- strptime(paste(1990, day, time %/% 100, time %% 100),
"BY %3 KH BM")

plot(time, temp, type="1") # axis at 4-hour intervals.

now label every hour on the time axis

plot(time, temp, type="1", xaxt="n")

r <- as.POSIXct(round(range(time), "hours"))

axis.POSIXct(1, at=seq(r[1], r[2], by="hour"), format=")H")

rm(time)

detach(beavl)

}

plot(.leap.seconds, 1:22, type="n", yaxt="n",
xlab="leap seconds", ylab="", bty="n")
rug(.leap.seconds)

axTicks Compute Azxis Tickmark Locations

Description

Compute tickmark locations, the same way as R does internally. This is only non-trivial
when log coordinates are active. By default, gives the at values which axis(side) would
use.

56 axTicks

Usage

axTicks(side, axp = NULL, usr = NULL, log = NULL)

Arguments
side integer in 1:4, as for axis.
axp numeric vector of length three, defaulting to par("Zaxp") where “Z” is
“x” or “y” depending on the side argument.
usr numeric vector of length four, defaulting to par ("usr") giving horizontal
(‘x’) and vertical (‘y’) user coordinate limits.
log logical indicating if log coordinates are active; defaults to par("Zlog")
where ‘Z’ is as for the axp argument above.
Details

The axp, usr, and log arguments must be consistent as their default values (the par(..)
results) are. Note that the meaning of axp alters very much when log is TRUE, see the
documentation on par (xaxp=.).

axTicks () can be regarded as an R implementation of the C function CreateAtVector () in
‘..../src/main/graphics.c’ which is called by axis(side,*) when no argument at is specified.

Value

numeric vector of coordinate values at which axis tickmarks can be drawn. By default,
when only the first argument is specified, these values should be identical to those that
axis(side) would use or has used.

See Also

axis, par. pretty uses the same algorithm but is independent of the graphics environment
and has more options.

Examples

plot(1:7, 10%21:27)

axTicks (1)

axTicks(2)

stopifnot(identical(axTicks (1), axTicks(3)),
identical (axTicks(2), axTicks(4)))

Show how axTicks() and axis() correspond :

op <- par(mfrow = c(3,1))

for(x in 9999*c(1,2,8)) {
plot(x,9, log = "x")
cat (formatC(par ("xaxp") ,wid=5),";",T <- axTicks(1),"\n")
rug(T, col="red")

}

par (op)

backsolve 57

backsolve Solve an Upper or Lower Triangular System

Description

Solves a system of linear equations where the coefficient matrix is upper or lower triangular.

Usage

backsolve(r, x, k= ncol(r), upper.tri = TRUE, transpose = FALSE)
forwardsolve(l, x, k= ncol(l), upper.tri = FALSE, transpose = FALSE)

Arguments
r,l an upper (or lower) triangular matrix giving the coefficients for the system
to be solved. Values below (above) the diagonal are ignored.
X a matrix whose columns give “right-hand sides” for the equations.
k The number of columns of r and rows of x to use.
upper.tri logical; if TRUE (default), the upper triangular part of r is used. Other-
wise, the lower one.
transpose logical; if TRUE, solve r’ x y = z for y, i.e., t(xr) %*) y ==
Value

The solution of the triangular system. The result will be a vector if x is a vector and a
matrix if x is a matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Dongarra, J. J., Bunch,J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: STAM Publications.

See Also

chol, qr, solve.

Examples

upper triangular matrix 'r':
r <- rbind(c(1,2,3),
c(0,1,1),
c(0,0,2))
(y <- backsolve(r, x <- c(8,4,2))) # -1 3 1
r I*h y # ==x = (8,4,2)
backsolve(r, x, transpose = TRUE) # 8 -12 -5

o8 bandwidth

bandwidth Bandwidth Selectors for Kernel Density Estimation

Description

Bandwidth selectors for gaussian windows in density.

Usage

bw.nrdo (x)

bw.nrd(x)

bw.ucv(x, nb = 1000, lower, upper)

bw.bcv(x, nb 1000, lower, upper)

bw.SJ(x, nb = 1000, lower, upper, method = c("ste", "dpi"))

Arguments
X A data vector.
nb number of bins to use.

lower, upper Range over which to minimize. The default is almost always satisfactory.

method Either "ste" (solve-the-equation”) or "dpi" (“direct plug-in”).

Details

bw.nrd0 implements a rule-of-thumb for choosing the bandwidth of a Gaussian kernel den-
sity estimator. It defaults to 0.9 times the minimum of the standard deviation and the
interquartile range divided by 1.34 times the sample size to the negative one-fifth power
(= Silverman’s “rule of thumb”, Silverman (1986, page 48, eqn (3.31)) unless the quartiles
coincide when a positive result will be guaranteed.

bw.nrd is the more common variation given by Scott (1992), using factor 1.06.
bw.ucv and bw.bcv implement unbiased and biased cross-validation respectively.

bw.S8J implements the methods of Sheather & Jones (1991) to select the bandwidth using
pilot estimation of derivatives.

Value

A bandwidth on a scale suitable for the bw argument of density.

References

Scott, D. W. (1992) Multivariate Density Estimation: Theory, Practice, and Visualization.
Wiley.

Sheather, S. J. and Jones, M. C. (1991) A reliable data-based bandwidth selection method
for kernel density estimation. Journal of the Royal Statistical Society series B, 53, 683-690.

Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Springer.

barplot 59

See Also
density.

bandwidth.nrd, ucv, bcv and width.SJ in package MASS, which are all scaled to the width
argument of density and so give answers four times as large.

Examples
data(precip)
plot(density(precip, n = 1000))
rug(precip)
lines(density(precip, bw="nrd"), col = 2)
lines(density(precip, bw="ucv"), col = 3)
lines(density(precip, bw="bcv"), col = 4)

lines(density(precip, bw="SJ-ste"), col = 5)

lines(density(precip, bw="8J-dpi"), col = 6)

legend (55, 0.035,
legend = c("nrd0", "nrd", "ucv", "bcv", "SJ-ste", "SJ-dpi"),
col = 1:6, 1ty = 1)

barplot Bar Plots

Description

Creates a bar plot with vertical or horizontal bars.

Usage

Default S3 method:
barplot (height, width = 1, space = NULL,
names.arg = NULL, legend.text = NULL, beside = FALSE,
horiz = FALSE, density = NULL, angle = 45,
col = heat.colors(NR), border = par("fg"),
main = NULL, sub = NULL, xlab NULL, ylab = NULL,
xlim = NULL, ylim = NULL, xpd = TRUE,
axes = TRUE, axisnames = TRUE,
cex.axis = par("cex.axis"), cex.names = par("cex.axis"),
inside = TRUE, plot = TRUE, axis.lty = 0, ...)

Arguments

height either a vector or matrix of values describing the bars which make up the
plot. If height is a vector, the plot consists of a sequence of rectangular
bars with heights given by the values in the vector. If height is a matrix
and beside is FALSE then each bar of the plot corresponds to a column
of height, with the values in the column giving the heights of stacked
“sub-bars” making up the bar. If height is a matrix and beside is TRUE,
then the values in each column are juxtaposed rather than stacked.

width optional vector of bar widths. Re-cycled to length the number of bars

drawn. Specifying a single value will no visible effect unless x1im is spec-
ified.

60

space

names.arg

legend.text

beside

horiz

density

angle

col
border
main,sub
xlab
ylab
xlim
ylim
xpd

axes

axisnames

cex.axis
cex.names

inside

plot

axis.lty

barplot

the amount of space (as a fraction of the average bar width) left before
each bar. May be given as a single number or one number per bar. If
height is a matrix and beside is TRUE, space may be specified by two
numbers, where the first is the space between bars in the same group,
and the second the space between the groups. If not given explicitly, it
defaults to c(0,1) if height is a matrix and beside is TRUE, and to 0.2
otherwise.

a vector of names to be plotted below each bar or group of bars. If this
argument is omitted, then the names are taken from the names attribute
of height if this is a vector, or the column names if it is a matrix.

a vector of text used to construct a legend for the plot, or a logical in-
dicating whether a legend should be included. This is only useful when
height is a matrix. In that case given legend labels should correspond
to the rows of height; if legend.text is true, the row names of height
will be used as labels if they are non-null.

a logical value. If FALSE, the columns of height are portrayed as stacked
bars, and if TRUE the columns are portrayed as juxtaposed bars.

a logical value. If FALSE, the bars are drawn vertically with the first bar
to the left. If TRUE, the bars are drawn horizontally with the first at the
bottom.

a vector giving the the density of shading lines, in lines per inch, for the
bars or bar components. The default value of NULL means that no shading
lines are drawn. Non-positive values of density also inhibit the drawing
of shading lines.

the slope of shading lines, given as an angle in degrees (counter-clockwise),
for the bars or bar components.

a vector of colors for the bars or bar components.

the color to be used for the border of the bars.

overall and sub title for the plot.

a label for the x axis.

a label for the y axis.

limits for the x axis.

limits for the y axis.

logical. Should bars be allowed to go outside region?

logical. If TRUE, a vertical (or horizontal, if horiz is true) axis is drawn.
logical. If TRUE, and if there are names.arg (see above), the other axis is
drawn (with 1ty=0) and labeled.

expansion factor for numeric axis labels.

expansion factor for axis names (bar labels).

logical. If TRUE, the lines which divide adjacent (non-stacked!) bars will
be drawn. Only applies when space = 0 (which it partly is when beside
= TRUE).

logical. If FALSE, nothing is plotted.

the graphics parameter 1ty applied to the axis and tick marks of the
categorical (default horzontal) axis. Note that by default the axis is sup-
pressed.

further graphical parameters (par) are passed to plot.window(),
title() and axis.

barplot 61

Details

This is a generic function, it currently only has a default method. A formula interface may
be added eventually.

Value

A numeric vector (or matrix, when beside = TRUE), say mp, giving the coordinates of all
the bar midpoints drawn, useful for adding to the graph.

If beside is true, use colMeans (mp) for the midpoints of each group of bars, see example.

Note

Prior to R 1.6.0, barplot behaved as if axis.1lty = 1, unintentionally.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

plot(..., type="h"), dotchart, hist.

Examples

tN <- table(Ni <- rpois(100, lambda=5))
r <- barplot(tN, col='gray')

#- type = "h" plotting *is* 'bar'plot
lines(r, tN, type='h', col='red', lwd=2)

barplot (tN, space = 1.5, axisnames=FALSE,
sub = "barplot(..., space= 1.5, axisnames = FALSE)")

data(VADeaths, package = "base")
barplot (VADeaths, plot = FALSE)
barplot (VADeaths, plot = FALSE, beside = TRUE)

mp <- barplot(VADeaths) # default
tot <- colMeans(VADeaths)
text (mp, tot + 3, format(tot), xpd = TRUE, col = "blue")
barplot (VADeaths, beside = TRUE,
col = c("lightblue", "mistyrose", "lightcyan",

"lavender", "cornsilk"),
legend = rownames(VADeaths), ylim = c(0, 100))
title(main = "Death Rates in Virginia", font.main = 4)

hh <- t(VADeaths)[, 5:1]
mybarcol <- "gray20"
mp <- barplot(hh, beside = TRUE,
col = c("lightblue", "mistyrose",
"lightcyan", "lavender"),
legend = colnames(VADeaths), ylim= c(0,100),
main = "Death Rates in Virginia", font.main = 4,
sub = "Faked upper 2*sigma error bars", col.sub = mybarcol,
cex.names = 1.5)
segments(mp, hh, mp, hh + 2*sqrt(1000%hh/100), col = mybarcol, lwd = 1.5)

62 basename

stopifnot (dim(mp) == dim(hh))# corresponding matrices
mtext(side = 1, at = colMeans(mp), line = -2,
text = paste("Mean", formatC(colMeans(hh))), col

"red")

Bar shading example

barplot (VADeaths, angle = 15+10%1:5, density = 20, col = "black",
legend = rownames(VADeaths))

title(main = list("Death Rates in Virginia", font = 4))

border :
barplot (VADeaths, border = "dark blue")

basename Manipulate File Paths

Description

basename removes all of the path up to the last path separator (if any).

dirname returns the part of the path up to (but excluding) the last path separator, or "."
if there is no path separator.

Usage
basename (path)
dirname (path)

Arguments

path character vector, containing path names.

Details

For dirname tilde expansion is done: see the description of path.expand.

Trailing file separators are removed before dissecting the path, and for dirname any trailing
file separators are removed from the result.

Value
A character vector of the same length as path. A zero-length input will give a zero-length
output with no error (unlike R < 1.7.0).

See Also

file.path, path.expand.

Examples

basename(file.path("","p1","p2","p3", c("filel", "file2")))
dirname(file.path("","p1","p2","p3","filename"))

BATCH 63

BATCH Batch Ezecution of R

Description

Run R non-interactively with input from infile and send output (stdout/stderr) to another
file.

Usage

R CMD BATCH [options] infile [outfile]

Detalils

Use R CMD BATCH --help to be reminded of the usage.

By default, the input commands are printed along with the output. To suppress this
behavior, add options(echo = FALSE) at the beginning of infile.

The infile can have end of line marked by LF or CRLF (but not just CR), and files with
an incomplete last line (missing end of line (EOL) mark) are processed correctly.

Using R CMD BATCH sets the GUI to "none", so none of x11, jpeg and png are available.

Note

Unlike Splus BATCH, this does not run the R process in the background. In most shells, R
CMD BATCH [options] infile [outfile] & will do so.

Report bugs to (r-bugs@r-project.org).

Bessel Bessel Functions

Description

Bessel Functions of integer and fractional order, of first and second kind, J, and Y,, and
Modified Bessel functions (of first and third kind), I, and K,,.

gammaCody is the (I") function as from the Specfun package and originally used in the Bessel

code.

Usage
besselIl(x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)

besselJ(x, nu)
besselY(x, nu)
gammaCody (x)

64 Bessel

Arguments
X numeric, > 0.
nu numeric; The order (maybe fractional!) of the corresponding Bessel func-

tion.

expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid
overflow (I,) or underflow (K,), respectively.

Details

The underlying C code stems from Netlib (http://www.netlib.org/specfun/r[ijky]
besl).
If expon.scaled = TRUE, e *I,(x), or e K, (x) are returned.

gammaCody may be somewhat faster but less precise and/or robust than R’s standard gamma.
It is here for experimental purpose mainly, and may be defunct very soon.

For v < 0, formulae 9.1.2 and 9.6.2 from the reference below are applied (which is probably
suboptimal), unless for besselK which is symmetric in nu.

Value

Numeric vector of the same length of x with the (scaled, if expon.scale=TRUE) values of
the corresponding Bessel function.

Author(s)

Original Fortran code: W. J. Cody, Argonne National Laboratory
Translation to C and adaption to R: Martin Maechler (maechler@stat.math.ethz.ch.)

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. Dover,
New York; Chapter 9: Bessel Functions of Integer Order.

See Also

Other special mathematical functions, as the gamma, I'(x), and beta, B(z).

Examples

nus <- ¢(0:5,10,20)

x <- seq(0,4, len= 501)

plot(x,x, ylim = c(0,6), ylab="",type='n', main = "Bessel Functions I_nu(x)")
for(nu in nus) lines(x,bessell(x,nu=nu), col = nu+2)

legend (0,6, leg=paste("nu=",nus), col = nus+2, lwd=1)

x <- seq(0,40,1en=801); yl <- c(-.8,.8)
plot(x,x, ylim = yl, ylab="",type='n', main = "Bessel Functions J_nu(x)")
for(nu in nus) lines(x,besselJ(x,nu=nu), col = nu+2)

legend(32,-.18, leg=paste("nu=",nus), col = nus+2, lwd=1)

Negative nu's :
xx <= 2:7
nu <- seq(-10,9, len = 2001)

http://www.netlib.org/specfun/r[ijky]besl
http://www.netlib.org/specfun/r[ijky]besl

Beta

65

op <- par(lab = c(16,5,7))
matplot(nu, t(outer(xx,nu, bessell)), type = '1', ylim = c(-50,200),
main = expression(paste("Bessel ",I[nu] (x)," for fixed ", x,

", as ",f(auw)),

xlab = expression(nu))

abline(v=0, col

= "light gray", 1ty = 3)

legend(5,200, leg = paste("x=",xx), col=seq(xx), lty=seq(xx))

par (op)

x0 <- 27(-20:10)

plot(x0,x07-8, log='xy', ylab="",type='n',

main = "Bessel Functions J_nu(x) near O\n log - log scale")
for(nu in sort(c(nus,nus+.5))) lines(x0,besselJ(x0,nu=nu), col = nu+2)
legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1)

plot(x0,x0°-8, log='xy', ylab="",type='n',

main = "Bessel Functions K_nu(x) mnear O\n log - log scale")
for(nu in sort(c(nus,nus+.5))) lines(x0,besselK(x0,nu=nu), col = nu+2)
legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1)

x <- x[x > 0]

plot(x,x, ylim=c(le-18,1el11),log="y", ylab="",type='n',
main = "Bessel Functions K_nu(x)")

for(nu in nus) lines(x,besselK(x,nu=nu), col = nu+2)

legend(0,1e-5, leg=paste("nu=",nus), col = nus+2, lwd=1)

yl <- c(-1.6, .6)

plot(x,x, ylim = yl, ylab="",type='n', main = "Bessel Functions Y_nu(x)")
for(nu in nus){xx <- x[x > .6*nul]; lines(xx,besselY(xx,nu=nu), col = nu+2)}
legend(25,-.5, leg=paste("nu=",nus), col = nus+2, lwd=1)

Beta

The Beta Distribution

Description

Density, distribution function, quantile function and random generation for the Beta distri-
bution with parameters shapel and shape2 (and optional non-centrality parameter ncp).

Usage

dbeta(x, shapel, shape2, ncp=0, log = FALSE)

pbeta(q, shapel, shape2, ncp=0, lower.tail = TRUE, log.p
gbeta(p, shapel, shape2, lower.tail

FALSE)
FALSE)

TRUE, log.p

rbeta(n, shapel, shape2)

Arguments

X, q
p

n

shapel, shape2

vector of quantiles.
vector of probabilities.

number of observations. If length(n) > 1, the length is taken to be the
number required.

positive parameters of the Beta distribution.

66 bindenv

ncp non-centrality parameter.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X < z], otherwise, P[X >
Details

The Beta distribution with parameters shapel = a and shape2 = b has density

~_ Tla+b) ,
f(x)—mx (1—$)b

fora > 0, b >0 and 0 < x < 1 where the boundary values at x = 0 or x = 1 are defined as
by continuity (as limits).

Value
dbeta gives the density, pbeta the distribution function, gbeta the quantile function, and
rbeta generates random deviates.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

beta for the Beta function, and dgamma for the Gamma distribution.

Examples

x <- seq(0, 1, length=21)
dbeta(x, 1, 1)
pbeta(x, 1, 1)

bindenv Binding and Environment Adjustments

Description

These functions represent an experimental interface for adjustments to environments and
bindings within environments. They allow for locking environments as well as individual
bindings, and for linking a variable to a function.

Usage

lockEnvironment (env, bindings = FALSE)
environmentIsLocked(env)
lockBinding(sym, env)
unlockBinding(sym, env)
bindingIsLocked(sym, env)
makeActiveBinding(sym, fun, env)
bindingIsActive(sym, env)

bindenv 67

Arguments
env an environment.
bindings logical specifying whether bindings should be locked.
sym a name object or character string
fun a function taking zero or one arguments
Details

The function lockEnvironment locks its environment argument, which must be a proper
environment, not NULL. Locking the NULL (base) environment may be supported later.
Locking the environment prevents adding or removing variable bindings from the environ-
ment. Changing the value of a variable is still possible unless the binding has been locked.

lockBinding locks individual bindings in the specified environment. The value of a locked
binding cannot be changed. Locked bindings may be removed from an environment unless
the environment is locked.

makeActiveBinding installs fun so that getting the value of sym calls fun with no argu-
ments, and assigning to sym calls fun with one argument, the value to be assigned. This
allows things like C variables linked to R variables and variables linked to data bases to be
implemented. It may also be useful for making thread-safe versions of some system globals.

Author(s)
Luke Tierney

Examples

locking environments
e<-new.env()

assign("x",1, env=e)

get ("x",env=e)

lockEnvironment (e)

get ("x",env=e)

assign("x",2, env=e)
try(assign("y",2, env=e)) # error

locking bindings

e<-new.env()

assign("x",1, env=e)

get ("x",env=e)

lockBinding("x", e)
try(assign("x",2, env=e)) # error
unlockBinding("x", e)
assign("x",2, env=e)

get ("x",env=e)

active bindings
f<-local({
x <-1
function(v) {
if (missing(v))
cat("get\n")
else {
cat("set\n")
X <<- v

68

}
b

Binomial

makeActiveBinding("fred", f, .GlobalEnv)
bindingIsActive("fred", .GlobalEnv)

fred
fred<-2
fred

Binomial

The Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the binomial
distribution with parameters size and prob.

Usage

dbinom(x,
pbinom(q,
gbinom(p,
rbinom(n,

Arguments

X, q
p
n

size
prob
log, log.p

lower.tail

Details

size, prob, log = FALSE)

size, prob, lower.tail = TRUE, log.p = FALSE)
size, prob, lower.tail TRUE, log.p FALSE)
size, prob)

vector of quantiles.
vector of probabilities.

number of observations. If length(n) > 1, the length is taken to be the
number required.

number of trials.
probability of success on each trial.
logical; if TRUE, probabilities p are given as log(p).

logical; if TRUE (default), probabilities are P[X < z], otherwise, P[X >

The binomial distribution with size = n and prob = p has density

forx=0,...

) = (M)t

, .

If an element of x is not integer, the result of dbinom is zero, with a warning. p(z) is
computed using Loader’s algorithm, see the reference below.

The quantile is defined as the smallest value = such that F(x) > p, where F is the distri-
bution function.

birthday 69

Value

dbinom gives the density, pbinom gives the distribution function, gbinom gives the quantile
function and rbinom generates random deviates.

If size is not an integer, NaN is returned.

References

Catherine Loader (2000). Fast and Accurate Computation of Binomial Probabili-
ties; manuscript available from http://cm.bell-labs.com/cm/ms/departments/sia/
catherine/dbinom

See Also

dnbinom for the negative binomial, and dpois for the Poisson distribution.

Examples

Compute P(45 < X < 55) for X Binomial(100,0.5)
sum(dbinom(46:54, 100, 0.5))

Using "log = TRUE" for an extended range :

n <- 2000

k <- seq(0, n, by = 20)

plot (k, dbinom(k, n, pi/10, log=TRUE), type='l', ylab="log density",
main = "dbinom(*, log=TRUE) is better than log(dbinom(*))")

lines(k, log(dbinom(k, n, pi/10)), col='red', lwd=2)

extreme points are omitted since dbinom gives O.

mtext ("dbinom(k, log=TRUE)", adj=0)

mtext ("extended range", adj=0, line = -1, font=4)

mtext ("log(dbinom(k))", col="red", adj=1)

birthday Probability of coincidences

Description

Computes approximate answers to a generalised “birthday paradox” problem. pbirthday
computes the probability of a coincidence and gbirthday computes the number of obser-
vations needed to have a specified probability of coincidence.

Usage

gbirthday(prob = 0.5, classes = 365, coincident = 2)
pbirthday(n, classes = 365, coincident = 2)

Arguments
classes How many distinct categories the people could fall into
prob The desired probability of coincidence
n The number of people

coincident The number of people to fall in the same category

http://cm.bell-labs.com/cm/ms/departments/sia/catherine/dbinom
http://cm.bell-labs.com/cm/ms/departments/sia/catherine/dbinom

70 body

Details

The birthday paradox is that a very small number of people, 23, suffices to have a 50-50
chance that two of them have the same birthday. This function generalises the calculation
to probabilities other than 0.5, numbers of coincident events other than 2, and numbers of
classes other than 365.

This formula is approximate, as the example below shows. For coincident=2 the exact
computation is straightforward and may be preferable.

Value
gbirthday Number of people needed for a probability prob that k of them have the
same one out of classes equiprobable labels.
pbirthday Probability of the specified coincidence
References

Diaconis P, Mosteller F., “Methods for studying coincidences”. JASA 84:853-861

Examples

the standard version

gbirthday ()

same 4-digit PIN number

gbirthday(classes=10"4)

0.9 probability of three coincident birthdays
gbirthday(coincident=3,prob=0.9)

Chance of 4 coincident birthdays in 150 people
pbirthday(150,coincident=4)

Accuracy compared to exact calculation

x1<- sapply(10:100, pbirthday)

x2<-1-sapply(10:100, function(n)prod((365:(365-n+1))/rep(365,n)))
par (mfrow=c(2,2))
plot(x1,x2,xlab="approximate",ylab="exact")
abline(0,1)
plot(x1l,x1-x2,xlab="approximate",ylab="error")
abline (h=0)
plot(x1,x2,log="xy",xlab="approximate",ylab="exact")

abline(0,1)
plot(1-x1,1-x2,log="xy",xlab="approximate",ylab="exact")
abline(0,1)
body Access to and Manipulation of the Body of a Function
Description

Get or set the body of a function.

Usage

body(fun = sys.function(sys.parent()))
body(fun, envir = parent.frame()) <- value

box 71

Arguments
fun a function object, or see Details.
envir environment in which the function should be defined.
value an expression or a list of R expressions.

Detalils

For the first form, fun can be a character string naming the function to be manipulated,
which is searched for from the parent environment. If it is not specified, the function calling
body is used.

Value

body returns the body of the function specified.
The assignment form sets the body of a function to the list on the right hand side.

See Also

alist, args, function.

Examples

body (body)

f <- function(x) x75

body(f) <- expression(57x)

or equivalently body(f) <- list(quote(57°x))
£(3) # = 125

str(body (£))

box Draw a Box around a Plot

Description

This function draws a box around the current plot in the given color and linetype. The bty
parameter determines the type of box drawn. See par for details.

Usage
box(which="plot", 1lty="solid", ...)
Arguments
which character, one of "plot", "figure", "inner" and "outer".
1ty line type of the box.
further graphical parameters, such as bty, col, or lwd, see par.
References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

72 boxplot

See Also

rect for drawing of arbitrary rectangles.

Examples

plot(1:7,abs(rnorm(7)), type='h', axes = FALSE)
axis(1, labels = letters[1:7])
box(1ty='1373', col = 'red')

boxplot Box Plots

Description

Produce box-and-whisker plot(s) of the given (grouped) values.

Usage

boxplot(x, ...)

S3 method for class 'formula':
boxplot(formula, data = NULL, ..., subset)

Default S3 method:

boxplot(x, ..., range = 1.5, width = NULL, varwidth = FALSE,
notch = FALSE, outline = TRUE, names, boxwex = 0.8, plot = TRUE,
border = par("fg"), col = NULL, log = "", pars = NULL,
horizontal = FALSE, add = FALSE, at NULL)

Arguments

formula a formula, such as y = x.
data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used for plot-
ting.

X for specifying data from which the boxplots are to be produced as well as
for giving graphical parameters. Additional unnamed arguments specify
further data, either as separate vectors (each corresponding to a compo-
nent boxplot) or as a single list containing such vectors. NAs are allowed
in the data.

For the formula method, arguments to the default method and graphical
parameters.

For the default method, unnamed arguments are additional data vectors,
and named arguments are graphical parameters in addition to the ones
given by argument pars.

range this determines how far the plot whiskers extend out from the box. If
range is positive, the whiskers extend to the most extreme data point
which is no more than range times the interquartile range from the box.
A value of zero causes the whiskers to extend to the data extremes.

boxplot

width

varwidth

notch

outline

names

boxwex

plot

border

col

log

pars

horizontal

add
at

Details

73

a vector giving the relative widths of the boxes making up the plot.
if varwidth is TRUE, the boxes are drawn with widths proportional to the
square-roots of the number of observations in the groups.

if notch is TRUE, a notch is drawn in each side of the boxes. If the notches
of two plots do not overlap then the medians are significantly different at
the 5 percent level.

if outline is not true, the boxplot lines are not drawn.
group labels which will be printed under each boxplot.

a scale factor to be applied to all boxes. When there are only a few
groups, the appearance of the plot can be improved by making the boxes
narrower.

if TRUE (the default) then a boxplot is produced. If not, the summaries
which the boxplots are based on are returned.

an optional vector of colors for the outlines of the boxplots. The values
in border are recycled if the length of border is less than the number of
plots.

if col is non-null it is assumed to contain colors to be used to col the
bodies of the box plots.

character indicating if x or y or both coordinates should be plotted in log
scale.

a list of graphical parameters; these are passed to bxp (if plot is true).

logical indicating if the boxplots should be horizontal; default FALSE
means vertical boxes.

logical, if true add boxplot to current plot.

numeric vector giving the locations where the boxplots should be drawn,
particularly when add = TRUE; defaults to 1:n where n is the number of
boxes.

The generic function boxplot currently has a default method (boxplot.default) and a
formula interface (boxplot.formula).

Value

List with the following components:

stats

conf

out

group

names

a matrix, each column contains the extreme of the lower whisker, the
lower hinge, the median, the upper hinge and the extreme of the upper
whisker for one group/plot.

a vector with the number of observations in each group.

a matrix where each column contains the lower and upper extremes of the
notch.

the values of any data points which lie beyond the extremes of the
whiskers.

a vector of the same length as out whose elements indicate which group
the outlier belongs to

a vector of names for the groups

74 boxplot

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See also boxplot.stats.

See Also

boxplot.stats which does the computation, bxp for the plotting; and stripchart for an
alternative (with small data sets).

Examples

boxplot on a formula:
data(InsectSprays)
boxplot(count ~ spray, data = InsectSprays, col = "lightgray")
add notches (somewhat funny here):
boxplot(count ~ spray, data = InsectSprays,
notch = TRUE, add = TRUE, col = "blue")

data(OrchardSprays)

boxplot(decrease ~ treatment, data = OrchardSprays,
log = "y", col="bisque")

rb <- boxplot(decrease ~ treatment, data = OrchardSprays, col="bisque")

title("Comparing boxplot()s and non-robust mean +/- SD")

mn.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, mean)
sd.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, sd)
xi <- 0.3 + seq(rb$n)
points(xi, mn.t, col
arrows(xi, mn.t - sd.
code = 3, col

"orange", pch = 18)
, Xi, mn.t + sd.t,
"pink", angle = 75, length = .1)

I ot

boxplot on a matrix:
mat <- cbind(UniO5 = (1:100)/21, Norm = rnorm(100),

T5 = rt(100, df = 5), Gam2 = rgamma(100, shape = 2))
boxplot(data.frame(mat), main = "boxplot(data.frame(mat), main = ...)")
par(las=1)# all axis labels horizontal
boxplot(data.frame(mat), main = "boxplot(*, horizontal = TRUE)",

horizontal = TRUE)

Using 'at = ' and adding boxplots -- example idea by Roger Bivand :

data(ToothGrowth)
boxplot(len ~ dose, data = ToothGrowth,
boxwex = 0.25, at = 1:3 - 0.2,
subset= supp == "VC", col="yellow",
main="Guinea Pigs' Tooth Growth",
xlab="Vitamin C dose mg",
ylab="tooth length", ylim=c(0,35))
boxplot(len ~ dose, data = ToothGrowth, add = TRUE,
boxwex = 0.25, at = 1:3 + 0.2,
subset= supp == "0J", col="orange")
legend(2, 9, c("Ascorbic acid", "Orange juice"),
fill = c("yellow", "orange"))

boxplot.stats

75

boxplot.stats

Bozx Plot Statistics

Description

This function is typically called by boxplot to gather the statistics necessary for producing
box plots, but may be invoked separately.

Usage

boxplot.stats(x, coef = 1.5, do.conf=TRUE, do.out=TRUE)

Arguments

X

coef

do.conf,do.out

Detalils

The two “hinges’

a numeric vector for which the boxplot will be constructed (NAs and NaNs
are allowed and omitted).

this determines how far the plot “whiskers” extend out from the box. If
coef is positive, the whiskers extend to the most extreme data point
which is no more than coef times the length of the box away from the
box. A value of zero causes the whiskers to extend to the data extremes
(and no outliers be returned).

logicals; if FALSE, the conf or out component respectively will be empty
in the result.

" are versions of the first and third quartile, i.e., close to quantile(x,

c(1,3)/4). The hinges equal the quartiles for odd n (where n <- length(x)) and differ
for even n. Where the quartiles only equal observations for n %% 4 == 1 (n = 1 mod 4),
the hinges do so additionally for n %% 4 == 2 (n =2 mod 4), and are in the middle of two
observations otherwise.

Value

List with named components as follows:

stats

conf

out

a vector of length 5, containing the extreme of the lower whisker, the
lower “hinge”, the median, the upper “hinge” and the extreme of the upper
whisker.

the number of of non-NA observations in the sample.
the lower and upper extremes of the “notch” (if (do.conf)).

the values of any data points which lie beyond the extremes of the whiskers
(if (do.out)).

Note that $stats and $conf are sorted in increasing order, unlike S, and that $n and $out
include any +- Inf values.

76 bquote

References

Tukey, J. W. (1977) Exploratory Data Analysis. Section 2C.

McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of box plots. The American
Statistician 32, 12—-16.

Velleman, P. F. and Hoaglin, D. C. (1981) Applications, Basics and Computing of Ex-
ploratory Data Analysis. Duxbury Press.

Emerson, J. D and Strenio, J. (1983). Boxplots and batch comparison. Chapter 3 of
Understanding Robust and Ezxploratory Data Analysis, eds. D. C. Hoaglin, F. Mosteller and
J. W. Tukey. Wiley.

See Also

fivenum, boxplot, bxp.

Examples

x <- c(1:100, 1000)

str(bl <- boxplot.stats(x))

str(b2 <- boxplot.stats(x, do.conf=FALSE, do.out=FALSE))
stopifnot(bl $ stats == b2 $§ stats) # do.out=F is still robust
str(boxplot.stats(x, coef = 3, do.conf=FALSE))

no outlier treatment:

str(boxplot.stats(x, coef = 0))

str(boxplot.stats(c(x, NA))) # slight change : n + 1
str(r <- boxplot.stats(c(x, -1:1/0)))
stopifnot (r$out == c(1000, -Inf, Inf))

bquote Partial substitution in expressions

Description
An analogue of the LISP backquote macro. bquote quotes its argument except that terms
wrapped in . () are evaluated in the specified where environment.

Usage

bquote (expr, where = parent.frame())

Arguments
expr An expression
where An environment
Value

An expression

browseEnv

See Also

77

quote, substitute

Examples

a<-2

bquote (a==a)
quote (a==a)

bquote(a==. (a))

substitute(a==A, list(A=a))

plot(1:10,a*(1:10), main=bquote(a==.(a)))

browseEnv

Browse Objects in Environment

Description

The browseEnv function opens a browser with list of objects currently in sys.frame()

environment.
Usage
browseEnv(envir = .GlobalEnv, pattern, excludepatt = "“last\\.warning",
html = .Platform$0S.type != "mac",

expanded = TRUE, properties = NULL,

main

Arguments

envir

pattern

excludepatt
html

expanded

properties

main

debugMe

= NULL, debugMe = FALSE)

an environment the objects of which are to be browsed.

a regular expression for object subselection is passed to the internal 1s()
call.

a regular expression for dropping objects with matching names.

is used on non Macintosh machines to display the workspace on a HTML
page in your favorite browser.

whether to show one level of recursion. It can be useful to switch it to
FALSE if your workspace is large. This option is ignored if html is set to
FALSE.

a named list of global properties (of the objects chosen) to be showed in the
browser; when NULL (as per default), user, date, and machine information
is used.

a title string to be used in the browser; when NULL (as per default) a title
is constructed.

logical switch; if true, some diagnostic output is produced.

78

Details

Very experimental code.

HTML version is not dynamic.

It can be generalized. See sources (‘..../library/base/R/databrowser.R’) for details.

browser

Only allows one level of recursion into object structures. The

wsbrowser () is currently just an internally used function; its argument list will certainly
change.

Most probably, this should rather work through using the ‘tkWidget’ package (from www.
Bioconductor.org).

See Also

str, 1s.

Examples

if (interactive()) {

create some interesting objects :
ofa <- ordered(4:1)

exl <- expression(1+ 0:9)

ex3 <- expression(u,v, 1+ 0:9)
example(factor, echo = FALSE)
example(table, echo = FALSE)
example(ftable, echo = FALSE)
example(lm, echo = FALSE)
example(str, echo = FALSE)

and browse them:
browseEnv ()

a (simple) function's environment:
af12 <- approxfun(1:2, 1:2, method = "const")
browseEnv(envir = environment(af12))

browser Environment Browser

Description

Interrupt the execution of an expression and allow the inspection of the environment where
browser was called from.

Usage

browser ()

Details

A call to browser causes a pause in the execution of the current expression and runs a copy
of the R interpreter which has access to variables local to the environment where the call
took place.

www.Bioconductor.org
www.Bioconductor.org

browseURL 79

Local variables can be listed with 1s, and manipulated with R expressions typed to this
sub-interpreter. The interpreter copy is exited by typing c. Execution then resumes at the
statement following the call to browser.

Typing n causes the step-through-debugger, to start and it is possible to step through the
remainder of the function one line at a time.

Typing Q quits the current execution and returns you to the top-level prompt.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

debug, and traceback for the stack on error.

browseURL Load URL into a WWW Browser

Description

Load a given URL into a WWW browser.

Usage

browseURL(url, browser = getOption("browser"))

Arguments
url a non-empty character string giving the URL to be loaded.
browser a non-empty character string giving the name of the program to be used
as hypertext browser. It should be in the PATH, or a full path specified.
Details

If browser supports remote control and R knows how to perform it, the URL is opened in
any already running browser or a new one if necessary. This mechanism currently is avail-
able for browsers which support the "-remote openURL(...)" interface (which includes
Netscape 4.x, 6.2.x (but not 6.0/1), Opera 5/6 and Mozilla >= 0.9.5), Galeon, KDE kon-
queror (via kfmclient) and the GNOME interface to Mozilla. Netscape 7.0 behaves slightly
differently, and you will need to open it first. Note that the type of browser is determined
from its name, so this mechanism will only be used if the browser is installed under its
canonical name.

Because "-remote" will use any browser displaying on the X server (whatever machine it
is running on), the remote control mechanism is only used if DISPLAY points to the local
host. This may not allow displaying more than one URL at a time from a remote host.

80 bug.report

bug.report Send a Bug Report

Description

Invokes an editor to write a bug report and optionally mail it to the automated r-bugs
repository at (r-bugs@r-project.org). Some standard information on the current version
and configuration of R are included automatically.

Usage
bug.report(subject = "", ccaddress = Sys.getenv("USER"),
method = getOption("mailer"), address = "r-bugs@r-project.org",
file = "R.bug.report")
Arguments
subject Subject of the email. Please do not use single quotes (’) in the subject!
File separate bug reports for multiple bugs
ccaddress Optional email address for copies (default is current user). Use ccaddress
= FALSE for no copies.
method Submission method, one of "mailx", "gnudoit", "none", or "ess".
address Recipient’s email address.
file File to use for setting up the email (or storing it when method is "none"
or sending mail fails).
Details

Currently direct submission of bug reports works only on Unix systems. If the submission
method is "mailx", then the default editor is used to write the bug report. Which editor
is used can be controlled using options, type getOption("editor") to see what editor is
currently defined. Please use the help pages of the respective editor for details of usage.
After saving the bug report (in the temporary file opened) and exiting the editor the report
is mailed using a Unix command line mail utility such as mailx. A copy of the mail is sent
to the current user.

If method is "gnudoit", then an emacs mail buffer is opened and used for sending the
email.

If method is "none" or NULL (which is the default on Windows systems), then only an editor
is opened to help writing the bug report. The report can then be copied to your favorite
email program and be sent to the r-bugs list.

If method is "ess" the body of the mail is simply sent to stdout.

Value

Nothing useful.

bug.report 81

When is there a bug?

If R executes an illegal instruction, or dies with an operating system error message that
indicates a problem in the program (as opposed to something like “disk full”), then it is
certainly a bug.

Taking forever to complete a command can be a bug, but you must make certain that it
was really R’s fault. Some commands simply take a long time. If the input was such that
you KNOW it should have been processed quickly, report a bug. If you don’t know whether
the command should take a long time, find out by looking in the manual or by asking for
assistance.

If a command you are familiar with causes an R error message in a case where its usual
definition ought to be reasonable, it is probably a bug. If a command does the wrong thing,
that is a bug. But be sure you know for certain what it ought to have done. If you aren’t
familiar with the command, or don’t know for certain how the command is supposed to
work, then it might actually be working right. Rather than jumping to conclusions, show
the problem to someone who knows for certain.

Finally, a command’s intended definition may not be best for statistical analysis. This is a
very important sort of problem, but it is also a matter of judgment. Also, it is easy to come
to such a conclusion out of ignorance of some of the existing features. It is probably best
not to complain about such a problem until you have checked the documentation in the
usual ways, feel confident that you understand it, and know for certain that what you want
is not available. The mailing list r-devel@r-project.org is a better place for discussions
of this sort than the bug list.

If you are not sure what the command is supposed to do after a careful reading of the
manual this indicates a bug in the manual. The manual’s job is to make everything clear.
It is just as important to report documentation bugs as program bugs.

If the online argument list of a function disagrees with the manual, one of them must be
wrong, so report the bug.

How to report a bug

When you decide that there is a bug, it is important to report it and to report it in a
way which is useful. What is most useful is an exact description of what commands you
type, from when you start R until the problem happens. Always include the version of R,
machine, and operating system that you are using; type version in R to print this. To help
us keep track of which bugs have been fixed and which are still open please send a separate
report for each bug.

The most important principle in reporting a bug is to report FACTS, not hypotheses or
categorizations. It is always easier to report the facts, but people seem to prefer to strain
to posit explanations and report them instead. If the explanations are based on guesses
about how R is implemented, they will be useless; we will have to try to figure out what
the facts must have been to lead to such speculations. Sometimes this is impossible. But
in any case, it is unnecessary work for us.

For example, suppose that on a data set which you know to be quite large the com-
mand data.frame(x, y, z, monday, tuesday) never returns. Do not report that
data.frame() fails for large data sets. Perhaps it fails when a variable name is a day
of the week. If this is so then when we got your report we would try out the data.frame ()
command on a large data set, probably with no day of the week variable name, and not see
any problem. There is no way in the world that we could guess that we should try a day of
the week variable name.

82

builtins

Or perhaps the command fails because the last command you used was a [method that had
a bug causing R’s internal data structures to be corrupted and making the data.frame()
command fail from then on. This is why we need to know what other commands you have
typed (or read from your startup file).

It is very useful to try and find simple examples that produce apparently the same bug, and
somewhat useful to find simple examples that might be expected to produce the bug but
actually do not. If you want to debug the problem and find exactly what caused it, that is
wonderful. You should still report the facts as well as any explanations or solutions.

Invoking R with the ‘--vanilla’ option may help in isolating a bug. This ensures that the
site profile and saved data files are not read.

A bug report can be generated using the bug.report() function. This automatically in-
cludes the version information and sends the bug to the correct address. Alternatively
the bug report can be emailed to (r-bugs@r-project.org) or submitted to the Web page at
http://bugs.r-project.org.

Bug reports on contributed packages should perhaps be sent to the package maintainer
rather than to r-bugs.

Author(s)

This help page is adapted from the Emacs manual and the R FAQ

See Also

R FAQ

builtins Returns the names of all built-in objects

Description

Return the names of all the built-in objects. These are fetched directly from the symbol
table of the R interpreter.

Usage

builtins(internal = FALSE)

Arguments

internal a logical indicating whether only “internal” functions (which can be called
via .Internal) should be returned.

http://bugs.r-project.org

bxp

83

bxp

Bozx Plots from Summaries

Description

bxp draws box plots based on the given summaries in z. It is usually called from within
boxplot, but can be invoked directly.

Usage

bxp(z, notch = FALSE, width = NULL, varwidth = FALSE, outline = TRUE,

notch.frac

log =
add =

Arguments

Z

notch

width

varwidth

outline

boxwex

notch.frac

border
col

log
frame.plot
horizontal
add

at

show.names

= 0.5, boxwex = 0.8, border = par("fg"), col = NULL,

, pars = NULL, frame.plot = axes, horizontal = FALSE,
FALSE, at = NULL, show.names=NULL, ...)

a list containing data summaries to be used in constructing the plots.
These are usually the result of a call to boxplot, but can be generated in
any fashion.

if notch is TRUE, a notch is drawn in each side of the boxes. If the notches
of two plots do not overlap then the medians are significantly different at
the 5 percent level.

a vector giving the relative widths of the boxes making up the plot.

if varwidth is TRUE, the boxes are drawn with widths proportional to the
square-roots of the number of observations in the groups.

if outline is not true, the boxplot lines are not drawn.

a scale factor to be applied to all boxes. When there are only a few
groups, the appearance of the plot can be improved by making the boxes
narrower.

numeric in (0,1). When notch=TRUE, the fraction of the box width that
the notches should use.

character, the color of the box borders. Is recycled for multiple boxes.
character; the color within the box. Is recycled for multiple boxes

character, indicating if any axis should be drawn in logarithmic scale, as
in plot.default.

logical, indicating if a “frame” (box) should be drawn; defaults to TRUE,
unless axes = FALSE is specified.

logical indicating if the boxplots should be horizontal; default FALSE
means vertical boxes.

logical, if true add boxplot to current plot.

numeric vector giving the locations where the boxplots should be drawn,
particularly when add = TRUE; defaults to 1:n where n is the number of
boxes.

Set to TRUE or FALSE to override the defaults on whether an x-axis label
is printed for each group.

84 by
pars, ... graphical parameters can be passed as arguments to this function, either
as a list (pars) or normally(. . .).
Currently, pch, cex, and bg are passed to points,
ylim and axes to the main plot (plot.default), xaxt, yaxt, las to axis
and the others to title.
Value

An invisible vector, actually identical to the at argument, with the coordinates (

horizontal is false, ”y” otherwise) of box centers, useful for adding to the plot.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth

& Brooks/Cole.

Examples

set.seed(753)

str(bx.p <- boxplot(split(rt(100, 4), g1(5,20))))

op <- par(mfrow= c(2,2))

bxp(bx.p, xaxt = "n"

bxp(bx.p, notch = TRUE, axes = FALSE, pch = 4)

bxp(bx.p, notch = TRUE, col= "lightblue", frame= FALSE, outl= FALSE,
main = "bxp(*, frame= FALSE, outl= FALSE)")

bxp(bx.p, notch = TRUE, col= "lightblue", border="red", ylim = c(-4,4),

pch = 22, bg = "green", log = "x", main = "... log='x', ylim=x")
par (op)
op <- par(mfrow= c(1,2))
data(PlantGrowth)

single group -- no label

boxplot (weight~group,data=PlantGrowth, subset=group=="ctrl")

bx<-boxplot (weight~group,data=PlantGrowth, subset=group=="ctrl",plot=FALSE)
with label

bxp (bx, show.names=TRUE)

par (op)

77X77 if

by Apply a Function to a Data Frame split by Factors

Description

Function by is an object-oriented wrapper for tapply applied to data frames.

Usage

by(data, INDICES, FUN, ...)

Arguments
data an R object, normally a data frame, possibly a matrix.
INDICES a factor or a list of factors, each of length nrow(x).
FUN a function to be applied to data frame subsets of x.

further arguments to FUN.

C 85

Details

A data frame is split by row into data frames subsetted by the values of one or more factors,
and function FUN is applied to each subset in term.

Object data will be coerced to a data frame by default.

Value

A list of class "by", giving the results for each subset.

See Also

tapply

Examples

data(warpbreaks)

attach(warpbreaks)

by (warpbreaks[, 1:2], tension, summary)

by (warpbreaks[, 1], list(wool=wool, tension=tension), summary)
by (warpbreaks, tension, function(x) lm(breaks ~ wool, data=x))

now suppose we want to extract the coefficients by group
tmp <- by(warpbreaks, tension, function(x) lm(breaks ~ wool, data=x))

sapply (tmp, coef)

detach("warpbreaks")

C Sets Contrasts for a Factor

Description

Sets the "contrasts" attribute for the factor.

Usage
C(object, contr, how.many, ...)
Arguments
object a factor or ordered factor
contr which contrasts to use. Can be a matrix with one row for each level of the
factor or a suitable function like contr.poly or a character string giving
the name of the function
how.many the number of contrasts to set, by default one less than nlevels(object).
additional arguments for the function contr.
Details

For compatibility with S, contr can be treatment, helmert, sum or poly (without quotes)
as shorthand for contr.treatment and so on.

86 c

Value

The factor object with the "contrasts" attribute set.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models
in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

contrasts, contr.sum, etc.

Examples

reset contrasts to defaults
options(contrasts=c("contr.treatment", "contr.poly"))
data(warpbreaks)

attach(warpbreaks)

tens <- C(tension, poly, 1)

attributes(tens)

detach()

tension SHOULD be an ordered factor, but as it is not we can use
aov(breaks ~ wool + tens + tension, data=warpbreaks)

show the use of ... The default contrast is contr.treatment here
summary (lm(breaks ~ wool + C(tension, base=2), data=warpbreaks))

data(esoph) # following on from help(esoph)

model3 <- glm(cbind(ncases, ncontrols) ~ agegp + C(tobgp, , 1) +
C(alcgp, , 1), data = esoph, family = binomial())

summary (model3)

c Combine Values into a Vector or List

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced
to a common type which is the type of the returned value.
Usage

c(..., recursive=FALSE)

Arguments

objects to be concatenated.

recursive logical. If recursive=TRUE, the function recursively descends through
lists combining all their elements into a vector.

call

References

87

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth

& Brooks/Cole.

See Also

unlist and as.vector to produce attribute-free vectors.

Examples

c(1,7:9)
c(1:5, 10.5, "next")

append to a list:

11 <- list(A = 1, c="C")

do *not* use

c(1ll, 4 = 1:3) # which is == c(11, as.list(c(d=1:3))
but rather

c(11, 4 = 1ist(1:3))# c() combining two lists

c(list (A=c(B=1)), recursive=TRUE)

c(options(), recursive=TRUE)
c(list (A=c(B=1,C=2), B=c(E=7)), recursive=TRUE)

call Function Calls

Description

Create or test for objects of mode "call".

Usage

call(name, ...)
is.call(x)
as.call(x)

Arguments
name a character string naming the function to be called.
arguments to be part of the call.
X an arbitrary R object.
Detalils

call returns an unevaluated function call, that is, an unevaluated expression which consists
of the named function applied to the given arguments (name must be a quoted string which

gives the name of a function to be called).

is.call is used to determine whether x is a call (i.e., of mode "call"). It is generic: you

can write methods to handle of specific classes of objects, see InternalMethods.

Objects of mode "list" can be coerced to mode "call". The first element of the list
becomes the function part of the call, so should be a function or the name of one (as a

symbol; a quoted string will not do).

88 capabilities

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

do.call for calling a function by name and argument list; Recall for recursive calling of
functions; further is.language, expression, function.

Examples

is.call(call) #-> FALSE: Functions are NOT calls

set up a function call to round with argument 10.5
cl <- call("round", 10.5)

is.call(cl)# TRUE

cl

such a call can also be evaluated.

eval(cl)# [1] 10

capabilities Report Capabilities of this Build of R

Description

Report on the optional features which have been compiled into this build of R.

Usage

capabilities(what = NULL)

Arguments
what character vector or NULL, specifying required components. NULL implies
that all are required.
Value

A named logical vector. Current components are

jpeg Is the jpeg function operational?

png Is the png function operational?

tcltk Is the tcltk package operational?

X11 (Unix) Are X11 and the data editor available?

GNOME (Unix) Is the GNOME GUI in use and are GTK and GNOME graphics devices
available?

libz Is gzfile available? From R 1.5.0 this will always be true.

http/ftp Are url and the internal method for download.file available?

sockets Are make.socket and related functions available?

libxml Is there support for integrating 1ibxml with the R event loop?

capture.output 89

cledit Is command-line editing available in the current R session? This is false in
non-interactive sessions. It will be true if readline supported has been
compiled in and ‘--no-readline’ was not invoked.

IEEE754 Does this platform have IEEE 754 arithmetic? Note that this is more
correctly known by the international standard IEC 60559.

bzip2 Is bzfile available?

PCRE Is the Perl-Compatible Regular Expression library available? This is
needed for the perl = TRUE option to grep are related function.

See Also

.Platform

Examples

capabilities()

if (!capabilities("http/ftp"))
warning ("internal download.file() is not available")

See also the examples for 'connections'.

capture.output Send output to a character string or file

Description
Evaluates its arguments with the output being returned as a character string or sent to a
file. Related to sink in the same way that with is related to attach.

Usage

capture.output(..., file = NULL, append = FALSE)

Arguments
Expressions to be evaluated
file A file name or a connection, or NULL to return the output as a string. If
the connnection is not open it will be opened and then closed on exit.
append Append or overwrite the file?
Value

A character string, or NULL if a file argument was supplied.

See Also

sink, textConnection

90 cars

Examples

glmout<-capture.output (example (glm))
glmout [1:5]

capture.output (1+1,2+2)

capture.output ({1+1;2+23})

Not run:

on Unix with enscript available
ps<-pipe("enscript -o tempout.ps","w")
capture.output (example (glm), file=ps)
close(ps)

End(Not run)

cars Speed and Stopping Distances of Cars

Description

The data give the speed of cars and the distances taken to stop. Note that the data were
recorded in the 1920s.

Usage

data(cars)

Format

A data frame with 50 observations on 2 variables.
[,1] speed numeric Speed (mph)
[2] dist numeric Stopping distance (ft)

Source

Ezekiel, M. (1930) Methods of Correlation Analysis. Wiley.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples
data(cars)
plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
las = 1)
lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")
title(main = "cars data")

plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
las = 1, log = "xy")
title(main = "cars data (logarithmic scales)")
lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")
summary (fml <- 1lm(log(dist) ~ log(speed), data = cars))
opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
mar = c(4.1, 4.1, 2.1, 1.1))

case/variable.names 91

plot(fm1)
par (opar)

An example of polynomial regression
plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
las = 1, x1lim = c(0, 25))

d <- seq(0, 25, len = 200)

for(degree in 1:4) {
fm <- 1lm(dist ~ poly(speed, degree), data = cars)
assign(paste("cars", degree, sep="."), fm)
lines(d, predict(fm, data.frame(speed=d)), col = degree)

}

anova(cars.1, cars.2, cars.3, cars.4)

case/variable.names Case and Variable Names of Fitted Models

Description

Simple utilities returning (non-missing) case names, and (non-eliminated) variable names.

Usage

case.names(object, ...)
S3 method for class 'Ilm':
case.names (object, full = FALSE, ...)

variable.names(object, ...)
S3 method for class 'Ilm':
variable.names(object, full = FALSE, ...)

Arguments
object an R object, typically a fitted model.
full logical; if TRUE, all names (including zero weights, ...) are returned.
further arguments passed to or from other methods.
Value

A character vector.

See Also

1m

Examples

x <= 1:20

y <= x + (x/4 - 2)°3 + rnorm(20, s=3)

names (y) <- paste("0",x,sep=".")

ww <- rep(1,20); ww[13] <- 0

summary (Imxy <- Im(y ~ x + I(x"2)+I(x"3) + I((x-10)"2),
weights = ww), cor = TRUE)

92

cat

variable.names (1mxy)
variable.names (lmxy, full= TRUE)# includes the last

case.names (1mxy)

case.names (1mxy, full = TRUE)# includes the O-weight case

cat

Concatenate and Print

Description

Prints the arguments, coercing them if necessary to character mode first.

Usage

cat(...

file = "", sep = " ", fill = FALSE, labels = NULL,

append = FALSE)

Arguments

file

sep
£ill

labels
append

Detalils

R objects which are coerced to character strings, concatenated, and
printed, with the remaining arguments controlling the output.

A connection, or a character string naming the file to print to. If "" (the
default), cat prints to the standard output connection, the console unless
redirected by sink. If it is "|cmd", the output is piped to the command
given by ‘cmd’, by opening a pipe connection.

character string to insert between the objects to print.

a logical or numeric controlling how the output is broken into successive
lines. If FALSE (default), only newlines created explicitly by ‘\n’ are
printed. Otherwise, the output is broken into lines with print width equal
to the option width if £i1l is TRUE, or the value of £ill if this is numeric.

character vector of labels for the lines printed. Ignored if £i11 is FALSE.

logical. Only used if the argument file is the name of file (and not a con-
nection or "|cmd"). If TRUE output will be appended to file; otherwise,
it will overwrite the contents of file.

cat converts its arguments to character strings, concatenates them, separating them by the
given sep= string, and then prints them.

No linefeeds are printed unless explicitly requested by ‘\n’ or if generated by filling (if
argument £ill is TRUE or numeric.)

cat is useful for producing output in user-defined functions.

Value

None (invisible NULL).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth

& Brooks/Cole.

Cauchy 93

See Also

print, format, and paste which concatenates into a string.

Examples

iter <- rpois(1l, lambda=10)
print an informative message
cat("iteration = ", iter <- iter + 1, "\n")

'fill' and label lines:
cat(paste(letters, 100% 1:26), fill = TRUE,
labels = paste("{",1:10,"}:",sep=""))

Cauchy The Cauchy Distribution

Description
Density, distribution function, quantile function and random generation for the Cauchy
distribution with location parameter location and scale parameter scale.

Usage

dcauchy(x, location =
pcauchy(q, location =

scale = 1, log = FALSE)
scale = 1, lower.tail = TRUE, log.p = FALSE)

-

-

O O O O

qcauchy(p, location = scale = 1, lower.tail = TRUE, log.p = FALSE)
rcauchy(n, location = 0, scale = 1)
Arguments
X, q vector of quantiles.
P vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the

number required.
location, scale
location and scale parameters.

log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < z], otherwise, P[X >
Details

If location or scale are not specified, they assume the default values of 0 and 1 respec-
tively.

The Cauchy distribution with location [and scale s has density

f<x>=7js<1+(’”$‘l>2>_

for all x.

94 cbind

Value
dcauchy, pcauchy, and qcauchy are respectively the density, distribution function and
quantile function of the Cauchy distribution. rcauchy generates random deviates from the
Cauchy.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

dt for the t distribution which generalizes dcauchy(*, 1 = 0, s = 1).

Examples

dcauchy(-1:4)

cbind Combine R Objects by Rows or Columns

Description

Take a sequence of vector, matrix or data frames arguments and combine by columns or
rows, respectively. These are generic functions with methods for other R classes.

Usage
cbind(..., deparse.level = 1)
rbind(..., deparse.level = 1)

Arguments

vectors or matrices. These can be given as named arguments.

deparse.level integer controlling the construction of labels; currently, 1 is the only pos-
sible value.

Details

The functions cbind and rbind are generic, with methods for data frames. The data frame
method will be used if an argument is a data frame and the rest are vectors or matrices.
There can be other methods; in particular, there is one for time series objects.

The rbind data frame method takes the classes of the columns from the first data frame.
Factors are have their levels expanded as necessary (in the order of the levels of the lev-
elsets of the factors encountered) and the result is an ordered factor if and only if all the
components were ordered factors. (The last point differs from S-PLUS.)

If there are several matrix arguments, they must all have the same number of columns (or
rows) and this will be the number of columns (or rows) of the result. If all the arguments
are vectors, the number of columns (rows) in the result is equal to the length of the longest
vector. Values in shorter arguments are recycled to achieve this length (with a warning if
they are recycled only fractionally).

cbind 95

When the arguments consist of a mix of matrices and vectors the number of columns (rows)
of the result is determined by the number of columns (rows) of the matrix arguments. Any
vectors have their values recycled or subsetted to achieve this length.

For cbind (rbind), vectors of zero length (including NULL) are ignored unless the result
would have zero rows (columns), for S compatibility. (Zero-extent matrices do not occur in
S3 and are not ignored in R.)

Value

A matrix or data frame combining the ... arguments column-wise or row-wise.

For cbind (rbind) the column (row) names are taken from the names of the arguments,
or where those are not supplied by deparsing the expressions given (if that gives a sensible
name). The names will depend on whether data frames are included: see the examples.

Note
The method dispatching is not done via UseMethod(), but by C-internal dispatching.
Therefore, there is no need for, e.g., rbind.default.

The dispatch algorithm is described in the source file (‘.../src/main/bind.c’) as

1. For each argument we get the list of possible class memberships from the class attribute.
2. We inspect each class in turn to see if there is an an applicable method.

3. If we find an applicable method we make sure that it is identical to any method
determined for prior arguments. If it is identical, we proceed, otherwise we immediately
drop through to the default code.

If you want to combine other objects with data frames, it may be necessary to coerce them
to data frames first. (Note that this algorithm can result in calling the data frame method
if the arguments are all either data frames or vectors, and this will result in the coercion of
character vectors to factors.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

¢ to combine vectors (and lists) as vectors, data.frame to combine vectors and matrices as
a data frame.

Examples

cbind(1, 1:7) # the 'l' (= shorter vector) is recycled
cbind(1:7, diag(3))# vector is subset -> warning

cbind (0, rbind(1, 1:3))

cbind(I=0, X=rbind(a=1, b=1:3)) # use some names

xx <- data.frame(I=rep(0,2))

cbind(xx, X=rbind(a=1, b=1:3)) # named differently

cbind (0, matrix(1l, nrow=0, ncol=4))#> Warning (making sense)
dim(cbind (0, matrix(1, nrow=2, ncol=0)))#-> 2 x 1

96 character

char.expand Expand a String with Respect to a Target Table

Description
Seeks a unique match of its first argument among the elements of its second. If successful,
it returns this element; otherwise, it performs an action specified by the third argument.
Usage

char.expand(input, target, nomatch = stop("no match"))

Arguments

input a character string to be expanded.

target a character vector with the values to be matched against.

nomatch an R expression to be evaluated in case expansion was not possible.
Details

This function is particularly useful when abbreviations are allowed in function arguments,
and need to be uniquely expanded with respect to a target table of possible values.
See Also

charmatch and pmatch for performing partial string matching.

Examples

locPars <- c("mean", "median", "mode")
char.expand("me", locPars, warning("Could not expand!"))
char.expand("mo", locPars)

character Character Vectors

Description

Create or test for objects of type "character".

Usage

character(length = 0)
as.character(x, ...)
is.character(x)

Arguments
length desired length.
X object to be coerced or tested.

further arguments passed to or from other methods.

charmatch 97

Details

as.character and is.character are generic: you can write methods to handle specific
classes of objects, see InternalMethods.

Value
character creates a character vector of the specified length. The elements of the vector
are all equal to "".

as.character attempts to coerce its argument to character type; like as.vector it strips
attributes including names.

is.character returns TRUE or FALSE depending on whether its argument is of character
type or not.

Note
as.character truncates components of language objects to 500 characters (was about 70
before 1.3.1).

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

paste, substr and strsplit for character concatenation and splitting, chartr for char-
acter translation and casefolding (e.g., upper to lower case) and sub, grep etc for string
matching and substitutions. Note that help.search(keyword = "character") gives even
more links. deparse, which is normally preferable to as.character for language objects.

Examples
form <-y “a+b+c
as.character(form) ## length 3
deparse(form) ## like the input
charmatch Partial String Matching
Description

charmatch seeks matches for the elements of its first argument among those of its second.

Usage

charmatch(x, table, nomatch = NA)

Arguments
X the values to be matched.
table the values to be matched against.

nomatch the value returned at non-matching positions.

98 chartr

Details

Exact matches are preferred to partial matches (those where the value to be matched has
an exact match to the initial part of the target, but the target is longer).

If there is a single exact match or no exact match and a unique partial match then the
index of the matching value is returned; if multiple exact or multiple partial matches are
found then 0 is returned and if no match is found then NA is returned.

Author(s)

This function is based on a C function written by Terry Therneau.

See Also

pmatch, match.

grep or regexpr for more general (regexp) matching of strings.

Examples
charmatch("", "") # returns 1
charmatch("m", c("mean", "median", "mode")) # returns O
charmatch("med", c("mean", "median", "mode")) # returns 2
chartr Character Translation and Casefolding
Description

Translate characters in character vectors, in particular from upper to lower case or vice
versa.

Usage

chartr(old, new, x)
tolower (x)

toupper (x)

casefold(x, upper = FALSE)

Arguments
X a character vector.
old a character string specifying the characters to be translated.
new a character string specifying the translations.

upper logical: translate to upper or lower case?.

check.options 99

Details

chartr translates each character in x that is specified in 01d to the corresponding character
specified in new. Ranges are supported in the specifications, but character classes and
repreated characters are not. If old contains more characters than new, an error is signaled;
if it contains fewer characters, the extra characters at the end of new are ignored.

tolower and toupper convert upper-case characters in a character vector to lower-case, or
vice versa. Non-alphabetic characters are left unchanged.

casefold is a wrapper for tolower and toupper provided for compatibility with S-PLUS.

See Also

sub and gsub for other substitutions in strings.

Examples

x <- "MiXeD cAsE 123"
chartr("iXs", "why", x)
chartr("a-cX", "D-Fw", x)
tolower (x)

toupper (x)

check.options Set Options with Consistency Checks

Description

Utility function for setting options with some consistency checks. The attributes of
the new settings in new are checked for consistency with the model (often default) list
in name. opt.

Usage

check.options(new, name.opt, reset = FALSE, assign.opt = FALSE,
envir = .GlobalEnv, check.attributes = c("mode", "length"),
override.check = FALSE)

Arguments

new a named list

name.opt character with the name of R object containing the “model” (default) list.

reset logical; if TRUE, reset the options from name.opt. If there is more than
one R object with name name.opt, remove the first one in the search()
path.

assign.opt logical; if TRUE, assign the ...

envir the environment used for get and assign.

check.attributes
character containing the attributes which check.options should check.
override.check
logical vector of length length(new) (or 1 which entails recycling). For
those new[i] where override.check[i] == TRUE, the checks are overri-
den and the changes made anyway.

100 chickwts

Value

A list of components with the same names as the one called name.opt. The values of the
components are changed from the new list, as long as these pass the checks (when these are
not overridden according to override.check).

Author(s)
Martin Maechler

See Also

ps.options which uses check.options.

Examples

L1 <- list(a=1:3, b=pi, ch="CH")
str(L2 <- check.options(list(a=0:2), name.opt = "L1"))
str(check.options(NULL, reset = TRUE, name.opt = "L1"))

chickwts Chicken Weights by Feed Type

Description
An experiment was conducted to measure and compare the effectiveness of various feed
supplements on the growth rate of chickens.

Usage

data(chickwts)

Format
A data frame with 71 observations on 2 variables.

weight a numeric variable giving the chick weight.

feed a factor giving the feed type.

Details

Newly hatched chicks were randomly allocated into six groups, and each group was given a
different feed supplement. Their weights in grams after six weeks are given along with feed

types.

Source

Anonymous (1948) Biometrika, 35, 214.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Chisquare 101

Examples

data(chickwts)

boxplot (weight ~ feed, data = chickwts, col = "lightgray",
varwidth = TRUE, notch = TRUE, main = "chickwt data",
ylab = "Weight at six weeks (gm)")

anova(fml <- lm(weight ~ feed, data = chickwts))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
par (opar)

Chisquare The (non-central) Chi-Squared Distribution

Description
Density, distribution function, quantile function and random generation for the chi-squared
(x?) distribution with df degrees of freedom and optional non-centrality parameter ncp.
Usage

dchisq(x, df, ncp=0, log = FALSE)
pchisq(q, df, ncp=0, lower.tail = TRUE, log.p = FALSE)

qchisq(p, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
rchisq(n, df, ncp=0)
Arguments
X, q vector of quantiles.
P vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the
number required.
daf degrees of freedom (non-negative, but can be non-integer).
ncp non-centrality parameter (non-negative). Note that ncp values larger than

about 1417 are not allowed currently for pchisq and gqchisq.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x|, otherwise, P[X >

Details

The chi-squared distribution with df= n degrees of freedom has density

1
_ n/2—1_—x/2
for £ > 0. The mean and variance are n and 2n.

The non-central chi-squared distribution with df= n degrees of freedom and non-centrality
parameter ncp = A has density

sy = ey OB g)

r=0

102 Chisquare

for x > 0. For integer n, this is the distribution of the sum of squares of n normals each
with variance one, A being the sum of squares of the normal means. Note that the degrees
of freedom df= n, can be non-integer, and for non-centrality A > 0, even n = 0; see the
reference, chapter 29.

Value

dchisq gives the density, pchisq gives the distribution function, qchisq gives the quantile
function, and rchisq generates random deviates.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Johnson, Kotz and Balakrishnan (1995). Continuous Univariate Distributions, Vol 2; Wiley
NY;

)

See Also

dgamma for the Gamma distribution which generalizes the chi-squared one.

Examples

dchisq(1l, df=1:3)
pchisq(l, df= 3)
pchisq(l, df= 3, ncp = 0:4)# includes the above

x <- 1:10

Chi-squared(df = 2) is a special exponential distribution
all.equal(dchisq(x, df=2), dexp(x, 1/2))

all.equal(pchisq(x, df=2), pexp(x, 1/2))

non-central RNG -- df=0 is ok for ncp > 0: ZO has point mass at 0!
Z0 <- rchisq(100, df = 0, ncp = 2.)
stem(Z0)

Not run:
visual testing
do P-P plots for 1000 points at various degrees of freedom
L <= 1.2; n <- 1000; pp <- ppoints(n)
op <- par(mfrow = c(3,3), mar= c(3,3,1,1)+.1, mgp= c(1.5,.6,0),
oma = c¢(0,0,3,0))
for(df in 2~ (4*rnorm(9))) {
plot(pp, sort(pchisq(rr <- rchisq(n,df=df, ncp=L), df=df, ncp=L)),
ylab="pchisq(rchisq(.),.)", pch=".")
mtext (paste("df = ",formatC(df, digits = 4)), line= -2, adj=0.05)
abline(0,1,col=2)
}
mtext (expression("P-P plots : Noncentral "*
chi”2 *"(n=1000, df=X, ncp= 1.2)"),
cex = 1.5, font = 2, outer=TRUE)
par (op)
End(Not run)

chol 103

chol The Choleski Decomposition

Description

Compute the Choleski factorization of a real symmetric positive-definite square matrix.

Usage

chol(x, pivot = FALSE, LINPACK = pivot)

La.chol(x)
Arguments

X a real symmetric, positive-definite matrix

pivot Should pivoting be used?

LINPACK logical. Should LINPACK be used (for compatibility with R < 1.7.0)?
Details

chol(pivot = TRUE) provides an interface to the LINPACK routine DCHDC. La.chol
provides an interface to the LAPACK routine DPOTRF.

Note that only the upper triangular part of x is used, so that R'R = x when x is symmetric.

If pivot = FALSE and x is not non-negative definite an error occurs. If x is positive semi-
definite (i.e., some zero eigenvalues) an error will also occur, as a numerical tolerance is
used.

If pivot = TRUE, then the Choleski decomposition of a positive semi-definite x can be
computed. The rank of x is returned as attr(Q, "rank"), subject to numerical errors. The
pivot is returned as attr(Q, "pivot"). It is no longer the case that t(Q) %*% Q equals
x. However, setting pivot <- attr(Q, "pivot") and oo <- order(pivot), it is true
that t(Q[, ool) %x*% Q[, ool equals x, or, alternatively, t(Q) %*% Q equals x[pivot,
pivot]. See the examples.

Value

The upper triangular factor of the Choleski decomposition, i.e., the matrix R such that
R'R = z (see example).

If pivoting is used, then two additional attributes "pivot" and "rank" are also returned.

Warning

The code does not check for symmetry.

If pivot = TRUE and x is not non-negative definite then there will be no error message but
a meaningless result will occur. So only use pivot = TRUE when x is non-negative definite
by construction.

104 chol2inv
References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.
Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: SIAM Publications.
Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. STAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.
See Also
chol2inv for its inverse (without pivoting), backsolve for solving linear systems with
upper triangular left sides.
qr, svd for related matrix factorizations.
Examples
(m <- matrix(c(5,1,1,3),2,2))
(cm <- chol(m))
t(cm) %*% cm #-- = 'm'
crossprod(cm) #-- = 'm'
now for something positive semi-definite
x <- matrix(c(1:5, (1:5)°2), 5, 2)
x <- cbind(x, x[, 1] + 3*x[, 2])
m <- crossprod(x)
qr(m)$rank # is 2, as it should be
chol() may fail, depending on numerical rounding:
chol() unlike qr() does not use a tolerance.
try(chol(m))
(Q <- chol(m, pivot = TRUE)) # NB wrong rank here ... see Warning section.
we can use this by
pivot <- attr(Q, "pivot")
0o <- order(pivot)
t(QL, ool) %*% Q[, ool # recover m
chol2inv Inverse from Choleski Decomposition
Description
Invert a symmetric, positive definite square matrix from its Choleski decomposition.
Usage

chol2inv(x, size = NCOL(x), LINPACK = FALSE)
La.chol2inv(x, size = ncol(x))

http://www.netlib.org/lapack/lug/lapack_lug.html

chull 105

Arguments
X a matrix. The first nc columns of the upper triangle contain the Choleski
decomposition of the matrix to be inverted.
size the number of columns of x containing the Choleski decomposition.
LINPACK logical. Should LINPACK be used (for compatibility with R < 1.7.0)?
Details

chol12inv(LINPACK=TRUE) provides an interface to the LINPACK routine DPODI.
La.chol2inv provides an interface to the LAPACK routine DPOTRI.

Value

The inverse of the decomposed matrix.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: STAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. STAM. Avail-
able on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.
See Also

chol, solve.

Examples

cma <- chol(ma <- cbind(1, 1:3, c(1,3,7)))
ma %*% chol2inv(cma)

chull Compute Convexr Hull of a Set of Points

Description

Computes the subset of points which lie on the convex hull of the set of points specified.

Usage
chull(x, y=NULL)

Arguments
X, ¥ coordinate vectors of points. This can be specified as two vectors x and y,
a 2-column matrix x, a list x with two components, etc, see xy.coords.
Detalils

xy.coords is used to interpret the specification of the points. The algorithm is that given
by Eddy (1977).

‘Peeling’ as used in the S function chull can be implemented by calling chull recursively.

http://www.netlib.org/lapack/lug/lapack_lug.html

106 citation

Value

An integer vector giving the indices of the points lying on the convex hull, in clockwise
order.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Eddy, W. F. (1977) A new convex hull algorithm for planar sets. ACM Transactions on
Mathematical Software, 3, 398-403.

Eddy, W. F. (1977) Algorithm 523. CONVEX, A new convex hull algorithm for planar
sets[Z]. ACM Transactions on Mathematical Software, 3, 411-412.

See Also

Xy .coords,polygon

Examples

X <- matrix(rnorm(2000), ncol=2)
plot(X, cex=0.5)

hpts <- chull(X)

hpts <- c(hpts, hpts[1])
lines(X[hpts, 1)

citation Citing R in Publications

Description

How to cite R in publications.

Usage

citation()

Details

Execute function citation() for information on how to cite R in publications.

class 107

class Object Classes

Description

R possesses a simple generic function mechanism which can be used for an object-oriented
style of programming. Method dispatch takes place based on the class of the first argument
to the generic function.

Usage

class(x)

class(x) <- value

unclass (x)

inherits(x, what, which = FALSE)

oldClass (x)
0ldClass(x) <- value

Arguments

X a R object

what, value a character vector naming classes.

which logical affecting return value: see Details.
Details

Many R objects have a class attribute, a character vector giving the names of the classes
which the object “inherits” from. If the object does not have a class attribute, it has an
implicit class, "matrix", "array" or the result of mode(x). (Functions oldClass and
0ldClass<- get and set the attribute, which can also be done directly.)

When a generic function fun is applied to an object with class attribute c("first",
"second"), the system searches for a function called fun.first and, if it finds it, ap-
plies it to the object. If no such function is found, a function called fun.second is tried. If
no class name produces a suitable function, the function fun.default is used (if it exists).
If there is no class attribute, the implicit class is tried, then the default method.

The function class prints the vector of names of classes an object inherits from. Corre-
spondingly, class<- sets the classes an object inherits from.

unclass returns (a copy of) its argument with its class attribute removed.

inherits indicates whether its first argument inherits from any of the classes specified in
the what argument. If which is TRUE then an integer vector of the same length as what is
returned. Each element indicates the position in the class(x) matched by the element of
what; zero indicates no match. If which is FALSE then TRUE is returned by inherits if any
of the names in what match with any class.

108 close.socket

Formal classes

An additional mechanism of formal classes has been available in packages methods since
R 1.4.0, and as from R 1.7.0 this is attached by default. For objects which have a formal
class, its name is returned by class as a character vector of length one.

The replacement version of the function sets the class to the value provided. For classes
that have a formal definition, directly replacing the class this way is strongly deprecated.
The expression as(object, value) is the way to coerce an object to a particular class.

Note

Functions 01ldClass and oldClass<- behave in the same way as functions of those names
in S-PLUS 5/6, but in R UseMethod dispatches on the class as returned by class rather
than oldClass.

See Also

UseMethod, NextMethod.

Examples

x <- 10

inherits(x, "a") #FALSE

class(x)<-c("a", "b")

inherits(x,"a") #TRUE

inherits(x, "a", TRUE) # 1

inherits(x, c("a", "b", "c"), TRUE) # 1 2 0

close.socket Close a Socket

Description

Closes the socket and frees the space in the file descriptor table. The port may not be freed

immediately.
Usage
close.socket (socket, ...)
Arguments
socket A socket object
further arguments passed to or from other methods.
Value

logical indicating success or failure

Author(s)

Thomas Lumley

co2 109

See Also

make.socket, read.socket

co2 Mauna Loa Atmospheric CO2 Concentration

Description

Atmospheric concentrations of CO5 are expressed in parts per million (ppm) and reported
in the preliminary 1997 SIO manometric mole fraction scale.

Usage

data(co2)

Format

A time series of 468 observations; monthly from 1959 to 1997.

Details

The values for February, March and April of 1964 were missing and have been obtained by
interpolating linearly between the values for January and May of 1964.

Source

Keeling, C. D. and Whorf, T. P., Scripps Institution of Oceanography (SIO), University of
California, La Jolla, California USA 92093-0220.

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2.

References

Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

Examples
data(co2)
plot(co2, ylab = expression("Atmospheric concentration of C0"[2]),
las = 1)

title(main = "co2 data set")

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2

110

codes-deprecated

codes-deprecated Factor Codes

Description

This (generic) function returns a numeric coding of a factor. It can also be used to assign
to a factor using the coded form.

It is now Deprecated.

Usage
codes(x, ...)
codes(x, ...) <- value
Arguments
X an object from which to extract or set the codes.
further arguments passed to or from other methods.
value replacement value.
Value

For an ordered factor, it returns the internal coding (1 for the lowest group, 2 for the second
lowest, etc.).

For an unordered factor, an alphabetical ordering of the levels is assumed, i.e., the level
that is coded 1 is the one whose name is sorted first according to the prevailing collating
sequence. Warning: the sort order may well depend on the locale, and should not be
assumed to be ASCII.

Note

Normally codes is not the appropriate function to use with an unordered factor. Use
unclass or as.numeric to extract the codes used in the internal representation of the
factor, as these do not assume that the codes are sorted.

The behaviour for unordered factors is dubious, but compatible with S version 3. To get
the internal coding of a factor, use as.integer. Note in particular that the codes may not
be the same in different language locales because of collating differences.

See Also

factor, levels, nlevels.

Examples

Not run:
codes (rep(factor(c(20,10)),3))

x <- gl(3,5)
codes(x) [3] <- 2
x

coef 111

data(esoph)
(ag <- esoph$alcgp[12:1])
codes (ag)

codes(factor(1:10)) # BEWARE!
End(Not run)

coef Extract Model Coefficients

Description

coef is a generic function which extracts model coefficients from objects returned by mod-
eling functions. coefficients is an alias for it.

Usage
coef (object, ...)
coefficients(object, ...)
Arguments
object an object for which the extraction of model coefficients is meaningful.

other arguments.

Details

All object classes which are returned by model fitting functions should provide a coef
method. (Note that the method is coef and not coefficients.)

Value

Coefficients extracted from the model object object.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

fitted.values and residuals for related methods; glm, 1m for model fitting.

Examples

x <- 1:5; coef(Im(c(1:3,7,6) ~ x))

112 col2rgb

col Column Indexes

Description

Returns a matrix of integers indicating their column number in the matrix.

Usage

col(x, as.factor=FALSE)

Arguments
X a matrix.
as.factor a logical value indicating whether the value should be returned as a factor
rather than as numeric.
Value

An integer matrix with the same dimensions as x and whose ij-th element is equal to j.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

row to get rows.

Examples

extract an off-diagonal of a matrix
ma <- matrix(1:12, 3, 4)
ma[row(ma) == col(ma) + 1]

create an identity 5-by-5 matrix
x <- matrix(0, nr = 5, nc = 5)
x[row(x) == col(x)] <- 1

col2rgb Color to RGB Conversion

Description

“Any R color” to RGB (red/green/blue) conversion.

Usage

col2rgb(col)

col2rghb 113

Arguments
col vector of any of the three kind of R colors, i.e., either a color name (an
element of colors()), a hexadecimal string of the form "#rrggbb", or an
integer i meaning palette() [i].
Details

For integer colors, 0 is shorthand for the current par ("bg"), and NA means “nothing” which
effectively does not draw the corresponding item.

For character colors, "NA" is equivalent to NA above.

Value

an integer matrix with three rows and number of columns the length (and names if any) as
col.

Author(s)
Martin Maechler

See Also

rgb, colors, palette, etc.

Examples

col2rgb("peachpuff")
col2rgb(c(blu = "royalblue", reddish = "tomato")) # names kept

col2rgb(1:8)# the ones from the palette()
col2rgb(paste("gold", 1:4, sep=""))

col2rgb ("#08a0ff")
all three kind of colors mixed :
col2rgb(c(red="red", palette= 1:3, hex="#abcdef"))

##-- NON-INTRODUCTORY examples —-—

grC <- col2rgb(paste("gray",0:100,sep=""))
table(print (diff(grC["red",])))# '2' or '3': almost equidistant
The 'mamed' grays are in between {"slate gray" is not gray, strictly}
col2rgb(c(gb6="gray66", darkg= "dark gray", g67="gray67",
g74="gray74", gray = "gray", g75="gray75",
g82="gray82", light="light gray", g83="gray83"))

crgb <- col2rgb(cc <- colors())
colnames(crgb) <- cc
t(crgb)## The whole table

ccodes <- c(2567(2:0) %x*}% crgb)## = internal codes
How many names are 'aliases' of each other:
table(tcc <- table(ccodes))

length(uc <- unique(sort(ccodes))) # 502

All the multiply named colors:

mult <- uc[tcc >= 2]

114 colors

cl <- lapply(mult, function(m) cc[ccodes == m])
names (cl) <- apply(col2rgb(sapply(cl, function(x)x[11)),
2, function(n)paste(n, collapse=","))
str(cl)
Not run:
if (require(xgobi)) { ## Look at the color cube dynamically :
tc <- t(crgb[, !duplicated(ccodes)])
table(is.gray <- tc[,1] == tc[,2] & tc[,2] == tc[,3]1)# (397, 105)
xgobi(tc, color = c("gold", "gray")[1 + is.gray])
}
End(Not run)

colors Color Names

Description

Returns the built-in color names which R knows about.

Usage

colors()

Details

These color names can be used with a col= specification in graphics functions.

An even wider variety of colors can be created with primitives rgb and hsv or the derived
rainbow, heat.colors, etc.

Value

A character vector containing all the built-in color names.

See Also

palette for setting the “palette” of colors for par(col=<num>); rgb, hsv, gray; rainbow
for a nice example; and heat.colors, topo.colors for images.

col2rgb for translating to RGB numbers and extended examples.

Examples

str(colors())

colSums

115

colSums

Form Row and Column Sums and Means

Description

Form row and column sums and means for numeric arrays.

Usage

colSums (x, na.
rowSums (x, na.
colMeans(x, na.
rowMeans (x, na.

Arguments

X

na.rm

dims

Details

FALSE, dims
FALSE, dims
FALSE, dims
FALSE, dims

rm
rm

rm

rm

= 1)
= 1)
= 1)
= 1)

an array of two or more dimensions, containing numeric, complex, integer
or logical values, or a numeric data frame.

logical. Should missing values (including NaN) be omitted from the calcu-

lations?

Which dimensions are regarded as “rows” or “columns” to sum over. For
row*, the sum or mean is over dimensions dims+1, ...; for colx* it is
over dimensions 1:dims.

These functions are equivalent to use of apply with FUN = mean or FUN = sum with appro-
priate margins, but are a lot faster. As they are written for speed, they blur over some of

the subtleties of NaN and NA. If na.rm

= FALSE and either NaN or NA appears in a sum, the

result will be one of NaN or NA, but which might be platform-dependent.

Value

A numeric or complex array of suitable size, or a vector if the result is one-dimensional.
The dimnames (or names for a vector result) are taken from the original array.

If there are no values in a range to be summed over (after removing missing values with
na.rm = TRUE), that component of the output is set to O (*Sums) or NA (*Means), consistent
with sum and mean.

See Also

apply, rowsum

Examples

Compute row and column sums for a matrix:

x <- cbind(x1l = 3, x2 = c(4:1, 2:5))

rowSums (x); colSums(x)
dimnames(x) [[1]] <- letters[1:8]
rowSums (x); colSums(x); rowMeans(x); colMeans(x)
x[] <- as.integer(x)
rowSums (x); colSums(x)

116 commandArgs

x[] <- x < 3

rowSums (x); colSums(x)

x <- cbind(x1l = 3, x2 = c(4:1, 2:5))

x[3,] <- NA; x[4, 2] <- NA

rowSums (x); colSums(x); rowMeans(x); colMeans(x)
rowSums (x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

an array

data(UCBAdmissions)

dim (UCBAdmissions)

rowSums (UCBAdmissions) ; rowSums(UCBAdmissions, dims 2)
colSums (UCBAdmissions); colSums(UCBAdmissions, dims = 2)

complex case

x <- cbind(x1l = 3 + 2i, x2 = c(4:1, 2:5) - 5i)

x[3,] <- NA; x[4, 2] <- NA

rowSums (x); colSums(x); rowMeans(x); colMeans(x)
rowSums(x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

commandArgs Extract Command Line Arguments

Description

Provides access to a copy of the command line arguments supplied when this R session was
invoked.

Usage

commandArgs ()

Detalils

These arguments are captured before the standard R command line processing takes place.
This means that they are the unmodified values. If it were useful, we could provide support
an argument which indicated whether we want the unprocessed or processed values.

This is especially useful with the --—args command-line flag to R, as all of the command
line after than flag is skipped.

Value

A character vector containing the name of the executable and the user-supplied command
line arguments. The first element is the name of the executable by which R was invoked.
As far as I am aware, the exact form of this element is platform dependent. It may be the
fully qualified name, or simply the last component (or basename) of the application.

See Also

BATCH

comment 117

Examples

commandArgs ()
Spawn a copy of this application as it was invoked.
system(paste(commandArgs(), collapse=" "))

comment Query or Set a ‘Comment’ Attribute

Description

These functions set and query a comment attribute for any R objects. This is typically
useful for data.frames or model fits.

Contrary to other attributes, the comment is not printed (by print or print.default).

Usage

comment (x)
comment (x) <- value

Arguments

X any R object

value a character vector
See Also

attributes and attr for “normal” attributes.

Examples

x <- matrix(1:12, 3,4)

comment (x) <- c("This is my very important data from experiment #0234",
"Jun 5, 1998")

X

comment (x)

Comparison Relational Operators

Description

Binary operators which allow the comparison of values in vectors.

Usage
x <y
X >y
X <=y
X >=y
x ==y
x l=y

118 COMPILE

Details

Comparison of strings in character vectors is lexicographic within the strings using the
collating sequence of the locale in use: see locales. The collating sequence of locales such
as ‘en_US’ is normally different from ‘C’ (which should use ASCII) and can be surprising.

Value
A vector of logicals indicating the result of the element by element comparison. The elements
of shorter vectors are recycled as necessary.

Objects such as arrays or time-series can be compared this way provided they are con-
formable.

Note

Don’t use == and != for tests, such as in if expressions, where you must get a single TRUE
or FALSE. Unless you are absolutely sure that nothing unusual can happen, you should use
the identical function instead.

For numerical values, remember == and != do not allow for the finite representation of frac-
tions, nor for rounding error. Using all.equal with identical is almost always preferable.
See the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

Syntax for operator precedence.

Examples

x <- rnorm(20)
x <1
x[x > 0]

x1 <- 0.5 -
x2 <- 0.3 -
x1 == x2 # FALSE on most machines
identical(all.equal(xl, x2), TRUE) # TRUE everywhere

COMPILE Compile Files for Use with R

Description

Compile given source files so that they can subsequently be collected into a shared library
using R CMD SHLIB and be loaded into R using dyn.load().

Usage
R CMD COMPILE [options] srcfiles

complete.cases 119

Arguments
srcfiles A list of the names of source files to be compiled. Currently, C, C++
and FORTRAN are supported; the corresponding files should have the
extensions ‘.c’; ‘.cc’ (or ‘.cpp’ or *.C7), and ‘.f’, respectively.
options A list of compile-relevant settings, such as special values for CFLAGS or
FFLAGS, or for obtaining information about usage and version of the utility.
Details

Note that Ratfor is not supported. If you have Ratfor source code, you need to convert it
to FORTRAN. On many Solaris systems mixing Ratfor and FORTRAN code will work.

See Also

SHLIB, dyn.load

complete.cases Find Complete Cases

Description

Return a logical vector indicating which cases are complete, i.e., have no missing values.

Usage

complete.cases(...)

Arguments
a sequence of vectors, matrices and data frames.
Value
A logical vector specifying which observations/rows have no missing values across the entire
sequence.
See Also

is.na, na.omit, na.fail.

Examples

data(airquality)
x <- airquality[, -1] # x is a regression design matrix
y <- airquality[, 1] # y is the corresponding response

stopifnot(complete.cases(y) != is.na(y))
ok <- complete.cases(x,y)

sum(!ok) # how many are not "ok" 7

x <- x[ok,]

y <- ylok]

120 complex

complex Complex Vectors

Description

Basic functions which support complex arithmetic in R.

Usage

complex(length.out = 0, real = numeric(), imaginary = numeric(),
modulus = 1, argument = 0)

as.complex(x, ...)

is.complex(x)

Re (x)
Im(x)
Mod (x)
Arg(x)
Conj (x)
Arguments
length.out numeric. Desired length of the output vector, inputs being recycled as
needed.
real numeric vector.
imaginary numeric vector.
modulus numeric vector.
argument numeric vector.
X an object, probably of mode complex.
further arguments passed to or from other methods.
Details

Complex vectors can be created with complex. The vector can be specified either by giving
its length, its real and imaginary parts, or modulus and argument. (Giving just the length
generates a vector of complex zeroes.)

as.complex attempts to coerce its argument to be of complex type: like as.vector it strips
attributes including names.

Note that is.complex and is.numeric are never both TRUE.

The functions Re, Im, Mod, Arg and Conj have their usual interpretation as returning the
real part, imaginary part, modulus, argument and complex conjugate for complex values.
Modulus and argument are also called the polar coordinates. If z = x + iy with real x and

Y, Mod(z) = /22 + 42, and for ¢ = Arg(z), © = cos(¢) and y = sin(¢).
In addition, the elementary trigonometric, logarithmic and exponential functions are avail-
able for complex values.

is.complex is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

conditions 121

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

0i ~ (-3:3)

matrix(1i~ (-6:5), nr=4)#- all columns are the same
0 ~ 1i # a complex NaN

create a complex normal vector

z <- complex(real = rnorm(100), imag = rnorm(100))
or also (less efficiently):

z2 <- 1:2 + 1i%(8:9)

The Arg(.) is an angle:
zz <- (rep(1:4,len=9) + 1ix(9:1))/10
zz.shift <- complex(modulus = Mod(zz), argument= Arg(zz) + pi)
plot(zz, xlim=c(-1,1), ylim=c(-1,1), col="red", asp = 1,

main = expression(paste("Rotation by "," ", pi == 18070)))
abline (h=0,v=0, col="blue", lty=3)
points(zz.shift, col="orange")

conditions Condition Handling and Recovery

Description
These functions provide a mechanism for handling unusual conditions, including errors and
warnings.
Usage
tryCatch(expr, ..., finally)
withCallingHandlers(expr, ...)

signalCondition(cond)

simpleCondition(message, call = NULL)
simpleError (message, call = NULL)
simpleWarning (message, call = NULL)

S3 method for class 'condition':
as.character(x, ...)

S3 method for class 'error':
as.character(x, ...)

S3 method for class 'condition':
print(x, ...)

S3 method for class 'restart':
print(x, ...)

122 conditions

conditionCall(c)

S3 method for class 'condition':
conditionCall(c)
conditionMessage(c)

S3 method for class 'condition':
conditionMessage(c)

withRestarts(expr, ...)

computeRestarts(cond = NULL)
findRestart(name, cond = NULL)
invokeRestart(r, ...)
invokeRestartInteractively(r)

isRestart (x)
restartDescription(r)
restartFormals(r)

.signalSimpleWarning(msg, call)
.handleSimpleError(h, msg, call)

Arguments

c a condition object.

call call expression.

cond a condition object.

expr expression to be evaluated.

finally expression to be evaluated before returning or exiting.

h function.

message character string.

msg character string.

name character string naming a restart.

r restart object.

X object.

additional arguments; see details below.

Details

The condition system provides a mechanism for signaling and handling unusual conditions,
including errors and warnings. Conditions are represented as objects that contain infor-
mation about the condition that occurred, such as a message and the call in which the
condition occurred. Currently conditions are S3-style objects, though this may eventually
change.

Conditions are objects inheriting from the abstract class condition. FKErrors and warn-
ings are objects inheriting from the abstract subclasses error and warning. The
class simpleError is the class used by stop and all internal error signals. Similarly,
simpleWarning is used by warning. The constructors by the same names take a string de-
scribing the condition as argument and an optional call. The functions conditionMessage
and conditionCall ae generic functions that return the message and call of a condition.

conditions 123

Conditions are signaled by signalCondition. In addition, the stop and warning functions
have been modified to also accept condition arguments.

The function tryCatch evaluates its expression argument in a context where the handlers
provided in the ... argument are available. The finally expression is then evaluated
in the context in which tryCatch was called; that is, the handlers supplied to the current
tryCatch call are not active when the finally expression is evaluated.

Handlers provided in the ... argument to tryCatch are established for the duration of the
evaluation of expr. If no condition is signaled when evaluating expr then tryCatch returns
the value of the expression.

If a condition is signaled while evaluating expr then established handlers are checked,
starting with the most recently established ones, for one matching the class of the condition.
When several handlers are supplied in a single tryCatch then the first one is considered
more recent than the second. If a handler is found then control is transferred to the
tryCatch call that established the handler, the handler found and all more recent handlers
are disestablished, the handler is called with the condition as its argument, and the result
returned by the handler is returned as the value of the tryCatch call.

Calling handlers are established by withCallingHandlers. If a condition is signaled and
the applicable handler is a calling handler, then the handler is called by signalCondition
in the context where the condition was signaled but with the available handlers restricted
to those below the handler called in the handler stack. If the handler returns, then the next
handler is tried; once the last handler has been tried, signalCondition returns NULL.

User interrupts signal a condition of class interrupt that inherits directly from class
condition before executing the default interrupt action.

Restarts are used for establishing recovery protocols. They can be established using
withRestarts. One pre-established restart is an abort restart that represents a jump
to top level.

findRestart and computeRestarts find the available restarts. findRestart returns the
most recently established restart of the specified name. computeRestarts returns a list of
all restarts. Both can be given a condition argument and will then ignore restarts that do
not apply to the condition.

invokeRestart transfers control to the point where the specified restart was established
and calls the restart’s handler with the arguments, if any, given as additional arguments
to invokeRestart. The restart argument to invokeRestart can be a character string, in
which case findRestart is used to find the restart.

New restarts for withRestarts can be specified in several ways. The simplest is in
name=function form where the function is the handler to call when the restart is invoked.
Another simple variant is as name=string where the string is stored in the description
field of the restart object returned by findRestart; in this case the handler ignores its
arguments and returns NULL. The most flexible form of a restart specification is as a list
that can include several fields, including hander, description, and test. The test field
should contain a function of one argument, a condition, that returns TRUE if the restart
applies to the condition and FALSE if it does not; the default function returns TRUE for all
conditions.

One additional field that can be specified for a restart is interactive. This should be
a function of no arguments that returns a list of arguments to pass to the restart han-
dler. The list could be obtained by interacting with the user if necessary. The function
invokeRestartInteractively calls this function to obtain the arguments to use when in-
voking the restart. The default interactive method queries the user for values for the
formal arguments of the handler function.

124 confint

.signalSimpleWarning and .handleSimpleError are used internally and should not be
called directly.

References

The tryCatch mechanism is similar to Java error handling. Calling handlers are based on
Common Lisp and Dylan. Restarts are based on the Common Lisp restart mechanism.

See Also

stop and warning signal conditions, and try is essentially a simplified version of tryCatch.

Examples

tryCatch(1l, finally=print("Hello"))

e <- simpleError("test error")

Not run: stop(e)

Not run: tryCatch(stop(e), finally=print("Hello"))

Not run: tryCatch(stop("fred"), finally=print("Hello"))
tryCatch(stop(e), error = function(e) e, finally=print("Hello"))
tryCatch(stop("fred"), error = function(e) e, finally=print("Hello"))
withCallingHandlers({ warning("A"); 1+2 }, warning = function(w) {})

{ try(invokeRestart("tryRestart")); 1}

Not run: { withRestarts(stop("A"), abort = function() {}); 1}
withRestarts(invokeRestart("foo", 1, 2), foo = function(x, y) {x + y})

confint Confidence Intervals for Model Parameters

Description

Computes confidence intervals for one or more parameters in a fitted model. Base has a
method for objects inheriting from class "1m".

Usage
confint(object, parm, level = 0.95, ...)
Arguments
object a fitted model object.
parm a specification of which parameters are to be given confidence intervals,
either a vector of numbers or a vector of names. If missing, all parameters
are considered.
level the confidence level required.
additional argument(s) for methods
Details

confint is a generic function with no default method. For objects of class "1m" the direct
formulae based on t values are used.

Package MASS contains methods for "glm" and "nls" objects.

conflicts 125

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each pa-
rameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2 in % (by default 2.5% and
97.5%).

See Also

confint.nls

Examples

data(mtcars)

fit <- Im(100/mpg ~ disp + hp + wt + am, data=mtcars)
confint (fit)

confint (fit, "wt")

conflicts Search for Masked Objects on the Search Path

Description

conflicts reports on objects that exist with the same name in two or more places on the
search path, usually because an object in the user’s workspace or a package is masking a
system object of the same name. This helps discover unintentional masking.

Usage

conflicts(where=search(), detail=FALSE)

Arguments
where A subset of the search path, by default the whole search path.
detail If TRUE, give the masked or masking functions for all members of the
search path.
Value

If detail=FALSE, a character vector of masked objects. If detail=TRUE, a list of character
vectors giving the masked or masking objects in that member of the search path. Empty
vectors are omitted.

Examples

Im <- 1:3

conflicts(, TRUE)

gives something like
$.GlobalEnv

[1]1 "1m"

#

$package:base
[1]1 "1m"

Remove things from your "workspace" that mask others:
remove (list = conflicts(detail=TRUE)$.GlobalEnv)

126 connections

connections Functions to Manipulate Connections

Description

Functions to create, open and close connections.

Usage

file(description = , open = "", blocking = TRUE,
encoding = getOption("encoding"))
pipe(description, open = "", encoding = getOption("encoding"))
fifo(description = "", open = "", blocking = FALSE,
encoding = getOption("encoding"))
gzfile(description, open = "", encoding = getOption("encoding"),
compression = 6)
unz(description, filename, open = "", encoding = getOption("encoding"))
bzfile(description, open = "", encoding = getOption("encoding"))
url(description, open = "", blocking = TRUE,
encoding = getOption("encoding"))
socketConnection(host = "localhost", port, server = FALSE,
blocking = FALSE, open = "at+",
encoding = getOption("encoding"))

open(con, ...)
S3 method for class 'connection':
open(con, open = "r", blocking = TRUE, ...)

close(con, ...)
S3 method for class 'connection':
close(con, type = "rw", ...)
flush(con)
isOpen(con, rw = "")
isIncomplete(con)
Arguments
description character. A description of the connection. For file and pipe this is

a path to the file to be opened. For url it is a complete URL, includ-
ing schemes (http://, ftp:// or file://). file also accepts complete

URLs.
filename a filename within a zip file.
con a connection.
host character. Host name for port.
port integer. The TCP port number.
server logical. Should the socket be a client or a server?
open character. A description of how to open the connection (if at all). See

Details for possible values.

connections 127

blocking logical. See ‘Blocking’ section below.

encoding An integer vector of length 256.

compression integer in 0-9. The amount of compression to be applied when writing,
from none to maximal. The default is a good space/time compromise.

type character. Currently ignored.

v character. Empty or "read" or "write", partial matches allowed.

arguments passed to or from other methods.

Details
The first eight functions create connections. By default the connection is not opened (except
for socketConnection), but may be opened by setting a non-empty value of argument open.

gzfile applies to files compressed by ‘gzip’, and bzfile to those compressed by ‘bzip2’:
such connections can only be binary.

unz reads (only) single files within zip files, in binary mode. The description is the full
path, with ‘.zip’ extension if required.

All platforms support (gz)file connections and url("file://") connections. The other
types may be partially implemented or not implemented at all. (They do work on most
Unix platforms, and all but fifo on Windows.)

Proxies can be specified for url connections: see download.file.

open, close and seek are generic functions: the following applies to the methods relevant
to connections.

open opens a connection. In general functions using connections will open them if they are
not open, but then close them again, so to leave a connection open call open explicitly.

Possible values for the mode open to open a connection are

"r" or "rt" Open for reading in text mode.

"w" or "wt" Open for writing in text mode.

"a" or "at" Open for appending in text mode.

"rb" Open for reading in binary mode.

"wb" Open for writing in binary mode.

"ab" Open for appending in binary mode.

"r+", "r+b" Open for reading and writing.

"w+", "w+b" Open for reading and writing, truncating file initially.

"a+", "a+b" Open for reading and appending.

Not all modes are applicable to all connections: for example URLs can only be opened for
reading. Only file and socket connections can be opened for reading and writing/appending.
For many connections there is little or no difference between text and binary modes, but

there is for file-like connections on Windows, and pushBack is text-oriented and is only
allowed on connections open for reading in text mode.

close closes and destroys a connection.

flush flushes the output stream of a connection open for write/append (where imple-
mented).

If for a file connection the description is "", the file is immediately opened in "w+" mode
and unlinked from the file system. This provides a temporary file to write to and then read
from.

128 connections

The encoding vector is used to map the input from a file or pipe to the platform’s na-
tive character set. Supplied examples are native.enc as well as MacRoman, WinAnsi and
ISOLatinl, whose actual encoding is platform-dependent. Missing characters are mapped
to a space in these encodings.

Value

file, pipe, fifo, url, gzfile and socketConnection return a connection object which
inherits from class "connection" and has a first more specific class.

isOpen returns a logical value, whether the connection is currently open.

isIncomplete returns a logical value, whether last read attempt was blocked, or for an
output text connection whether there is unflushed output.

Blocking

The default condition for all but fifo and socket connections is to be in blocking mode. In
that mode, functions do not return to the R evaluator until they are complete. In non-
blocking mode, operations return as soon as possible, so on input they will return with
whatever input is available (possibly none) and for output they will return whether or not
the write succeeded.

The function readLines behaves differently in respect of incomplete last lines in the two
modes: see its help page.

Even when a connection is in blocking mode, attempts are made to ensure that it does
not block the event loop and hence the operation of GUI parts of R. These do not always
succeed, and the whole process will be blocked during a DNS lookup on Unix, for example.

Most blocking operations on URLs and sockets are subject to the timeout set by
options("timeout"). Note that this is a timeout for no response at all, not for the whole
operation.

Fifos

Fifos default to non-blocking. That follows Svr4 and it probably most natural, but it does
have some implications. In particular, opening a non-blocking fifo connection for writing
(only) will fail unless some other process is reading on the fifo.

Opening a fifo for both reading and writing (in any mode: one can only append to fifos)
connects both sides of the fifo to the R process, and provides an similar facility to £ile().

Note

R’s connections are modelled on those in S version 4 (see Chambers, 1998). However R goes
well beyond the Svrd model, for example in output text connections and URL, gzfile, bzfile
and socket connections.

The default mode in R is "r" except for socket connections. This differs from Svr4, where
it is the equivalent of "r+", known as "*".

On platforms where vsnprintf does not return the needed length of output (e.g., Windows)
there is a 100,000 character output limit on the length of line for fifo, gzfile and bzfile
connections: longer lines will be truncated with a warning.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

connections 129

See Also

textConnection, seek, readlines, readBin, writelLines, writeBin, showConnections,
pushBack.

capabilities to see if gzfile, url, fifo and socketConnection are supported by this
build of R.

Examples

zz <- file("ex.data", "w") # open an output file connection

cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
cat("One more line\n", file = zz)
close(zz)

readLines("ex.data")
unlink("ex.data")

zz <- gzfile("ex.gz", "w") # compressed file

cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)

readLines(gzfile("ex.gz"))

unlink("ex.gz")

if (capabilities("bzip2")) {
zz <- bzfile("ex.bz2", "w") # bzip2-ed file
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)
print (readLines(bzfile("ex.bz2")))
unlink("ex.bz2")

}

An example of a file open for reading and writing
Tfile <- file("testl", "w+")

c(isOpen(Tfile, "r"), isOpen(Tfile, "w")) # both TRUE
cat("abc\ndef\n", file=Tfile)

readLines(Tfile)

seek(Tfile, O, rw="r") # reset to beginning
readLines(Tfile)

cat("ghi\n", file=Tfile)

readLines(Tfile)

close(Tfile)

unlink("test1")

We can do the same thing with an anonymous file.
Tfile <- file()

cat("abc\ndef\n", file=Tfile)

readLines(Tfile)

close(Tfile)

if (capabilities("fifo")) {
zz <- fifo("foo", "w+")
writeLines("abc", zz)
print(readLines(zz))
close(zz)
unlink("foo")

Not run: ## Unix examples of use of pipes

130 Constants

read listing of current directory
readLines(pipe("1ls -1"))

remove trailing commas. Suppose

% cat data2

450, 390, 467, 654, 30, 542, 334, 432, 421,
357, 497, 493, 550, 549, 467, 575, 578, 342,
446, 547, 534, 495, 979, 479

Then read this by

scan(pipe("sed -e s/,$// data2"), sep=",")

convert decimal point to comma in output

both R strings and (probably) the shell need \ doubled
zz <- pipe(paste("sed s/\\\\./,/ >", "outfile"), "w")
cat (format (round(rnorm(100), 4)), sep = "\n", file = zz)
close(zz)

file.show("outfile", delete.file=TRUE)## End(Not run)

Not run: ## example for Unix machine running a finger daemon

con <- socketConnection(port = 79, blocking = TRUE)
writeLines(paste(system("whoami", intern=TRUE), "\r", sep=""), con)
gsub(" *$", "" readLines(con))

close(con)## End(Not run)

Not run: ## two R processes communicating via non-blocking sockets
R process 1

conl <- socketConnection(port = 6011, server=TRUE)

writeLines (LETTERS, conl)

close(conl)

R process 2

con2 <- socketConnection(Sys.info() ["nodename"], port = 6011)
as non-blocking, may need to loop for input

readLines(con2)

while(isIncomplete(con2)) {Sys.sleep(1); readLines(con2)}
close(con2) ## End(Not run)

Constants Built-in Constants

Description

Constants built into R.

Usage

LETTERS
letters
month.abb
month.name

pi

constrOptim 131

Details

R has a limited number of built-in constants (there is also a rather larger library of data
sets which can be loaded with the function data).

The following constants are available:

e LETTERS: the 26 upper-case letters of the Roman alphabet;

e letters: the 26 lower-case letters of the Roman alphabet;

e month.abb: the three-letter abbreviations for the English month names;
e month.name: the English names for the months of the year;

e pi: the ratio of the circumference of a circle to its diameter.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.
See Also

data.

Examples

John Machin (1705) computed 100 decimals of pi :
pi - 4x(4*atan(1/5) - atan(1/239))

constrOptim Linearly constrained optimisation

Description

Minimise a function subject to linear inequality constraints using an adaptive barrier algo-
rithm.

Usage

constrOptim(theta, f, grad, ui, ci, mu = le-04, control = list(),
method = if(is.null(grad)) "Nelder-Mead" else "BFGS",

outer.iterations = 100, outer.eps = 1le-05, ...)

Arguments

theta Starting value: must be in the feasible region.

f Function to minimise.

grad Gradient of f£.

ui Constraints (see below).

ci Constraints (see below).

mu (Small) tuning parameter.

control Passed to optim.

method Passed to optim.

132

constrOptim

outer.iterations
Iterations of the barrier algorithm.

outer.eps Criterion for relative convergence of the barrier algorithm.

Other arguments passed to optim

Details

The feasible region is defined by ui %#*J% theta - ci >= 0. The starting value must be in
the interior of the feasible region, but the minimum may be on the boundary.

A logarithmic barrier is added to enforce the constraints and then optim is called. The
barrier function is chosen so that the objective function should decrease at each outer
iteration. Minima in the interior of the feasible region are typically found quite quickly, but
a substantial number of outer iterations may be needed for a minimum on the boundary.

The tuning parameter mu multiplies the barrier term. Its precise value is often relatively
unimportant. As mu increases the augmented objective function becomes closer to the
original objective function but also less smooth near the boundary of the feasible region.

Any optim method that permits infinite values for the objective function may be used
(currently all but "L-BFGS-B”). The gradient function must be supplied except with
method="Nelder-Mead".

As with optim, the default is to minimise and maximisation can be performed by setting
control$fnscale to a negative value.

Value

As for optim, but with two extra components: barrier.value giving the value of the barrier
function at the optimum and outer.iterations gives the number of outer iterations (calls
to optim)

References

K. Lange Numerical Analysis for Statisticians. Springer 2001, p185ff

See Also

optim, especially method="L-BGFS-B" which does box-constrained optimisation.

Examples

from optim
fr <- function(x) { ## Rosenbrock Banana function

x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)"2 + (1 - x1)°2
}
grr <- function(x) { ## Gradient of 'fr'
x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 *x (1 - x1),
200 * (x2 - x1 * x1))
}

optim(c(-1.2,1), fr, grr)
#Box-constraint, optimum on the boundary
constrOptim(c(-1.2,0.9), fr, grr, ui=rbind(c(-1,0),c(0,-1)), ci=c(-1,-1))

contour

x<=0.9,

133

y-x>0.1

constrOptim(c(.5,0), fr, grr, ui=rbind(c(-1,0),c(1,-1)), ci=c(-0.9,0.1))

Solves linear and quadratic programming problems
but needs a feasible starting value

#

from example(solve.QP) in 'quadprog'
no derivative
fQP <- function(b) {-sum(c(0,5,0)*b)+0.5*sum(b*b)}

<- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3)

<- ¢(-8,2,0)

constrOptim(c(2,-1,-1), £QP, NULL, ui=t(Amat),ci=bvec)
derivative
gQP <- function(b) {-c(0,5,0)+b}
constrOptim(c(2,-1,-1), £QP, gQP, ui=t(Amat), ci=bvec)

Amat
bvec

Now with maximisation instead of minimisation

hQP <- function(b) {sum(c(0,5,0)*b)-0.5*sum(b*b)}
constrOptim(c(2,-1,-1), hQP, NULL, ui=t(Amat), ci=bvec,
control=list(fnscale=-1))

contour

Display Contours

Description

Create a contour plot, or add contour lines to an existing plot.

Usage

contour(x, ...)

Default S3 method:
contour(x =

Arguments

X,y

Z,

seq(0, 1, len = nrow(z)), y = seq(0, 1, len = ncol(z)),

nlevels = 10, levels = pretty(zlim, nlevels), labels = NULL,

x1lim
ylim
zlim

range(x, finite = TRUE),
range(y, finite = TRUE),
range(z, finite = TRUE),

labcex = 0.6, drawlabels = TRUE, method = "flattest",
vfont
axes = TRUE, frame.plot = axes,

col = par("fg"), 1ty = par("lty"), lwd = par("lwd"),
add = FALSE, ...)

= c("sans serif", "plain"),

locations of grid lines at which the values in z are measured. These must
be in ascending order. By default, equally spaced values from 0 to 1 are
used. If x is a list, its components x$x and x$y are used for x and y,
respectively. If the list has component z this is used for z.

a matrix containing the values to be plotted (NAs are allowed). Note that
x can be used instead of z for convenience.

134 contour

nlevels number of contour levels desired iff levels is not supplied.
levels numeric vector of levels at which to draw contour lines.
labels a vector giving the labels for the contour lines. If NULL then the levels are

used as labels.

labcex cex for contour labelling.

drawlabels logical. Contours are labelled if TRUE.

method character string specifying where the labels will be located. Possible values
are "simple", "edge" and "flattest" (the default). See the Details
section.

vfont if a character vector of length 2 is specified, then Hershey vector fonts

are used for the contour labels. The first element of the vector selects a
typeface and the second element selects a fontindex (see text for more
information).

xlim, ylim, zlim
x-, y- and z-limits for the plot.

axes, frame.plot
logical indicating whether axes or a box should be drawn, see
plot.default.

col color for the lines drawn.

1ty line type for the lines drawn.

lwd line width for the lines drawn.

add logical. If TRUE, add to a current plot.

additional graphical parameters (see par) and the arguments to title
may also be supplied.

Detalils

contour is a generic function with only a default method in base R.

There is currently no documentation about the algorithm. The source code is in
‘$SR_HOME /src/main/plot3d.c’.

The methods for positioning the labels on contours are "simple" (draw at the edge of the
plot, overlaying the contour line), "edge" (draw at the edge of the plot, embedded in the
contour line, with no labels overlapping) and "flattest" (draw on the flattest section of
the contour, embedded in the contour line, with no labels overlapping). The second and
third may not draw a label on every contour line.

For information about vector fonts, see the help for text and Hershey.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

filled.contour for “color-filled” contours, image and the graphics demo which can be
invoked as demo (graphics).

contrast
Examples
x <- -6:16
op <- par(mfrow = c(2, 2))
contour (outer(x, x), method = "edge", vfont = c("sans serif", "plain"))

z <- outer(x, sqrt(abs(x)), FUN = "/")
Should not be necessary:

z[!is.finite(z)] <- NA

image(x, x, z)

contour(x, x, z, col =

"pink", add = TRUE, method = "edge",

vfont = c("sans serif", "plain"))

contour(x, x, z, ylim
contour(x, x, z, ylim
par (op)

Persian Rug Art:

= c(1, 6), method = "simple", labcex = 1)
= c(-6, 6), nlev = 20, 1ty = 2, method = "simple")

X <- y <- seq(-4*pi, 4%pi, len = 27)
r <- sqrt(outer(x”2, y~2, "+"))
opar <- par(mfrow = c(2, 2), mar = rep(0, 4))

for(f in pi~(0:3))

contour (cos (r~2) *exp(-r/f),

drawlabels =

data("volcano")

rx <- range(x <- 10%1:
ry <- range(y <- 10%1:

FALSE, axes = FALSE, frame = TRUE)

nrow(volcano))
ncol(volcano))

ry <- ry + c(-1,1) * (diff(rx) - diff(ry))/2
tcol <- terrain.colors(12)
par(opar); opar <- par(pty = "s", bg = "lightcyan")

plot(x = 0, y = 0,type

u <- par("usr")

= "n", xlim = rx, ylim = ry, xlab = "", ylab = "")

rect(ul[1], ul3], ul2], ul4], col = tcol[8], border = "red")

contour(x, y, volcano, col = tcol[2], 1ty = "solid", add = TRUE,
vifont = c("sans serif", "plain"))

title("A Topographic Map of Maunga Whau", font = 4)

abline(h = 200%0:4, v
par (opar)

= 200%0:4, col = "lightgray", 1ty = 2, lwd = 0.1)

135

contrast

Contrast Matrices

Description

Return a matrix of contrasts.

Usage

contr.helmert(n, contrasts = TRUE)
contr.poly(n, scores = 1:n, contrasts = TRUE)
contr.sum(n, contrasts = TRUE)
contr.treatment(n, base = 1, contrasts = TRUE)

136 contrast

Arguments
n a vector of levels for a factor, or the number of levels.
contrasts a logical indicating whether contrasts should be computed.
scores the set of values over which orthogonal polynomials are to be computed.
base an integer specifying which group is considered the baseline group. Ig-
nored if contrasts is FALSE.
Details

These functions are used for creating contrast matrices for use in fitting analysis of variance
and regression models. The columns of the resulting matrices contain contrasts which can be
used for coding a factor with n levels. The returned value contains the computed contrasts.
If the argument contrasts is FALSE then a square indicator matrix is returned.

cont.helmert returns Helmert contrasts, which contrast the second level with the first, the
third with the average of the first two, and so on. contr.poly returns contrasts based on
orthogonal polynomials. contr.sum uses “sum to zero contrasts”.

contr.treatment contrasts each level with the baseline level (specified by base): the base-
line level is omitted. Note that this does not produce “contrasts” as defined in the standard
theory for linear models as they are not orthogonal to the constant.

Value

A matrix with n rows and k columns, with k=n-1 if contrasts is TRUE and k=n if contrasts
is FALSE.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models
in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

contrasts, C, and aov, glm, 1m.

Examples

(cH <- contr.helmert(4))

apply(cH, 2,sum) # column sums are 0!

crossprod(cH) # diagonal -- columns are orthogonal

contr.helmert(4, contrasts = FALSE) # just the 4 x 4 identity matrix

(cT <- contr.treatment(5))
all(crossprod(cT) == diag(4)) # TRUE: even orthonormal

(cP <- contr.poly(3)) # Linear and Quadratic
zapsmall(crossprod(cP), dig=15) # orthonormal up to fuzz

contrasts

137

contrasts

Get and Set Contrast Matrices

Description

Set and view the contrasts associated with a factor.

Usage

contrasts(x, contrasts = TRUE)
contrasts(x, how.many) <- value

Arguments

X
contrasts

how.many

value

Details

a factor.
logical. See Details.

How many contrasts should be made. Defaults to one less than the number
of levels of x. This need not be the same as the number of columns of
ctr.

either a matrix whose columns give coefficients for contrasts in the levels
of x, or the (quoted) name of a function which computes such matrices.

If contrasts are not set for a factor the default functions from options("contrasts") are

used.

The argument contrasts is ignored if x has a matrix contrasts attribute set. Otherwise
if contrasts = TRUE it is passed to a contrasts function such as contr.treatment and if
contrasts = FALSE an identity matrix is returned.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models
in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

C, contr.helmert, contr.poly, contr.sum, contr.treatment; glm, aov, 1m.

Examples

example(factor)

fff <- ff[, drop=TRUE] # reduce to 5 levels.
contrasts(fff) # treatment contrasts by default
contrasts(C(fff, sum))

contrasts(fff, contrasts = FALSE) # the 5x5 identity matrix

contrasts(fff) <- contr.sum(5); contrasts(fff) # set sum contrasts
contrasts(fff, 2) <- contr.sum(5); contrasts(fff) # set 2 contrasts
supply 2 contrasts, compute 2 more to make full set of 4.
contrasts(fff) <- contr.sum(5)[,1:2]; contrasts(fff)

138 Control

contributors R Project Contributors

Description

The R Who-is-who, describing who made significant contributions to the development of R.

Usage

contributors()

Control Control Flow

Description

These are the basic control-flow constructs of the R language. They function in much the
same way as control statements in any algol-like language.

Usage

if (cond) expr

if(cond) cons.expr else alt.expr
for(var in seq) expr

while(cond) expr

repeat expr

break

next

Detalils

Note that expr and cons.expr, etc, in the Usage section above means an expression in a
formal sense. This is either a simple expression or a so called compound expression, usually
of the form { exprl ; expr2 }.

Note that it is a common mistake to forget putting braces ({ .. }) around your state-
ments, e.g., after if(..) or for(....). In particular, you should not have a newline
between } and else to avoid a syntax error in entering a if ... else construct at the

keyboard or via source. For that reason, one (somewhat extreme) attitude of defensive
programming uses braces always, e.g., for if clauses.

The index seq in a for loop is evaluated at the start of the loop; changing it subsequently
does not affect the loop.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

Syntax for the basic R syntax and operators, Paren for parentheses and braces; further,
ifelse, switch.

convolve 139

Examples

for(i in 1:5) print(1:i)
for(n in ¢(2,5,10,20,50)) {
x <- rnorm(n)

cat(n,":", sum(x~2),"\n")
}
convolve Fast Convolution
Description

Use the Fast Fourier Transform to compute the several kinds of convolutions of two se-
quences.

Usage

convolve(x, y, conj = TRUE, type = c("circular", "open", "filter"))

Arguments
X,y numeric sequences of the same length to be convolved.
conj logical; if TRUE, take the complex conjugate before back-transforming (de-
fault, and used for usual convolution).
type character; one of "circular", "open", "filter" (beginning of word is
ok). For circular, the two sequences are treated as circular, i.e., periodic.
For open and filter, the sequences are padded with 0s (from left and
right) first; "filter" returns the middle sub-vector of "open", namely,
the result of running a weighted mean of x with weights y.
Details

The Fast Fourier Transform, £ft, is used for efficiency.
The input sequences x and y must have the same length if circular is true.

Note that the usual definition of convolution of two sequences x and y is given by
convolve(x, rev(y), type = "o").
Value

If r <~ convolve(x,y, type = "open") and n <- length(x), m <- length(y), then
Tk = Zxk—m—i-iyi
i

where the sum is over all valid indices ¢, for k=1,...,n+m —1

If type == "circular", n = m is required, and the above is true for i,k = 1,...,n when
Tj 1= Tpyj for j < 1.
References

Brillinger, D. R. (1981) Time Series: Data Analysis and Theory, Second Edition. San
Francisco: Holden-Day.

140 coplot

See Also

fft, nextn, and particularly filter (from the ts package) which may be more appropriate.

Examples

x <- ¢(0,0,0,100,0,0,0)
y <= ¢(0,0,1, 2 ,1,0,0)/4
zapsmall (convolve(x,y)) # *NOT* what you first thought.
zapsmall (convolve(x, y[3:5], type="f")) # rather
x <- rnorm(50)
y <- rnorm(50)
Circular convolution *has* this symmetry:
all.equal(convolve(x,y, conj = FALSE),
rev(convolve(rev(y),x)))

n <- length(x <- -20:24)
y <- (x-10)°2/1000 + rnorm(x)/8

Han <- function(y) # Hanning
convolve(y, c(1,2,1)/4, type = "filter")

plot(x,y, main="Using convolve(.) for Hanning filters")
lines(x[-c(1 , n)], Han(y), col="red")
lines(x[-c(1:2, (n-1):n)], Han(Han(y)), lwd=2, col="dark blue")

coplot Conditioning Plots

Description

This function produces two variants of the conditioning plots discussed in the reference
below.

Usage

coplot (formula, data, given.values, panel = points, rows, columns,
show.given = TRUE, col = par("fg"), pch = par("pch"),
bar.bg = c(num = gray(0.8), fac = gray(0.95)),
xlab = c(x.name, paste("Given :", a.name)),
ylab = c(y.name, paste("Given :", b.name)),
subscripts = FALSE,
axlabels = function(f) abbreviate(levels(f)),
number = 6, overlap = 0.5, xlim, ylim, ...)
co.intervals(x, number = 6, overlap = 0.5)

Arguments

formula a formula describing the form of conditioning plot. A formula of the form y
~ x | aindicates that plots of y versus x should be produced conditional
on the variable a. A formula of the form y ~ x| a * b indicates that
plots of y versus x should be produced conditional on the two variables a
and b.

coplot

data

given.values

panel

rows

columns

show.given

col

pch

bar.bg

xlab

ylab
subscripts
axlabels
number

overlap

x1im

ylim

141

All three or four variables may be either numeric or factors. When x or y
are factors, the result is almost as if as.numeric() was applied, whereas
for factor a or b, the conditioning (and its graphics if show.given is true)
are adapted.

a data frame containing values for any variables in the formula. By default
the environment where coplot was called from is used.

a value or list of two values which determine how the conditioning on a
and b is to take place.

When there is no b (i.e., conditioning only on a), usually this is a matrix
with two columns each row of which gives an interval, to be conditioned
on, but is can also be a single vector of numbers or a set of factor levels
(if the variable being conditioned on is a factor). In this case (no b), the
result of co.intervals can be used directly as given.values argument.

a function(x, y, col, pch, ...) which gives the action to be carried
out in each panel of the display. The default is points.

the panels of the plot are laid out in a rows by columns array. rows gives
the number of rows in the array.

the number of columns in the panel layout array.

logical (possibly of length 2 for 2 conditioning variables): should condi-
tioning plots be shown for the corresponding conditioning variables (de-
fault TRUE)

a vector of colors to be used to plot the points. If too short, the values
are recycled.

a vector of plotting symbols or characters. If too short, the values are
recycled.

a named vector with components "num" and "fac" giving the background
colors for the (shingle) bars, for numeric and factor conditioning variables
respectively.

character; labels to use for the x axis and the first conditioning variable.
If only one label is given, it is used for the x axis and the default label is
used for the conditioning variable.

character; labels to use for the y axis and any second conditioning variable.

logical: if true the panel function is given an additional (third) argument
subscripts giving the subscripts of the data passed to that panel.

function for creating axis (tick) labels when x or y are factors.

integer; the number of conditioning intervals, for a and b, possibly of
length 2. It is only used if the corresponding conditioning variable is not
a factor.

numeric < 1; the fraction of overlap of the conditioning variables, possibly
of length 2 for x and y direction. When overlap < 0, there will be gaps
between the data slices.

the range for the x axis.
the range for the y axis.
additional arguments to the panel function.

a numeric vector.

142 coplot

Details

In the case of a single conditioning variable a, when both rows and columns are unspecified,
a “close to square” layout is chosen with columns >= rows.

In the case of multiple rows, the order of the panel plots is from the bottom and from the
left (corresponding to increasing a, typically).

A panel function should not attempt to start a new plot, but just plot within a given
coordinate system: thus plot and boxplot are not panel functions.

Value

co.intervals(., number, .) returns a (number X 2) matrix, say ci, where cilk,] is
the range of x values for the k-th interval.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

See Also

pairs, panel.smooth, points.

Examples

Tonga Trench Earthquakes

data(quakes)

coplot(lat ~ long | depth, data = quakes)

given.depth <- co.intervals(quakes$depth, number=4, overlap=.1)
coplot(lat ~ long | depth, data = quakes, given.v=given.depth, rows=1)

Conditioning on 2 variables:
1l.dm <- lat ~ long | depth * mag
coplot(ll.dm, data = quakes)
coplot(ll.dm, data = quakes, number=c(4,7), show.given=c(TRUE,FALSE))
coplot(ll.dm, data = quakes, number=c(3,7),
overlap=c(-.5,.1)) # negative overlap DROPS values

data(warpbreaks)
given two factors
Index <- seq(length=nrow(warpbreaks)) # to get nicer default labels
coplot(breaks ~ Index | wool * tension, data = warpbreaks, show.given = 0:1)
coplot(breaks ~ Index | wool * tension, data = warpbreaks,

col = "red", bg = "pink", pch = 21, bar.bg = c(fac = "light blue"))

Example with empty panels:
data(state)
attach(data.frame(state.x77))#> don't need 'data' arg. below
coplot(Life.Exp ~ Income | Illiteracy * state.region, number = 3,
panel = function(x, y, ...) panel.smooth(x, y, span = .8, ...))
y ~ factor -- not really sensical, but 'show off':
coplot(Life.Exp ~ state.region | Income * state.division,
panel = panel.smooth)
detach() # data.frame(state.x77)

copyright

143

copyright

Copyrights of Files Used to Build R

Description

R is released under the ‘GNU Public License’: see license for details. The license describes
your right to use R. Copyright is concerned with ownership of intellectual rights, and some
of the software used has conditions that the copyright must be explicitly stated: see the
Details section. We are grateful to these people and other contributors (see contributors)
for the ability to use their work.

Detalils

The file ‘R_-HOME/COPYRIGHTS’ lists the copyrights in full detail.

cor

Correlation, Variance and Covariance (Matrices)

Description

var, cov and cor compute the variance of x and the covariance or correlation of x and y
if these are vectors. If x and y are matrices then the covariances (or correlations) between
the columns of x and the columns of y are computed.

cov2cor scales a covariance matrix into the corresponding correlation matrix efficiently.

Usage

var(x, y =
cov(x, y =
cor(x, y =
cov2cor (V)
Arguments

X

y

na.rm

use

method

NULL, na.rm = FALSE, use)
NULL, use = "all.obs", method = c("pearson", "kendall", "spearman"))
NULL, use = "all.obs", method

c("pearson", "kendall", "spearman"))

a numeric vector, matrix or data frame.

NULL (default) or a vector, matrix or data frame with compatible dimen-
sions to x. The default is equivalent to y = x (but more efficient).

logical. Should missing values be removed?

an optional character string giving a method for computing covariances in
the presence of missing values. This must be (an abbreviation of) one of
the strings "all.obs", "complete.obs" or "pairwise.complete.obs".

a character string indicating which correlation coefficient (or covariance) is
to be computed. One of "pearson" (default), "kendall", or "spearman",
can be abbreviated.

symmetric numeric matrix, usually positive definite such as a covariance
matrix.

144 cor

Details

For cov and cor one must either give a matrix or data frame for x or give both x and y.

var is just another interface to cov, where na.rm is used to determine the default for use
when that is unspecified. If na.rm is TRUE then the complete observations (rows) are used
(use = "complete") to compute the variance. Otherwise (use = "all"), var will give an
error if there are missing values.

If use is "all.obs", then the presence of missing observations will produce an error. If use
is "complete.obs" then missing values are handled by casewise deletion. Finally, if use has
the value "pairwise.complete.obs" then the correlation between each pair of variables
is computed using all complete pairs of observations on those variables. This can result in
covariance or correlation matrices which are not positive semidefinite.

The denominator n — 1 is used which gives an unbiased estimator of the (co)variance for
ii.d. observations. These functions return NA when there is only one observation (whereas
S-plus has been returning NaN), and fail if x has length zero.

For cor (), if method is "kendall" or "spearman", Kendall’s 7 or Spearman’s p statistic is
used to estimate a rank-based measure of association. These are more robust and have be
recommended if the data do not necessarily come from a bivariate normal distribution.
For cov(), a non-Pearson method is unusual but available for the sake of completeness.

Scaling a covariance matrix into a correlation one can be achieved in many ways, mathe-
matically most appealing by multiplication with a diagonal matrix from left and right, or
more efficiently by using sweep(.., FUN = "/") twice. The cov2cor function is even a bit
more efficient, and provided mostly for didactical reasons.

Value

For r <- cor(*, use = "all.obs"), it is now guaranteed that all(r <= 1).

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.
See Also
cor.test (package ctest) for confidence intervals (and tests).
cov.wt for weighted covariance computation, sd for standard deviation (vectors).
Examples

var(1:10)# 9.166667
var(1:5,1:5)# 2.5

Two simple vectors
cor(1:10,2:11)# ==

Correlation Matrix of Multivariate sample:
data(longley)

(C1 <- cor(longley))

Graphical Correlation Matrix:

symnum(Cl) # highly correlated

Spearman's rho and Kendall's tau

count.fields 145

symnum(clS <- cor(longley, method = "spearman"))
symnum(clK <- cor(longley, method = "kendall"))
How much do they differ?

i <- lower.tri(Cl)

cor(cbind(P = C1[il, S = cl1S[i], K = clK[il))

cov2cor() scales a covariance matrix by its diagonal
to become the correlation matrix.
cov2cor # see the function definition {and learn ..}
stopifnot(all.equal(Cl, cov2cor(cov(longley))),
all.equal(cor(longley, method="kendall"),
cov2cor(cov(longley, method="kendall"))))

##--- Missing value treatment:

data(swiss)

C1 <- cov(swiss)

range (eigen(C1, only=TRUE)$val) # 6.19 1921

swM <- swiss

swM[1,2] <- swM[7,3] <- swM[25,5] <- NA # create 3 "missing"
try(cov(swM)) # Error: missing obs...

C2 <- cov(swM, use = "complete")
range (eigen(C2, only=TRUE)$val) # 6.46 1930
C3 <- cov(swM, use = "pairwise")

range(eigen(C3, only=TRUE)$val) # 6.19 1938

(scM <- symnum(cor(swM, method = "kendall", use = "complete")))
Kendall's tau doesn't change much: identical symnum codings!
identical(scM, symnum(cor(swiss, method = "kendall")))

all.equal(cov2cor(cov(swM, method "kendall", use "pairwise")),
cor(swM, method = "kendall", use = "pairwise"))

count.fields Count the Number of Fields per Line

Description

count .fields counts the number of fields, as separated by sep, in each of the lines of file

read.
Usage
count.fields(file, sep = "", quote = "\"'", skip = O,
blank.lines.skip = TRUE, comment.char = "#")
Arguments
file a character string naming an ASCII data file, or a connection, which will
be opened if necessary, and if so closed at the end of the function call.
sep the field separator character. Values on each line of the file are sepa-

rated by this character. By default, arbitrary amounts of whitespace can
separate fields.

quote the set of quoting characters

146 cov.wt

skip the number of lines of the data file to skip before beginning to read data.
blank.lines.skip
logical: if TRUE blank lines in the input are ignored.

comment.char character: a character vector of length one containing a single character
or an empty string.
Details

This used to be used by read.table and can still be useful in discovering problems in
reading a file by that function.

For the handling of comments, see scan.

Value

A vector with the numbers of fields found.

See Also

read.table

Examples

cat("NAME", "1:John", "2:Paul", file = "foo", sep = "\n")
count.fields("foo", sep = ":")
unlink("foo")

cov.wt Weighted Covariance Matrices

Description

Returns a list containing estimates of the weighted covariance matrix and the mean of the
data, and optionally of the (weighted) correlation matrix.

Usage

cov.wt(x, wt = rep(1/nrow(x), nrow(x)), cor = FALSE, center = TRUE)

Arguments

X a matrix or data frame. As usual, rows are observations and columns are
variables.

Wt a non-negative and non-zero vector of weights for each observation. Its
length must equal the number of rows of x.

cor A logical indicating whether the estimated correlation weighted matrix
will be returned as well.

center Either a logical or a numeric vector specifying the centers to be used when

computing covariances. If TRUE, the (weighted) mean of each variable is
used, if FALSE, zero is used. If center is numeric, its length must equal
the number of columns of x.

crossprod 147

Details

The covariance matrix is divided by one minus the sum of squares of the weights, so if the
weights are the default (1/n) the conventional unbiased estimate of the covariance matrix
with divisor (n — 1) is obtained. This differs from the behaviour in S-PLUS.

Value

A list containing the following named components:

cov the estimated (weighted) covariance matrix
center an estimate for the center (mean) of the data.
n.obs the number of observations (rows) in x.
wt the weights used in the estimation. Only returned if given as an argument.
cor the estimated correlation matrix. Only returned if cor is TRUE.
See Also

cov and var.

crossprod Matriz Crossproduct

Description
Given matrices x and y as arguments, crossprod returns their matrix cross-product. This
is formally equivalent to, but faster than, the call t(x) %*% .

Usage

crossprod(x, y = NULL)

Arguments

X,y matrices: y = NULL is taken to be the same matrix as x.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

%*% and outer product %o%.

Examples

(z <~ crossprod(1:4)) # = sum(1l + 272 + 372 + 472)
drop(z) # scalar

148 curve

cumsum Cumulative Sums, Products, and Extremes

Description

Returns a vector whose elements are the cumulative sums, products, minima or maxima of
the elements of the argument.

Usage

cumsum (x)
cumprod (x)
cummax (x)
cummin (x)

Arguments

X a numeric object.

Details

An NA value in x causes the corresponding and following elements of the return value to be
NA.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (cumsum only.)

Examples

cumsum(1:10)
cumprod(1:10)
cummin(c(3:1, 2:0, 4:2))
cummax(c(3:1, 2:0, 4:2))

curve Draw Function Plots

Description
Draws a curve corresponding to the given function or expression (in x) over the interval
[from,to].
Usage
curve(expr, from, to, n = 101, add = FALSE, type = "1",
ylab = NULL, log = NULL, xlim = NULL, ...)

S3 method for class 'function':
plot(x, from = 0, to = 1, xlim = NULL, ...)

curve 149

Arguments
expr an expression written as a function of x, or alternatively the name of a
function which will be plotted.
X a ‘vectorizing’ numeric R function.
from,to the range over which the function will be plotted.
n integer; the number of x values at which to evaluate.
add logical; if TRUE add to already existing plot.
xlim numeric of length 2; if specified, it serves as default for c(from, to).

type, ylab, log,
graphical parameters can also be specified as arguments. plot.function
passes all these to curve.

Details

The evaluation of expr is at n points equally spaced over the range [from, to], possibly
adapted to log scale. The points determined in this way are then joined with straight lines.
x(t) or expr (with x inside) must return a numeric of the same length as the argument t
or X.

If add = TRUE, c(from,to) default to x1im which defaults to the current x-limits. Further,
log is taken from the current plot when add is true.

This used to be a quick hack which now seems to serve a useful purpose, but can give bad
results for functions which are not smooth.

For “expensive” expressions, you should use smarter tools.

See Also

splinefun for spline interpolation, lines.

Examples

op <- par(mfrow=c(2,2))
curve(x~3-3*x, -2, 2)
curve(x~2-2, add = TRUE, col = "violet")

plot(cos, xlim = c(-pi,3*pi), n = 1001, col = "blue")

chippy <- function(x) sin(cos(x)*exp(-x/2))
curve (chippy, -8, 7, n=2001)
curve(chippy, -8, -5)

for(ll in C("","X","y","Xy"))
curve(log(1+x), 1,100, log=11, sub=paste("log= '",11,"'",sep=""))
par (op)

150 cut

cut Convert Numeric to Factor

Description

cut divides the range of x into intervals and codes the values in x according to which interval
they fall. The leftmost interval corresponds to level one, the next leftmost to level two and
SO on.

Usage
cut(x, ...)

Default S3 method:
cut(x, breaks, labels = NULL,

include.lowest = FALSE, right = TRUE, dig.lab = 3, ...)
Arguments
X a numeric vector which is to be converted to a factor by cutting.
breaks either a vector of cut points or number giving the number of intervals

which x is to be cut into.

labels labels for the levels of the resulting category. By default, labels are con-
structed using "(a,b]" interval notation. If labels = FALSE, simple
integer codes are returned instead of a factor.

include.lowest
logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right =
FALSE) ‘breaks’ value should be included.

right logical, indicating if the intervals should be closed on the right (and open
on the left) or vice versa.

dig.lab integer which is used when labels are not given. It determines the number
of digits used in formatting the break numbers.

further arguments passed to or from other methods.

Details

If a labels parameter is specified, its values are used to name the factor levels. If none
is specified, the factor level labels are constructed as " (b1, b2]", "(b2, b3]" etc. for
right=TRUE and as "[bl, b2)", ...if right=FALSE. In this case, dig.lab indicates how
many digits should be used in formatting the numbers b1, b2,

Value

A factor is returned, unless labels = FALSE which results in the mere integer level codes.

Note

Instead of table(cut(x, br)), hist(x, br, plot = FALSE) is more efficient and less
memory hungry. Instead of cut(*, labels = FALSE), findInterval() is more efficient.

cut. POSIXt 151

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

split for splitting a variable according to a group factor; factor, tabulate, table,
findInterval().

Examples

Z <- rnorm(10000)

table(cut(Z, br = -6:6))

sum(table(cut(Z, br = -6:6, labels=FALSE)))
sum(hist (Z, br = -6:6, plot=FALSE)$counts)

cut(rep(1,5),4)#-- dummy

tx0 <- c(9, 4, 6, 5, 3, 10, 5, 3, 5)
x <- rep(0:8, tx0)
stopifnot(table(x) == tx0)

table(cut(x, b = 8))
table(cut(x, br = 3%(-2:5)))
table(cut(x, br = 3*%(-2:5), right = FALSE))

##--- some values OUTSIDE the breaks :

table(cx <- cut(x, br = 2%(0:4)))

table(cxl <- cut(x, br = 2x(0:4), right = FALSE))
which(is.na(cx)); x[is.na(cx)] #-- the first 9 values O
which(is.na(cx1l)); x[is.na(cxl)] #-- the last 5 values 8

Label construction:
y <- rnorm(100)

table(cut(y, breaks
table(cut(y, breaks

pi/3%(-3:3)))
pi/3%(-3:3), dig.lab=4))

table(cut(y, breaks = 1*(-3:3), dig.lab=4))# extra digits don't "harm" here
table(cut(y, breaks 1%(-3:3), right = FALSE))#- the same, since no exact INT!

cut.POSIXt Convert a Date-Time Object to a Factor

Description

Method for cut applied to date-time objects.

Usage

S3 method for class 'POSIXt':
cut(x, breaks, labels = NULL, start.on.monday = TRUE,
right = FALSE, ...)

152 data

Arguments
X an object inheriting from class "POSIXt".
breaks a vector of cut points or number giving the number of intervals which x is
to be cut into or an interval specification, one of "sec", "min", "hour",
"day", "DSTday", "week", "month" or "year", optionally preceded by an
integer and a space, or followed by "s".
labels labels for the levels of the resulting category. By default, labels are con-

structed from the left-hand end of the intervals (which are include for
the default value of right). If labels = FALSE, simple integer codes are
returned instead of a factor.

start.on.monday

logical. If breaks = "weeks", should the week start on Mondays or Sun-
days?
right, ... arguments to be passed to or from other methods.

Value

A factor is returned, unless labels = FALSE which returns the integer level codes.

See Also
seq.POSIXt, cut

Examples

random dates in a 10-week period
cut (IS0date(2001, 1, 1) + 70*86400*runif (100), "weeks")

data Data Sets

Description

Loads specified data sets, or list the available data sets.

Usage
data(..., list = character(0), package = .packages(),
lib.loc = NULL, verbose = getOption("verbose"),
envir = .GlobalEnv)
Arguments
a sequence of names or literal character strings.
list a character vector.
package a name or character vector giving the packages to look into for data sets.
By default, all packages in the search path are used, then the ‘data’ sub-
directory (if present) of the current working directory.
lib.loc a character vector of directory names of R libraries, or NULL. The default

value of NULL corresponds to all libraries currently known. If the default
is used, the loaded packages are searched before the libraries.

data 153

verbose a logical. If TRUE, additional diagnostics are printed.
envir the environment where the data should be loaded.
Details

Currently, four formats of data files are supported:

1. files ending ‘.R’ or ‘.r’ are source()d in, with the R working directory changed tem-
porarily to the directory containing the respective file.

2. files ending ‘.RData’ or ‘.rda’ are load ()ed.

3. files ending ‘.tab’, ‘.txt’ or *. TXT’ are read using read.table(..., header = TRUE),
and hence result in a data frame.

4. files ending ‘.csv’ or ‘.CSV’ are read using read.table(..., header = TRUE, sep =
";"), and also result in a data frame.

If more than one matching file name is found, the first on this list is used.

The data sets to be loaded can be specified as a sequence of names or character strings, or
as the character vector 1ist, or as both.

For each given data set, the first two types (‘*.R’ or ‘.r’, and ‘.RData’ or ‘.rda’ files) can
create several variables in the load environment, which might all be named differently from
the data set. The second two (‘.tab’; “.txt’, or . TXT’, and ‘.csv’ or ‘.CSV’ files) will always
result in the creation of a single variable with the same name as the data set.

If no data sets are specified, data lists the available data sets. It looks for a new-style data
index in the ‘Meta’ or, if this is not found, an old-style ‘00Index’ file in the ‘data’ directory
of each specified package, and uses these files to prepare a listing. If there is a ‘data’ area
but no index, available data files for loading are computed and included in the listing, and a
warning is given: such packages are incomplete. The information about available data sets
is returned in an object of class "packageIQR". The structure of this class is experimental.
In earlier versions of R, an empty character vector was returned along with listing available
data sets.

If 1ib.1loc is not specified, the data sets are searched for amongst those packages already
loaded, followed by the ‘data’ directory (if any) of the current working directory and then
packages in the specified libraries. If 1ib.loc is specified, packages are searched for in the
specified libraries, even if they are already loaded from another library.

To just look in the ‘data’ directory of the current working directory, set package = NULL.

Value

a character vector of all data sets specified, or information about all available data sets in
an object of class "packageIQR" if none were specified.

Note

The data files can be many small files. On some file systems it is desirable to save space,
and the files in the ‘data’ directory of an installed package can be zipped up as a zip archive
‘Rdata.zip’. You will need to provide a single-column file ‘filelist’ of file names in that
directory.

One can take advantage of the search order and the fact that a *.R’ file will change directory.
If raw data are stored in ‘mydata.txt’ then one can set up ‘mydata.R’ to read ‘mydata.txt’
and pre-process it, e.g., using transform. For instance one can convert numeric vectors to
factors with the appropriate labels. Thus, the ‘.R’ file can effectively contain a metadata
specification for the plaintext formats.

154 data.class

See Also

help for obtaining documentation on data sets, save for creating the second (‘.rda’) kind
of data, typically the most efficient one.

Examples
data() # list all available data sets
data(package = "base") # list the data sets in the base package
data(USArrests, "VADeaths") # load the data sets 'USArrests' and 'VADeaths'
help (USArrests) # give information on data set 'USArrests'
data.class Object Classes
Description

Determine the class of an arbitrary R object.

Usage

data.class(x)

Arguments

X an R object.

Value

character string giving the “class” of x.

The “class” is the (first element) of the class attribute if this is non-NULL, or inferred from
the object’s dim attribute if this is non-NULL, or mode (x).

Simply speaking, data.class(x) returns what is typically useful for method dispatching.
(Or, what the basic creator functions already and maybe eventually all will attach as a class
attribute.)

Note

For compatibility reasons, there is one exception to the rule above: When x is integer, the
result of data.class(x) is "numeric" even when x is classed.

See Also

class

Examples

x <- LETTERS

data.class(factor(x)) # has a class attribute
data.class(matrix(x, nc = 13)) # has a dim attribute
data.class(list(x)) # the same as mode(x)
data.class(x) # the same as mode(x)

stopifnot(data.class(1:2) == "numeric")# compatibility "rule"

data.frame 155

data.frame Data Frames

Description

This function creates data frames, tightly coupled collections of variables which share many
of the properties of matrices and of lists, used as the fundamental data structure by most
of R’s modeling software.

Usage

data.frame(..., row.names = NULL, check.rows = FALSE, check.names = TRUE)

Arguments
these arguments are of either the form value or tag=value. Component
names are created based on the tag (if present) or the deparsed argument
itself.
row.names NULL or an integer or character string specifying a column to be used as
row names, or a character vector giving the row names for the data frame.
check.rows if TRUE then the rows are checked for consistency of length and names.
check.names logical. If TRUE then the names of the variables in the data frame are
checked to ensure that they are syntactically valid variable names. If
necessary they are adjusted (by make.names) so that they are.
Details

A data frame is a list of variables of the same length with unique row names, given class
"data.frame".

data.frame converts each of its arguments to a data frame by calling
as.data.frame(optional=TRUE). As that is a generic function, methods can be
written to change the behaviour of arguments according to their classes: R comes with
many such methods. Character variables passed to data.frame are converted to factor
columns unless protected by I. If a list or data frame or matrix is passed to data.frame it
is as if each component or column had been passed as a separate argument.

Objects passed to data.frame should have the same number of rows, but atomic vectors,
factors and character vectors protected by I will be recycled a whole number of times if
necessary.

If row names are not supplied in the call to data.frame, the row names are taken from
the first component that has suitable names, for example a named vector or a matrix with
rownames or a data frame. (If that component is subsequently recycled the names are
discarded, with a warning.) If row.names was supplied as NULL or no suitable component
was found the row names are the integer sequence starting at one.

If row names are supplied of length one and the data frame has a single row, the row.names
is taken to specify the row names and not a column (by name or number).

Value

A data frame, a matrix-like stucture whose columns may be of differing types (numeric,
logical, factor and character and so on).

156 data.matrix

Note

In versions of R prior to 1.4.0 logical columns were converted to factors (as in S3 but not
S4).

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

I, plot.data.frame, print.data.frame, row.names, [.data.frame for subsetting

methods, Math.data.frame etc, about Group methods for data.frames; read.table,
make.names.

Examples

L3 <- LETTERS[1:3]
str(d <- data.frame(cbind(x=1, y=1:10), fac=sample(L3, 10, repl=TRUE)))

The same with automatic column names:

str(data.frame(cbind(1, 1:10), sample(L3, 10, repl=TRUE)))
is.data.frame(d)

do not convert to factor, using I()
str(cbind(d, char = I(letters[1:10])), vec.len = 10)

stopifnot(1:10 == row.names(d))# {coercion}
(d0 <- d[, FALSE]) # NULL data frame with 10 rows

(d.0 <- d[FALSE,]) # <0 rows> data frame (3 cols)
(d00 <- dO[FALSE,]) # NULL data frame with O rows

data.matrix Data Frame to Numeric Matriz

Description

Return the matrix obtained by converting all the variables in a data frame to numeric mode
and then binding them together as the columns of a matrix. Factors and ordered factors
are replaced by their internal codes.

Usage

data.matrix(frame)

Arguments

frame a data frame whose components are logical vectors, factors or numeric
vectors.

dataentry 157

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

as.matrix, data.frame, matrix.

dataentry Spreadsheet Interface for Entering Data

Description

A spreadsheet-like editor for entering or editing data.

Usage

data.entry(..., Modes = NULL, Names = NULL)
dataentry(data, modes)
de(..., Modes = 1list(), Names = NULL)

Arguments
A list of variables: currently these should be numeric or character vectors
or list containing such vectors.
Modes The modes to be used for the variables.
Names The names to be used for the variables.
data A list of numeric and/or character vectors.
modes A list of length up to that of data giving the modes of (some of) the
variables. 1ist () is allowed.
Details

The data entry editor is only available on some platforms and GUIs. Where available it
provides a means to visually edit a matrix or a collection of variables (including a data
frame) as described in the “Notes” section.

data.entry has side effects, any changes made in the spreadsheet are reflected in the
variables. The functions de, de.ncols, de.setup and de.restore are designed to help
achieve these side effects. If the user passes in a matrix, X say, then the matrix is broken
into columns before dataentry is called. Then on return the columns are collected and glued
back together and the result assigned to the variable X. If you don’t want this behaviour
use dataentry directly.

The primitive function is dataentry. It takes a list of vectors of possibly different lengths
and modes (the second argument) and opens a spreadsheet with these variables being the
columns. The columns of the dataentry window are returned as vectors in a list when the
spreadsheet is closed.

de.ncols counts the number of columns which are supplied as arguments to data.entry.
It attempts to count columns in lists, matrices and vectors. de.setup sets things up so
that on return the columns can be regrouped and reassigned to the correct name. This is
handled by de.restore.

158 dataentry

Value

de and dataentry return the edited value of their arguments. data.entry invisibly returns
a vector of variable names but its main value is its side effect of assigning new version of
those variables in the user’s workspace.

Note

The details of interface to the data grid may differ by platform and GUI. The following
description applies to the X11-based implementation under Unix.

You can navigate around the grid using the cursor keys or by clicking with the (left) mouse
button on any cell. The active cell is highlighted by thickening the surrounding rectangle.
Moving to the right or down will scroll the grid as needed: there is no constraint to the
rows or columns currently in use.

The are alternative ways to navigate using the keys. Return and (keypad) Enter and
LineFeed all move down. Tab moves right and Shift-Tab move left. Home moves to the top
left.

PageDown or Control-F moves down a page, and PageUp or Control-B up by a page. End
will show the last used column and the last few rows used (in any column).

Using any other key starts an editing process on the currently selected cell: moving away
from that cell enters the edited value whereas Esc cancels the edit and restores the previous
value. When the editing process starts the cell is cleared. In numerical columns (the default)
only letters making up a valid number (including - . eE) are accepted, and entering an invalid
edited value (such as blank) enters NA in that cell. The last entered value can be deleted
using the BackSpace or Del(ete) key. Only a limited number of characters (currently 29)
can be entered in a cell, and if necessary only the start or end of the string will be displayed,
with the omissions indicated by > or <. (The start is shown except when editing.)

Entering a value in a cell further down a column than the last used cell extends the variable
and fills the gap (if any) by NAs (not shown on screen).

The column names can only be selected by clicking in them. This gives a popup menu
to select the column type (currently Real (numeric) or Character) or to change the name.
Changing the type converts the current contents of the column (and converting from Char-
acter to Real may generate NAs.) If changing the name is selected the header cell becomes
editable (and is cleared). As with all cells, the value is entered by moving away from the
cell by clicking elsewhere or by any of the keys for moving down (only).

New columns are created by entering values in them (and not by just assigning a new
name). The mode of the column is auto-detected from the first value entered: if this is a
valid number it gives a numeric column. Unused columns are ignored, so adding data in
var5 to a three-column grid adds one extra variable, not two.

The Copy button copies the currently selected cell: paste copies the last copied value to
the current cell, and right-clicking selects a cell and copies in the value. Initially the value
is blank, and attempts to paste a blank value will have no effect.

Control-L will refresh the display, recalculating field widths to fit the current entries.

In the default mode the column widths are chosen to fit the contents of each column, with a
default of 10 characters for empty columns. you can specify fixed column widths by setting
option de.cellwidth to the required fixed width (in characters). (set it to zero to return
to variable widths). The displayed width of any field is limited to 600 pixels (and by the
window width).

dataframeHelpers 159

See Also

vi, edit: edit uses dataentry to edit data frames.

Examples

call data entry with variables x and y
Not run: data.entry(x,y)

dataframeHelpers Data Frame Auxiliary Functions

Description

Auxiliary functions for use with data frames.

Usage

xpdrows.data.frame(x, old.rows, new.rows)

Arguments

X object of class data.frame.
old.rows, new.rows
row names for old and new rows.

Details

xpdrows.data.frame is an auxiliary function which expands the rows of a data frame. It is
used by the data frame methods of [<- and [[<- (which perform subscripted assignments
on a data frame), and not intended to be called directly.

See Also

[.data.frame

date System Date and Time

Description

Returns a character string of the current system date and time.

Usage
date()

Value

The string has the form "Fri Aug 20 11:11:00 1999", i.e., length 24, since it relies on
POSIX’ ctime ensuring the above fixed format. Timezone and Daylight Saving Time are
taken account of, but not indicated in the result.

160 DateTimeClasses

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

(d <- date())
nchar(d) == 24

DateTimeClasses Date-Time Classes

Description

Description of the classes "POSIX1t" and "POSIXct" representing calendar dates and times
(to the nearest second).

Usage

S3 method for class 'POSIXct':
print(x, ...)

S3 method for class 'POSIXct':
summary (object, digits = 15, ...)

time + number
time - number
timel lop time2

Arguments
x, object An object to be printed or summarized from one of the date-time classes.
digits Number of significant digits for the computations: should be high enough

to represent the least important time unit exactly.

Further arguments to be passed from or to other methods.
time, timel, time2

date-time objects.

number a numeric object.
lop One of ==, 1= < <= > or >=.
Details

There are two basic classes of date/times. Class "POSIXct" represents the (signed) number
of seconds since the beginning of 1970 as a numeric vector. Class "POSIX1t" is a named
list of vectors representing

sec 0-61: seconds

min 0-59: minutes

hour 0-23: hours

mday 1-31: day of the month

DateTimeClasses 161

mon 0-11: months after the first of the year.
year Years since 1900.

wday 0-6 day of the week, starting on Sunday.
yday 0-365: day of the year.

isdst Daylight savings time flag. Positive if in force, zero if not, negative if unknown.

The classes correspond to the ANSI C constructs of “calendar time” (the time_t data type)
and “local time” (or broken-down time, the struct tm data type), from which they also
inherit their names.

"POSIXct" is more convenient for including in data frames, and "POSIX1t" is closer to
human-readable forms. A virtual class "POSIXt" inherits from both of the classes: it is
used to allow operations such as subtraction to mix the two classes.

Logical comparisons and limited arithmetic are available for both classes. One can add or
subtract a number of seconds or a difftime object from a date-time object, but not add two
date-time objects. Subtraction of two date-time objects is equivalent to using difftime.
Be aware that "POSIX1t" objects will be interpreted as being in the current timezone for
these operations, unless a timezone has been specified.

"POSIX1t" objects will often have an attribute "tzone", a character vector of length 3 giving
the timezone name from the TZ environment variable and the names of the base timezone
and the alternate (daylight-saving) timezone. Sometimes this may just be of length one,
giving the timezone name.

Unfortunately, the conversion is complicated by the operation of time zones and leap seconds
(22 days have been 86401 seconds long so far: the times of the extra seconds are in the
object .leap.seconds). The details of this are entrusted to the OS services where possible.
This will usually cover the period 1970-2037, and on Unix machines back to 1902 (when
time zones were in their infancy). Outside those ranges we use our own C code. This uses
the offset from GMT in use in the timezone in 2000, and uses the alternate (daylight-saving)
timezone only if isdst is positive.

It seems that some systems use leap seconds but most do not. This is detected and cor-
rected for at build time, so all "POSIXct" times used by R do not include leap seconds.
(Conceivably this could be wrong if the system has changed since build time, just possibly
by changing locales.)

Using c on "POSIX1t" objects converts them to the current time zone.

Warning

Some Unix-like systems (especially Linux ones) do not have "TZ" set, yet have internal
code that expects it (as does POSIX). We have tried to work around this, but if you get
unexpected results try setting "TZ".

See Also

as.P0SIXct and as.POSIX1t for conversion between the classes.

strptime for conversion to and from character representations.

Sys.time for clock time as a "POSIXct" object.

difftime for time intervals.

cut .POSIXt, seq.POSIXt, round.POSIXt and trunc.POSIXt for methods for these classes.

weekdays.POSIXt for convenience extraction functions.

162 dcf

Examples
(z <~ Sys.time()) # the current date, as class "POSIXct"
Sys.time() - 3600 # an hour ago

as.POSIX1t(Sys.time(), "GMT") # the current time in GMT

format (.leap.seconds) # all 22 leapseconds in your timezone
dcf Read and Write Data in DCF Format
Description

Reads or writes an R object from/to a file in Debian Control File format.

Usage

read.dcf(file, fields=NULL)

write.dcf(x, file = "", append = FALSE,
indent = 0.1 * getOption("width"),
width = 0.9 * getOption("width"))

Arguments
file either a character string naming a file or a connection. "" indicates output
to the console.
fields Fields to read from the DCF file. Default is to read all fields.
X the object to be written, typically a data frame. If not, it is attempted to
coerce x to a data frame.
append logical. If TRUE, the output is appended to the file. If FALSE, any existing
file of the name is destroyed.
indent a positive integer specifying the indentation for continuation lines in out-
put entries.
width a positive integer giving the target column for wrapping lines in the out-
put.
Details

DCEF is a simple format for storing databases in plain text files that can easily be directly
read and written by humans. DCF is used in various places to store R system information,
like descriptions and contents of packages.

The DCF rules as implemented in R are:
1. A database consists of one or more records, each with one or more named fields. Not
every record must contain each field, a field may appear only once in a record.
2. Regular lines start with a non-whitespace character.

3. Regular lines are of form tag:value, i.e., have a name tag and a value for the field,
seperated by : (only the first : counts). The value can be empty (=whitespace only).

4. Lines starting with whitespace are continuation lines (to the preceding field) if at least
one character in the line is non-whitespace.

debug 163

5. Records are seperated by one or more empty (=whitespace only) lines.

read.dcf returns a character matrix with one line per record and one column per field.
Leading and trailing whitespace of field values is ignored. If a tag name is specified, but
the corresponding value is empty, then an empty string of length 0 is returned. If the tag
name of a fields is never used in a record, then NA is returned.

See Also

write.table.

Examples

Create a reduced version of the 'CONTENTS' file in package 'eda'

x <- read.dcf(file = system.file("CONTENTS", package = "eda"),
fields = c("Entry", "Description"))

write.dcf (x)

debug Debug a function

Description

Set or unset the debugging flag on a function.

Usage

debug (fun)
undebug (fun)

Arguments

fun any interpreted R function.

Details

When a function flagged for debugging is entered, normal execution is suspended and the
body of function is executed one statement at a time. A new browser context is initiated for
each step (and the previous one destroyed). Currently you can only debug functions that
have bodies enclosed in braces. This is a bug and will be fixed soon. You take the next step
by typing carriage return, n or next. You can see the values of variables by typing their
names. Typing c or cont causes the debugger to continue to the end of the function. You
can debug new functions before you step in to them from inside the debugger. Typing Q
quits the current execution and returns you to the top—-level prompt. Typing where causes
the debugger to print out the current stack trace (all functions that are active). If you have
variables with names that are identical to the controls (eg. c or n) then you need to use
print(c) and print(n) to evaluate them.

See Also

browser, traceback to see the stack after an Error: ... message; recover for another
debugging approach.

164 debugger

debugger Post-Mortem Debugging

Description

Functions to dump the evaluation environments (frames) and to examine dumped frames.

Usage

dump. frames (dumpto = "last.dump", to.file = FALSE)
debugger (dump = last.dump)

Arguments
dumpto a character string. The name of the object or file to dump to.
to.file logical. Should the dump be to an R object or to a file?
dump An R dump object created by dump.frames.

Details

To use post-mortem debugging, set the option error to be a call to dump.frames. By
default this dumps to an R object "last.dump" in the workspace, but it can be set to
dump to a file (as dump of the object produced by a call to save). The dumped object
contain the call stack, the active environments and the last error message as returned by
geterrmessage.

When dumping to file, dumpto gives the name of the dumped object and the file name has
.rda appended.

A dump object of class "dump.frames" can be examined by calling debugger. This will
give the error message and a list of environments from which to select repeatedly. When
an environment is selected, it is copied and the browser called from within the copy.

If dump.frames is installed as the error handler, execution will continue even in non-
interactive sessions. See the examples for how to dump and then quit.

Value

None.

Note

Functions such as sys.parent and environment applied to closures will not work correctly
inside debugger.

Of course post-mortem debugging will not work if R is too damaged to produce and save
the dump, for example if it has run out of workspace.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Defunct 165

See Also

options for setting error options; recover is an interactive debugger working similarly to
debugger but directly after the error occurs.

Examples

Not run:
options(error=quote(dump.frames("testdump", TRUE)))

f <- function() {
g <- function() stop("test dump.frames")
g0
}
f() # will generate a dump on file "testdump.rda"
options (error=NULL)

possibly in another R session
load("testdump.rda")

debugger (testdump)

Available environments had calls:
1: £Q)

2: g0

3: stop("test dump.frames")

Enter an environment number, or O to exit
Selection: 1

Browsing in the environment with call:
£0

Called from: debugger.look(ind)
Browse[1]> 1s()

[1] "g"

Browse[1]> g

function() stop("test dump.frames")
<environment: 759818>

Browse[1]>

Available environments had calls:

1: £O

2: gO

3: stop("test dump.frames")

Enter an environment number, or O to exit
Selection: O

A possible setting for non-interactive sessions
options(error=quote ({dump.frames(to.file=TRUE); q()1}))
End(Not run)

Defunct Defunct Functions

Description

The functions or variables listed here are no longer part of R as they are not needed (any
more).

Usage

.Defunct ()

Version()

provide (package)

.Provided

category(...)

dnchisq(.)

pnchisq(.)

gnchisq(.)

rnchisq(.)

print.anova.glm(.)

print.anova.lm(.)

print.tabular(.)

print.plot(.)

save.plot(.)

system.test(.)

dotplot(...)

stripplot(...)

getenv(...)

read.table.url(url, method,...)

scan.url(url, file = tempfile(), method, ...)
source.url(url, file = tempfile(), method, ...)

httpclient (url, port=80, error.is.fatal=TRUE, check.MIME.type=TRUE,

file=tempfile(), drop.ctrl.z=TRUE)
parse.dcf (text = NULL, file = "", fields = NULL, versionfix =
.Alias(expr)
reshapeWide(x, i = reshape.i, j = reshape.j, val = reshape.v,
jnames = levels(j))
reshapelong(x,jvars, ilev = row.names(x),
jlev = names(x) [jvars], iname = "reshape.i",
jname = "reshape.j", vname = "reshape.v")
piechart(x, labels = names(x), edges = 200, radius = 0.8,
density = NULL, angle = 45, col = NULL, main = NULL,
print.ordered(.)
.Dyn.1libs
.1lib.loc
machine ()
Machine ()
Platform()
restart ()
printNoClass(x, digits = NULL, quote = TRUE, na.print = NULL,
print.gap = NULL, right = FALSE, ...)

plot.mts(x, plot.type = c("multiple", "single"), panel = lines,

Details

log = "", col = par("col"), bg = NA, pch = par("pch"),
cex = par("cex"), 1ty = par("1lty"), lwd = par("lwd"),
ann = par("ann"), xlab = "Time", type = "1", main=NULL,
oma=c(6, 0, 5, 0), ...)

.Defunct is the function to which defunct functions are set.

Defunct

delay 167

category has been an old-S function before there were factors; should be replaced by factor
throughout!

The *chisq() functions now take an optional non-centrality argument, so the *nchisq()
functions are no longer needed.

The new function dev.print() should now be used for saving plots to a file or printing
them.

provide and its object .Provided have been removed. They were never used for their
intended purpose, to allow one package to subsume another.

dotplot and stripplot have been renamed to dotchart and stripchart, respectively.
getenv has been replaced by Sys.getenv.

x.url are replaced by calling read.table, scan or source on a url connection.
httpclient was used by the deprecated "socket" method of download.file.

parse.dcf has been replaced by read.dcf, which is much faster, but has a slightly different
interface.

.Alias provided an unreliable way to create duplicate references to the same object. There
is no direct replacement. Where multiple references to a single object are required for
semantic reasons consider using environments or external pointers. There are some notes
on http://developer.r-project.org.

reshape*, which were experimental, are replaced by reshape. This has a different syntax
and allows multiple time-varying variables.

piechart is the old name for pie, but clashed with usage in Trellis.

.Dyn.libs and .1ib.loc were internal variables used for storing and manipulating the
information about packages with dynloaded shared libs, and the known R library trees.
These are now dynamic variables which one can get or set using .dynLibs and .1libPaths,
respectively.

Machine () and Platform() were functions returning the variables .Machine and .Platform
respectively.

restart () should be replaced by try(), in preparation for an exception-based implemen-
tation. If you use restart() in a way that cannot be replaced with try() then ask for
help on r-devel.

printNoClass was in package methods and calls directly the internal function
print.default.

plot.mts has been removed, as plot.ts now has the same functionality.

See Also

Deprecated

delay Delay Evaluation

Description

delay creates a promise to evaluate the given expression in the specified environment if its
value is requested. This provides direct access to lazy evaluation mechanism used by R for
the evaluation of (interpreted) functions.

http://developer.r-project.org

168 delete.response

Usage

delay(x, env=.GlobalEnv)

Arguments

X an expression.

env an evaluation environment
Detalils

This is an experimental feature and its addition is purely for evaluation purposes.

Value

A promise to evaluate the expression. The value which is returned by delay can be assigned
without forcing its evaluation, but any further accesses will cause evaluation.

Examples

x <- delay({
for(i in 1:7)
cat("yippee!\n")
10
1))

X" 2#- yippee
X" 2#- simple number

delete.response Modify Terms Objects

Description

delete.response returns a terms object for the same model but with no response variable.

drop.terms removes variables from the right-hand side of the model. There is also a
"[.terms" method to perform the same function (with keep.response=TRUE).

reformulate creates a formula from a character vector.

Usage

delete.response(termobj)
reformulate(termlabels, response = NULL)
drop.terms(termobj, dropx = NULL, keep.response = FALSE)

Arguments
termobj A terms object
termlabels character vector giving the right-hand side of a model formula.
response character string, symbol or call giving the left-hand side of a model for-
mula.
dropx vector of positions of variables to drop from the right-hand side of the
model.

keep.response Keep the response in the resulting object?

demo 169

Value

delete.response and drop.terms return a terms object.

reformulate returns a formula.

See Also

terms

Examples

ff<-y " z+x+w

tt <- terms(ff)

tt

delete.response(tt)

drop.terms(tt, 2:3, keep.response = TRUE)
tt[-1]

tt[2:3]

reformulate(attr(tt, "term.labels"))

keep LHS :

reformulate("x*w", ff[[2]])

fS <- surv(ft, case) “a + b
reformulate(c("a", "b*f"), £S[[2]])

stopifnot(identical(~ var, reformulate("var")),
identical(”™ a + b + ¢, reformulate(letters([1:3])),
identical(y ~ a + b, reformulate(letters[1:2], "y"))
)

demo Demonstrations of R Functionality

Description

demo is a user-friendly interface to running some demonstration R scripts. demo() gives the
list of available topics.

Usage

demo(topic, device = getOption("device"),
package = .packages(), lib.loc = NULL,
character.only = FALSE, verbose = getOption("verbose"))

Arguments
topic the topic which should be demonstrated, given as a name or literal charac-
ter string, or a character string, depending on whether character.only is
FALSE (default) or TRUE. If omitted, the list of available topics is displayed.
device the graphics device to be used.
package a character vector giving the packages to look into for demos. By default,

all packages in the search path are used.

170 density

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. If the default
is used, the loaded packages are searched before the libraries.
character.only
logical; if TRUE, use topic as character string.

verbose a logical. If TRUE, additional diagnostics are printed.

Detalils

If no topics are given, demo lists the available demos. The corresponding information is
returned in an object of class "packageIQR". The structure of this class is experimental.
In earlier versions of R, an empty character vector was returned along with listing available
demos.

See Also

source which is called by demo.

Examples

demo() # for attached packages

All available demos:
demo (package = .packages(all.available = TRUE))

demo (1m.glm)

Not run:

ch <- "scoping"

demo(ch, character = TRUE)
End(Not run)

density Kernel Density Estimation

Description

The function density computes kernel density estimates with the given kernel and band-
width.

Usage

density(x, bw = "nrd0", adjust = 1,
kernel = c("gaussian", "epanechnikov", "rectangular", "triangular",
"biweight", "cosine", "optcosine"),
window = kernel, width,
give.Rkern = FALSE,
n = 512, from, to, cut = 3, na.rm = FALSE)

density 171

Arguments

X the data from which the estimate is to be computed.

bw the smoothing bandwidth to be used. The kernels are scaled such that
this is the standard deviation of the smoothing kernel. (Note this differs
from the reference books cited below, and from S-PLUS.)
bw can also be a character string giving a rule to choose the bandwidth.
See bw.nrd.
The specified (or computed) value of bw is multiplied by adjust.

adjust the bandwidth used is actually adjust*bw. This makes it easy to specify

values like “half the default” bandwidth.

kernel, window
a character string giving the smoothing kernel to be used. This must
be one of "gaussian", "rectangular", "triangular", "epanechnikov",
"biweight", "cosine" or "optcosine", with default "gaussian", and

may be abbreviated to a unique prefix (single letter).

"cosine" is smoother than "optcosine", which is the usual “cosine” ker-
nel in the literature and almost MSE-efficient. However, "cosine" is the
version used by S.

width this exists for compatibility with S; if given, and bw is not, will set bw to
width if this is a character string, or to a kernel-dependent multiple of
width if this is numeric.

give.Rkern logical; if true, no density is estimated, and the “canonical bandwidth” of
the chosen kernel is returned instead.

n the number of equally spaced points at which the density is to be es-
timated. When n > 512, it is rounded up to the next power of 2 for
efficiency reasons (fft).

from,to the left and right-most points of the grid at which the density is to be
estimated.
cut by default, the values of left and right are cut bandwidths beyond

the extremes of the data. This allows the estimated density to drop to
approximately zero at the extremes.

na.rm logical; if TRUE, missing values are removed from x. If FALSE any missing
values cause an error.

Details

The algorithm used in density disperses the mass of the empirical distribution function over
a regular grid of at least 512 points and then uses the fast Fourier transform to convolve this
approximation with a discretized version of the kernel and then uses linear approximation
to evaluate the density at the specified points.

The statistical properties of a kernel are determined by o7 = [¢*K(t)dt which is always
= 1 for our kernels (and hence the bandwidth bw is the standard deviation of the kernel)
and R(K) = [K?(t)dt.

MSE-equivalent bandwidths (for different kernels) are proportional to ox R(K) which is
scale invariant and for our kernels equal to R(K'). This value is returned when give.Rkern
= TRUE. See the examples for using exact equivalent bandwidths.

Infinite values in x are assumed to correspond to a point mass at +/-Inf and the density
estimate is of the sub-density on (-Inf, +Inf).

172 density

Value

If give.Rkern is true, the number R(K), otherwise an object with class "density" whose
underlying structure is a list containing the following components.

X the n coordinates of the points where the density is estimated.
y the estimated density values.
bw the bandwidth used.
N the sample size after elimination of missing values.
call the call which produced the result.
data.name the deparsed name of the x argument.
has.na logical, for compatibility (always FALSE).
References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole (for S version).

Scott, D. W. (1992) Multivariate Density Estimation. Theory, Practice and Visualization.
New York: Wiley.

Sheather, S. J. and Jones M. C. (1991) A reliable data-based bandwidth selection method
for kernel density estimation. J. Roy. Statist. Soc. B, 683-690.

Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.

Venables, W. N. and Ripley, B. D. (1999) Modern Applied Statistics with S-PLUS. New
York: Springer.

See Also

bw.nrd, plot.density, hist.

Examples

plot(density(c(-20,rep(0,98),20)), xlim = c(-4,4))# IQR = 0

The 0l1d Faithful geyser data
data(faithful)

d <- density(faithful$eruptions, bw = "sj")
d

plot(d)

plot(d, type = "n")
polygon(d, col = "wheat")

Missing values:

x <- xx <- faithful$eruptions

x[i.out <- sample(length(x), 10)] <- NA
doR <- density(x, bw = 0.15, na.rm = TRUE)
lines(doR, col = "blue")

points(xx[i.out], rep(0.01, 10))

(kernels <- eval(formals(density)$kernel))

show the kernels in the R parametrization
plot (density(0, bw = 1), xlab = "",

deparse 173

main="R's density() kernels with bw = 1")
for(i in 2:length(kernels))
lines(density(0, bw = 1, kern = kernels[i]), col = i)
legend(1.5, .4, legend = kernels, col = seq(kernels),
1ty = 1, cex = .8, y.int = 1)

show the kernels in the S parametrization
plot(density(0, from=-1.2, to=1.2, width=2, kern="gaussian"), type="1",
ylim = c(0, 1), xlab="", main="R's density() kernels with width = 1")
for(i in 2:length(kernels))
lines(density (0, width=2, kern = kernels[i]), col = i)
legend(0.6, 1.0, legend = kernels, col = seq(kernels), lty = 1)

(RKs <- cbind(sapply(kernels, function(k)density(kern = k, give.Rkern = TRUE))))
100*round (RKs ["epanechnikov",]/RKs, 4) ## Efficiencies

if (interactive()) {
data(precip)
bw <- bw.SJ(precip) ## sensible automatic choice
plot(density(precip, bw = bw, n = 2713),
main = "same sd bandwidths, 7 different kernels")
for(i in 2:length(kernels))
lines(density(precip, bw = bw, kern = kernels[i], n = 2713), col = i)

Bandwidth Adjustment for "Exactly Equivalent Kernels"

h.f <- sapply(kernels, function(k)density(kern = k, give.Rkern = TRUE))
(h.f <- (h.f["gaussian"] / h.f)" .2)

-> 1, 1.01, .995, 1.007,... close to 1 => adjustment barely visible..

plot(density(precip, bw = bw, n = 2713),
main = "equivalent bandwidths, 7 different kernels")
for(i in 2:length(kernels))
lines(density(precip, bw = bw, adjust = h.f[i], kern = kernels[i],
n = 2713), col = i)
legend (55, 0.035, legend = kermels, col = seq(kernels), lty = 1)
}

deparse Ezxpression Deparsing

Description

Turn unevaluated expressions into character strings.

Usage

deparse(expr, width.cutoff = 60,
backtick = mode(expr) %in% c("call", "expression", "("))

Arguments

expr any R expression.
width.cutoff integer in [20,500] determining the cutoff at which line-breaking is tried.

backtick logical indicating whether symbolic names should be enclosed in backticks
if they don’t follow the standard syntax.

174 Deprecated

Details

This function turns unevaluated expressions (where “expression” is taken in a wider sense
than the strict concept of a vector of mode "expression" used in expression) into char-
acter strings (a kind of inverse parse).

A typical use of this is to create informative labels for data sets and plots. The example
shows a simple use of this facility. It uses the functions deparse and substitute to create
labels for a plot which are character string versions of the actual arguments to the function
myplot.

The default for the backtick option is not to quote single symbols but only composite
expressions. This is a compromise to avoid breaking existing code.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

substitute, parse, expression.

Examples

deparse (args(1m))
deparse(args(lm), width = 500)
myplot <-
function(x, y)
plot(x, y, xlab=deparse(substitute(x)),
ylab=deparse(substitute(y)))

Deprecated Deprecated Functions

Description

These functions are provided for compatibility with older versions of R only, and may be
defunct as soon as of the next release.

Usage

.Deprecated(new)

print.coefmat(x, digits=max(3, getOption("digits") - 2),
signif.stars = getOption("show.signif.stars"),
dig.tst = max(1l, min(5, digits - 1)),
cs.ind = 1:k, tst.ind = k + 1, zap.ind = integer(0),
P.values = NULL,

has.Pvalue = nc >= 4 && substr(colnames(x)[nc],1,3) == "Pr(",
eps.Pvalue = .Machine$double.eps,
na.print = "", ...)

codes(x, ...)

deriv 175

codes(x, ...) <- value

anovalist.lm(object, ..., test = NULL)
Im.fit.null(x, y, method = "qr", tol = 1e-07, ...)
Im.wfit.null(x, y, w, method = "qr", tol = 1e-07, ...)
glm.fit.null(x, y, weights = rep(l, nobs), start = NULL,
etastart = NULL, mustart = NULL, offset = rep(0, nobs),
family = gaussian(), control = glm.control(),
intercept = FALSE)
print.atomic(x, quote = TRUE, ...)

Details

.Deprecated("<new name>") is called from deprecated functions. The original help page
for these functions is often available at help("oldName-deprecated") (note the quotes).

tkfilefind is a demo in package tcltk displaying a widget for selecting files but the same
functionality is available in a better form in the tkgetOpenFile and tkgetSaveFile func-
tions. The demo is reported not even to work with recent versions of Tcl and Tk libraries.

print.coefmat is an older name for printCoefmat with a different default for na.print.

codes was almost always used inappropriately. To get the internal coding of a factor, use
unclass, as.vector or as.integer. For ordered factors, codes was equivalent to these,
but for unordered factors it assumed an an alphabetical ordering of the levels in the locale
in use.

anovalist.lm was replaced by anova.lmlist in R 1.2.0.

Im.fit.null and lm.wfit.null are superseded by 1lm.fit and lm.wfit which handle null
models now. Similarly, glm.fit.null is superseded by glm.fit.

print.atomic differs from print.default only in its argument sequence. It is not a method
for print.

See Also

Defunct,

deriv Symbolic and Algorithmic Derivatives of Simple Expressions

Description

Compute derivatives of simple expressions, symbolically.

Usage

D (expr, name)
deriv(expr, namevec, function.arg, tag = ".expr", hessian = FALSE)
deriv3(expr, namevec, function.arg, tag = ".expr", hessian = TRUE)

176 deriv

Arguments

expr expression or call to be differentiated.

name,namevec character vector, giving the variable names (only one for D()) with respect
to which derivatives will be computed.

function.arg If specified, a character vector of arguments for a function return, or a
function (with empty body) or TRUE, the latter indicating that a function
with argument names namevec should be used.

tag character; the prefix to be used for the locally created variables in result.

hessian a logical value indicating whether the second derivatives should be calcu-
lated and incorporated in the return value.

Detalils

D is modelled after its S namesake for taking simple symbolic derivatives.

deriv is a generic function with a default and a formula method. It returns a call for
computing the expr and its (partial) derivatives, simultaneously. It uses so-called “algo-
rithmic derivatives”. If function.arg is a function, its arguments can have default values,
see the £x example below.

Currently, deriv.formula just calls deriv.default after extracting the expression to the
right of ~.

deriv3 and its methods are equivalent to deriv and its methods except that hessian
defaults to TRUE for deriv3.

Value

D returns a call and therefore can easily be iterated for higher derivatives.

deriv and deriv3 normally return an expression object whose evaluation returns the
function values with a "gradient" attribute containing the gradient matrix. If hessian is
TRUE the evaluation also returns a "hessian" attribute containing the Hessian array.

If function.arg is specified, deriv and deriv3 return a function with those arguments
rather than an expression.

References

Griewank, A. and Corliss, G. F. (1991) Automatic Differentiation of Algorithms: Theory,
Implementation, and Application. STAM proceedings, Philadelphia.

Bates, D. M. and Chambers, J. M. (1992) Nonlinear models. Chapter 10 of Statistical
Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

nlm and optim for numeric minimization which could make use of derivatives, nls in package
nls.

Examples

formula argument :
dx2x <- deriv(~ x~2, "x") ; dx2x
Not run:
expression({
.value <- x72

det 177

.grad <- array(0, c(length(.value), 1), list(NULL, c("x")))
.grad[, "x"] <- 2 % x
attr(.value, "gradient") <- .grad
.value
B
End(Not run)
mode (dx2x)
x <- -1:2
eval (dx2x)

Something 'tougher':

trig.exp <- expression(sin(cos(x + y~2)))
(D.sc <- D(trig.exp, "x"))
all.equal(D(trig.exp[[1]1], "x"), D.sc)

(dxy <- deriv(trig.exp, c("x", "y")))
y <-1

eval (dxy)

eval(D.sc)

function returned:
deriv((y ~ sin(cos(x) * y)), c("x","y"), func = TRUE)

function with defaulted arguments:

(fx <- deriv(y ~ b0 + bl * 27(-x/th), c("b0", "b1", "th"),
function(bO, bl, th, x = 1:7){}))

£x(2,3,4)

Higher derivatives
deriv3(y ~ b0 + bl * 27 (-x/th), c("b0", "bl", "th"),
c("bO", "bl", "th", "X"))

Higher derivatives:
DD <- function(expr,name, order = 1) {
if (order < 1) stop("'order' must be >= 1")
if (order == 1) D(expr,name)
else DD(D(expr, name), name, order - 1)
}
DD(expression(sin(x~2)), "x", 3)
showing the limits of the internal "simplify()"
Not run:
-sin(x”"2) * (2 * x) * 2 + ((cos(x"2) * (2 * x) * (2 * x) + sin(x"2) *
2) * (2 * x) + sin(x"2) * (2 *x x) * 2)
End(Not run)

det Calculate the Determinant of a Matrix

Description

det calculates the determinant of a matrix. determinant is a generic function that returns
separately the modulus of the determinant, optionally on the logarithm scale, and the sign
of the determinant.

178 detach

Usage

det(x, ...)
determinant(x, logarithm = TRUE, ...)

Arguments
X numeric matrix.
logarithm logical; if TRUE (default) return the logarithm of the modulus of the de-
terminant.
Optional arguments. At present none are used. Previous versions of det
allowed an optional method argument. This argument will be ignored but
will not produce an error.
Value

For det, the determinant of x. For determinant, a list with components
modulus a numeric value. The modulus (absolute value) of the determinant if
logarithm is FALSE; otherwise the logarithm of the modulus.

sign integer; either +1 or —1 according to whether the determinant is positive
or negative.

Note

Often, computing the determinant is not what you should be doing to solve a given problem.

Prior to version 1.8.0 the det function had a method argument to allow use of either a
QR decomposition or an eigenvalue-eigenvector decomposition. The determinant function
now uses an LU decomposition and the det function is simply a wrapper around a call to
determinant.

Examples

(x <- matrix(1:4, ncol=2))
unlist(determinant (x))
det (x)

det (print (cbind(1,1:3,c(2,0,1))))

detach Detach Objects from the Search Path

Description

Detach a database, i.e., remove it from the search() path of available R objects. Usu-
ally, this either a data.frame which has been attached or a package which was required
previously.

Usage

detach(name, pos = 2, version)

dev.xxx 179
Arguments
name The object to detach. Defaults to search() [pos]. This can be a name
or a character string but not a character vector.
pos Index position in search() of database to detach. When name is numeric,
pos = name is used.
version A character string denoting a version number of the package to be loaded.
If no version is given, a suitable default is chosen.
Value

The attached database is returned invisibly, either as data.frame or as list.

Note

You cannot detach either the workspace (position 1) or the base package (the last item in

the search list).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth

& Brooks/Cole.

See Also

attach, library, search, objects.

Examples

require (eda) #package

detach(package:eda)

could equally well use detach("package:eda")
but NOT pkg <- "package:eda"; detach(pkg)
Instead, use

library(eda)

pkg <- "package:eda"

detach(pos = match(pkg, search()))

careful: do not do this unless 'lgs' is not already loaded.
library(lgs)
detach(2)# 'pos' used for 'name'

dev.xxx Control Multiple Devices

Description

These functions provide control over multiple graphics devices.

Only one device is the active device. This is the device in which all graphics operations

occur.

Devices are associated with a name (e.g., "X11" or "postscript") and a number; the "null

device" is always device 1.

180 dev.xxx

dev.off shuts down the specified (by default the current) device. graphics.off () shuts
down all open graphics devices.
dev.set makes the specified device the active device.

A list of the names of the open devices is stored in .Devices. The name of the active device
is stored in .Device.

Usage

dev.cur()

dev.list()

dev.next(which = dev.cur())
dev.prev(which = dev.cur())
dev.off (which = dev.cur())
dev.set(which = dev.next())
graphics.off ()

Arguments

which An integer specifying a device number

Value
dev.cur returns the number and name of the active device, or 1, the null device, if none is
active.

dev.list returns the numbers of all open devices, except device 1, the null device. This
is a numeric vector with a names attribute giving the names, or NULL is there is no open
device.

dev.next and dev.prev return the number and name of the next / previous device in the
list of devices. The list is regarded as a circular list, and "null device" will be included
only if there are no open devices.

dev.off returns the name and number of the new active device (after the specified device
has been shut down).

dev.set returns the name and number of the new active device.

See Also

Devices, such as postscript, etc; layout and its links for setting up plotting regions on
the current device.

Examples
Not run:
Unix-specific example
x110)
plot(1:10)
x110)
plot (rnorm(10))

dev.set(dev.prev())

abline(0,1)# through the 1:10 points
dev.set(dev.next())

abline (h=0, col="gray")# for the residual plot
dev.set(dev.prev())

dev.off(); dev.off O)#- close the two X devices
End(Not run)

dev2 181

dev2 Copy Graphics Between Multiple Devices

Description

dev. copy copies the graphics contents of the current device to the device specified by which
or to a new device which has been created by the function specified by device (it is an
error to specify both which and device). (If recording is off on the current device, there
are no contents to copy: this will result in no plot or an empty plot.) The device copied to
becomes the current device.

dev.print copies the graphics contents of the current device to a new device which has
been created by the function specified by device and then shuts the new device.

dev.copy2eps is similar to dev.print but produces an EPSF output file, in portrait ori-
entation (horizontal = FALSE)

dev.control allows the user to control the recording of graphics operations in a device. If
displaylist is "inhibit" ("enable") then recording is turned off (on). It is only safe
to change this at the beginning of a plot (just before or just after a new page). Initially
recording is on for screen devices, and off for print devices.

Usage
dev.copy(device, ..., which = dev.next())
dev.print(device = postscript, ...)

dev.copy2eps(...)
dev.control(displaylist = c("inhibit", "enable"))

Arguments
device A device function (e.g., x11, postscript, ...)
Arguments to the device function above. For dev.print, this includes
which and by default any postscript arguments.
which A device number specifying the device to copy to
displaylist A character string: the only valid values are "inhibit" and "enable".
Details

For dev.copy2eps, width and height are taken from the current device unless otherwise
specified. If just one of width and height is specified, the other is adjusted to preserve the
aspect ratio of the device being copied. The default file name is Rplot.eps.

The default for dev.print is to produce and print a postscript copy, if
options("printcmd") is set suitably.

dev.print is most useful for producing a postscript print (its default) when the following
applies. Unless file is specified, the plot will be printed. Unless width, height and
pointsize are specified the plot dimensions will be taken from the current device, shrunk
if necessary to fit on the paper. (pointsize is rescaled if the plot is shrunk.) If horizontal
is not specified and the plot can be printed at full size by switching its value this is done
instead of shrinking the plot region.

If dev.print is used with a specified device (even postscript) it sets the width and height
in the same way as dev.copy2eps.

182 dev2bitmap

Value

dev.copy returns the name and number of the device which has been copied to.

dev.print and dev.copy2eps return the name and number of the device which has been
copied from.

Note

Most devices (including all screen devices) have a display list which records all of the
graphics operations that occur in the device. dev.copy copies graphics contents by copying
the display list from one device to another device. Also, automatic redrawing of graphics
contents following the resizing of a device depends on the contents of the display list.

After the command dev.control("inhibit"), graphics operations are not recorded in the
display list so that dev.copy and dev.print will not copy anything and the contents of a
device will not be redrawn automatically if the device is resized.

The recording of graphics operations is relatively expensive in terms of memory so the
command dev.control("inhibit") can be useful if memory usage is an issue.

See Also

dev.cur and other dev.xxx functions

Examples

Not run:

x110)

plot(rnorm(10), main="Plot 1")

dev.copy(device=x11)

mtext ("Copy 1", 3)

dev.print (width=6, height=6, horizontal=FALSE) # prints it
dev.off (dev.prev())

dev.off ()

End(Not run)

dev2bitmap Graphics Device for Bitmap Files via GhostScript

Description

bitmap generates a graphics file. dev2bitmap copies the current graphics device to a file in
a graphics format.

Usage

bitmap(file, type = "png256", height = 6, width = 6, res = 72,
pointsize, ...)
dev2bitmap(file, type = "png256", height = 6, width = 6, res = 72,
pointsize, ...)

dev2bitmap 183

Arguments
file The output file name, with an appropriate extension.
type The type of bitmap. the default is "png256".
height The plot height, in inches.
width The plot width, in inches.
res Resolution, in dots per inch.
pointsize The pointsize to be used for text: defaults to something reasonable given
the width and height
Other parameters passed to postscript.
Details

dev2bitmap works by copying the current device to a postscript device, and post-
processing the output file using ghostscript. bitmap works in the same way using a
postscript device and postprocessing the output as “printing”.

You will need a version of ghostscript (5.10 and later have been tested): the full path to
the executable can be set by the environment variable R_GSCMD.

The types available will depend on the version of ghostscript, but are likely to in-
clude "pcxmono", "pcxgray", "pcx16", "pcx256", "pcx24b", "pcxcmyk", "pbm", "pbmraw",
"pgnl", Ilpg.[nrawll, "pgmn", "pgnmraW", III)I]JHII7 Ilpnlnrawll’ Ilppmll, "ppmraW", I|p1<n-|'ll7
"pkmraw", "tiffcrle", "tiffg3", "tiffg32d", "tiffgd", "tifflzw", "tiffpack",
"tiff12nc", "tiff24nc", "psmono", "psgray", "psrgb", "bit", "bitrgb", "bitcmyk",
Ilpngmonoﬂ’ IlleggI.a.y.ll7 llpng16ll, III)I1g256l|7 |Ipng16mll, lljpegll, lljpeggrayll’ "pdeI‘lte"

Note: despite the name of the functions they can produce PDF via type = "pdfwrite",
and the PDF produced is not bitmapped.

For formats which contain a single image, a file specification like Rplots’%03d.png can be
used: this is intepreted by GhostScript.

For dev2bitmap if just one of width and height is specified, the other is chosen to preserve
aspect ratio of the device being copied.
Value

None.

See Also

postscript, png and jpeg and on Windows bmp.
pdf generate PDF directly.

To display an array of data, see image.

184 Devices

deviance Model Deviance

Description

Returns the deviance of a fitted model object.

Usage
deviance(object, ...)
Arguments
object an object for which the deviance is desired.
additional optional argument.
Details

This is a generic function which can be used to extract deviances for fitted models. Consult
the individual modeling functions for details on how to use this function.

Value

The value of the deviance extracted from the object object.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

df .residual, extractAIC, glm, 1m.

Devices List of Graphical Devices

Description

The following graphics devices are currently available:

e postscript Writes PostScript graphics commands to a file

e pdf Write PDF graphics commands to a file

e pictex Writes LaTeX/PicTeX graphics commands to a file

e xfig Device for XFIG graphics file format

e bitmap bitmap pseudo-device via GhostScript (if available).

The following devices will be available if R was compiled to use them and started with the
appropriate ‘--gui’ argument:

Devices 185

e X11 The graphics driver for the X11 Window system
e png PNG bitmap device

¢ jpeg JPEG bitmap device

e GTK, GNOME Graphics drivers for the GNOME GUI.

None of these are available under R CMD BATCH.

Usage
X11(...)
postscript(...)
pdf(...)
pictex(...)
png(...)
jpeg(...)
GTK(...)
GNOME(...)
xfig(...)
bitmap(...)

dev.interactive()

Details

If no device is open, using a high-level graphics function will cause a device to be opened.
Which device is given by options("device") which is initially set as the most appropriate
for each platform: a screen device in interactive use and postscript otherwise.

Value

dev.interactive() returns a logical, TRUE iff an interactive (screen) device is in use.

See Also

The individual help files for further information on any of the devices listed here;
dev.cur, dev.print, graphics.off, image, dev2bitmap.

capabilities to see if X11, jpeg and png are available.

Examples

Not run:

open the default screen device on this platform if no device is
open

if(dev.cur() == 1) get(getOption("device")) ()

End(Not run)

186 diag

df .residual Residual Degrees-of-Freedom

Description

Returns the residual degrees-of-freedom extracted from a fitted model object.

Usage

df .residual (object, ...)

Arguments
object an object for which the degrees-of-freedom are desired.
additional optional arguments.
Details

This is a generic function which can be used to extract residual degrees-of-freedom for fitted
models. Consult the individual modeling functions for details details on how to use this
function.

The default method just extracts the df .residual component.

Value

The value of the residual degrees-of-freedom extracted from the object x.

See Also

deviance, glm, 1m.

diag Matriz Diagonals

Description

Extract or replace the diagonal of a matrix, or construct a diagonal matrix.

Usage

diag(x = 1, nrow, ncol=)
diag(x) <- value

Arguments
X a matrix, vector or 1D array.
nrow, ncol Optional dimensions for the result.
value either a single value or a vector of length equal to that of the current

diagonal. Should be of a mode which can be coerced to that of x.

diff 187

Value

If x is a matrix then diag(x) returns the diagonal of x. The resulting vector will have
names if the matrix x has matching column and row names.

If x is a vector (or 1D array) of length two or more, then diag(x) returns a diagonal matrix
whose diagonal is x.

If x is a vector of length one then diag(x) returns an identity matrix of order the nearest
integer to x. The dimension of the returned matrix can be specified by nrow and ncol (the
default is square).

The assignment form sets the diagonal of the matrix x to the given value(s).

Note

Using diag(x) can have unexpected effects if x is a vector that could be of length one. Use
diag(x, nrow = length(x)) for consistent behaviour.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

upper.tri, lower.tri, matrix.

Examples

dim(diag(3))
diag(10,3,4) # guess what?
all(diag(1:3) == {m <- matrix(0,3,3); diag(m) <- 1:3; m})

diag(var(M <- cbind(X=1:5, Y=rnorm(5))))#-> vector with names "X" and "Y"
rownames (M) <- c(colnames(M),rep("",3));
M; diag(M) # named as well

diff Lagged Differences

Description

Returns suitably lagged and iterated differences.
Usage
diff(x, ...)

Default S3 method:
diff(x, lag = 1, differences =1, ...)

S3 method for class 'POSIXt':
diff(x, lag = 1, differences = 1, ...)

188 difftime

Arguments
X a numeric vector or matrix containing the values to be differenced.
lag an integer indicating which lag to use.
differences an integer indicating the order of the difference.
further arguments to be passed to or from methods.
Details

diff is a generic function with a default method and ones for classes "ts" and "POSIXt".
NA’s propagate.

Value

If x is a vector of length n and differences=1, then the computed result is equal to the
successive differences x[(1+1lag) :n] - x[1:(n-lag)].

If difference is larger than one this algorithm is applied recursively to x. Note that the
returned value is a vector which is shorter than x.

If x is a matrix then the difference operations are carried out on each column separately.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

diff.ts, diffinv.

Examples

diff(1:10, 2)

diff(1:10, 2, 2)

x <- cumsum(cumsum(1:10))
diff(x, lag = 2)

diff(x, differences = 2)

diff (.leap.seconds)

difftime Time Intervals

Description

Create, print and round time intervals.

difftime 189

Usage

timel - time2
difftime(timel, time2, tz = "",

units = c("auto", "secs", "mins", "hours", "days", "weeks"))
as.difftime(tim, format = "%X")

S3 method for class 'difftime':
round(x, digits = 0)

Arguments

timel, time2 date-time objects.

tz a timezone specification to be used for the conversion. System-specific,
but "" is the current time zone, and "GMT" is UTC.
units character. Units in which the results are desired. Can be abbreviated.
tim character string specifying a time interval.
format character specifying the format of tim.
X an object inheriting from class "difftime".
digits integer. Number of significant digits to retain.
Details

Function difftime takes a difference of two date/time objects (of either class) and returns
an object of class "difftime" with an attribute indicating the units. There is a round
method for objects of this class, as well as methods for the group-generic (see Ops) logical
and arithmetic operations.

If units = "auto", a suitable set of units is chosen, the largest possible (excluding "weeks")
in which all the absolute differences are greater than one.

Subtraction of two date-time objects gives an object of this class, by calling difftime with
units="auto". Alternatively, as.difftime () works on character-coded time intervals.

Limited arithmetic is available on "difftime" objects: they can be added or subtracted,
and multiplied or divided by a numeric vector. In addition, adding or subtracting a numeric
vector implicitly converts the numeric vector to a "difftime" object with the same units
as the "difftime" object.

See Also

DateTimeClasses.

Examples
(z <- Sys.time() - 3600)
Sys.time() - z # just over 3600 seconds.

time interval between releases of 1.2.2 and 1.2.3.
ISOdate (2001, 4, 26) - ISOdate(2001, 2, 26)

as.difftime(c("0:3:20", "11:23:15"))
as.difftime(c("3:20", "23:15", "2:"), format= "}H:/M")# 3rd gives NA

190 dim

dim Dimensions of an Object

Description

Retrieve or set the dimension of an object.

Usage

dim(x)
dim(x) <- value

Arguments
X an R object, for example a matrix, array or data frame.
value For the default method, either NULL or a numeric vector which coerced to
integer (by truncation).
Detalils

The functions dim and dim<- are generic.

dim has a method for data.frames, which returns the length of the row.names attribute of
x and the length of x (the numbers of “rows” and “columns”).

Value

For an array (and hence in particular, for a matrix) dim retrieves the dim attribute of the
object. It is NULL or a vector of mode integer.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

ncol, nrow and dimnames.

Examples

x <- 1:12 ; dim(x) <- c(3,4)
X

simple versions of nrow and ncol could be defined as follows
nrow0 <- function(x) dim(x) [1]
ncol0 <- function(x) dim(x) [2]

dimnames 191

dimnames Dimnames of an Object

Description

Retrieve or set the dimnames of an object.

Usage

dimnames (x)
dimnames (x) <- value

Arguments
X an R object, for example a matrix, array or data frame.
value a possible value for dimnames (x): see “Value”.

Details

The functions dimnames and dimnames<- are generic.

For an array (and hence in particular, for a matrix), they retrieve or set the dimnames
attribute (see attributes) of the object. The list value can have names, and these will be
used to label the dimensions of the array where appropriate.

Both have methods for data frames. The dimnames of a data frame are its row.names
attribute and its names.

As from R 1.8.0 factor components of value will be coerced to character.

Value

The dimnames of a matrix or array can be NULL or a list of the same length as dim(x). If
a list, its components are either NULL or a character vector the length of the appropriate
dimension of x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

rownames, colnames; array, matrix, data.frame.

Examples

simple versions of rownames and colnames
could be defined as follows

rownamesO <- function(x) dimnames(x) [[1]]
colnamesO <- function(x) dimnames(x) [[2]]

192 do.call

discoveries Yearly Numbers of Important Discoveries

Description

The numbers of “great” inventions and scientific discoveries in each year from 1860 to 1959.

Usage

data(discoveries)

Format

A time series of 100 values.

Source

The World Almanac and Book of Facts, 1975 Edition, pages 315-318.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(discoveries)

plot(discoveries, ylab = "Number of important discoveries",
las = 1)

title(main = "discoveries data set")

do.call FEzxecute a Function Call

Description
do.call executes a function call from the name of the function and a list of arguments to
be passed to it.

Usage

do.call(what, args)

Arguments
what a character string naming the function to be called.
args a list of arguments to the function call. The names attribute of args gives
the argument names.
Value

The result of the (evaluated) function call.

dotchart 193

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

call which creates an unevaluated call.

Examples

do.call("complex", list(imag = 1:3))

dotchart Cleveland Dot Plots

Description

Draw a Cleveland dot plot.

Usage

dotchart(x, labels = NULL, groups = NULL, gdata = NULL,
cex = par("cex"), pch = 21, gpch = 21, bg = par("bg"),
color = par("fg"), gcolor = par("fg"), lcolor = '"gray",
xlim = range(x[is.finite(x)]),
main = NULL, xlab = NULL, ylab = NULL, ...)

Arguments

X either a vector or matrix of numeric values (NAs are allowed). If x is a
matrix the overall plot consists of juxtaposed dotplots for each row.

labels a vector of labels for each point. For vectors the default is to use names (x)
and for matrices the row labels dimnames (x) [[1]].

groups an optional factor indicating how the elements of x are grouped. If x is a
matrix, groups will default to the columns of x.

gdata data values for the groups. This is typically a summary such as the median
or mean of each group.

cex the character size to be used. Setting cex to a value smaller than one can
be a useful way of avoiding label overlap.

pch the plotting character or symbol to be used.

gpch the plotting character or symbol to be used for group values.

bg the background color of plotting characters or symbols to be used; use
par(bg= *) to set the background color of the whole plot.

color the color(s) to be used for points an labels.

gcolor the single color to be used for group labels and values.

lcolor the color(s) to be used for the horizontal lines.

x1lim horizontal range for the plot, see plot.window, e.g.

main overall title for the plot, see title.

xlab, ylab axis annotations as in title.

graphical parameters can also be specified as arguments.

194 double

Value

This function is invoked for its side effect, which is to produce two variants of dotplots as
described in Cleveland (1985).

Dot plots are a reasonable substitute for bar plots.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Cleveland, W. S. (1985) The Elements of Graphing Data. Monterey, CA: Wadsworth.

Examples

data(VADeaths)
dotchart (VADeaths, main = "Death Rates in Virginia - 1940")
op <- par(xaxs="i")# 0 -- 100%
dotchart (t (VADeaths), xlim = c(0,100),
main = "Death Rates in Virginia - 1940")
par (op)

double Double Precision Vectors

Description

Create, coerce to or test for a double-precision vector.

Usage

]
o
~

double(length
as.double(x, ...)
is.double(x)

single(length = 0)
as.single(x, ...)
Arguments
length desired length.
X object to be coerced or tested.

further arguments passed to or from other methods.

Value

double creates a double precision vector of the specified length. The elements of the vector
are all equal to 0.

as.double attempts to coerce its argument to be of double type: like as.vector it strips
attributes including names.

is.double returns TRUE or FALSE depending on whether its argument is of double type
or not. It is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

download. file

Note

195

R has no single precision data type. All real numbers are stored in double precision format.
The functions as.single and single are identical to as.double and double except they
set the attribute Csingle that is used in the .C and .Fortran interface, and they are
intended only to be used in that context.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth

& Brooks/Cole.

See Also

integer.

Examples

is.double(1)

all(double(3) =

= 0)

download.file

Download File from the Internet

Description

This function can be used to download a file from the Internet.

Usage

download.file(url, destfile, method, quiet = FALSE, mode="w",

Arguments

url

destfile

method

quiet

mode

cache(OK

cacheOK = TRUE)

A character string naming the URL of a resource to be downloaded.

A character string with the name where the downloaded file is saved.
Tilde-expansion is performed.

Method to be used for downloading files. Currently download methods
"internal", "wget" and "lynx" are available. The default is to choose
the first of these which will be "internal". The method can also be set
through the option "download.file.method": see options().

If TRUE, suppress status messages (if any).

character. The mode with which to write the file. Useful values are "w",
"wb" (binary), "a" (append) and "ab". Only used for the "internal"
method.

logical. Is a server-side cached value acceptable? Implemented for the
"internal" and "wget" methods.

196 download. file

Details

The function download.file can be used to download a single file as described by url
from the internet and store it in destfile. The url must start with a scheme such as
"http://", "ftp://" or "file://".

cacheOK = FALSE is useful for "http://" URLs, and will attempt to get a copy directly
from the site rather than from an intermediate cache. (Not all platforms support it.) It is
used by CRAN.packages.

The remaining details apply to method "internal" only.

The timeout for many parts of the transfer can be set by the option timeout which defaults
to 60 seconds.

The level of detail provided during transfer can be set by the quiet argument and the
internet.info option. The details depend on the platform and scheme, but setting
internet.info to 0 gives all available details, including all server responses. Using 2
(the default) gives only serious messages, and 3 or more suppresses all messages.

Method "wget" can be used with proxy firewalls which require user /password authentication
if proper values are stored in the configuration file for wget.

Setting Proxies

This applies to the internal code only.

Proxies can be specified via environment variables. Setting "no_proxy" stops any proxy
being tried. Otherwise the setting of "http_proxy" or "ftp_proxy" (or failing that, the
all upper-case version) is consulted and if non-empty used as a proxy site. For FTP trans-
fers, the username and password on the proxy can be specified by "ftp_proxy_user" and
"ftp_proxy_password". The form of "http_proxy" should be "http://proxy.dom.com/"
or "http://proxy.dom.com:8080/" where the port defaults to 80 and the trailing slash
may be omitted. For "ftp_proxy" use the form "ftp://proxy.dom.com:3128/" where the
default port is 21. These environment variables must be set before the download code is
first used: they cannot be altered later by calling Sys.putenv.

Usernames and passwords can be set for HTTP proxy transfers via environment variable
http_proxy_user in the form user:passwd. Alternatively, "http_proxy" can be of the
form "http://user:pass@proxy.dom.com:8080/" for compatibility with wget. Only the
HTTP/1.0 basic authentication scheme is supported.

Note

Methods "wget" and "lynx" are for historical compatibility. They will block all other
activity on the R process.

For methods "wget" and "lynx" a system call is made to the tool given by method, and
the respective program must be installed on your system and be in the search path for
executables.

See Also
options to set the timeout and internet.info options.
url for a finer-grained way to read data from URLs.

url.show, CRAN.packages, download.packages for applications

dput 197

dput Write an Internal Object to a File

Description

Writes an ASCII text representation of an R object to a file or connection, or uses one to
recreate the object.

Usage
dput(x, file = "")
dget(file)
Arguments
X an object.
file either a character string naming a file or a connection. "" indicates output
to the console.
Details

dput opens file and deparses the object x into that file. The object name is not written
(contrary to dump). If x is a function the associated environment is stripped. Hence scoping
information can be lost.

Using dget, the object can be recreated (with the limitations mentioned above).

dput will warn if fewer characters were written to a file than expected, which may indicate
a full or corrupt file system.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

deparse, dump, write.

Examples

Write an ASCII version of mean to the file "foo"
dput (mean, "foo")

And read it back into 'bar'

bar <- dget("foo")

unlink("foo")

198 dummy.coef

drop Drop Redundant Extent Information

Description

Delete the dimensions of an array which have only one level.

Usage
drop (x)

Arguments

X an array (including a matrix).

Value

If x is an object with a dim attribute (e.g., a matrix or array), then drop returns an object
like x, but with any extents of length one removed. Any accompanying dimnames attribute
is adjusted and returned with x.

Array subsetting ([) performs this reduction unless used with drop = FALSE, but sometimes
it is useful to invoke drop directly.
See Also

dropl which is used for dropping terms in models.

Examples

dim(drop(array(1:12, dim=c(1,3,1,1,2,1,2))))# =3 2 2
drop(1:3 %*} 2:4)# scalar product

dummy . coef Eztract Coefficients in Original Coding

Description

This extracts coefficients in terms of the original levels of the coefficients rather than the
coded variables.

Usage
dummy . coef (object, ...)

S3 method for class 'lm':
dummy . coef (object, use.na = FALSE, ...)

S3 method for class 'aovlist':
dummy . coef (object, use.na = FALSE, ...)

dummy.coef 199

Arguments
object a linear model fit.
use.na logical flag for coefficients in a singular model. If use.na is true, unde-
termined coefficients will be missing; if false they will get one possible
value.
arguments passed to or from other methods.
Details

A fitted linear model has coefficients for the contrasts of the factor terms, usually one less in
number than the number of levels. This function re-expresses the coefficients in the original
coding; as the coeflicients will have been fitted in the reduced basis, any implied constraints
(e.g., zero sum for contr.helmert or contr.sum will be respected. There will be little
point in using dummy.coef for contr.treatment contrasts, as the missing coefficients are
by definition zero.

The method used has some limitations, and will give incomplete results for terms such as
poly(x, 2)). However, it is adequate for its main purpose, aov models.

Value

A list giving for each term the values of the coefficients. For a multistratum aov model,
such a list for each stratum.

Warning

This function is intended for human inspection of the output: it should not be used for
calculations. Use coded variables for all calculations.

The results differ from S for singular values, where S can be incorrect.

See Also

aov, model.tables

Examples

options(contrasts=c("contr.helmert", "contr.poly"))
From Venables and Ripley (2002) p.165.

N <- ¢(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- ¢(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
K <- ¢(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yield <- c¢(49.5,62.8,46.8,57.0,59.8,58.5,556.5,56.0,62.8,55.8,69.5,
55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),
K=factor(K), yield=yield)

npk.aov <- aov(yield ~ block + N*PxK, npk)

dummy . coef (npk.aov)

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
dummy . coef (npk. aovE)

200 dump

dump Text Representations of R Objects

Description
This function takes a vector of names of R objects and produces text representations of the
objects on a file or connection. A dump file can be sourced into another R (or S) session.
Usage

dump(list, file = "dumpdata.R", append = FALSE, envir = parent.frame())

Arguments
list character. The names of one or more R objects to be dumped.
file either a character string naming a file or a connection. "" indicates output
to the console.
append if TRUE, output will be appended to file; otherwise, it will overwrite the
contents of file.
envir the environment to search for objects.
Details

At present the implementation of dump is very incomplete and it really only works for
functions and simple vectors.

dump will warn if fewer characters were written to a file than expected, which may indicate
a full or corrupt file system.

The function save is designed to be used for transporting R data between machines.

Note

The envir argument was added at version 1.7.0, and changed the search path for named
objects to include the environment from which dump was called.

As dump is defined in the base namespace, the base package will be searched before the
global environment unless dump is called from the top level or the envir argument is given
explicitly.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

dput, dget,write.

Examples

x <-1; y <= 1:10
dump (1s(patt='"[xyz]'), "xyz.Rdmped")
unlink("xyz.Rdmped")

duplicated 201

duplicated Determine Duplicate Elements

Description

Determines which elements of a vector of data frame are duplicates of elements with smaller
subscripts, and returns a logical vector indicating which elements (rows) are duplicates.

Usage

duplicated(x, incomparables = FALSE, ...)

S3 method for class 'array':
duplicated(x, incomparables = FALSE, MARGIN = 1, ...)

Arguments

X an atomic vector or a data frame or an array.

incomparables a vector of values that cannot be compared. Currently, FALSE is the only
possible value, meaning that all values can be compared.

arguments for particular methods.

MARGIN the array margin to be held fixed: see apply.

Details

This is a generic function with methods for vectors, data frames and arrays (including
matrices).

The data frame method works by pasting together a character representation of the rows
separated by

r, so may be imperfect if the data frame has characters with embedded carriage returns or
columns which do not reliably map to characters.

The array method calculates for each element of the sub-array specified by MARGIN if the
remaining dimensions are identical to those for an earlier element (in row-major order).
This would most commonly be used to find duplicated rows (the default) or columns (with
MARGIN = 2).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

unique.

202 dyn.load
Examples

x <- ¢c(9:20, 1:5, 3:7, 0:8)

extract unique elements

(xu <- x[!duplicated(x)])

xu == unique(x) but unique(x) is more efficient

data(iris)

duplicated(iris) [140:143]

data(iris3)

duplicated(iris3, MARGIN = c(1, 3))

dyn.load Foreign Function Interface
Description
Load or unload shared libraries, and test whether a C function or Fortran subroutine is
available.
Usage

dyn.load(x, local = TRUE, now = TRUE)

dyn.unload(x)

is.loaded(symbol, PACKAGE="")

symbol.C(name)

symbol.For (name)

Arguments

X a character string giving the pathname to a shared library or DLL.

local a logical value controlling whether the symbols in the shared library are
stored in their own local table and not shared across shared libraries, or
added to the global symbol table. Whether this has any effect is system-
dependent.

now a logical controlling whether all symbols are resolved (and relocated) im-
mediately the library is loaded or deferred until they are used. This
control is useful for developers testing whether a library is complete and
has all the necessary symbols and for users to ignore missing symbols.
Whether this has any effect is system-dependent.

symbol a character string giving a symbol name.

PACKAGE if supplied, confine the search for the name to the DLL given by this
argument (plus the conventional extension, .so, .sl, .d1ll, ...). This
is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols. Use
PACKAGE="base" for symbols linked in to R. This is used in the same way
as in .C, .Call, .Fortran and .External functions

name a character string giving either the name of a C function or Fortran sub-

routine. Fortran names probably need to be given entirely in lower case
(but this may be system-dependent).

dyn.load 203

Details

See ‘See Also’ and the Writing R Extensions manual for how to create a suitable shared
library. Note that unlike some versions of S-PLUS, dyn.load does not load an object (.o)
file but a shared library or DLL.

Unfortunately a very few platforms (Compaq Tru64) do not handle the PACKAGE argument
correctly, and may incorrectly find symbols linked into R.

The additional arguments to dyn.load mirror the different aspects of the mode argument
to the dlopen() routine on UNIX systems. They are available so that users can exercise
greater control over the loading process for an individual library. In general, the defaults
values are appropriate and one should override them only if there is good reason and you
understand the implications.

The local argument allows one to control whether the symbols in the DLL being attached
are visible to other DLLs. While maintaining the symbols in their own namespace is good
practice, the ability to share symbols across related “chapters” is useful in many cases.
Additionally, on certain platforms and versions of an operating system, certain libraries
must have their symbols loaded globally to successfully resolve all symbols.

One should be careful of the potential side-effect of using lazy loading via the now argument
as FALSE. If a routine is called that has a missing symbol, the process will terminate imme-
diately and unsaved session variables will be lost. The intended use is for library developers
to call specify a value TRUE to check that all symbols are actually resolved and for regular
users to all with FALSE so that missing symbols can be ignored and the available ones can
be called.

The initial motivation for adding these was to avoid such termination in the _init () rou-
tines of the Java virtual machine library. However, symbols loaded locally may not be (read
probably) available to other DLLs. Those added to the global table are available to all other
elements of the application and so can be shared across two different DLLs.

Some systems do not provide (explicit) support for local/global and lazy/eager symbol
resolution. This can be the source of subtle bugs. One can arrange to have warning
messages emitted when unsupported options are used. This is done by setting either of
the options verbose or warn to be non-zero via the options function. Currently, we know
of only 2 platforms that do not provide a value for local load (RTLD_LOCAL). These are
TRIX6.4 and unpatched versions of Solaris 2.5.1.

There is a short discussion of these additional arguments with some example code available
at http://cm.bell-labs.com/stat/duncan/R/dynload.

Value

The function dyn.load is used for its side effect which links the specified shared library to
the executing R image. Calls to .C, .Fortran and .External can then be used to execute
compiled C functions or Fortran subroutines contained in the library.

The function dyn.unload unlinks the shared library.

Functions symbol.C and symbol.For map function or subroutine names to the symbol name
in the compiled code: is.loaded checks if the symbol name is loaded and hence available
for use in .C or .Fortran.

Note

The creation of shared libraries and the runtime linking of them into executing programs is
very platform dependent. In recent years there has been some simplification in the process
because the C subroutine call dlopen has become the standard for doing this under UNIX.

http://cm.bell-labs.com/stat/duncan/R/dynload

204 edit

Under UNIX dyn.load uses the dlopen mechanism and should work on all platforms which
support it. On Windows it uses the standard mechanisms for loading 32-bit DLLs.

The original code for loading DLLs in UNIX was provided by Heiner Schwarte. The com-
patibility code for HP-UX was provided by Luke Tierney.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also
library.dynam to be used inside a package’s .First.1lib initialization.
SHLIB for how to create suitable shared objects.

.C, .Fortran, .External, .Call.

Examples

is.loaded(symbol.For("hcass2")) #-> probably TRUE, as mva is loaded

edit Invoke a Text Editor

Description

Invoke a text editor on an R object.

Usage
Default S3 method:
edit(name = NULL, file = "", editor = getOption("editor"), ...)
vi(name = NULL, file = "")
emacs (name = NULL, file = "")
pico(name = NULL, file = "")
xemacs (name = NULL, file = "")
xedit (name = NULL, file = "")
Arguments
name a named object that you want to edit. If name is missing then the file

specified by file is opened for editing.
file a string naming the file to write the edited version to.

editor a string naming the text editor you want to use. On Unix the default
is set from the environment variables EDITOR or VISUAL if either is set,
otherwise vi is used. On Windows it defaults to notepad.

further arguments to be passed to or from methods.

edit.data.frame 205

Details

edit invokes the text editor specified by editor with the object name to be edited. It is a
generic function, currently with a default method and one for data frames and matrices.

data.entry can be used to edit data, and is used by edit to edit matrices and data frames
on systems for which data.entry is available.

It is important to realize that edit does not change the object called name. Instead, a copy
of name is made and it is that copy which is changed. Should you want the changes to
apply to the object name you must assign the result of edit to name. (Try fix if you want
to make permanent changes to an object.)

In the form edit (name), edit deparses name into a temporary file and invokes the editor
editor on this file. Quitting from the editor causes file to be parsed and that value
returned. Should an error occur in parsing, possibly due to incorrect syntax, no value
is returned. Calling edit (), with no arguments, will result in the temporary file being
reopened for further editing.

Note

The functions vi, emacs, pico, xemacs, xedit rely on the corresponding editor being
available and being on the path. This is system-dependent.

See Also

edit.data.frame, data.entry, fix.

Examples
Not run:
use xedit on the function mean and assign the changes
mean <- edit(mean, editor = "xedit")

use vi on mean and write the result to file mean.out
vi(mean, file = "mean.out")
End(Not run)

edit.data.frame FEdit Data Frames and Matrices

Description

Use data editor on data frame or matrix contents.

Usage

S3 method for class 'data.frame':
edit(name, factor.mode = c("character", "numeric"),
edit.row.names = any(row.names(name) != 1:nrow(name)), ...)

S3 method for class 'matrix':
edit(name, edit.row.names = any(rownames(name) != 1:nrow(name)), ...)

206 edit.data.frame

Arguments
name A data frame or matrix.
factor.mode How to handle factors (as integers or using character levels) in a data

frame.
edit.row.names
logical. Show the row names be displayed as a separate editable column?

further arguments passed to or from other methods.

Detalils

At present, this only works on simple data frames containing numeric, logical or character
vectors and factors. Factors are represented in the spreadsheet as either numeric vectors
(which is more suitable for data entry) or character vectors (better for browsing). After
editing, vectors are padded with NA to have the same length and factor attributes are
restored. The set of factor levels can not be changed by editing in numeric mode; invalid
levels are changed to NA and a warning is issued. If new factor levels are introduced in
character mode, they are added at the end of the list of levels in the order in which they
encountered.

It is possible to use the data-editor’s facilities to select the mode of columns to swap between
numerical and factor columns in a data frame. Changing any column in a numerical matrix
to character will cause the result to be coerced to a character matrix. Changing the mode
of logical columns is not supported.

Value

The edited data frame.

Note

fix(dataframe) works for in-place editing by calling this function.

If the data editor is not available, a dump of the object is presented for editing using the
default method of edit.

At present the data editor is limited to 65535 rows.

Author(s)

Peter Dalgaard

See Also

data.entry, edit

Examples

Not run:

data(InsectSprays)

edit (InsectSprays)

edit(InsectSprays, factor.mode="numeric")
End(Not run)

eff.aovlist

207

eff.aovlist

Compute Efficiencies of Multistratum Analysis of Variance

Description

Computes the efficiencies of fixed-effect terms in an analysis of variance model with multiple

strata.

Usage

eff.aovlist(aovlist)

Arguments

aovlist

Details

The result of a call to aov with a Error term.

Fixed-effect terms in an analysis of variance model with multiple strata may be estimable in
more than one stratum, in which case there is less than complete information in each. The
efficiency is the fraction of the maximum possible precision (inverse variance) obtainable by
estimating in just that stratum.

This is used to pick strata in which to estimate terms in model.tables.aovlist and

elsewhere.

Value

A matrix giving for each non-pure-error stratum (row) the efficiencies for each fixed-effect
term in the model.

See Also

aov, model.tables.aovlist, se.contrast.aovlist

Examples

for balanced designs all efficiencies are zero or one.

so as a statistically meaningless test:
options(contrasts=c("contr.helmert", "contr.poly"))
From Venables and Ripley (2002) p.165.

N <- ¢(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- ¢(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
K <- ¢(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yield <- c(49.5,62.8,46.8,57.0,59.8,568.5,55.5,56.0,62.8
55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(X), yield=yield)
npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
eff.aovlist (npk.aovE)

208 effects

effects Effects from Fitted Model

Description

Returns (orthogonal) effects from a fitted model, usually a linear model. This is a generic
function, but currently only has a methods for objects inheriting from classes "1m" and
|Iglmll‘

Usage
effects(object, ...)

S3 method for class 'lm':
effects(object, set.sign=FALSE, ...)

Arguments
object an R object; typically, the result of a model fitting function such as 1m.
set.sign logical. If TRUE, the sign of the effects corresponding to coefficients in the
model will be set to agree with the signs of the corresponding coefficients,
otherwise the sign is arbitrary.
arguments passed to or from other methods.
Details

For a linear model fitted by 1m or aov, the effects are the uncorrelated single-degree-of-
freedom values obtained by projecting the data onto the successive orthogonal subspaces
generated by the QR decomposition during the fitting process. The first r (the rank of the
model) are associated with coefficients and the remainder span the space of residuals (but
are not associated with particular residuals).

Empty models do not have effects.

Value

A (named) numeric vector of the same length as residuals, or a matrix if there were
multiple responses in the fitted model, in either case of class "coef".

The first r rows are labelled by the corresponding coefficients, and the remaining rows are
unlabelled. Note that in rank-deficient models the “corresponding” coefficients will be in a
different order if pivoting occurred.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

coef

eigen 209

Examples

y <= ¢(1:3,7,5)

x <- c(1:3,6:7)

(ee <- effects(Im(y ~ x)))

c(round(ee - effects(Im(y+10 ~ I(x-3.8))),3))# just the first is different

eigen Spectral Decomposition of a Matriz

Description

Computes eigenvalues and eigenvectors.

Usage

eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE)
La.eigen(x, symmetric, only.values = FALSE,
method = c("dsyevr", "dsyev"))

Arguments
X a matrix whose spectral decomposition is to be computed.
symmetric if TRUE, the matrix is assumed to be symmetric (or Hermitian if complex)
and only its lower triangle is used. If symmetric is not specified, the
matrix is inspected for symmetry.
only.values if TRUE, only the eigenvalues are computed and returned, otherwise both
eigenvalues and eigenvectors are returned.
EISPACK logical. Should EISPACK be used (for compatibility with R < 1.7.0)7
method The LAPACK routine to use in the real symmetric case.
Details

These functions use the LAPACK routines DSYEV/DSYEVR, DGEEV, ZHEEV and
ZGEEV, and eigen(EISPACK=TRUE) provides an interface to the EISPACK routines RS,
RG, CH and CG.

If symmetric is unspecified, the code attempts to determine if the matrix is symmetric up
to plausible numerical inaccuracies. It is faster and surer to set the value yourself.

eigen is preferred to eigen(EISPACK=TRUE) for new projects, but its eigenvectors may
differ in sign and (in the asymmetric case) in normalization. (They may also differ between
methods and between platforms.)

The LAPACK routine DSYEVR is usually substantially faster than DSYEV: see http://
www.cs.berkeley.edu/~demmel/DOE2000/Report0100.html. Most benefits are seen with
an optimized BLAS system.

Using method="dsyevr" requires IEEE 754 arithmetic. Should this not be supported on
your platform, method="dsyev" is used, with a warning.

Computing the eigenvectors is the slow part for large matrices.

http://www.cs.berkeley.edu/~demmel/DOE2000/Report0100.html
http://www.cs.berkeley.edu/~demmel/DOE2000/Report0100.html

210

Value

eigen

The spectral decomposition of x is returned as components of a list with components

values

vectors

References

a vector containing the p eigenvalues of x, sorted in decreasing order,
according to Mod(values) in the asymmetric case when they might be
complex (even for real matrices). For real asymmetric matrices the vec-
tor will be complex only if complex conjugate pairs of eigenvalues are
detected.

either a p X p matrix whose columns contain the eigenvectors of x, or NULL
if only.values is TRUE.

For eigen(, symmetric = FALSE, EISPACK =TRUE) the choice of length
of the eigenvectors is not defined by EISPACK. In all other cases the
vectors are normalized to unit length.

Recall that the eigenvectors are only defined up to a constant: even when
the length is specified they are still only defined up to a scalar of modulus
one (the sign for real matrices).

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth

& Brooks/Cole.

Smith, B. T, Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe,Y., Klema, V., and Moler,
C. B. (1976). Matriz Eigensystems Routines — EISPACK Guide. Springer-Verlag Lecture
Notes in Computer Science.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. STAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

svd, a generalization of eigen; qr, and chol for related decompositions.

To compute the determinant of a matrix, the qr decomposition is much more efficient: det.

capabilities to test for IEEE 754 arithmetic.

Examples

eigen(cbind(c(1,-1),c(-1,1)))
eigen(cbind(c(1,-1),c(-1,1)), symmetric = FALSE)# same (different algorithm).

eigen(cbind(1,c(1,-1)), only.values = TRUE)
eigen(cbind(-1,2:1)) # complex values
eigen(print (cbind(c(0,1i), c(-1i,0))))# Hermite ==> real Eigen values

3 x 3:

eigen(cbind(1,3:1,1:3))
eigen(cbind(-1,c(1:2,0),0:2)) # complex values

http://www.netlib.org/lapack/lug/lapack_lug.html

environment 211

environment Environment Access

Description

Get, set, test for and create environments.

Usage

environment (fun = NULL)

environment (fun) <- value
is.environment (obj)

.GlobalEnv

globalenv()

new.env (hash=FALSE, parent=parent.frame())
parent.env(env)

parent.env(env) <- value

Arguments
fun a function, a formula, or NULL, which is the default.
value an environment to associate with the function
obj an arbitrary R object.
hash a logical, if TRUE the environment will be hashed
parent an environment to be used as the parent of the environment created.
env an environment
Details

The global environment .GlobalEnv is the first item on the search path, more often known
as the user’s workspace. It can also be accessed by globalenv().

The variable .BaseNamespaceEnv is part of some experimental support for name space
management.

The replacement function parent.env<- is extremely dangerous as it can be used to de-
structively change environments in ways that violate assumptions made by the internal C
code. It may be removed in the near future.

is.environment is generic: you can write methods to handle of specific classes of objects,
see InternalMethods.

Value

If fun is a function or a formula then environment (fun) returns the environment associated
with that function or formula. If fun is NULL then the current evaluation environment is
returned.

The assignment form sets the environment of the function or formula fun to the value
given.

is.environment (obj) returns TRUE iff obj is an environment.

new.env returns a new (empty) environment enclosed in the parent’s environment, by de-
fault.

212 esoph

parent.env returns the parent environment of its argument.

parent.env<- sets the parent environment of its first argument.

See Also

The envir argument of eval.

Examples

##-- all three give the same:
environment ()

environment (environment)
.GlobalEnv

1ls(envir=environment (approxfun(1:2,1:2, method="const")))
is.environment (.GlobalEnv)# TRUE

el <- new.env(TRUE, NULL)
e2 <- new.env(FALSE, NULL)
assign("a", 3, env=e2)
parent.env(el) <- e2
get("a", env=el)

esoph Smoking, Alcohol and (O)esophageal Cancer

Description

Data from a case-control study of (o)esophageal cancer in Ile-et-Vilaine, France.

Usage
data(esoph)

Format

A data frame with records for 88 age/alcohol/tobacco combinations.

[1] Tagegp” Age group 1 25-34 years
2 3544
3 45-54
4 55-64
5 65-74
6 75+
[,2] Talcgp” Alcohol consumption 1 0-39 gm/day
2 40-79
3 80-119
4 1204
[,3] “tobgp” Tobacco consumption 1 0-9 gm/day
210-19
3 20-29

euro 213

4 30+
[,4] 7ncases” Number of cases
[,b] ’ncontrols” Number of controls

Author(s)

Thomas Lumley

Source

Breslow, N. E. and Day, N. E. (1980) Statistical Methods in Cancer Research. 1: The
Analysis of Case-Control Studies. IARC Lyon / Oxford University Press.

Examples

data(esoph)
summary (esoph)

effects of alcohol, tobacco and interaction, age-adjusted
modell <- glm(cbind(ncases, ncontrols) ~ agegp + tobgp * alcgp,
data = esoph, family = binomial())

anova(modell)
Try a linear effect of alcohol and tobacco
model2 <- glm(cbind(ncases, ncontrols) ~ agegp + unclass(tobgp)
+ unclass(alcgp),
data = esoph, family = binomial())
summary (model2)
Re-arrange data for a mosaic plot
ttt <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)
ttt[ttt == 1] <- esoph$ncases
ttl <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)
tti[ttl == 1] <- esoph$ncontrols
tt <- array(c(ttt, ttl), c(dim(ttt),2),
c(dimnames (ttt), list(c("Cancer", "control"))))
mosaicplot(tt, main = "esoph data set", color = TRUE)

euro Conversion Rates of Furo Currencies

Description

Conversion rates between the various Euro currencies.

Usage

data(euro)

Format

euro is a named vector of length 11, euro.cross a named matrix of size 11 by 11.

214 eurodist

Details

The data set euro contains the value of 1 Euro in all currencies participating in the Euro-
pean monetary union (Austrian Schilling ATS, Belgian Franc BEF, German Mark DEM,
Spanish Peseta ESP, Finnish Markka FIM, French Franc FRF, Irish Punt IEP, Italian Lira
ITL, Luxembourg Franc LUF, Dutch Guilder NLG and Portugese Escudo PTE). These
conversion rates were fixed by the European Union on December 31, 1998. To convert old
prices to Furo prices, divide by the respective rate and round to 2 digits.

The data set euro.cross contains conversion rates between the various Euro currencies,
i.e., the result of outer(1 / euro, euro).

Examples

data(euro)
cbind (euro)

These relations hold:
euro == signif(euro,6) # [6 digit precision in Euro's definition]
all(euro.cross == outer(1/euro, euro))

Convert 20 Euro to Belgian Franc

20 * euro["BEF"]

Convert 20 Austrian Schilling to Euro

20 / euro["ATS"]

Convert 20 Spanish Pesetas to Italian Lira
20 * euro.cross["ESP", "ITL"]

dotchart (euro,

main = "euro data: 1 Euro in currency unit")
dotchart (1/euro,
main = "euro data: 1 currency unit in Euros")
dotchart (log(euro, 10),
main = "euro data: loglO(1 Euro in currency unit)")
eurodist Distances Between European Clties

Description
The data give the road distances (in km) between 21 cities in Europe. The data are taken
from a table in “The Cambridge Encyclopaedia”.

Usage

data(eurodist)

Format
A dist object based on 21 objects. (You must have the mva package loaded to have the
methods for this kind of object available).

Source

Crystal, D. Ed. (1990) The Cambridge Encyclopaedia. Cambridge: Cambridge University
Press,

eval 215

eval Evaluate an (Unevaluated) Expression

Description

Evaluate an R expression in a specified environment.

Usage

eval (expr, envir = parent.frame(),
enclos = if(is.list(envir) || is.pairlist(envir)) parent.frame())
evalq(expr, envir, enclos)
eval.parent(expr, n = 1)
local(expr, envir = new.env())

Arguments
expr object of mode expression orcall or an “unevaluated expression”.
envir the environment in which expr is to be evaluated. May also be a list, a
data frame, or an integer as in sys.call.
enclos Relevant when envir is a list or a data frame. Specifies the enclosure,
i.e., where R looks for objects not found in envir.
n parent generations to go back
Details

eval evaluates the expression expr argument in the environment specified by envir and
returns the computed value. If envir is not specified, then sys.frame(sys.frame()), the
environment where the call to eval was made is used.

The evalq form is equivalent to eval (quote(expr), ...).

As eval evaluates its first argument before passing it to the evaluator, it allows you to
assign complicated expressions to symbols and then evaluate them. evalq avoids this.

eval.parent (expr, n) is a shorthand for eval (expr, parent.frame(n)).

local evaluates an expression in a local environment. It is equivalent to evalq except the
its default argument creates a new, empty environment. This is useful to create anonymous
recursive functions and as a kind of limited namespace feature since variables defined in the
environment are not visible from the outside.

Note
Due to the difference in scoping rules, there are some differences between R and S in this
area. In particular, the default enclosure in S is the global environment.

When evaluating expressions in data frames that has been passed as argument to a function,
the relevant enclosure is often the caller’s environment, i.e., one needs eval(x, data,
parent.frame()).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (eval only.)

216 example

See Also

expression, quote, sys.frame, parent.frame, environment.

Examples

eval(2 ~ 2 ~ 3)
mEx <- expression(2°273); mEx; 1 + eval(mEx)
eval({ xx <- pi; xx"2}) ; xx

- 3 ; aa <- 4 ; evalq(evalq(a+b+aa, list(a=1)), list(b=5)) # == 10
- 3 ; aa <- 4 ; evalq(evalq(atb+aa, -1), list(b=5)) # == 12

ev <- function() {
el <- parent.frame()
Evaluate a in el
aa <- eval(expression(a),el)
evaluate the expression bound to a in el
a <- expression(x+y)
list(aa = aa, eval = eval(a, el))
}
tst.ev <- function(a = 7) { x <- pi; y <- 1; ev() }
tst.ev()#-> aa : 7, eval : 4.14

##
Uses of local()
##

Mutual recursives.
gg gets value of last assignment, an anonymous version of f.

gg <- local({
k <- function(y)f(y)
f <- function(x) if(x) x*k(x-1) else 1
1))
gg(10)
sapply(1:5, gg)

Nesting locals. a is private storage accessible to k
gg <- local({
k <- local({
a<-1
function(y){print(a <<- a+1);f(y)}
B
f <- function(x) if(x) x*k(x-1) else 1
b
sapply(1:5, gg)

ls(envir=environment (gg))
ls(envir=environment (get ("k", envir=environment(gg))))

example Run an Examples Section from the Online Help

example 217

Description

Run all the R code from the Examples part of R’s online help topic topic with two possible
exceptions, dontrun and dontshow, see Details below.

Usage

example (topic, package = .packages(), lib.loc = NULL,
local = FALSE, echo = TRUE, verbose = getOption("verbose"),
prompt.echo = paste(abbreviate(topic, 6),"> ", sep=""))

Arguments

topic name or literal character string: the online help topic the examples of
which should be run.

package a character vector with package names. By default, all packages in the
search path are used.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. If the default
is used, the loaded packages are searched before the libraries.

local logical: if TRUE evaluate locally, if FALSE evaluate in the workspace.

echo logical; if TRUE, show the R input when sourcing.

verbose logical; if TRUE, show even more when running example code.

prompt.echo character; gives the prompt to be used if echo = TRUE.

Details

If 1ib.loc is not specified, the packages are searched for amongst those already loaded,
then in the specified libraries. If 1ib.loc is specified, they are searched for only in the
specified libraries, even if they are already loaded from another library.

An attempt is made to load the package before running the examples, but this will not
replace a package loaded from another location.

If 1ocal=TRUE objects are not created in the workspace and so not available for examination
after example completes: on the other hand they cannot clobber objects of the same name
in the workspace.

As detailed in the manual Writing R Extensions, the author of the help page can markup

parts of the examples for two exception rules

dontrun encloses code that should not be run.

dontshow encloses code that is invisible on help pages, but will be run both by the package
checking tools, and the example () function. This was previously testonly, and that
form is still accepted.

Value

(the value of the last evaluated expression).

Note

The examples can be many small files. On some file systems it is desirable to save space,
and the files in the ‘R-ex’ directory of an installed package can be zipped up as a zip archive
‘Rex.zip’.

218 exists

Author(s)
Martin Maechler and others

See Also

demo

Examples

example (InsectSprays)
force use of the standard package 'eda':
example("smooth", package="eda", lib.loc=.Library)

exists Is an Object Defined?

Description

Search for an R object of the given name on the search path.

Usage
exists(x, where = -1, envir = , frame, mode = "any", inherits = TRUE)
Arguments
X a variable name (given as a character string).
where where to look for the object (see the details section); if omitted, the
function will search, as if the name of the object appeared in unquoted in
an expression.
envir an alternative way to specify an environment to look in, but it’s usually
simpler to just use the where argument.
frame a frame in the calling list. Equivalent to giving where as
sys.frame (frame).
mode the mode of object sought.
inherits should the enclosing frames of the environment be inspected.
Details

The where argument can specify the environment in which to look for the object in any of
several ways: as an integer (the position in the search list); as the character string name of
an element in the search list; or as an environment (including using sys.frame to access
the currently active function calls). The envir argument is an alternative way to specify
an environment, but is primarily there for back compatibility.

This function looks to see if the name x has a value bound to it. If inherits is TRUE and a
value is not found for x, then the parent frames of the environment are searched until the
name x is encountered. Warning: This is the default behaviour for R but not for S.

If mode is specified then only objects of that mode are sought. The function returns TRUE
if the variable is encountered and FALSE if not.

The mode includes collections such as "numeric" and "function": any member of the
collection will suffice.

expand.grid 219

Value
Logical, true if and only if the object is found on the search path.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

get.

Examples

Define a substitute function if necessary:

if (lexists("some.fun", mode="function"))

some.fun <- function(x) { cat("some.fun(x)\n"); x }
search()

exists("1ls", 2) # true even though 1ls is in pos=3
exists("ls", 2, inherits=FALSE) # false

expand.grid Create a Data Frame from All Combinations of Factors

Description
Create a data frame from all combinations of the supplied vectors or factors. See the
description of the return value for precise details of the way this is done.

Usage
expand.grid(...)

Arguments

Vectors, factors or a list containing these.

Value

A data frame containing one row for each combination of the supplied factors. The first
factors vary fastest. The columns are labelled by the factors if these are supplied as named
arguments or named components of a list.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

Examples

expand.grid(height = seq(60, 80, 5), weight = seq(100, 300, 50),
sex = c("Male","Female"))

220 expand.model.frame

expand .model. frame Add new variables to a model frame

Description

Evaluates new variables as if they had been part of the formula of the specified model.
This ensures that the same na.action and subset arguments are applied and allows, for
example, x to be recovered for a model using sin(x) as a predictor.

Usage

expand.model . frame (model, extras, envir=environment (formula(model)),
na.expand = FALSE)

Arguments
model a fitted model
extras one-sided formula or vector of character strings describing new variables
to be added
envir an environment to evaluate things in
na.expand logical; see below
Details

If na.expand=FALSE then NA values in the extra variables will be passed to the na.action
function used in model. This may result in a shorter data frame (with na.omit) or an error
(with na.fail). If na.expand=TRUE the returned data frame will have precisely the same
rows as model.frame(model), but the columns corresponding to the extra variables may
contain NA.

Value

A data frame.

See Also

model.frame,predict

Examples
data(trees)
model <- 1lm(log(Volume) ~ log(Girth) + log(Height), data=trees)
expand.model.frame(model, ~ Girth) # prints data.frame like

dd <- data.frame(x=1:5, y=rnorm(5), z=c(1,2,NA,4,5))

model <- glm(y ~ x, data=dd, subset=1:4, na.action=na.omit)
expand.model.frame(model, "z", na.expand=FALSE) # = default
expand.model .frame (model, "z", na.expand=TRUE)

Exponential 221

Exponential The Exponential Distribution

Description

Density, distribution function, quantile function and random generation for the exponential
distribution with rate rate (i.e., mean 1/rate).

Usage

dexp(x, rate = 1, log = FALSE)

pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
gexp(p, rate = 1, lower.tail
1

, = TRUE, log.p = FALSE)
rexp(n, rate = 1)
Arguments
X, q vector of quantiles.
P vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the
number required.
rate vector of rates.

log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < z], otherwise, P[X >

Detalils

If rate is not specified, it assumes the default value of 1.

The exponential distribution with rate A has density
fl@) = e

for z > 0.

Value

dexp gives the density, pexp gives the distribution function, qexp gives the quantile function,
and rexp generates random deviates.

Note
The cumulative hazard H(t) = —log(1 — F(t)) is -pexp(t, r, lower = FALSE, log =
TRUE).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

222 expression

See Also

exp for the exponential function, dgamma for the gamma distribution and dweibull for the
Weibull distribution, both of which generalize the exponential.

Examples

dexp(1) - exp(-1) #> 0

expression Unevaluated Ezpressions

Description

Creates or tests for objects of mode "expression".

Usage
expression(...)
is.expression(x)
as.expression(x, ...)
Arguments

valid R expressions.

X an arbitrary R object.

Value

expression returns a vector of mode "expression" containing its arguments as unevalu-
ated “calls”.

is.expression returns TRUE if expr is an expression object and FALSE otherwise.

as.expression attempts to coerce its argument into an expression object.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

call, eval, function. Further, text and legend for plotting math expressions.

Examples

length(exl <- expression(l+ 0:9))# 1
exl
eval(ex1)# 1:10

length(ex3 <- expression(u,v, 1+ 0:9))# 3
mode (ex3 [3]) # expression

mode (ex3[[3]])# call

rm(ex3)

Extract 223

Extract Extract or Replace Parts of an Object

Description

Operators act on vectors, arrays and lists to extract or replace subsets.

Usage
x[i]
x[i, j, ... , drop=TRUE]
x[[i]]
X [[1 ’ J 3 e]]
x$name
.subset(x, ...)
.subset2(x, ...)
Arguments
X object from which to extract elements or in which to replace elements.
i, j, ..., name
elements to extract or replace. i, j are numeric or character or empty
whereas name must be character or an (unquoted) name. Numeric values
are coerced to integer as by as.integer.
For [-indexing only: i, j, ... can be logical vectors, indicating ele-
ments/slices to select. Such vectors are recycled if necessary to match the
corresponding extent. When indexing arrays, i can be a (single) matrix
with as many columns as there are dimensions of x; the result is then a
vector with elements corresponding to the sets of indices in each row of
i.
drop For matrices, and arrays. If TRUE the result is coerced to the lowest
possible dimension (see examples below). This only works for extracting
elements, not for the replacement forms.
Details

These operators are generic. You can write methods to handle subsetting of specific classes
of objects, see InternalMethods as well as [.data.frame and [.factor. The descriptions
here apply only to the default methods.

The most important distinction between [, [[and $ is that the [can select more than one
element whereas the other two select a single element. $ does not allow computed indices,
whereas [[does. x$name is equivalent to x[["name"]] if x is recursive (see is.recursive)
and NULL otherwise.

The [[operator requires all relevant subscripts to be supplied. With the [operator an
empty index (a comma separated blank) indicates that all entries in that dimension are
selected.

If one of these expressions appears on the left side of an assignment then that part of x is
set to the value of the right hand side of the assignment.

224 FExtract

Indexing by factors is allowed and is equivalent to indexing by the numeric codes
(see factor) and not by the character values which are printed (for which use
[as.character(i)]).

When operating on a list, the [[operator gives the specified element of the list while the
[operator returns a list with the specified element(s) in it.

As from R 1.7.0 [[can be applied recursively to lists, so that if the single index i is a vector
of length p, alist [[i]] is equivalent to alist[[i1]]...[[ip]] providing all but the final
indexing results in a list.

The operators $ and $<- do not evaluate their second argument. It is translated to a string
and that string is used to locate the correct component of the first argument.

When $<- is applied to a NULL x, it coerces x to 1ist (). This is what happens with [[<-
is y is of length greater than one: if y has length 1 or 0, x is coerced to a zero-length vector
of the type of value,

The functions .subset and .subset?2 are essentially equivalent to the [and [[operators,
except that methods dispatch does not take place. This is to avoid expensive unclassing
when applying the default method to an object. They should not normally be invoked by
end users.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

list, array, matrix.
[.data.frame and [.factor for the behaviour when applied to data.frame and factors.

Syntax for operator precedence, and the R Language reference manual about indexing
details.

Examples

x <= 1:12; m <- matrix(1:6,nr=2); 1li <- list(pi=pi, e = exp(1))
x[10] # the tenth element of x

m[1,] # the first row of matrix m

m[1, , drop = FALSE] # is a l-row matrix
m[,c(TRUE,FALSE,TRUE)]# logical indexing
m[cbind(c(1,2,1),3:1)]# matrix index

1i[[1]] # the first element of list 1i

y <- list(1,2,a=4,5)

y[c(3,4)] # a list containing elements 3 and 4 of y
y$a # the element of y named a

non-integer indices are truncated:
(1 <- 3.999999999) # "4" is printed
(1:5)[i]1 # 3

recursive indexing into lists

z <- list(a=list(b=9, c='hello'), d=1:5)
unlist(z)

z[[c(1, 2)1]

z[[c(1, 2, 1)]] # both "hello"

Z[[C(Ilall, "b")]] <- "new"

Extract.data.frame 225

unlist(z)

Extract.data.frame Extract or Replace Parts of a Data Frame

Description

Extract or replace subsets of data frames.

Usage
x[i]
x[i] <- value
x[i, j, drop = TRUE]
x[i, jl <- value

x[[i]]

x[[i]] <- value
x[[i, j]]

x[[i, j1] <- value

x$name
x$name <- value

Arguments
X data frame.
i, j elements to extract or replace. i, j are numeric or character or, for [
only, empty. Numeric values are coerced to integer as if by as.integer.
For replacement by [, a logical matrix is allowed.
drop logical. If TRUE the result is coerced to the lowest possible dimension:
however, see the Warning below.
value A suitable replacement value: it will be repeated a whole number of times
if necessary and it may be coerced: see the Coercion section. If NULL,
deletes the column if a single column is selected.
name name or literal character string.
Details

Data frames can be indexed in several modes. When [and [[are used with a single index,
they index the data frame as if it were a list. In this usage a drop argument is ignored,
with a warning. Using $ is equivalent to using [[with a single index.

When [and [[are used with two indices they act like indexing a matrix: [[can only be
used to select one element.

If [returns a data frame it will have unique (and non-missing) row names, if necessary
transforming the row names using make.unique. Similarly, column names will be trans-
formed (if columns are selected more than once).

When drop =TRUE, this is applied to the subsetting of any matrices contained in the data
frame as well as to the data frame itself.

226 Extract.data.frame

The replacement methods can be used to add whole column(s) by specifying non-existent
column(s), in which case the column(s) are added at the right-hand edge of the data frame
and numerical indices must be contiguous to existing indices. On the other hand, rows
can be added at any row after the current last row, and the columns will be in-filled with
missing values.

For [the replacement value can be a list: each element of the list is used to replace (part of)
one column, recycling the list as necessary. If the columns specified by number are created,
the names (if any) of the corresponding list elements are used to name the columns. If the
replacment is not selecting rows, list values can contain NULL elements which will cause the
corresponding columns to be deleted.

Matrixing indexing using [is not recommended, and barely supported. For extraction, x
is first coerced to a matrix. For replacement a logical matrix (only) can be used to select
the elements to be replaced in the same ways as for a matrix. Missing values in the matrix
are treated as false, unlike S which does not replace them but uses up the corresponding
values in value.

Value

For [a data frame, list or a single column (the latter two only when dimensions have been
dropped). If matrix indexing is used for extraction a matrix results.

For [[a column of the data frame (extraction with one index) or a length-one vector
(extraction with two indices).

For [<-, [[<- and $<-, a data frame.

Coercion

The story over when replacement values are coerced is a complicated one, and one that has
changed during R’s development. This section is a guide only.

When [and [[are used to add or replace a whole column, no coercion takes place but
value will be replicated (by calling the generic function rep) to the right length if an exact
number of repeats can be used.

When [is used with a logical matrix, each value is coerced to the type of the column in
which it is to be placed.

When [and [[are used with two indices, the column will be coerced as necessary to
accommodate the value.

Warning

Although the default for drop is TRUE, the default behaviour when only one row is left is
equivalent to specifying drop = FALSE. To drop from a data frame to a list, drop = FALSE
has to specified explicitly.

See Also

subset which is often easier for extraction, data.frame, Extract.

Examples

data(swiss)
sw <- swiss[1:5, 1:4] # select a manageable subset

sw[1:3] # select columns

Extract.factor 227

swl, 1:3] # same

sw[4:5, 1:3] # select rows and columns
sw[1] # a one-column data frame
swl, 1, drop = FALSE] # the same

swl, 1] # a (unamed) vector
swl[1]] # the same

swl1,] # a one-row data frame

swll,, drop=TRUE] # a list
swiss[c(1, 1:2), 1 # duplicate row, unique row names are created

swlsw <= 6] <- 6 # logical matrix indexing
sW

adding a column
sw["newl"] <- LETTERS[1:5] # adds a character column
swl[["new2"]] <- letters[1:5] # ditto
swl, "new3"] <- LETTERS[1:5] # ditto
but this got converted to a factor in 1.7.x
sw$newd <- 1:5
sapply(sw, class)

swnewd <- NULL # delete the column

sw

sw[6:8] <- list(letters[10:14], NULL, aa=1:5) # delete col7, update 6, append
sw

matrices in a data frame

A <- data.frame(x=1:3, y=I(matrix(4:6)), z=I(matrix(letters[1:9],3,3)))
Al1:3, "y"] # a matrix, was a vector prior to 1.8.0

A[1:3, "z"] # a matrix

AL, "y"] # a matrix

Extract.factor Extract or Replace Parts of a Factor

Description

Extract or replace subsets of factors.

Usage

x[i, drop = FALSE]

x[i] <- value

Arguments
X a factor
i a specification of indices — see Extract.
drop logical. If true, unused levels are dropped.

value character: a set of levels. Factor values are coerced to character.

228 extractAIC

Details

When unused levels are dropped the ordering of the remaining levels is preserved.
If value is not in levels(x), a missing value is assigned with a warning.

Any contrasts assigned to the factor are preserved unless drop=TRUE.

Value

A factor with the same set of levels as x unless drop=TRUE.

See Also

factor, Extract.

Examples

following example(factor)

(ff <- factor(substring("statistics", 1:10, 1:10), levels=letters))
£f[, drop=TRUE]

factor(letters[7:10]) [2:3, drop = TRUE]

extractAIC Eatract AIC from a Fitted Model

Description

Computes the (generalized) Akaike An Information Criterion for a fitted parametric model.

Usage
extractAIC(fit, scale, k=2, ...)
Arguments
fit fitted model, usually the result of a fitter like 1m.
scale optional numeric specifying the scale parameter of the model, see scale
in step.
k numeric specifying the “weight” of the equivalent degrees of freedom
(=edf) part in the AIC formula.
further arguments (currently unused in base R).
Details
This is a generic function, with methods in base R for "aov", "coxph", "glm", "lm",

"negbin" and "survreg" classes.

The criterion used is
AIC = —2log L + k x edf,

where L is the likelihood and edf the equivalent degrees of freedom (i.e., the number of
parameters for usual parametric models) of fit.

For linear models with unknown scale (i.e., for 1m and aov), —2log L is computed from the
deviance and uses a different additive constant to AIC.

Extremes 229

k = 2 corresponds to the traditional AIC, using k = log(n) provides the BIC (Bayes IC)
instead.

For further information, particularly about scale, see step.

Value

A numeric vector of length 2, giving

edf the “equivalent degrees of freedom” of the fitted model fit.
AIC the (generalized) Akaike Information Criterion for fit.
Note

These functions are used in add1, dropl and step and that may be their main use.

Author(s)
B. D. Ripley

References
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York:
Springer (4th ed).

See Also

AIC, deviance, addl, step

Examples

example (glm)
extractAIC(glm.D93)#>> 5 15.129

Extremes Mazima and Minima

Description

Returns the (parallel) maxima and minima of the input values.

Usage

max (..., na.rm=FALSE)
min(..., na.rm=FALSE)

pmax(..., na.rm=FALSE)
pmin(..., na.rm=FALSE)
Arguments

numeric arguments.

na.rm a logical indicating whether missing values should be removed.

230 factor

Value

max and min return the maximum or minimum of all the values present in their arguments,
as integer if all are integer, or as double otherwise.

The minimum and maximum of an empty set are +Inf and -Inf (in this order!) which
ensures transitivity, e.g., min(xl, min(x2)) == min(x1,x2). In R versions before 1.5,
min(integer(0)) == .Machine$integer.max, and analogously for max, preserving argu-
ment type, whereas from R version 1.5.0, max(x) == -Inf and min(x) == +Inf whenever
length(x) == 0 (after removing missing values if requested).

If na.rmis FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

pmax and pmin take several vectors (or matrices) as arguments and return a single vector
giving the parallel maxima (or minima) of the vectors. The first element of the result is the
maximum (minimum) of the first elements of all the arguments, the second element of the
result is the maximum (minimum) of the second elements of all the arguments and so on.
Shorter vectors are recycled if necessary. If na.rm is FALSE, NA values in the input vectors
will produce NA values in the output. If na.rm is TRUE, NA values are ignored. attributes
(such as names or dim) are transferred from the first argument (if applicable).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

range (both min and max) and which.min (which.max) for the arg min, i.e., the location
where an extreme value occurs.

Examples

min(5:1,pi)

pmin(5:1, pi)

x <- sort(rnorm(100)); <cH <- 1.35

pmnin(cH, quantile(x)) # no names

prin(quantile(x), cH) # has names

plot(x, pmin(cH, pmax(-cH, x)), type='b', main= "Huber's function")

factor Factors

Description

The function factor is used to encode a vector as a factor (the names category and enu-
merated type are also used for factors). If ordered is TRUE, the factor levels are assumed
to be ordered. For compatibility with S there is also a function ordered.

is.factor, is.ordered, as.factor and as.ordered are the membership and coercion
functions for these classes.

factor 231

Usage

factor(x, levels = sort(unique.default(x), na.last = TRUE),
labels = levels, exclude = NA, ordered = is.ordered(x))
ordered(x, ...)

is.factor(x)
is.ordered(x)

as.factor(x)
as.ordered(x)

Arguments
X a vector of data, usually taking a small number of distinct values
levels an optional vector of the values that x might have taken. The default is
the set of values taken by x, sorted into increasing order.
labels either an optional vector of labels for the levels (in the same order as
levels after removing those in exclude), or a character string of length
1.
exclude a vector of values to be excluded when forming the set of levels. This
should be of the same type as x, and will be coerced if necessary.
ordered logical flag to determine if the levels should be regarded as ordered (in
the order given).
(in ordered(.)): any of the above, apart from ordered itself.
Details

The type of the vector x is not restricted.

Ordered factors differ from factors only in their class, but methods and the model-fitting
functions treat the two classes quite differently.

The encoding of the vector happens as follows. First all the values in exclude are removed
from levels. If x[i] equals levels[j], then the i-th element of the result is j. If no
match is found for x[i] in levels, then the i-th element of the result is set to NA.

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after
removing those in exclude, but this can be altered by supplying labels. This should either
be a set of new labels for the levels, or a character string, in which case the levels are that
character string with a sequence number appended.

factor(x, exclude=NULL) applied to a factor is a no-operation unless there are unused
levels: in that case, a factor with the reduced level set is returned. If exclude is used it
should also be a factor with the same level set as x or a set of codes for the levels to be
excluded.

The codes of a factor may contain NA. For a numeric x, set exclude=NULL to make NA an
extra level ("NA"), by default the last level.

If "NA" is a level, the way to set a code to be missing is to use is.na on the left-hand-side
of an assignment. Under those circumstances missing values are printed as <NA>.

is.factor is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

232 factor

Value

factor returns an object of class "factor" which has a set of numeric codes the length of
x with a "levels" attribute of mode character. If ordered is true (or ordered is used)
the result has class c("ordered", "factor").

Applying factor to an ordered or unordered factor returns a factor (of the same type) with
just the levels which occur: see also [.factor for a more transparent way to achieve this.

is.factor returns TRUE or FALSE depending on whether its argument is of type factor or
not. Correspondingly, is.ordered returns TRUE when its argument is ordered and FALSE
otherwise.

as.factor coerces its argument to a factor. It is an abbreviated form of factor.

as.ordered(x) returns x if this is ordered, and ordered(x) otherwise.

Warning

The interpretation of a factor depends on both the codes and the "levels" attribute.
Be careful only to compare factors with the same set of levels (in the same order). In
particular, as.numeric applied to a factor is meaningless, and may happen by implicit
coercion. To “revert” a factor £ to its original numeric values, as.numeric(levels(f)) [f]
is recommended and slightly more efficient than as.numeric(as.character(f)).

The levels of a factor are by default sorted, but the sort order may well depend on the locale
at the time of creation, and should not be assumed to be ASCII.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

[.factor for subsetting of factors.

gl for construction of “balanced” factors and C for factors with specified contrasts. levels
and nlevels for accessing the levels, and codes to get integer codes.

Examples

(ff <- factor(substring("statistics", 1:10, 1:10), levels=letters))
as.integer(ff) # the internal codes

factor (ff) # drops the levels that do not occur

ff[, drop=TRUE] # the same, more transparently

factor(letters[1:20], label="letter")
class(ordered(4:1))# "ordered", inheriting from "factor"

suppose you want "NA" as a level, and to allowing missing values.
(x <- factor(c(1, 2, "NA"), exclude = ""))

is.na(x) [2] <- TRUE

x # [1] 1 <NA> NA, <NA> used because NA is a level.

is.na(x)

[1] FALSE TRUE FALSE

factor.scope 233

factor.scope Compute Allowed Changes in Adding to or Dropping from a For-
mula

Description

add.scope and drop.scope compute those terms that can be individually added to or
dropped from a model while respecting the hierarchy of terms.

Usage

add.scope(termsl, terms2)
drop.scope(termsl, terms2)
factor.scope(factor, scope)

Arguments
termsl the terms or formula for the base model.
terms2 the terms or formula for the upper (add.scope) or lower (drop.scope)
scope. If missing for drop.scope it is taken to be the null formula, so all
terms (except any intercept) are candidates to be dropped.
factor the "factor" attribute of the terms of the base object.
scope a list with one or both components drop and add giving the "factor"
attribute of the lower and upper scopes respectively.
Details

factor.scope is not intended to be called directly by users.

Value

For add.scope and drop.scope a character vector of terms labels. For factor.scope, a
list with components drop and add, character vectors of terms labels.

See Also

addl, dropl, aov, 1m

Examples

add.scope(~a+ b+ c+atb, ~ (a+b+c)3)
[1] "a:c" "b:C"

drop.scope(~ a + b + ¢ + a:b)

[1] nen "g:p"

234 faithful

faithful Old Faithful Geyser Data

Description

Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser
in Yellowstone National Park, Wyoming, USA.

Usage
data(faithful)

Format

A data frame with 272 observations on 2 variables.

[,1] eruptions numeric Eruption time in mins
[,2] waiting numeric Waiting time to next eruption

Details

A closer look at faithful$eruptions reveals that these are heavily rounded times origi-
nally in seconds, where multiples of 5 are more frequent than expected under non-human
measurement. For a “better” version of the eruptions times, see the example below.

There are many versions of this dataset around: Azzalini and Bowman (1990) use a more
complete version.

Source

W. Hérdle.

References

Hirdle, W. (1991) Smoothing Techniques with Implementation in S. New York: Springer.

Azzalini; A. and Bowman, A. W. (1990). A look at some data on the Old Faithful geyser.
Applied Statistics 39, 357-365.

See Also

geyser in package MASS for the Azzalini-Bowman version.

Examples

data(faithful)
f.tit <- "faithful data: Eruptions of 0ld Faithful"

ne60 <- round(e60 <- 60 * faithful$eruptions)

all.equal(e60, ne60) # relative diff. ~ 1/10000

table (zapsmall (abs(e60 - ne60))) # 0, 0.02 or 0.04
faithful$better.eruptions <- ne60 / 60

te <- table(ne60)

te[te >= 4] # (too) many multiples of 5 !
plot(names(te), te, type="h", main = f.tit, xlab = "Eruption time (sec)")

family

235

plot(faithfull[, -3], main = f.tit,

xlab = "Eruption time (min)",

ylab = "Waiting time to next eruption (min)")
lines(lowess(faithful$eruptions, faithful$waiting, £ = 2/3, iter = 3),

col = "red")

family

Family Objects for Models

Description

Family objects provide a convenient way to specify the details of the models used by func-
tions such as glm. See the documentation for glm for the details on how such model fitting

takes place.

Usage

family(object,

binomial(link = "logit")
gaussian(link ="identity")

Gamma(link = "inverse")
inverse.gaussian(link = "1/mu”2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")
quasipoisson(link = "log")
Arguments
link a specification for the model link function. The gaussian family ac-

variance

object

cepts the links "identity", "log" and "inverse"; the binomial fam-
ily the links "logit", "probit", "log" and "cloglog" (complementary
log-log); the Gamma family the links "inverse", "identity" and "log";
the poisson family the links "log", "identity", and "sqrt" and the
inverse.gaussian family the links "1/mu~2", "inverse", "inverse"
and "log".

The quasi family allows the links "logit", "probit", "cloglog",
"identity", "inverse", "log", "1/mu"2" and "sqrt". The function
power can also be used to create a power link function for the quasi
family.

for all families, other than quasi, the variance function is determined by
the family. The quasi family will accept the specifications "constant",
"mu(l-mu)", "mu", "mu"2" and "mu~3" for the variance function.

the function family accesses the family objects which are stored within
objects created by modelling functions (e.g., glm).

further arguments passed to methods.

236 family

Details

The quasibinomial and quasipoisson families differ from the binomial and poisson
families only in that the dispersion parameter is not fixed at one, so they can “model” over-
dispersion. For the binomial case see McCullagh and Nelder (1989, pp. 124-8). Although
they show that there is (under some restrictions) a model with variance proportional to
mean as in the quasi-binomial model, note that glm does not compute maximum-likelihood
estimates in that model. The behaviour of S is closer to the quasi- variants.

Author(s)

The design was inspired by S functions of the same names described in Hastie & Pregibon
(1992).

References

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and
Hall.

Dobson, A. J. (1983) An Introduction to Statistical Modelling. London: Chapman and Hall.

Cox, D. R. and Snell, E. J. (1981). Applied Statistics; Principles and Examples. London:
Chapman and Hall.

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical
Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

glm, power.

Examples

nf <- gaussian()# Normal family
nf
str(nf)# internal STRucture

gf <- Gamma()

gf

str(gf)

gf$linkinv

gf$variance(-3:4) #- == (.)"2

quasipoisson. compare with example(glm)
counts <- ¢(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)

treatment <- gl(3,3)

d.AD <- data.frame(treatment, outcome, counts)
glm.qD93 <- glm(counts ~ outcome + treatment, family=quasipoisson())
glm.qgD93

anova(glm.qD93, test="F")

summary (glm.gD93)

for Poisson results use

anova(glm.qD93, dispersion = 1, test="Chisq")
summary (glm.gD93, dispersion = 1)

tests of quasi
x <- rnorm(100)

FDist 237

y <- rpois(100, exp(1+x))

glm(y “x, family=quasi(var="mu", link="log"))

which is the same as

glm(y “x, family=poisson)

glm(y “x, family=quasi(var="mu"2", link="log"))

Not run: glm(y “x, family=quasi(var="mu"3", link="log")) # should fail
y <- rbinom(100, 1, plogis(x))

needs to set a starting value for the next fit

glm(y “x, family=quasi(var="mu(l-mu)", link="logit"), start=c(0,1))

FDist The F Distribution

Description
Density, distribution function, quantile function and random generation for the F distribu-
tion with df1 and df2 degrees of freedom (and optional non-centrality parameter ncp).
Usage

df (x, df1, df2, log = FALSE)
pf(q, dfl, df2, ncp=0, lower.tail

TRUE, log.p = FALSE)

qf (p, df1, df2, lower.tail = TRUE, log.p = FALSE)
rf(n, df1, df2)
Arguments
X, q vector of quantiles.
P vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the
number required.
df1, df2 degrees of freedom.
ncp non-centrality parameter.

log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x|, otherwise, P[X >

Details

The F distribution with df1 = n; and df2 = ny degrees of freedom has density

ni/2 —(n1+n 2
Clnwf2 caaf2) () V2 i (1+2) el

fla) = T(n1/2)T(n2/2) \ nz o

for x > 0.

It is the distribution of the ratio of the mean squares of n; and no independent standard
normals, and hence of the ratio of two independent chi-squared variates each divided by its
degrees of freedom. Since the ratio of a normal and the root mean-square of m independent
normals has a Student’s t,, distribution, the square of a t,, variate has a F distribution on
1 and m degrees of freedom.

The non-central F distribution is again the ratio of mean squares of independent normals of
unit variance, but those in the numerator are allowed to have non-zero means and ncp is the
sum of squares of the means. See Chisquare for further details on non-central distributions.

238 fft

Value

df gives the density, pf gives the distribution function qf gives the quantile function, and
rf generates random deviates.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

dchisq for chi-squared and dt for Student’s t distributions.

Examples

the density of the square of a t_m is 2*dt(x, m)/(2*x)
check this is the same as the density of F_{1,m}

x <- seq(0.001, 5, len=100)

all.equal(df(x"2, 1, 5), dt(x, 5)/x)

Identity: qf(2%p - 1, 1, df)) == qt(p, df)"2) for p >= 1/2

p <- seq(1/2, .99, length=50); df <- 10

rel.err <- function(x,y) ifelse(x==y,0, abs(x-y)/mean(abs(c(x,y))))
quantile(rel.err(qf (2*p - 1, dfl=1, df2=df), qt(p, df)"2), .90)# ~= 7e-9

fft Fast Discrete Fourier Transform

Description

Performs the Fast Fourier Transform of an array.

Usage

fft(z, inverse = FALSE)
mvfft(z, inverse = FALSE)

Arguments
z a real or complex array containing the values to be transformed.
inverse if TRUE, the unnormalized inverse transform is computed (the inverse has
a + in the exponent of e, but here, we do not divide by 1/length(x)).
Value

When z is a vector, the value computed and returned by £ft is the unnormalized univariate
Fourier transform of the sequence of values in z. When z contains an array, £t computes
and returns the multivariate (spatial) transform. If inverse is TRUE, the (unnormalized)
inverse Fourier transform is returned, i.e., if y <- £ft(z), then z is £ft(y, inverse =
TRUE) / length(y).

By contrast, mvfft takes a real or complex matrix as argument, and returns a similar
shaped matrix, but with each column replaced by its discrete Fourier transform. This is
useful for analyzing vector-valued series.

file.access 239

The FFT is fastest when the length of of the series being transformed is highly composite
(i.e., has many factors). If this is not the case, the transform may take a long time to
compute and will use a large amount of memory.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Singleton, R. C. (1979) Mixed Radix Fast Fourier Transforms, in Programs for Digital Signal
Processing, IEEE Digital Signal Processing Committee eds. IEEE Press.
See Also

convolve, nextn.

Examples

x <- 1:4
£t (x)
fft(fft(x), inverse = TRUE)/length(x)

file.access Ascertain File Accessibility

Description

Utility function to access information about files on the user’s file systems.

Usage

file.access(names, mode = 0)

Arguments
names character vector containing file names.
mode integer specifying access mode required.
Details

The mode value can be the exclusive or of the following values

0 test for existence.
1 test for execute permission.
2 test for write permission.

4 test for read permission.

Permission will be computed for real user ID and real group ID (rather than the effective
IDs).

Value

An integer vector with values 0 for success and -1 for failure.

240 file.info

Note

This is intended as a replacement for the S-PLUS function access, a wrapper for the C
function of the same name, which explains the return value encoding. Note that the return
value is false for success.

See Also

file.info

Examples

fa <- file.access(dir("."))
table(fa) # count successes & failures

file.choose Choose a File Interactively

Description

Choose a file interactively.

Usage

file.choose(new = FALSE)

Arguments
new Logical: choose the style of dialog box presented to the user: at present
only new = FALSE is used.
Value

A character vector of length one giving the file path.

file.info Ezxtract File Information

Description

Utility function to extract information about files on the user’s file systems.

Usage

file.info(...)

Arguments

character vectors containing file names.

file.info 241

Details

What is meant by “file access” and hence the last access time is system-dependent.

On most systems symbolic links are followed, so information is given about the file to which
the link points rather than about the link.

Value

A data frame with row names the file names and columns

size integer: File size in bytes.
isdir logical: Is the file a directory?
mode integer of class "octmode". The file permissions, printed in octal, for

example 644.

mtime, ctime, atime
integer of class "POSIXct": file modification, creation and last access

times.
uid integer: the user ID of the file’s owner.
gid integer: the group ID of the file’s group.
uname character: uid interpreted as a user name.
grname character: gid interpreted as a group name.

Unknown user and group names will be NA.

Entries for non-existent or non-readable files will be NA. The uid, gid, uname and grname
columns may not be supplied on a non-POSIX Unix system.

Note

This function will only be operational on systems with the stat system call, but that seems
very widely available.

See Also

files, file.access, list.files, and DateTimeClasses for the date formats.

Examples

ncol (finf <- file.info(dir()))# at least six

Not run: finf # the whole list

Those that are more than 100 days old :

finf[difftime(Sys.time(), finf[,"mtime"], units="days") > 100 , 1:4]

file.info("no-such-file-exists")

242 file.show

file.path Construct Path to File

Description

Construct the path to a file from components in a platform-independent way.

Usage
file.path(..., fsep = .Platform$file.sep)

Arguments
character vectors.
fsep the path separator to use.
Value

A character vector of the arguments concatenated term-by-term and separated by fsep if
all arguments have positive length; otherwise, an empty character vector.

file.show Display One or More Files

Description

Display one or more files.

Usage
file.show(..., header = rep("",nfiles), title = "R Information",
delete.file=FALSE, pager=getOption("pager"))
Arguments
one or more character vectors containing the names of the files to be
displayed.
header character vector (of the same length as the number of files specified in
..) giving a header for each file being displayed. Defaults to empty
strings.
title an overall title for the display. If a single separate window is used for the

display, title will be used as the window title. If multiple windows are
used, their titles should combine the title and the file-specific header.

delete.file should the files be deleted after display? Used for temporary files.
pager the pager to be used.

Details

This function provides the core of the R help system, but it can be used for other purposes
as well.

files 243

Note

How the pager is implemented is highly system dependent.

The basic Unix version concatenates the files (using the headers) to a temporary file, and
displays it in the pager selected by the pager argument, which is a character vector speci-
fying a system command to run on the set of files.

Most GUI systems will use a separate pager window for each file, and let the user leave it up
while R continues running. The selection of such pagers could either be done using “magic”
pager names being intercepted by lower-level code (such as "internal" and "console"
on Windows), or by letting pager be an R function which will be called with the same
arguments as file.show and take care of interfacing to the GUI.

Not all implementations will honour delete.file.

Author(s)

Ross Thaka, Brian Ripley.

See Also

files, list.files, help.

Examples

file.show(file.path(R.home(), "COPYRIGHTS"))

files File Manipulation

Description

These functions provide a low-level interface to the computer’s file system.

Usage

file.create(...)

file.exists(...)

file.remove(...)

file.rename(from, to)
file.append(filel, file2)
file.copy(from, to, overwrite = FALSE)
file.symlink(from, to)
dir.create(path)

Arguments

., filel, file2, from, to
character vectors, containing file names.

path a character vector containing a single path name.

overwrite logical; should the destination files be overwritten?

244 files

Details

The ... arguments are concatenated to form one character string: you can specify the files
separately or as one vector. All of these functions expand path names: see path.expand.

file.create creates files with the given names if they do not already exist and truncates
them if they do.

file.exists returns a logical vector indicating whether the files named by its argument
exist.

file.remove attempts to remove the files named in its argument.
file.rename attempts to rename a single file.

file.append attempts to append the files named by its second argument to those named
by its first. The R subscript recycling rule is used to align names given in vectors of different
lengths.

file.copy works in a similar way to file.append but with the arguments in the natural
order for copying. Copying to existing destination files is skipped unless overwrite = TRUE.
The to argument can specify a single existing directory.

file.symlink makes symbolic links on those Unix-like platforms which support them. The
to argument can specify a single existing directory.

dir.create creates the last element of the path.

Value

dir.create and file.rename return a logical, true for success.

The remaining functions return a logical vector indicating which operation succeeded for
each of the files attempted.

Author(s)
Ross Thaka, Brian Ripley

See Also

file.info, file.access, file.path, file.show, list.files, unlink, basename,
path.expand.

Examples

cat("file A\n", file="A")
cat("file B\n", file="B")
file.append("A", "B")
file.create("A")
file.append("A", rep("B", 10))
if (interactive()) file.show("A")
file.copy("A", "C")
dir.create("tmp")
file.copy(c("A", "B"), "tmp")
list.files("tmp")

setwd ("tmp")

file.remove("B")
file.symlink(file.path("..", c("A", "B")), ".")
setwd("..")

unlink("tmp", recursive=TRUE)
file.remove("A", "B", "C")

filled.contour

245

filled.contour

Level (Contour) Plots

Description

This function produces a contour plot with the areas between the contours filled in solid
color (Cleveland calls this a level plot). A key showing how the colors map to z values is
shown to the right of the plot.

Usage

filled.contour(x

Arguments

X,y

x1lim
ylim
zlim

levels

nlevels

color.palette

col

plot.title

plot.axes

key.title

nrow(z)),
ncol(z)),

seq(0, 1, len
seq(0, 1, len

y
Z,
xlim = range(x, finite=TRUE),

ylim = range(y, finite=TRUE),

zlim = range(z, finite=TRUE),

levels = pretty(zlim, nlevels), nlevels = 20,
color.palette = cm.colors,

col = color.palette(length(levels) - 1),
plot.title, plot.axes, key.title, key.axes,
asp = NA, xaxs = "i", yaxs = "i", las =1,
axes = TRUE, frame.plot = axes, ...)

locations of grid lines at which the values in z are measured. These must
be in ascending order. By default, equally spaced values from 0 to 1 are
used. If x is a list, its components x$x and x$y are used for x and y,
respectively. If the list has component z this is used for z.

a matrix containing the values to be plotted (NAs are allowed). Note that
x can be used instead of z for convenience.

x limits for the plot.
y limits for the plot.
z limits for the plot.

a set of levels which are used to partition the range of z. Must be strictly
increasing (and finite). Areas with z values between consecutive levels are
painted with the same color.

if levels is not specified, the range of z, values is divided into approxi-
mately this many levels.

a color palette function to be used to assign colors in the plot.

an explicit set of colors to be used in the plot. This argument overrides
any palette function specification.

statements which add titles the main plot.

statements which draw axes (and a box) on the main plot. This overrides
the default axes.

statements which add titles for the plot key.

246 filled.contour
key.axes statements which draw axes on the plot key. This overrides the default
axis.
asp the y/x aspect ratio, see plot.window.
Xaxs the x axis style. The default is to use internal labeling.
yaxs the y axis style. The default is to use internal labeling.
las the style of labeling to be used. The default is to use horizontal labeling.

axes, frame.plot

Note

logicals indicating if axes and a box should be drawn, as in plot.default.

additional graphical parameters, currently only passed to title().

This function currently uses the layout function and so is restricted to a full page display.
As an alternative consider the levelplot function from the lattice package which works in
multipanel displays.

The output produced by filled.contour is actually a combination of two plots; one is
the filled contour and one is the legend. Two separate coordinate systems are set up for
these two plots, but they are only used internally - once the function has returned these
coordinate systems are lost. If you want to annotate the main contour plot, for example to
add points, you can specify graphics commands in the plot.axes argument. An example

is given below.

Author(s)
Ross Thaka.

References

Cleveland, W. S. (1993) Visualizing Data. Summit, New Jersey: Hobart.

See Also

contour, image, palette; levelplot from package lattice.

Examples

data(volcano)

filled.contour(volcano, color = terrain.colors, asp = 1)# simple

x <- 10*1:nrow(volcano)
y <- 10*1:ncol(volcano)
filled.contour(x, y, volcano, color = terrain.colors,

plot.title

title(main = "The Topography of Maunga Whau",

xlab = "Meters North", ylab = "Meters West"),
plot.axes = { axis(1, seq(100, 800, by = 100))
axis(2, seq(100, 600, by = 100)) 1},
key.title = title(main="Height\n(meters)"),
key.axes = axis(4, seq(90, 190, by = 10)))# maybe also asp=1
mtext (paste("filled.contour(.) from", R.version.string),
side = 1, line = 4, adj = 1, cex = .66)

Annotating a filled contour plot
a <- expand.grid(1:20, 1:20)

findInterval 247

b <- matrix(al,1] + a[,2], 20)
filled.contour(x = 1:20, y = 1:20, z = b,
plot.axes={ axis(1); axis(2); points(10,10) })

Persian Rug Art:

x <~ y <- seq(-4xpi, 4*pi, len = 27)

r <- sqrt(outer(x~2, y~2, "+"))

filled.contour(cos(r~2)*exp(-r/(2*pi)), axes = FALSE)

rather, the key *should* be labeled:
filled.contour(cos(r~2)*exp(-r/(2*pi)), frame.plot = FALSE, plot.axes = {})

findInterval Find Interval Numbers or Indices

Description

Find the indices of x in vec, where vec must be sorted (non-decreasingly); i.e., if i <-
findInterval(x,v), we have v;; < z; < v;, 41 where vg := —00, vy41 = +00, and N <-
length(vec). At the two boundaries, the returned index may differ by 1, depending on
the optional arguments rightmost.closed and all.inside.

Usage

findInterval(x, vec, rightmost.closed = FALSE, all.inside = FALSE)

Arguments
X numeric.
vec numeric, sorted (weakly) increasingly, of length N, say.
rightmost.closed
logical; if true, the rightmost interval, vec[N-1] .. vec[N] is treated
as closed, see below.
all.inside logical; if true, the returned indices are coerced into {1,..., N — 1}, i.e.,
0 is mapped to 1 and N to N — 1.
Detalils

The function findInterval finds the index of one vector x in another, vec, where the
latter must be non-decreasing. Where this is trivial, equivalent to apply(outer(x, vec,
">="), 1, sum), as a matter of fact, the internal algorithm uses interval search ensur-
ing O(nlog N) complexity where n <- length(x) (and N <- length(vec)). For (almost)
sorted x, it will be even faster, basically O(n).

This is the same computation as for the empirical distribution function, and indeed,
findInterval(t, sort(X)) is identical to nF,(t; X1,...,X,) where F, is the empirical
distribution function of Xq,..., X,.

When rightmost.closed = TRUE, the result for x[j] = vec[N] (= max(vec)), is N - 1
as for all other values in the last interval.

Value

vector of length length(x) with values in 0:N where N <- length(vec), or values coerced
to 1: (N-1) iff all.inside = TRUE (equivalently coercing all x values inside the intervals).

248 fitted

Author(s)
Martin Maechler

See Also

approx (*, method = "constant") which is a generalization of findInterval(), ecdf for
computing the empirical distribution function which is (up to a factor of n) also basically
the same as findInterval(.).

Examples

N <- 100

X <- sort(round(rt(N, df=2), 2))

tt <- c(-100, seq(-2,2, len=201), +100)

it <- findInterval(tt, X)

tt[it < 1 | it >= N] # only first and last are outside range(X)

fitted FExtract Model Fitted Values

Description

fitted is a generic function which extracts fitted values from objects returned by modeling
functions. fitted.values is an alias for it.

All object classes which are returned by model fitting functions should provide a fitted
method. (Note that the generic is fitted and not fitted.values.)

Methods can make use of napredict methods to compensate for the omission of missing
values. The default, Im and glm methods do.

Usage
fitted(object, ...)
fitted.values(object, ...)
Arguments
object an object for which the extraction of model fitted values is meaningful.
other arguments.
Value

Fitted values extracted from the object x.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

coefficients, glm, 1m, residuals.

fivenum 249

fivenum Tukey Five-Number Summaries

Description
Returns Tukey’s five number summary (minimum, lower-hinge, median, upper-hinge, max-
imum) for the input data.

Usage

fivenum(x, na.rm = TRUE)

Arguments
X numeric, maybe including NAs and +/-Infs.
na.rm logical; if TRUE, all NA and NaNs are dropped, before the statistics are
computed.
Value

A numeric vector of length 5 containing the summary information. See boxplot.stats for
more details.

See Also

IQR, boxplot.stats, median, quantile, range.

Examples

fivenum(c(rnorm(100),-1:1/0))

fix Fiz an Object

Description

fix invokes edit on x and then assigns the new (edited) version of x in the user’s workspace.

Usage
fix(x, ...)
Arguments
X the name of an R object, as a name or a character string.
arguments to pass to editor: see edit.
Details

The name supplied as x need not exist as an R object, when a function with no arguments
and an empty body is supplied for editing.

250 force

See Also

edit, edit.data.frame

Examples

Not run:

Assume 'my.fun' is a user defined function :
fix(my.fun)

now my.fun is changed

Also,

fix(my.data.frame) # calls up data editor
fix(my.data.frame, factor.mode="char") # use of ...
End(Not run)

force Force evaluation of an Argument

Description

Forces the evaluation of a function argument.

Usage

force(x)

Arguments

X a formal argument.

Detalils

force forces the evaluation of a formal argument. This can be useful if the argument will
be captured in a closure by the lexical scoping rules and will later be altered by an explicit
assignment or an implicit assignment in a loop or an apply function.

Examples

f <- function(y) function() y

1f <- vector("list", 5)

for (i in seq(along = 1f)) 1f[[i]] <- £(i)
1£f[[111() # returns 5

g <- function(y) { force(y); function() y }
lg <- vector("list", 5)

for (i in seq(along = 1g)) 1g[[il] <- g(i)
1gl[111() # returns 1

Foreign 251

Foreign Foreign Function Interface

Description

Functions to make calls to compiled code that has been loaded into R.

Usage

.C(name, ..., NAOK = FALSE, DUP

.Fortran(name, ..., NAOK = FALSE, DUP
.External (name, ..., PACKAGE)
.Call(name, ..., PACKAGE)
.External.graphics(name, ..., PACKAGE)
.Call.graphics(name, ..., PACKAGE)

TRUE, PACKAGE)
TRUE, PACKAGE)

Arguments

name a character string giving the name of a C function or Fortran subroutine.
arguments to be passed to the foreign function.

NAOK if TRUE then any NA or NaN or Inf values in the arguments are passed on
to the foreign function. If FALSE, the presence of NA or NaN or Inf values
is regarded as an error.

DUP if TRUE then arguments are “duplicated” before their address is passed to
C or Fortran.

PACKAGE if supplied, confine the search for the name to the DLL given by this
argument (plus the conventional extension, .so, .sl, .d1ll, ...). This
is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols. Use
PACKAGE="base" for symbols linked in to R.

Details

The functions .C and .Fortran can be used to make calls to C and Fortran code.

.External and .External.graphics can be used to call compiled code that uses R objects
in the same way as internal R functions.

.Call and .Call.graphics can be used call compiled code which makes use of internal R
objects. The arguments are passed to the C code as a sequence of R objects. It is included
to provide compatibility with S version 4.

For details about how to write code to use with .Call and .External, see the chapter
on “System and foreign language interfaces” in “Writing R Extensions” in the ‘doc/manual’
subdirectory of the R source tree.

Value

The functions .C and .Fortran return a list similar to the ... list of arguments passed in,
but reflecting any changes made by the C or Fortran code.

.External, .Call, .External.graphics, and .Call.graphics return an R object.

These calls are typically made in conjunction with dyn.load which links DLLs to R.

252 Foreign

The .graphics versions of .Call and .External are used when calling code which makes
low-level graphics calls. They take additional steps to ensure that the device driver display
lists are updated correctly.

Argument types

The mapping of the types of R arguments to C or Fortran arguments in .C or .Fortran is

R C Fortran

integer int * integer

numeric double * double precision
—or — float * real

complex Rcomplex * double complex
logical int * integer
character char ** [see below]

list SEXP * not allowed
other SEXP not allowed

Numeric vectors in R will be passed as type double * to C (and as double precision
to Fortran) unless (i) .C or .Fortran is used, (ii) DUP is false and (iii) the argument has
attribute Csingle set to TRUE (use as.single or single). This mechanism is only intended
to be used to facilitate the interfacing of existing C and Fortran code.

The C type Rcomplex is defined in ‘Complex.h’ as a typedef struct {double r; double
i;}. Fortran type double complex is an extension to the Fortran standard, and the avail-
ability of a mapping of complex to Fortran may be compiler dependent.

Note: The C types corresponding to integer and logical are int, not long as in S.

The first character string of a character vector is passed as a C character array to Fortran:
that string may be usable as character*255 if its true length is passed separately. Only
up to 255 characters of the string are passed back. (How well this works, or even if it works
at all, depends on the C and Fortran compilers and the platform.)

Missing (NA) string values are passed to .C as the string "NA”. As the C char type can
represent all possible bit patterns there appears to be no way to distinguish missing strings
from the string "NA". If this distinction is important use .Call.

Functions, expressions, environments and other language elements are passed as the internal
R pointer type SEXP. This type is defined in ‘Rinternals.h’ or the arguments can be declared
as generic pointers, void *. Lists are passed as C arrays of SEXP and can be declared as
void * or SEXP *. Note that you cannot assign values to the elements of the list within the
C routine. Assigning values to elements of the array corresponding to the list bypasses R’s
memory management/garbage collection and will cause problems. Essentially, the array
corresponding to the list is read-only. If you need to return S objects created within the C
routine, use the .Call interface.

R functions can be invoked using call_S or call_R and can be passed lists or the simple
types as arguments.

Header files for external code

Writing code for use with .External and .Call will use internal R structures. If possible
use just those defined in ‘Rinternals.h’ and/or the macros in ‘Rdefines.h’; as other header
files are not installed and are even more likely to be changed.

Formaldehyde 253

Note

DUP=FALSE is dangerous.
There are two dangers with using DUP=FALSE.

The first is that if you pass a local variable to .C/.Fortran with DUP=FALSE, your compiled
code can alter the local variable and not just the copy in the return list. Worse, if you
pass a local variable that is a formal parameter of the calling function, you may be able to
change not only the local variable but the variable one level up. This will be very hard to
trace.

The second is that lists are passed as a single R SEXP with DUP=FALSE, not as an array of
SEXP. This means the accessor macros in ‘Rinternals.h’ are needed to get at the list elements
and the lists cannot be passed to call_S/call_R. New code using R objects should be
written using .Call or .External, so this is now only a minor issue.

(Prior to R version 1.2.0 there has a third danger, that objects could be moved in memory
by the garbage collector. The current garbage collector never moves objects.)

It is safe and useful to set DUP=FALSE if you do not change any of the variables that might
be affected, e.g.,

.C("Cfunction", input=x, output=numeric(10)).

In this case the output variable did not exist before the call so it cannot cause trouble. If
the input variable is not changed in the C code of Cfunction you are safe.

Neither .Call nor .External copy their arguments. You should treat arguments you receive
through these interfaces as read-only.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (.C and .Fortran.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.
(.Call.)

See Also

dyn.load.

Formaldehyde Determination of Formaldehyde

Description

These data are from a chemical experiment to prepare a standard curve for the determina-
tion of formaldehyde by the addition of chromatropic acid and concentrated sulpuric acid
and the reading of the resulting purple color on a spectophotometer.

Usage

data(Formaldehyde)

Format

A data frame with 6 observations on 2 variables.

254 formals

[[1] carb numeric Carbohydrate (ml)
[,2] optden numeric Optical Density

Source

Bennett, N. A. and N. L. Franklin (1954) Statistical Analysis in Chemistry and the Chemical
Industry. New York: Wiley.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(Formaldehyde)
plot(optden ~ carb, data = Formaldehyde,
xlab = "Carbohydrate (ml)", ylab = "Optical Density",

main = "Formaldehyde data", col = 4, las = 1)

abline(fml <- 1m(optden ~ carb, data = Formaldehyde))

summary (fm1)

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))

plot(fm1)

par (opar)

formals Access to and Manipulation of the Formal Arguments

Description

Get or set the formal arguments of a function.

Usage

formals(fun = sys.function(sys.parent()))
formals(fun, envir = parent.frame()) <- value

Arguments
fun a function object, or see Details.
envir environment in which the function should be defined.
value a list of R expressions.

Details

For the first form, fun can be a character string naming the function to be manipulated,
which is searched for from the parent environment. If it is not specified, the function calling
formals is used.

Value

formals returns the formal argument list of the function specified.

The assignment form sets the formals of a function to the list on the right hand side.

format 255

See Also

args for a “human-readable” version, alist, body, function.

Examples

length(formals(1m)) # the number of formal arguments
names (formals(boxplot)) # formal arguments names

f <- function(x)a+b
formals(f) <- alist(a=,b=3) # function(a,b=3)a+b
f(2) # result = 5

format Encode in a Common Format

Description

Format an R object for pretty printing: format.pval is intended for formatting p-values.

Usage

format(x, ...)

S3 method for class 'AsIs':
format(x, width = 12, ...)

S3 method for class 'data.frame':
format(x, ..., justify = "none")

Default S3 method:
format(x, trim = FALSE, digits = NULL,
nsmall = 0, justify = c("left", "right", "none"),
big.mark = "", big.interval = 3,
small.mark "' small.interval 5,
decimal .mark = ".", ...)

S3 method for class 'factor':
format(x, ...)

format.pval(pv, digits = max(1l, getOption("digits") - 2),
eps = .Machine$double.eps, na.form = "NA")

prettyNum(x, big.mark = "", big.interval = 3,
small.mark = "", small.interval = 5,
decimal.mark = ".", ...)
Arguments
X any R object (conceptually); typically numeric.

trim logical; if TRUE, leading blanks are trimmed off the strings.

256 format
digits how many significant digits are to be used for numeric x. The default,
NULL, uses options()$digits. This is a suggestion: enough decimal
places will be used so that the smallest (in magnitude) number has this
many significant digits.
nsmall number of digits which will always appear to the right of the decimal point
in formatting real/complex numbers in non-scientific formats. Allowed
values 0 <= nsmall <= 20.
justify should character vector be left-justified, right-justified or left alone. When
justifying, the field width is that of the longest string.
big.mark character; if not empty used as mark between every big.interval deci-
mals before (hence big) the decimal point.
big.interval see big.mark above; defaults to 3.
small.mark character; if not empty used as mark between every small.interval
decimals after (hence small) the decimal point.
small.interval
see small.mark above; defaults to 5.
decimal.mark the character used to indicate the numeric decimal point.
pv a numeric vector.
eps a numerical tolerance: see Details.
na.form character representation of NAs.
width the returned vector has elements of at most width.
further arguments passed to or from other methods.
Details
These functions convert their first argument to a vector (or array) of character strings
which have a common format (as is done by print), fulfilling length(format*(x, *)) ==
length(x). The trimming with trim = TRUE is useful when the strings are to be used for
plot axis annotation.
format.AsIs deals with columns of complicated objects that have been extracted from a
data frame.
format.pval is mainly an auxiliary function for print.summary.1lm etc., and does separate
formatting for fixed, floating point and very small values; those less than eps are formatted
as "< [eps]" (where “[eps]” stands for format (eps, digits).
The function formatC provides a rather more flexible formatting facility for numbers, but
does not provide a common format for several numbers, nor it is platform-independent.
format.data.frame formats the data frame column by column, applying the appropriate
method of format for each column.
prettyNum is the utility function for prettifying x. If x is not a character, format (x[i],
...) is applied to each element, and then it is left unchanged if all the other arguments are
at their defaults. Note that prettyNum(x) may behave unexpectedly if x is a character
not resulting from something like format (<number>).
Note

Currently format drops trailing zeroes, so format(6.001, digits=2) gives "6" and
format(c(6.0, 13.1), digits=2) gives c(" 6", "13").

Character(s) " in input strings x are escaped to \".

format.info 257

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

format.info indicates how something would be formatted; formatC, paste, as.character,
sprintf.

Examples

format (1:10)

zz <- data.frame("(row names)"= c("aaaaa", "b"), check.names=FALSE)
format (zz)
format(zz, justify="left")

use of nsmall
format (13.7)
format(13.7, nsmall=3)

r <- c("76491283764.97430", "29.12345678901", "-7.1234", "-100.1","1123")
American:

prettyNum(r, big.mark = ",")

Some Europeans:

prettyNum(r, big.mark = "'", decimal.mark = ",")

(dd <- sapply(1:10, function(i)paste((9:0)[1:i],collapse="")))
prettyNum (dd, big.mark=" 1y

pN <- pnorm(1:7, lower=FALSE)

cbind(format (pN, small.mark = " ", digits = 15))
cbind (formatC(pN, small.mark = " ", digits = 17, format = "f"))
format.info format(.) Information
Description

Information is returned on how format(x, digits = options("digits")) would be for-
matted.

Usage

format.info(x, nsmall = 0)

Arguments

X (numeric) vector; potential argument of format(x,...).

nsmall (see format (¥, nsmall)).

258 formatC

Value

An integer vector of length 3, say r.

r[1] width (number of characters) used for format (x)
r[2] number of digits after decimal point.
r[3] in 0:2; if >1, exponential representation would be used, with exponent

length of r[3]+1.

Note

The result depends on the value of options("digits").

See Also

format, formatC.

Examples

dd <- options("digits") ; options(digits = 7) #-- for the following
format.info(123) # 3 0 0

format.info(pi) # 8 6 0

format.info(1e8) # 5 0 1 - exponential "1e+08"

format.info(1e222)#6 0 2 - exponential "1e+222"

x <- pi*10~c(-10,-2,0:2,8,20)

names(x) <- formatC(x,w=1,dig=3,format="g")
cbind(sapply(x,format))

t (sapply(x, format.info))

using at least 8 digits right of "."
t(sapply(x, format.info, nsmall = 8))

Reset old options:
options(dd)

formatC Formatting Using C-style Formats

Description

Formatting numbers individually and flexibly, using C style format specifications.
format.char is a helper function for formatC.

Usage
formatC(x, digits = NULL, width = NULL,
format = NULL, flag = "", mode = NULL,
big.mark = "", big.interval = 3,

small.mark """ small.interval = 5,
decimal .mark = ".")

format.char(x, width = NULL, flag = "-")

formatC 259

Arguments
X an atomic numerical or character object, typically a vector of real num-
bers.
digits the desired number of digits after the decimal point (format = "£") or
significant digits (format = "g", = "e" or = "fg").

Default: 2 for integer, 4 for real numbers. If less than 0, the C default of
6 digits is used.

width the total field width; if both digits and width are unspecified, width
defaults to 1, otherwise to digits + 1. width = O will use width =
digits, width < 0 means left justify the number in this field (equivalent

to flag ="-"). If necessary, the result will have more characters than
width.
format equal to "d" (for integers), "f", "e", "E", "g", "G", "fg" (for reals), or

"s" (for strings). Default is "d" for integers, "g" for reals.

"f" gives numbers in the usual xxx.xxx format; "e" and "E" give
n.ddde+nn or n.dddE+nn (scientific format); "g" and "G" put x[i] into
scientific format only if it saves space to do so.

"fg" uses fixed format as "f", but digits as the minimum number of
significant digits. That this can lead to quite long result strings, see
examples below. Note that unlike signif this prints large numbers with
more significant digits than digits.

flag format modifier as in Kernighan and Ritchie (1988, page 243). "0" pads
leading zeros; "-" does left adjustment, others are "+", " " and "#".
mode "double" (or "real"), "integer" or "character". Default: Determined

from the storage mode of x.
big.mark, big.interval, small.mark, small.interval, decimal.mark

used for prettying longer decimal sequences, passed to prettyNum: that
help page explains the details.

Details
If you set format it over-rides the setting of mode, so formatC(123.45, mode="double",
format="d") gives 123.

The rendering of scientific format is platform-dependent: some systems use n.ddde+nnn or
n.dddenn rather than n.ddde+nn.

formatC does not necessarily align the numbers on the decimal point, so formatC(c(6.11,
13.1), digits=2, format="fg") gives c("6.1", " 13"). If you want common format-
ting for several numbers, use format.

Value

A character object of same size and attributes as x. Unlike format, each number is for-
matted individually. Looping over each element of x, sprintf(...) is called (inside the C
function str_signif).

format.char(x) and formatC, for character x, do simple (left or right) padding with white
space.

Author(s)

Originally written by Bill Dunlap, later much improved by Martin Maechler, it was first
adapted for R by Friedrich Leisch.

260 formatDL

References

Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition.
Prentice Hall.

See Also

format, sprintf for more general C like formatting.

Examples

xx <- pi * 10~ (-5:4)

cbind (format (xx, digits=4), formatC(xx))

cbind(formatC(xx, wid = 9, flag = "-"))

cbind (formatC(xx, dig = 5, wid = 8, format = "f", flag = "0"))
cbind (format(xx, digits=4), formatC(xx, dig = 4, format = "fg"))

format.char(c("a", "Abc", "no way"), wid = -7) # <=> flag = "-"
formatC(c("a", "Abc", "no way"), wid = -7) # <=> flag = "-"
formatC(c((-1:1)/0,c(1,100)*pi), wid=8, dig=1)

xx <- c(1le-12,-3.98765e-10,1.45645e-69,1e-70,pi*1e37,3.44e4)
1 2 3 4 5 6
formatC(xx)

formatC(xx, format="fg") # special "fixed" format.
formatC(xx, format="f", dig=80)#>> also long strings

formatDL Format Description Lists

Description

Format vectors of items and their descriptions as 2-column tables or LaTeX-style description
lists.

Usage

formatDL(x, y, style = c("table", "list"),
width = 0.9 * getOption("width"), indent = NULL)

Arguments

X a vector giving the items to be described, or a list of length 2 or a matrix
with 2 columns giving both items and descriptions.

y a vector of the same length as x with the corresponding descriptions. Only
used if x does not already give the descriptions.

style a character string specifying the rendering style of the description infor-
mation. If "table", a two-column table with items and descriptions as
columns is produced (similar to Texinfo’s @table environment. If "list",
a LaTeX-style tagged description list is obtained.

width a positive integer giving the target column for wrapping lines in the out-

put.

formula 261

indent a positive integer specifying the indentation of the second column in table
style, and the indentation of continuation lines in list style. Must not
be greater than width/2, and defaults to width/3 for table style and
width/9 for list style.

Details

After extracting the vectors of items and corresponding descriptions from the arguments,
both are coerced to character vectors.

In table style, items with more than indent - 3 characters are displayed on a line of their
OWn.

Value

a character vector with the formatted entries.

Examples

Use R to create the 'INDEX' for package 'eda' from its 'CONTENTS'

x <- read.dcf(file = system.file("CONTENTS", package = "eda"),
fields = c("Entry", "Description"))

x <- as.data.frame(x)

writeLines (formatDL(x$Entry, x$Description))

or equivalently: writeLines(formatDL(x))

Same information in tagged description list style:

writeLines(formatDL(x$Entry, x$Description, style = "list"))

or equivalently: writeLines(formatDL(x, style = "list"))
formula Model Formulae
Description

The generic function formula and its specific methods provide a way of extracting formulae
which have been included in other objects.

as.formula is almost identical, additionally preserving attributes when object already
inherits from "formula". The default value of the env argument is used only when the
formula would otherwise lack an environment.

Usage

y 7 model
formula(x, ...)
as.formula(object, env = parent.frame())

Arguments

x, object an object
further arguments passed to or from other methods.

env the environment to associate with the result.

262 formula

Details

The models fit by, e.g., the 1m and glm functions are specified in a compact symbolic form.
The ~ operator is basic in the formation of such models. An expression of the form y ~
model is interpreted as a specification that the response y is modelled by a linear predictor
specified symbolically by model. Such a model consists of a series of terms separated by
+ operators. The terms themselves consist of variable and factor names separated by :
operators. Such a term is interpreted as the interaction of all the variables and factors
appearing in the term.

In addition to + and :, a number of other operators are useful in model formulae. The
* operator denotes factor crossing: a*b interpreted as a+b+a:b. The ~ operator indicates
crossing to the specified degree. For example (a+b+c) "2 is identical to (a+b+c)*(a+b+c)
which in turn expands to a formula containing the main effects for a, b and ¢ together with
their second-order interactions. The %in% operator indicates that the terms on its left are
nested within those on the right. For example a+b%in%a expands to the formula a+a:b.
The - operator removes the specified terms, so that (a+b+c) "2 - a:bisidentical toa + b
+ c + b:c + a:c. It can also used to remove the intercept term: y“x - 1 is a line through
the origin. A model with no intercept can be also specified as y"x + 0 or 0 + y~x.

While formulae usually involve just variable and factor names, they can also involve arith-
metic expressions. The formula log(y) ~ a + log(x) is quite legal. When such arithmetic
expressions involve operators which are also used symbolically in model formulae, there can
be confusion between arithmetic and symbolic operator use.

To avoid this confusion, the function I() can be used to bracket those portions of a model
formula where the operators are used in their arithmetic sense. For example, in the formula

y 7 a + I(b+c), the term b+c is to be interpreted as the sum of b and c.

As from R 1.8.0 variable names can be quoted by backticks ‘like this‘ in formulae,
although there is no guarantee that all code using formulae will accept such non-syntactic
names.

Value

All the functions above produce an object of class "formula" which contains a symbolic
model formula.

Environments

A formula object has an associated environment, and this environment (rather than the
parent environment) is used by model.frame to evaluate variables that are not found in
the supplied data argument.

Formulas created with the ~ operator use the environment in which they were created.
Formulas created with as.formula will use the env argument for their environment. Pre-
existing formulas extracted with as.formula will only have their environment changed if
env is explicitly given.

References
Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models
in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also
I.

For formula manipulation: terms, and all.vars; for typical use: 1m, glm, and coplot.

fourfoldplot

Examples

class(fo <- y

fo

263

x1*x2) # "formula"

typeof (fo)# R internal : "language"

terms (fo)

environment (fo)

environment (as.formula("y ~ x"))
environment (as.formula("y ~ x",env=new.env()))

Create a formula for a model with a large number of variables:

xnam <- paste("x", 1:25, sep="")
(fmla <- as.formula(paste("y ~ ", paste(xnam, collapse= "+"))))

fourfoldplot

Fourfold Plots

Description

Creates a fourfold display of a 2 by 2 by k contingency table on the current graphics device,
allowing for the visual inspection of the association between two dichotomous variables in
one or several populations (strata).

Usage

fourfoldplot(x, color = c("#99CCFF", "#6699CC"), conf.level = 0.95,

Arguments

X

color

conf.level

std

margin

space

std = c("margins", "ind.max", "all.max"),
margin = c(1, 2), space = 0.2, main = NULL,
mfrow = NULL, mfcol = NULL)

a 2 by 2 by k contingency table in array form, or as a 2 by 2 matrix if &
is 1.

a vector of length 2 specifying the colors to use for the smaller and larger
diagonals of each 2 by 2 table.

confidence level used for the confidence rings on the odds ratios. Must be
a single nonnegative number less than 1; if set to 0, confidence rings are
suppressed.

a character string specifying how to standardize the table. Must be one
of "margins", "ind.max", or "all.max", and can be abbreviated by the
initial letter. If set to "margins", each 2 by 2 table is standardized to
equate the margins specified by margin while preserving the odds ratio.
If "ind.max" or "all.max", the tables are either individually or simulta-
neously standardized to a maximal cell frequency of 1.

a numeric vector with the margins to equate. Must be one of 1, 2, or c (1,
2) (the default), which corresponds to standardizing the row, column, or
both margins in each 2 by 2 table. Only used if std equals "margins".

the amount of space (as a fraction of the maximal radius of the quarter
circles) used for the row and column lebals.

264 fourfoldplot

main character string for the fourfold title.
mfrow a numeric vector of the form c(nr, nc), indicating that the displays for
the 2 by 2 tables should be arranged in an nr by nc layout, filled by rows.
mfcol a numeric vector of the form c(nr, nc), indicating that the displays for
the 2 by 2 tables should be arranged in an nr by nc layout, filled by
columns.
Details

The fourfold display is designed for the display of 2 by 2 by k tables.

Following suitable standardization, the cell frequencies f;; of each 2 by 2 table are shown
as a quarter circle whose radius is proportional to \/E so that its area is proportional to
the cell frequency. An association (odds ratio different from 1) between the binary row and
column variables is indicated by the tendency of diagonally opposite cells in one direction
to differ in size from those in the other direction; color is used to show this direction.
Confidence rings for the odds ratio allow a visual test of the null of no association; the
rings for adjacent quadrants overlap iff the observed counts are consistent with the null
hypothesis.

Typically, the number k corresponds to the number of levels of a stratifying variable, and it is
of interest to see whether the association is homogeneous across strata. The fourfold display
visualizes the pattern of association. Note that the confidence rings for the individual odds
ratios are not adjusted for multiple testing.

References

Friendly, M. (1994). A fourfold display for 2 by 2 by k tables. Technical Report
217, York University, Psychology Department. http://www.math.yorku.ca/SCS/Papers/
4fold/4fold.ps.gz

See Also

mosaicplot

Examples

data(UCBAdmissions)

Use the Berkeley admission data as in Friendly (1995).
x <- aperm(UCBAdmissions, c(2, 1, 3))

dimnames(x) [[2]] <- c("Yes", "No")

names (dimnames(x)) <- c("Sex", "Admit?", "Department")
ftable(x)

Fourfold display of data aggregated over departments, with
frequencies standardized to equate the margins for admission
and sex.

Figure 1 in Friendly (1994).

fourfoldplot(margin.table(x, c(1, 2)))

Fourfold display of x, with frequencies in each table

standardized to equate the margins for admission and sex.
Figure 2 in Friendly (1994).

fourfoldplot(x)

Fourfold display of x, with frequencies in each table

http://www.math.yorku.ca/SCS/Papers/4fold/4fold.ps.gz
http://www.math.yorku.ca/SCS/Papers/4fold/4fold.ps.gz

frame 265

standardized to equate the margins for admission. but not
for sex.

Figure 3 in Friendly (1994).

fourfoldplot(x, margin = 2)

frame Create / Start a New Plot Frame

Description
This function (frame is an alias for plot.new) causes the completion of plotting in the
current plot (if there is one) and an advance to a new graphics frame. This is used in all
high-level plotting functions and also useful for skipping plots when a multi-figure region is
in use.

Usage
plot.new()
frame()

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (frame.)

See Also

plot.window, plot.default.

freeny Freeny’s Revenue Data

Description

Freeny’s data on quarterly revenue and explanatory variables.

Usage

data(freeny)

Format

There are three ‘freeny’ data sets.

freeny.y is a time series with 39 observations on quarterly revenue from (1962,2Q) to
(1971,4Q).

freeny.x is a matrix of explanatory variables. The columns are freeny.y lagged 1 quarter,
price index, income level, and market potential.

Finally, freeny is a data frame with variables y, lag.quarterly.revenue, price.index,
income.level, and market.potential obtained from the above two data objects.

266 ftable

Source

A. E. Freeny (1977) A Portable Linear Regression Package with Test Programs. Bell Lab-
oratories memorandum.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples
data(freeny)
summary (freeny)
pairs(freeny, main = "freeny data")
summary (fm1 <- lm(y ~ ., data = freeny))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
mar = c(4.1, 4.1, 2.1, 1.1))

plot(fm1)

par (opar)

ftable Flat Contingency Tables

Description

Create “flat” contingency tables.
Usage
ftable(x, ...)

Default S3 method:
ftable(..., exclude = c(NA, NaN), row.vars = NULL, col.vars = NULL)

Arguments

X, ... R objects which can be interpreted as factors (including character strings),
or a list (or data frame) whose components can be so interpreted, or a
contingency table object of class "table" or "ftable".

exclude values to use in the exclude argument of factor when interpreting non-
factor objects.

row.vars a vector of integers giving the numbers of the variables, or a character
vector giving the names of the variables to be used for the rows of the flat
contingency table.

col.vars a vector of integers giving the numbers of the variables, or a character

vector giving the names of the variables to be used for the columns of the
flat contingency table.

ftable 267

Details

ftable creates “flat” contingency tables. Similar to the usual contingency tables, these
contain the counts of each combination of the levels of the variables (factors) involved.
This information is then re-arranged as a matrix whose rows and columns correspond to
unique combinations of the levels of the row and column variables (as specified by row.vars
and col.vars, respectively). The combinations are created by looping over the variables in
reverse order (so that the levels of the “left-most” variable vary the slowest). Displaying a
contingency table in this flat matrix form (via print.ftable, the print method for objects
of class "ftable") is often preferable to showing it as a higher-dimensional array.

ftable is a generic function. Its default method, ftable.default, first creates a contin-
gency table in array form from all arguments except row.vars and col.vars. If the first
argument is of class "table", it represents a contingency table and is used as is; if it is
a flat table of class "ftable", the information it contains is converted to the usual array
representation using as.ftable. Otherwise, the arguments should be R objects which can
be interpreted as factors (including character strings), or a list (or data frame) whose com-
ponents can be so interpreted, which are cross-tabulated using table. Then, the arguments
row.vars and col.vars are used to collapse the contingency table into flat form. If neither
of these two is given, the last variable is used for the columns. If both are given and their
union is a proper subset of all variables involved, the other variables are summed out.

Function ftable.formula provides a formula method for creating flat contingency tables.

Value

ftable returns an object of class "ftable", which is a matrix with counts of each combi-
nation of the levels of variables with information on the names and levels of the (row and
columns) variables stored as attributes "row.vars" and "col.vars".

See Also

ftable.formula for the formula interface (which allows a data = . argument);
read.ftable for information on reading, writing and coercing flat contingency tables; table
for “ordinary” cross-tabulation; xtabs for formula-based cross-tabulation.

Examples

Start with a contingency table.

data(Titanic)

ftable(Titanic, row.vars = 1:3)

ftable(Titanic, row.vars = 1:2, col.vars = "Survived")
ftable(Titanic, row.vars = 2:1, col.vars = "Survived")
Start with a data frame.

data(mtcars)

x <- ftable(mtcars[c("cyl", "vs", "am", "gear")])

X

ftable(x, row.vars = c(2, 4))

268 ftable.formula

ftable.formula Formula Notation for Flat Contingency Tables

Description

Produce or manipulate a flat contingency table using formula notation.

Usage
S3 method for class 'formula':
ftable(formula, data = NULL, subset, na.action, ...)
Arguments
formula a formula object with both left and right hand sides specifying the column

and row variables of the flat table.

data a data frame, list or environment containing the variables to be cross-
tabulated, or a contingency table (see below).

subset an optional vector specifying a subset of observations to be used. Ignored
if data is a contingency table.

na.action a function which indicates what should happen when the data contain
NAs. Ignored if data is a contingency table.

further arguments to the default ftable method may also be passed as
arguments, see ftable.default.

Detalils

This is a method of the generic function ftable.

The left and right hand side of formula specify the column and row variables, respectively,
of the flat contingency table to be created. Only the + operator is allowed for combining the
variables. A . may be used once in the formula to indicate inclusion of all the “remaining”
variables.

If data is an object of class "table" or an array with more than 2 dimensions, it is taken
as a contingency table, and hence all entries should be nonnegative. Otherwise, if it is not
a flat contingency table (i.e., an object of class "ftable"), it should be a data frame or
matrix, list or environment containing the variables to be cross-tabulated. In this case,
na.action is applied to the data to handle missing values, and, after possibly selecting a
subset of the data as specified by the subset argument, a contingency table is computed
from the variables.

The contingency table is then collapsed to a flat table, according to the row and column
variables specified by formula.

Value

A flat contingency table which contains the counts of each combination of the levels of the
variables, collapsed into a matrix for suitably displaying the counts.

See Also

ftable, ftable.default; table.

function 269

Examples

data(Titanic)
Titanic

x <- ftable(Survived ~ ., data = Titanic)
X

ftable(Sex ~ Class + Age, data

x)

function Function Definition

Description

These functions provide the base mechanisms for defining new functions in the R language.

Usage

function(arglist) expr
return(value)

Arguments

arglist Empty or one or more name or name=expression terms.

value An expression.

Details

In R (unlike S) the names in an argument list cannot be quoted non-standard names.

If value is missing, NULL is returned. If it is a single expression, the value of the evaluated
expression is returned.

If the end of a function is reached without calling return, the value of the last evaluated
expression is returned.

Warning

Prior to R 1.8.0, value could be a series of non-empty expressions separated by commas.
In that case the value returned is a list of the evaluated expressions, with names set to
the expressions where these are the names of R objects. That is, a=foo() names the list
component a and gives it value the result of evaluating foo().

This has been deprecated (and a warning is given), as it was never documented in S, and
whether or not the list is named differs by S versions.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

args and body for accessing the arguments and body of a function.

debug for debugging; invisible for return(.)ing inwvisibly.

270 GammaDist

Examples

norm <- function(x) sqrt(x%*%x)
norm(1:4)

An anonymous function:
(function(x,y){ z <- x"2 + y~2; x+y+z })(0:7, 1)

GammaDist The Gamma Distribution

Description

Density, distribution function, quantile function and random generation for the Gamma
distribution with parameters shape and scale.

Usage
dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)
ggamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)
rgamma(n, shape, rate = 1, scale = 1/rate)
Arguments
X, q vector of quantiles.
P vector of probabilities.
n number of observations. If 1length(n) > 1, the length is taken to be the
number required.
rate an alternative way to specify the scale.

shape, scale shape and scale parameters.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < z], otherwise, P[X >

Details

If scale is omitted, it assumes the default value of 1.

The Gamma distribution with parameters shape = « and scale = ¢ has density

1
£@) = sapa ™ e

for z >0, @ > 0 and o > 0. The mean and variance are E(X) = ac and Var(X) = ac?.

Value

dgamma gives the density, pgamma gives the distribution function qgamma gives the quantile
function, and rgamma generates random deviates.

gc¢ 271

Note

The S parametrization is via shape and rate: S has no scale parameter. Prior to 1.4.0 R
only had scale.

The cumulative hazard H(t) = —log(1 — F(t)) is -pgamma(t, ..., lower = FALSE, log
= TRUE).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

gamma for the Gamma function, dbeta for the Beta distribution and dchisq for the chi-
squared distribution which is a special case of the Gamma distribution.

Examples

-log(dgamma(1:4, shape=1))

p <- (1:9)/10

pgamma (qgamma (p, shape=2) , shape=2)
1 - 1/exp(qgamma(p, shape=1))

gc Garbage Collection

Description

A call of gc causes a garbage collection to take place. gcinfo sets a flag so that
automatic collection is either silent (verbose=FALSE) or prints memory usage statistics
(verbose=TRUE).

Usage

gc(verbose = getOption("verbose"))
gcinfo(verbose)

Arguments
verbose logical; if TRUE, the garbage collection prints statistics about cons cells
and the vector heap.
Details

A call of gc causes a garbage collection to take place. This takes place automatically without
user intervention, and the primary purpose of calling gc is for the report on memory usage.

However, it can be useful to call gc after a large object has been removed, as this may
prompt R to return memory to the operating system.

272 gc.time

Value

gc returns a matrix with rows "Ncells" (cons cells, usually 28 bytes each on 32-bit systems
and 56 bytes on 64-bit systems, and "Vcells" (vector cells, 8 bytes each), and columns
"used" and "gc trigger", each also interpreted in megabytes (rounded up to the next
0.1Mb).

If maxima have been set for either "Ncells" or "Vcells", a fifth column is printed giving
the current limits in Mb (with NA denoting no limit).

gcinfo returns the previous value of the flag.

See Also

Memory on R’s memory management and gctorture if you are an R hacker.

Examples

gc() #- do it now

gcinfo(TRUE) #-- in the future, show when R does it
x <- integer(100000); for(i in 1:18) x <- c(x,1i)
gcinfo(verbose = FALSE)#-- don't show it anymore

gc (TRUE)

gc.time Report Time Spent in Garbage Collection

Description
This function reports the time spent in garbage collection so far in the R session while GC
timing was enabled..

Usage
gc.time(on = TRUE)

Arguments

on logical; if TRUE, GC timing is enabled.

Value
A numerical vector of length 5 giving the user CPU time, the system CPU time, the elapsed
time and children’s user and system CPU times (normally both zero).

Warnings

This is experimental functionality, likely to be removed as soon as the next release.

The timings are rounded up by the sampling interval for timing processes, and so are likely
to be over-estimates.

See Also

gc, proc.time for the timings for the session.

gctorture

Examples

gc.time ()

273

gctorture Torture Garbage Collector

Description

Provokes garbage collection on (nearly) every memory allocation. Intended to ferret out

memory protection bugs. Also makes R run very slowly, unfortunately.

Usage

gctorture(on = TRUE)

Arguments

on logical; turning it on/off.

Value

Previous value.

Author(s)

Peter Dalgaard

Geometric The Geometric Distribution

Description

Density, distribution function, quantile function and random generation for the geometric
distribution with parameter prob.

Usage

dgeom(x, prob, log = FALSE)
pgeom(q, prob, lower.tail =
gqgeom(p, prob, lower.tail
rgeom(n, prob)

TRUE, log.p =

TRUE, log.p

FALSE)
FALSE)

274 get

Arguments
X, q vector of quantiles representing the number of failures in a sequence of
Bernoulli trials before success occurs.
vector of probabilities.
number of observations. If length(n) > 1, the length is taken to be the
number required.
prob probability of success in each trial.

log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < z], otherwise, P[X >
Details

The geometric distribution with prob = p has density

p(x) =p(l—p)*

forx=0,1,2,...
If an element of x is not integer, the result of pgeom is zero, with a warning.

The quantile is defined as the smallest value = such that F'(z) > p, where F' is the distri-
bution function.
Value

dgeom gives the density, pgeom gives the distribution function, qgeom gives the quantile
function, and rgeom generates random deviates.

See Also

dnbinom for the negative binomial which generalizes the geometric distribution.

Examples

qgeom((1:9)/10, prob
Ni <- rgeom(20, prob

.2)
1/4); table(factor(Ni, O:max(Ni)))

get Return a Variable’s Value

Description

Search for an R object with a given name and return it if found.

Usage

get(x, pos=-1, envir=as.environment(pos), mode="any", inherits=TRUE)

get 275

Arguments
X a variable name (given as a character string).
pos where to look for the object (see the details section); if omitted, the
function will search, as if the name of the object appeared in unquoted in
an expression.
envir an alternative way to specify an environment to look in; see the details
section.
mode the mode of object sought.
inherits should the enclosing frames of the environment be inspected?
Details

The pos argument can specify the environment in which to look for the object in any of
several ways: as an integer (the position in the search list); as the character string name of
an element in the search list; or as an environment (including using sys.frame to access
the currently active function calls). The envir argument is an alternative way to specify
an environment, but is primarily there for back compatibility.

The mode includes collections such as "numeric" and "function": any member of the
collection will suffice.

Value

This function searches the specified environment for a bound variable whose name is given
by the character string x. If the variable’s value is not of the correct mode, it is ignored.

If inherits is FALSE, only the first frame of the specified environment is inspected. If
inherits is TRUE, the search is continued up through the parent frames until a bound value
of the right mode is found.

Using a NULL environment is equivalent to using the current environment.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

exists.

Examples

get ("%o%")

276 getAnywhere

getAnywhere Retrieve an R Object, Including from a Namespace

Description

This functions locates all objects with name matching its argument, whether visible on the
search path, registered as an S3 method or in a namespace but not exported.

Usage

getAnywhere (x)

Arguments

X a character string or name.

Detalils

The function looks at all loaded namespaces, whether or not they are associated with a
package on the search list.

Where functions are found as an S3 method, an attempt is made to find which namespace
registered them. This may not be correct, especially if a namespace is unloaded.

Value

An object of class "getAnywhere". This is a list with components

name the name searched for.

funs a list of objects found

where a character vector explaining where the object(s) were found
visible logical: is the object visible

dups logical: is the object identical to one earlier in the list.

Normally the structure will be hidden by the print method. There is a [method to extract
one or more of the objects found.
See Also

get, getFromNamespace

Examples

getAnywhere ("format.dist")
getAnywhere ("simpleLoess") # not exported from modreg

getFromNamespace 277

getFromNamespace Utility functions for Developing Namespaces

Description

Utility functions to access and replace the non-exported functions in a namespace, for use
in developing packages with namespaces.

Usage
getFromNamespace(x, ns, pos = -1, envir = as.environment(pos))
fixInNamespace(x, ns, pos = -1, envir = as.environment(pos), ...)
Arguments
X an object name (given as a character string).
ns a namespace, or character string giving the namespace.
pos where to look for the object: see get.
envir an alternative way to specify an environment to look in.
arguments to pass to the editor: see edit.
Details

The namespace can be specified in several ways. Using, for example, ns="modreg" is the
most direct, but a loaded package with a namespace can be specified via any of the methods
used for get: ns can also be the environment <namespace:foo>.

fixInNamespace invokes edit on the object named x and assigns the revised object in place
of the original object. For compatibility with fix, x can be unquoted.

Value

getFromNamespace returns the object found (or gives an error).

fixInNamespace is invoked for its side effect of changing the object in the namespace.

Note

fixInNamespace will alter the copy of the object in the namespace, and also a copy reg-
istered as an S3 method. There can be other copies, so the function is not foolproof, but
should be helpful for debugging.

See Also

get, fix, getS3method

Examples

Not run:
fixInNamespace("predict.ppr", "modreg")
alternatively
fixInNamespace("predict.ppr", pos = 5)
End(Not run)

278 getNativeSymbollnfo

getNativeSymbolInfo Obtain a description of a native (C/Fortran) symbol

Description

This finds and returns as comprehensive a description of a dynamically loaded or “exported”
built-in native symbol. It returns information about the name of the symbol, the library in
which it is located and, if available, the number of arguments it expects and by which inter-
face it should be called (i.e .Call, .C, .Fortran, or .External). Additionally, it returns
the address of the symbol and this can be passed to other C routines which can invoke.
Specifically, this provides a way to explicitly share symbols between different dynamically
loaded package libraries. Also, it provides a way to query where symbols were resolved, and
aids diagnosing strange behavior associated with dynamic resolution.

Usage
getNativeSymbolInfo(name, PACKAGE)

Arguments
name the name of the native symbol as used in a call to is.loaded, etc.
PACKAGE an optional argument that specifies to which dynamically loaded library
we restrict the search for this symbol. If this is "base", we search in the
R executable itself.
Details

This uses the same mechanism for resolving symbols as is used in all the native interfaces
(.Call, etc.). If the symbol has been explicitly registered by the shared library in which
it is contained, information about the number of arguments and the interface by which it
should be called will be returned. Otherwise, a generic native symbol object is returned.

Value

If the symbol is not found, an error is raised. Otherwise, the value is a list containing the
following elements:

name the name of the symbol, as given by the name argument.

address the native memory address of the symbol which can be used to invoke the
routine, and also compare with other symbol address. This is an external
pointer object and of class NativeSymbol.

package a list containing 3 elements:
name the short form of the library name which can be used as the value
of the PACKAGE argument in the different native interface functions.
path the fully qualified name of the shared library file.

dynamicLookup a logical value indicating whether dynamic resolution
is used when looking for symbols in this library, or only registered
routines can be located.

numParameters the number of arguments that should be passed in a call to this routine.

getNumCConverters 279

Additionally, the list will have an additional class, being CRoutine, CallRoutine,
FortranRoutine or ExternalRoutine corresponding to the R interface by which it should
be invoked.

Note

One motivation for accessing this reflectance information is to be able to pass native routines
to C routines as “function pointers” in C. This allows us to treat native routines and R
functions in a similar manner, such as when passing an R function to C code that makes
callbacks to that function at different points in its computation (e.g., nls). Additionally,
we can resolve the symbol just once and avoid resolving it repeatedly or using the internal
cache. In the future, one may be able to treat NativeSymbol objects as directly callback
objects.

Author(s)

Duncan Temple Lang

References

For information about registering native routines, see “In Search of C/C++ & FORTRAN
Routines”, R News, volume 1, number 3, 2001, p20-23 (http://CRAN.R-project.org/
doc/Rnews/).

See Also

is.loaded, .C, .Fortran, .External, .Call, dyn.load.

Examples

library(ctest) # normally loaded
getNativeSymbolInfo("dansari")

library(mva) # normally loaded
getNativeSymbolInfo(symbol.For("hcass2"))

getNumCConverters Management of .C' argument conversion list

Description

These functions provide facilities to manage the extensible list of converters used to translate
R objects to C pointers for use in .C calls. The number and a description of each element
in the list can be retrieved. One can also query and set the activity status of individual
elements, temporarily ignoring them. And one can remove individual elements.

Usage

getNumCConverters ()
getCConverterDescriptions ()
getCConverterStatus()
setCConverterStatus(id, status)
removeCConverter (id)

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

280 getNumCConverters

Arguments
id either a number or a string identifying the element of interest in the
converter list. A string sis matched against the description strings for
each element to identify the element. Integers are specified starting at 1
(rather than 0).
status a logical value specifying whether the element is to be considered active
(TRUE) or not (FALSE).
Details

The internal list of converters is potentially used when converting individual arguments
in a .C call. If an argument has a non-trivial class attribute, we iterate over the list of
converters looking for the first that “matches”. If we find a matching converter, we have it
create the C-level pointer corresponding to the R object. When the call to the C routine is
complete, we use the same converter for that argument to reverse the conversion and create
an R object from the current value in the C pointer. This is done separately for all the
arguments.

The functions documented here provide R user-level capabilities for investigating and man-
aging the list of converters. There is currently no mechanism for adding an element to
the converter list within the R language. This must be done in C code using the routine
R_addToCConverter ().

Value

getNumCConverters returns an integer giving the number of elements in the list, both active
and inactive.

getCConverterDescriptions returns a character vector containing the description string
of each element of the converter list.

getCConverterStatus returns a logical vector with a value for each element in the converter
list. Each value indicates whether that converter is active (TRUE) or inactive (FALSE). The
names of the elements are the description strings returned by getCConverterDescriptions.

setCConverterStatus returns the logical value indicating the activity status of the specified
element before the call to change it took effect. This is TRUE for active and FALSE for inactive.

removeCConverter returns TRUE if an element in the converter list was identified and re-
moved. In the case that no such element was found, an error occurs.

Author(s)

Duncan Temple Lang

References

http://developer.R-project.org/CObjectConversion.pdf

See Also

.C

http://developer.R-project.org/CObjectConversion.pdf

getpid 281

Examples

getNumCConverters ()
getCConverterDescriptions ()
getCConverterStatus ()
Not run:

0ld <- setCConverterStatus(1,FALSE)

setCConverterStatus(1,o0ld)
End(Not run)
Not run:

removeCConverter (1)

removeCConverter (getCConverterDescriptions() [1])
End(Not run)

getpid Get the Process ID of the R Session

Description

Get the process ID of the R Session. It is guaranteed by the operating system that two R
sessions running simultaneously will have different IDs, but it is possible that R sessions
running at different times will have the same ID.

Usage
Sys.getpid ()

Value

An integer, usually a small integer between 0 and 32767 under Unix-alikes and a much small
integer under Windows.

Examples

Sys.getpid()

getS3method Get An S8 Method

Description

Get a method for an S3 generic, possibly from a namespace.

Usage
getS3method(f, class, optional = FALSE)

Arguments
f character: name of the generic.
class character: name of the class.

optional logical: should failure to find the generic or a method be allowed?

282 getwd

Details

S3 methods may be hidden in packages with namespaces, and will not then be found by
get: this function can retrieve such functions, primarily for debugging purposes.

Value

The function found, or NULL if no function is found and optional = TRUE.

See Also

methods, get

Examples

require(modreg)
exists("predict.ppr") # false
getS3method ("predict", "ppr")

getwd Get or Set Working Directory

Description
getwd returns an absolute filename representing the current working directory of the R
process; setwd(dir) is used to set the working directory to dir.
Usage
getwd ()
setwd(dir)
Arguments

dir A character string.

Value

getwd returns a character vector, or NULL if the working directory is not available on that
platform.

setwd returns NULL invisibly. It will give an error if it does not succeed.

Note

These functions are not implemented on all platforms.

Examples

(WD <- getwd())
if ('is.null(WD)) setwd (WD)

gl 283

gl Generate Factor Levels

Description

Generate factors by specifying the pattern of their levels.

Usage

gl(n, k, length = n*k, labels = 1:n, ordered = FALSE)

Arguments
n an integer giving the number of levels.
k an integer giving the number of replications.
length an integer giving the length of the result.
labels an optional vector of labels for the resulting factor levels.
ordered a logical indicating whether the result should be ordered or not.
Value

The result has levels from 1 to n with each value replicated in groups of length k out to a
total length of length.

gl is modelled on the GLIM function of the same name.

See Also

The underlying factor ().

Examples

First control, then treatment:
gl(2, 8, label = c("Control", "Treat"))
20 alternating 1s and 2s

gl(2, 1, 20)
alternating pairs of 1s and 2s
gl(2, 2, 20)
glm Fitting Generalized Linear Models
Description

glm is used to fit generalized linear models, specified by giving a symbolic description of
the linear predictor and a description of the error distribution.

284

Usage

glm

glm(formula, family = gaussian, data, weights = NULL, subset = NULL,
na.action, start = NULL, etastart = NULL, mustart = NULL,
offset = NULL, control = glm.control(...), model = TRUE,
method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, ...)

glm.fit(x, y, weights = rep(l, nobs),
start = NULL, etastart = NULL, mustart = NULL,

offset

= rep(0, nobs), family = gaussian(),

control = glm.control(), intercept = TRUE)

S3 method for class 'glm':

weights(object, type = c("prior", "working"), ...)
Arguments
formula a symbolic description of the model to be fit. The details of model speci-

family

data
weights
subset
na.action
start
etastart

mustart

offset

control

model

method

fication are given below.

a description of the error distribution and link function to be used in the
model. This can be a character string naming a family function, a family
function or the result of a call to a family function. (See family for details
of family functions.)

an optional data frame containing the variables in the model. By de-
fault the variables are taken from environment (formula), typically the
environment from which glm is called.

an optional vector of weights to be used in the fitting process.

an optional vector specifying a subset of observations to be used in the
fitting process.

a function which indicates what should happen when the data contain NAs.
The default is set by the na.action setting of options, and is na.fail
if that is unset. The “factory-fresh” default is na.omit.

starting values for the parameters in the linear predictor.

starting values for the linear predictor.

starting values for the vector of means.

this can be used to specify an a priori known component to be included
in the linear predictor during fitting.

a list of parameters for controlling the fitting process. See the documen-
tation for glm.control for details.

a logical value indicating whether model frame should be included as a
component of the returned value.

the method to be used in fitting the model. The default method
"glm.fit" uses iteratively reweighted least squares (IWLS). The only
current alternative is "model .frame" which returns the model frame and
does no fitting.

For glm: logical values indicating whether the response vector and model
matrix used in the fitting process should be returned as components of
the returned value.

For glm.fit: x is a design matrix of dimension n * p, and y is a vector
of observations of length n.

glm 285

contrasts an optional list. See the contrasts.arg of model.matrix.default.
object an object inheriting from class "glm".
type character, partial matching allowed. Type of weights to extract from the

fitted model object.
intercept logical. Should an intercept be included?

further arguments passed to or from other methods.

Detalils

A typical predictor has the form response ~ terms where response is the (numeric) re-
sponse vector and terms is a series of terms which specifies a linear predictor for response.
For binomial models the response can also be specified as a factor (when the first level
denotes failure and all others success) or as a two-column matrix with the columns giving
the numbers of successes and failures. A terms specification of the form first + second
indicates all the terms in first together with all the terms in second with duplicates
removed.

A specification of the form first:second indicates the the set of terms obtained by tak-
ing the interactions of all terms in first with all terms in second. The specification
first*second indicates the cross of first and second. This is the same as first +
second + first:second.

glm.fit and glm.fit.null are the workhorse functions: the former calls the latter for a
null model (with no intercept).

If more than one of etastart, start and mustart is specified, the first in the list will be
used.

Value

glm returns an object of class inheriting from "glm" which inherits from the class "1m". See
later in this section.

The function summary (i.e., summary.glm) can be used to obtain or print a summary of the
results and the function anova (i.e., anova.glm) to produce an analysis of variance table.

The generic accessor functions coefficients, effects, fitted.values and residuals
can be used to extract various useful features of the value returned by glm.

weights extracts a vector of weights, one for each case in the fit (after subsetting and
na.action).

An object of class "glm" is a list containing at least the following components:

coefficients a named vector of coefficients

residuals the working residuals, that is the residuals in the final iteration of the
IWLS fit.

fitted.values the fitted mean values, obtained by transforming the linear predictors by
the inverse of the link function.

rank the numeric rank of the fitted linear model.

family the family object used.
linear.predictors
the linear fit on link scale.

deviance up to a constant, minus twice the maximized log-likelihood. Where sen-
sible, the constant is chosen so that a saturated model has deviance zero.

286 glm

Akaike’s An Information Criterion, minus twice the maximized log-
likelihood plus twice the number of coefficients (so assuming that the
dispersion is known.

aic

null.deviance The deviance for the null model, comparable with deviance. The null

model will include the offset, and an intercept if there is one in the model
iter the number of iterations of IWLS used.

weights the working weights, that is the weights in the final iteration of the IWLS

prior.weights

df .residual

fit.
the case weights initially supplied.

the residual degrees of freedom.

df .null the residual degrees of freedom for the null model.

y the y vector used. (It is a vector even for a binomial model.)
converged logical. Was the IWLS algorithm judged to have converged?
boundary logical. Is the fitted value on the boundary of the attainable values?
call the matched call.

formula the formula supplied.

terms the terms object used.

data the data argument.

offset the offset vector used.

control the value of the control argument used.

method the name of the fitter function used, in R always "glm.fit".
contrasts (where relevant) the contrasts used.

xlevels (where relevant) a record of the levels of the factors used in fitting.

In addition, non-empty fits will have components qr, R and effects relating to the final
weighted linear fit.

Objects of class "glm" are normally of class c("glm", "1m"), that isinherit from class "1m",
and well-designed methods for class "1m" will be applied to the weighted linear model at
the final iteration of IWLS. However, care is needed, as extractor functions for class "glm"
such as residuals and weights do not just pick out the component of the fit with the
same name.

If a binomial glm model is specified by giving a two-column response, the weights returned
by prior.weights are the total numbers of cases (factored by the supplied case weights)
and the component y of the result is the proportion of successes.

Author(s)

The original R implementation of glm was written by Simon Davies working for Ross Thaka
at the University of Auckland, but has since been extensively re-written by members of the
R Core team.

The design was inspired by the S function of the same name described in Hastie & Pregibon
(1992).

glm.control 287

References

Dobson, A. J. (1990) An Introduction to Generalized Linear Models. London: Chapman
and Hall.

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical
Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and
Hall.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York:
Springer.

See Also

anova.glm, summary.glm, etc. for glm methods, and the generic functions anova, summary,
effects, fitted.values, and residuals. Further, 1m for non-generalized linear models.

esoph, infert and predict.glm have examples of fitting binomial glms.

Examples

Dobson (1990) Page 93: Randomized Controlled Trial :

counts <- c¢(18,17,15,20,10,20,25,13,12)

outcome <- gl(3,1,9)

treatment <- gl(3,3)

print(d.AD <- data.frame(treatment, outcome, counts))

glm.D93 <- glm(counts ~ outcome + treatment, family=poisson())
anova(glm.D93)

summary (glm.D93)

an example with offsets from Venables & Ripley (2002, p.189)

Not run:
Need the anorexia data from a recent version of the package 'MASS':
library (MASS)
data(anorexia)
End(Not run)
anorex.l <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
family = gaussian, data = anorexia)
summary (anorex.1)

A Gamma example, from McCullagh & Nelder (1989, pp. 300-2)
clotting <- data.frame(

u = c(5,10,15,20,30,40,60,80,100),

lot1 = c(118,58,42,35,27,25,21,19,18),

lot2 = c(69,35,26,21,18,16,13,12,12))
summary (glm(lotl ~ log(u), data=clotting, family=Gamma))
summary (glm(lot2 ~ log(u), data=clotting, family=Gamma))

glm.control Auziliary for Controlling GLM Fitting

Description

Auxiliary function as user interface for glm fitting. Typically only used when calling glm or
glm.fit.

288 glm.control

Usage

glm.control (epsilon=1e-8, maxit=25, trace=FALSE)

Arguments
epsilon positive convergence tolerance epsilon; the iterations converge when
|dev — devold|/(|dev| + 0.1) < epsilon.
maxit integer giving the maximal number of IWLS iterations.
trace logical indicating if output should be produced for each iteration.
Details

If epsilon is small, it is also used as the tolerance for the least squares solution.

When trace is true, calls to cat produce the output for each IWLS iteration. Hence,
options(digits = *) can be used to increase the precision, see the example.

Value

A list with the arguments as components.

References

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical
Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

glm.fit, the fitting procedure used by glm.

Examples
A variation on example(glm)

Annette Dobson's example ...

counts <- ¢(18,17,15,20,10,20,256,13,12)

outcome <- gl1(3,1,9)

treatment <- gl(3,3)

0o <- options(digits = 12) # to see more when tracing :

glm.D93X <- glm(counts ~ outcome + treatment, family=poisson(),
trace = TRUE, epsilon = le-14)

options(o0)

coef (glm.D93X) # the last two are closer to O than in ?glm's glm.D93

put less so than in R < 1.8.0 when the default was le-4

glm.summaries 289

glm.summaries Accessing Generalized Linear Model Fits

Description

These functions are all methods for class glm or summary.glm objects.

Usage

S3 method for class 'glm':
family(object, ...)

S3 method for class 'glm':
residuals(object, type = c("deviance", "pearson", "working",

"response", "partial"), ...)
Arguments
object an object of class glm, typically the result of a call to glm.
type the type of residuals which should be returned. The alternatives
are: "deviance" (default), "pearson", "working", "response", and
"partial".
further arguments passed to or from other methods.
Details

The references define the types of residuals: Davison & Snell is a good reference for the
usages of each.

The partial residuals are a matrix of working residuals, with each column formed by omitting
a term from the model.

References

Davison, A. C. and Snell, E. J. (1991) Residuals and diagnostics. In: Statistical Theory
and Modelling. In Honour of Sir David Cox, FRS, eds. Hinkley, D. V., Reid, N. and Snell,
E. J., Chapman & Hall.

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical
Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and
Hall.
See Also

glm for computing glm.obj, anova.glm; the corresponding generic functions, summary.glm,
coef, deviance, df .residual, effects, fitted, residuals.

290 Gnome

Gnome GNOME Desktop Graphics Device

Description

gnome starts a GNOME compatible device driver. GNOME is an acronym for GNU Network
Object Model Environment.

Usage
gnome (display="", width=7, height=7, pointsize=12)
GNOME (display="", width=7, height=7, pointsize=12)
Arguments
display the display on which the graphics window will appear. The default is to
use the value in the user’s environment variable DISPLAY.
width the width of the plotting window in inches.
height the height of the plotting window in inches.
pointsize the default pointsize to be used.
Note

This is still in development state.

The GNOME device is only available when explicitly desired at configure/compile time, see
the toplevel ‘INSTALL’ file.
Author(s)

Lyndon Drake (lyndon@stat.auckland.ac.nz)

References

http://www.gnome.org and http://www.gtk.org for the GTK+ (GIMP Tool Kit) libraries.

See Also

x11, Devices.

Examples

Not run:
gnome (width=9)
End(Not run)

http://www.gnome.org
http://www.gtk.org

gray 291

gray Gray Level Specification

Description

Create a vector of colors from a vector of gray levels.

Usage
gray(level)
grey(level)

Arguments

level a vector of desired gray levels between 0 and 1; zero indicates "black"
and one indicates "white".

Details

The values returned by gray can be used with a col= specification in graphics functions or
in par.

grey is an alias for gray.

Value

A vector of “colors” of the same length as level.

See Also

rainbow, hsv, rgb.

Examples

gray(0:8 / 8)

grep Pattern Matching and Replacement

Description

grep searches for matches to pattern (its first argument) within the character vector x
(second argument). regexpr does too, but returns more detail in a different format.

sub and gsub perform replacement of matches determined by regular expression matching.

292 grep
Usage
grep(pattern, x, ignore.case = FALSE, extended = TRUE, perl = FALSE,
value = FALSE, fixed = FALSE)
sub(pattern, replacement, x,
ignore.case = FALSE, extended = TRUE, perl = FALSE)
gsub(pattern, replacement, x,
ignore.case = FALSE, extended = TRUE, perl = FALSE)
regexpr(pattern, text, extended = TRUE, perl = FALSE, fixed = FALSE)
Arguments
pattern character string containing a regular expression (or character string for
fixed = TRUE) to be matched in the given character vector.
X, text a character vector where matches are sought.
ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.
extended if TRUE, extended regular expression matching is used, and if FALSE basic
regular expressions are used.
perl logical. Should perl-compatible regexps be used if available? Has priority
over extended.
value if FALSE, a vector containing the (integer) indices of the matches deter-
mined by grep is returned, and if TRUE, a vector containing the matching
elements themselves is returned.
fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all
other arguments.
replacement a replacement for matched pattern in sub and gsub.
Details

The two *sub functions differ only in that sub replaces only the first occurrence of a pattern
whereas gsub replaces all occurrences.

For regexpr it is an error for pattern to be NA, otherwise NA is permitted and matches
only itself.

The regular expressions used are those specified by POSIX 1003.2, either extended or basic,
depending on the value of the extended argument, unless perl = TRUE when they are those
of PCRE, ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/. (The exact set
of patterns supported may depend on the version of PCRE installed on the system in use.)

Value

For grep a vector giving either the indices of the elements of x that yielded a match or, if
value is TRUE, the matched elements.

For sub and gsub a character vector of the same length as the original.

For regexpr an integer vector of the same length as text giving the starting position of
the first match, or —1 if there is none, with attribute "match.length" giving the length of
the matched text (or —1 for no match).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole (grep)

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/

grid 293

See Also

regular expression for the details of the pattern specification.
agrep for approximate matching.

tolower, toupper and chartr for character translations. charmatch, pmatch, match.
apropos uses regexps and has nice examples.

Examples

grep("[a-z]", letters)

txt <- c("arm","foot","lefroo", "bafoobar")
if (any(i <- grep("foo",txt)))
cat("'foo' appears at least once in\n\t",txt,"\n")
i# 2 and 4
txt[i]

Double all 'a' or 'b's; "\" must be escaped, i.e., 'doubled'

gsub("([abl)", "\\1_\\1_", "abc and ABC")
txt <- c("The", "licenses", "for", "most", "software", "are",
"designed", "to", "take", "away", "your", "freedom",
"to", "share", "and", "change", "it.",
"v, "By", "contrast,", "the", "GNU", "General", "Public", "License",
"is", "intended", "to", "guarantee", "your", "freedom", "to",
"share", "and", "change", "free", "software", "--",
"to", "make", "sure", "the", "software", "is",
"free", "for", "all", "its", "users")

(i <- grep("[gul", txt)) # indices

stopifnot(txt[i] == grep("[gul", txt, value = TRUE))

(ot <- sub("[b-e]l",".", txt))

txt[ot != gsub("[b-e]l",".", txt)]#- gsub does "global" substitution

txt[gsub("g","#", txt) !=
gsub("g","#", txt, ignore.case = TRUE)] # the "G" words

regexpr("en", txt)

trim trailing white space

str = 'Now is the time !

sub(' +$', ", str) ## spaces only

sub('[[:space:1]+$', ", str) ## white space, POSIX-style
if (capabilities("PCRE"))

sub("\\s+$', "', str, perl = TRUE) ## perl-style white space
grid Add Grid to a Plot
Description

grid adds an nx by ny rectangular grid to an existing plot.

294 grid

Usage

grid(nx = NULL, ny = nx, col = "lightgray", lty = "dotted", lwd = NULL,
equilogs = TRUE)

Arguments
nx,ny number of cells of the grid in x and y direction. When NULL, as per default,
the grid aligns with the tick marks on the corresponding default axis (i.e.,
tickmarks as computed by axTicks). When NA, no grid lines are drawn
in the corresponding direction.
col character or (integer) numeric; color of the grid lines.
1ty character or (integer) numeric; line type of the grid lines.
lwd non-negative numeric giving line width of the grid lines; defaults to
par("lwd").
equilogs logical, only used when log coordinates and alignment with the axis tick
marks are active. Settingequilogs = FALSE in that case gives non equidis-
tant tick aligned grid lines.
Note
If more fine tuning is required, use abline(h = ., v = .) directly.
See Also

plot, abline, lines, points.

Examples

plot(1:3)
grid(NA, 5, 1lwd = 2) # grid only in y-direction

data(iris)
maybe change the desired number of tick marks: par(lab=c(mx,my,7))
op <- par(mfcol = 1:2)
with(iris,
{
plot(Sepal.Length, Sepal.Width, col = as.integer(Species),
xlim = c(4, 8), ylim = c(2, 4.5), panel.first = grid(),
main = "with(iris, plot(...., panel.first = grid(), ..))")
plot(Sepal.Length, Sepal.Width, col = as.integer(Species),
panel.first = grid(3, 1lty=1,lwd=2),
main = "... panel.first = grid(3, lty=1,lwd=2), ..")
}
)
par (op)

groupGeneric 295

groupGeneric Group Generic Functions

Description

Group generic functions can be defined with either S3 and S4 methods (with different
groups). Methods are defined for the group of functions as a whole.

A method defined for an individual member of the group takes precedence over a method
defined for the group as a whole.

When package methods is attached there are objects visible with the names of the group
generics: these functions should never be called directly (a suitable error message will result
if they are).

Usage

S3 methods have prototypes:
Math(x, ...)

Ops(el, e2)

Summary(x, ...)

Complex(z)

S4 methods have prototypes:
Arith(el, e2)

Compare(el, e2)

Ops(el, e2)

Math (x)

Math2(x, digits)

Summary(x, ..., na.rm = FALSE)
Complex(z)

Arguments
x, z, el, e2 objects.
digits number of digits to be used in round or signif.
further arguments passed to or from methods.

na.rm logical: should missing values be removed?

S3 Group Dispatching

There are four groups for which S3 methods can be written, namely the "Math", "Ops",
"Summary" and "Complex" groups. These are not R objects, but methods can be supplied
for them and base R contains factor and data.frame methods for the first three groups.
(There is also a ordered method for Ops.)

1. Group "Math":

e abs, sign, sqrt,
floor, ceiling, trunc,
round, signif

296

groupGeneric

e exp, log,
cos, sin, tan,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh
e lgamma, gamma, gammaCody,
digamma, trigamma, tetragamma, pentagamma

e cumsum, cumprod, cummax, cummin

2. Group "Ops":
Y ||_‘_||7 ||_||’ ||*<l|7 ll/ll7 |l"||’ ||%%|l, ||%/%|l
° ||&||7 |||||’ |l!l|
Y ||==|l7 |l!=||7 l|<|l, ||<=||’ ||>=||7 ||>||

3. Group "Summary":
e all, any
e sum, prod
e min, max
e range

4. Group Complex:
e Arg, Conj, Im, Mod, Re

The number of arguments supplied for "Math" group generic methods is not checked prior to

dispatch. (Prior to R 1.7.0, all those whose default method has one argument were checked,
but the others were not.)

S4 Group Dispatching

When package methods is attached, formal (S4) methods can be defined for groups.

The functions belonging to the various groups are as follows:

Arith ||+n’ n_u7 u*u, u»n7 ||%%n’ u%/%u, ||/n
Compare II==II7 n>|l7 ||<||7 ||!=||’ |I<=Il, ny=n
Ops "Arith", "Compare"

Math "log", "sqrt", "loglO", "cumprod", "abs", "acos", "acosh", "asin", "asinh",
"atan", "atanh", "ceiling", "cos", "cosh", "cumsum", "exp", "floor", "gamma",

"lgamma", "sin", "sinh", "tan", "tanh", "trunc"

Math2 "round", "signif"
Summary Ilmaxll’ Ilminll’ Ilrangell7 III)I-Od.II7 "Sum", lla.Il},ll7 llallll

Complex IIArgII’ IlConj |I’ |IImII, IlModIl, IlRell

Functions with the group names exist in the methods package but should not be called
directly.

All the functions in these groups (other than the group generics themselves) are basic
functions in R. They are not by default S4 generic functions, and many of them are defined
as primitives, meaning that they do not have formal arguments. However, you can still
define formal methods for them. The effect of doing so is to create an S4 generic function
with the appropriate arguments, in the environment where the method definition is to be
stored. It all works more or less as you might expect, admittedly via a bit of trickery in the
background.

gzcon 297

References

Appendix A, Classes and Methods of
Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. Springer, pp. 352—4.

See Also

methods for methods of non-Internal generic functions.

Examples

methods ("Math")
methods ("Ops")
methods ("Summary")

d.fr <- data.frame(x=1:9, y=rnorm(9))

data.class(1l + d.fr) == "data.frame" ##-- add to d.f.
gzcon (De)compress 1/O Through Connections
Description

gzcon provides a modified connection that wraps an existing connection, and decompresses
reads or compresses writes through that connection. Standard gzip headers are assumed.

Usage

gzcon(con, level = 6, allowNonCompressed = TRUE)

Arguments
con a connection.
level integer between 0 and 9, the compression level when writing.
allowNonCompressed
logical. When reading, should non-compressed files (lacking the gzip
magic header) be allowed?
Details

If con is open then the modified connection is opened. Closing the wrapper connection will
also close the underlying connection.

Reading from a connection which does not supply a gzip magic header is equivalent to
reading from the original connection if allowNonCompressed is true, otherwise an error.

The original connection is unusable: any object pointing to it will now refer to the modified
connection.

298

Value

HairEyeColor

An object inheriting from class "connection". This is the same connection number as
supplied, but with a modified internal structure.

See Also

gzfile

Examples

Not run:

This example may not still be available

print the value to see what objects were created.

con <- url("http://heswebl.med.virginia.edu/biostat/s/data/sav/kprats.sav")

print (load(con))
End(Not run)

gzfile and gzcon can inter-work.

0f course here one would used gzfile, but file() can be replaced by
any other connection generator.
zz <- gzfile("ex.gz", "w")
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)
readLines(zz<-gzcon(file("ex.gz")))
close(zz)
unlink("ex.gz")
zz <- gzcon(file("ex.gz", "wb"))
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)
readLines(zz<-gzfile("ex.gz"))
close(zz)
unlink("ex.gz")
HairEyeColor Hair and Eye Color of Statistics Students

Description

Distribution of hair and eye color and sex in 592 statistics students.

Usage

data(HairEyeColor)

Format

A 3-dimensional array resulting from cross-tabulating 592 observations on 3 variables. The
variables and their levels are as follows:

No

1
2
3

Name
Hair
Eye
Sex

Levels

Black, Brown, Red, Blond
Brown, Blue, Hazel, Green

Male, Female

help 299

Details

This data set is useful for illustrating various techniques for the analysis of contingency
tables, such as the standard chi-squared test or, more generally, log-linear modelling, and
graphical methods such as mosaic plots, sieve diagrams or association plots.

References

Snee, R. D. (1974), Graphical display of two-way contingency tables. The American Statis-
tician, 28, 9-12.

Friendly, M. (1992), Graphical methods for categorical data. SAS User Group Inter-
national Conference Proceedings, 17, 190-200. http://www.math.yorku.ca/SCS/sugi/
sugil7-paper.html

Friendly, M. (1992), Mosaic displays for loglinear models. Proceedings of the Statistical
Graphics Section, American Statistical Association, pp. 61-68. http://www.math.yorku.
ca/SCS/Papers/asa92.html

See Also

chisq.test, loglin, mosaicplot

Examples

data(HairEyeColor)

Full mosaic

mosaicplot (HairEyeColor)

Aggregate over sex:

x <- apply(HairEyeColor, c(1, 2), sum)

X
mosaicplot(x, main = "Relation between hair and eye color")
help Documentation
Description

These functions provide access to documentation. Documentation on a topic with name
name (typically, an R object or a data set) can be printed with either help(name) or ?name.

Usage

help(topic, offline = FALSE, package = .packages(),
lib.loc = NULL, verbose = getOption("verbose"),
try.all.packages = getOption("help.try.all.packages"),
htmlhelp = getOption("htmlhelp"),
pager = getOption("pager"))

?topic

type?topic

http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/Papers/asa92.html
http://www.math.yorku.ca/SCS/Papers/asa92.html

300 help

Arguments

topic usually, the name on which documentation is sought. The name may
be quoted or unquoted (but note that if topic is the name of a variable
containing a character string documentation is provided for the name, not
for the character string).
The topic argument may also be a function call, to ask for documentation
on a corresponding method. See the section on method documentation.

offline a logical indicating whether documentation should be displayed on-line to
the screen (the default) or hardcopy of it should be produced.

package a name or character vector giving the packages to look into for documen-
tation. By default, all packages in the search path are used.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. If the default
is used, the loaded packages are searched before the libraries.

verbose logical; if TRUE, the file name is reported.
try.all.packages
logical; see Notes.

htmlhelp logical (or NULL). If TRUE (which is the default after help.start has been
called), the HTML version of the help will be shown in the browser spec-
ified by options("browser"). See browseURL for details of the browsers
that are supported. Where possible an existing browser window is re-used.

pager the pager to be used for file.show.

type the special type of documentation to use for this topic; for example, if the
type is class, documentation is provided for the class with name topic.
The function topicName returns the actual name used in this case. See
the section on method documentation for the uses of type to get help on
formal methods.

Details

In the case of unary and binary operators and control-flow special forms (including if, for
and function), the topic may need to be quoted.

If offline is TRUE, hardcopy of the documentation is produced by running the LaTeX ver-
sion of the help page through latex (note that LaTeX 2e is needed) and dvips. Depending
on your dvips configuration, hardcopy will be sent to the printer or saved in a file. If the
programs are in non-standard locations and hence were not found at compile time, you can
either set the options latexcmd and dvipscmd, or the environment variables R_LATEXCMD
and R_DVIPSCMD appropriately. The appearance of the output can be customized through
a file ‘Rhelp.cfg’ somewhere in your LaTeX search path.

Method Documentation.

The authors of formal (‘S4’) methods can provide documentation on specific methods, as
well as overall documentation on the methods of a particular function. The "?" operator
allows access to this documentation in three ways.

The expression methods ? f will look for the overall documentation methods for the
function f. Currently, this means the documentation file containing the alias f-methods.

There are two different ways to look for documentation on a particular method. The first is
to supply the topic argument in the form of a function call, omitting the type argument.

help 301

The effect is to look for documentation on the method that would be used if this function
call were actually evaluated. See the examples below. If the function is not a generic (no
S4 methods are defined for it), the help reverts to documentation on the function name.

The "?" operator can also be called with type supplied as "method"; in this case also, the
topic argument is a function call, but the arguments are now interpreted as specifying
the class of the argument, not the actual expression that will appear in a real call to the
function. See the examples below.

The first approach will be tedious if the actual call involves complicated expressions, and
may be slow if the arguments take a long time to evaluate. The second approach avoids
these difficulties, but you do have to know what the classes of the actual arguments will be
when they are evaluated.

Both approaches make use of any inherited methods; the signature of the method to be
looked up is found by using selectMethod (see the documentation for getMethod).

Note

Unless 1lib.loc is specified explicitly, the loaded packages are searched before those in the
specified libraries. This ensures that if a library is loaded from a library not in the known
library trees, then the help from the loaded library is used. If 1ib.loc is specified explicitly,
the loaded packages are not searched.

If this search fails and argument try.all.packages is TRUE and neither packages nor
lib.loc is specified, then all the packages in the known library trees are searched for help
on topic and a list of (any) packages where help may be found is printed (but no help is
shown). N.B. searching all packages can be slow.

The help files can be many small files. On some file systems it is desirable to save space,
and the text files in the ‘help’ directory of an installed package can be zipped up as a zip
archive ‘Rhelp.zip’. Ensure that file ‘AnIndex’ remains un-zipped. Similarly, all the files in
the ‘latex’ directory can be zipped to ‘Rhelp.zip’.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

help.search() for finding help pages on a “vague” topic; help.start () which opens the
HTML version of the R help pages; library() for listing available packages and the user-
level objects they contain; data() for listing available data sets; methods ().

See prompt () to get a prototype for writing help pages of private packages.

Examples

help()
help(help) # the same

help(lapply)
?lapply # the same

help("for") # or ?"for", but the quotes are needed
?Il+l|

help(package="stepfun") # get help even when package is not loaded

302 help.search

data() # list all available data sets
7women # information about data set "women"

topi <- "women"
Not run: help(topi) ##--> Error: No documentation for 'topi'

try(help("bs", try.all.packages=FALSE)) # reports not found (an error)
help("bs", try.all.packages=TRUE) # reports can be found in package 'splines'

Not run:
define a generic function and some methods
combo <- function(x, y) c(x, y)
setGeneric("combo")
setMethod("combo", c("numeric", "numeric"),
function(x, y) x+y)
assume we have written some documentation for combo, and its methods
7combo ## produces the function documentation
methods?combo ## looks for the overall methods documentation

method?combo ("numeric", "numeric") ## documentation for the method above

?combo(1:10, rnorm(10)) ## ... the same method, selected according to
the arguments (one integer, the other numeric)

?combo(1:10, letters) ## documentation for the default method

End(Not run)

help.search Search the Help System

Description

Allows for searching the help system for documentation matching a given character string
in the (file) name, alias, title, or keyword entries (or any combination thereof), using either
fuzzy matching or regular expression matching. Names and titles of the matched help
entries are displayed nicely.

Usage

help.search(pattern, fields = c("alias", "concept", "title"),
apropos, keyword, whatis, ignore.case = TRUE,
package = NULL, 1lib.loc = NULL,
help.db = getOption("help.db"),
verbose = getOption("verbose"),
rebuild = FALSE, agrep = NULL)

help.search

Arguments

pattern

fields

apropos

keyword

whatis

ignore.case

package

lib.1loc

help.db

verbose
rebuild

agrep

Details

303

a character string to be matched in the specified fields. If this is given,
the arguments apropos, keyword, and whatis are ignored.

a character vector specifying the fields of the help data bases to be
searched. The entries must be abbreviations of "name", "title",
"alias", "concept", and "keyword", corresponding to the help page’s
(file) name, its title, the topics and concepts it provides documentation
for, and the keywords it can be classified to.

a character string to be matched in the help page topics and title.

a character string to be matched in the help page ‘keywords’. ‘Key-
words’ are really categories: the standard categories are listed in file
‘RHOME/doc/KEYWORDS’ and some package writers have defined their
own. If keyword is specified, agrep defaults to FALSE.

a character string to be matched in the help page topics.

a logical. If TRUE, case is ignored during matching; if FALSE, pattern
matching is case sensitive.

a character vector with the names of packages to search through, or
NULL in which case all available packages in the library trees specified
by 1lib.loc are searched.

a character vector describing the location of R library trees to search
through, or NULL. The default value of NULL corresponds to all libraries
currently known.

a character string giving the file path to a previously built and saved help
data base, or NULL.

logical; if TRUE, the search process is traced.
a logical indicating whether the help data base should be rebuilt.

if NULL (the default unless keyword is used) and the character string to
be matched consists of alphanumeric characters, whitespace or a dash
only, approximate (fuzzy) matching via agrep is used unless the string
has fewer than 5 characters; otherwise, it is taken to contain a regular
expression to be matched via grep. If FALSE, approximate matching is not
used. Otherwise, one can give a numeric or a list specifying the maximal
distance for the approximate match, see argument max.distance in the
documentation for agrep.

Upon installation of a package, a contents data base which contains the information on
name, title, aliases and keywords and, concepts starting with R 1.8.0, is computed from
the Rd files in the package and serialized as ‘Rd.rds’ in the ‘Meta’ subdirectory of the top-
level package installation directory (or, prior to R 1.7.0, as ‘CONTENTS’ in Debian Control
Format with aliases and keywords collapsed to character strings in the top-level package
installation directory). This, or a pre-built help.search index serialized as ‘hsearch.rds’ in
the ‘Meta’ directory, is the data base searched by help.search().

The arguments apropos and whatis play a role similar to the Unix commands with the

same names.

If possible, the help data base is saved to the file ‘help.db’ in the ‘.R’ subdirectory of the
user’s home directory or the current working directory.

Note that currently, the aliases in the matching help files are not displayed.

304 help.start

Value

The results are returned in an object of class "hsearch", which has a print method for
nicely displaying the results of the query. This mechanism is experimental, and may change
in future versions of R.

See Also

help; help.start for starting the hypertext (currently HTML) version of R’s online doc-
umentation, which offers a similar search mechanism.

apropos uses regexps and has nice examples.

Examples

help.search("linear models") # In case you forgot how to fit linear
models

help.search("non-existent topic")

Not run:

help.search("print") # All help pages with topics or title
matching 'print'

help.search(apropos = "print") # The same

help.search(keyword = "hplot") # All help pages documenting high-level
plots.
file.show(file.path(R.home(), "doc", "KEYWORDS")) # show all keywords

Help pages with documented topics starting with 'try'.
help.search("\\btry", fields = "alias")

Do not use '"' or '$' when matching aliases or keywords

(unless all packages were installed using R 1.7 or newer).
End(Not run)

help.start Hypertext Documentation

Description

Start the hypertext (currently HTML) version of R’s online documentation.

Usage
help.start(gui = "irrelevant", browser = getOption("browser"),
remote = NULL)
Arguments
gui just for compatibility with S-PLUS.
browser the name of the program to be used as hypertext browser. It should be
in the PATH, or a full path specified.
remote A character giving a valid URL for the ‘$R_HOME’ directory on a remote

location.

Hershey 305

Details

All the packages in the known library trees are linked to directory ‘.R’ in the per-session
temporary directory. The links are re-made each time help.start is run, which should be
done after packages are installed, updated or removed.

If the browser given by the browser argument is different from the default browser as
specified by options("browser"), the default is changed to the given browser so that it
gets used for all future help requests.

See Also

help() for on- and off-line help in ASCII/Editor or PostScript format.

browseURL for how the help file is displayed.

Examples

Not run:
help.start()
End(Not run)

Hershey Hershey Vector Fonts in R

Description

If the vfont argument to one of the text-drawing functions (text, mtext, title, axis, and
contour) is a character vector of length 2, Hershey vector fonts are used to render the text.

These fonts have two advantages:

1. vector fonts describe each character in terms of a set of points; R renders the character
by joining up the points with straight lines. This intimate knowledge of the outline of
each character means that R can arbitrarily transform the characters, which can mean
that the vector fonts look better for rotated and 3d text.

2. this implementation was adapted from the GNU libplot library which provides support
for non-ASCII and non-English fonts. This means that it is possible, for example, to
produce weird plotting symbols and Japanese characters.

Drawback:
You cannot use mathematical expressions (plotmath) with Hershey fonts.

Usage

Hershey

306 Hershey

Details

The Hershey characters are organised into a set of fonts, which are specified by a typeface
(e.g., serif or sans serif) and a fontindex or “style” (e.g., plain or italic). The first
element of vfont specifies the typeface and the second element specifies the fontindex. The
first table produced by demo(Hershey) shows the character a produced by each of the
different fonts.

The available typeface and fontindex values are available as list components of the vari-
able Hershey. The allowed pairs for (typeface, fontindex) are:

Hershey

307
serif plain
serif italic
serif bold
serif bold italic
serif cyrillic
serif oblique cyrillic
serif EUC
sans serif plain
sans serif italic
sans serif bold
sans serif bold italic
script plain
script italic
script bold
gothic english plain
gothic german plain
gothic italian plain
serif symbol plain
serif symbol italic
serif symbol bold
serif symbol bold italic

sans serif symbol plain
sans serif symbol italic

and the indices of these are available as Hershey$allowed.

Escape sequences: The string to be drawn can include escape sequences, which all begin

with a \. When R encounters a \, rather than drawing the \, it treats the subsequent
character(s) as a coded description of what to draw.

One useful escape sequence (in the current context) is of the form: \123. The three
digits following the \ specify an octal code for a character. For example, the octal code
for p is 160 so the strings "p" and "\160" are equivalent. This is useful for producing
characters when there is not an appropriate key on your keyboard.

The other useful escape sequences all begin with \\. These are described below.

Remember that backslashes have to be doubled in R character strings, so they need
to be entered with four backslashes.

Symbols: an entire string of Greek symbols can be produced by selecting the Serif Symbol

or Sans Serif Symbol typeface. To allow Greek symbols to be embedded in a string
which uses a non-symbol typeface, there are a set of symbol escape sequences of the
form \\ab. For example, the escape sequence *a produces a Greek alpha. The
second table in demo(Hershey) shows all of the symbol escape sequences and the
symbols that they produce.

ISO Latin-1: further escape sequences of the form \\ab are provided for producing ISO

Latin-1 characters (for example, if you only have a US keyboard). Another option is
to use the appropriate octal code. The (non-ASCII) ISO Latin-1 characters are in the
range 241...377. For example, \366 produces the character o with an umlaut. The
third table in demo (Hershey) shows all of the ISO Latin-1 escape sequences.

Special Characters: a set of characters are provided which do not fall into any standard

font. These can only be accessed by escape sequence. For example, \\LI produces
the zodiac sign for Libra, and \\JU produces the astronomical sign for Jupiter. The
fourth table in demo (Hershey) shows all of the special character escape sequences.

308 hist

Cyrillic Characters: cyrillic characters are implemented according to the K018-R encod-
ing. On a US keyboard, these can be produced using the Serif typeface and Cyrillic
(or Oblique Cyrillic) fontindex and specifying an octal code in the range 300 to 337
for lower case characters or 340 to 377 for upper case characters. The fifth table in
demo (Hershey) shows the octal codes for the available cyrillic characters.

Japanese Characters: 83 Hiragana, 86 Katakana, and 603 Kanji characters are imple-
mented according to the EUC (Extended Unix Code) encoding. Each character is
identified by a unique hexadecimal code. The Hiragana characters are in the range
0x2421 to 0x2473, Katakana are in the range 0x2521 to 0x2576, and Kanji are (scat-
tered about) in the range 0x3021 to 0x6d55.

When using the Serif typeface and EUC fontindex, these characters can be produced
by a pair of octal codes. Given the hexadecimal code (e.g., 0x2421), take the first two
digits and add 0x80 and do the same to the second two digits (e.g., 0x21 and 0x24
become Oxa4 and Oxal), then convert both to octal (e.g., Oxa4 and Oxal become 244
and 241). For example, the first Hiragana character is produced by \244\241.

It is also possible to use the hexadecimal code directly. This works for all non-EUC
fonts by specifying an escape sequence of the form \\#J1234. For example, the first
Hiragana character is produced by \\#J2421.

The Kanji characters may be specified in a third way, using the so-called "Nelson
Index”, by specifying an escape sequence of the form \\#N1234. For example, the
Kanji for “one” is produced by \\#N0001.

demo (Japanese) shows the available Japanese characters.

Raw Hershey Glyphs: all of the characters in the Hershey fonts are stored in a large
array. Some characters are not accessible in any of the Hershey fonts. These characters
can only be accessed via an escape sequence of the form \\#H1234. For example, the
fleur-de-lys is produced by \\#H0746. The sixth and seventh tables of demo (Hershey)
shows all of the available raw glyphs.

References

http://www.gnu.org/software/plotutils/plotutils.html

See Also

demo (Hershey), text, contour.

Japanese for the Japanese characters in the Hershey fonts.

Examples

str (Hershey)

for tables of examples, see demo(Hershey)

hist Histograms

Description

The generic function hist computes a histogram of the given data values. If plot=TRUE, the
resulting object of class "histogram" is plotted by plot.histogram, before it is returned.

http://www.gnu.org/software/plotutils/plotutils.html

hist

Usage

hist(x, ...)

309

Default S3 method:

hist(x, breaks

= "Sturges", freq = NULL, probability = !freq,

include.lowest = TRUE, right = TRUE,

density =

NULL, angle = 45, col = NULL, border = NULL,

main = paste("Histogram of" , xname),
xlim = range(breaks), ylim = NULL,

xlab
axes

xname, ylab,
TRUE, plot = TRUE, labels = FALSE,

nclass = NULL, ...)

Arguments

X

breaks

freq

probability
include.lowest

right
density

angle

col

border

a vector of values for which the histogram is desired.
one of:

e a vector giving the breakpoints between histogram cells,
e a single number giving the number of cells for the histogram,

e a character string naming an algorithm to compute the number of
cells (see Details),

e a function to compute the number of cells.
In the last three cases the number is a suggestion only.

logical; if TRUE, the histogram graphic is a representation of frequencies,
the counts component of the result; if FALSE, relative frequencies (“prob-
abilities”), component density, are plotted. Defaults to TRUE iff breaks
are equidistant (and probability is not specified).

an alias for 'freq, for S compatibility.

logical; if TRUE, an x[i] equal to the breaks value will be included in
the first (or last, for right = FALSE) bar. This will be ignored (with a
warning) unless breaks is a vector.

logical; if TRUE, the histograms cells are right-closed (left open) intervals.

the density of shading lines, in lines per inch. The default value of NULL
means that no shading lines are drawn. Non-positive values of density
also inhibit the drawing of shading lines.

the slope of shading lines, given as an angle in degrees (counter-clockwise).

a colour to be used to fill the bars. The default of NULL yields unfilled
bars.

the color of the border around the bars. The default is to use the standard
foreground color.

main, xlab, ylab

xlim, ylim

axes

these arguments to title have useful defaults here.

the range of x and y values with sensible defaults. Note that x1im is not
used to define the histogram (breaks), but only for plotting (when plot
= TRUE).

logical. If TRUE (default), axes are draw if the plot is drawn.

310

hist

plot logical. If TRUE (default), a histogram is plotted, otherwise a list of breaks
and counts is returned.

labels logical or character. Additionally draw labels on top of bars, if not FALSE;
see plot.histogram.

nclass numeric (integer). For S(-PLUS) compatibility only, nclass is equivalent
to breaks for a scalar or character argument.

further graphical parameters to title and axis.

Detalils

The definition of “histogram” differs by source (with country-specific biases). R’s default
with equi-spaced breaks (also the default) is to plot the counts in the cells defined by
breaks. Thus the height of a rectangle is proportional to the number of points falling into
the cell, as is the area provided the breaks are equally-spaced.

The default with non-equi-spaced breaks is to give a plot of area one, in which the area of
the rectangles is the fraction of the data points falling in the cells.

If right = TRUE (default), the histogram cells are intervals of the form (a, bl, i.e., they
include their right-hand endpoint, but not their left one, with the exception of the first cell
when include.lowest is TRUE.

For right = FALSE, the intervals are of the form [a, b), and include.lowest really has
the meaning of “include highest”.

A numerical tolerance of 10~7 times the range of the breaks is applied when counting entries
on the edges of bins.

The default for breaks is "Sturges": see nclass.Sturges. Other names for which algo-
rithms are supplied are "Scott" and "FD" / "Friedman-Diaconis" (with corresponding
functions nclass.scott and nclass.FD). Case is ignored and partial matching is used. Al-
ternatively, a function can be supplied which will compute the intended number of breaks
as a function of x.

Value

an object of class "histogram" which is a list with components:

breaks the n + 1 cell boundaries (= breaks if that was a vector).
counts n integers; for each cell, the number of x[] inside.

density values f(mz), as estimated density values. If all(diff (breaks) ==
1), they are the relative frequencies counts/n and in general satisfy
Zi f(a?i)(bi+1 — bl) =1, where b; = breaks[i].

intensities same as density. Deprecated, but retained for compatibility.
mids the n cell midpoints.
Xname a character string with the actual x argument name.

equidist logical, indicating if the distances between breaks are all the same.

Note

The resulting value does not depend on the values of the arguments freq (or probability)
or plot. This is intentionally different from S.

Prior to R 1.7.0, the element breaks of the result was adjusted for numerical tolerances.
The nominal values are now returned even though tolerances are still used when counting.

hist. POSIXt 311

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Venables, W. N. and Ripley. B. D. (2002) Modern Applied Statistics with S. Springer.

See Also

nclass.Sturges, stem, density, truehist.

Examples

data(islands)

op <- par(mfrow=c(2, 2))

hist(islands)

str(hist(islands, col="gray", labels = TRUE))

hist(sqrt(islands), br = 12, col="lightblue", border="pink")

##-- For non-equidistant breaks, counts should NOT be graphed unscaled:

r <- hist(sqrt(islands), br = c(4*0:5, 10*3:5, 70, 100, 140), col='bluel')
text (r$mids, r$density, r$counts, adj=c(.5, -.5), col='blue3')
sapply(r[2:3], sum)

sum(r$density * diff (r$breaks)) # ==

lines(r, 1ty = 3, border = "purple") # -> lines.histogram(*)

par (op)

str(hist(islands, plot= FALSE)) #-> 5 breaks
str(hist(islands, br=12, plot= FALSE)) #-> 10 ("= 12) breaks
str(hist(islands, br=c(12,20,36,80,200,1000,17000), plot = FALSE))
hist(islands, br=c(12,20,36,80,200,1000,17000), freq = TRUE,
main = "WRONG histogram") # and warning

hist.POSIXt Histogram of a Date-Time Object

Description

Method for hist applied to date-time objects.

Usage

S3 method for class 'POSIXt':
hist(x, breaks, ..., plot = TRUE, freq = FALSE,
start.on.monday = TRUE, format)

Arguments
X an object inheriting from class "POSIXt".
breaks a vector of cut points or number giving the number of intervals which

x is to be cut into or an interval specification, one of "secs", "mins",
"hours", "days", "weeks", "months" or "years".

graphical parameters, or arguments to hist.default such as
include.lowest, right and labels.

312 hsv

plot logical. If TRUE (default), a histogram is plotted, otherwise a list of breaks
and counts is returned.

freq logical; if TRUE, the histogram graphic is a representation of frequencies,
i.e, the counts component of the result; if FALSE, relative frequencies
(“probabilities”) are plotted.

start.on.monday

logical. If breaks = "weeks", should the week start on Mondays or Sun-
days?
format for the x-axis labels. See strptime.

Value

An object of class "histogram": see hist.

See Also

seq.POSIXt, axis.POSIXct, hist

Examples

hist(.leap.seconds, "years", freq = TRUE)
hist(.leap.seconds,
seq(ISOdate (1970, 1, 10), ISOdate(2002, 1, 1), "5 years"))

100 random dates in a 10-week period
random.dates <- ISOdate(2001, 1, 1) + 70%*86400*runif (100)
hist(random.dates, "weeks", format = "%d %b")

hsv HSV Color Specification

Description

Create a vector of colors from vectors specifying hue, saturation and value.

Usage

hsv(h=1, s=1, v=1, gamma=1)

Arguments
h,s,v numeric vectors of values in the range [0,1] for “hue”, “saturation” and
)
“value” to be combined to form a vector of colors. Values in shorter
arguments are recycled.
gamma a “gamma correction”
Value

This function creates a vector of “colors” corresponding to the given values in HSV space.
The values returned by hsv can be used with a col= specification in graphics functions or
in par.

Hyperbolic 313

Gamma correction

For each color, (r,¢,b) in RGB space (with all values in [0,1]), the final color corresponds
to (rfamma, g%amma, bamma).

See Also

rainbow, rgb, gray.

Examples

hsv(.5,.5,.5)

Look at gamma effect:

n <- 20; y <- -sin(3*pix*((1:n)-1/2)/n)

op <- par(mfrow=c(3,2) ,mar=rep(1.5,4))

for(gamma in c(.4, .6, .8, 1, 1.2, 1.5))

plot(y, axes = FALSE, frame.plot = TRUE,

xlab = "", ylab = "", pch = 21, cex = 30,
bg = rainbow(n, start=.85, end=.1, gamma = gamma),
main = paste("Red tones; gamma=",format(gamma)))

par (op)

Hyperbolic Hyperbolic Functions

Description

These functions give the obvious hyperbolic functions. They respectively compute the
hyperbolic cosine, sine, tangent, arc-cosine, arc-sine, arc-tangent.
Usage

cosh(x)
sinh(x)
tanh (x)
acosh(x)
asinh(x)
atanh(x)

Arguments

b'd a numeric vector

See Also

cos, sin, tan, acos, asin, atan.

314 Hypergeometric

Hypergeometric The Hypergeometric Distribution

Description
Density, distribution function, quantile function and random generation for the hypergeo-
metric distribution.

Usage

dhyper(x, m, n, k, log = FALSE)
phyper(q, m, n, k, lower.tail = TRUE, log.p = FALSE)

ghyper(p, m, n, k, lower.tail = TRUE, log.p = FALSE)
rhyper(an, m, n, k)
Arguments

X, q vector of quantiles representing the number of white balls drawn without
replacement from an urn which contains both black and white balls.

m the number of white balls in the urn.
the number of black balls in the urn.
the number of balls drawn from the urn.

P probability, it must be between 0 and 1.

nn number of observations. If length(nn) > 1, the length is taken to be the

number required.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x|, otherwise, P[X >
Details

The hypergeometric distribution is used for sampling without replacement. The density of
this distribution with parameters m, n and k (named Np, N — Np, and n, respectively in
the reference below) is given by

o= (1)) (0

forx=0,...,k.

Value
dhyper gives the density, phyper gives the distribution function, ghyper gives the quantile
function, and rhyper generates random deviates.

References

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second
Edition. New York: Wiley.

identical 315

Examples

m<- 10; n <- 7; k <- 8

x <- 0:(k+1)

rbind (phyper(x, m, n, k), dhyper(x, m, n, k))

all(phyper(x, m, n, k) == cumsum(dhyper(x, m, n, k)))# FALSE
but error is very small:

signif (phyper(x, m, n, k) - cumsum(dhyper(x, m, n, k)), dig=3)

identical Test Objects for Exact Equality

Description

The safe and reliable way to test two objects for being exactly equal. It returns TRUE in
this case, FALSE in every other case.

Usage

identical(x, y)

Arguments

X,y any R objects.

Details

A call to identical is the way to test exact equality in if and while statements, as well
as in logical expressions that use && or | |. In all these applications you need to be assured
of getting a single logical value.

Users often use the comparison operators, such as == or !=, in these situations. It looks
natural, but it is not what these operators are designed to do in R. They return an object
like the arguments. If you expected x and y to be of length 1, but it happened that one of
them wasn’t, you will not get a single FALSE. Similarly, if one of the arguments is NA, the
result is also NA. In either case, the expression if (x == y).... won’t work as expected.

The function all.equal is also sometimes used to test equality this way, but it was intended
for something different. First, it tries to allow for “reasonable” differences in numeric results.
Second, it returns a descriptive character vector instead of FALSE when the objects do not
match. Therefore, it is not the right function to use for reliable testing either. (If you do
want to allow for numeric fuzziness in comparing objects, you can combine all.equal and
identical, as shown in the examples below.)

The computations in identical are also reliable and usually fast. There should never
be an error. The only known way to kill identical is by having an invalid pointer at
the C level, generating a memory fault. It will usually find inequality quickly. Checking
equality for two large, complicated objects can take longer if the objects are identical or
nearly so, but represent completely independent copies. For most applications, however,
the computational cost should be negligible.

As from R 1.6.0, identical sees NaN as different from as.double(NA), but all NaNs are
equal (and all NA of the same type are equal).

316 identify

Value

A single logical value, TRUE or FALSE, never NA and never anything other than a single value.

Author(s)
John Chambers

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

all.equal for descriptions of how two objects differ; Comparison for operators that generate
elementwise comparisons.

Examples

identical(1, NULL) ## FALSE -- don't try this with ==
identical(1, 1.) ## TRUE in R (both are stored as doubles)
identical(1l, as.integer(1)) ## FALSE, stored as different types

x <= 1.0; y <= 0.99999999999

how to test for object equality allowing for numeric fuzz
identical(all.equal(x, y), TRUE)

If all.equal thinks the objects are different, it returms a
character string, and this expression evaluates to FALSE

even for unusual R objects :
identical(.GlobalEnv, environment())

identify Identify Points in a Scatter Plot

Description

identify reads the position of the graphics pointer when the (first) mouse button is pressed.
It then searches the coordinates given in x and y for the point closest to the pointer. If this
point is close to the pointer, its index will be returned as part of the value of the call.

Usage

identify(x, ...)

Default S3 method:
identify(x, y = NULL, labels = seq(along = x), pos = FALSE,
n = length(x), plot = TRUE, offset = 0.5, ...)

identify

Arguments

X,y

labels

pos

plot

offset

Details

317

coordinates of points in a scatter plot. Alternatively, any object which
defines coordinates (a plotting structure, time series etc.) can be given as
x and y left undefined.

an optional vector, the same length as x and y, giving labels for the points.

if pos is TRUE, a component is added to the return value which indicates
where text was plotted relative to each identified point (1=below, 2=left,
3=above and 4=right).

the maximum number of points to be identified.

if plot is TRUE, the labels are printed at the points and if FALSE they are
omitted.

the distance (in character widths) which separates the label from identified
points.

further arguments to par(.).

If in addition, plot is TRUE, the point is labelled with the corresponding element of text.

The labels are placed either below, to the left, above or to the right of the identified point,
depending on where the cursor was.

The identification process is terminated by pressing any mouse button other than the first.

On most devices which support locator, successful selection of a point is indicated by a
bell sound unless options(locatorBell=FALSE

Value

If pos is FALSE, an integer vector containing the indexes of the identified points.

If pos is TRUE, a list containing a component ind, indicating which points were identified
and a component pos, indicating where the labels were placed relative to the identified

points.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth

& Brooks/Cole.

See Also

locator

318 image

ifelse Conditional Element Selection

Description

ifelse returns a value with the same shape as test which is filled with elements selected
from either yes or no depending on whether the element of test is TRUE or FALSE. If yes
or no are too short, their elements are recycled.

Usage

ifelse(test, yes, no)

Arguments
test a logical vector
yes return values for true elements of test.
no return values for false elements of test.
References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

if.

Examples

x <= c(6:-4)
sqrt (x)#- gives warning
sqrt(ifelse(x >= 0, x, NA))# no warning

Note: the following also gives the warning !
ifelse(x >= 0, sqrt(x), NA)

image Display a Color Image

Description

Creates a grid of colored or gray-scale rectangles with colors corresponding to the values in
z. This can be used to display three-dimensional or spatial data aka “images”. This is a
generic function.

The functions heat.colors, terrain.colors and topo.colors create heat-spectrum (red
to white) and topographical color schemes suitable for displaying ordered data, with n giving
the number of colors desired.

image

Usage

image(x,

319

Default S3 method:

image(x, y, z, zlim, xlim, ylim, col = heat.colors(12),
add = FALSE, xaxs = "i", yaxs = "i", xlab, ylab,
breaks, oldstyle = FALSE, ...)

Arguments

X,y

zlim

xlim, ylim

col

add

Xaxs, yaxs

xlab, ylab

breaks

oldstyle

Details

locations of grid lines at which the values in z are measured. These must
be in (strictly) ascending order. By default, equally spaced values from 0
to 1 are used. If x is a list, its components x$x and x$y are used for x
and y, respectively. If the list has component z this is used for z.

a matrix containing the values to be plotted (NAs are allowed). Note that
x can be used instead of z for convenience.

the minimum and maximum z values for which colors should be plotted.
Each of the given colors will be used to color an equispaced interval of
this range. The midpoints of the intervals cover the range, so that values
just outside the range will be plotted.

ranges for the plotted x and y values, defaulting to the range of the finite
values of x and y.

a list of colors such as that generated by rainbow, heat.colors,
topo.colors, terrain.colors or similar functions.

logical; if TRUE, add to current plot (and disregard the following argu-
ments). This is rarely useful because image “paints” over existing graph-
ics.

style of x and y axis. The default "i" is appropriate for images. See par.

each a character string giving the labels for the x and y axis. Default to
the ‘call names’ of x or y, or to "" if these where unspecified.

a set of breakpoints for the colours: must give one more breakpoint than
colour.

logical. If true the midpoints of the colour intervals are equally spaced,
and z1im[1] and z1im[2] were taken to be midpoints. (This was the
default prior to R 1.1.0.) The current default is to have colour intervals
of equal lengths between the limits.

graphical parameters for plot may also be passed as arguments to this
function.

The length of x should be equal to the nrow(z)+1 or nrow(z). In the first case x specifies
the boundaries between the cells: in the second case x specifies the midpoints of the cells.
Similar reasoning applies to y. It probably only makes sense to specify the midpoints of
an equally-spaced grid. If you specify just one row or column and a length-one x or y, the
whole user area in the corresponding direction is filled.

If breaks is specified then z1im is unused and the algorithm used follows cut, so intervals
are closed on the right and open on the left except for the lowest interval.

320 index.search

Note

Based on a function by Thomas Lumley (tlumley@u.washington.edu).

See Also

filled.contour or heatmap which can look nicer (but are less modular), contour;

heat.colors, topo.colors, terrain.colors, rainbow, hsv, par.

Examples

x <- y <- seq(-4xpi, 4*pi, len=27)

r <- sqgrt(outer(x~2, y~2, "+"))

image(z = z <- cos(r~2)*exp(-r/6), col=gray((0:32)/32))

image(z, axes = FALSE, main = "Math can be beautiful ..."
xlab = expression(cos(r~2) * e"{-r/6}))

contour(z, add = TRUE, drawlabels = FALSE)

>

data(volcano)

x <- 10*(1:nrow(volcano))

y <- 10*(1:ncol(volcano))

image(x, y, volcano, col = terrain.colors(100), axes = FALSE)

contour(x, y, volcano, levels = seq(90, 200, by=5), add = TRUE, col = "peru")
axis(1, at = seq(100, 800, by = 100))

axis(2, at = seq(100, 600, by = 100))

box ()
title(main = "Maunga Whau Volcano", font.main = 4)
index.search Search Indices for Help Files
Description

Used to search the indices for help files, possibly under aliases.

Usage

index.search(topic, path, file="AnIndex", type = "help")

Arguments
topic The keyword to be searched for in the indices.
path The path(s) to the packages to be searched.
file The index file to be searched. Normally “"Anindex™.
type The type of file required.

Details

For each package in path, examine the file file in directory ‘type’, and look up the matching
file stem for topic topic, if any.

infert 321

Value

A character vector of matching files, as if they are in directory type of the corresponding
package. In the special cases of type = "html", "R-ex" and "latex" the file extensions
".html", ".R" and ".tex" are added.

See Also

help, example

infert Infertility after Spontaneous and Induced Abortion

Description

This is a matched case-control study dating from before the availability of conditional
logistic regression.

Usage
data(infert)
Format
1. Education 0 = 0-5 years
1 = 6-11 years
2 = 12+ years
2. age age in years of case
3. parity count
4. number of prior 0=0
induced abortions 1=1
2 = 2 or more
5. case status 1 = case
0 = control
6. number of prior 0=0
spontaneous abortions 1 =1
2 = 2 or more
7. matched set number 1-83
8. stratum number 1-63
Note

One case with two prior spontaneous abortions and two prior induced abortions is omitted.

Source

Trichopoulos et al. (1976) Br. J. of Obst. and Gynaec. 83, 645-650.

322 influence.measures

Examples

data(infert)
modell <- glm(case
summary (modell)
adjusted for other potential confounders:
summary (model2 <- glm(case ~ aget+parity+education+spontaneous+induced,
data=infert,family=binomial()))
Really should be analysed by conditional logistic regression
which is in the survival package
if (require(survival)){
model3 <- clogit(case”spontaneous+induced+strata(stratum),data=infert)

spontaneous+induced, data=infert,family=binomial())

summary (model3)
detach(O# survival (conflicts)
}
influence.measures Regression Deletion Diagnostics
Description

This suite of functions can be used to compute some of the regression (leave-one-out dele-
tion) diagnostics for linear and generalized linear models discussed in Belsley, Kuh and
Welsch (1980), Cook and Weisberg (1982), etc.

Usage

influence.measures (model)

rstandard(model, ...)
S3 method for class 'Ilm':
rstandard(model, infl = 1lm.influence(model, do.coef=FALSE),
sd = sqrt(deviance(model)/df.residual(model)), ...)
S3 method for class 'glm':
rstandard(model, infl = 1lm.influence(model, do.coef=FALSE), ...)

rstudent (model, ...)
S3 method for class 'Ilm':
rstudent (model, infl = 1lm.influence(model, do.coef=FALSE),

res = infl$wt.res, ...)
S3 method for class 'glm':
rstudent (model, infl = influence(model, do.coef=FALSE), ...)

dffits(model, infl = , res =)

dfbeta(model, ...)
S3 method for class 'Ilm':
dfbeta(model, infl = 1lm.influence(model, do.coef=TRUE), ...)

dfbetas(model, ...)
S3 method for class 'Ilm':
dfbetas(model, infl = 1lm.influence(model, do.coef=TRUE), ...)

influence.measures 323

covratio(model, infl = 1lm.influence(model, do.coef=FALSE),
res = weighted.residuals(model))

cooks.distance (model, ...)
S3 method for class 'lm':
cooks.distance(model, infl = 1m.influence(model, do.coef=FALSE),
res = weighted.residuals(model),
sd = sqrt(deviance(model)/df.residual (model)),
hat = infl$hat, ...)
S3 method for class 'glm':
cooks.distance(model, infl = influence(model, do.coef=FALSE),
res = infl$pear.res, dispersion = summary(model)$dispersion,
hat = infl$hat, ...)

hatvalues(model, ...)
S3 method for class 'Ilm':
hatvalues(model, infl = 1lm.influence(model, do.coef=FALSE), ...)

hat(x, intercept = TRUE)

Arguments
model an R object, typically returned by 1m or glm.
infl influence structure as returned by 1m.influence or influence (the latter
only for the glm method of rstudent and cooks.distance).
res (possibly weighted) residuals, with proper default.
sd standard deviation to use, see default.
dispersion dispersion (for glm objects) to use, see default.
hat hat values H;;, see default.
X the X or design matrix.
intercept should an intercept column be pre-prended to x?7
further arguments passed to or from other methods.
Details

The primary high-level function is influence.measures which produces a class "infl"
object tabular display showing the DFBETAS for each model variable, DFFITS, covariance
ratios, Cook’s distances and the diagonal elements of the hat matrix. Cases which are
influential with respect to any of these measures are marked with an asterisk.

The functions dfbetas, dffits, covratio and cooks.distance provide direct access to
the corresponding diagnostic quantities. Functions rstandard and rstudent give the stan-
dardized and Studentized residuals respectively. (These re-normalize the residuals to have
unit variance, using an overall and leave-one-out measure of the error variance respectively.)

Values for generalized linear models are approximations, as described in Williams (1987)
(except that Cook’s distances are scaled as F' rather than as chi-square values).

The optional infl, res and sd arguments are there to encourage the use of these direct
access functions, in situations where, e.g., the underlying basic influence measures (from
1m.influence or the generic influence) are already available.

324 influence.measures

Note that cases with weights == 0 are dropped from all these functions, but that if a linear
model has been fitted with na.action = na.exclude, suitable values are filled in for the
cases excluded during fitting.

The function hat() exists mainly for S (version 2) compatibility; we recommend using
hatvalues () instead.

Note

For hatvalues, dfbeta, and dfbetas, the method for linear models also works for gener-
alized linear models.

Author(s)

Several R core team members and John Fox, originally in his ‘car’ package.

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

Cook, R. D. and Weisberg, S. (1982) Residuals and Influence in Regression. London:
Chapman and Hall.

Williams, D. A. (1987) Generalized linear model diagnostics using the deviance and single
case deletions. Applied Statistics 36, 181-191.

Fox, J. (1997) Applied Regression, Linear Models, and Related Methods. Sage.

Fox, J. (2002) An R and S-Plus Companion to Applied Regression. Sage Publ.; http:
//www.socsci.mcmaster.ca/jfox/Books/Companion/.

See Also

influence (containing 1m.influence).

Examples

Analysis of the life-cycle savings data

given in Belsley, Kuh and Welsch.

data(LifeCycleSavings)

Im.SR <- 1m(sr ~ popl5 + pop75 + dpi + ddpi, data = LifeCycleSavings)

inflm.SR <- influence.measures(lm.SR)

which(apply(inflm.SR$is.inf, 1, any)) # which observations 'are' influential
summary (inflm.SR) # only these

inflm.SR # all

plot(rstudent (Im.SR) ~ hatvalues(lm.SR)) # recommended by some

The 'infl' argument is not needed, but avoids recomputation:
rs <- rstandard(1lm.SR)

if1SR <- influence(lm.SR)

identical(rs, rstandard(1m.SR, infl = iflSR))

to "see" the larger values:

1000 * round(dfbetas(lm.SR, infl = iflSR), 3)

Huber's data [Atkinson 1985]

xh <- c(-4:0, 10)

yh <- c(2.48, .73, -.04, -1.44, -1.32, 0)
summary (1mH <- 1lm(yh ~ xh))

http://www.socsci.mcmaster.ca/jfox/Books/Companion/
http://www.socsci.mcmaster.ca/jfox/Books/Companion/

INSTALL 325

(im <- influence.measures (1lmH))
plot(xh,yh, main = "Huber's data: L.S. line and influential obs.")
abline(1mH); points(xh[im$is.inf], yh[im$is.inf], pch=20, col=2)

InsectSprays Effectiveness of Insect Sprays

Description

The counts of insects in agricultural experimental units treated with different insecticides.

Usage

data(InsectSprays)

Format

A data frame with 72 observations on 2 variables.

[[1] count numeric Insect count
[,2] spray factor The type of spray

Source

Beall, G., (1942) The Transformation of data from entomological field experiments,
Biometrika, 29, 243-262.

References

McNeil, D. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(InsectSprays)
boxplot(count ~ spray, data = InsectSprays,
xlab = "Type of spray", ylab = "Insect count",
main = "InsectSprays data", varwidth = TRUE, col = "lightgray")
fml <- aov(count ~ spray, data = InsectSprays)
summary (fm1)
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(fm1)
fm2 <- aov(sqrt(count) ~ spray, data = InsectSprays)
summary (fm2)
plot (fm2)
par (opar)

INSTALL Install Add-on Packages

Description

Utility for installing add-on packages.

326 INSTALL
Usage
R CMD INSTALL [optiomns] [-1 1lib] pkgs
Arguments
pkgs A list with the path names of the packages to be installed.
lib the path name of the R library tree to install to.
options a list of options through which in particular the process for building the
help files can be controlled.
Details

Ifused asR CMD INSTALL pkgs without explicitly specifying 1ib, packages are installed into
the library tree rooted at the first directory given in the environment variable R_LIBS if this
is set and non-null, and to the default library tree (which is rooted at ‘$R_HOME/library’)
otherwise.

To install into the library tree 1ib, use R CMD INSTALL -1 1ib pkgs.

Both 1ib and the elements of pkgs may be absolute or relative path names. pkgs can
also contain name of package archive files of the form ‘pkg_version.tar.gz’ as obtained from
CRAN, these are then extracted in a temporary directory.

Some package sources contain a ‘configure’ script that can be passed arguments or variables
via the option ‘--configure-args’ and ‘--configure-vars’, respectively, if necessary. The
latter is useful in particular if libraries or header files needed for the package are in non-
system directories. In this case, one can use the configure variables LIBS and CPPFLAGS to
specify these locations (and set these via ‘--configure-vars’), see section “Configuration
variables” in “R Installation and Administration” for more information. One can also bypass
the configure mechanism using the option ‘--no-configure’.

<

If ‘~-no-docs’ is given, no help files are built. Options ‘--no-text’, ‘--no-html’, and
‘-—no-latex’ suppress creating the text, HTML, and LaTeX versions, respectively. The
default is to build help files in all three versions.

If the option ‘--save’ is used, the installation procedure creates a binary image of the
package code, which is then loaded when the package is attached, rather than evaluating
the package source at that time. Having a file ‘install.R’ in the package directory makes this
the default behavior for the package (option ‘--no-save’ overrides). You may need ‘--save’
if your package requires other packages to evaluate its own source. If the file ‘install.R’ is
non-empty, it should contain R expressions to be executed when the package is attached,
after loading the saved image. Options to be passed to R when creating the save image can
be specified via ‘--save=ARGS’.

If the attempt to install the package fails, leftovers are removed. If the package was already
installed, the old version is restored.

Use R CMD INSTALL --help for more usage information.

Packages using the methods package

Packages that require the methods package, and that use functions such as setMethod or
setClass, should be installed by creating a binary image.

The presence of a file named ‘install.R’ in the package’s main directory causes an image to
be saved. Note that the file is not in the ‘R’ subdirectory: all the code in that subdirectory
is used to construct the binary image.

integer 327

Normally, the file ‘install.R” will be empty; if it does contain R expressions these will be
evaluated when the package is attached, e.g. by a call to the function library. (Specifically,
the source code evaluated for a package with a saved image consists of a suitable definition
of .First.1ib to ensure loading of the saved image, followed by the R code in file ‘install.R’,
if any.)

See Also

REMOVE, update.packages for automatic update of packages using the internet; the chapter
on “Creating R packages” in “Writing R Extensions” (see the ‘doc/manual’ subdirectory of
the R source tree).

integer Integer Vectors

Description

Creates or tests for objects of type "integer".

Usage

integer(length = 0)
as.integer(x, ...)
is.integer(x)

Arguments
length desired length.
X object to be coerced or tested.
further arguments passed to or from other methods.
Value

integer creates a integer vector of the specified length. Each element of the vector is equal
to 0. Integer vectors exist so that data can be passed to C or Fortran code which expects
them.

as.integer attempts to coerce its argument to be of integer type. The answer will be
NA unless the coercion succeeds. Real values larger in modulus than the largest integer are
coerced to NA (unlike S which gives the most extreme integer of the same sign). Non-integral
numeric values are truncated towards zero (i.e., as.integer(x) equals trunc(x) there),
and imaginary parts of complex numbers are discarded (with a warning). Like as.vector
it strips attributes including names.

is.integer returns TRUE or FALSE depending on whether its argument is of integer type or
not. is.integer is generic: you can write methods to handle of specific classes of objects,
see InternalMethods. Note that factors are true for is.integer but false for is.numeric.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

328 integrate

See Also

round (and ceiling and floor on that help page) to convert to integral values.

Examples

as.integer() truncates:
x <= pi * c(-1:1,10)
as.integer(x)

integrate Integration of One-Dimensional Functions

Description

Adaptive quadrature of functions of one variable over a finite or infinite interval.

Usage

integrate(f, lower, upper, subdivisions=100,
rel.tol = .Machine$double.eps~0.25, abs.tol = rel.tol,
stop.on.error = TRUE, keep.xy = FALSE, aux = NULL, ...)

Arguments
f an R function taking a numeric first argument and returning a numeric
vector of the same length. Returning a non-finite element will generate
an error.

lower, upper the limits of integration. Can be infinite.
subdivisions the maximum number of subintervals.
rel.tol relative accuracy requested.

abs.tol absolute accuracy requested.

stop.on.error logical. If true (the default) an error stops the function. If false some
errors will give a result with a warning in the message component.

keep.xy unused. For compatibility with S.
aux unused. For compatibility with S.

additional arguments to be passed to f. Remember to use argument
names not matching those of integrate(.)!

Details

If one or both limits are infinite, the infinite range is mapped onto a finite interval.

For a finite interval, globally adaptive interval subdivision is used in connection with ex-
trapolation by the Epsilon algorithm.

rel.tol cannot be less than max (50*.Machine$double.eps, 0.5e-28) if abs.tol <= 0.

integrate

Value

329

A list of class "integrate" with components

value
abs.error
subdivisions
message

call

Note

the final estimate of the integral.

estimate of the modulus of the absolute error.

the number of subintervals produced in the subdivision process.
"OK" or a character string giving the error message.

the matched call.

Like all numerical integration routines, these evaluate the function on a finite set of points.
If the function is approximately constant (in particular, zero) over nearly all its range it is
possible that the result and error estimate may be seriously wrong.

When integrating over infinite intervals do so explicitly, rather than just using a large
number as the endpoint. This increases the chance of a correct answer — any function
whose integral over an infinite interval is finite must be near zero for most of that interval.

References

Based on QUADPACK routines dgags and dgagi by R. Piessens and E. deDoncker-
Kapenga, available from Netlib.

See

R. Piessens, E. deDoncker-Kapenga, C. Uberhuber, D. Kahaner (1983) Quadpack: a Sub-
routine Package for Automatic Integration; Springer Verlag.

See Also

The function adapt in the adapt package on CRAN, for multivariate integration.

Examples

integrate(dnorm, -1.96, 1.96)
integrate(dnorm, -Inf, Inf)

a slowly-convergent integral
integrand <- function(x) {1/((x+1)*sqrt(x))}
integrate(integrand, lower = 0, upper = Inf)

don't do this if you really want the integral from O to Inf
integrate(integrand, lower = 0, upper = 10)
integrate(integrand, lower = 0, upper = 100000)

integrate(integrand, lower = O, upper

1000000, stop.on.error = FALSE)

try(integrate(function(x) 2, 0, 1)) ## no vectorizable function
integrate(function(x) rep(2, length(x)), 0, 1) ## correct

integrate can fail if misused
integrate(dnorm,0,2)

integrate(dnorm,0,20)

integrate(dnorm,0,200)

integrate (dnorm,0,2000)

integrate(dnorm,0,20000) ## fails on many systems
integrate(dnorm, 0, Inf) ## works

330 interaction.plot

interaction Compute Factor Interactions

Description

interaction computes a factor which represents the interaction of the given factors. The
result of interaction is always unordered.

Usage

interaction(..., drop = FALSE)

Arguments
the factors for which interaction is to be computed, or a single list giving
those factors.
drop if drop is TRUE, empty factor levels are dropped from the result. The
default is to retain all factor levels.
Value

A factor which represents the interaction of the given factors. The levels are labelled as the
levels of the individual factors joined by ..

References
Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

factor, :

Examples

a <- gl(2, 2, 8)
b <- gl(2, 4, 8)
interaction(a, b)

interaction.plot Two-way Interaction Plot

Description

Plots the mean (or other summary) of the response for two-way combinations of factors,
thereby illustrating possible interactions.

interaction.plot 331

Usage

interaction.plot(x.factor, trace.factor, response, fun = mean,
type = c("1", "p"), legend = TRUE,
trace.label=deparse(substitute(trace.factor)), fixed=FALSE,
xlab = deparse(substitute(x.factor)), ylab = ylabel,
ylim = range(cells, na.rm=TRUE),
1ty = nc:1, col = 1, pch = c(1:9, 0, letters),
xpd = NULL, leg.bg = par("bg"), leg.bty = "n",
xtick = FALSE, xaxt = par("xaxt"), axes = TRUE, ...)

Arguments

x.factor a factor whose levels will form the x axis.

trace.factor another factor whose levels will form the traces.

response a numeric variable giving the response

fun the function to compute the summary. Should return a single real value.

type the type of plot: lines or points.

legend logical. Should a legend be included?

trace.label overall label for the legend.

fixed logical. Should the legend be in the order of the levels of trace.factor
or in the order of the traces at their right-hand ends?

xlab,ylab the x and y label of the plot each with a sensible default.

ylim numeric of length 2 giving the y limits for the plot.

1ty line type for the lines drawn, with sensible default.

col the color to be used for plotting.

pch a vector of plotting symbols or characters, with sensible default.

xpd determines clipping behaviour for the legend used, see par(xpd). Per

default, the legend is not clipped at the figure border.
leg.bg, leg.bty
arguments passed to legend().

xtick logical. Should tick marks be used on the x axis?
xaxt, axes,
graphics parameters to be passed to the plotting routines.

Detalils

By default the levels of x.factor are plotted on the x axis in their given order, with extra
space left at the right for the legend (if specified). If x.factor is an ordered factor and the
levels are numeric, these numeric values are used for the x axis.

The response and hence its summary can contain missing values. If so, the missing values
and the line segments joining them are omitted from the plot (and this can be somewhat
disconcerting).

The graphics parameters xlab, ylab, ylim, 1ty, col and pch are given suitable defaults
(and x1im and xaxs are set and cannot be overriden). The defaults are to cycle through
the line types, use the foreground colour, and to use the symbols 1:9, 0, and the capital
letters to plot the traces.

332 interactive

Note

Some of the argument names and the precise behaviour are chosen for S-compatibility.

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed
experiments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie,
Wadsworth & Brooks/Cole.

Examples

data(ToothGrowth)

attach(ToothGrowth)

interaction.plot(dose, supp, len, fixed=TRUE)

dose <- ordered(dose)

interaction.plot(dose, supp, len, fixed=TRUE, col = 2:3, leg.bty = "o")
detach()

data(OrchardSprays)
with(OrchardSprays, {
interaction.plot(treatment, rowpos, decrease)
interaction.plot(rowpos, treatment, decrease, cex.axis=0.8)
order the rows by their mean effect
rowpos <- factor(rowpos, levels=sort.list(tapply(decrease, rowpos, mean)))
interaction.plot(rowpos, treatment, decrease, col = 2:9, 1ty = 1)

b

data(esoph)
with(esoph, {
interaction.plot(agegp, alcgp, ncases/ncontrols)
interaction.plot(agegp, tobgp, ncases/ncontrols, trace.label="tobacco",
fixed=TRUE, xaxt = "n"
b

interactive Is R Running Interactively?

Description

Return TRUE when R is being used interactively and FALSE otherwise.

Usage

interactive()

See Also

source, .First

Examples

.First <- function() if(interactive()) x11()

Internal 333

Internal Call an Internal Function

Description

.Internal performs a call to an internal code which is built in to the R interpreter. Only
true R wizards should even consider using this function.

Usage
.Internal(call)
Arguments
call a call expression
See Also

.Primitive, .C, .Fortran.

InternalMethods Internal Generic Functions

Description

Many R-internal functions are generic and allow methods to be written for.

Detalils
The following builtin functions are generic as well, i.e., you can write methods for them:
[, [[8, [<-, [[<-, $<-,
length,
dimnames<-, dimnames, dim<-, dim
c, unlist,

as.character, as.vector, is.array, is.atomic, is.call, is.character, is.complex,
is.double, is.environment, is.function, is.integer, is.language, is.logical,
is.list, is.matrix, is.na, is.nan is.null, is.numeric, is.object, is.pairlist,
is.recursive, is.single, is.symbol.

See Also

methods for the methods of non-Internal generic functions.

334

IQR

invisible Change the Print Mode to Invisible

Description

Return a (temporarily) invisible copy of an object.

Usage

invisible(x)

Arguments

X an arbitrary R object.

Details

This function can be useful when it is desired to have functions return values which can be

assigned, but which do not print when they are not assigned.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth

& Brooks/Cole.

See Also

return, function.

Examples

These functions both return their argument
f1 <- function(x) x

f2 <- function(x) invisible(x)

f1(1)# prints

£2(1)# does not

IQR The Interquartile Range

Description

computes interquartile range of the x values.

Usage
IQR(x, na.rm = FALSE)

Arguments

X a numeric vector.

na.rm logical. Should missing values be removed?

iris 335

Details

Note that this function computes the quartiles using the quantile function rather than fol-
lowing Tukey’s recommendations, i.e., IQR(x) = quantile(x,3/4) - quantile(x,1/4).

For normally N(m,1) distributed X, the expected value of IQR(X) is 2*gnorm(3/4) =
1.3490, i.e., for a normal-consistent estimate of the standard deviation, use IQR(x) /
1.349.

References

Tukey, J. W. (1977). Exploratory Data Analysis. Reading: Addison-Wesley.

See Also

fivenum, mad which is more robust, range, quantile.

Examples

data(rivers)
IQR(rivers)

iris Edgar Anderson’s Iris Data

Description

This famous (Fisher’s or Anderson’s) iris data set gives the measurements in centimeters of
the variables sepal length and width and petal length and width, respectively, for 50 flowers
from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

Usage

data(iris)
data(iris3)

Format

iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepal.Length,
Sepal.Width, Petal.Length, Petal.Width, and Species.

iris3 gives the same data arranged as a 3-dimensional array of size 50 by 4 by 3, as repre-
sented by S-PLUS. The first dimension gives the case number within the species subsample,
the second the measurements with names Sepal L., Sepal W., Petal L., and Petal W.,
and the third the species.

Source

Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of
FEugenics, 7, Part 11, 179-188.

The data were collected by Anderson, Edgar (1935). The irises of the Gaspe Peninsula,
Bulletin of the American Iris Society, 59, 2-5.

336 is.empty.model

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (has iris3 as iris.)

See Also

matplot some examples of which use iris.

Examples

data(iris3)
dni3 <- dimnames(iris3)
ii <- data.frame(matrix(aperm(iris3, <(1,3,2)), ncol=4,
dimnames=1ist (NULL, sub(" L.",".Length",
sub(" W.",".Width", dni3[[2]11)))),

Species = gl(3,50,lab=sub("S","s",sub("V","v",dni3[[3]11))))
data(iris)
all.equal(ii, iris) # TRUE

is.empty.model Check if a Model is Empty

Description

R model notation allows models with no intercept and no predictors. These require spe-
cial handling internally. is.empty.model() checks whether an object describes an empty
model.

Usage

is.empty.model (x)

Arguments

X A terms object or an object with a terms method.

Value

TRUE if the model is empty

See Also

Im,glm

Examples

y <- rnorm(20)
is.empty.model(y ~ 0)
is.empty.model(y ~ -1)
is.empty.model(lm(y ~ 0))

is.finite 337

is.finite Finite, Infinite and NaN Numbers

Description
is.finite and is.infinite return a vector of the same length as x, indicating which
elements are finite (not infinite and not missing).

Inf and -Inf are positive and negative “infinity” whereas NaN means “Not a Number”.

Usage

is.finite(x)
is.infinite(x)
Inf

NaN

is.nan(x)

Arguments

X (numerical) object to be tested.

Details

is.finite returns a vector of the same length as x the jth element of which is TRUE if x[j]
is finite (i.e., it is not one of the values NA, NaN, Inf or -Inf). All elements of character
and generic (list) vectors are false, so is.finite is only useful for logical, integer, numeric
and complex vectors. Complex numbers are finite if both the real and imaginary parts are.

is.infinite returns a vector of the same length as x the jth element of which is TRUE if
x[j] is infinite (i.e., equal to one of Inf or -Inf).

is.nan tests if a numeric value is NaN. Do not test equality to NaN, or even use identical,
since systems typically have many different NaN values. In most ports of R one of these is
used for the numeric missing value NA. It is generic: you can write methods to handle of
specific classes of objects, see InternalMethods.

Note

In R, basically all mathematical functions (including basic Arithmetic), are supposed to
work properly with +/- Inf and NaN as input or output.

The basic rule should be that calls and relations with Infs really are statements with a
proper mathematical limit.

References

ANSI/IEEE 754 Floating-Point Standard.
Currently (6/2002), Bill Metzenthen’s (billm@suburbia.net) tutorial and examples at

http://www.suburbia.net/ billm/
See Also

NA, ‘Not Awailable’ which is not a number as well, however usually used for missing values
and applies to many modes, not just numeric.

http://www.suburbia.net/~billm/

338 is.language

Examples
pi / O ## = Inf a non-zero number divided by zero creates infinity
0/ 0 ## = NaN

1/0 + 1/0# Inf
1/0 - 1/0# NaN

stopifnot(
1/0 == Inf,
1/Inf ==
)
sin(Inf)
cos(Inf)
tan(Inf)

is.function Is an Object of Type Function?

Description

Checks whether its argument is a function.

Usage

is.function(x)

Arguments

X an R object.

Details

is.function is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

Value

TRUE if x is a function, and FALSE otherwise.

is.language Is an Object a Language Object?

Description

is.language returns TRUE if x is either a variable name, a call, or an expression.

Usage

is.language(x)

is.object 339

Arguments

X object to be tested.

Details

is.language is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

11 <- list(a = expression(x"2 - 2*x + 1), b = as.name("Jim"),
c = as.expression(exp(1)), d = call("sin", pi))

sapply (11, typeof)

sapply (11, mode)

stopifnot (sapply(1ll, is.language))

is.object Is an Object “internally classed”?

Description
A function rather for internal use. It returns TRUE if the object x has the R internal 0BJECT
attribute set, and FALSE otherwise.

Usage

is.object (x)

Arguments

X object to be tested.

Detalils

is.object is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

See Also

class, and methods.

Examples

is.object(1) # FALSE
is.object(as.factor(1:3)) # TRUE

340 Is.recursive

is.R Are we using R, rather than S?

Description

Test if running under R.

Usage
is.RQ)

Details

The function has been written such as to correctly run in all versions of R, S and S-PLUS.
In order for code to be runnable in both R and S dialects, either your the code must define
is.R or use it as

if (exists("is.R") && is.function(is.R) && is.R()) {
R-specific code

} else {

S-version of code

¥

Value

is.R returns TRUE if we are using R and FALSE otherwise.

See Also

R.version, system.

Examples

x <- runif(20); small <- x < 0.4
'which()' only exists in R:
if(is.R()) which(small) else seq(along=small) [smalll

is.recursive Is an Object Atomic or Recursive?

Description

is.atomic returns TRUE if x does not have a list structure and FALSE otherwise.

is.recursive returns TRUE if x has a recursive (list-like) structure and FALSE otherwise.

Usage

is.atomic(x)
is.recursive(x)

is.single 341

Arguments

X object to be tested.

Details

These are generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

is.list, is.language, etc, and the demo("is.things").

Examples

is.a.r <- function(x) c(is.atomic(x), is.recursive(x))

is.a.r(c(a=1,b=3)) # TRUE FALSE

is.a.r(list()) # FALSE TRUE 77

is.a.r(list(2)) # FALSE TRUE

is.a.r(1m) # FALSE TRUE

is.a.r(y ~ x) # FALSE TRUE
is.a.r(expression(x+1)) # FALSE TRUE (not in 0.62.3!)

is.single Is an Object of Single Precision Type?
Description

is.single reports an error. There are no single precision values in R.

Usage

is.single(x)

Arguments

X object to be tested.

Details
is.single is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

342 Japanese

islands Areas of the World’s Major Landmasses

Description

The areas in thousands of square miles of the landmasses which exceed 10,000 square miles.

Usage

data(islands)

Format

A named vector of length 48.

Source

The World Almanac and Book of Facts, 1975, page 406.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(islands)
dotchart (log(islands, 10),

main = "islands data: loglO(area) (loglO(sq. miles))")
dotchart(log(islands[order(islands)], 10),

main = "islands data: loglO(area) (loglO(sq. miles))")

Japanese Japanese characters in R

Description

The implementation of Hershey vector fonts provides a large number of Japanese characters
(Hiragana, Katakana, and Kanji).

Details

Without keyboard support for typing Japanese characters, the only way to produce these
characters is to use special escape sequences: see Hershey.

For example, the Hiragana character for the sound "ka” is produced by \\#J242b and the
Katakana character for this sound is produced by \\#J252b. The Kanji ideograph for “one”
is produced by \\#J306c or \\#N00O1.

The output from demo(Japanese) shows tables of the escape sequences for the available
Japanese characters.

Jjitter

References

http://www.gnu.org/software/plotutils/plotutils.html

See Also

demo (Japanese), Hershey, text, contour

Examples

plot(1:9, type="n", axes=FALSE, frame=TRUE, ylab="",
main= "example(Japanese)", xlab= "using Hershey fonts")

343

par (cex=3)

VEf <- c("serif", "plain")

text (4, 2, "\\#J2438\\#J2421\\#J2451\\#J2473", vfont = Vf)

text (4, 4, "\\#J2538\\#J2521\\#J2551\\#J2573", vfont = Vf)

text (4, 6, "\\#J467c\\#J4b5c", vfont = Vf)

text (4, 8, "Japan", vfont = Vi)

par(cex=1)

text(8, 2, "Hiragana")

text (8, 4, "Katakana")

text (8, 6, "Kanji")

text(8, 8, "English")

jitter Add ‘Jitter’ (Noise) to Numbers

Description

Add a small amount of noise to a numeric vector.

Usage

jitter(x, factor=1, amount = NULL)

Arguments

X
factor

amount

Details

numeric to which jitter should be added.

numeric

numeric; if positive, used as amount (see below), otherwise, if = 0 the

default is factor * z/50.

Default (NULL): factor * d/5 where d is about the smallest difference

between x values.

The result, say r, is r <- x + runif(n, -a, a) where n <- length(x) and a is the
amount argument (if specified).

Let z <- max(x) - min(x) (assuming the usual case). The amount a to be added is either

provided as positive argument amount or otherwise computed from z, as follows:

If amount == 0, we set a <- factor * z/50 (same as S).

If amount is NULL (default), we set a <- factor * d/5 where d is the smallest difference
between adjacent unique (apart from fuzz) x values.

http://www.gnu.org/software/plotutils/plotutils.html

344 kappa

Value

jitter(x,...) returns a numeric of the same length as x, but with an amount of noise
added in order to break ties.

Author(s)
Werner Stahel and Martin Maechler, ETH Zurich

References

Chambers, J. M., Cleveland, W. S.; Kleiner, B. and Tukey, P.A. (1983) Graphical Methods
for Data Analysis. Wadsworth; figures 2.8, 4.22, 5.4.

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

rug which you may want to combine with jitter.

Examples

round (jitter(c(rep(1,3), rep(1.2, 4), rep(3,3))), 3)
These two 'fail' with S-plus 3.x:

jitter(rep(0, 7))

jitter(rep(10000,5))

kappa Estimate the Condition Number

Description

An estimate of the condition number of a matrix or of the R matrix of a QR decomposition,
perhaps of a linear fit. The condition number is defined as the ratio of the largest to the
smallest non-zero singular value of the matrix.

Usage

kappa(z, ...)

S3 method for class 'lm':
kappa(z, ...)

Default S3 method:
kappa(z, exact = FALSE, ...)
S3 method for class 'qr':
kappa(z, ...)

kappa.tri(z, exact = FALSE, ...)

Arguments
z A matrix or a the result of qr or a fit from a class inheriting from "1m".
exact logical. Should the result be exact?

further arguments passed to or from other methods.

kronecker 345

Details

If exact = FALSE (the default) the condition number is estimated by a cheap approxima-
tion. Following S, this uses the LINPACK routine ‘dtrco.f’. However, in R (or S) the exact
calculation is also likely to be quick enough.

kappa.tri is an internal function called by kappa.qr.

Value

The condition number, kappa, or an approximation if exact = FALSE.

Author(s)

The design was inspired by (but differs considerably from) the S function of the same name
described in Chambers (1992).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

svd for the singular value decomposition and qr for the QR one.

Examples

kappa(xl <- cbind(1,1:10))# 15.71
kappa(x1l, exact = TRUE) # 13.68
kappa(x2 <- cbind(x1,2:11))# high! [x2 is singular!]

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }

sv9 <- svd(h9 <- hilbert(9))$ d

kappa(h9)# pretty high!

kappa(h9, exact = TRUE) == max(sv9) / min(sv9)

kappa(h9, exact = TRUE) / kappa(h9) # .677 (i.e., rel.error = 32%)

kronecker Kronecker products on arrays

Description

Computes the generalised kronecker product of two arrays, X and Y. kronecker(X, Y)
returns an array A with dimensions dim(X) * dim(Y).

Usage

kronecker (X, Y, FUN = "*", make.dimnames = FALSE, ...)
X %xh Y

346 labels

Arguments
X A vector or array.
Y A vector or array.
FUN a function; it may be a quoted string.

make.dimnames Provide dimnames that are the product of the dimnames of X and Y.

optional arguments to be passed to FUN.

Detalils

If X and Y do not have the same number of dimensions, the smaller array is padded with
dimensions of size one. The returned array comprises submatrices constructed by taking X
one term at a time and expanding that term as FUN(x, Y, ...).

%x% is an alias for kronecker (where FUN is hardwired to "*").

Author(s)

Jonathan Rougier, (J.C.Rougier@durham.ac.uk)

References

Shayle R. Searle (1982) Matriz Algebra Useful for Statistics. John Wiley and Sons.

See Also

outer, on which kronecker is built and %*% for usual matrix multiplication.

Examples

simple scalar multiplication
(M <- matrix(1:6, ncol=2))
kronecker (4, M)

Block diagonal matrix:
kronecker(diag(1l, 3), M)

ask for dimnames
fred <- matrix(1:12, 3, 4, dimnames=1ist(LETTERS[1:3], LETTERS[4:7]))
bill <- c("happy" = 100, "sad" = 1000)

kronecker (fred, bill, make.dimnames = TRUE)

bill <- outer(bill, c("cat"=3, "dog"=4))
kronecker (fred, bill, make.dimnames = TRUE)

labels Find Labels from Object

Description

Find a suitable set of labels from an object for use in printing or plotting, for example. A
generic function.

lapply 347

Usage

labels(object, ...)

Arguments
object Any R object: the function is generic.
further arguments passed to or from other methods.
Value

A character vector or list of such vectors. For a vector the results is the names or
seq(along=x), for a data frame or array it is the dimnames (with NULL expanded to
seq(len=d[i])), for a terms object it is the term labels and for an 1m object it is the
term labels for estimable terms.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

lapply Apply a Function over a List or Vector

Description

lapply returns a list of the same length as X. Each element of which is the result of applying
FUN to the corresponding element of X.

sapply is a “user-friendly” version of lapply also accepting vectors as X, and returning a
vector or matrix with dimnames if appropriate.

replicate is a wrapper for the common use of sapply for repeated evaluation of an ex-
pression (which will usually involve random number generation).

Usage

lapply (X, FUN, ...)
sapply (X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)

replicate(n, expr, simplify = TRUE)

Arguments

X list or vector to be used.

FUN the function to be applied. In the case of functions like +, %*%, etc., the
function name must be quoted.
optional arguments to FUN.

simplify logical; should the result be simplified to a vector or matrix if possible?

USE.NAMES logical; if TRUE and if X is character, use X as names for the result unless
it had names already.

n Number of replications.

expr Expression to evaluate repeatedly.

348 Last.value

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also
apply, tapply.

Examples

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
compute the list mean for each list element

lapply(x,mean)

median and quartiles for each list element

lapply(x, quantile, probs = 1:3/4)

sapply(x, quantile)

str(i39 <- sapply(3:9, seq))# list of vectors

sapply(i39, fivenum)

hist(replicate (100, mean(rexp(10))))

Last.value Value of Last Evaluated Expression

Description
The value of the internal evaluation of a top-level R expression is always assigned to
.Last.value (in package:base) before further processing (e.g., printing).

Usage

.Last.value

Details

The value of a top-level assignment is put in .Last.value, unlike S.

Do not assign to .Last.value in the workspace, because this will always mask the object
of the same name in package:base.

See Also

eval

Examples

These will not work correctly from example(),

but they will in make check or if pasted in,

as example() does not run them at the top level

gamma (1:15) # think of some intensive calculation...
facl4 <- .Last.value # keep them

library("eda") # returns invisibly
.Last.value # shows what library(.) above returned

layout

349

layout

Specifying Complex Plot Arrangements

Description

layout divides the device up into as many rows and columns as there are in matrix mat,
with the column-widths and the row-heights specified in the respective arguments.

Usage

layout (mat,
widths

= rep(1, dim(mat) [2]),

heights= rep(1l, dim(mat) [1]),
respect= FALSE)

layout.show(n
lem(x)

Arguments

mat

widths

heights

respect

Details

=1)

a matrix object specifying the location of the next IV figures on the output
device. Each value in the matrix must be 0 or a positive integer. If N is
the largest positive integer in the matrix, then the integers {1,..., N —1}
must also appear at least once in the matrix.

a vector of values for the widths of columns on the device. Relative widths
are specified with numeric values. Absolute widths (in centimetres) are
specified with the 1em() function (see examples).

a vector of values for the heights of rows on the device. Relative and
absolute heights can be specified, see widths above.

either a logical value or a matrix object. If the latter, then it must have
the same dimensions as mat and each value in the matrix must be either
Oor 1.

number of figures to plot.

a dimension to be intepreted as a number of centimetres.

Figure ¢ is allocated a region composed from a subset of these rows and columns, based on
the rows and columns in which ¢ occurs in mat.

The respect argument controls whether a unit column-width is the same physical mea-
surement on the device as a unit row-height.

layout.show(n) plots (part of) the current layout, namely the outlines of the next n figures.

lcm is a trivial function, to be used as the interface for specifying absolute dimensions for
the widths and heights arguments of layout ().

Value

layout returns the number of figures, N, see above.

350 layout

Author(s)
Paul R. Murrell

References

Murrell, P. R. (1999) Layouts: A mechanism for arranging plots on a page. Journal of
Computational and Graphical Statistics, 8, 121-134. Chapter 5 of Paul Murrell’s Ph.D.
thesis.

See Also

par with arguments mfrow, mfcol, or mfg.

Examples

def.par <- par(no.readonly = TRUE)# save default, for resetting...

divide the device into two rows and two columns

allocate figure 1 all of row 1

allocate figure 2 the intersection of column 2 and row 2
layout (matrix(c(1,1,0,2), 2, 2, byrow = TRUE))

show the regions that have been allocated to each plot
layout.show(2)

divide device into two rows and two columns

allocate figure 1 and figure 2 as above

respect relations between widths and heights

nf <- layout(matrix(c(1,1,0,2), 2, 2, byrow=TRUE), respect=TRUE)
layout.show(nf)

create single figure which is 5cm square
nf <- layout(matrix(1), widths=lcm(5), heights=1lcm(5))
layout.show(nf)

##-- Create a scatterplot with marginal histograms -----

x <- pmin(3, pmax(-3, rnorm(50)))

y <- pmin(3, pmax(-3, rnorm(50)))

xhist <- hist(x, breaks=seq(-3,3,0.5), plot=FALSE)

yhist <- hist(y, breaks=seq(-3,3,0.5), plot=FALSE)

top <- max(c(xhist$counts, yhist$counts))

xrange <- c(-3,3)

yrange <- c(-3,3)

nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
layout.show(nf)

par (mar=c(3,3,1,1))

plot(x, y, xlim=xrange, ylim=yrange, xlab="", ylab="")

par (mar=c(0,3,1,1))

barplot (xhist$counts, axes=FALSE, ylim=c(0, top), space=0)

par (mar=c(3,0,1,1))

barplot (yhist$counts, axes=FALSE, xlim=c(0, top), space=0, horiz=TRUE)

par(def .par)#- reset to default

legend

351

legend

Add Legends to Plots

Description

This function can be used to add legends to plots. Note that a call to the function locator
can be used in place of the x and y arguments.

Usage

legend(x, y = NULL, legend, fill = NULL, col = "black", 1lty, lwd, pch,

angle
pt.bg =

NULL, density = NULL, bty = "o", bg = par("bg"),
NA, cex = 1, xjust = 0, yjust =1,

x.intersp = 1, y.intersp = 1, adj = c(0, 0.5),
text.width = NULL, merge = do.lines && has.pch, trace = FALSE,
plot = TRUE, ncol = 1, horiz = FALSE)

Arguments

X, ¥
legend
fill

col
1ty,1lwd

pch
angle
density
bty

bg
pt.bg
cex
xjust

yjust
X.intersp
y.intersp

adj

the x and y co-ordinates to be used to position the legend. They can be
specified in any way which is accepted by xy.coords: See Details.

a vector of text values or an expression of length > 1, or a call (as
resulting from substitute) to appear in the legend.

if specified, this argument will cause boxes filled with the specified colors
(or shaded in the specified colors) to appear beside the legend text.

the color of points or lines appearing in the legend.

the line types and widths for lines appearing in the legend. One of these
two must be specified for line drawing.

the plotting symbols appearing in the legend, either as vector of 1-
character strings, or one (multi character) string. Must be specified for
symbol drawing.

angle of shading lines.

the density of shading lines, if numeric and positive. If NULL or negative
or NA color filling is assumed.

the type of box to be drawn around the legend. The allowed values are
"o" (the default) and "n".

the background color for the legend box. (Note that this is only used if
bty = "n".)

the background color for the points.

character expansion factor relative to current par("cex").

how the legend is to be justified relative to the legend x location. A value
of 0 means left justified, 0.5 means centered and 1 means right justified.

the same as xjust for the legend y location.
character interspacing factor for horizontal (x) spacing.
the same for vertical (y) line distances.

numeric of length 1 or 2; the string adjustment for legend text. Useful for
y-adjustment when labels are plotmath expressions.

352

text.width

merge

trace
plot

ncol

horiz

Details

legend

the width of the legend text in x ("user") coordinates. Defaults to the
proper value computed by strwidth(legend).

logical; if TRUE, “merge” points and lines but not filled boxes. Defaults to
TRUE if there are points and lines.

logical; if TRUE, shows how legend does all its magical computations.
logical. If FALSE, nothing is plotted but the sizes are returned.

the number of columns in which to set the legend items (default is 1, a
vertical legend).

logical; if TRUE, set the legend horizontally rather than vertically (speci-
fying horiz overrides the ncol specification).

Arguments x, y, legend are interpreted in a non-standard way to allow the coordinates
to be specified via one or two arguments. If legend is missing and y is not numeric, it is
assumed that the second argument is intended to be legend and that the first argument
specifies the coordinates.

The coordinates can be specified in any way which is accepted by xy.coords. If this gives
the coordinates of one point, it is used as the top-left coordinate of the rectangle containing
the legend. If it gives the coordinates of two points, these specify opposite corners of the
rectangle (either pair of corners, in any order).

“Attribute” arguments such as col, pch, 1ty, etc, are recycled if necessary. merge is not.

Points are drawn after lines in order that they can cover the line with their background
color pt.bg, if applicable.

See the examples for how to right-justify labels.

Value

A list with list components

rect

text

a list with components

w, h positive numbers giving width and height of the legend’s box.
left, top x and y coordinates of upper left corner of the box.

a list with components

X, y numeric vectors of length length(legend), giving the x and y co-
ordinates of the legend’s text(s).

returned invisibly.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth

& Brooks/Cole.

See Also

plot, barplot which uses legend (), and text for more examples of math expressions.

legend 353
Examples

Run the example in '?matplot' or the following:
leg.txt <- c("Setosa Petals", "Setosa Sepals",
"Versicolor Petals", "Versicolor Sepals")
y.leg <- c(4.5, 3, 2.1, 1.4, .7)
cexv <- c(1.2, 1, 4/5, 2/3, 1/2)
matplot(c(1,8), c(0,4.5), type = "n", xlab = "Length", ylab = "Width",
main = "Petal and Sepal Dimensions in Iris Blossoms")
for (i in seq(cexv)) {
text (1, y.legli]l-.1, paste("cex=",formatC(cexv[i])), cex=.8, adj = 0)
legend(3, y.leglil, leg.txt, pch = "sSvV", col = c(1, 3), cex = cexv[il])
}

'merge = TRUE' for merging lines & points:
x <- seq(-pi, pi, len = 65)
plot(x, sin(x), type = "1", ylim =
points(x, cos(x), pch = 3, col = 4)
lines(x, tan(x), type = "b", 1ty = 1, pch = 4, col = 6)
title("legend(..., 1ty = c(2, -1, 1), pch = c(-1,3,4), merge = TRUE)",
cex.main = 1.1)
legend(-1, 1.9, c("sin", "cos", "tan"), col = c(3,4,6),
1ty = c(2, -1, 1), pch = c(-1, 3, 4), merge = TRUE, bg='gray90")

c(-1.2, 1.8), col = 3, 1ty = 2)

right-justifying a set of labels: thanks to Uwe Ligges
x <= 1:5; y1 <= 1/x; y2 <- 2/x
plot(rep(x, 2), c(yl, y2), type="n", xlab="x", ylab="y")
lines(x, y1); lines(x, y2, lty=2)
temp <- legend(5, 2, legend = c(" ", " "),

text.width = strwidth("1,000,000"),

lty = 1:2, xjust = 1, yjust = 1)
text (temp$rect$left + temp$rect$w, temp$text$y,

c("1,000", "1,000,000"), pos=2)

##--- log scaled Examples ------ - -
leg.txt <- c("a one", "a two")

par(mfrow = c(2,2))
for(11l in c("","x","y","xy")) {
plot(2:10, log=11, main=paste("log = '",11,"'", sep=""))
abline(1,1)
lines(2:3,3:4, col=2) #
points (2,2, col=3) #
rect(2,3,3,2, col=4)
text(c(3,3),2:3, c("rect(2,3,3,2, col=4)",
"text(c(3,3),2:3,\"c(rect(...)\")"), adj = <c(0,.3))
legend(list(x=2,y=8), legend = leg.txt, col=2:3, pch=1:2,
1ty=1, merge=TRUE)#, trace=TRUE)
}
par (mfrow=c(1,1))

##-- Math expressions: - - -—=

x <- seq(-pi, pi, len = 65)

plot(x, sin(x), type="1", col = 2,xlab=expression(phi),ylab=expression(f(phi)))
abline(h=-1:1, v=pi/2*(-6:6), col="gray90")

lines(x, cos(x), col = 3, 1ty = 2)

ex.csl <- expression(plain(sin) * phi, paste("cos", phi))# 2 ways

354 length

str(legend(-3, .9, ex.csl, 1lty=1:2, plot=FALSE, adj
legend(-3, .9, ex.csl, lty=1:2, col=2:3, adj

c(0, .6)))# adj y !
c(0, .6))

x <- rexp(100, rate = .5)

hist(x, main = "Mean and Median of a Skewed Distribution")

abline(v = mean(x), col=2, lty=2, lwd=2)

abline(v = median(x), col=3, 1lty=3, lwd=2)

ex12 <- expression(bar(x) == sum(over(x[i], n), i==1, n),
hat(x) == median(x[i], i==1,n))

str(legend(4.1, 30, ex12, col = 2:3, 1lty=2:3, lwd=2))

'Filled' boxes -- for more, see example(plotfactor)
op <- par(bg="white") # to get an opaque box for the legend
data(PlantGrowth)

plot(cut(weight, 3) ~ group, data = PlantGrowth,
col = NULL, density = 16%(1:3))
par (op)

Using 'ncol'
x <- 0:64/64
matplot(x, outer(x, 1:7, function(x, k) sin(k * pi * x)),
type = "o", col = 1:7, ylim = c(-1, 1.5), pch = "x")
op <- par(bg="antiquewhitel")
legend(0, 1.5, paste("sin(",1:7,"pi * x)"), col=1:7, 1lty=1:7, pch = "x*",
ncol = 4, cex=.8)
legend(.8,1.2, paste("sin(",1:7,"pi * x)"), col=1:7, 1lty=1:7, pch = "x",cex=.8)
legend(0, -.1, paste("sin(",1:4,"pi * x)"), col=1:4, 1lty=1:4, ncol=2, cex=.8)
legend (0, -.4, paste("sin(",5:7,"pi * x)"), col=5:7, pch=24, ncol=2, cex=1.5,
pt.bg="pink")
par (op)

point covering line :

y <- sin(3*pi*x)

plot(x, y, type="1", col="blue", main = "points with bg & legend(*, pt.bg)")
points(x, y, pch=21, bg="white")

legend(.4,1, "sin(c x)", pch=21, pt.bg="white", 1lty=1, col = "blue")

length Length of a Vector or List

Description

Get or set the length of vectors (including lists).

Usage
length(x)
length(x) <- value
Arguments

X a vector or list.

value an integer.

levels 355

Details

length is generic: you can write methods to handle of specific classes of objects, see Inter-
nalMethods.

The replacement form can be used to reset the length of a vector. If a vector is shortened,
extra values are discarded and when a vector is lengthened, it is padded out to its new
length with NAs.

Value

The length of x as an integer of length 1, if x is (or can be coerced to) a vector or list.
Otherwise, length returns NA.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

nchar for counting the number of characters in character vectors.

Examples

length(diag(4))# = 16 (4 x 4)
length(options())# 12 or more

length(y ~ x1 + x2 + x3)# 3
length(expression(x, {y <- x72; y+2}, x7y)) # 3

levels Levels Attributes

Description

levels provides access to the levels attribute of a variable. The first form returns the value
of the levels of its argument and the second sets the attribute.

The assignment form ("levels<-") of levels is a generic function and new methods can
be written for it. The most important method is that for factors:

Usage

levels(x)
levels(x) <- value

Arguments
X an object, for example a factor.
value A valid value for levels(x). For the default method, NULL or a character

vector. For the factor method, a vector of character strings with length
at least the number of levels of x, or a named list specifying how to rename
the levels.

356 library

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

nlevels.

Examples

assign individual levels
x <- gl(2, 4, 8)
levels(x) [1] <- "low"
levels(x) [2] <- "high"

X

or as a group

y <- gl(2, 4, 8)

levels(y) <- c("low", "high")
y

combine some levels

z <- gl(3, 2, 12)

1eVelS(Z) <- C("A", IIBII, nAll)
Z

same, using a named list

z <- gl(3, 2, 12)

levels(z) <- list(A=c(1,3), B=2)
z

we can add levels this way:
f <- factor(c("a","b"))
levels(f) <- c("c", "a", "b")
f

f <- factor(c("a","b"))

levels(f) <- list(C="C", A="a", B="b")
b
library Loading and Listing of Packages
Description

library and require load add-on packages.

.First.lib is called when a package is loaded; .Last.lib is called when a package is
detached.

.packages returns information about package availability.
.path.package returns information about where a package was loaded from.

.find.package returns the directory paths of installed packages.

library

Usage

357

library(package, help, pos = 2, lib.loc = NULL, character.only = FALSE,
logical.return = FALSE, warn.conflicts = TRUE,
keep.source = getOption("keep.source.pkgs"),
verbose = getOption("verbose"), version)
require(package, quietly = FALSE, warn.conflicts = TRUE,
keep.source = getOption("keep.source.pkgs"),
character.only = FALSE, version, save = TRUE)

.First.lib(libname, pkgname)
.Last.1ib(libpath)

.packages(all.available = FALSE, lib.loc = NULL)

.path.package(package = .packages(), quiet = FALSE)

.find.package(package, lib.loc = NULL, quiet = FALSE,
verbose = getOption("verbose"))

.1libPaths (new)

.Library
.Autoloaded

Arguments

package, help

pos

lib.loc

character.only

version
logical.return

warn.conflicts

keep.source

verbose
quietly

save

the name of a package, given as a name or literal character string, or a
character string, depending on whether character.only is FALSE (de-
fault) or TRUE).

the position on the search list at which to attach the loaded package. Note
that .First.lib may attach other packages, and pos is computed after
.First.1lib has been run. Can also be the name of a position on the
current search list as given by search().

a character vector describing the location of R library trees to search
through, or NULL. The default value of NULL corresponds to all libraries
currently known.

a logical indicating whether package or help can be assumed to be char-
acter strings.

A character string denoting a version number of the package to be loaded.
If no version is given, a suitable default is chosen.

logical. If it is TRUE, FALSE or TRUE is returned to indicate success.

logical. If TRUE, warnings are printed about conflicts from attaching
the new package, unless that package contains an object .conflicts.OK.
logical. If TRUE, functions “keep their source” including comments, see
argument keep.source to options.

a logical. If TRUE, additional diagnostics are printed.

a logical. If TRUE, no message confirming package loading is printed.
logical or environment. IF TRUE, a call to require from the source for
a package will save the name of the required package in the variable
".required", allowing function detach to warn if a required package
is detached. See section ‘Packages that require other packages’ below.

358 library

libname a character string giving the library directory where the package was
found.

pkgname a character string giving the name of the package.

libpath a character string giving the complete path to the package.

all.available logical; if TRUE return a character vector of all available packages in
lib.loc.

quiet logical. For .path.package, should this not give warnings or an error if

the package(s) are not loaded? For .find.package, should this not give
warnings or an error if the package(s) are not found?

new a character vector with the locations of R library trees.

Details

library(package) and require(package) both load the package with name package.
require is designed for use inside other functions; it returns FALSE and gives a warning
(rather than an error as library() does) if the package does not exist. Both functions
check and update the list of currently loaded packages and do not reload code that is
already loaded.

For large packages, setting keep.source = FALSE may save quite a bit of memory.

If library is called with no package or help argument, it lists all available packages in the
libraries specified by 1ib.loc, and returns the corresponding information in an object of
class "libraryIQR". The structure of this class may change in future versions. In earlier
versions of R, only the names of all available packages were returned; use .packages(all
= TRUE) for obtaining these. Note that installed.packages() returns even more infor-
mation.

library(help = somename) computes basic information about the package somename, and
returns this in an object of class "packageInfo". The structure of this class may change
in future versions.

.First.lib is called when a package is loaded by library. It is called with two arguments,
the name of the library directory where the package was found (i.e., the corresponding
element of 1ib.loc), and the name of the package (in that order). It is a good place to
put calls to library.dynam which are needed when loading a package into this function
(don’t call library.dynam directly, as this will not work if the package is not installed in a
“standard” location). .First.1lib isinvoked after the search path interrogated by search()
has been updated, so as.environment (match("package:name", search())) will return
the environment in which the package is stored. If calling .First.1lib gives an error the
loading of the package is abandoned, and the package will be unavailable. Similarly, if the
option ".First.1ib" has a list element with the package’s name, this element is called in
the same manner as .First.lib when the package is loaded. This mechanism allows the
user to set package “load hooks” in addition to startup code as provided by the package
maintainers.

.Last.1lib is called when a package is detached. Beware that it might be called if
.First.lib has failed, so it should be written defensively. (It is called within try, so
errors will not stop the package being detached.)

.packages () returns the “base names” of the currently attached packages invisibly whereas
.packages(all.available = TRUE) gives (visibly) all packages available in the library
location path 1ib.loc.

.path.package returns the paths from which the named packages were loaded, or if none
were named, for all currently loaded packages. Unless quiet = TRUE it will warn if some

library 359

of the packages named are not loaded, and given an error if none are. This function is not
meant to be called by users, and its interface might change in future versions.

.find.package returns the paths to the locations where the given packages can be found.
If 1ib.loc is NULL, then then attached packages are searched before the libraries. If a
package is found more than once, the first match is used. Unless quiet = TRUE a warning
will be given about the named packages which are not found, and an error if none are. If
verbose is true, warnings about packages found more than once are given. This function
is not meant to be called by users, and its interface might change in future versions.

.Autoloaded contains the “base names” of the packages for which autoloading has been
promised.

.Library is a character string giving the location of the default library, the ‘library’ subdi-
rectory of R_HOME. .1libPaths is used for getting or setting the library trees that R knows
about (and hence uses when looking for packages). If called with argument new, the library
search path is set to the existing files in unique(new, .Library) and this is returned. If
given no argument, a character vector with the currently known library trees is returned.

The library search path is initialized at startup from the environment variable R_LIBS
(which should be a colon-separated list of directories at which R library trees are rooted)
by calling .1libPaths with the directories specified in R_LIBS.

Value

library returns the list of loaded (or available) packages (or TRUE if logical.return is
TRUE). require returns a logical indicating whether the required package is available.

Packages that require other packages

The source code for a package that requires one or more other packages should have a call
to require, preferably near the beginning of the source, and of course before any code
that uses functions, classes or methods from the other package. The default for argument
save will save the names of all required packages in the environment of the new package.
The saved package names are used by detach when a package is detached to warn if other
packages still require the detached package. Also, if a package is installed with saved image
(see INSTALL), the saved package names are used to require these packages when the new
package is attached.

Formal methods

library takes some further actions when package methods is attached (as it is by default).
Packages may define formal generic functions as well as re-defining functions in other pack-
ages (notably base) to be generic, and this information is cached whenever such a package
is loaded after methods and re-defined functions are excluded from the list of conflicts.
The check requires looking for a pattern of objects; the pattern search may be avoided by
defining an object .noGenerics (with any value) in the package. Naturally, if the package
does have any such methods, this will prevent them from being used.

Note

library and require can only load an installed package, and this is detected by having a
‘DESCRIPTION’ file containing a Built: field. Packages installed prior to 1.2.0 (released
in December 2000) will need to be re-installed.

Under Unix-alikes, the code checks that the package was installed under a similar operating
system as given by R.version$platform (the canonical name of the platform under which R

360 library

was compiled), provided it contains compiled code. Packages which do not contain compiled
code can be shared between Unix-alikes, but not to other OSes because of potential problems
with line endings and OS-specific help files.

library and require use the underlying file system services to locate the libraries,
with the result that on case-sensitive file systems package names are case-sensitive (i.e.,
library(foo) is different from library(Foo)), but they are not distinguished on case-
insensitive file systems such as MS Windows. A warning is issued if the user specifies a
name which isn’t a perfect match to the package name, because future versions of R will
require exact matches.

Author(s)

R core; Guido Masarotto for the all.available=TRUE part of .packages.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

attach, detach, search, objects, autoload, library.dynam, data, install.packages
and installed.packages; INSTALL, REMOVE.

Examples
(.packages()) # maybe just "base"
.packages(all = TRUE) # return all available as character vector
library() # list all available packages
library(lib = .Library) # list all packages in the default library
library(help = eda) # documentation on package 'eda'
library(eda) # load package 'eda'
require(eda) # the same
(.packages()) # "eda", too

detach("package:eda")

if the package name is in a character vector, use

pkg <- "eda"

library(pkg, character.only = TRUE)

detach(pos = match(paste("package", pkg, sep=":"), search()))

require(pkg, character.only = TRUE)
detach(pos = match(paste("package", pkg, sep=":"), search()))

.path.package ()

.Autoloaded # maybe "ctest"

.1libPaths () # all library trees R knows about
require(nonexistent) # FALSE

Not run:

Suppose a package needs to call a shared library named 'fooEXT',
where 'EXT' is the system-specific extension. Then you should use
.First.1lib <- function(lib, pkg) {

library.dynam("foo", pkg, lib)
}

library.dynam

361

if you want to mask as little as possible, use
library(mypkg, pos = "package:base")

End(Not run)

library.dynam

Loading Shared Libraries

Description

Load the specified file of compiled code if it has not been loaded already, or unloads it.

Usage

library.dynam(chname, package = .packages(), 1lib.loc = NULL,

verbose = getOption("verbose"),
file.ext = .Platform$dynlib.ext, ...)

library.dynam.unload(chname, libpath,

.dynLibs (new)

Arguments

chname
package
lib.loc

libpath

verbose

file.ext

new

Details

verbose = getOption("verbose"),
file.ext = .Platform$dynlib.ext)

a character string naming a shared library to load.
a character vector with the names of packages to search through.

a character vector describing the location of R library trees to search
through, or NULL. The default value of NULL corresponds to all libraries
currently known.

the path to the loaded package whose shared library is to be unloaded.

a logical value indicating whether an announcement is printed on the
console before loading the shared library. The default value is taken from
the verbose entry in the system options.

the extension to append to the file name to specify the library to be
loaded. This defaults to the appropriate value for the operating system.

additional arguments needed by some libraries that are passed to the call
to dyn.load to control how the library is loaded.

a character vector of packages which have loaded shared libraries.

library.dynam is designed to be used inside a package rather than at the command line, and
should really only be used inside .First.lib on .onLoad. The system-specific extension
for shared libraries (e.g., ¢.so’ or ‘.sl” on Unix systems) should not be added.

library.dynam.unload is designed for use in .Last.lib or .onUnload.

.dynLibs is used for getting or setting the packages that have loaded shared libraries (using
library.dynam). Versions of R prior to 1.6.0 used an internal global variable .Dyn.libs
for storing this information: this variable is now defunct.

362 license

Value

library.dynam returns a character vector with the names of packages which have used it in
the current R session to load shared libraries. This vector is returned as invisible, unless
the chname argument is missing.

library.dynam.unload returns the updated character vector, invisibly.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

.First.1lib, library, dyn.load, .packages, .1libPaths

SHLIB for how to create suitable shared libraries.

Examples

library.dynam() # which packages have been "dynamically loaded"

license The R License Terms

Description

The license terms under which R is distributed.

Usage

license()
licence()

Details

R is distributed under the terms of the GNU GENERAL PUBLIC LICENSE Version 2,
June 1991. A copy of this license is in ‘SR_HOME/COPYING’.

A small number of files (the API header files and import library) are distributed under
the LESSER GNU GENERAL PUBLIC LICENSE version 2.1. A copy of this license is in
‘$SR_HOME/COPYING.LIB".

LifeCycleSavings 363

LifeCycleSavings Intercountry Life-Cycle Savings Data

Description

Data on the savings ratio 1960-1970.

Usage

data(LifeCycleSavings)

Format

A data frame with 50 observations on 5 variables.

[[1] sr numeric aggregate personal savings

[,2] popl5 numeric % of population under 15

[,3] pop75 numeric % of population over 75

[,4] dpi numeric real per-capita disposable income
[,b] ddpi numeric % growth rate of dpi

Details

Under the life-cycle savings hypothesis as developed by Franco Modigliani, the savings
ratio (aggregate personal saving divided by disposable income) is explained by per-capita
disposable income, the percentage rate of change in per-capita disposable income, and
two demographic variables: the percentage of population less than 15 years old and the
percentage of the population over 75 years old. The data are averaged over the decade
1960-1970 to remove the business cycle or other short-term fluctuations.

Source

The data were obtained from Belsley, Kuh and Welsch (1980). They in turn obtained the
data from Sterling (1977).

References

Sterling, Arnie (1977) Unpublished BS Thesis. Massachusetts Institute of Technology.
Belsley, D. A., Kuh. E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

Examples

data(LifeCycleSavings)
pairs(LifeCycleSavings, panel = panel.smooth,
main = "LifeCycleSavings data")
fml <- Im(sr ~ poplb5 + pop75 + dpi + ddpi, data = LifeCycleSavings)
summary (fm1)

364 lines

lines Add Connected Line Segments to a Plot

Description
A generic function taking coordinates given in various ways and joining the corresponding
points with line segments.
Usage
lines(x, ...)
Default S3 method:

lines(x, y = NULL, type = "1", col = par("col"),
lty = par("lty"), ...)

Arguments
X, §y coordinate vectors of points to join.
type character indicating the type of plotting; actually any of the types as in
plot.
col color to use. This can be vector of length greater than one, but only the
first value will be used.
1ty line type to use.
Further graphical parameters (see par) may also be supplied as argu-
ments, particularly, line type, 1ty and line width, 1wd.
Detalils

The coordinates can be passed to lines in a plotting structure (a list with x and y compo-
nents), a time series, etc. See xy.coords.

The coordinates can contain NA values. If a point contains NA it either its x or y value, it is
omitted from the plot, and lines are not drawn to or from such points. Thus missing values
can be used to achieve breaks in lines.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

points, plot, and the underlying “primitive” plot.xy.

par for how to specify colors.

Examples

data(cars)

draw a smooth line through a scatter plot
plot(cars, main="Stopping Distance versus Speed")
lines(lowess(cars))

LINK 365

LINK Create Ezxecutable Programs

Description

Front-end for creating executable programs.

Usage
R CMD LINK [options] linkcmd

Arguments
linkcmd a list of commands to link together suitable object files (include library
objects) to create the executable program.
options further options to control the linking, or for obtaining information about
usage and version.
Details

The linker front-end is useful in particular when linking against the R shared library, in
which case linkcmd must contain -1R but need not specify its library path.

Currently only works if the C compiler is used for linking, and no C++ code is used.

Use R CMD LINK --help for more usage information.

list Lists — Generic and Dotted Pairs

Description

Functions to construct, coerce and check for all kinds of R lists.

Usage
list(...)
pairlist(...)

as.list(x, ...)
as.pairlist(x)

is.list(x)
is.pairlist(x)

alist(...)

Arguments

objects.

X object to be coerced or tested.

366 list

Details

Most lists in R internally are Generic Vectors, whereas traditional dotted pair lists (as in
LISP) are still available.

The arguments to 1ist or pairlist are of the form value or tag=value. The functions
return a list composed of its arguments with each value either tagged or untagged, depending
on how the argument was specified.

alist is like list, except in the handling of tagged arguments with no value. These are
handled as if they described function arguments with no default (cf. formals), whereas
list simply ignores them.

as.list attempts to coerce its argument to list type. For functions, this returns the
concatenation of the list of formals arguments and the function body. For expressions, the
list of constituent calls is returned.

is.list returns TRUE iff its argument is a list or a pairlist of length> 0, whereas
is.pairlist only returns TRUE in the latter case.

is.list and is.pairlist are generic: you can write methods to handle of specific classes
of objects, see InternalMethods.

An empty pairlist, pairlist() is the same as NULL. This is different from 1ist ().

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

vector(., mode="list"), c, for concatenation; formals.

Examples

data(cars)

create a plotting structure

pts <- list(x=cars[,1], y=cars[,2])
plot(pts)

Argument lists
f <- function()x

Note the specification of a "..." argument:
formals(f) <- al <- alist(x=, y=2, ...=)

f

str(al)

str(pl <- as.pairlist(ps.options()))

These are all TRUE:
is.list(pl) && is.pairlist(pl)
lis.null(1list())
is.null(pairlist())

lis.1list (NULL)
is.pairlist(pairlist())
is.null(as.pairlist(1ist()))
is.null(as.pairlist(NULL))

list.files 367

list.files List the Files in a Directory/Folder

Description

This function produces a list containing the names of files in the named directory. dir is

an alias.
Usage
list.files(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE)
dir(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE)
Arguments
path a character vector of full path names.
pattern an optional regular expression. Only file names which match the regular
expression will be returned.
all.files a logical value. If FALSE, only the names of visible files are returned. If
TRUE, all file names will be returned.
full.names a logical value. If TRUE, the directory path is prepended to the file names.
If FALSE, only the file names are returned.
recursive logical. Should the listing recurse into directories?
Value

A character vector containing the names of the files in the specified directories, or "" if there
were no files. If a path does not exist or is not a directory or is unreadable it is skipped,
with a warning.

The files are sorted in alphabetical order, on the full path if full.names = TRUE.

Note

File naming conventions are very platform dependent.

recursive = TRUE is not supported on all platforms, and may be ignored, with a warning.

Author(s)
Ross Thaka, Brian Ripley

See Also

file.info, file.access and files for many more file handling functions.

Examples

list.files(R.home())
Only files starting with a-1 or r (*including* uppercase):
dir("../..", pattern = "~ [a-1r]",full.names=TRUE)

368

Im

1m

Fitting Linear Models

Description

1m is used to fit linear models. It can be used to carry out regression, single stratum analysis
of variance and analysis of covariance (although aov may provide a more convenient interface

for these).

Usage

Im(formula, data, subset, weights, na.action,
method = "gr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset = NULL, ...)

Arguments

formula

data

subset

weights

na.action

method

a symbolic description of the model to be fit. The details of model speci-
fication are given below.

an optional data frame containing the variables in the model. By de-
fault the variables are taken from environment (formula), typically the
environment from which 1m is called.

an optional vector specifying a subset of observations to be used in the
fitting process.

an optional vector of weights to be used in the fitting process. If specified,
weighted least squares is used with weights weights (that is, minimizing
sum(w*e"~2)); otherwise ordinary least squares is used.

a function which indicates what should happen when the data contain NAs.
The default is set by the na.action setting of options, and is na.fail
if that is unset. The “factory-fresh” default is na.omit.

the method to be used; for fitting, currently only method="qr" is sup-
ported; method="model.frame" returns the model frame (the same as
with model = TRUE, seec below).

model, x, y, qr

singular.ok
contrasts

offset

logicals. If TRUE the corresponding components of the fit (the model
frame, the model matrix, the response, the QR decomposition) are re-
turned.

logical. If FALSE (the default in S but not in R) a singular fit is an error.
an optional list. See the contrasts.arg of model.matrix.default.

this can be used to specify an a priori known component to be included
in the linear predictor during fitting. An offset term can be included in
the formula instead or as well, and if both are specified their sum is used.

additional arguments to be passed to the low level regression fitting func-
tions (see below).

Im 369

Details

Models for 1m are specified symbolically. A typical model has the form response ~ terms
where response is the (numeric) response vector and terms is a series of terms which
specifies a linear predictor for response. A terms specification of the form first + second
indicates all the terms in first together with all the terms in second with duplicates
removed. A specification of the form first:second indicates the set of terms obtained by
taking the interactions of all terms in first with all terms in second. The specification
first*second indicates the cross of first and second. This is the same as first +
second + first:second. If response is a matrix a linear model is fitted to each column
of the matrix. See model.matrix for some further details.

1m calls the lower level functions 1m.fit, etc, see below, for the actual numerical computa-
tions. For programming only, you may consider doing likewise.

Value

1m returns an object of class "1m" or for multiple responses of class ¢ ("mlm", "1m").

The functions summary and anova are used to obtain and print a summary and analysis
of variance table of the results. The generic accessor functions coefficients, effects,
fitted.values and residuals extract various useful features of the value returned by 1lm.

An object of class "1m" is a list containing at least the following components:

coefficients a named vector of coefficients
residuals the residuals, that is response minus fitted values.

fitted.values the fitted mean values.

rank the numeric rank of the fitted linear model.

weights (only for weighted fits) the specified weights.

df .residual the residual degrees of freedom.

call the matched call.

terms the terms object used.

contrasts (only where relevant) the contrasts used.

xlevels (only where relevant) a record of the levels of the factors used in fitting.
y if requested, the response used.

X if requested, the model matrix used.

model if requested (the default), the model frame used.

In addition, non-null fits will have components assign, effects and (unless not requested)
gr relating to the linear fit, for use by extractor functions such as summary and effects.

Note
Offsets specified by offset will not be included in predictions by predict.lm, whereas
those specified by an offset term in the formula will be.

Author(s)

The design was inspired by the S function of the same name described in Chambers (1992).
The implementation of model formula by Ross Thaka was based on Wilkinson & Rogers
(1973).

370 Im.fit

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

Wilkinson, G. N. and Rogers, C. E. (1973) Symbolic descriptions of factorial models for
analysis of variance. Applied Statistics, 22, 392-9.

See Also

summary . 1m for summaries and anova.lm for the ANOVA table; aov for a different interface.
The generic functions coef, effects, residuals, fitted, vcov.

predict.1lm (via predict) for prediction, including confidence and prediction intervals.
1m.influence for regression diagnostics, and glm for generalized linear models.

The underlying low level functions, 1m.fit for plain, and 1m.wfit for weighted regression
fitting.

Examples

Annette Dobson (1990) "An Introduction to Generalized Linear Models".
Page 9: Plant Weight Data.

ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)

trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

group <- gl(2,10,20, labels=c("Ctl","Trt"))

weight <- c(ctl, trt)

anova(lm.D9 <- lm(weight ~ group))

summary (1m.D90 <- lm(weight ~ group - 1))# omitting intercept

summary (resid(1m.D9) - resid(1m.D90)) #- residuals almost identical

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(1lm.D9, las = 1) # Residuals, Fitted,
par (opar)

model frame :
stopifnot(identical (lm(weight ~ group, method = "model.frame"),
model. frame(1m.D9)))

Im.fit Fitter Functions for Linear Models

Description

These are the basic computing engines called by 1m used to fit linear models. These should
usually not be used directly unless by experienced users.

Usage
Im.fit (x, vy, offset = NULL, method = "qr", tol = le-7,
singular.ok = TRUE, ...)
lm.wfit(x, y, w, offset = NULL, method = "qr", tol = le-7,

singular.ok = TRUE, ...)

Im.fit

Arguments

X

offset

method
tol

singular.ok

Details

371

design matrix of dimension n * p.
vector of observations of length n.

vector of weights (length n) to be used in the fitting process for the wfit
functions. Weighted least squares is used with weights w, i.e., sum(w *
e”~2) is minimized.

numeric of length n). This can be used to specify an a priori known
component to be included in the linear predictor during fitting.
currently, only method="qr" is supported.

tolerance for the qr decomposition. Default is le-7.

logical. If FALSE, a singular model is an error.

currently disregarded.

The functions 1m.{w}fit.null are called by 1m.fit or lm.wfit respectively, when x has

zero columns.

Value

a list with components

coefficients
residuals
fitted.values

effects

weights
rank

df .residual

qr

See Also

p vector
n vector
n vector

(not null fits)n vector of orthogonal single-df effects. The first rank of
them correspond to non-aliased coeffcients, and are named accordingly.

n vector — only for the *wfit* functions.
integer, giving the rank
degrees of freedom of residuals

(not null fits) the QR decomposition, see gr.

1m which you should use for linear least squares regression, unless you know better.

Examples

set.seed(129)

n<-7;p<-2

X <- matrix(rnorm(n * p), n,p) # no intercept!

y <- rnorm(n)

w <- rnorm(n) "2

str(lmw <- Im.wfit(zx=X, y=y, w=w))

str(lm. <- lm.fit (x=X, y=y))

372 Im.influence

1m.influence Regression Diagnostics

Description

This function provides the basic quantities which are used in forming a wide variety of
diagnostics for checking the quality of regression fits.

Usage

influence(model, ...)

S3 method for class 'Ilm':
influence(model, do.coef = TRUE, ...)
S3 method for class 'glm':
influence(model, do.coef = TRUE, ...)

Im.influence(model, do.coef = TRUE)

Arguments
model an object as returned by 1lm.
do.coef logical indicating if the changed coefficients (see below) are desired.
These need O(n?p) computing time.
further arguments passed to or from other methods.
Details

The influence.measures() and other functions listed in See Also provide a more
user oriented way of computing a variety of regression diagnostics. These all build on
Im.influence.

An attempt is made to ensure that computed hat values that are probably one are treated
as one, and the corresponding rows in sigma and coefficients are NaN. (Dropping such a
case would normally result in a variable being dropped, so it is not possible to give simple
drop-one diagnostics.)

Value

A list containing the following components of the same length or number of rows n, which
is the number of non-zero weights. Cases omitted in the fit are omitted unless a na.action
method was used (such as na.exclude) which restores them.

hat a vector containing the diagonal of the “hat” matrix.

coefficients (unless do.coef is false) a matrix whose i-th row contains the change
in the estimated coefficients which results when the i-th case is dropped
from the regression. Note that aliased coeflicients are not included in the
matrix.

sigma a vector whose i-th element contains the estimate of the residual standard
deviation obtained when the i-th case is dropped from the regression.

wt.res a vector of weighted (or for class glm rather deviance) residuals.

Im.summaries 373

Note

The coefficients returned by the R version of 1m.influence differ from those computed
by S. Rather than returning the coefficients which result from dropping each case, we return
the changes in the coefficients. This is more directly useful in many diagnostic measures.
Since these need O(n?p) computing time, they can be omitted by do.coef = FALSE.

Note that cases with weights == 0 are dropped (contrary to the situation in S).

If a model has been fitted with na.action=na.exclude (see na.exclude), cases excluded
in the fit are considered here.

References

See the list in the documentation for influence.measures.

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

summary.1lm for summary and related methods;
influence.measures,

hat for the hat matrix diagonals,

dfbetas, dffits, covratio, cooks.distance, 1lm.

Examples

Analysis of the life-cycle savings data
given in Belsley, Kuh and Welsch.
data(LifeCycleSavings)
summary (1m.SR <- lm(sr ~ popl5 + pop75 + dpi + ddpi,
data = LifeCycleSavings),
corr = TRUE)
str(1lmI <- 1lm.influence(lm.SR))

For more "user level" examples, use example(influence.measures)

1lm.summaries Accessing Linear Model Fits

Description

All these functions are methods for class "1m" objects.

Usage
S3 method for class 'lm':
family(object, ...)

S3 method for class 'Ilm':
formula(x, ...)

S3 method for class 'Ilm':
residuals(object,

374 Im.summaries
type = c("working", "response", "deviance","pearson", "partial"),
»
weights(object, ...)
Arguments
object, x an object inheriting from class 1m, usually the result of a call to 1m or
aov.
further arguments passed to or from other methods.
type the type of residuals which should be returned.
Details

The generic accessor functions coef, effects, fitted and residuals can be used to extract
various useful features of the value returned by 1m.

The working and response residuals are “observed - fitted”. The deviance and pearson
residuals are weighted residuals, scaled by the square root of the weights used in fitting.
The partial residuals are a matrix with each column formed by omitting a term from the
model. In all these, zero weight cases are never omitted (as opposed to the standardized
rstudent residuals).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

The model fitting function 1m, anova.lm.

coef, deviance, df.residual, effects, fitted, glm for generalized linear models,
influence (etc on that page) for regression diagnostics, weighted.residuals, residuals,
residuals.glm, summary.lm.

Examples

##-- Continuing the 1m(.) example:
coef (Im.D90)# the bare coefficients

The 2 basic regression diagnostic plots [plot.lm(.) is preferred]
plot(resid(1m.D90), fitted(1lm.D90))# Tukey-Anscombe's
abline(h=0, 1lty=2, col = 'gray')

qgnorm(residuals(1m.D90))

load 375

load Reload Saved Datasets

Description

Reload the datasets written to a file with the function save.

Usage
load(file, envir = parent.frame())
loadURL(url, envir = parent.frame(), quiet = TRUE, ...)
Arguments
file a connection or a character string giving the name of the file to load.
envir the environment where the data should be loaded.
url a character string naming a URL.
quiet, ... additional arguments to download.file.
Details

load can load R objects saved in the current or any earlier format. It can read a compressed
file (see save) directly from a file or from a suitable connection.

loadURL is a convenience wrapper which downloads a file, loads it and deletes the down-
loaded copy.

Value

A character vector of the names of objects created, invisibly.

See Also

save, download.file.

Examples

save all data
save(list = 1s(), file= "all.Rdata")

restore the saved values to the current environment
load("all.Rdata")

restore the saved values to the user's workspace
load("all.Rdata", .GlobalEnv)

Not run:

This example may not still be available

print the value to see what objects were created.

print (loadURL("http://heswebl.med.virginia.edu/biostat/s/data/sav/kprats.sav"))
End(Not run)

376 localeconv

localeconv Find Details of the Numerical Representations in the Current
Locale

Description

Get details of the numerical representations in the current locale.

Usage

Sys.localeconv ()

Value

A character vector with 18 named components. See your ISO C documentation for details
of the meaning.

It is possible to compile R without support for locales, in which case the value will be NULL.

See Also

Sys.setlocale for ways to set locales: by default R uses the C clocal for "LC_NUMERIC"
and "LC_MONETARY".

Examples

Sys.localeconv()
The results in the default C locale are

decimal_point thousands_sep grouping int_curr_symbol
n . n nn nn nn
currency_symbol mon_decimal_point mon_thousands_sep mon_grouping
nn nn nn nn
positive_sign negative_sign int_frac_digits frac_digits
nn nn Il127ll II127II
p_cs_precedes p_sep_by_space n_cs_precedes n_sep_by_space
I|127l| |I127I| Il127ll II127II
p_sign_posn n_sign_posn

127" 27"

Now try your default locale (which might be "C").
Not run:

old <- Sys.getlocale()

Sys.setlocale(locale = "")

Sys.localeconv()

Sys.setlocale(locale = o0ld)

End(Not run)

Not run: read.table("foo", dec=Sys.localeconv() ["decimal_point"])

locales 377

locales Query or Set Aspects of the Locale

Description

Get details of or set aspects of the locale for the R process.

Usage
Sys.getlocale(category = "LC_ALL")
Sys.setlocale(category = "LC_ALL", locale = "")
Arguments
category character string. Must be one of "LC_ALL", "LC_COLLATE", "LC_CTYPE",
"LC_MONETARY", "LC_NUMERIC" or "LC_TIME".
locale character string. A valid locale name on the system in use. Normally ""
(the default) will pick up the default locale for the system.
Details

The locale describes aspects of the internationalization of a program. Initially most aspects
of the locale of R are set to "C" (which is the default for the C language and reflects North-
American usage). R does set "LC_CTYPE" and "LC_COLLATE", which allow the use of a
different character set (typically ISO Latin 1) and alphabetic comparisons in that character
set (including the use of sort) and "LC_TIME" may affect the behaviour of as.POSIX1t
and strptime and functions which use them (but not date).

R can be built with no support for locales, but it is normally available on Unix and is
available on Windows.

Some systems will have other locale categories, but the six described here are those specified
by POSIX.

Value

A character string of length one describing the locale in use (after setting for
Sys.setlocale), or an empty character string if the locale is invalid (with a warning)
or NULL if locale information is unavailable.

For category = "LC_ALL" the details of the string are system-specific: it might be a sin-
gle locale or a set of locales separated by "/" (Solaris) or ";" (Windows). For portabil-
ity, it is best to query categories individually. It is guaranteed that the result of foo <-
Sys.getlocale() can be used in Sys.setlocale("LC_ALL", locale = foo) on the same
machine.

Warning
Setting "LC_NUMERIC" can produce output that R cannot then read by scan or read.table
with their default arguments, which are not locale-specific.

See Also

strptime for uses of category = "LC_TIME". Sys.localeconv for details of numerical
representations.

378 locator

Examples

Sys.getlocale()

Sys.getlocale("LC_TIME")

Not run:

Sys.setlocale("LC_TIME", "de") # Solaris: details are 0S-dependent
Sys.setlocale("LC_TIME", "German") # Windows

End(Not run)

Sys.setlocale("LC_COLLATE", "C") # turn off locale-specific sorting

locator Graphical Input

Description

Reads the position of the graphics cursor when the (first) mouse button is pressed.

Usage
locator(n = 512, type = "n", ...)
Arguments
n the maximum number of points to locate.
type One of "n", "p", "1" or "o". If "p" or "o" the points are plotted; if "1"
or "o" they are joined by lines.
additional graphics parameters used if type != "n" for plotting the lo-
cations.
Details

Unless the process is terminated prematurely by the user (see below) at most n positions
are determined.

The identification process can be terminated by pressing any mouse button other than the
first.

The current graphics parameters apply just as if plot.default has been called with the
same value of type. The plotting of the points and lines is subject to clipping, but locations
outside the current clipping rectangle will be returned.

On most devices which support locator, successful selection of a point is indicated by a
bell sound unless options(locatorBell=FALSE) has been set.

If the window is resized or hidden and then exposed before the input process has terminated,
any lines or points drawn by locator will disappear. These will reappear once the input
process has terminated and the window is resized or hidden and exposed again. This is
because the points and lines drawn by locator are not recorded in the device’s display list
until the input process has terminated.

Value

A list containing x and y components which are the coordinates of the identified points in
the user coordinate system, i.e., the one specified by par("usr").

log 379

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

identify

log Logarithms and Exponentials

Description

log computes natural logarithms, 1ogl0 computes common (i.e., base 10) logarithms, and
log2 computes binary (i.e., base 2) logarithms. The general form logb(x, base) computes
logarithms with base base (1og10 and log2 are only special cases).

loglp(x) computes log(1+x) accurately also for |z| < 1 (and less accurately when x ~ —1).
exp computes the exponential function.

expml (x) computes exp(z) — 1 accurately also for |z] < 1.

Usage

log(x, base = exp(1))
logb(x, base = exp(1))
logl10(x)

log2(x)

exp (x)

expml (x)

loglp(x)

Arguments

X a numeric or complex vector.

base positive number. The base with respect to which logarithms are com-
puted. Defaults to e=exp(1).

Value

A vector of the same length as x containing the transformed values. log(0) gives -Inf
(when available).

Note

log and logb are the same thing in R, but logb is preferred if base is specified, for S-PLUS
compatibility.

380 Logic

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (for log,
log10 and exp.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.
(for Logb.)

See Also

Trig, sqrt, Arithmetic.

Examples

log(exp(3))
loglO(le?)# = 7

x <= 107-(1+2%1:9)
cbind(x, log(1l+x), loglp(x), exp(x)-1, expml(x))

Logic Logical Operators

Description

These operators act on logical vectors.

Usage

' x
xX&y
X && y
x|y
x Iy
xor(x, y)

Arguments

X, ¥ logical vectors

Details
I indicates logical negation (NOT).

& and && indicate logical AND and | and | | indicate logical OR. The shorter form performs
elementwise comparisons in much the same way as arithmetic operators. The longer form
evaluates left to right examining only the first element of each vector. Evaluation proceeds
only until the result is determined. The longer form is appropriate for programming control-
flow and typically preferred in if clauses.

xor indicates elementwise exclusive OR.

NA is a valid logical object. Where a component of x or y is NA, the result will be NA if
the outcome is ambiguous. In other words NA & TRUE evaluates to NA, but NA & FALSE
evaluates to FALSE. See the examples below.

logical 381

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also
TRUE or logical.

Syntax for operator precedence.

Examples

y <= 1 + (x <~ rpois(50, lambda=1.5) / 4 - 1)
x[(x > 0) & (x < 1] # all x values between 0 and 1
if (any(x == 0) || any(y == 0)) "zero encountered"

construct truth tables :
x <- c(NA, FALSE, TRUE)

names (x) <- as.character(x)
outer(x, x, "&")## AND table

outer(x, x, "|")## OR table
logical Logical Vectors
Description

Create or test for objects of type "logical", and the basic logical “constants”.

Usage

TRUE
FALSE
T; F

logical(length = 0)
as.logical(x, ...)
is.logical(x)

Arguments
length desired length.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

TRUE and FALSE are part of the R language, where T and F are global variables set to these.
All four are logical(1) vectors.

is.logical is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

382 Logistic

Value
logical creates a logical vector of the specified length. Each element of the vector is equal
to FALSE.

as.logical attempts to coerce its argument to be of logical type. For factors, this uses
the levels (labels) and not the codes. Like as.vector it strips attributes including names.

is.logical returns TRUE or FALSE depending on whether its argument is of logical type or
not.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Logistic The Logistic Distribution

Description

Density, distribution function, quantile function and random generation for the logistic
distribution with parameters location and scale.

Usage
dlogis(x, location = 0, scale = 1, log = FALSE)
plogis(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qlogis(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rlogis(n, location = 0, scale = 1)
Arguments
X, q vector of quantiles.
P vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the

number required.
location, scale

location and scale parameters.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < z], otherwise, P[X >

Details

If location or scale are omitted, they assume the default values of 0 and 1 respectively.
The Logistic distribution with location = p and scale = ¢ has distribution function
1
Fo) =4 T e—@m/o

and density
1 ele—p)/o

0= S s am=mrmye

It is a long-tailed distribution with mean u and variance 72 /302.

logLik 383

Value

dlogis gives the density, plogis gives the distribution function, qlogis gives the quantile
function, and rlogis generates random deviates.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

var(rlogis (4000, 0, s = 5))# approximately (+/- 3)
pi“2/3 % 572

logLik Extract Log-Likelihood

Description

This function is generic; method functions can be written to handle specific classes of
objects. Classes which already have methods for this function include: glm, 1m, nls in
package nls and gls, 1me and others in package nlme.

Usage
logLik(object, ...)

S3 method for class 'logLik':
as.data.frame(x, row.names = NULL, optional = FALSE)

Arguments
object any object from which a log-likelihood value, or a contribution to a log-
likelihood value, can be extracted.
some methods for this generic function require additional arguments.
X an object of class logLik.

row.names, optional
arguments to the as.data.frame method; see its documentation.

Value

Returns an object, say r, of class logLik which is a number with attributes, attr(r, "df")
(degrees of freedom) giving the number of parameters in the model. There’s a simple print
method for logLik objects.

The details depend on the method function used; see the appropriate documentation.

Author(s)

Jose Pinheiro and Douglas Bates

384 logLik.glm

See Also

loglik.1m, logLik.glm, logLik.gls, logLik.1lme, etc.

Examples

see the method function documentation
x <- 1:5

Imx <- 1m(x ~ 1)

logLik(1lmx) # using print.logLik() method
str(logLik(1mx))

logLik.glm Extract Log-Likelihood from an glm Object

Description

Returns the log-likelihood value of the generalized linear model represented by object
evaluated at the estimated coefficients.

Usage

S3 method for class 'glm':
logLik(object, ...)

Arguments
object an object inheriting from class "glm".
further arguments to be passed to or from methods.
Details

As a family does not have to specify how to calculate the log-likelihood, this is based on
the family’s function to compute the AIC. For gaussian, Gamma and inverse.gaussian
families it assumed that the dispersion of the GLM is estimated and has been included in
the AIC, and for all other families it is assumed that the dispersion is known.

Not that this procedure is not completely accurate for the gamma and inverse gaussian
families, as the estimate of dispersion used is not the MLE.

Value

the log-likelihood of the linear model represented by object evaluated at the estimated
coefficients.

See Also

glm, logLik.1m

logLik.Im 385

logLik.1lm Eztract Log-Likelihood from an Im Object

Description

If REML = FALSE, returns the log-likelihood value of the linear model represented by object
evaluated at the estimated coefficients; else, the restricted log-likelihood evaluated at the
estimated coefficients is returned.

Usage

S3 method for class 'Ilm':
logLik(object, REML = FALSE, ...)

Arguments
object an object inheriting from class "1m".
REML an optional logical value. If TRUE the restricted log-likelihood is returned,
else, if FALSE, the log-likelihood is returned. Defaults to FALSE.
further arguments to be passed to or from methods.
Value

an object of class logLik, the (restricted) log-likelihood of the linear model represented by
object evaluated at the estimated coefficients. Note that error variance ¢ is estimated in
1m() and hence counted as well.

Author(s)

Jose Pinheiro and Douglas Bates

References

Harville, D.A. (1974). Bayesian inference for variance components using only error con-
trasts. Biometrika, 61, 383—-385.

See Also
Im
Examples
data(attitude)
(fm1 <- 1m(rating ~ ., data = attitude))
logLik(fm1)

logLik(fm1, REML = TRUE)

res <- try(data(Orthodont, package="nlme"))
if (!inherits(res, "try-error")) {
fml <- Im(distance ~ Sex * age, Orthodont)
print (logLik(fm1))
print (logLik(fml, REML = TRUE))
}

386 loglin
loglin Fitting Log-Linear Models
Description
loglin is used to fit log-linear models to multidimensional contingency tables by Iterative
Proportional Fitting.
Usage
loglin(table, margin, start = rep(l, length(table)), fit = FALSE,
eps = 0.1, iter = 20, param = FALSE, print = TRUE)
Arguments
table a contingency table to be fit, typically the output from table.
margin a list of vectors with the marginal totals to be fit.
(Hierarchical) log-linear models can be specified in term of these marginal
totals which give the “maximal” factor subsets contained in the model.
For example, in a three-factor model, 1ist(c(1, 2), c(1, 3)) specifies
a model which contains parameters for the grand mean, each factor, and
the 1-2 and 1-3 interactions, respectively (but no 2-3 or 1-2-3 interaction),
i.e., a model where factors 2 and 3 are independent conditional on factor
1 (sometimes represented as ‘[12][13]).
The names of factors (i.e., names (dimnames (table))) may be used rather
than numeric indices.
start a starting estimate for the fitted table. This optional argument is impor-
tant for incomplete tables with structural zeros in table which should
be preserved in the fit. In this case, the corresponding entries in start
should be zero and the others can be taken as one.
fit a logical indicating whether the fitted values should be returned.
eps maximum deviation allowed between observed and fitted margins.
iter maximum number of iterations.
param a logical indicating whether the parameter values should be returned.
print a logical. If TRUE, the number of iterations and the final deviation are
printed.
Details

The Iterative Proportional Fitting algorithm as presented in Haberman (1972) is used for
fitting the model. At most iter iterations are performed, convergence is taken to occur
when the maximum deviation between observed and fitted margins is less than eps. All
internal computations are done in double precision; there is no limit on the number of
factors (the dimension of the table) in the model.

Assuming that there are no structural zeros, both the Likelihood Ratio Test and Pearson
test statistics have an asymptotic chi-squared distribution with df degrees of freedom.

Package MASS contains loglm, a front-end to loglin which allows the log-linear model to
be specified and fitted in a formula-based manner similar to that of other fitting functions
such as 1m or glm.

Lognormal

Value

387

A list with the following components.

1rt
pearson

df
margin
fit

param

Author(s)
Kurt Hornik

References

the Likelihood Ratio Test statistic.
the Pearson test statistic (X-squared).

the degrees of freedom for the fitted model. There is no adjustment for
structural zeros.

list of the margins that were fit. Basically the same as the input margin,
but with numbers replaced by names where possible.

An array like table containing the fitted values. Only returned if fit is
TRUE.

A list containing the estimated parameters of the model. The “standard”
constraints of zero marginal sums (e.g., zero row and column sums for a
two factor parameter) are employed. Ounly returned if param is TRUE.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth

& Brooks/Cole.

Haberman, S. J. (1972) Log-linear fit for contingency tables—Algorithm AS51. Applied
Statistics, 21, 218-225.

Agresti, A. (1990) Categorical data analysis. New York: Wiley.

See Also

table

Examples

data(HairEyeColor)
Model of joint independence of sex from hair and eye color.
fm <- loglin(HairEyeColor, list(c(1l, 2), c(1, 3), c(2, 3)))

fm

1 - pchisq(fmlrt, fmdf)
Model with no three-factor interactions fits well.

Lognormal

The Log Normal Distribution

Description

Density, distribution function, quantile function and random generation for the log normal
distribution whose logarithm has mean equal to meanlog and standard deviation equal to

sdlog.

388 Lognormal

Usage
dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE)
plnorm(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
glnorm(p, meanlog = O, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
rlnorm(n, meanlog = 0, sdlog = 1)
Arguments
X, q vector of quantiles.
P vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the

number required.

meanlog, sdlog
mean and standard deviation of the distribution on the log scale with
default values of 0 and 1 respectively.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X < z], otherwise, P[X >

Details
The log normal distribution has density

1
V2mox

where p and o are the mean and standard deviation of the logarithm. The mean is E(X) =
exp(p + 1/20?), and the variance Var(X) = exp(2u + o2)(exp(c?) — 1) and hence the
coefficient of variation is \/exp(c2) — 1 which is approximately o when that is small (e.g.,
o <1/2).

o~ Uog(x)—p)?/20°

fz) =

Value

dlnorm gives the density, plnorm gives the distribution function, qlnorm gives the quantile
function, and rlnorm generates random deviates.

Note
The cumulative hazard H(t) = —log(1 — F(¢)) is -plnorm(t, r, lower = FALSE, log =
TRUE).

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

dnorm for the normal distribution.

Examples

dlnorm(1) == dnorm(0)

longley 389

longley Longley’s Economic Regression Data

Description

A macroeconomic data set which provides a well-known example for a highly collinear
regression.

Usage

data(longley)

Format

A data frame with 7 economical variables, observed yearly from 1947 to 1962 (n = 16).

GNP.deflator: GNP implicit price deflator (1954 = 100)

GNP: Gross National Product.

Unemployed: number of unemployed.

Armed.Forces: number of people in the armed forces.
Population: ‘noninstitutionalized’ population > 14 years of age.
Year: the year (time).

Employed: number of people employed.

The regression 1lm(Employed ~ .) is known to be highly collinear.

Source

J. W. Longley (1967) An appraisal of least-squares programs from the point of view of the
user. Journal of the American Statistical Association, 62, 819-841.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

give the data set in the form it is used in S-PLUS:

data(longley)

longley.x <- data.matrix(longley[, 1:6])

longley.y <- longley[, "Employed"]

pairs(longley, main = "longley data")

summary (fm1 <- 1lm(Employed ~ ., data = longley))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
mar = c(4.1, 4.1, 2.1, 1.1))

plot(fm1)

par (opar)

390 lowess

lower.tri Lower and Upper Triangular Part of a Matrix

Description

Returns a matrix of logicals the same size of a given matrix with entries TRUE in the lower
or upper triangle.

Usage

lower.tri(x, diag = FALSE)

upper.tri(x, diag = FALSE)
Arguments

X a matrix.

diag logical. Should the diagonal be included?
See Also

diag, matrix.

Examples

(m2 <- matrix(1:20, 4, 5))
lower.tri(m2)
m2[lower.tri(m2)] <- NA
m2

lowess Scatter Plot Smoothing

Description

This function performs the computations for the LOWESS smoother (see the reference
below). lowess returns a list containing components x and y which give the coordinates of
the smooth. The smooth should be added to a plot of the original points with the function
lines.

Usage

lowess(x, y = NULL, f = 2/3, iter=3, delta = 0.01 * diff(range(xy$x[o])))

Is 391

Arguments
X, §y vectors giving the coordinates of the points in the scatter plot. Alterna-
tively a single plotting structure can be specified.
f the smoother span. This gives the proportion of points in the plot which
influence the smooth at each value. Larger values give more smoothness.
iter the number of robustifying iterations which should be performed. Using
smaller values of iter will make lowess run faster.
delta values of x which lie within delta of each other are replaced by a single
value in the output from lowess. Defaults to 1/100th of the range of x.
References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Cleveland, W. S. (1979) Robust locally weighted regression and smoothing scatterplots. J.
Amer. Statist. Assoc. 74, 829-836.

Cleveland, W. S. (1981) LOWESS: A program for smoothing scatterplots by robust locally
weighted regression. The American Statistician, 35, 54.

See Also

loess (in package modreg), a newer formula based version of lowess (with different de-
faults!).

Examples

data(cars)

plot(cars, main = "lowess(cars)")
lines(lowess(cars), col = 2)
lines(lowess(cars, f=.2), col = 3)

legend(5, 120, c(paste("f =", c("2/3", ".2"))), 1ty = 1, col = 2:3)
1s List Objects
Description

1s and objects return a vector of character strings giving the names of the objects in the
specified environment. When invoked with no argument at the top level prompt, 1s shows
what data sets and functions a user has defined. When invoked with no argument inside a
function, 1s returns the names of the functions local variables. This is useful in conjunction
with browser.

Usage

ls(name, pos = -1, envir = as.environment(pos),
all.names = FALSE, pattern)
objects(name, pos= -1, envir = as.environment(pos),
all.names = FALSE, pattern)

392

Arguments

name

pos

envir

all.names

pattern

Details

Is

which environment to use in listing the available objects. Defaults to the
current environment. Although called name for back compatibility, in fact
this argument can specify the environment in any form; see the details
section.

An alternative argument to name for specifying the environment as a po-
sition in the search list. Mostly there for back compatibility.

an alternative argument to name for specifying the environment evaluation
environment. Mostly there for back compatibility.

a logical value. If TRUE, all object names are returned. If FALSE, names

[

which begin with a .’ are omitted.

an optional regular expression. Only names matching pattern are re-
turned.

The name argument can specify the environment from which object names are taken in one
of several forms: as an integer (the position in the search list); as the character string name
of an element in the search list; or as an explicit environment (including using sys.frame
to access the currently active function calls). By default, the environment of the call to 1s
or objects is used. The pos and envir arguments are an alternative way to specify an
environment, but are primarily there for back compatibility.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth

& Brooks/Cole.

See Also

apropos (or find) for finding objects in the whole search path; grep for more details on
“regular expressions”; class, methods, etc., for object-oriented programming.

Examples

.0b <- 1
1s(pat="0")

ls(pat="0", all = TRUE) # also shows ".[fool"

shows an empty list because inside myfunc no variables are defined
myfunc <- function() {1s(O}

myfunc ()

define a local variable inside myfunc
myfunc <- function() {y <- 1; 1sQ}

myfunc ()

shows "y"

Is.diag 393

ls.diag Compute Diagnostics for ‘Isfit’ Regression Results

Description

Computes basic statistics, including standard errors, t- and p-values for the regression
coefficients.

Usage
ls.diag(ls.out)

Arguments

1s.out Typically the result of 1sfit()

Value

A 1list with the following numeric components.

std.dev The standard deviation of the errors, an estimate of o.
hat diagonal entries h;; of the hat matrix H

std.res standardized residuals

stud.res studentized residuals

cooks Cook’s distances

dfits DFITS statistics

correlation correlation matrix

std.err standard errors of the regression coefficients
cov.scaled Scaled covariance matrix of the coefficients

cov.unscaled Unscaled covariance matrix of the coefficients

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

See Also

hat for the hat matrix diagonals, 1s.print, 1m.influence, summary.lm, anova.

Examples

##-- Using the same data as the 1lm(.) example:

1sD9 <- 1sfit(x = as.numeric(gl(2, 10, 20)), y = weight)

dlsD9 <- 1ls.diag(1sD9)

str(dlsD9, give.attr=FALSE)

abs(1 - sum(dlsD9%hat) / 2) < 10*.Machine$double.eps # sum(h.ii) = p
plot(dlsD9¢hat, dlsD9$stud.res, xlim=c(0,0.11))

abline(h = 0, 1ty = 2, col = "lightgray")

394 Isfit

1ls.print Print ‘Isfit” Regression Results

Description
Computes basic statistics, including standard errors, t- and p-values for the regression
coefficients and prints them if print.it is TRUE.

Usage

ls.print(ls.out, digits = 4, print.it = TRUE)

Arguments

1s.out Typically the result of 1sfit()

digits The number of significant digits used for printing

print.it a logical indicating whether the result should also be printed
Value

A list with the components

summary The ANOVA table of the regression
coef .table matrix with regression coefficients, standard errors, t- and p-values
Note

Usually, you’d rather use summary(1m(...)) and anova(lm(...)) for obtaining similar
output.

See Also

1s.diag, 1sfit, also for examples; 1m, 1lm.influence which usually are preferable.

1sfit Find the Least Squares Fit

Description

The least squares estimate of 3 in the model
Y =XB+¢e€
is found.

Usage

1sfit(x, y, wt=NULL, intercept=TRUE, tolerance=1e-07, yname=NULL)

Isfit

Arguments

X

y
wt

intercept
tolerance

yname

Details

395

a matrix whose rows correspond to cases and whose columns correspond
to variables.

the responses, possibly a matrix if you want to fit multiple left hand sides.
an optional vector of weights for performing weighted least squares.
whether or not an intercept term should be used.

the tolerance to be used in the matrix decomposition.

names to be used for the response variables.

If weights are specified then a weighted least squares is performed with the weight given to
the jth case specified by the jth entry in wt.

If any observation has a missing value in any field, that observation is removed before the
analysis is carried out. This can be quite inefficient if there is a lot of missing data.

The implementation is via a modification of the LINPACK subroutines which allow for
multiple left-hand sides.

Value

A list with the following named components:

coef

residuals

intercept

qr

References

the least squares estimates of the coefficients in the model (5 as stated
above).

residuals from the fit.
indicates whether an intercept was fitted.

the QR decomposition of the design matrix.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth

& Brooks/Cole.

See Also

1m which usually is preferable; 1s.print, 1s.diag.

Examples

##-- Using the same data as the Im(.) example:

1sD9 <- 1lsfit(x
ls.print(1sD9)

= unclass(gl(2,10)), y = weight)

396 mad

mad Median Absolute Deviation

Description

Compute the median absolute deviation, i.e., the (lo-/hi-) median of the absolute deviations
from the median, and (by default) adjust by a factor for asymptotically normal consistency.

Usage

mad(x, center = median(x), constant = 1.4826, na.rm = FALSE,
low = FALSE, high = FALSE)

Arguments
X a numeric vector.
center Optionally, the centre: defauls to the median.
constant scale factor.
na.rm if TRUE then NA values are stripped from x before computation takes place.
low if TRUE, compute the “lo-median”, i.e., for even sample size, do not average
the two middle values, but take the smaller one.
high if TRUE, compute the “hi-median”, i.e., take the larger of the two middle
values for even sample size.
Details

The actual value calculated is constant * cMedian(abs(x - center)) with the default
value of center being median(x), and cMedian being the usual, the “low” or “high” median,
see the arguments description for low and high above.

The default constant = 1.4826 (approximately 1/®~1(3) = 1/qnorm(3/4)) ensures con-
sistencys, i.e.,
Elmad(Xy,...,X,)] =0

for X; distributed as N(u,0?) and large n.

If na.rm is TRUE then NA values are stripped from x before computation takes place. If this
is not done then an NA value in x will cause mad to return NA.

See Also

IQR which is simpler but less robust, median, var.

Examples

mad(c(1:9))
print(mad(c(1:9), constant=1)) ==
mad(c(1:8,100), constant=1) # = 2 ; TRUE
x <- ¢(1,2,3, 5,7,8)
sort(abs(x - median(x)))
c(mad(x, co=1), mad(x, co=1, lo = TRUE), mad(x, co=1, hi = TRUE))

mahalanobis 397

mahalanobis Mahalanobis Distance

Description

Returns the Mahalanobis distance of all rows in x and the vector y =center with respect
to X =cov. This is (for vector x) defined as

D? = (z—p)S" (z—p)

Usage

mahalanobis(x, center, cov, inverted=FALSE, tol.inv = 1le-7)

Arguments
X vector or matrix of data with, say, p columns.
center mean vector of the distribution or second data vector of length p.
cov covariance matrix (p X p) of the distribution.
inverted logical. If TRUE, cov is supposed to contain the inverse of the covariance
matrix.
tol.inv tolerance to be used for computing the inverse (if inverted is false), see
solve.
Author(s)

Friedrich Leisch

See Also

cov, var

Examples

ma <- cbind(1:6, 1:3)
(S <- var(ma))
mahalanobis(c(0,0), 1:2, S)

x <- matrix(rnorm(100%3), ncol = 3)
stopifnot (mahalanobis(x, 0, diag(ncol(x))) == rowSums(x*x))
##- Here, D”2 = usual Euclidean distances

Sx <- cov(x)
D2 <- mahalanobis(x, rowMeans(x), Sx)
plot(density (D2, bw=.5), main="Mahalanobis distances, n=100, p=3"); rug(D2)
qqplot (qchisq(ppoints(100), df=3), D2,

main = expression("Q-Q plot of Mahalanobis" * “D"2 *

" vs. quantiles of" * ~ chi[3]72))

abline(0, 1, col = 'gray')

398 make.names

make.link Create a Link for GLM families

Description
This function is used with the family functions in glm(). Given a link, it returns a link
function, an inverse link function, the derivative du/dn and a function for domain checking.
Usage

make.link(1link)

Arguments
link character or numeric; one of "logit", "probit", "cloglog",
"identity", "log", "sqrt", "1/mu”2", "inverse", or number, say A
resulting in power link = p*.
Value

A list with components

linkfun Link function function (mu)

linkinv Inverse link function function(eta)

mu.eta Derivative function(eta) du/dn

valideta function(eta){ TRUE if all of eta is in the domain of linkinv }.
See Also

glm, family.
Examples

str(make.link("logit"))

12 <- make.link(2)
12$1inkfun(0:3)# 0 1 4 9
12$mu.eta(eta= 1:2)#= 1/(2xsqrt(eta))

make.names Make Syntactically Valid Names

Description

Make syntactically valid names out of character vectors.

Usage

make .names (names, unique = FALSE)

make.packages.html 399

Arguments
names character vector to be coerced to syntactically valid names. This is co-
erced to character if necessary.
unique logical; if TRUE, the resulting elements are unique. This may be desired
for, e.g., column names.
Details

A syntactically valid name consists of letters, numbers, and the dot character and starts
with a letter or the dot. Names such as ".2" are not valid, and neither are the reserved
words.

The character "X" is prepended if necessary. All invalid characters are translated to ".". A
missing value is translated to "NA". Names which match R keywords have a dot appended
to them. Duplicated values are altered by make.unique.

Value

A character vector of same length as names with each changed to a syntactically valid name.

See Also

make.unique, names, character, data.frame.

Examples

make .names (c("a and b", "a_and_b"), unique=TRUE)
"a.and.b" "a.and.b.1"

data(state)
state.name [make.names(state.name) != state.name] # those 10 with a space

make.packages.html Update HTML documentation files

Description

Functions to re-create the HTML documentation files to reflect all installed packages.

Usage
make .packages.html(1lib.loc = .libPaths())

Arguments

lib.loc character vector. List of libraries to be included.

Details

This sets up the links from packages in libraries to the ‘.R’ subdirectory of the per-sesson
directory (see tempdir) and then creates the ‘packages.html’ and ‘index.txt’ files to point to
those links.

If a package is available in more than one library tree, all the copies are linked, after the
first with suffix .1 etc.

400 make.socket

Value

Logical, whether the function succeeded in recreating the files.

See Also

help.start

make.socket Create a Socket Connection

Description

With server = FALSE attempts to open a client socket to the specified port and host.
With server = TRUE listens on the specified port for a connection and then returns a
server socket. It is a good idea to use on.exit to ensure that a socket is closed, as you only
get 64 of them.

Usage

make.socket (host = "localhost", port, fail = TRUE, server = FALSE)

Arguments
host name of remote host
port port to connect to/listen on
fail failure to connect is an error?
server a server socket?

Value

An object of class "socket".

socket socket number. This is for internal use
port port number of the connection
host name of remote computer

Warning

I don’t know if the connecting host name returned when server = TRUE can be trusted. I
suspect not.

Author(s)

Thomas Lumley

References

Adapted from Luke Tierney’s code for XLISP-Stat, in turn based on code from Robbins
and Robbins "Practical UNIX Programming”

make.tables 401

See Also

close.socket, read.socket

Examples

daytime <- function(host = "localhost"){
a <- make.socket(host, 13)
on.exit(close.socket(a))
read.socket (a)
}
Offical time (UTC) from US Naval Observatory
Not run: daytime("tick.usno.navy.mil")

make.tables Create model.tables

Description
These are support functions for (the methods of) model.tables and probably not much of
use otherwise.

Usage

make.tables.aovproj (proj.cols, mf.cols, prjs, mf,
fun = "mean", prt = FALSE, ...)

make.tables.aovprojlist(proj.cols, strata.cols, model.cols, projections,
model, eff, fun = "mean", prt = FALSE, ...)

See Also

model.tables

make .unique Make Character Strings Unique

Description

Makes the elements of a character vector unique by appending sequence numbers to dupli-

cates.
Usage
make.unique (names, sep = ".")
Arguments
names a character vector
sep a character string used to separate a duplicate name from its sequence

number.

402 makepredictcall

Details

The algorithm used by make.unique has the property that make.unique(c(A, B)) ==
make.unique (c(make.unique(A), B)).

In other words, you can append one string at a time to a vector, making it unique each
time, and get the same result as applying make.unique to all of the strings at once.

If character vector A is already unique, then make.unique(c(A, B)) preserves A.

Value

A character vector of same length as names with duplicates changed.

Author(s)
Thomas P Minka

See Also

make .names

Examples
make.unique(c("a", "a", "a"))
make.unique (c(make.unique(c("a", "a")), "a"))
make.unique(c("a", "a", "a.2", "a"))
make.unique (c (make.unique(c("a", "a")), "a.2", "a"))

rbind(data.frame(x=1), data.frame(x=2), data.frame(x=3))
rbind(rbind(data.frame(x=1), data.frame(x=2)), data.frame(x=3))

makepredictcall Utility Function for Safe Prediction

Description

A utility to help model.frame.default create the right matrices when predicting from
models with terms like poly or ns.

Usage

makepredictcall(var, call)

Arguments

var A variable.

call The term in the formula, as a call.

manglePackageName 403

Details

This is a generic function with methods for poly, bs and ns: the default method handles
scale. If model.frame.default encounters such a term when creating a model frame, it
modifies the predvars attribute of the terms supplied to replace the term with one that
will work for predicting new data. For example makepredictcall.ns adds arguments for
the knots and intercept.

To make use of this, have your model-fitting function return the terms attribute of the
model frame, or copy the predvars attribute of the terms attribute of the model frame to
your terms object.

To extend this, make sure the term creates variables with a class, and write a suitable
method for that class.

Value

A replacement for call for the predvars attribute of the terms.

See Also

model.frame, poly, scale, bs, ns, cars

Examples

using poly: this did not work in R < 1.5.0
data(women)

fm <- lm(weight ~ poly(height, 2), data = women)
plot(women, xlab = "Height (in)", ylab = "Weight (1b)")
ht <- seq(57, 73, len = 200)

lines(ht, predict(fm, data.frame(height=ht)))

see also example(cars)

see bs and ns for spline examples.

manglePackageName Mangle the Package Name

Description
This function takes the package name and the package version number and pastes them
together with a separating underscore.

Usage

manglePackageName (pkgName, pkgVersion)

Arguments

pkgName The package name, as a character string.

pkgVersion The package version, as a character string.

404

Value

A character string with the two inputs pasted together.

Examples

manglePackageName ("foo", "1.2.3")

manova

manova Multivariate Analysis of Variance

Description

A class for the multivariate analysis of variance.

Usage

manova(...)

Arguments

Arguments to be passed to aov.

Details

Class "manova" differs from class "aov" in selecting a different summary method. Function
manova calls aov and then add class "manova" to the result object for each stratum.

Value

See aov and the comments in Details here.

Note

manova does not support multistratum analysis of variance, so the formula should not

include an Error term.

References

Krzanowski, W. J. (1988) Principles of Multivariate Analysis. A User’s Perspective. Ox-

ford.

Hand, D. J. and Taylor, C. C. (1987) Multivariate Analysis of Variance and Repeated

Measures. Chapman and Hall.

See Also

aov, summary.manova, the latter containing examples.

mapply 405

mapply Apply a function to multiple list or vector arguments

Description

A multivariate version of sapply. mapply applies FUN to the first elements of each
...argument, the second elements, the third elements, and so on. Arguments are recy-
cled if necessary.

Usage
mapply (FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)

Arguments
FUN Function to apply
Arguments to vectorise over (list or vector)
MoreArgs A list of other arguments to FUN
SIMPLIFY Attempt to reduce the result to a vector or matrix?
USE.NAMES If the first ...argument is character and the result doesn’t already have
names, use it as the names
Value

A list, vector, or matrix.

See Also
sapply

Examples
mapply(rep, 1:4, 4:1)
mapply(rep, times=1:4, x=4:1)

mapply(rep, times=1:4, MoreArgs=list(x=42))

margin.table Compute table margin

Description

For a contingency table in array form, compute the sum of table entries for a given index.

Usage

margin.table(x, margin=NULL)

406 mat.or.vec

Arguments

b an array

margin index number (1 for rows, etc.)
Details

This is really just apply(x, margin, sum) packaged up for newbies, except that if margin
has length zero you get sum(x).

Value
The relevant marginal table. The class of x is copied to the output table, except in the
summation case.

Author(s)

Peter Dalgaard

Examples

m<-matrix(1:4,2)
margin.table(m,1)
margin.table (m,2)

mat.or.vec Create a Matriz or a Vector

Description
mat.or.vec creates an nr by nc zero matrix if nc is greater than 1, and a zero vector of
length nr if nc equals 1.

Usage

mat.or.vec(nr, nc)

Arguments

nr, nc numbers of rows and columns.

Examples

mat.or.vec(3, 1)
mat.or.vec(3, 2)

match 407

match Value Matching

Description

match returns a vector of the positions of (first) matches of its first argument in its second.

%in% is a more intuitive interface as a binary operator, which returns a logical vector
indicating if there is a match or not for its left operand.

Usage

match(x, table, nomatch = NA, incomparables = FALSE)

x %in% table

Arguments
X the values to be matched.
table the values to be matched against.
nomatch the value to be returned in the case when no match is found. Note that

it is coerced to integer.

incomparables a vector of values that cannot be matched. Any value in x matching a
value in this vector is assigned the nomatch value. Currently, FALSE is
the only possible value, meaning that all values can be matched.

Details

%in% is currently defined as
"%in%" <- function(x, table) match(x, table, nomatch = 0) > 0O

Factors are converted to character vectors, and then x and table are coerced to a common
type (the later of the two types in R’s ordering, logical < integer < numeric < complex <
character) before matching.

Value

In both cases, a vector of the same length as x.

match: An integer vector giving the position in table of the first match if there is a match,
otherwise nomatch.

If x[i] is found to equal table[j] then the value returned in the i-th position of the return
value is j, for the smallest possible j. If no match is found, the value is nomatch.

%in%: A logical vector, indicating if a match was located for each element of x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

408 match.arg

See Also

pmatch and charmatch for (partial) string matching, match.arg, etc for function argument
matching.

is.element for an S-compatible equivalent of %in%.

Examples

The intersection of two sets :
intersect <- function(x, y) ylmatch(x, y, nomatch = 0)]
intersect(1:10,7:20)

1:10 %in% <(1,3,5,9)
sstr <_ C("C" Ilabll I|BII llbba" Ilcll II@II llblall Ilal| IIBaII II%II)
sstrsstr %in% c(letters,LETTERS)]

"hw/o%h" <- function(x,y) x[!x %in), y] #-- x without y
(1:10) %w/o% c(3,7,12)

match.arg Argument Verification Using Partial Matching

Description

match.arg matches arg against a table of candidate values as specified by choices.

Usage

match.arg(arg, choices)

Arguments

arg a character string

choices a character vector of candidate values
Details

In the one-argument form match.arg(arg), the choices are obtained from a default setting
for the formal argument arg of the function from which match.arg was called.

Matching is done using pmatch, so arg may be abbreviated.

Value

The unabbreviated version of the unique partial match if there is one; otherwise, an error
is signalled.

See Also

pmatch, match.fun, match.call.

match.call 409

Examples

Extends the example for 'switch'

center <- function(x, type = c("mean", "median", "trimmed")) {
type <- match.arg(type)
switch(type,

mean = mean(x),
median = median(x),

trimmed = mean(x, trim = .1))
}
x <- rcauchy(10)
center(x, "t") # Works
center(x, "med") # Works
Not run:
center(x, "m") # Error

End(Not run)

match.call Argument Matching

Description

match.call returns a call in which all of the arguments are specified by their names. The
most common use is to get the call of the current function, with all arguments named.

Usage

match.call(definition = NULL, call = sys.call(sys.parent()),
expand.dots = TRUE)

Arguments
definition a function, by default the function from which match.call is called.
call an unevaluated call to the function specified by definition, as generated
by call.
expand.dots logical. Should arguments matching ... in the call be included or left as
a ... argument?
Value

An object of class call.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

call, pmatch, match.arg, match.fun.

410 match.fun

Examples

match.call(get, call("get", "abc", i = FALSE, p = 3))
-> get(x = "abc", pos = 3, inherits = FALSE)
fun <- function(x, lower = 0, upper = 1) {
structure((x - lower) / (upper - lower), CALL = match.call())
}
fun(4 * atan(1), u = pi)

match.fun Function Verification for “Function Variables”

Description
When called inside functions that take a function as argument, extract the desired function
object while avoiding undesired matching to objects of other types.

Usage
match.fun(FUN, descend = TRUE)

Arguments

FUN item to match as function.

descend logical; control whether to search past non-function objects.
Details

match.fun is not intended to be used at the top level since it will perform matching in the
parent of the caller.

If FUN is a function, it is returned. If it is a symbol or a character vector of length one,
it will be looked up using get in the environment of the parent of the caller. If it is of
any other mode, it is attempted first to get the argument to the caller as a symbol (using
substitute twice), and if that fails, an error is declared.

If descend = TRUE, match.fun will look past non-function objects with the given name;
otherwise if FUN points to a non-function object then an error is generated.

This is now used in base functions such as apply, lapply, outer, and sweep.

Value

A function matching FUN or an error is generated.

Bugs

The descend argument is a bit of misnomer and probably not actually needed by anything.
It may go away in the future.

It is impossible to fully foolproof this. If one attaches a list or data frame containing a
character object with the same name of a system function, it will be used.

Author(s)

Peter Dalgaard and Robert Gentleman, based on an earlier version by Jonathan Rougier.

matmult 411

See Also

match.arg, get

Examples

Same as get("*"):

match.fun("*")

Overwrite outer with a vector

outer <- 1:5

Not run:

match.fun(outer, descend = FALSE) #-> Error: not a function
End(Not run)

match.fun(outer) # finds it anyway
is.function(match.fun("outer")) # as well

matmult Matriz Multiplication

Description
Multiplies two matrices, if they are conformable. If one argument is a vector, it will be
coerced to a either a row or column matrix to make the two arguments conformable. If
both are vectors it will return the inner product.

Usage

a %*% b

Arguments

a, b numeric or complex matrices or vectors.

Value

The matrix product. Use drop to get rid of dimensions which have only one level.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

matrix, Arithmetic, diag.

Examples
x <- 1:4
(z <= x %*% x) # scalar ("inmner") product (1 x 1 matrix)
drop(z) # as scalar
y <- diag(x)

z <- matrix(1:12, ncol = 3, nrow = 4)
y %xh z

412 matplot

y h*h x
x h*h =z

matplot Plot Columns of Matrices

Description

Plot the columns of one matrix against the columns of another.

Usage
matplot(x, y, type = "p", lty = 1:5, 1lwd = 1, pch = NULL, col = 1:6,
cex = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
., add = FALSE, verbose = getOption("verbose"))
matpoints(x, y, type = "p", lty = 1:5, lwd = 1, pch = NULL, col = 1:6, ...)
matlines (x, y, type = "1", lty = 1:5, lwd = 1, pch = NULL, col = 1:6, ...)
Arguments

X,y vectors or matrices of data for plotting. The number of rows should match.
If one of them are missing, the other is taken as y and an x vector of 1:n
is used. Missing values (NAs) are allowed.

type character string (length 1 vector) or vector of 1-character strings indicat-
ing the type of plot for each column of y, see plot for all possible types.
The first character of type defines the first plot, the second character the
second, etc. Characters in type are cycled through; e.g., "pl" alternately
plots points and lines.

1ty,1lwd vector of line types and widths. The first element is for the first column,
the second element for the second column, etc., even if lines are not plotted
for all columns. Line types will be used cyclically until all plots are drawn.

pch character string or vector of 1-characters or integers for plotting charac-
ters, see points. The first character is the plotting-character for the first
plot, the second for the second, etc. The default is the digits (1 through
9, 0) then the letters.

col vector of colors. Colors are used cyclically.

cex vector of character expansion sizes, used cyclically.

xlab, ylab titles for x and y axes, as in plot.

x1lim, ylim ranges of x and y axes, as in plot.
Graphical parameters (see par) and any further arguments of plot, typi-
cally plot.default, may also be supplied as arguments to this function.
Hence, the high-level graphics control arguments described under par and
the arguments to title may be supplied to this function.

add logical. If TRUE, plots are added to current one, using points and lines.

verbose logical. If TRUE, write one line of what is done.

matplot 413

Details

Points involving missing values are not plotted.

The first column of x is plotted against the first column of y, the second column of x
against the second column of y, etc. If one matrix has fewer columns, plotting will cycle
back through the columns again. (In particular, either x or y may be a vector, against
which all columns of the other argument will be plotted.)

The first element of col, cex, 1lty, 1lwd is used to plot the axes as well as the first line.

Because plotting symbols are drawn with lines and because these functions may be changing
the line style, you should probably specify 1ty=1 when using plotting symbols.

Side Effects

Function matplot generates a new plot; matpoints and matlines add to the current one.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

plot, points, lines, matrix, par.

Examples

matplot ((-4:5)"2, main = "Quadratic") # almost identical to plot(*)
sines <- outer(1:20, 1:4, function(x, y) sin(x / 20 * pi * y))
matplot(sines, pch = 1:4, type = "o", col = rainbow(ncol(sines)))

x <- 0:50/50

matplot(x, outer(x, 1:8, function(x, k) sin(k*pi * x)),
ylim = c(-2,2), type = "plobcsSh",
main= "matplot(,type = \"plobcsSh\")")

pch & type = vector of 1-chars :

matplot(x, outer(x, 1:4, function(x, k) sin(k*pi * x)),
pch = letters[1:4], type = c("b","p","o"))

data(iris) # is data.frame with 'Species' factor
table(iris$Species)

i8S <- iris$Species == "setosa"

iV <- iris$Species == "versicolor"

op <- par(bg = "bisque")
matplot(c(1l, 8), c(0, 4.5), type= "n", xlab = "Length", ylab = "Width",

main = "Petal and Sepal Dimensions in Iris Blossoms")
matpoints(iris[iS,c(1,3)], iris[iS,c(2,4)], pch = "sS", col = c(2,4))
matpoints(iris[iV,c(1,3)], iris[iV,c(2,4)], pch = "vV", col = c(2,4))
legend(1, 4, c(" Setosa Petals", " Setosa Sepals",

"Versicolor Petals", "Versicolor Sepals"),
pch = "sSvV", col = rep(c(2,4), 2))

nam.var <- colnames(iris) [-5]

nam.spec <- as.character(iris[1+50%0:2, "Species"])

iris.S <- array(NA, dim = c(50,4,3), dimnames = list(NULL, nam.var, nam.spec))
for(i in 1:3) iris.S[,,i] <- data.matrix(iris[1:50+50*(i-1), -5])

414 matrix

matplot(iris.S[,"Petal.Length",], iris.S[,"Petal.Width",], pch="SCV",

col = rainbow(3, start = .8, end = .1),
sub = paste(c("S", "C", "V"), dimnames(iris.S)[[3]],
sep = "=", collapse= ", "),
main = "Fisher's Iris Data")
matrix Matrices
Description

matrix creates a matrix from the given set of values.
as.matrix attempts to turn its argument into a matrix.

is.matrix tests if its argument is a (strict) matrix. It is generic: you can write methods
to handle of specific classes of objects, see InternalMethods.

Usage

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
as.matrix(x)
is.matrix(x)

Arguments
data an optional data vector.
nrow the desired number of rows
ncol the desired number of columns
byrow logical. If FALSE (the default) the matrix is filled by columns, otherwise
the matrix is filled by rows.
dimnames A dimnames attribute for the matrix: a list of length 2.
X an R object.
Detalils

If either of nrow or ncol is not given, an attempt is made to infer it from the length of
data and the other parameter.

is.matrix returns TRUE if x is a matrix (i.e., it is not a data.frame and has a dim attribute
of length 2) and FALSE otherwise.

as.matrix is a generic function. The method for data frames will convert any non-numeric
column into a character vector using format and so return a character matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

data.matrix, which attempts to convert to a numeric matrix.

maxCol 415

Examples

is.matrix(as.matrix(1:10))

data(warpbreaks)

lis.matrix(warpbreaks)# data.frame, NOT matrix!

str(warpbreaks)

str(as.matrix(warpbreaks))#using as.matrix.data.frame(.) method

maxCol Find Maximum Position in Matrix

Description

Find the maximum position for each row of a matrix, breaking ties at random.

Usage

max.col(m)

Arguments

m numerical matrix

Details
Ties are broken at random. The determination of “tie” assumes that the entries are proba-
bilities: there is a relative tolerance of 1075, relative to the largest entry in the row.
Value

index of a maximal value for each row, an integer vector of length nrow(m).

References
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York:
Springer (4th ed).

See Also

which.max for vectors.

Examples

data(swiss)
table(mc <- max.col(swiss))# mostly "1" and "5", 5 x "2" and once "4"
swiss[unique(print(mr <- max.col(t(swiss)))) ,] # 3 33 45 45 33 6

416 mean

mean Arithmetic Mean

Description

Generic function for the (trimmed) arithmetic mean.

Usage

mean(x, ...)

Default S3 method:

mean(x, trim = 0, na.rm = FALSE, ...)
Arguments
X An R object. Currently there are methods for numeric data frames, nu-

meric vectors and dates. A complex vector is allowed for trim = 0, only.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of x
before the mean is computed.

na.rm a logical value indicating whether NA values should be stripped before the
computation proceeds.

further arguments passed to or from other methods.

Value

For a data frame, a named vector with the appropriate method being applied column by
column.

If trim is zero (the default), the arithmetic mean of the values in x is computed.

If trim is non-zero, a symmetrically trimmed mean is computed with a fraction of trim
observations deleted from each end before the mean is computed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

weighted.mean, mean.POSIXct

Examples

x <- c(0:10, 50)
xm <- mean(x)
c(xm, mean(x, trim = 0.10))

data(USArrests)
mean (USArrests, trim = 0.2)

median 417

median Median Value

Description

Compute the sample median of the vector of values given as its argument.

Usage

median(x, na.rm=FALSE)

Arguments
X a numeric vector containing the values whose median is to be computed.
na.rm a logical value indicating whether NA values should be stripped before the
computation proceeds.
References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.
See Also

quantile for general quantiles.

Examples

median(1:4)# = 2.5 [even number]
median(c(1:3,100,1000))# = 3 [odd, robust]

Memory Memory Available for Data Storage

Description

Use command line options to control the memory available for R.

Usage
R ——min-vsize=vl --max-vsize=vu --min-nsize=nl --max-nsize=nu
mem.limits(nsize = NA, vsize = NA)

Arguments

vl, vu, vsize Heap memory in bytes.

nl, nu, nsize Number of cons cells.

418 Memory

Details

R has a variable-sized workspace (from version 1.2.0). There is now much less need to set
memory options than previously, and most users will never need to set these. They are
provided both as a way to control the overall memory usage (which can also be done by
operating-system facilities such as 1imit on Unix), and since setting larger values of the
minima will make R slightly more efficient on large tasks.

To understand the options, one needs to know that R maintains separate areas for fixed
and variable sized objects. The first of these is allocated as an array of “cons cells” (Lisp
programmers will know what they are, others may think of them as the building blocks of
the language itself, parse trees, etc.), and the second are thrown on a “heap” of “Vcells” of
8 bytes each. Effectively, the input v is rounded up to the nearest multiple of 8.

Each cons cell occupies 28 bytes on a 32-bit machine, (usually) 56 bytes on a 64-bit machine.

The ‘--*-nsize’ options can be used to specify the number of cons cells and the ‘-—*-vsize’
options specify the size of the vector heap in bytes. Both options must be integers or
integers followed by G, M, K, or k meaning Giga (230 = 1073741824) Mega (2%° = 1048576),
(computer) Kilo (210 = 1024), or regular kilo (1000).

The ‘--min-*’ options set the minimal sizes for the number of cons cells and for the vector
heap. These values are also the initial values, but thereafter R will grow or shrink the
areas depending on usage, but never exceeding the limits set by the ‘~-max-*’ options nor
decreasing below the initial values.

The default values are currently minima of 350k cons cells, 6Mb of vector heap and no
maxima (other than machine resources). The maxima can be changed during an R session
by calling mem.limits. (If this is called with the default values, it reports the current
settings.)

You can find out the current memory consumption (the heap and cons cells used as numbers
and megabytes) by typing gc() at the R prompt. Note that following gcinfo(TRUE),
automatic garbage collection always prints memory use statistics. Maxima will never be
reduced below the current values for triggering garbage collection, and attempts to do so
will be silently ignored.

When using read.table, the memory requirements are in fact higher than anticipated,
because the file is first read in as one long string which is then split again. Use scan if
possible in case you run out of memory when reading in a large table.

Value

(mem.limits) an integer vector giving the current settings of the maxima, possibly NA.

Note

4 4

For backwards compatibility, options ‘--nsize’ and

‘--min-nsize’ and ‘--min-vsize’.

--vsize’ are equivalent to

See Also

gc for information on the garbage collector, memory.profile for profiling the usage of cons
cells.

Examples

Start R with 10MB of heap memory and 500k cons cells, limit to
100Mb and 1M cells

memory.profile 419

Not run:

Unix

R --min-vsize=10M --max-vsize=100M --min-nsize=500k --max-nsize=1M
End(Not run)

memory.profile Profile the Usage of Cons Cells

Description

Lists the usage of the cons cells by SEXPREC type.

Usage

memory.profile()

Details

The current types and their uses are listed in the include file ‘Rinternals.h’. There will be
blanks in the list corresponding to types that are no longer in use (types 11 and 12 at the
time of writing). Also FUNSXP is not included.

Value

A vector of counts, named by the types.

See Also

gc for the overall usage of cons cells.

Examples

memory.profile()

menu Menu Interaction Function

Description

menu presents the user with a menu of choices labelled from 1 to the number of choices. To
exit without choosing an item one can select ‘0’.

Usage
menu(choices, graphics = FALSE, title = "")
Arguments
choices a character vector of choices
graphics a logical indicating whether a graphics menu should be used. Currently

unused.

title a character string to be used as the title of the menu

420 merge

Value

The number corresponding to the selected item, or 0 if no choice was made.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

Not run:

switch(menu(c("List letters", "List LETTERS")) + 1,
cat("Nothing done\n"), letters, LETTERS)

End(Not run)

merge Merge Two Data Frames

Description
Merge two data frames by common columns or row names, or do other versions of database
“join” operations.

Usage
merge(x, y, ...)

Default S3 method:
merge(x, y, ...)

S3 method for class 'data.frame':

merge(x, y, by = intersect(names(x), names(y)),
by.x = by, by.y = by, all = FALSE, all.x = all, all.y = all,
sort = TRUE, suffixes = c(".x",".y"), ...)

Arguments

X, §y data frames, or objects to be coerced to one

by, by.x, by.y
specifications of the common columns. See Details.

all logical; al1=L is shorthand for all.x=L and all.y=L.

all.x logical; if TRUE, then extra rows will be added to the output, one for each
row in x that has no matching row in y. These rows will have NAs in those
columns that are usually filled with values from y. The default is FALSE,
so that only rows with data from both x and y are included in the output.

all.y logical; analogous to all.x above.

sort logical. Should the results be sorted on the by columns?

suffixes character(2) specifying the suffixes to be used for making non-by names ()
unique.

arguments to be passed to or from methods.

merge 421

Details

By default the data frames are merged on the columns with names they both have, but
separate specifications of the columns can be given by by.x and by.y. Columns can be
specified by name, number or by a logical vector: the name "row.names" or the number
0 specifies the row names. The rows in the two data frames that match on the specified
columns are extracted, and joined together. If there is more than one match, all possible
matches contribute one row each.

If the by.* vector are of length 0, the result, r, is the “Cartesian product” of x and y, i.e.,
dim(r) = c(nrow(x)*nrow, ncol(x) + ncol(y)).

If all.x is true, all the non matching cases of x are appended to the result as well, with
NA filled in the corresponding columns of y; analogously for all.y.

If the remaining columns in the data frames have any common names, these have suffixes
(".x" and ".y" by default) appended to make the names of the result unique.

Value

A data frame. The rows are by default lexicographically sorted on the common columns,
but are otherwise in the order in which they occurred in y. The columns are the common
columns followed by the remaining columns in x and then those in y. If the matching
involved row names, an extra column Row.names is added at the left, and in all cases the
result has no special row names.

See Also

data.frame, by, cbind

Examples

authors <- data.frame(
surname = c("Tukey", "Venables", "Tierney", "Ripley", "McNeil"),
nationality = c("US", "Australia", "US", "UK", "Australia"),
deceased = c("yes", rep("no", 4)))
books <- data.frame(
name = c("Tukey", "Venables", "Tierney",
"Ripley", "Ripley", "McNeil", "R Core"),
title = c("Exploratory Data Analysis",
"Modern Applied Statistics ...",
"LISP-STAT",
"Spatial Statistics", "Stochastic Simulation",
"Interactive Data Analysis",
"An Introduction to R"),
other.author = c(NA, "Ripley", NA, NA, NA, NA,
"Venables & Smith"))

(m1 <- merge(authors, books, by.x = "surname", by.y = "name"))
(m2 <- merge(books, authors, by.x = "name", by.y = "surname"))
stopifnot(as.character(m1[,1]) == as.character(m2[,1]),

all.equal(mi[, -1], m2[, -1][names(ml) [-1] 1),
dim(merge(ml, m2, by = integer(0))) == c(36, 10))

"R core" is missing from authors and appears only here :
merge (authors, books, by.x = "surname", by.y = "name", all = TRUE)

422 methods

methods List Methods for S3 Generic Functions or Classes

Description

List all available methods for an S3 generic function, or all methods for a class.

Usage

methods(generic.function, class)

Arguments

generic.function
a generic function, or a character string naming a generic function.

class a symbol or character string naming a class: only used if
generic.function is not supplied.

Detalils

Function methods can be used to find out about the methods for a particular generic
function or class. The functions listed are those which are named like methods and may
not actually be methods (known exceptions are discarded in the code). Note that the listed
methods may not be user-visible objects, but often help will be available for them.

If class is used, we check that a matching generic can be found for each user-visible object
named.

Value

An object of class "MethodsFunction", a character vector of function names with an "info"
attribute. There is a print method which marks with an asterisk any methods which are
not visible: such functions can be examined by getS3method or getAnywhere.

The "info" attribute is a data frame, currently with a logical column, visible and a factor
column from (indicating where the methods were found).
Note

This scheme is called S3 (S version 3). For new projects, it is recommended to use the more
flexible and robust S4 scheme provided in the methods package. Functions can have both
S3 and S4 methods, and function showMethods will list the S4 methods (possibly none).

The original methods function was written by Martin Maechler.

References

Chambers, J. M. (1992) Classes and methods: object-oriented programming in S. Ap-
pendix A of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth
& Brooks/Cole.

See Also

S3Methods, class, getS3method

missing 423

Examples
methods (summary)
methods(class = "aov")
methods (" [[") ##- does not list the C-internal ones...
methods ("$") # currently none
methods ("$<-") # replacement function
methods ("+") # binary operator
methods("Math") # group generic
Not run:
methods (print)

End(Not run)

missing Does a Formal Argument have a Value?

Description

missing can be used to test whether a value was specified as an argument to a function.

Usage

missing(x)

Arguments

X a formal argument.

Details

missing(x) is only reliable if x has not been altered since entering the function: in partic-
ular it will always be false after x <- match.arg(x).

The example shows how a plotting function can be written to work with either a pair of
vectors giving x and y coordinates of points to be plotted or a single vector giving y values
to be plotted against their indexes.

Currently missing can only be used in the immediate body of the function that defines the
argument, not in the body of a nested function or a local call. This may change in the
future.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

substitute for argument expression; NA for “missing values” in data.

424 mode

Examples

myplot <- function(x,y) {
if (missing(y)) {
y <- X
x <= 1l:length(y)
}
plot(x,y)

mode The (Storage) Mode of an Object

Description

Get or set the type or storage mode of an object.

Usage

mode (x)

mode (x) <- value
storage.mode (x)
storage.mode(x) <- value

Arguments

X any R object.

value a character string giving the desired (storage) mode of the object.
Details

Both mode and storage.mode return a character string giving the (storage) mode of the
object — often the same — both relying on the output of typeof(x), see the example
below.

The two assignment versions are currently identical. Both mode(x) <- newmode and
storage.mode(x) <- newmode change the mode or storage.mode of object x to newmode.

As storage mode "single" is only a pseudo-mode in R, it will not be reported by mode or
storage.mode: use attr(object, "Csingle") to examine this. However, the assignment
versions can be used to set the mode to "single", which sets the real mode to "double"
and the "Csingle" attribute to TRUE. Setting any other mode will remove this attribute.

Note (in the examples below) that some calls have mode " (" which is S compatible.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

typeof for the R-internal “mode”, attributes.

model.extract 425

Examples

sapply (options () ,mode)

cex3 <- c("NULL","1","1:1","1i","list(1)","data.frame(x=1)", "pairlist(pi)",
"c", "Im", "formals(lm)[[1]]", "formals(lm)[[2]]",
"y x","expression((1)) [[11]1", "(y~x) [[1]1]1", "expression(x <- pi) [[11]1[[111™)
lex3 <- sapply(cex3, function(x) eval(parse(text=x)))
mex3 <- t(sapply(lex3, function(x) c(typeof(x), storage.mode(x), mode(x))))
dimnames (mex3) <- list(cex3, c("typeof(.)","storage.mode(.)","mode(.)"))
mex3

This also makes a local copy of 'pi':
storage.mode(pi) <- "complex"
storage.mode (pi)

rm(pi)

model.extract Eztract Components from a Model Frame

Description

Returns the response, offset, subset, weights or other special components of a model frame
passed as optional arguments to model.frame.

Usage

model.extract(frame, component)
model.offset (x)
model.response(data, type = "any")
model.weights(x)

Arguments

frame, x, data
A model frame.

component literal character string or name. The name of a component to extract,
such as "weights", "subset".

type One of "any", "numeric", "double". Using the either of latter two co-
erces the result to have storage mode "double".

Detalils
model.extract is provided for compatibility with S, which does not have the more specific
functions.

model.offset and model.response are equivalent to model.frame(, "offset") and
model.frame(, "response") respectively.

model .weights is slightly different from model.frame(, "weights") in not naming the
vector it returns.

Value

The specified component of the model frame, usually a vector.

426 model.frame

See Also

model.frame, offset

Examples

data(esoph)

a <- model.frame(cbind(ncases,ncontrols) ~ agegpt+tobgp+alcgp, data=esoph)
model.extract(a, "response")

stopifnot (model.extract(a, "response") == model.response(a))

a <- model.frame(ncases/(ncases+ncontrols) ~ agegp+tobgp+alcgp,
data = esoph, weights = ncases+ncontrols)

model.response(a)

model.extract(a, "weights")

a <- model.frame(cbind(ncases,ncontrols) ~ agegp,
something = tobgp, data = esoph)

names (a)
stopifnot(model.extract(a, "something") == esoph$tobgp)
model.frame Ezxtracting the “Environment” of a Model Formula
Description

model . frame (a generic function) and its methods return a data.frame with the variables

needed to use formula and any ... arguments.
Usage
model .frame(formula, ...)

Default S3 method:

model . frame(formula, data = NULL,
subset = NULL, na.action = na.fail,
drop.unused.levels = FALSE, xlev = NULL, ...)

S3 method for class 'aovlist':
model .frame(formula, data = NULL, ...)

S3 method for class 'glm':
model . frame(formula, data, na.action, ...)

S3 method for class 'Ilm':

model .frame(formula, data, na.action, ...)
Arguments
formula a model formula
data data.frame, list, environment or object coercible to data.frame con-

taining the variables in formula.

model. matrix

subset

na.action

427

a specification of the rows to be used: defaults to all rows. This can be any
valid indexing vector (see [.data.frame for the rows of data or if that
is not supplied, a data frame made up of the variables used in formula.

how NAs are treated. The default is first, any na.action attribute of
data, second a na.action setting of options, and third na.fail if that
is unset. The “factory-fresh” default is na.omit.

drop.unused.levels

should factors have unused levels dropped? Defaults to FALSE.

xlev a named list of character vectors giving the full set of levels to be assumed
for each factor.
further arguments such as subset, offset and weights. NULL arguments
are treated as missing.
Details
Variables in the formula, subset and in ... are looked for first in data and then in the

environment of formula: see the help for formula() for further details.

First all the variables needed are collected into a data frame. Then subset expression is
evaluated, and it is is used as a row index to the data frame. Then the na.action function
is applied to the data frame (and may well add attributes). The levels of any factors in the
data frame are adjusted according to the drop.unused.levels and xlev arguments.

Value

A data.frame containing the variables used in formula plus those specified

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

model .matrix for the “design matrix”, formula for formulas and expand.model.frame for
model.frame manipulation.

Examples

data(cars)

data.class(model.frame(dist ~ speed, data = cars))

model.matrix

Construct Design Matrices

Description

model.matrix creates a design matrix.

428 model. matrix

Usage
model .matrix(object, ...)
Default S3 method:

model .matrix(object, data = environment(object),
contrasts.arg = NULL, xlev = NULL, ...)

Arguments
object an object of an appropriate class. For the default method, a model formula
or terms object.
data a data frame created with model . frame.

contrasts.arg A list, whose entries are contrasts suitable for input to the contrasts
replacement function and whose names are the names of columns of data
containing factors.

xlev to be used as argument of model.frame if data has no "terms" attribute.

further arguments passed to or from other methods.

Details

model .matrix creates a design matrix from the description given in terms (formula), using
the data in data which must contain columns with the same names as would be created by
a call to model.frame(formula) or, more precisely, by evaluating attr (terms(formula),
"variables"). There may be other columns and the order is not important. If contrasts
is specified it overrides the default factor coding for that variable.

In interactions, the variable whose levels vary fastest is the first one to appear in the formula
(and not in the term), soin ~ a + b + b:a the interaction will have a varying fastest.

By convention, if the response variable also appears on the right-hand side of the formula
it is dropped (with a warning), although interactions involving the term are retained.
Value

The design matrix for a regression model with the specified formula and data.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

model.frame, model.extract, terms

Examples

data(trees)

ff <- log(Volume) ~ log(Height) + log(Girth)
str(m <- model.frame(ff, trees))

mat <- model.matrix(ff, m)

dd <- data.frame(a = gl(3,4), b = gl(4,1,12))# balanced 2-way
options("contrasts")

model.tables

model.matrix(~ a + b, dd)

model .matrix(~ a + b, dd, contrasts = list(a="contr.sum"))

model .matrix(” a + b, dd, contrasts = list(a="contr.sum", b="contr.poly"))
m.orth <- model.matrix(~a+b, dd, contrasts = list(a="contr.helmert"))
crossprod(m.orth)# m.orth is ALMOST orthogonal

429

model.tables Compute Tables of Results from an Aov Model Fit

Description

Computes summary tables for model fits, especially complex aov fits.

Usage

model.tables(x, ...)

S3 method for class 'aov':
model.tables(x, type = "effects", se

FALSE, cterms, ...)

S3 method for class 'aovlist':

model.tables(x, type = "effects", se = FALSE, ...)
Arguments
X a model object, usually produced by aov
type type of table: currently only "effects" and "means" are implemented.
se should standard errors be computed?
cterms A character vector giving the names of the terms for which tables should
be computed. The default is all tables.
further arguments passed to or from other methods.
Details
For type = "effects" give tables of the coefficients for each term, optionally with standard
€rrors.
For type = "means" give tables of the mean response for each combinations of levels of the

factors in a term.

Value

An object of class "tables.aov", as list which may contain components

tables A list of tables for each requested term.
n The replication information for each term.
se Standard error information.

Warning

The implementation is incomplete, and only the simpler cases have been tested thoroughly.

Weighted aov fits are not supported.

430 morley

See Also

aov, proj, replications, TukeyHSD, se.contrast

Examples

From Venables and Ripley (2002) p.165

N <- c¢(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- ¢(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- ¢(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,556.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),
K=factor(K), yield=yield)

npk.aov <- aov(yield ~ block + N*PxK, npk)

model.tables(npk.aov, "means", se=TRUE)

as a test, not particularly sensible statistically

options(contrasts=c("contr.helmert", "contr.treatment"))

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

model.tables(npk.aovE, se=TRUE)

model.tables(npk.aovE, "means")

morley Michaelson-Morley Speed of Light Data

Description
The classical data of Michaelson and Morley on the speed of light. The data consists of five
experiments, each consisting of 20 consecutive ‘runs’. The response is the speed of light
measurement, suitably coded.

Usage

data(morley)

Format

A data frame contains the following components:

Expt The experiment number, from 1 to 5.
Run The run number within each experiment.

Speed Speed-of-light measurement.

Details

The data is here viewed as a randomized block experiment with ‘experiment’ and ‘run’ as
the factors. ‘run’ may also be considered a quantitative variate to account for linear (or
polynomial) changes in the measurement over the course of a single experiment.

Source

A. J. Weekes (1986) A Genstat Primer. London: Edward Arnold.

mosaicplot

Examples

data(morley)

431

morley$Expt <- factor(morley$Expt)
morley$Run <- factor (morley$Run)

attach(morley)

plot(Expt, Speed, main = "Speed of Light Data", xlab = "Experiment No.")
fm <- aov(Speed ~ Run + Expt, data = morley)

summary (fm)

fm0 <- update(fm,

anova(fm0, fm)
detach (morley)

. 7 . - Run)

mosaicplot

Mosaic Plots

Description

Plots a mosaic on the current graphics device.

Usage

mosaicplot(x,

)

Default S3 method:
mosaicplot(x, main = deparse(substitute(x)),

sub = NULL, xlab = NULL, ylab = NULL,

sort = NULL, off = NULL, dir = NULL,

color = FALSE, shade = FALSE, margin = NULL,
cex.axis = 0.66, las = par("las"),

type = c("pearson", "deviance", "FT"), ...)

S3 method for class 'formula':

mosaicplot(formula, data = NULL, ...,
main = deparse(substitute(data)), subset)
Arguments

X a contingency table in array form, with optional category labels specified
in the dimnames (x) attribute. The table is best created by the table ()
command.

main character string for the mosaic title.

sub character string for the mosaic sub-title (at bottom).

xlab,ylab x- and y-axis labels used for the plot; by default, the first and second
element of names(dimnames (X)) (i.e., the name of the first and second
variable in X).

sort vector ordering of the variables, containing a permutation of the integers
1:length(dim(x)) (the default).

off vector of offsets to determine percentage spacing at each level of the mo-

saic (appropriate values are between 0 and 20, and the default is 10 at each
level). There should be one offset for each dimension of the contingency
table.

432 mosaicplot

dir vector of split directions ("v" for vertical and "h" for horizontal) for each
level of the mosaic, one direction for each dimension of the contingency
table. The default consists of alternating directions, beginning with a
vertical split.

color logical or (recycling) vector of colors for color shading, used only when
shade is FALSE. The default color=FALSE gives empty boxes with no
shading.

shade a logical indicating whether to produce extended mosaic plots, or a nu-

meric vector of at most 5 distinct positive numbers giving the absolute
values of the cut points for the residuals. By default, shade is FALSE, and
simple mosaics are created. Using shade = TRUE cuts absolute values at

2 and 4.

margin a list of vectors with the marginal totals to be fit in the log-linear model.
By default, an independence model is fitted. See loglin for further in-
formation.

cex.axis The magnification to be used for axis annotation, as a multiple of
par("cex").

las numeric; the style of axis labels, see par.

type a character string indicating the type of residual to be represented. Must

be one of "pearson" (giving components of Pearson’s x?), "deviance"
(giving components of the likelihood ratio x?), or "FT" for the Freeman-
Tukey residuals. The value of this argument can be abbreviated.

formula a formula, such as y = x.

data a data frame (or list), or a contingency table from which the variables in
formula should be taken.

further arguments to be passed to or from methods.

subset an optional vector specifying a subset of observations in the data frame
to be used for plotting.

Details

This is a generic function. It currently has a default method (mosaicplot.default) and a
formula interface (mosaicplot.formula).

Extended mosaic displays show the standardized residuals of a loglinear model of the counts
from by the color and outline of the mosaic’s tiles. (Standardized residuals are often referred
to a standard normal distribution.) Negative residuals are drawn in shaded of red and with
broken outlines; positive ones are drawn in blue with solid outlines.

For the formula method, if data is an object inheriting from classes "table" or "ftable",
or an array with more than 2 dimensions, it is taken as a contingency table, and hence all
entries should be nonnegative. In this case, the left-hand side of formula should be empty,
and the variables on the right-hand side should be taken from the names of the dimnames
attribute of the contingency table. A marginal table of these variables is computed, and a
mosaic of this table is produced.

Otherwise, data should be a data frame or matrix, list or environment containing the
variables to be cross-tabulated. In this case, after possibly selecting a subset of the data
as specified by the subset argument, a contingency table is computed from the variables
given in formula, and a mosaic is produced from this.

See Emerson (1998) for more information and a case study with television viewer data from
Nielsen Media Research.

mtcars 433

Author(s)

S-PLUS original by John Emerson (emerson@stat.yale.edu). Originally modified and en-
hanced for R by KH.

References

Hartigan, J.A., and Kleiner, B. (1984) A mosaic of television ratings. The American Statis-
tician, 38, 32-35.

Emerson, J. W. (1998) Mosaic displays in S-PLUS: a general implementation and a case
study. Statistical Computing and Graphics Newsletter (ASA), 9, 1, 17-23.

Friendly, M. (1994) Mosaic displays for multi-way contingency tables. Journal of the Amer-
ican Statistical Association, 89, 190-200.

The home page of Michael Friendly (http://www.math.yorku.ca/SCS/friendly.html)
provides information on various aspects of graphical methods for analyzing categorical data,
including mosaic plots.

See Also

assocplot, loglin.

Examples

data(Titanic)

mosaicplot(Titanic, main = "Survival on the Titanic", color = TRUE)
Formula interface for tabulated data:

mosaicplot(~ Sex + Age + Survived, data = Titanic, color = TRUE)

data(HairEyeColor)

mosaicplot (HairEyeColor, shade = TRUE)

Independence model of hair and eye color and sex. Indicates that
there are significantly more blue eyed blonde females than expected
in the case of independence (and too few brown eyed blonde females).

mosaicplot (HairEyeColor, shade = TRUE, margin = list(c(1,2), 3))

Model of joint independence of sex from hair and eye color. Males
are underrepresented among people with brown hair and eyes, and are
overrepresented among people with brown hair and blue eyes, but not
"significantly".

Formula interface for raw data: visualize crosstabulation of numbers

of gears and carburettors in Motor Trend car data.

data(mtcars)

mosaicplot(~ gear + carb, data mtcars, color = TRUE, las = 1)

mosaicplot(~ gear + carb, data = mtcars, color = 2:3, las = 1)# color recycling

mtcars Motor Trend Car Road Tests

Description

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel

consumption and 10 aspects of automobile design and performance for 32 automobiles
(1973-74 models).

http://www.math.yorku.ca/SCS/friendly.html

434 mtext

Usage

data(mtcars)

Format

A data frame with 32 observations on 11 variables.

[, 1] mpg Miles/(US) gallon

[, 2] cyl Number of cylinders

[, 3] disp Displacement (cu.in.)
[,4] hp Gross horsepower

[, 5] drat Rear axle ratio

[, 6] wt Weight (Ib/1000)

[, 7] gsec 1/4 mile time

[, 8] s V/S

[[9) am Transmission (0 = automatic, 1 = manual)
[,10] gear Number of forward gears
[,11] carb Number of carburettors

Source

Henderson and Velleman (1981), Building multiple regression models interactively. Biomet-
rics, 37, 391-411.

Examples

data(mtcars)

pairs(mtcars, main = "mtcars data")

coplot(mpg ~ disp | as.factor(cyl), data = mtcars,
panel = panel.smooth, rows = 1)

mtext Write Text into the Margins of a Plot

Description

Text is written in one of the four margins of the current figure region or one of the outer
margins of the device region.

Usage

mtext (text, side = 3, line = 0, outer = FALSE, at = NA,
adj = NA, cex = NA, col = NA, font = NA, vfont = NULL, ...)

Arguments
text one or more character strings or expressions.
side on which side of the plot (1=bottom, 2=left, 3=top, 4=right).
line on which MARgin line, starting at 0 counting outwards.

outer use outer margins if available.

mtext 435

at give location in user-coordinates. If length(at)==0 (the default), the
location will be determined by adj.

adj adjustment for each string. For strings parallel to the axes, adj=0 means
left or bottom alignment, and adj=1 means right or top aligment. If adj
is not a finite value (the default), the value par("las") determines the
adjustment. For strings plotted parallel to the axis the default is to centre

the string.
Further graphical parameters (see text and par) ; currently supported
are:

cex character expansion factor (default = 1).

col color to use.

font font for text.

vfont vector font for text.

Details

The “user coordinates” in the outer margins always range from zero to one, and are not
affected by the user coordinates in the figure region(s) — R is differing here from other
implementations of S.

The arguments side, line, at, at, adj, the further graphical parameters and even outer
can be vectors, and recycling will take place to plot as many strings as the longest of the
vector arguments. Note that a vector adj has a different meaning from text.

adj = 0.5 will centre the string, but for outer=TRUE on the device region rather than the
plot region.

Parameter las will determine the orientation of the string(s). For strings plotted perpen-
dicular to the axis the default justifcation is to place the end of the string nearest the axis
on the specified line.

Note that if the text is to be plotted perpendicular to the axis, adj determines the justifi-
cation of the string and the position along the axis unless at is specified.

Side Effects

The given text is written onto the current plot.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

title, text, plot, par; plotmath for details on mathematical annotation.

Examples

plot(1:10, (-4:5)"2, main="Parabola Points", xlab="xlab")
mtext ("10 of them")
for(s in 1:4)
mtext (paste("mtext(..., line= -1, {side, col, font} = ",s,
", cex =", (1+s)/2, ")"), line = -1,
side=s, col=s, font=s, cex= (1+s)/2)

436 Multinomial

mtext ("mtext(..., line= -2)", line = -2)

mtext ("mtext(..., line= -2, adj = 0)", line = -2, adj =0)
##-—- log axis :

plot(1:10, exp(1:10), log='y', main="log='y'", xlab="xlab")
for(s in 1:4) mtext(paste("mtext(...,side=",s,")"), side=s)

Multinomial The Multinomial Distribution

Description
Generate multinomially distributed random number vectors and compute multinomial “den-
sity” probabilities.

Usage

rmultinom(n, size, prob)
dmultinom(x, size = NULL, prob, log = FALSE)

Arguments
X vector of length K of integers in 0:size.
n number of random vectors to draw.
size integer, say N, specifying the total number of objects that are put into K
boxes in the typical multinomial experiment. For dmultinom, it defaults
to sum(x).
prob numeric non-negative vector of length K, specifying the probability for
the K classes; is internally normalized to sum 1.
log logical; if TRUE, log probabilities are computed.
Detalils

If x is a K-component vector, dmultinom(x, prob) is the probability

K
P(Xy=m1,...,Xg =ax) =C x [[=}
j=1

where C is the “multinomial coeflicient” C' = N!/(z1!---zk!) and N = ZJK:1 xj.

By definition, each component X; is binomially distributed as Bin(size, prob[jl) for
j=1,....K.

The rmultinom() algorithm draws binomials from Bin(n;, P;) sequentially, where n; = N
(N := size), P = m (7 is prob scaled to sum 1), and for j > 2, recursively n; =
N =32 e and Py =m;/(1— Y230, m).

Value

For rmultinom(), an integer K x n matrix where each column is a random vector gener-
ated according to the desired multinomial law, and hence summing to size. Whereas the
transposed result would seem more natural at first, the returned matrix is more efficient
because of columnwise storage.

n2mifrow 437

Note

dmultinom is currently not vectorized at all and has no C interface (API); this may be
amended in the future.

See Also

rbinom which is a special case conceptually.

Examples

rmultinom(10, size = 12, prob=c(0.1,0.2,0.8))

pr <- c(1,3,6,10) # normalization not necessary for generation
rmultinom(10, 20, prob = pr)

all possible outcomes of Multinom(N = 3, K = 3)

X <- t(as.matrix(expand.grid(0:3, 0:3))); X <- X[, colSums(X) <= 3]

X <- rbind(X, 3:3 - colSums(X)); dimnames(X) <- list(letters[1:3], NULL)
X

round(apply (X, 2, function(x) dmultinom(x, prob = c(1,2,5))), 3)

n2mfrow Compute Default mfrow From Number of Plots

Description

Easy setup for plotting multiple figures (in a rectangular layout) on one page. This computes
a sensible default for par (mfrow).

Usage

n2mfrow(nr.plots)

Arguments

nr.plots integer; the number of plot figures you’ll want to draw.

Value

A length two integer vector nr, nc giving the number of rows and columns, fulfilling nr
>= nc >= 1 and nr * nc >= nr.plots.

Author(s)

Martin Maechler

See Also

par, layout.

438 NA

Examples

n2mfrow(8) # 3 x 3

n <- 5 ; x <- seq(-2,2, len=51)
suppose now that 'n' is not known {inside function}
op <- par(mfrow = n2mfrow(n))
for (j in 1:n)
plot(x, x"j, main = substitute(x” exp, list(exp = j)), type='l', col="blue")

sapply(1:10, n2mfrow)

NA Not Available / “Missing” Values

Description
NA is a logical constant of length 1 which contains a missing value indicator. NA can be
freely coerced to any other vector type.
The generic function is.na indicates which elements are missing.

The generic function is.na<- sets elements to NA.

Usage

NA

is.na(x)

S3 method for class 'data.frame':
is.na(x)

is.na(x) <- value

Arguments

X an R object to be tested.

value a suitable index vector for use with x.
Detalils

The NA of character type is as from R 1.5.0 distinct from the string "NA". Programmers
who need to specify an explicit string NA should use as.character (NA) rather than "NA",
or set elements to NA using is.na<-.

is.na(x) works elementwise when x is a 1list. The method dispatching is C-internal,
rather than via UseMethod.

Function is.na<- may provide a safer way to set missingness. It behaves differently for
factors, for example.

Value

The default method for is.na returns a logical vector of the same “form” as its argument
x, containing TRUE for those elements marked NA or NaN (!) and FALSE otherwise. dim,
dimnames and names attributes are preserved.

The method is.na.data.frame returns a logical matrix with the same dimensions as the
data frame, and with dimnames taken from the row and column names of the data frame.

na.action 439

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

NaN, is.nan, etc., and the utility function complete.cases.

na.action, na.omit, na.fail on how methods can be tuned to deal with missing values.

Examples

is.na(c(1, NA)) #> FALSE TRUE
is.na(paste(c(1l, NA))) #> FALSE FALSE

na.action NA Action

Description

na.action is a generic function, and na.action.default its default method.

Usage
na.action(object, ...)
Arguments
object any object whose NA action is given.
further arguments special methods could require.
Value

The “NA action” which should be applied to object whenever NAs are not desired.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

options("na.action"), na.omit, na.fail

Examples

na.action(c(1, NA))

440 na.fail

na.fail Handle Missing Values in Objects

Description

These generic functions are useful for dealing with NAs in e.g., data frames. na.fail returns
the object if it does not contain any missing values, and signals an error otherwise. na.omit
returns the object with incomplete cases removed. na.pass returns the object unchanged.

Usage

na.fail(object, ...)

na.omit(object, ...)

na.exclude(object, ...)

na.pass(object, ...)
Arguments

object an R object, typically a data frame

further arguments special methods could require.

Details

At present these will handle vectors, matrices and data frames comprising vectors and
matrices (only).

If na.omit removes cases, the row numbers of the cases form the "na.action" attribute of
the result, of class "omit".

na.exclude differs from na.omit only in the class of the "na.action" attribute of the
result, which is "exclude". This gives different behaviour in functions making use of
naresid and napredict: when na.exclude is used the residuals and predictions are padded
to the correct length by inserting NAs for cases omitted by na.exclude.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

na.action; options with argument na.action for setting “NA actions”; and 1m and glm
for functions using these.

Examples

DF <- data.frame(x = c(1, 2, 3), y = c(0, 10, NA))

na.omit (DF)

m <- as.matrix(DF)

na.omit (m)

stopifnot(all(na.omit(1:3) == 1:3)) # does not affect objects with no NA's
try(na.fail(DF))#> Error: missing values in ...

options("na.action")

name 441

name Variable Names or Symbols, respectively

Description

as.symbol coerces its argument to be a symbol, or equivalently, a name. The argument
must be of mode "character". as.name is an alias for as.symbol.

is.symbol (and is.name equivalently) returns TRUE or FALSE depending on whether its
argument is a symbol (i.e., name) or not.

Usage

as.symbol (x)
is.symbol (y)

as.name (x)
is.name(y)

Arguments

X, §y objects to be coerced or tested.

Detalils

is.symbol is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

Note

The term “symbol” is from the LISP background of R, whereas “name” has been the standard
S term for this.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

call, is.language. For the internal object mode, typeof.

Examples

an <- as.name("arrg")
is.name(an) # TRUE
str(an)# symbol

442 names

names The Names Attribute of an Object

Description

Functions to get or set the names of an object.

Usage

names (x)
names (x) <- value

Arguments

X an R object.

value a character vector of up to the same length as x, or NULL.
Details

names is a generic accessor function, and names<- is a generic replacement function. The
default methods get and set the "names" attribute of a vector or list.

If value is shorter than x, it is extended by character NAs to the length of x.

It is possible to update just part of the names attribute via the general rules: see the
examples. This works because the expression there is evaluated as z <- "names<-"(z,
"[<-"(names(z), 3, "c2")).

Value

For names, NULL or a character vector of the same length as x.

For names<-, the updated object. (Note that the value of names(x) <- value is that of
the assignment, value, not the return value from the left-hand side.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

data(islands)
print the names attribute of the islands data set
names (islands)

remove the names attribute
names (islands) <- NULL

z <- list(a=1, b="c", c=1:3)

names (z)

change just the name of the third element.
names (z) [3] <- "c2"

z

naprint 443

assign just one name

z <- 1:3

names (z)

change just the name of the third element.
names(z) [2] <- "b"

z

naprint Adjust for Missing Values

Description

Use missing value information to report the effects of an na.action.

Usage
naprint(x, ...)
Arguments
X An object produced by an na.action function.
further arguments passed to or from other methods.
Details

This is a generic function, and the exact information differs by method. naprint.omit
reports the number of rows omitted: naprint.default reports an empty string.

Value

A character string providing information on missing values, for example the number.

naresid Adjust for Missing Values

Description

Use missing value information to adjust residuals and predictions.

Usage
naresid(omit, x, ...)
napredict(omit, x, ...)
Arguments
omit an object produced by an na.action function, typically the "na.action"
attribute of the result of na.omit or na.exclude.
X a vector, data frame, or matrix to be adjusted based upon the missing

value information.

further arguments passed to or from other methods.

444 nargs

Details

These are utility functions used to allow predict and resid methods for modelling functions
to compensate for the removal of NAs in the fitting process. They are used by the default,
"Im" and "glm" methods, and by further methods in packages MASS, rpart and survival.

The default methods do nothing. The method for the na.exclude action to pad the object
with NAs in the correct positions to have the same number of rows as the original data
frame.

Currently naresid and napredict are identical, but future methods need not be. naresid
is used for residuals, and napredict for fitted values and predictions.

Value

These return a similar object to x.

Note

Packages rpart and survivalb used to contain versions of these functions that had an
na.omit action equivalent to that now used for na.exclude.

nargs The Number of Arguments to a Function

Description

When used inside a function body, nargs returns the number of arguments supplied to that
function, including positional arguments left blank.

Usage

nargs ()

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

args, formals and sys.call.

Examples

tst <- function(a, b = 3, ...) {nargs(Q}
tst() # 0

tst(clicketyclack) # 1 (even non-existing)
tst(cl, a2, rr3) # 3

foo <- function(x, y, z, w) {
cat("call was", deparse(match.call()), "\n")
nargs()

}

foo() # 0

nchar 445

foo(,,3) # 3
foo(z=3) # 1, even though this is the same call

nargs(O# not really meaningful

nchar Count the Number of Characters

Description

nchar takes a character vector as an argument and returns a vector whose elements contain
the number of characters in the corresponding element of x.

Usage

nchar (x)

Arguments

X character vector, or a vector to be coerced to a character vector.

Detalils

The internal equivalent of as.character is performed on x. If you want to operate on
non-vector objects passing them through deparse first will be required.

Value

The number of characters as the string will be printed (integer 2 for a missing string).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

strwidth giving width of strings for plotting; paste, substr, strsplit

Examples

x <- c("asfef","qwerty","yuiop[","b","stuff.blah.yech")
nchar (x)
#5 6 6 115

nchar (deparse(mean))
#23 116 45 11 64 2 17 50 43 2 17 1

446 nclass

nclass Compute the Number of Classes for a Histogram

Description

Compute the number of classes for a histogram, for use internally in hist.

Usage

nclass.Sturges (x)
nclass.scott(x)
nclass.FD(x)

Arguments

x A data vector.

Details

nclass.Sturges uses Sturges’ formula, implicitly basing bin sizes on the range of the data.

nclass.scott uses Scott’s choice for a normal distribution based on the estimate of the
standard error.

nclass.FD uses the Freedman-Diaconis choice based on the inter-quartile range.

Value

The suggested number of classes.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S-PLUS. Springer,
page 112.

Freedman, D. and Diaconis, P. (1981) On the histogram as a density estimator: Lo theory.
Zeitschrift fiir Wahrscheinlichkeitstheorie und verwandte Gebiete 57, 453—-476.

Scott, D. W. (1979) On optimal and data-based histograms. Biometrika 66, 605—610.

Scott, D. W. (1992) Multivariate Density Estimation. Theory, Practice, and Visualization.
Wiley.

See Also

hist

NegBinomial 447

NegBinomial The Negative Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the negative
binomial distribution with parameters size and prob.

Usage

dnbinom(x, size, prob, mu, log = FALSE)

pnbinom(q, size, prob, mu, lower.tail = TRUE, log.p = FALSE)
gnbinom(p, size, prob, mu, lower.tail = TRUE, log.p = FALSE)
rnbinom(n, size, prob, mu)

Arguments

X vector of (non-negative integer) quantiles.

q vector of quantiles.

P vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

size target for number of successful trials, or dispersion parameter (the shape
parameter of the gamma mixing distribution).

prob probability of success in each trial.

mu alternative parametrization via mean: see Details

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X < z], otherwise, P[X >

Details
The negative binomial distribution with size = n and prob = p has density

) = -

forx=0,1,2,...

This represents the number of failures which occur in a sequence of Bernoulli trials before
a target number of successes is reached.

A negative binomial distribution can arise as a mixture of Poisson distributions with mean
distributed as a gamma (pgamma) distribution with scale parameter (1 - prob)/prob and
shape parameter size. (This definition allows non-integer values of size.) In this model
prob = scale/(1+scale), and the mean is size * (1 - prob)/prob)

The alternative parametrization (often used in ecology) is by the mean mu, and size, the
dispersion parameter, where prob = size/(size+mu). In this parametrization the variance
ismu + mu~2/size.

If an element of x is not integer, the result of dnbinom is zero, with a warning.

The quantile is defined as the smallest value = such that F(x) > p, where F is the distri-
bution function.

448 nextn

Value

dnbinom gives the density, pnbinom gives the distribution function, gnbinom gives the quan-
tile function, and rnbinom generates random deviates.

See Also

dbinom for the binomial, dpois for the Poisson and dgeom for the geometric distribution,
which is a special case of the negative binomial.

Examples

x <- 0:11
dnbinom(x, size = 1, prob
126 / dnbinom(0:8, size

1/2) * 2°(1 + x) # ==
2, prob = 1/2) #- theoretically integer

Cumulative ('p') = Sum of discrete prob.s ('d'"); Relative error :
summary (1 - cumsum(dnbinom(x, size = 2, prob = 1/2)) /
pnbinom(x, size = 2, prob = 1/2))

x <= 0:15

size <- (1:20)/4

persp(x,size, dnb <- outer(x,size,function(x,s)dnbinom(x,s, pr= 0.4)),
xlab = "x", ylab = "s", zlab="density", theta = 150)

title(tit <- "negative binomial density(x,s, pr = 0.4) vs. x & s")

image (x,size, logl0(dnb), main= paste("log [",tit,"1"))
contour (x,size, logl0(dnb),add=TRUE)

Alternative parametrization

x1 <- rnbinom(500, mu = 4, size 1)

x2 <- rnbinom(500, mu = 4, size = 10)

x3 <- rnbinom(500, mu = 4, size 100)

hl <- hist(xl, breaks = 20, plot = FALSE)

h2 <- hist(x2, breaks = hil$breaks, plot = FALSE)

h3 <- hist(x3, breaks = hi$breaks, plot = FALSE)

barplot (rbind(hi$counts, h2$counts, h3$counts),
beside = TRUE, col = c("red","blue","cyan"),
names.arg = round(hi$breaks[-length(hl$breaks)]))

nextn Highly Composite Numbers

Description

nextn returns the smallest integer, greater than or equal to n, which can be obtained as a
product of powers of the values contained in factors. nextn is intended to be used to find
a suitable length to zero-pad the argument of fft to so that the transform is computed
quickly. The default value for factors ensures this.

Usage

nextn(n, factors=c(2,3,5))

nhtemp 449

Arguments

n an integer.

factors a vector of positive integer factors.
See Also

convolve, fft.

Examples

nextn(1001) # 1024
table(sapply(599:630, nextn))

nhtemp Average Yearly Temperatures in New Haven

Description

The mean annual temperature in degrees Fahrenheit in New Haven, Connecticut, from 1912
to 1971.

Usage

data(nhtemp)

Format

A time series of 60 observations.

Source

Vaux, J. E. and Brinker, N. B. (1972) Cycles, 1972, 117-121.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(nhtemp)
plot(nhtemp, main = "nhtemp data",
ylab = "Mean annual temperature in New Haven, CT (deg. F)")

450 nlm

nlevels The Number of Levels of a Factor

Description

Return the number of levels which its argument has.

Usage

nlevels(x)

Arguments

X an object, usually a factor.

Detalils

If the argument is not a factor, NA is returned.

The actual factor levels (if they exist) can be obtained with the levels function.

Examples

nlevels(gl(3,7)) # = 3

nlm Non-Linear Minimization

Description

This function carries out a minimization of the function f using a Newton-type algorithm.
See the references for details.

Usage

nlm(f, p, hessian = FALSE, typsize=rep(l, length(p)), fscale=1,
print.level = 0, ndigit=12, gradtol = le-6,
stepmax = max(1000 * sqrt(sum((p/typsize)~2)), 1000),
steptol = 1le-6, iterlim = 100, check.analyticals = TRUE, ...)

Arguments

f the function to be minimized. If the function value has an attribute called
gradient or both gradient and hessian attributes, these will be used
in the calculation of updated parameter values. Otherwise, numerical
derivatives are used. deriv returns a function with suitable gradient
attribute. This should be a function a vector of the length of p followed
by any other arguments specified in dots.

p starting parameter values for the minimization.

hessian if TRUE, the hessian of £ at the minimum is returned.

typsize an estimate of the size of each parameter at the minimum.

nlm 451

fscale an estimate of the size of f at the minimum.

print.level this argument determines the level of printing which is done during the
minimization process. The default value of 0 means that no printing
occurs, a value of 1 means that initial and final details are printed and a
value of 2 means that full tracing information is printed.

ndigit the number of significant digits in the function f.

gradtol a positive scalar giving the tolerance at which the scaled gradient is consid-
ered close enough to zero to terminate the algorithm. The scaled gradient
is a measure of the relative change in f in each direction p[i] divided by
the relative change in p[i].

stepmax a positive scalar which gives the maximum allowable scaled step length.
stepmax is used to prevent steps which would cause the optimization
function to overflow, to prevent the algorithm from leaving the area of
interest in parameter space, or to detect divergence in the algorithm.
stepmax would be chosen small enough to prevent the first two of these
occurrences, but should be larger than any anticipated reasonable step.

steptol A positive scalar providing the minimum allowable relative step length.

iterlim a positive integer specifying the maximum number of iterations to be
performed before the program is terminated.

check.analyticals
a logical scalar specifying whether the analytic gradients and Hessians,
if they are supplied, should be checked against numerical derivatives at

the initial parameter values. This can help detect incorrectly formulated
gradients or Hessians.

additional arguments to £.

Details

If a gradient or hessian is supplied but evaluates to the wrong mode or length, it will be
ignored if check.analyticals = TRUE (the default) with a warning. The hessian is not
even checked unless the gradient is present and passes the sanity checks.

From the three methods available in the original source, we always use method “1” which
is line search.

Value

A list containing the following components:

minimum the value of the estimated minimum of f.

estimate the point at which the mininum value of f is obtained.
gradient the gradient at the estimated minimum of f£.

hessian the hessian at the estimated minimum of £ (if requested).
code an integer indicating why the optimization process terminated.

1: relative gradient is close to zero, current iterate is probably solution.

2: successive iterates within tolerance, current iterate is probably solu-
tion.

3: last global step failed to locate a point lower than estimate. FEi-
ther estimate is an approximate local minimum of the function or
steptol is too small.

452 noquote

4: iteration limit exceeded.

5: maximum step size stepmax exceeded five consecutive times. Either
the function is unbounded below, becomes asymptotic to a finite value
from above in some direction or stepmax is too small.

iterations the number of iterations performed.

References
Dennis, J. E. and Schnabel, R. B. (1983) Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ.

Schnabel, R. B., Koontz, J. E. and Weiss, B. E. (1985) A modular system of algorithms for
unconstrained minimization. ACM Trans. Math. Software, 11, 419-440.

See Also

optim. optimize for one-dimensional minimization and uniroot for root finding. deriv
to calculate analytical derivatives.

For nonlinear regression, nls (in package nls), may be of better use.

Examples

f <- function(x) sum((x-1:length(x))"2)
nlm(f, ¢(10,10))

nlm(f, c(10,10), print.level = 2)
str(nlm(f, c(5), hessian = TRUE))

f <- function(x, a) sum((x-a)~2)
nlm(f, c(10,10), a=c(3,5))
f <- function(x, a)

{
res <- sum((x-a)~2)
attr(res, "gradient") <- 2*(x-a)
res

}

nlm(f, c(10,10), a=c(3,5))

more examples, including the use of derivatives.
Not run: demo(nlm)

noquote Class for “no quote” Printing of Character Strings

Description

Print character strings without quotes.

Usage

noquote (obj)

S3 method for class 'moquote':
print(x, ...)

S3 method for class 'moquote':
c(..., recursive = FALSE)

Normal 453

Arguments
obj any R object, typically a vector of character strings.
X an object of class "noquote".
further options passed to next methods, such as print.
recursive for compatibility with the generic ¢ function.
Details

noquote returns its argument as an object of class "noquote". There is a method for c()
and subscript method (" [.noquote") which ensures that the class is not lost by subsetting.

The print method (print.noquote) prints character stringss without quotes ("...").
These functions exist both as utilities and as an example of using (S3) class and object
orientation.

Author(s)

Martin Maechler (maechler@stat.math.ethz.ch)

See Also

methods, class, print.

Examples

letters

ngl <- noquote(letters)
nql

ngl[1:4] <- "oh"
nql[1:12]

cmp.logical <- function(log.v)
{
Purpose: compact printing of logicals
log.v <- as.logical(log.v)
noquote (if (length(log.v)==0)"()" else c(".","|") [1+log.v])
}
cmp.logical (runif (20) > 0.8)

Normal The Normal Distribution

Description

Density, distribution function, quantile function and random generation for the normal
distribution with mean equal to mean and standard deviation equal to sd.

Usage

dnorm(x, mean=0, sd=1, log = FALSE)

pnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p
gnorm(p, mean=0, sd=1, lower.tail TRUE, log.p
rnorm(n, mean=0, sd=1)

FALSE)
FALSE)

454 Normal

Arguments
X,q vector of quantiles.
P vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the
number required.
mean vector of means.
sd vector of standard deviations.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X < x|, otherwise, P[X >

Detalils

If mean or sd are not specified they assume the default values of 0 and 1, respectively.

The normal distribution has density

F@) = e (a-w?/207
2o

where p is the mean of the distribution and ¢ the standard deviation.

gnorm is based on Wichura’s algorithm AS 241 which provides precise results up to about
16 digits.

Value

dnorm gives the density, pnorm gives the distribution function, gqnorm gives the quantile
function, and rnorm generates random deviates.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Wichura, M. J. (1988) Algorithm AS 241: The Percentage Points of the Normal Distribu-
tion. Applied Statistics, 37, 477-484.

See Also
runif and .Random.seed about random number generation, and dlnorm for the Lognormal
distribution.

Examples
dnorm(0) == 1/ sqrt(2+*pi)

dnorm(1) == exp(-1/2)/ sqrt(2*pi)
dnorm(1) == 1/ sqrt(2*pi*exp(1))

Using "log = TRUE" for an extended range :

par (mfrow=c(2,1))

plot(function(x)dnorm(x, log=TRUE), -60, 50, main = "log { Normal density }")
curve (log(dnorm(x)), add=TRUE, col="red",lwd=2)

mtext ("dnorm(x, log=TRUE)", adj=0); mtext("log(dnorm(x))", col="red", adj=1)

NotYet 455

plot(function(x)pnorm(x, log=TRUE), -50, 10, main = "log { Normal Cumulative }")
curve (log(pnorm(x)), add=TRUE, col="red",lwd=2)
mtext ("pnorm(x, log=TRUE)", adj=0); mtext("log(pnorm(x))", col="red", adj=1)

if you want the so-called 'error function'

erf <- function(x) 2 * pnorm(x * sqrt(2)) - 1

and the so-called 'complementary error function'
erfc <- function(x) 2 * pnorm(x * sqrt(2), lower=FALSE)

NotYet Not Yet Implemented Functions and Unused Arguments

Description

In order to pinpoint missing functionality, the R core team uses these functions for missing
R functions and not yet used arguments of existing R functions (which are typically there
for compatibility purposes).

You are very welcome to contribute your code ...

Usage

.NotYetImplemented()
.NotYetUsed(arg, error = TRUE)

Arguments

arg an argument of a function that is not yet used.

error a logical. If TRUE, an error is signalled; if FALSE; only a warning is given.
See Also

the contrary, Deprecated and Defunct for outdated code.

Examples
plot.mlm # to see how the "NotYetImplemented"
reference is made automagically

try(plot.mlm())

barplot(1:5, inside = TRUE) # 'inside' is not yet used

456 nrow

nrow The Number of Rows/Columns of an Array

Description

nrow and ncol return the number of rows or columns present in x. NCOL and NROW do the
same treating a vector as 1-column matrix.

Usage

nrow(x)
ncol(x)
NCOL (x)
NROW (x)

Arguments

X a vector, array or data frame

Value

an integer of length 1 or NULL.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole (ncol and nrow.)

See Also

dim which returns all dimensions; array, matrix.

Examples

ma <- matrix(1:12, 3, 4)
nrow(ma) # 3
ncol(ma) # 4

ncol(array(1:24, dim = 2:4)) # 3, the second dimension
NCOL(1:12) # 1
NROW(1:12) # 12

ns-alt 457

ns-alt Ezperimental Alternative Name Specification Support

Description

Alternative interface for specifying a name space within the code of a package.

Usage
.Export(...)
.Import(...)
.ImportFrom(name, ...)

.S3method (generic, class, method)

Arguments
name or literal character string arguments.
name name or literal character string.
generic name or literal character string.
class name or literal character string.
method optional character or function argument.
Details

As an experimental alternative to using a ‘NAMESPACE’ file it is possible to add a name
space to a package by adding a Namespace: <package_name> entry to the ‘DESCRIPTION’
file and placing directives to specify imports and exports directly in package code. These
directives should be viewed as declarations, not as function calls. Except to the optional
method argument to .S3method arguments are not evaluated. These directives should only
be used at top level of package code except as noted below.

.Export is used to declare exports. Its arguments should be literal names or character
strings. .Export should only be used at package top level.

.Import is used to declare the import of entire name spaces. Its arguments should be
literal names or character strings. .ImportFrom is used to declare the import of selected
variables from a single name space. The first argument is a literal name or character string
identifying the source name space; the remaining arguments are literal names or character
strings identifying the variables to import. As an experimental feature both .Import and
.ImportFrom can be used to import variables into a local environment. The drawback of
allowing this is that dependencies cannot be determined easily at package load time, and
as a result this feature may need to be dropped.

.S3method is used to declare a method for S3-style UseMethod dispatch. This is needed
since methods in packages that are imported but not on the search path might not be
visible to the standard dispatch mechanism at a call site. The first argument is the name
of the generic, the second specifies the class. The third argument is optional and defaults
to the usual concatenation of generic and class separated by a period. If supplied, the
third argument should evaluate to a character string or a function. If the third argument is
omitted or a character string is supplied, then a function by that name must be defined. If
a function is supplied, it is used as the method. When the method is specified as a name,
explicitly or implicitly, the function lookup is handled lazily; this allows the definition to
occur after the .S3method declaration and also integrates with possible data base storage
of package code.

458 ns-dblcolon

Author(s)

Luke Tierney

Examples
Not run:
code for package/name space 'foo
x <- 1
f <- function(y) c(x,y)
print.foo <- function(x, ...) cat("<a foo>\n")
.Export (£f)

S3method (print,foo)

code for package/name space 'bar'
. Import (foo)

¢ <- function(...) sum(...)

g <- function(y) f(c(y, 7))

h <- function(y) y+9

.Export (g, h)

End(Not run)

ns-dblcolon Double Colon and Triple Colon Operators

Description

Accessing exported and internal variables in a name space.

Usage
pkg: :name
pkg: : :name
Arguments

pkg package name symbol or literal character string.

name variable name symbol or literal character string.

Detalils

The expression pkg: :name returns the value of the exported variable name in package pkg if
the package has a name space. The expression pkg: : :name returns the value of the internal
variable name in package pkg if the package has a name space. The package will be loaded
if it was not loaded already before the call. Assignment into name spaces is not supported.

Examples

base::log
base::"+"

ns-internals 459

ns-internals Name Space Internals

Description

Internal name space support functions. Not intended to be called directly.

Usage

asNamespace(ns, base.0K = TRUE)

getNamespaceInfo(ns, which)

importIntoEnv(impenv, impnames, expenv, expnames)
isBaseNamespace (ns)

namespaceExport(ns, vars)

namespaceImport(self, ...)

namespaceImportFrom(self, ns, vars)
namespaceImportClasses(self, ns, vars)
namespaceImportMethods(self, ns, vars)

packageHasNamespace (package, package.lib)
parseNamespaceFile(package, package.lib, mustExist = TRUE)
registerS3method (genname, class, method, envir = parent.frame())
setNamespaceInfo(ns, which, val)

.mergeExportMethods (new, ns)

Arguments
ns string or name space environment.
base.0K logical.
impenv environment.
expenv name space environment.
vars character vector.
self name space environment.
package string naming the package/name space to load.

package.lib character vector specifying library.

mustExist logical.
genname character.
class character.
envir environment.
which character.
val any object.

character arguments.

Author(s)
Luke Tierney

460 ns-lowlev

ns-lowlev Low Level Name Space Support Functions

Description

Low level name space support functions.

Usage

attachNamespace(ns, pos = 2)

loadNamespace (package, lib.loc = NULL,
keep.source = getOption("keep.source.pkgs"),
partial = FALSE, declarativeOnly = FALSE)

loadedNamespaces ()

unloadNamespace (ns)

loadingNamespaceInfo ()

saveNamespaceImage(package, rdafile, lib.loc = NULL,

keep.source = getOption("keep.source.pkgs"))

Arguments
ns string or namespace object.
pos integer specifying position to attach.
package string naming the package/name space to load.
lib.loc character vector specifying library search path.
keep.source logical specifying whether to retain source.
partial logical; if true, stop just after laoding code.
declarativeOnly

logical; disables .Import, etc, if true.
Details

The functions loadNamespace and attachNamespace are usually called implicitly when
library is used to load a name space and any imports needed. However it may be useful
to call these functions directly at times.

loadNamespace loads the specified name space and registers it in an internal data base. A
request to load a name space that is already loaded has no effect. The arguments have the
same meaning as the corresponding arguments to library. After loading, loadNamespace
looks for a hook function named .onLoad as an internal variable in the name space (it
should not be exported). This function is called with the same arguments as .First.1lib.
Partial loading is used so support installation with the ‘--save’ option.

loadNamespace does not attach the name space it loads to the search path.
attachNamespace can be used to attach a frame containing the exported values of a name
space to the search path. The hook function .onAttach is run after the name space exports
are attached, but this is not likely to be useful. Shared library loading and setting of options
should be handled at load time by the .onLoad hook.

loadedNamespaces returns a character vector of the names of the loaded name spaces.

unloadNamespace can be used to force a name space to be unloaded. An error is signaled
if the name space is imported by other loaded name spaces. If defined, a hook function

ns-reflect.Rd 461

.onUnload, analogous to .Last.lib, is run before removing the name space from the
internal registry. unloadNamespace will first detach a package of the same name if one is
on the path, thereby running a .Last.1ib function in the package if one is exported.

loadingNamespaceInfo returns a list of the arguments that would be passed to .onLoad
when a name space is being loaded. An error is signaled of a name space is not currently
being loaded.

saveNamespaceImage is used to save name space images for packages installed with
3)
--save’.

Author(s)

Luke Tierney

ns-reflect.Rd Name Space Refilection Support

Description

Functions to support reflection on name space objects.

Usage

getExportedValue(ns, name)
getNamespace (name)
getNamespaceExports (ns)
getNamespaceImports(ns)
getNamespaceName (ns)
getNamespaceUsers (ns)
getNamespaceVersion(ns)

Arguments
ns string or name space object.
name string or name.

Details

getExportedValue returns the value of the exported variable name in name space ns.

getNamespace returns the environment representing the name space name. The name space
is loaded if necessary.

getNamespaceExports returns a character vector of the names exported by ns.

getNamespaceImports returns a representation of the imports used by name space ns. This
representation is experimental and subject to change.

getNamespaceName and getNamespaceVersion return the name and version of the name
space ns.

getNamespaceUsers returns a character vector of the names of the name spaces that import
name space ns.

Author(s)
Luke Tierney

462 nsl

ns—-topenv Top Level Environment

Description

Finding the top level environment.

Usage

topenv(envir = parent.frame(), matchThisEnv = getOption("topLevelEnvironment"))

Arguments

envir environment.

matchThisEnv return this environment, if it matches before any other criterion is
satisfied. The default, the option “topLevelEnvironment”, is set by
sys.source, which treats a specific environment as the top level envi-
ronment. Supplying the argument as NULL means it will never match.

Details

topenv returns the first top level environment found when searching envir and its parent
environments. An environment is considered top level if it is the internal environment of a
name space, a package environment in the search path, or .GlobalEnv.

Examples

topenv(.GlobalEnv)
topenv (new.env())

nsl Look up the IP Address by Hostname

Description

Interface to gethostbyname.

Usage

nsl (hostname)

Arguments

hostname the name of the host.

Value

The IP address, as a character string, or NULL if the call fails.

NULL 463

Note

This was included as a test of internet connectivity, to fail if the node running R is not
connected. It will also return NULL if BSD networking is not supported, including the header
file ‘arpa/inet.h’.

Examples

Not run: nsl("www.r-project.org")

NULL The Null Object

Description

NULL represents the null object in R. NULL is used mainly to represent the lists with zero
length, and is often returned by expressions and functions whose value is undefined.

as.null ignores its argument and returns the value NULL.

is.null returns TRUE if its argument is NULL and FALSE otherwise.

Usage

NULL
as.null(x, ...)
is.null(x)

Arguments
X an object to be tested or coerced.
ignored.
Details

is.null is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

is.null(1list()) # FALSE (on purpose!)
is.null(integer(0))# F
is.null(logical(0))# F
as.null(list(a=1,b='c"))

464 numeric

numeric Numeric Vectors

Description

numeric creates a real vector of the specified length. The elements of the vector are all
equal to 0.

as.numeric attempts to coerce its argument to numeric type (either integer or real).

is.numeric returns TRUE if its argument is of type real or type integer and FALSE otherwise.

Usage

numeric(length = 0)
as.numeric(x, ...)
is.numeric(x)

Arguments
length desired length.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

is.numeric is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

Note that factors are false for is.numeric but true for is.integer.

Note

R has no single precision data type. All real numbers are stored in double precision format.
While as.numeric is a generic function, user methods must be written for as.double,
which it calls

as.numeric for factors yields the codes underlying the factor levels, not the numeric rep-
resentation of the labels.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

as.numeric(c("-.1"," 2.7 ","B")) # (-0.1, 2.7, NA) + warning
as.numeric(factor(5:10))

object.size 465

object.size Report the Space Allocated for an Object

Description

Provides an estimate of the memory that is being used to store an R object.

Usage

object.size(x)

Arguments

X An R object.

Details

Exactly which parts of the memory allocation should be attributed to which object is not
clear-cut. This function merely provides a rough indication. For example, it will not detect
if character storage for character strings are shared between identical elements (which it
will be if rep was used, for example).

The calculation is of the size of the object, and excludes the space needed to store its name
in the symbol table.

Value

An estimate of the memory allocation attributable to the object, in bytes.

Examples

object.size(letters)

object.size(1s)

find the 10 largest objects in base

z <- sapply(ls("package:base"), function(x) object.size(get(x, envir=NULL)))
as.matrix(rev(sort(z)) [1:10])

octmode Display Numbers in Octal

Description

Convert or print integers in octal format, with as many digits as are needed to display the
largest, using leading zeroes as necessary.

Usage

S3 method for class 'octmode':
as.character(x, ...)

S3 method for class 'octmode':
format(x, ...)

S3 method for class 'octmode':
print(x, ...)

466 offset

Arguments
X An object inheriting from class "octmode".
further arguments passed to or from other methods.
Details

Class "octmode" consists of integer vectors with that class attribute, used merely to ensure
that they are printed in octal notation, specifically for Unix-like file permissions such as
755.

See Also

These are auxiliary functions for file.info

offset Include an Offset in a Model Formula

Description
An offset is a term to be added to a linear predictor, such as in a generalised linear model,
with known coefficient 1 rather than an estimated coefficient.

Usage

offset (object)

Arguments

object An offset to be included in a model frame

Value

The input value.

See Also

model.offset, model.frame.

For examples see glm, Insurance.

on.exit 467

on.exit Function Exit Code

Description

on.exit records the expression given as its argument as needing to be executed when the
current function exits (either naturally or as the result of an error). This is useful for
resetting graphical parameters or performing other cleanup actions.

If no expression is provided, i.e., the call is on.exit (), then the current on.exit code is
removed.

Usage

on.exit(expr, add = FALSE)

Arguments

expr an expression to be executed.

add if TRUE, add expr to be executed after any previously set expressions.
References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.
See Also

sys.on.exit to see the current expression.

Examples

opar <- par(mai = c(1,1,1,1))
on.exit (par(opar))

optim General-purpose Optimization

Description

General-purpose optimization based on Nelder—-Mead, quasi-Newton and conjugate-gradient
algorithms. It includes an option for box-constrained optimization and simulated annealing.

Usage

optim(par, fn, gr = NULL,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE, ...)

468 optim

Arguments
par Initial values for the parameters to be optimized over.
fn A function to be minimized (or maximized), with first argument the vector

of parameters over which minimization is to take place. It should return
a scalar result.

gr A function to return the gradient for the "BFGS", "CG" and "L-BFGS-B"
methods. If it is NULL, a finite-difference approximation will be used.
For the "SANN" method it specifies a function to generate a new candidate
point. If it is NULL a default Gaussian Markov kernel is used.

method The method to be used. See Details.

lower, upper Bounds on the variables for the "L-BFGS-B" method.

control A list of control parameters. See Details.

hessian Logical. Should a numerically differentiated Hessian matrix be returned?

Further arguments to be passed to fn and gr.

Details

By default this function performs minimization, but it will maximize if control$fnscale
is negative.

The default method is an implementation of that of Nelder and Mead (1965), that uses
only function values and is robust but relatively slow. It will work reasonably well for
non-differentiable functions.

Method "BFGS" is a quasi-Newton method (also known as a variable metric algorithm),
specifically that published simultaneously in 1970 by Broyden, Fletcher, Goldfarb and
Shanno. This uses function values and gradients to build up a picture of the surface to
be optimized.

Method "CG" is a conjugate gradients method based on that by Fletcher and Reeves (1964)
(but with the option of Polak—Ribiere or Beale-Sorenson updates). Conjugate gradient
methods will generally be more fragile that the BFGS method, but as they do not store a
matrix they may be successful in much larger optimization problems.

Method "L-BFGS-B" is that of Byrd et. al. (1994) which allows boz constraints, that is
each variable can be given a lower and/or upper bound. The initial value must satisfy the
constraints. This uses a limited-memory modification of the BFGS quasi-Newton method.
If non-trivial bounds are supplied, this method will be selected, with a warning.

Nocedal and Wright (1999) is a comprehensive reference for the previous three methods.

Method "SANN" is by default a variant of simulated annealing given in Belisle (1992).
Simulated-annealing belongs to the class of stochastic global optimization methods. It
uses only function values but is relatively slow. It will also work for non-differentiable func-
tions. This implementation uses the Metropolis function for the acceptance probability. By
default the next candidate point is generated from a Gaussian Markov kernel with scale
proportional to the actual temperature. If a function to generate a new candidate point
is given, method "SANN" can also be used to solve combinatorial optimization problems.
Temperatures are decreased according to the logarithmic cooling schedule as given in Belisle
(1992, p. 890). Note that the "SANN" method depends critically on the settings of the con-
trol parameters. It is not a general-purpose method but can be very useful in getting to a
good value on a very rough surface.

Function fn can return NA or Inf if the function cannot be evaluated at the supplied value,
but the initial value must have a computable finite value of fn. (Except for method "L-
BFGS-B" where the values should always be finite.)

optim 469

optim can be used recursively, and for a single parameter as well as many.

The control argument is a list that can supply any of the following components:

trace Non-negative integer. If positive, tracing information on the progress of the op-
timization is produced. Higher values may produce more tracing information: for
method "L-BFGS-B" there are six levels of tracing. (To understand exactly what these
do see the source code: higher levels give more detail.)

fnscale An overall scaling to be applied to the value of fn and gr during optimization. If
negative, turns the problem into a maximization problem. Optimization is performed
on fn(par)/fnscale.

parscale A vector of scaling values for the parameters. Optimization is performed on
par/parscale and these should be comparable in the sense that a unit change in any
element produces about a unit change in the scaled value.

ndeps A vector of step sizes for the finite-difference approximation to the gradient, on
par/parscale scale. Defaults to 1e-3.

maxit The maximum number of iterations. Defaults to 100 for the derivative-based meth-
ods, and 500 for "Nelder-Mead". For "SANN" maxit gives the total number of function
evaluations. There is no other stopping criterion. Defaults to 10000.

abstol The absolute convergence tolerance. Only useful for non-negative functions, as a
tolerance for reaching zero.

reltol Relative convergence tolerance. The algorithm stops if it is unable to reduce
the value by a factor of reltol * (abs(val) + reltol) at a step. Defaults to
sqrt (.Machine$double.eps), typically about 1e-8.

alpha, beta, gamma Scaling parameters for the "Nelder-Mead" method. alpha is the re-
flection factor (default 1.0), beta the contraction factor (0.5) and gamma the expansion
factor (2.0).

REPORT The frequency of reports for the "BFGS" and "L-BFGS-B" methods if
control$trace is positive. Defaults to every 10 iterations.

type for the conjugate-gradients method. Takes value 1 for the Fletcher—Reeves update, 2
for Polak—Ribiere and 3 for Beale—Sorenson.

lmm is an integer giving the number of BFGS updates retained in the "L-BFGS-B" method,
It defaults to 5.

factr controls the convergence of the "L-BFGS-B" method. Convergence occurs when the
reduction in the objective is within this factor of the machine tolerance. Default is
1e7, that is a tolerance of about 1e-8.

pgtol helps controls the convergence of the "L-BFGS-B" method. It is a tolerance on the
projected gradient in the current search direction. This defaults to zero, when the
check is suppressed.

temp controls the "SANN" method. It is the starting temperature for the cooling schedule.
Defaults to 10.

tmax is the number of function evaluations at each temperature for the "SANN" method.
Defaults to 10.

Value
A list with components:

par The best set of parameters found.

value The value of fn corresponding to par.

470

optim

counts A two-element integer vector giving the number of calls to fn and gr
respectively. This excludes those calls needed to compute the Hessian, if
requested, and any calls to £n to compute a finite-difference approximation
to the gradient.

convergence An integer code. 0 indicates successful convergence. Error codes are

1 indicates that the iteration limit maxit had been reached.
10 indicates degeneracy of the Nelder—-Mead simplex.

51 indicates a warning from the "L-BFGS-B" method; see component
message for further details.

52 indicates an error from the "L-BFGS-B" method; see component
message for further details.

message A character string giving any additional information returned by the op-
timizer, or NULL.

hessian Only if argument hessian is true. A symmetric matrix giving an estimate
of the Hessian at the solution found. Note that this is the Hessian of the
unconstrained problem even if the box constraints are active.

Note

optim will work with one-dimensional pars, but the default method does not work well
(and will warn). Use optimize instead.

The code for methods "Nelder-Mead", "BFGS" and "CG" was based originally on Pascal
code in Nash (1990) that was translated by p2c and then hand-optimized. Dr Nash has
agreed that the code can be made freely available.

The code for method "L-BFGS-B" is based on Fortran code by Zhu, Byrd, Lu-Chen and
Nocedal obtained from Netlib (file ‘opt/Ibfgs_bcm.shar’: another version is in ‘toms/778’).

The code for method "SANN" was contributed by A. Trapletti.

References

Belisle, C. J. P. (1992) Convergence theorems for a class of simulated annealing algorithms
on R, J Applied Probability, 29, 885-895.

Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995) A limited memory algorithm for bound
constrained optimization. SIAM J. Scientific Computing, 16, 1190-1208.

Fletcher, R. and Reeves, C. M. (1964) Function minimization by conjugate gradients. Com-
puter Journal 7, 148-154.

Nash, J. C. (1990) Compact Numerical Methods for Computers. Linear Algebra and Func-
tion Minimisation. Adam Hilger.

Nelder, J. A. and Mead, R. (1965) A simplex algorithm for function minimization. Computer
Journal 7, 308-313.

Nocedal, J. and Wright, S. J. (1999) Numerical Optimization. Springer.

See Also

nlm, optimize, constrOptim

optim 471

Examples

fr <- function(x) { ## Rosenbrock Banana function

x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)°2 + (1 - x1)°2
}
grr <- function(x) { ## Gradient of 'fr'
x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),
200 * (x2 - x1 * x1))
}

optim(c(-1.2,1), fr)

optim(c(-1.2,1), fr, grr, method = "BFGS")

optim(c(-1.2,1), fr, NULL, method = "BFGS", hessian = TRUE)
optim(c(-1.2,1), fr, grr, method = "CG")

optim(c(-1.2,1), fr, grr, method = "CG", control=list(type=2))
optim(c(-1.2,1), fr, grr, method "L-BFGS-B")

flb <- function(x)
{ p <~ length(x); sum(c(1l, rep(4, p-1)) * (x - c(1, x[-p])~2)"2) }
25-dimensional box constrained
optim(rep(3, 25), flb, NULL, "L-BFGS-B",
lower=rep(2, 25), upper=rep(4, 25)) # par[24] is #*not* at boundary

"wild" function , global minimum at about -15.81515
fw <- function (x)
10*sin(0.3*x)*sin(1.3%x72) + 0.00001*x"4 + 0.2*x+80
plot(fw, -50, 50, n=1000, main = "optim() minimising 'wild function'")

res <- optim(50, fw, method="SANN",
control=list (maxit=20000, temp=20, parscale=20))
res
Now improve locally
(r2 <- optim(res$par, fw, method="BFGS"))
points(r2$par, r2$val, pch = 8, col = "red", cex = 2)

Combinatorial optimization: Traveling salesman problem
library(mva) # normally loaded
library(ts) # for embed, normally loaded

data(eurodist)
eurodistmat <- as.matrix(eurodist)

distance <- function(sq) { # Target function
sq2 <- embed(sq, 2)
return(sum(eurodistmat [cbind (sq2[,2],s92[,11)1))
}

genseq <- function(sq) { # Generate new candidate sequence
idx <- seq(2, NROW(eurodistmat)-1, by=1)
changepoints <- sample(idx, size=2, replace=FALSE)
tmp <- sqlchangepoints[1]]
sql[changepoints[1]] <- sqlchangepoints[2]]
sq[changepoints[2]] <- tmp
return(sq)

472 optimize

}

sq <- c(1,2:NROW(eurodistmat),1) # Initial sequence
distance(sq)

set.seed(2222) # chosen to get a good soln quickly
res <- optim(sq, distance, genseq, method="SANN",

control = list(maxit=6000, temp=2000, trace=TRUE))
res # Near optimum distance around 12842

loc <- cmdscale(eurodist)
rx <- range(x <- loc[,1])
ry <- range(y <- -loc[,2])
tspinit <- loc[sq,]

tspres <- loc[res$par,]

s <- seq(NROW(tspres)-1)

plot(x, y, type="n", asp=1, xlab="", ylab="",
main="initial solution of traveling salesman problem")
arrows(tspinit[s,1], -tspinit[s,2], tspinit[s+1,1], -tspinit[s+1,2],
angle=10, col="green")
text(x, y, names(eurodist), cex=0.8)

plot(x, y, type="n", asp=1, xlab="", ylab="",
main="optim() 'solving' traveling salesman problem")
arrows(tspres[s,1], -tspres([s,2], tspres[s+1,1], -tspres[s+1,2],
angle=10, col="red")
text(x, y, names(eurodist), cex=0.8)

optimize One Dimensional Optimization

Description

The function optimize searches the interval from lower to upper for a minimum or maxi-
mum of the function £ with respect to its first argument.

optimise is an alias for optimize.

Usage

optimize(f = , interval = , lower = min(interval),
upper = max(interval), maximum = FALSE,
tol = .Machine$double.eps”0.25, ...)

optimise(f = , interval = , lower = min(interval),
upper = max(interval), maximum = FALSE,
tol = .Machine$double.eps”0.25, ...)

Arguments
f the function to be optimized. The function is either minimized or maxi-
mized over its first argument depending on the value of maximum.
interval a vector containing the end-points of the interval to be searched for the

minimum.

optimize 473

lower the lower end point of the interval to be searched.
upper the upper end point of the interval to be searched.
maximum logical. Should we maximize or minimize (the default)?
tol the desired accuracy.

additional arguments to f.

Details

The method used is a combination of golden section search and successive parabolic inter-
polation. Convergence is never much slower than that for a Fibonacci search. If £ has a
continuous second derivative which is positive at the minimum (which is not at lower or
upper), then convergence is superlinear, and usually of the order of about 1.324.

The function f is never evaluated at two points closer together than e|zo| + (tol/3),
where € is approximately sqrt(.Machine$double.eps) and x(is the final abscissa
optimize () $minimum.

If £ is a unimodal function and the computed values of f are always unimodal when sepa-
rated by at least € |x| + (tol/3), then zy approximates the abcissa of the global minimum
of £ on the interval lower,upper with an error less than e|zg| + tol.

If £ is not unimodal, then optimize () may approximate a local, but perhaps non-global,
minimum to the same accuracy.

The first evaluation of f is always at 21 = a + (1 — ¢)(b — a) where (a,b) = (lower,
upper) and ¢ = (v/5 — 1)/2 = 0.61803.. is the golden section ratio. Almost always, the
second evaluation is at 3 = a + ¢(b— a). Note that a local minimum inside [z1, 22| will be
found as solution, even when f is constant in there, see the last example.

It uses a C translation of Fortran code (from Netlib) based on the Algol 60 procedure
localmin given in the reference.

Value
A list with components minimum (or maximum) and objective which give the location of
the minimum (or maximum) and the value of the function at that point.

References
Brent, R. (1973) Algorithms for Minimization without Derivatives. Englewood Cliffs N.J.:
Prentice-Hall.

See Also

nlm, uniroot.

Examples

f <- function (x,a) (x-a)~2

xmin <- optimize(f, c(0, 1), tol = 0.0001, a = 1/3)
xmin

See where the function is evaluated:

optimize (function(x) x~2*(print(x)-1), 1=0, u=10)

"wrong" solution with unlucky interval and piecewise constant f£():
f <- function(x) ifelse(x > -1, ifelse(x < 4, exp(-1/abs(x - 1)), 10), 10)
fp <- function(x) { print(x); f(x) }

474 options

plot(f, -2,5, ylim = 0:1, col = 2)
optimize(fp, c(-4, 20))# doesn't see the minimum
optimize(fp, c(-7, 20))# ok

options Options Settings

Description

Allow the user to set and examine a variety of global “options” which affect the way in
which R computes and displays its results.

Usage
options(...)
getOption(x)
.Options
Arguments
any options can be defined, using name = value.
However, only the ones below are used in “base R”.
Further, options(’name’) == options() [’name’], see the example.
X a character string holding an option name.
Details

Invoking options () with no arguments returns a list with the current values of the options.
Note that not all options listed below are set initially. To access the value of a single option,
one should use getOption("width"), e.g., rather than options("width") which is a list
of length one.

.Options also always contains the options() list, for S compatibility. You must use it
“read only” however.

Value

For options, a list (in any case) with the previous values of the options changed, or all
options when no arguments were given.

Options used in base R

prompt: a string, used for R’s prompt; should usually end in a blank (" ").
continue: a string setting the prompt used for lines which continue over one line.

width: controls the number of characters on a line. You may want to change this if you
re-size the window that R is running in. Valid values are 10...10000 with default
normally 80. (The valid values are in file ‘Print.h’ and can be changed by re-compiling
R.)

digits: controls the number of digits to print when printing numeric values. It is a sug-
gestion only. Valid values are 1...22 with default 7. See print.default.

options 475

editor: sets the default text editor, e.g., for edit. Set from the environment variable
VISUAL on UNIX.

pager: the (stand-alone) program used for displaying ASCII files on R’s console, also used
by file.show and sometimes help. Defaults to ‘$R_HOME/bin/pager’.

browser: default HTML browser used by help.start () on UNIX, or a non-default browser
on Windows.

pdfviewer: default PDF viewer. Set from the environment variable R_PDFVIEWER.
mailer: default mailer used by bug.report(). Can be "none".

contrasts: the default contrasts used in model fitting such as with aov or 1m. A character
vector of length two, the first giving the function to be used with unordered factors
and the second the function to be used with ordered factors.

defaultPackages: the packages that are attached by default when R starts up. Ini-
tially set from wvalue of the environment variables R_DefaultPackages, or if
that is unset to c("ts", "nls", "modreg", "mva", "ctest", "methods"). (Set
R_DEFAULT_PACKAGES to NULL or a comma-separated list of package names.) A call to
options should be in your ‘.Rprofile’ file to ensure that the change takes effect before
the base package is initialized (see Startup).

expressions: sets a limit on the number of nested expressions that will be evaluated. Valid
values are 25...100000 with default 500.

keep.source: When TRUE, the source code for functions (newly defined or loaded) is stored
in their "source" attribute (see attr) allowing comments to be kept in the right places.
The default is interactive(), i.e., TRUE for interactive use.

keep.source.pkgs: As for keep.source, for functions in packages loaded by library or
require. Defaults to FALSE unless the environment variable R_KEEP_PKG_SOURCE is
set to yes.

na.action: the name of a function for treating missing values (NA’s) for certain situations.

papersize: the default paper format used by postscript; set by environment variable
R_PAPERSIZE when R is started and defaulting to "a4" if that is unset or invalid.

printcmd: the command used by postscript for printing; set by environment variable
R_PRINTCMD when R is started. This should be a command that expects either input
to be piped to ‘stdin’ or to be given a single filename argument.

latexcmd, dvipscmd: character strings giving commands to be used in off-line printing of
help pages.

show.signif.stars, show.coef.Pvalues: logical, affecting P wvalue printing, see
print.coefmat.

ts.eps: the relative tolerance for certain time series (ts) computations.

error: either a function or an expression governing the handling of non-catastrophic errors
such as those generated by stop as well as by signals and internally detected errors. If
the option is a function, a call to that function, with no arguments, is generated as the
expression. The default value is NULL: see stop for the behaviour in that case. The
function dump.frames provides one alternative that allows post-mortem debugging.

show.error.messages: a logical. Should error messages be printed? Intended for use with
try or a user-installed error handler.

warn: sets the handling of warning messages. If warn is negative all warnings are ignored.
If warn is zero (the default) warnings are stored until the top—level function returns.
If fewer than 10 warnings were signalled they will be printed otherwise a message
saying how many (max 50) were signalled. A top—level variable called last.warning
is created and can be viewed through the function warnings. If warn is one, warnings
are printed as they occur. If warn is two or larger all warnings are turned into errors.

476 options

warning.length: sets the truncation limit for error and warning messages. A non-negative
integer, with allowed values 100-8192, default 1000.

warning.expression: an R code expression to be called if a warning is generated, replacing
the standard message. If non-null is called irrespective of the value of option warn.

check.bounds: logical, defaulting to FALSE. If true, a warning is produced whenever a
“generalized vector” (atomic or 1list) is extended, by something like x <- 1:3; x[5]
<- 6.

echo: logical. Only used in non-interactive mode, when it controls whether input is echoed.
Command-line option ‘-slave’ sets this initially to FALSE.

verbose: logical. Should R report extra information on progress? Set to TRUE by the
command-line option ‘-verbose’.

device: a character string giving the default device for that session. This defaults to
the normal screen device (e.g., x11, windows or gtk) for an interactive session, and
postscript in batch use or if a screen is not available.

X1icolortype: The default colour type for X11 devices.
CRAN: The URL of the preferred CRAN node for use by update.packages. Defaults to
http://cran.r-project.org.

download.file.method: Method to be used for download.file. Currently download
methods "internal", "wget" and "lynx" are available. There is no default for this
option, when method = "auto" is chosen: see download.file.

unzip: the command used for unzipping help files. Defaults to the value of R_UNZIPCMD,
which is set in ‘etc/Renviron’ if an unzip command was found during configuration.

de.cellwidth: integer: the cell widths (number of characters) to be used in the data editor
dataentry. If this is unset, 0, negative or NA, variable cell widths are used.

encoding: An integer vector of length 256 holding an input encoding. Defaults to
native.enc (= 0:255). See connections.

timeout: integer. The timeout for some Internet operations, in seconds. Default 60 sec-
onds. See download.file and connections.

internet.info: The minimum level of information to be printed on URL downloads etc.
Default is 2, for failure causes. Set to 1 or 0 to get more information.

scipen: integer. A penalty to be applied when deciding to print numeric values in fixed or
exponential notation. Positive values bias towards fixed and negative towards scientific
notation: fixed notation will be preferred unless it is more than scipen digits wider.

locatorBell: logical. Should selection in locator and identify be confirmed by a bell.
Default TRUE. Honoured at least on X11 and windows devices.

The default settings of some of these options are

prompt "> continue 4
width 80 digits 7
expressions 500 keep.source TRUE
show.signif.stars TRUE show.coef .Pvalues TRUE
na.action na.omit ts.eps le-5
error NULL show.error.messags TRUE
warn 0 warning.length 1000
echo TRUE verbose FALSE

scipen 0 locatorBell TRUE

http://cran.r-project.org

OrchardSprays 477

Others are set from environment variables or are platform-dependent.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

options() # printing all current options
op <- options(); str(op) # nicer printing

.Options is the same:
all(sapply(1l:length(op), function(i) all(.Options[[il] == op[[il])))

options('width') [[1]] == options()$width # the latter needs more memory
options(digits=20)
pi

set the editor, and save previous value
old.o <- options(editor="nedit")
old.o

options(check.bounds = TRUE)
x <- NULL; x[4] <- "yes" # gives a warning

options(digits=5)
print(1eb)
options(scipen=3); print(1le5)

options(op) # reset (all) initial options
options('digits')

Not run:

set contrast handling to be like S
options(contrasts=c("contr.helmert", "contr.poly"))
End(Not run)

Not run:

on error, terminate the R session with error status 66
options(error=quote(q("no", status=66, runLast=FALSE)))
stop("test it")

End(Not run)

Not run:

set an error action for debugging: see 7debugger.
options(error=dump.frames)

A possible setting for non-interactive sessions
options(error=quote ({dump.frames(to.file=TRUE); q(OO}))

End(Not run)

OrchardSprays Potency of Orchard Sprays

Description

An experiment was conducted to assess the potency of various constituents of orchard sprays
in repelling honeybees, using a Latin square design.

478 order

Usage

data(OrchardSprays)

Format

A data frame with 64 observations on 4 variables.

[,1] rowpos numeric Row of the design

[,2] colpos numeric Column of the design
[,3] treatment factor Treatment level

[4] decrease numeric Response

Detalils

Individual cells of dry comb were filled with measured amounts of lime sulphur emulsion in
sucrose solution. Seven different concentrations of lime sulphur ranging from a concentration
of 1/100 to 1/1,562,500 in successive factors of 1/5 were used as well as a solution containing
no lime sulphur.

The responses for the different solutions were obtained by releasing 100 bees into the cham-
ber for two hours, and then measuring the decrease in volume of the solutions in the various
cells.

An 8 x 8 Latin square design was used and the treatments were coded as follows:

A highest level of lime sulphur
B next highest level of lime sulphur

G lowest level of lime sulphur
H no lime sulphur

Source

Finney, D. J. (1947) Probit Analysis. Cambridge.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples
data(OrchardSprays)
pairs(OrchardSprays, main = "OrchardSprays data")
order Ordering Permutation
Description

order returns a permutation which rearranges its first argument into ascending or descend-
ing order, breaking ties by further arguments. sort.list is the same, using only one
argument.

order 479

Usage
order(..., na.last = TRUE, decreasing = FALSE)

sort.list(x, partial = NULL, na.last = TRUE, decreasing = FALSE,
method = c("shell", "quick", "radix"))

Arguments
a sequence of vectors, all of the same length.
X a vector.
partial vector of indices for partial sorting.
decreasing logical. Should the sort order be increasing or decreasing?
na.last for controlling the treatment of NAs. If TRUE, missing values in the data
are put last; if FALSE, they are put first; if NA, they are removed.
method the method to be used: partial matches are allowed.
Details

In the case of ties in the first vector, values in the second are used to break the ties. If the
values are still tied, values in the later arguments are used to break the tie (see the first
example). The sort used is stable (except for method = "quick"), so any unresolved ties
will be left in their original ordering.

The default method for sort.list is a good compromise. Method "quick" is only sup-
ported for numeric x with na.last=NA, and is not stable, but will be faster for long vectors.
Method "radix" is only implemented for integer x with a range of less than 100,000. For
such x it is very fast (and stable), and hence is ideal for sorting factors.

partial is supplied for compatibility with other implementations of S, but no other values
are accepted and ordering is always complete.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

sort and rank.

Examples

(ii <- order(x <- c(1,1,3:1,1:4,3), y <- ¢c(9,9:1), z <-c(2,1:9)))
##6 5 2 1 7 410 8 3 9
rbind(x,y,z) [,ii] # shows the reordering (ties via 2nd & 3rd arg)

Suppose we wanted descending order on y. A simple solution is
rbind(x,y,z) [, order(x, -y, 2z)]

For character vectors we can make use of rank:

cy <- as.character(y)

rbind(x,y,z) [, order(x, -rank(y), z)]

rearrange matched vectors so that the first is in ascending order
x <- c(5:1, 6:8, 12:9)

480

outer

y <- (x - 5)72

o <- order(x)

rbind(x[o], ylol)

tests of na.last
a <- c(4, 3, 2, NA, 1)

b <- c(4, NA,
z <- cbind(a,

2, 7, 1)
b)

(o <- order(a, b)); zl[o,]
(o <- order(a, b, na.last = FALSE)); zl[o,]
(o <- order(a, b, na.last = NA)); z[o,]

Not run:

speed examples for long vectors: timings are immediately after gc()
x <- factor(sample(letters, le6, replace=TRUE))

system.time (o

stopifnot(!is.

system.time (o

stopifnot(!is.

system.time (o

stopifnot(!is.

<- sort.list(x)) ## 4 secs

unsorted(x[o0]))

<- sort.list(x, method="quick", na.last=NA)) # 0.4 sec
unsorted(x[o]))

<- sort.list(x, method="radix")) # 0.04 sec
unsorted(x[o]))

xx <- sample(1:26, 1le7, replace=TRUE)

system.time (o

<- sort.list(xx, method="radix")) # 0.4 sec

xx <- sample(1:100000, 1le7, replace=TRUE)

system.time (o

<- sort.list(xx, method="radix")) # 4 sec

End(Not run)

outer

Outer Product of Arrays

Description

The outer product of the arrays X and Y is the array A with dimension c(dim(X),
dim(Y)) where element A[c(arrayindex.x, arrayindex.y)] = FUN(X[arrayindex.x],
Y[arrayindex.yl, ...).

Usage

outer(X, Y, FUN="x", ...)

X %o%h Y

Arguments

X
Y
FUN

Details

A vector or array.
A vector or array.
a function to use on the outer products, it may be a quoted string.

optional arguments to be passed to FUN.

FUN must be a function (or the name of it) which expects at least two arguments and which
operates elementwise on arrays.

Where they exist, the [dim|names of X and Y will be preserved.

%o% is an alias for outer (where FUN cannot be changed from "*").

p-adjust 481

Author(s)

Jonathan Rougier

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

%*% for usual (inner) matrix vector multiplication; kronecker which is based on outer.

Examples

x <- 1:9; names(x) <- x
Multiplication & Power Tables

x holh x
y <- 2:8; names(y) <- paste(y,":",sep="")
outer(y, x, """)

outer (month.abb, 1999:2003, FUN = "paste")

three way multiplication table:
x %o% x ho% y[1:3]

p.adjust Adjust p-values for multiple comparisons

Description

Given a set of p-values, returns p-values adjusted using one of several methods.

Usage

p-adjust(p, method=p.adjust.methods, n=length(p))

p-adjust.methods

Arguments
P vector of p-values
method correction method
n number of comparisons
Detalils

The adjustment methods include the Bonferroni correction ("bonferroni") in which the
p-values are multiplied by the number of comparisons. Four less conservative corrections
are also included by Holm (1979) ("holm"), Hochberg (1988) ("hochberg"), Hommel (1988)
("hommel") and Benjamini & Hochberg (1995) ("fdr"), respectively. A pass-through option
("none") is also included. The set of methods are contained in the p.adjust .methods vector

482 p.adjust

for the benefit of methods that need to have the method as an option and pass it on to
p.adjust.

The first four methods are designed to give strong control of the family wise error rate.
There seems no reason to use the unmodified Bonferroni correction because it is dominated
by Holm’s method, which is also valid under arbitrary assumptions.

Hochberg’s and Hommel’s methods are valid when the hypothesis tests are independent or
when they are non-negatively associated (Sarkar, 1998; Sarkar and Chang, 1997). Hommel’s
method is more powerful than Hochberg’s, but the difference is usually small and the
Hochberg p-values are faster to compute.

The "fdr" method of Benjamini and Hochberg (1995) controls the false discovery rate,
the expected proportion of false discoveries amongst the rejected hypotheses. The false
discovery rate is a less stringent condition than the family wise error rate, so Benjamini
and Hochberg’s method is more powerful than the other methods.

Value

A vector of corrected p-values.

References

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal Statistical Society Series
B, 57, 289-300.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics, 6, 65-70.

Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified
Bonferroni test. Biometrika, 75, 383—-386.

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance.
Biometrika, 75, 800-803.

Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology, 46, 561—
576. (An excellent review of the area.)

Sarkar, S. (1998). Some probability inequalities for ordered MTP2 random variables: a
proof of Simes conjecture. Annals of Statistics, 26, 494-504.

Sarkar, S., and Chang, C. K. (1997). Simes’ method for multiple hypothesis testing with
positively dependent test statistics. Journal of the American Statistical Association, 92,
1601-1608.

Wright, S. P. (1992). Adjusted P-values for simultaneous inference. Biometrics, 48, 1005—
1013. (Explains the adjusted P-value approach.)

See Also

pairwise.* functions in the ctest package, such as pairwise.t.test.

Examples

x <- rnorm(50, m=c(rep(0,25),rep(3,25)))
p <- 2*pnorm(-abs(x))

round(p, 3)

round(p.adjust(p), 3)

package.contents 483

round(p.adjust(p, "bonferroni"), 3)

round(p.adjust(p,"fdr"), 3)

package.contents Package Contents and Description

Description

Parses and returns the ‘CONTENTS’ and ‘DESCRIPTION’ file of a package.

Usage

package.contents(pkg, 1lib.loc = NULL)
package.description(pkg, lib.loc = NULL, fields = NULL)

Arguments
pkg a character string with the package name.
lib.loc a character vector describing the location of R library trees to search
through, or NULL. The default value of NULL corresponds to all libraries
currently known.
fields a character vector giving the tags of fields to return (if other fields occur
in the file they are ignored).
Value

package.contents returns NA if there is no ‘CONTENTS’ file for the given package; other-
wise, a character matrix with column names c("Entry", "Keywords", "Description")
and rows giving the corresponding entries in the CONTENTS data base for each Rd file in
the package.

If a ‘DESCRIPTION’ for the given package is found and can successfully be read,
package.description returns a named character vector with the values of the (given)
fields as elements and the tags as names. If not, it returns a named vector of NAs with the
field tags as names if fields is not null, and NA otherwise.

See Also

read.dcf

Examples

package.contents("mva")
package.contents("mva") [, c("Entry", "Description")]

package.description("ts")
package.description("ts") [c("Package", "Version")]
NOTE: No subscripting using '$' or abbreviated field tags!

484 package.skeleton

package.dependencies Check Package Dependencies

Description

Parses and checks the dependencies of a package against the currently installed version of
R [and other packages].

Usage

package.dependencies(x, check=FALSE)

Arguments
X A matrix of package descriptions as returned by CRAN.packages.
check If TRUE, return logical vector of check results. If FALSE, return parsed list
of dependencies.
Details

Currently we only check if the package conforms with the currently running version of R.
IN the future we might add checks for inter-package dependencies.

See Also

update.packages

package.skeleton Create a skeleton for a new package

Description

package.skeleton automates some of the setup for a new package. It creates directories,
saves functions and data to appropriate places, and creates skeleton help files and ‘README’
files describing further steps in packaging.

Usage

package.skeleton(name="anRpackage", list, environment=.GlobalEnv,
path=".", force=FALSE)

Arguments
name directory name for your package
list vector of names of R objects to put in the package
environment if 1ist is omitted, the contents of this environment are packaged
path path to put the package directories in

force If FALSE will not overwrite an existing directory

packageStatus 485

Value

used for its side-effects.

References

Read the Writing R Extensions manual for more details

See Also

install.packages

Examples

Not run:

f<-function(x,y) x+y

g<-function(x,y) x-y

d<-data.frame(a=1,b=2)

e<-rnorm(1000)

package.skeleton(list=c("£f","g","d","e") ,name="AnExample")
End(Not run)

packageStatus Package Management Tools

Description

Summarize information about installed packages and packages available at various
repositories, and automatically upgrade outdated packages. These tools will replace
update.packages and friends in the future and are currently work in progress.

Usage

packageStatus(lib.loc = NULL, repositories = getOption("repositories"))

S3 method for class 'packageStatus':
summary (object, ...)

S3 method for class 'packageStatus':
update (object, lib.loc = levels(object$inst$LibPath),
repositories = levels(object$avail$Repository), ...)

S3 method for class 'packageStatus':
upgrade (object, ask = TRUE, ...)

Arguments

lib.loc a character vector describing the location of R library trees to search
through, or NULL. The default value of NULL corresponds to all libraries
currently known.

repositories a character vector of URLs describing the location of R package reposito-
ries on the Internet or on the local machine.

object return value of packageStatus.

486 page

ask if TRUE, the user is prompted which packages should be upgraded and
which not.

currently not used.

Examples

Not run:

x <- packageStatus()
print(x)

summary (x)

upgrade (x)

x <- update(x)
print(x)

End(Not run)

page Invoke a Pager on an R Object

Description

Displays a representation of the object named by x in a pager.

Usage

page(x, method = c("dput", "print"), ...)

Arguments
X the name of an R object.
method The default method is to dump the object via dput. An alternative is to
print to a file.
additional arguments for file.show. Intended for setting pager as title
and delete.file are already used.
See Also

file.show, edit, fix.

To go to a new page when graphing, see frame.

pairs

487

pairs

Scatterplot Matrices

Description

A matrix of scatterplots is produced.

Usage

pairs(x,

S3 method for class 'formula':
pairs(formula, data = NULL, ..., subset)

Default S3 method:

pairs(x, labels, panel = points, ...,
lower.panel = panel, upper.panel = panel,
diag.panel = NULL, text.panel = textPanel,
label.pos = 0.5 + has.diag/3,
cex.labels = NULL, font.labels = 1,
rowlattop = TRUE, gap = 1)

Arguments
b4
formula
data

subset

labels

panel

the coordinates of points given as columns of a matrix.
a formula, such as y ~ x.
a data.frame (or list) from which the variables in formula should be taken.

an optional vector specifying a subset of observations to be used for plot-
ting.

the names of the variables.

function(x,y,...) which is used to plot the contents of each panel of
the display.

graphical parameters can be given as arguments to plot.

lower.panel, upper.panel

diag.panel

text.panel

label.pos

separate panel functions to be used below and above the diagonal respec-
tively.

optional function(x, ...) to be applied on the diagonals.

optional function(x, y, labels, cex, font, ...) to be applied on
the diagonals.

y position of labels in the text panel.

cex.labels, font.labels

rowlattop

gap

graphics parameters for the text panel.

logical. Should the layout be matrix-like with row 1 at the top, or graph-
like with row 1 at the bottom?

Distance between subplots, in margin lines.

488 pairs

Details

The ijth scatterplot contains x[,1i] plotted against x[,j]. The “scatterplot” can be cus-
tomised by setting panel functions to appear as something completely different. The off-
diagonal panel functions are passed the appropriate columns of x as x and y: the diagonal
panel function (if any) is passed a single column, and the text.panel function is passed a
single (x, y) location and the column name.

The graphical parameters pch and col can be used to specify a vector of plotting symbols
and colors to be used in the plots.

The graphical parameter oma will be set by pairs.default unless supplied as an argument.

A panel function should not attempt to start a new plot, but just plot within a given
coordinate system: thus plot and boxplot are not panel functions.

Author(s)

Enhancements for R 1.0.0 contributed by Dr. Jens Oehlschlaegel-Akiyoshi and R-core mem-
bers.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

data(iris)
pairs(iris[1:4], main = "Anderson's Iris Data -- 3 species",
pch = 21, bg = c("red", "green3", "blue") [unclass(iris$Species)])

formula method

data(swiss)
pairs(” Fertility + Education + Catholic, data = swiss,

subset = Education < 20, main = "Swiss data, Education < 20")
data(USJudgeRatings)

pairs(USJudgeRatings)

put histograms on the diagonal
panel.hist <- function(x, ...)
{
usr <- par("usr"); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5))
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], O, breaks[-1], y, col="cyan", ...)
}
pairs(USJudgeRatings[1:5], panel=panel.smooth,
cex = 1.5, pch = 24, bg="light blue",
diag.panel=panel.hist, cex.labels = 2, font.labels=2)

put (absolute) correlations on the upper panels,
with size proportional to the correlations.
panel.cor <- function(x, y, digits=2, prefix="", cex.cor)

{

palette 489

usr <- par("usr"); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
r <- abs(cor(x, y))
txt <- format(c(r, 0.123456789), digits=digits) [1]
txt <- paste(prefix, txt, sep="")
if (missing(cex.cor)) cex <- 0.8/strwidth(txt)
text (0.5, 0.5, txt, cex = cex * r)
}

pairs(USJudgeRatings, lower.panel=panel.smooth, upper.panel=panel.cor)

palette Set or View the Graphics Palette

Description

View or manipulate the color palette which is used when a col= has a numeric index.

Usage

palette(value)

Arguments

value an optional character vector.

Detalils

If value has length 1, it is taken to be the name of a built in color palette. If value has
length greater than 1 it is assumed to contain a description of the colors which are to make
up the new palette (either by name or by RGB levels).

If value is omitted or has length 0, no change is made the current palette.

Currently, the only built-in palette is "default".

Value

The palette which was in effect. This is invisible unless the argument is omitted.

See Also

colors for the vector of built-in “named” colors; hsv, gray, rainbow, terrain.colors,...to
construct colors;

col2rgb for translating colors to RGB 3-vectors.

Examples
palette() # obtain the current palette
palette(rainbow(6)) # six color rainbow

(palette(gray(seq(0,.9,1en=25)))) # gray scales; print old palette
matplot (outer(1:100,1:30), type='1', 1lty=1,1lwd=2, col=1:30,

main = "Gray Scales Palette",

sub = "palette(gray(seq(0,.9,len=25)))")
palette("default") # reset back to the default

490 Palettes

Palettes Color Palettes

Description

Create a vector of n “contiguous” colors.

Usage

rainbow(n, s = 1, v = 1, start = 0, end = max(1,n - 1)/n, gamma = 1)
heat.colors(n)

terrain.colors(n)

topo.colors(n)

cm.colors(n)

Arguments
n the number of colors (> 1) to be in the palette.
s,V the “saturation” and “value” to be used to complete the HSV color de-
scriptions.
start the (corrected) hue in [0,1] at which the rainbow begins.
end the (corrected) hue in [0,1] at which the rainbow ends.
gamma the gamma correction, see argument gamma in hsv.
Details

Conceptually, all of these functions actually use (parts of) a line cut out of the 3-dimensional
color space, parametrized by hsv(h,s,v, gamma), where gamma= 1 for the foo.colors
function, and hence, equispaced hues in RGB space tend to cluster at the red, green and
blue primaries.

Some applications such as contouring require a palette of colors which do not “wrap around”
to give a final color close to the starting one.

With rainbow, the parameters start and end can be used to specify particular subranges of
hues. The following values can be used when generating such a subrange: red=0, yellowz%,

_2 _3 _4 _5
green=z, cyan=%, blue=7 and magenta=g¢.

Value

A character vector, cv, of color names. This can be used either to create a user—defined color
palette for subsequent graphics by palette(cv), a col= specification in graphics functions
or in par.

See Also

colors, palette, hsv, rgb, gray and col2rgb for translating to RGB numbers.

panel.smooth 491

Examples

A Color Wheel
pie(rep(1,12), col=rainbow(12))

##-—— Some palettes —-————-—----
demo.pal <-
function(n, border = if (n<32) "light gray" else NA,
main = paste("color palettes; n=",n),

ch.col = c("rainbow(n, start=.7, end=.1)", "heat.colors(n)",
"terrain.colors(n)", "topo.colors(n)", "cm.colors(n)"))
{
nt <- length(ch.col)
i <-1:n; j <-n/nt; d<- j/6; dy <- 2%d
plot(i,i+d, type="n", yaxt="n", ylab="", main=main)
for (k in 1:nt) {
rect(i-.5, (k-1)xj+ dy, i+.4, kxj,
col = eval(parse(text=ch.col[k])), border = border)
text(2%j, k * j +dy/4, ch.coll[k])
}
}
n <- if(.Device == "postscript") 64 else 16

Since for screen, larger n may give color allocation problem
demo.pal(n)

panel.smooth Simple Panel Plot

Description

An example of a simple useful panel function to be used as argument in e.g., coplot or

pairs.
Usage
panel.smooth(x, y, col = par("col"), bg = NA, pch = par("pch"), cex = 1,
col.smooth = "red", span = 2/3, iter=3, ...)
Arguments
X,y numeric vectors of the same length
col,bg,pch,cex
numeric or character codes for the color(s), point type and size of points;
see also par.
col.smooth color to be used by lines for drawing the smooths.
span smoothing parameter £ for lowess, see there.
iter number of robustness iterations for lowess.
further arguments to lines.
See Also

coplot and pairs where panel.smooth is typically used; lowess.

492 par

Examples

data(swiss)
pairs(swiss, panel
pairs(swiss, panel

panel.smooth, pch = ".")# emphasize the smooths
panel.smooth, lwd = 2, cex= 1.5, col="blue")# hmm...

par Set or Query Graphical Parameters

Description

par can be used to set or query graphical parameters. Parameters can be set by specifying
them as arguments to par in tag = value form, or by passing them as a list of tagged
values.

Usage
par(..., no.readonly = FALSE)

<highlevel plot> (..., <tag> = <value>)

Arguments
arguments in tag = value form, or a list of tagged values. The tags must
come from the graphical parameters described below.
no.readonly logical; if TRUE and there are no other arguments, only parameters are
returned which can be set by a subsequent par () call.
Details

Parameters are queried by giving one or more character vectors to par.

par () (no arguments) or par(no.readonly=TRUE) is used to get all the graphical pa-
rameters (as a named list). Their names are currently taken from the variable .Pars.
.Pars.readonly contains the names of the par arguments which are readonly.

R.O. indicates read-only arguments: These may only be used in queries, i.e., they do
not set anything.

All but these R.O. and the following low-level arguments can be set as well in high-level
and mid-level plot functions, such as plot, points, lines, axis, title, text, mtext:

° n askll

° Ilfj-gll7 llfinll

° "mai "7 "mar"7 l|mexl|

° Ilmfrowll, Ilmfcolll’ llmfgll

e '"new

° n Oma", n Omd"7 n Omi"

° "pin", "F>:I_-tll7 llpsll’ llptyll
° Ilusrll

° lelogll, Ilylogll

par 493

Value

When parameters are set, their former values are returned in an invisible named list.
Such a list can be passed as an argument to par to restore the parameter values. Use
par (no.readonly = TRUE) for the full list of parameters that can be restored.

When just one parameter is queried, the value is a character string. When two or more
parameters are queried, the result is a list of character strings, with the list names giving
the parameters.

Note the inconsistency: setting one parameter returns a list, but querying one parameter
returns a vector.

Graphical Parameters

adj The value of adj determines the way in which text strings are justified. A value of 0
produces left-justified text, 0.5 centered text and 1 right-justified text. (Any value in
[0,1] is allowed, and on most devices values outside that interval will also work.) Note
that the adj argument of text also allows adj = c(x, y) for different adjustment in
x- and y- direction.

ann If set to FALSE, high-level plotting functions do not annotate the plots they produce
with axis and overall titles. The default is to do annotation.

ask logical. If TRUE, the user is asked for input, before a new figure is drawn.

bg The color to be used for the background of plots. A description of how colors are
specified is given below.

bty A character string which determined the type of box which is drawn about plots. If bty
is one of "o", "1", "7" "c" "u" or "]" the resulting box resembles the corresponding
upper case letter. A value of "n" suppresses the box.

cex A numerical value giving the amount by which plotting text and symbols should be
scaled relative to the default.

cex.axis The magnification to be used for axis annotation relative to the current.
cex.lab The magnification to be used for x and y labels relative to the current.
cex.main The magnification to be used for main titles relative to the current.
cex.sub The magnification to be used for sub-titles relative to the current.

cin R.O.; character size (width,height) in inches.

col A specification for the default plotting color. A description of how colors are specified
is given below.

col.axis The color to be used for axis annotation.

col.lab The color to be used for x and y labels.

col.main The color to be used for plot main titles.

col.sub The color to be used for plot sub-titles.

cra R.O.; size of default character (width,height) in “rasters” (pixels).

crt A numerical value specifying (in degrees) how single characters should be rotated. It is
unwise to expect values other than multiples of 90 to work. Compare with srt which
does string rotation.

csi R.O.; height of (default sized) characters in inches.

cxy R.O.; size of default character (width,height) in user coordinate units. par("cxy")
is par("cin")/par("pin") scaled to user coordinates. Note that c(strwidth(ch),
strwidth(ch)) for a given string ch is usually much more precise.

494 par

din R.O.; the device dimensions in inches.

err (Unimplemented; R is silent when points outside the plot region are not plotted.) The
degree of error reporting desired.

fg The color to be used for the foreground of plots. This is the default color is used for
things like axes and boxes around plots. A description of how colors are specified is
given below.

fig A numerical vector of the form c(x1, x2, y1, y2) which gives the (NDC) coordinates
of the figure region in the display region of the device.

fin A numerical vector of the form c(x, y) which gives the size of the figure region in
inches.

font An integer which specifies which font to use for text. If possible, device drivers arrange
so that 1 corresponds to plain text, 2 to bold face, 3 to italic and 4 to bold italic.

font.axis The font to be used for axis annotation.
font.lab The font to be used for x and y labels.
font.main The font to be used for plot main titles.
font.sub The font to be used for plot sub-titles.

gamma the gamma correction, see argument gamma to hsv.

lab A numerical vector of the form c(x, y, len) which modifies the way that axes are
annotated. The values of x and y give the (approximate) number of tickmarks on the
x and y axes and len specifies the label size. The default is c(5, 5, 7). Currently,
len is unimplemented.

las numeric in {0,1,2,3}; the style of axis labels.
0: always parallel to the axis [default],
1: always horizontal,
2: always perpendicular to the axis,
3: always vertical.

Note that other string/character rotation (via argument srt to par) does not affect
the axis labels.

1ty The line type. Line types can either be specified as an integer (0=blank, 1=solid,
2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the char-
acter strings "blank", "solid", "dashed", "dotted", "dotdash", "longdash", or
"twodash", where "blank" uses ‘invisible lines’ (i.e., doesn’t draw them).
Alternatively, a string of up to 8 characters (from c(1:9, "A":"F")) may be given,
giving the length of line segments which are alternatively drawn and skipped. See
section ‘Line Type Specification’ below.

1lwd The line width, a positive number, defaulting to 1.

mai A numerical vector of the form c(bottom, left, top, right) which gives the margin
size specified in inches.

mar A numerical vector of the form c(bottom, left, top, right) which gives the lines
of margin to be specified on the four sides of the plot. The default is c(5, 4, 4, 2)
+ 0.1.

mex mex is a character size expansion factor which is used to describe coordinates in the
margins of plots.

mfcol, mfrow A vector of the form c(nr, nc). Subsequent figures will be drawn in an
nr-by-nc array on the device by columns (mfcol), or rows (mfrow), respectively.

Consider the alternatives, layout and split.screen.

par

495

mfg A numerical vector of the form c(i, j) where i and j indicate which figure in an
array of figures is to be drawn next (if setting) or is being drawn (if enquiring). The
array must already have been set by mfcol or mfrow.
For compatibility with S, the form c(i, j, nr, nc) is also accepted, when nr and
nc should be the current number of rows and number of columns. Mismatches will be
ignored, with a warning.

mgp The margin line (in mex units) for the axis title, axis labels and axis line. The default
isc(3, 1, 0).

mkh The height in inches of symbols to be drawn when the value of pch is an integer.
Completely ignored currently.

new logical, defaulting to FALSE. If set to TRUE, the next high-level plotting command
(actually plot.new) should not clean the frame before drawing “as if it was on a new
device”.

oma A vector of the form c(bottom, left, top, right) giving the size of the outer mar-
gins in lines of text.

omd A vector of the form c(x1, x2, yl, y2) giving the outer margin region in NDC (=
normalized device coordinates), i.e., as fraction (in [0, 1]) of the device region.

omi A vector of the form c(bottom, left, top, right) giving the size of the outer mar-
gins in inches.

pch Either an integer specifying a symbol or a single character to be used as the default in
plotting points.

pin The width and height of the current plot in inches.

plt A vector of the form c(x1, x2, y1, y2) giving the coordinates of the plot region as
fractions of the current figure region.

ps integer; the pointsize of text and symbols.

pty A character specifying the type of plot region to be used; "s" generates a square
plotting region and "m" generates the maximal plotting region.

smo (Unimplemented) a value which indicates how smooth circles and circular arcs should
be.

srt The string rotation in degrees. See the comment about crt.

tck The length of tick marks as a fraction of the smaller of the width or height of the
plotting region. If tck >= 0.5 it is interpreted as a fraction of the relevant side, so if
tck=1 grid lines are drawn. The default setting (tck = NA) is to use tcl = -0.5 (see
below).

tcl The length of tick marks as a fraction of the height of a line of text. The default value
is =0.5; setting tcl = NA sets tck = -0.01 which is S’ default.

tmag A number specifying the enlargement of text of the main title relative to the other
annotating text of the plot.

type character; the default plot type desired, see plot.default (type=...), defaulting to
"pll.

usr A vector of the form c(x1, x2, y1, y2) giving the extremes of the user coordinates
of the plotting region. When a logarithmic scale is in use (i.e., par("xlog") is true,
see below), then the x-limits will be 10 ~ par("usr") [1:2]. Similarly for the y-axis.

xaxp A vector of the form c(x1, x2, n) giving the coordinates of the extreme tick marks
and the number of intervals between tick-marks when par ("xlog") is false. Otherwise,
when log coordinates are active, the three values have a different meaning: For a small

496 par

range, n is negative, and the ticks are as in the linear case, otherwise, n is in 1:3,
specifying a case number, and x1 and x2 are the lowest and highest power of 10 inside
the user coordinates, par ("usr") [1:2]. See axTicks() for more details.

xaxs The style of axis interval calculation to be used for the x-axis. Possible values are
npnoongn men ngn o ng" The styles are generally controlled by the range of data
or xlim, if given. Style "r" (regular) first extends the data range by 4 percent and
then finds an axis with pretty labels that fits within the range. Style "i" (internal)
just finds an axis with pretty labels that fits within the original data range. Style
"s" (standard) finds an axis with pretty labels within which the original data range
fits. Style "e" (extended) is like style "s", except that it is also ensured that there is
room for plotting symbols within the bounding box. Style "d" (direct) specifies that
the current axis should be used on subsequent plots. (Only "r" and "i" styles are
currently implemented)

xaxt A character which specifies the axis type. Specifying "n" causes an axis to be set up,
but not plotted. The standard value is "s": for compatibility with S values "1" and
"e" are accepted but are equivalent to "s".

xlog logical value (see log in plot.default). If TRUE, a logarithmic scale is in use (e.g.,
after plot(*, log = "x")). For a new device, it defaults to FALSE, i.e., linear scale.

xpd A logical value or NA. If FALSE, all plotting is clipped to the plot region, if TRUE, all
plotting is clipped to the figure region, and if NA, all plotting is clipped to the device
region.

yaxp A vector of the form c(y1, y2, n) giving the coordinates of the extreme tick marks
and the number of intervals between tick-marks unless for log coordinates, see xaxp
above.

yaxs The style of axis interval calculation to be used for the y-axis. See xaxs above.

yaxt A character which specifies the axis type. Specifying "n" causes an axis to be set up,
but not plotted.

ylog a logical value; see xlog above.

Color Specification

Colors can be specified in several different ways. The simplest way is with a character
string giving the color name (e.g., "red"). A list of the possible colors can be obtained with
the function colors. Alternatively, colors can be specified directly in terms of their RGB
components with a string of the form "#RRGGBB" where each of the pairs RR, GG, BB consist
of two hexadecimal digits giving a value in the range 00 to FF. Colors can also be specified
by giving an index into a small table of colors, the palette. This provides compatibility
with S. Index O corresponds to the background color.

Additionally, "transparent" or (integer) NA is transparent, useful for filled areas (such as
the background!), and just invisible for things like lines or text.

The functions rgb, hsv, gray and rainbow provide additional ways of generating colors.

Line Type Specification

Line types can either be specified by giving an index into a small built in table of line types
(1 = solid, 2 = dashed, etc, see 1ty above) or directly as the lengths of on/off stretches of
line. This is done with a string of an even number (up to eight) of characters, namely non-
zero (hexadecimal) digits which give the lengths in consecutive positions in the string. For
example, the string "33" specifies three units on followed by three off and "3313" specifies

par 497

three units on followed by three off followed by one on and finally three off. The ‘units’
here are (on most devices) proportional to 1wd, and with 1wd = 1 are in pixels or points.

The five standard dash-dot line types (1ty = 2:6) correspond to c("44", "13", "1343",
|I73|l s l|2262|l).

Note that NA is not a valid value for 1ty.

Note

The effect of restoring all the (settable) graphics parameters as in the examples is hard
to predict if the device has been resized. Several of them are attempting to set the same
things in different ways, and those last in the alphabet will win. In particular, the settings
of mai, mar, pin, plt and pty interact, as do the outer margin settings, the figure layout
and figure region size.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

plot.default for some high-level plotting parameters; colors, gray, rainbow, rgb;
options for other setup parameters; graphic devices x11, postscript and setting up device
regions by layout and split.screen.

Examples

op <- par(mfrow = c(2, 2), # 2 x 2 pictures on one plot
pty = "s") # square plotting region,
independent of device size

At end of plotting, reset to previous settings:
par (op)

Alternatively,

op <- par(no.readonly = TRUE) # the whole list of settable par's.
do lots of plotting and par(.) calls, then reset:

par (op)

par("ylog") # FALSE
plot(1 : 12, log = "y")
par("ylog") # TRUE

plot(1:2, xaxs = "i") # 'inner axis' w/o extra space
stopifnot (par("xaxp") [1:2] == 1:2 &&
par("usr") [1:2] == 1:2)

(nr.prof <-
c(prof.pilots=16,lawyers=11,farmers=10,salesmen=9,physicians=9,
mechanics=6,policemen=6,managers=6,engineers=5,teachers=4,
housewives=3,students=3,armed.forces=1))
par(las = 3)
barplot (rbind(nr.prof)) # R 0.63.2: shows alignment problem
par(las = 0)# reset to default

498 Paren

'fg' use:
plot(1:12, type = "b", main="'fg' : axes, ticks and box in gray",
fg = gray(0.7), bty="7" , sub=R.version.string)

ex <- function() {
old.par <- par(mo.readonly = TRUE) # all par settings which
could be changed.
on.exit(par(old.par))

...
... do lots of par() settings and plots
...
invisible() #-- now, par(old.par) will be executed
}
ex()
Paren Parentheses and Braces
Description

Open parenthesis, (, and open brace, {, are .Primitive functions in R.

Effectively, (is semantically equivalent to the identity function(x) x, whereas { is slightly
more interesting, see examples.

Usage
C...)
{ ...}

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.
See Also

if, return, etc for other objects used in the R language itself.

Syntax for operator precedence.

Examples
f <- get(" (u)
e <- expression(3 + 2 * 4)
fle) == e # TRUE

do <- get("{")
do(x <- 3, y <= 2*x-3, 6-x-y); X; ¥y

parse 499

parse Parse Expressions

Description

parse returns the parsed but unevaluated expressions in a list. Each element of the list is
of mode expression.

Usage
parse(file = "", n = NULL, text = NULL, prompt = "?")
Arguments
file a connection, or a character string giving the name of a file or a URL to
read the expressions from. If file is "" and text is missing or NULL then
input is taken from the console.
n the number of statements to parse. If n is negative the file is parsed in
its entirety.
text character vector. The text to parse. Elements are treated as if they were
lines of a file.
prompt the prompt to print when parsing from the keyboard. NULL means to use

R’s prompt, getOption("prompt").
NULL means to use R’s prompt, getOption("prompt").

Details

All versions of R accept input from a connection with end of line marked by LF (as used
on Unix), CRLF (as used on DOS/Windows) or CR (as used on classic MacOS). The final
line can be incomplete, that is missing the final EOL marker.

See source for the limits on the size of functions that can be parsed (by default).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

scan, source, eval, deparse.

Examples

cat("x <- c(1,4)\n x ~ 3 -10 ; outer(1:7,5:9)\n", file="xyz.Rdmped")
parse 3 statements from the file "xyz.Rdmped"

parse(file = "xyz.Rdmped", n = 3)

unlink("xyz.Rdmped")

500 paste

paste Concatenate Strings

Description

Concatenate vectors after converting to character.

Usage
paste(..., sep = " ", collapse = NULL)
Arguments
one or more R objects, to be coerced to character vectors.
sep a character string to separate the terms.
collapse an optional character string to separate the results.
Details

paste converts its arguments to character strings, and concatenates them (separating them
by the string given by sep). If the arguments are vectors, they are concatenated term-by-
term to give a character vector result.

If a value is specified for collapse, the values in the result are then concatenated into a
single string, with the elements being separated by the value of collapse.

Value

A character vector of the concatenated values. Thus will be of length zero if all the objects
are unless collapse is non-NULL, in which case it is a single empty string.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

String manipulation with as.character, substr, nchar, strsplit; further, cat which
concatenates and writes to a file, and sprintf for C like string construction.

Examples

paste(1:12) # same as as.character(1:12)
paste("A", 1:6, sep = "")
paste("Today is", date())

path.expand 501

path.expand Expand File Paths

Description
Expand a path name, for example by replacing a leading tilde by the user’s home directory
(if defined on that platform).

Usage

path.expand(path)

Arguments

path character vector containing one or more path names.

Details

On some Unix versions, a leading “user will expand to the home directory of user, but
not on Unix versions without readline installed.

See Also

basename

Examples

path.expand("~/foo")

pdf PDF Graphics Device

Description

pdf starts the graphics device driver for producing PDF graphics.

Usage

pdf (file = ifelse(onefile, "Rplots.pdf", "Rplot%03d.pdf"),
width = 6, height = 6, onefile = TRUE, family = "Helvetica",
title "R Graphics Output", encoding, bg, fg, pointsize)

Arguments

file a character string giving the name of the file.
width, height the width and height of the graphics region in inches.

onefile logical: if true (the default) allow multiple figures in one file. If false,
generate a file name containing the page number.

502

family

title

encoding

pointsize
bg
fg

Details

pdf

the font family to be used, one of "AvantGarde", "Bookman", "Courier",
"Helvetica", "Helvetica-Narrow", "NewCenturySchoolbook",
"Palatino" or "Times".

title string to embed in the file.

the name of an encoding file. Defaults to "ISOLatinl.enc" in the
‘R_.HOME/afm’ directory, which is used if the path does not contain a
path separator. An extension ".enc" can be omitted.

the default point size to be used.
the default background color to be used.

the default foreground color to be used.

pdf O opens the file file and the PDF commands needed to plot any graphics requested
are sent to that file.

See postscript for details of encodings, as the internal code is shared between the drivers.
The native PDF encoding is given in file ‘PDFDoc.enc’.

pdf writes uncompressed PDF. It is primarily intended for producing PDF graphics for
inclusion in other documents, and PDF-includers such as pdftex are usually able to handle

compression.

At present the PDF is fairly simple, with each page being represented as a single stream. The
R graphics model does not distinguish graphics objects at the level of the driver interface.

Note

Acrobat Reader does not use the fonts specified but rather emulates them from multiple-
master fonts. This can be seen in imprecise centring of characters, for example the multiply
and divide signs in Helvetica.

See Also

Devices, postscript

Examples

Not run:

Test function for encodings
TestChars <- function(encoding="ISOLatinl")

{
pdf (encoding=encoding)
par (pt
plot(c(0,15), <c(0,15), type="n", xlab="", ylab="")
title(paste("Centred chars in encoding", encoding))
grid(15, 15, lty=1)
for(i in c(32:255)) {
x <= i
y <= i
points(x, y, pch=i)
}
dev.off ()
}

there will be many warnings.
TestChars("ISOLatin2")

persp

doesn't

503

view properly in US-spec Acrobat 5.05, but gs7.04 works.

Lots of characters are not centred.
End(Not run)

persp

Perspective Plots

Description

This function draws perspective plots of surfaces over the x—y plane. persp is a generic

function.

Usage
persp(x,

)

Default S3 method:

persp(x =

seq(0, 1, len = nrow(z)), y = seq(0, 1, len = ncol(z)), z,

xlim = range(x), ylim = range(y), zlim = range(z, na.rm = TRUE),

xlab

NULL, ylab = NULL, zlab = NULL, main = NULL, sub = NULL,

theta = 0, phi = 15, r = sqrt(3), d = 1, scale = TRUE, expand = 1,

col

= "white", border = NULL, ltheta = -135, 1lphi = 0, shade = NA,

box = TRUE, axes = TRUE, nticks = 5, ticktype = "simple",
)

Arguments

X, y

Z

locations of grid lines at which the values in z are measured. These must
be in ascending order. By default, equally spaced values from 0 to 1 are
used. If x is a list, its components x$x and x$y are used for x and y,
respectively.

a matrix containing the values to be plotted (NAs are allowed). Note that
x can be used instead of z for convenience.

xlim, ylim, zlim

x-, y- and z-limits. The plot is produced so that the rectangular volume
defined by these limits is visible.

xlab, ylab, zlab

main, sub

titles for the axes. N.B. These must be character strings; expressions are
not accepted. Numbers will be coerced to character strings.

main and sub title, as for title.

theta, phi angles defining the viewing direction. theta gives the azimuthal direction

scale

and phi the colatitude.
the distance of the eyepoint from the centre of the plotting box.

a value which can be used to vary the strength of the perspective trans-
formation. Values of d greater than 1 will lessen the perspective effect
and values less and 1 will exaggerate it.

before viewing the x, y and z coordinates of the points defining the surface
are transformed to the interval [0,1]. If scale is TRUE the x, y and z
coordinates are transformed separately. If scale is FALSE the coordinates
are scaled so that aspect ratios are retained. This is useful for rendering
things like DEM information.

504

expand

col

border

ltheta, 1lphi

shade

box

axes

ticktype

nticks

Details

persp

a expansion factor applied to the z coordinates. Often used with 0 <
expand < 1 to shrink the plotting box in the z direction.

the color(s) of the surface facets. Transparent colours are ignored. This
is recycled to the (nz — 1)(ny — 1) facets.

the color of the line drawn around the surface facets. A value of NA will
disable the drawing of borders. This is sometimes useful when the surface
is shaded.

if finite values are specified for 1theta and 1phi, the surface is shaded as
though it was being illuminated from the direction specified by azimuth
ltheta and colatitude lphi.

the shade at a surface facet is computed as ((1+d)/2) “shade, where d is
the dot product of a unit vector normal to the facet and a unit vector in
the direction of a light source. Values of shade close to one yield shading
similar to a point light source model and values close to zero produce
no shading. Values in the range 0.5 to 0.75 provide an approximation to
daylight illumination.

should the bounding box for the surface be displayed. The default is TRUE.

should ticks and labels be added to the box. The default is TRUE. If box
is FALSE then no ticks or labels are drawn.

character: "simple" draws just an arrow parallel to the axis to indicate
direction of increase; "detailed" draws normal ticks as per 2D plots.

the (approximate) number of tick marks to draw on the axes. Has no
effect if ticktype is "simple".

additional graphical parameters (see par).

The plots are produced by first transforming the coordinates to the interval [0,1]. The
surface is then viewed by looking at the origin from a direction defined by theta and phi.
If theta and phi are both zero the viewing direction is directly down the negative y axis.
Changing theta will vary the azimuth and changing phi the colatitude.

Value

The viewing transformation matriz, say VT, a 4 X 4 matrix suitable for projecting 3D coor-
dinates (z,y, z) into the 2D plane using homogenous 4D coordinates (z,y, z,t). It can be
used to superimpose additional graphical elements on the 3D plot, by 1ines() or points(),
e.g. using the function trans3d given in the last examples section below.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth

& Brooks/Cole.

See Also

contour and image.

phones 505

Examples

More examples in demo(persp) !!
#o e

(1) The Obligatory Mathematical surface.
Rotated sinc function.

x <- seq(-10, 10, length= 30)

y <- X

f <- function(x,y) { r <- sqrt(x"2+y~2); 10 * sin(r)/r }

z <- outer(x, y, f)

z[is.na(z)] <- 1

op <- par(bg = "white")

persp(x, y, z, theta = 30, phi 30, expand = 0.5, col

persp(x, y, z, theta = 30, phi = 30, expand 0.5, col
ltheta = 120, shade = 0.75, ticktype = "detailed",
xlab = "X", ylab = "Y", zlab = "Sinc(r)"

) -> res

round(res, 3)

"lightblue")
"lightblue",

(2) Add to existing persp plot

trans3d <- function(x,y,z, pmat) {

tr <- cbind(x,y,z,1) %*) pmat

list(x = tr[,1]1/tx[,4], y= tr[,2]1/tr[,4])
}
xE <- ¢(-10,10); xy <- expand.grid(xE, xE)
points(trans3d(xy[,1], xy[,2], 6, pm = res), col = 2, pch =16)
lines (trans3d(x, y=10, z= 6 + sin(x), pm = res), col = 3)

phi <- seq(0, 2*pi, len = 201)

rl <- 7.725 # radius of 2nd maximum

xr <- rl * cos(phi)

yr <- rl1 * sin(phi)

lines(trans3d(xr,yr, f(xr,yr), res), col = "pink", 1lwd=2)## (no hidden lines)

(3) Visualizing a simple DEM model

data(volcano)

z <- 2 * volcano # Exaggerate the relief

x <= 10 * (1:nrow(z)) # 10 meter spacing (S to N)

y <= 10 * (1:ncol(z)) # 10 meter spacing (E to W)

Don't draw the grid lines : border = NA

par(bg = "slategray")

persp(x, y, z, theta = 135, phi = 30, col = "green3", scale = FALSE,
ltheta = -120, shade = 0.75, border = NA, box = FALSE)

par (op)

phones The World’s Telephones

Description

The number of telephones in various regions of the world (in thousands).

506

pictex

Usage

data(phones)

Format

A matrix with 7 rows and 8 columns. The columns of the matrix give the figures for a given
region, and the rows the figures for a year.

The regions are: North America, Europe, Asia, South America, Oceania, Africa, Central
America.

The years are: 1951, 1956, 1957, 1958, 1959, 1960, 1961.

Source

AT&T (1961) The World’s Telephones.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(phones)
matplot (rownames (phones), phones, type = "b", log = "y",
xlab = "Year", ylab = "Number of telephones (1000's)")
legend(1951.5, 80000, colnames(phones), col = 1:6, 1ty = 1:5, pch = rep(21, 7))

title(main = "phones data: log scale for response")
pictex A PicTeX Graphics Driver
Description

This function produces graphics suitable for inclusion in TeX and LaTeX documents.

Usage

pictex(file = "Rplots.tex", width = 5, height = 4, debug = FALSE,
bg = "white", fg = "black")

Arguments
file the file where output will appear.
width The width of the plot in inches.
height the height of the plot in inches.
debug should debugging information be printed.
bg the background color for the plot.

fg the foreground color for the plot.

pictex 507

Details

This driver does not have any font metric information, so the use of plotmath is not
supported.

Multiple plots will be placed as separate environments in the output file.

Author(s)

This driver was provided by Valerio Aimale (valerio@svpop.com.dist.unige.it) of the De-
partment of Internal Medicine, University of Genoa, Italy.

References

Knuth, D. E. (1984) The TeXbook. Reading, MA: Addison-Wesley.

Lamport, L. (1994) LATEX: A Document Preparation System. Reading, MA: Addison-
Wesley.

Goossens, M., Mittelbach, F. and Samarin, A. (1994) The LATEX Companion. Reading,
MA: Addison-Wesley.

See Also

postscript, Devices.

Examples

pictex()
plot(1:11,(-5:5)"2, type='d', main="Simple Example Plot")
dev.off ()

Not run:

%% LaTeX Example

\documentclass{article}

\usepackage{pictex}

\begin{document}

Y/

\begin{figure} [h]
\centerline{\input{Rplots.tex}}
\caption{}

\end{figure}

Y

\end{document}

%%-— TeX Example --
\input pictex

$$ \input Rplots.tex $$
End(Not run)

unlink("Rplots.tex")

508

pie

pie

Pie Charts

Description

Draw a pie chart.

Usage

pie(x, labels

= names(x), edges = 200, radius = 0.8,

density = NULL, angle = 45, col = NULL, border = NULL, 1ty = NULL,

main =

Arguments

X

labels

edges

radius

density

angle

col

border, 1ty

main

Note

NULL, ...)

a vector of positive quantities. The values in x are displayed as the areas
of pie slices.

a vector of character strings giving names for the slices. For empty or NA
labels, no pointing line is drawn either.

the circular outline of the pie is approximated by a polygon with this
many edges.

the pie is drawn centered in a square box whose sides range from —1 to
1. If the character strings labeling the slices are long it may be necessary
to use a smaller radius.

the density of shading lines, in lines per inch. The default value of NULL
means that no shading lines are drawn. Non-positive values of density
also inhibit the drawing of shading lines.

the slope of shading lines, given as an angle in degrees (counter-clockwise).

a vector of colors to be used in filling or shading the slices. If missing a set
of 6 pastel colours is used, unless density is specified when par("fg") is
used.

(possibly vectors) arguments passed to polygon which draws each slice.
an overall title for the plot.

graphical parameters can be given as arguments to pie. They will affect
the main title and labels only.

Pie charts are a very bad way of displaying information. The eye is good at judging linear
measures and bad at judging relative areas. A bar chart or dot chart is a preferable way of
displaying this type of data.

Cleveland (1985), page 264: “Data that can be shown by pie charts always can be shown
by a dot chart. This means that judgements of position along a common scale can be made
instead of the less accurate angle judgements.” This statement is based on the empirical
investigations of Cleveland and McGill as well as investigations by perceptual psychologists.

Prior to R 1.5.0 this was known as piechart, which is the name of a Trellis function, so
the name was changed to be compatible with S.

PkgUtils 509

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Cleveland, W. S. (1985) The elements of graphing data. Wadsworth: Monterey, CA, USA.

See Also

dotchart.

Examples

pie(rep(1l, 24), col = rainbow(24), radius = 0.9)

pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)
names (pie.sales) <- c("Blueberry", "Cherry",
"Apple", "Boston Cream", "Other", "Vanilla Cream")
pie(pie.sales) # default colours
pie(pie.sales,
col = c("purple", "violetredl", "green3", "cornsilk", "cyan", "white"))
pie(pie.sales, col = gray(seq(0.4,1.0,length=6)))
pie(pie.sales, density = 10, angle = 15 + 10 * 1:6)

n <- 200
pie(rep(1,n), labels="", col=rainbow(n), border=NA,
main = "pie(x*, labels=\"\", col=rainbow(n), border=NA,..")
PkgUtils Utilities for Building and Checking Add-on Packages
Description

Utilities for checking whether the sources of an R add-on package work correctly, and for
building a source or binary package from them.

Usage

R CMD build [options] pkgdirs
R CMD check [options] pkgdirs

Arguments
pkgdirs a list of names of directories with sources of R add-on packages.
options further options to control the processing, or for obtaining information
about usage and version of the utility.
Details

R CMD check checks R add-on packages from their sources, performing a wide variety of
diagnostic checks.

R CMD build builds R source or binary packages from their sources. It will create index
files in the sources if necessary, so it is often helpful to run build before check.

Use R CMD foo --help to obtain usage information on utility foo.

510 plot

Several of the options to build --binary are passed to INSTALL so consult its help for the
details.

See Also

The chapter “Processing Rd format” in “Writing R Extensions” (see the ‘doc/manual’ sub-
directory of the R source tree).

INSTALL is called by build --binary.

PlantGrowth Results from an Ezperiment on Plant Growth

Description
Results from an experiment to compare yields (as measured by dried weight of plants)
obtained under a control and two different treatment conditions.

Usage

data(PlantGrowth)

Format

A data frame of 30 cases on 2 variables.

[, 1] weight numeric
[, 2] group factor

The levels of group are ‘ctrl’, ‘trtl’, and ‘trt2’.

Source

Dobson, A. J. (1983) An Introduction to Statistical Modelling. London: Chapman and Hall.

Examples

One factor ANOVA example from Dobson's book, cf. Table 7.4:
data(PlantGrowth)
boxplot (weight ~ group, data = PlantGrowth, main = "PlantGrowth data",
ylab = "Dried weight of plants", col = "lightgray",
notch = TRUE, varwidth = TRUE)
anova(lm(weight ~ group, data = PlantGrowth))

plot Generic X-Y Plotting

Description

Generic function for plotting of R objects. For more details about the graphical parameter
arguments, see par.

plot 511

Usage
plot(x, y, ...)

Arguments
X the coordinates of points in the plot. Alternatively, a single plotting
structure, function or any R object with a plot method can be provided.

y the y coordinates of points in the plot, optional if x is an appropriate
structure.

graphical parameters can be given as arguments to plot. Many methods
will also accept the following arguments:

type what type of plot should be drawn. Possible types are
e "p" for points,
e "1" for lines,