
The R Environment for Statistical
Computing and Graphics

Reference Index

The R Development Core Team

Version 1.8.1 (2003-11-21)

Copyright (©) 1999–2003 R Development Core Team.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be
stated in a translation approved by the R Development Core Team.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to
redistribute it under the terms of the GNU General Public License. For more information
about these matters, see http://www.gnu.org/copyleft/gpl.html.

ISBN 3-900051-00-3



Contents

1 The base package 1
.Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
.Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
.Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
abbreviate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
abline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
abs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
add1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
aggregate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
agrep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
AIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
airmiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
airquality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
all.equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
all.names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
anova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
anova.glm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
anova.lm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
anscombe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
any . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
aov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
aperm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
append . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
apply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
approxfun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
apropos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
args . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
arrows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
as.data.frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
as.environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
as.function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
as.POSIX* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
AsIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
assign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
assignOps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
assocplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
attach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

i



ii CONTENTS

attenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
attitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
attr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
autoload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
ave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
axis.POSIXct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
axTicks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
backsolve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
barplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
basename . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
BATCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Bessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
bindenv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Binomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
birthday . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
boxplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
boxplot.stats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
bquote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
browseEnv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
browseURL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
bug.report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
builtins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
bxp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
capture.output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
cars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
case/variable.names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
cat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
cbind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
char.expand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
charmatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
chartr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
check.options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
chickwts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Chisquare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
chol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
chol2inv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
chull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
citation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



CONTENTS iii

class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
close.socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
co2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
codes-deprecated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
coef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
col . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
col2rgb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
colSums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
commandArgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
COMPILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
complete.cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
confint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
constrOptim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
contrasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
convolve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
coplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
copyright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
cor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
count.fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
cov.wt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
crossprod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
cumsum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
cut.POSIXt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
data.class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
data.frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
data.matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
dataentry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
dataframeHelpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
DateTimeClasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
dcf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Defunct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
delete.response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169



iv CONTENTS

density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
deparse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Deprecated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
deriv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
det . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
detach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
dev.xxx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
dev2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
dev2bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
deviance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
df.residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
diag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
diff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
difftime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
dim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
dimnames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
discoveries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
do.call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
dotchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
double . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
download.file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
dput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
dummy.coef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
duplicated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
dyn.load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
edit.data.frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
eff.aovlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
eigen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
esoph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
euro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
eurodist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
eval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
exists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
expand.grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
expand.model.frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Extract.data.frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Extract.factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
extractAIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Extremes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
factor.scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
faithful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234



CONTENTS v

family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
FDist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
fft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
file.access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
file.choose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
file.info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
file.path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
file.show . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
filled.contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
findInterval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
fitted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
fivenum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
fix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Foreign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Formaldehyde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
formals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
format.info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
formatC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
formatDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
fourfoldplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
freeny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
ftable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
ftable.formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
GammaDist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
gc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
gc.time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
gctorture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Geometric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
get . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
getAnywhere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
getFromNamespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
getNativeSymbolInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
getNumCConverters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
getpid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
getS3method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
getwd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
gl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
glm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
glm.control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
glm.summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Gnome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
gray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
grep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
groupGeneric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
gzcon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297



vi CONTENTS

HairEyeColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
help.search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
help.start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Hershey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
hist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
hist.POSIXt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
hsv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Hyperbolic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Hypergeometric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
identical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
identify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
ifelse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
index.search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
infert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
influence.measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
InsectSprays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
INSTALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
integrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
interaction.plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
interactive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
InternalMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
invisible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
IQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
iris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
is.empty.model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
is.finite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
is.function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
is.language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
is.object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
is.R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
is.recursive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
is.single . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
islands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Japanese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
kappa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
kronecker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
lapply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Last.value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
legend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
library.dynam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
license . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362



CONTENTS vii

LifeCycleSavings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
LINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
list.files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
lm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
lm.fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
lm.influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
lm.summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
localeconv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
locales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
locator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
logical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Logistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
logLik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
logLik.glm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
logLik.lm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
loglin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Lognormal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
longley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
lower.tri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
lowess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
ls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
ls.diag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
ls.print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
lsfit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
mad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
mahalanobis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
make.link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
make.names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
make.packages.html . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
make.socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
make.tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
make.unique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
makepredictcall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
manglePackageName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
manova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
mapply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
margin.table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
mat.or.vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
match.arg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
match.call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
match.fun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
matmult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
matplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
maxCol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416



viii CONTENTS

median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
memory.profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
missing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
model.extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
model.frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
model.matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
model.tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
morley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
mosaicplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
mtcars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
mtext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Multinomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
n2mfrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
NA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
na.action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
na.fail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
naprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
naresid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
nargs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
nchar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
nclass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
NegBinomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
nextn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
nhtemp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
nlevels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
nlm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
noquote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
Normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
NotYet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
nrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
ns-alt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
ns-dblcolon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
ns-internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
ns-lowlev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
ns-reflect.Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
ns-topenv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
nsl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
numeric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
object.size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
octmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
on.exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
optim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
optimize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472



CONTENTS ix

options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
OrchardSprays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
outer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
p.adjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
package.contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
package.dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
package.skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
packageStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
palette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Palettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
panel.smooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
par . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
Paren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
parse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
paste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
path.expand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
persp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
phones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
pictex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
pie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
PkgUtils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
PlantGrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
plot.data.frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
plot.default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
plot.density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
plot.design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
plot.factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
plot.formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
plot.histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
plot.lm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
plot.table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
plot.ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
plot.window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
plot.xy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
plotmath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
pmatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
png . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
polyroot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
pos.to.env . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
postscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
ppoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
precip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545



x CONTENTS

predict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
predict.glm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
predict.lm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
preplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
presidents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
pretty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
Primitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
print.data.frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
print.default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
print.ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
printCoefmat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
prmatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
proc.time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
prod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
proj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
promptData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
prop.table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
pushBack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
qqnorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
qr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
QR.Auxiliaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
quakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
quartz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
quit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
R.home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
R.Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
r2dtable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Random.user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
randu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
RdUtils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
read.00Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
read.ftable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
read.fwf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
read.socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
read.table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
readBin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
readline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
readLines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
recordPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
recover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
rect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
reg.finalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605



CONTENTS xi

regex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
relevel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
REMOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
remove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
remove.packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
rep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
replace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
replications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
reshape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
rev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
rgb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
RHOME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
rivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
rle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
Round . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
round.POSIXt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
row.names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
row/colnames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
rowsum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
Rprof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
rug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
save . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
savehistory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
sd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
se.aov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
se.contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
seek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
seq.POSIXt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
serialize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648
SHLIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
showConnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650
sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
SignRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
slice.index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
slotOp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
socketSelect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
solve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659



xii CONTENTS

source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
Special . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
splinefun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663
split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
sprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
sQuote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
stackloss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
standardGeneric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
stat.anova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
stem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680
step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680
stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
stopifnot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
str . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
stripchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687
strptime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
strsplit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691
structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692
strwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
strwrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
substitute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696
substr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698
sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
summary.aov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
summary.glm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702
summary.lm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704
summary.manova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706
summaryRprof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
sunflowerplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708
sunspots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
svd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711
sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
swiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714
symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
symnum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
Sys.getenv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
Sys.info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721
sys.parent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722
Sys.putenv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724
Sys.sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724
sys.source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725
Sys.time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727



CONTENTS xiii

system.file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
system.time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730
tabulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
tapply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
taskCallback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734
taskCallbackManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
taskCallbackNames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
TDist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739
tempfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
termplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743
terms.formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
terms.object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746
textConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749
Titanic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750
title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751
ToothGrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
toString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754
traceback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757
transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758
trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759
Trig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760
try . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760
ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
ts-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
tsp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
Tukey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765
TukeyHSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766
type.convert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
typeof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
UCBAdmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
Uniform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
unique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771
uniroot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
unlink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774
unlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
unname . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777
update.formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778
update.packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778
url.show . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
USArrests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
UseMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
USJudgeRatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783
USPersonalExpenditure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
uspop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785



xiv CONTENTS

VADeaths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785
vcov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786
vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
vignette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
volcano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790
warpbreaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
weekdays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
Weibull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793
weighted.mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794
weighted.residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
which . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796
which.min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
Wilcoxon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798
window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
with . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800
women . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802
write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803
write.table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804
writeLines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805
x11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806
xfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
xtabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808
xy.coords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809
xyz.coords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
zcbind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
zip.file.extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813

2 The grid package 815
absolute.size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815
convertNative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816
current.viewport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
dataViewport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818
gpar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820
grid-internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821
grid.arrows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821
grid.circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823
grid.collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824
grid.convert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825
grid.copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827
grid.display.list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828
grid.draw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828
grid.edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829
grid.frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830
grid.get . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831
grid.grill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832
grid.grob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833
grid.layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834
grid.lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835
grid.locator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836
grid.move.to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837



CONTENTS xv

grid.newpage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838
grid.pack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838
grid.place . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840
grid.plot.and.legend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841
grid.points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841
grid.polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842
grid.pretty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843
grid.rect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844
grid.segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
grid.set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846
grid.show.layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847
grid.show.viewport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848
grid.text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849
grid.xaxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850
grid.yaxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851
height.details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852
plotViewport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853
pop.viewport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853
push.viewport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854
unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855
unit.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
unit.length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
unit.pmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 858
unit.rep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859
viewport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859
width.details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862

3 The methods package 863
.BasicFunsList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863
as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863
BasicClasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867
callNextMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868
Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 870
classRepresentation-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871
Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872
EmptyMethodsList-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874
environment-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875
fixPre1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876
genericFunction-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877
GenericFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878
getClass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882
getMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883
getPackageName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886
hasArg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887
initialize-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888
is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889
isSealedMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892
language-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893
languageEl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894
LinearMethodsList-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895
makeClassRepresentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896
MethodDefinition-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898



xvi CONTENTS

MethodsList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
MethodsList-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903
MethodSupport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903
methodUtilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904
MethodWithNext-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905
new . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906
ObjectsWithPackage-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908
oldGet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909
promptClass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910
promptMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911
RClassUtils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912
representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916
RMethodUtils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917
SClassExtension-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921
Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922
setClass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923
setClassUnion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926
setGeneric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928
setMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 932
setOldClass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935

3.1 setOldClass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936
show . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937
showMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938
signature-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940
slot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941
StructureClasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942
substituteDirect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943
TraceClasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943
validObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944

4 The tools package 947
buildVignettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947
checkFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948
checkMD5sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949
checkTnF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949
checkVignettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 950
codoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951
delimMatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953
fileutils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953
md5sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955
QC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955
Rdindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957
Rtangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957
RweaveLatex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958
Sweave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960
SweaveSyntConv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962
texi2dvi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963
tools-internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963
undoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 964

Index 967



Chapter 1

The base package

.Machine Numerical Characteristics of the Machine

Description

.Machine is a variable holding information on the numerical characteristics of the machine
R is running on, such as the largest double or integer and the machine’s precision.

Usage

.Machine

Details

The algorithm is based on Cody’s (1988) subroutine MACHAR.

Value

A list with components (for simplicity, the prefix “double” is omitted in the explanations)

double.eps the smallest positive floating-point number x such that 1 + x != 1. It
equals base^ulp.digits if either base is 2 or rounding is 0; otherwise,
it is (base^ulp.digits) / 2.

double.neg.eps

a small positive floating-point number x such that 1 - x != 1. It
equals base^neg.ulp.digits if base is 2 or round is 0; otherwise, it
is (base^neg.ulp.digits) / 2. As neg.ulp.digits is bounded below
by -(digits + 3), neg.eps may not be the smallest number that can
alter 1 by subtraction.

double.xmin the smallest non-vanishing normalized floating-point power of the radix,
i.e., base^min.exp.

double.xmax the largest finite floating-point number. Typically, it is equal to (1 -
neg.eps) * base^max.exp, but on some machines it is only the second,
or perhaps third, largest number, being too small by 1 or 2 units in the
last digit of the significand.

double.base the radix for the floating-point representation

1



2 .Machine

double.digits the number of base digits in the floating-point significand
double.rounding

the rounding action.
0 if floating-point addition chops;
1 if floating-point addition rounds, but not in the IEEE style;
2 if floating-point addition rounds in the IEEE style;
3 if floating-point addition chops, and there is partial underflow;
4 if floating-point addition rounds, but not in the IEEE style, and there
is partial underflow;
5 if floating-point addition rounds in the IEEE style, and there is partial
underflow

double.guard the number of guard digits for multiplication with truncating arithmetic.
It is 1 if floating-point arithmetic truncates and more than digits base
base digits participate in the post-normalization shift of the floating-point
significand in multiplication, and 0 otherwise.

double.ulp.digits

the largest negative integer i such that 1 + base^i != 1, except that it
is bounded below by -(digits + 3).

double.neg.ulp.digits

the largest negative integer i such that 1 - base^i != 1, except that it
is bounded below by -(digits + 3).

double.exponent

the number of bits (decimal places if base is 10) reserved for the repre-
sentation of the exponent (including the bias or sign) of a floating-point
number

double.min.exp

the largest in magnitude negative integer i such that base ^ i is positive
and normalized.

double.max.exp

the smallest positive power of base that overflows.
integer.max the largest integer which can be represented.
sizeof.long the number of bytes in a C long type.
sizeof.longlong

the number of bytes in a C long long type. Will be zero if there is no
such type.

sizeof.longdouble

the number of bytes in a C long double type. Will be zero if there is no
such type.

sizeof.pointer

the number of bytes in a C SEXP type.

References

Cody, W. J. (1988) MACHAR: A subroutine to dynamically determine machine parameters.
Transactions on Mathematical Software, 14, 4, 303–311.

See Also

.Platform for details of the platform.

Examples

str(.Machine)



.Platform 3

.Platform Platform Specific Variables

Description

.Platform is a list with some details of the platform under which R was built. This provides
means to write OS portable R code.

Usage

.Platform

Value

A list with at least the following components:

OS.type character, giving the Operating System (family) of the computer. One of
"unix" or "windows".

file.sep character, giving the file separator, used on your platform, e.g., "/" on
Unix alikes.

dynlib.ext character, giving the file name extension of dynamically loadable
libraries, e.g., ".dll" on Windows.

GUI character, giving the type of GUI in use, or "unknown" if no GUI can be
assumed.

endian character, "big" or "little", giving the endianness of the processor in
use.

See Also

R.version and Sys.info give more details about the OS. In particular,
R.version$platform is the canonical name of the platform under which R was compiled.

.Machine for details of the arithmetic used, and system for invoking platform-specific sys-
tem commands.

Examples

## Note: this can be done in a system-independent way by file.info()$isdir

if(.Platform$OS.type == "unix") {

system.test <- function(...) { system(paste("test", ...)) == 0 }

dir.exists <- function(dir) sapply(dir, function(d)system.test("-d", d))

dir.exists(c(R.home(), "/tmp", "~", "/NO"))# > T T T F

}



4 abbreviate

.Script Scripting Language Interface

Description

Run a script through its interpreter with given arguments.

Usage

.Script(interpreter, script, args, ...)

Arguments

interpreter a character string naming the interpreter for the script.

script a character string with the base file name of the script, which must be
located in the ‘interpreter’ subdirectory of ‘R HOME/share’.

args a character string giving the arguments to pass to the script.

... further arguments to be passed to system when invoking the interpreter
on the script.

Note

This function is for R internal use only.

Examples

.Script("perl", "massage-Examples.pl",

paste("tools", system.file("R-ex", package = "tools")))

abbreviate Abbreviate Strings

Description

Abbreviate strings to at least minlength characters, such that they remain unique (if they
were).

Usage

abbreviate(names.arg, minlength = 4, use.classes = TRUE,
dot = FALSE)

Arguments

names.arg a vector of names to be abbreviated.

minlength the minimum length of the abbreviations.

use.classes logical (currently ignored by R).

dot logical; should a dot (".") be appended?



abline 5

Details

The algorithm used is similar to that of S. First spaces at the beginning of the word are
stripped. Then any other spaces are stripped. Next lower case vowels are removed followed
by lower case consonants. Finally if the abbreviation is still longer than minlength upper
case letters are stripped.

Letters are always stripped from the end of the word first. If an element of names.arg
contains more than one word (words are separated by space) then at least one letter from
each word will be retained. If a single string is passed it is abbreviated in the same manner
as a vector of strings.

Missing (NA) values are not abbreviated.

If use.classes is FALSE then the only distinction is to be between letters and space. This
has NOT been implemented.

Value

A character vector containing abbreviations for the strings in its first argument. Duplicates
in the original names.arg will be given identical abbreviations. If any non-duplicated
elements have the same minlength abbreviations then minlength is incremented by one
and new abbreviations are found for those elements only. This process is repeated until all
unique elements of names.arg have unique abbreviations.

The character version of names.arg is attached to the returned value as a names argument.

See Also

substr.

Examples

x <- c("abcd", "efgh", "abce")

abbreviate(x, 2)

data(state)

(st.abb <- abbreviate(state.name, 2))

table(nchar(st.abb))# out of 50, 3 need 4 letters

abline Add a Straight Line to a Plot

Description

This function adds one or more straight lines through the current plot.

Usage

abline(a, b, untf = FALSE, ...)
abline(h=, untf = FALSE, ...)
abline(v=, untf = FALSE, ...)
abline(coef=, untf = FALSE, ...)
abline(reg=, untf = FALSE, ...)



6 abline

Arguments

a,b the intercept and slope.

untf logical asking to untransform. See Details.

h the y-value for a horizontal line.

v the x-value for a vertical line.

coef a vector of length two giving the intercept and slope.

reg an object with a coef component. See Details.

... graphical parameters.

Details

The first form specifies the line in intercept/slope form (alternatively a can be specified on
its own and is taken to contain the slope and intercept in vector form).

The h= and v= forms draw horizontal and vertical lines at the specified coordinates.

The coef form specifies the line by a vector containing the slope and intercept.

reg is a regression object which contains reg$coef. If it is of length 1 then the value is
taken to be the slope of a line through the origin, otherwise, the first 2 values are taken to
be the intercept and slope.

If untf is true, and one or both axes are log-transformed, then a curve is drawn correspond-
ing to a line in original coordinates, otherwise a line is drawn in the transformed coordinate
system. The h and v parameters always refer to original coordinates.

The graphical parameters col and lty can be specified as arguments to abline; see par
for details.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

lines and segments for connected and arbitrary lines given by their endpoints. par.

Examples

data(cars)

z <- lm(dist ~ speed, data = cars)

plot(cars)

abline(z)



abs 7

abs Miscellaneous Mathematical Functions

Description

These functions compute miscellaneous mathematical functions. The naming follows the
standard for computer languages such as C or Fortran.

Usage

abs(x)
sqrt(x)

Arguments

x a numeric vector

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

Arithmetic for simple, log for logarithmic, sin for trigonometric, and Special for special
mathematical functions.

Examples

xx <- -9:9

plot(xx, sqrt(abs(xx)), col = "red")

lines(spline(xx, sqrt(abs(xx)), n=101), col = "pink")

add1 Add or Drop All Possible Single Terms to a Model

Description

Compute all the single terms in the scope argument that can be added to or dropped from
the model, fit those models and compute a table of the changes in fit.

Usage

add1(object, scope, ...)

## Default S3 method:
add1(object, scope, scale = 0, test = c("none", "Chisq"),

k = 2, trace = FALSE, ...)

## S3 method for class 'lm':
add1(object, scope, scale = 0, test = c("none", "Chisq", "F"),



8 add1

x = NULL, k = 2, ...)

## S3 method for class 'glm':
add1(object, scope, scale = 0, test = c("none", "Chisq", "F"),

x = NULL, k = 2, ...)

drop1(object, scope, ...)

## Default S3 method:
drop1(object, scope, scale = 0, test = c("none", "Chisq"),

k = 2, trace = FALSE, ...)

## S3 method for class 'lm':
drop1(object, scope, scale = 0, all.cols = TRUE,

test=c("none", "Chisq", "F"),k = 2, ...)

## S3 method for class 'glm':
drop1(object, scope, scale = 0, test = c("none", "Chisq", "F"),

k = 2, ...)

Arguments

object a fitted model object.

scope a formula giving the terms to be considered for adding or dropping.

scale an estimate of the residual mean square to be used in computing Cp.
Ignored if 0 or NULL.

test should the results include a test statistic relative to the original model?
The F test is only appropriate for lm and aov models or perhaps for glm
fits with estimated dispersion. The χ2 test can be an exact test (lm models
with known scale) or a likelihood-ratio test or a test of the reduction in
scaled deviance depending on the method.

k the penalty constant in AIC / Cp.

trace if TRUE, print out progress reports.

x a model matrix containing columns for the fitted model and all terms in
the upper scope. Useful if add1 is to be called repeatedly.

all.cols (Provided for compatibility with S.) Logical to specify whether all columns
of the design matrix should be used. If FALSE then non-estimable columns
are dropped, but the result is not usually statistically meaningful.

... further arguments passed to or from other methods.

Details

For drop1 methods, a missing scope is taken to be all terms in the model. The hierarchy
is respected when considering terms to be added or dropped: all main effects contained in
a second-order interaction must remain, and so on.

The methods for lm and glm are more efficient in that they do not recompute the model
matrix and call the fit methods directly.

The default output table gives AIC, defined as minus twice log likelihood plus 2p where p
is the rank of the model (the number of effective parameters). This is only defined up to
an additive constant (like log-likelihoods). For linear Gaussian models with fixed scale, the



aggregate 9

constant is chosen to give Mallows’ Cp, RSS/scale+2p−n. Where Cp is used, the column
is labelled as Cp rather than AIC.

Value

An object of class "anova" summarizing the differences in fit between the models.

Warning

The model fitting must apply the models to the same dataset. Most methods will at-
tempt to use a subset of the data with no missing values for any of the variables if
na.action=na.omit, but this may give biased results. Only use these functions with data
containing missing values with great care.

Note

These are not fully equivalent to the functions in S. There is no keep argument, and the
methods used are not quite so computationally efficient.

Their authors’ definitions of Mallows’ Cp and Akaike’s AIC are used, not those of the
authors of the models chapter of S.

Author(s)

The design was inspired by the S functions of the same names described in Chambers (1992).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

step, aov, lm, extractAIC, anova

Examples

example(step)#-> swiss

add1(lm1, ~ I(Education^2) + .^2)

drop1(lm1, test="F") # So called 'type II' anova

example(glm)

drop1(glm.D93, test="Chisq")

drop1(glm.D93, test="F")

aggregate Compute Summary Statistics of Data Subsets

Description

Splits the data into subsets, computes summary statistics for each, and returns the result
in a convenient form.



10 aggregate

Usage

aggregate(x, ...)

## Default S3 method:
aggregate(x, ...)

## S3 method for class 'data.frame':
aggregate(x, by, FUN, ...)

## S3 method for class 'ts':
aggregate(x, nfrequency = 1, FUN = sum, ndeltat = 1,

ts.eps = getOption("ts.eps"), ...)

Arguments

x an R object.

by a list of grouping elements, each as long as the variables in x. Names for
the grouping variables are provided if they are not given. The elements
of the list will be coerced to factors (if they are not already factors).

FUN a scalar function to compute the summary statistics which can be applied
to all data subsets.

nfrequency new number of observations per unit of time; must be a divisor of the
frequency of x.

ndeltat new fraction of the sampling period between successive observations; must
be a divisor of the sampling interval of x.

ts.eps tolerance used to decide if nfrequency is a sub-multiple of the original
frequency.

... further arguments passed to or used by methods.

Details

aggregate is a generic function with methods for data frames and time series.

The default method aggregate.default uses the time series method if x is a time series,
and otherwise coerces x to a data frame and calls the data frame method.

aggregate.data.frame is the data frame method. If x is not a data frame, it is coerced
to one. Then, each of the variables (columns) in x is split into subsets of cases (rows) of
identical combinations of the components of by, and FUN is applied to each such subset with
further arguments in ... passed to it. (I.e., tapply(VAR, by, FUN, ..., simplify =
FALSE) is done for each variable VAR in x, conveniently wrapped into one call to lapply().)
Empty subsets are removed, and the result is reformatted into a data frame containing the
variables in by and x. The ones arising from by contain the unique combinations of grouping
values used for determining the subsets, and the ones arising from x the corresponding
summary statistics for the subset of the respective variables in x.

aggregate.ts is the time series method. If x is not a time series, it is coerced to one. Then,
the variables in x are split into appropriate blocks of length frequency(x) / nfrequency,
and FUN is applied to each such block, with further (named) arguments in ... passed to
it. The result returned is a time series with frequency nfrequency holding the aggregated
values.



agrep 11

Author(s)

Kurt Hornik

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

apply, lapply, tapply.

Examples

data(state)

## Compute the averages for the variables in 'state.x77', grouped

## according to the region (Northeast, South, North Central, West) that

## each state belongs to.

aggregate(state.x77, list(Region = state.region), mean)

## Compute the averages according to region and the occurrence of more

## than 130 days of frost.

aggregate(state.x77,

list(Region = state.region,

Cold = state.x77[,"Frost"] > 130),

mean)

## (Note that no state in 'South' is THAT cold.)

data(presidents)

## Compute the average annual approval ratings for American presidents.

aggregate(presidents, nf = 1, FUN = mean)

## Give the summer less weight.

aggregate(presidents, nf = 1, FUN = weighted.mean, w = c(1, 1, 0.5, 1))

agrep Approximate String Matching (Fuzzy Matching)

Description

Searches for approximate matches to pattern (the first argument) within the string x (the
second argument) using the Levenshtein edit distance.

Usage

agrep(pattern, x, ignore.case = FALSE, value = FALSE, max.distance = 0.1)

Arguments

pattern a non-empty character string to be matched (not a regular expression!)

x character vector where matches are sought.

ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.



12 agrep

value if FALSE, a vector containing the (integer) indices of the matches deter-
mined is returned and if TRUE, a vector containing the matching elements
themselves is returned.

max.distance Maximum distance allowed for a match. Expressed either as integer,
or as a fraction of the pattern length (will be replaced by the smallest
integer not less than the corresponding fraction), or a list with possible
components

all: maximal (overall) distance

insertions: maximum number/fraction of insertions

deletions: maximum number/fraction of deletions

substitutions: maximum number/fraction of substitutions

If all is missing, it is set to 10%, the other components default to all.
The component names can be abbreviated.

Details

The Levensthein edit distance is used as measure of approximateness: it is the the total
number of insertions, deletions and substitutions required to transform one string into
another.

The function is a simple interface to the apse library developed by Jarkko Hietaniemi (also
used in the Perl String::Approx module).

Value

Either a vector giving the indices of the elements that yielded a match, of, if value is TRUE,
the matched elements.

Author(s)

David Meyer 〈David.Meyer@ci.tuwien.ac.at〉 (based on C code by Jarkko Hietaniemi); mod-
ifications by Kurt Hornik

See Also

grep

Examples

agrep("lasy", "1 lazy 2")

agrep("lasy", "1 lazy 2", max = list(sub = 0))

agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2)

agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, value = TRUE)

agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, ignore.case = TRUE)



AIC 13

AIC Akaike’s An Information Criterion

Description

Generic function calculating the Akaike information criterion for one or several fitted
model objects for which a log-likelihood value can be obtained, according to the formula
−2log-likelihood + knpar, where npar represents the number of parameters in the fitted
model, and k = 2 for the usual AIC, or k = log(n) (n the number of observations) for the
so-called BIC or SBC (Schwarz’s Bayesian criterion).

Usage

AIC(object, ..., k = 2)

Arguments

object a fitted model object, for which there exists a logLik method to ex-
tract the corresponding log-likelihood, or an object inheriting from class
logLik.

... optionally more fitted model objects.

k numeric, the “penalty” per parameter to be used; the default k = 2 is the
classical AIC.

Details

The default method for AIC, AIC.default() entirely relies on the existence of a logLik
method computing the log-likelihood for the given class.

When comparing fitted objects, the smaller the AIC, the better the fit.

Value

If just one object is provided, returns a numeric value with the corresponding AIC (or BIC,
or . . . , depending on k); if more than one object are provided, returns a data.frame with
rows corresponding to the objects and columns representing the number of parameters in
the model (df) and the AIC.

Author(s)

Jose Pinheiro and Douglas Bates

References

Sakamoto, Y., Ishiguro, M., and Kitagawa G. (1986). Akaike Information Criterion Statis-
tics. D. Reidel Publishing Company.

See Also

extractAIC, logLik.



14 airquality

Examples

data(swiss)

lm1 <- lm(Fertility ~ . , data = swiss)

AIC(lm1)

stopifnot(all.equal(AIC(lm1),

AIC(logLik(lm1))))

## a version of BIC or Schwarz' BC :

AIC(lm1, k = log(nrow(swiss)))

airmiles Passenger Miles on Commercial US Airlines, 1937–1960

Description

The revenue passenger miles flown by commercial airlines in the United States for each year
from 1937 to 1960.

Usage

data(airmiles)

Format

A time-series of 24 observations; yearly, 1937–1960.

Source

F.A.A. Statistical Handbook of Aviation.

References

Brown, R. G. (1963) Smoothing, Forecasting and Prediction of Discrete Time Series.
Prentice-Hall.

Examples

data(airmiles)

plot(airmiles, main = "airmiles data",

xlab = "Passenger-miles flown by U.S. commercial airlines", col = 4)

airquality New York Air Quality Measurements

Description

Daily air quality measurements in New York, May to September 1973.

Usage

data(airquality)

Format

A data frame with 154 observations on 6 variables.



alias 15

[,1] Ozone numeric Ozone (ppb)
[,2] Solar.R numeric Solar R (lang)
[,3] Wind numeric Wind (mph)
[,4] Temp numeric Temperature (degrees F)
[,5] Month numeric Month (1–12)
[,6] Day numeric Day of month (1–31)

Details

Daily readings of the following air quality values for May 1, 1973 (a Tuesday) to September
30, 1973.

� Ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island

� Solar.R: Solar radiation in Langleys in the frequency band 4000–7700 Angstroms from
0800 to 1200 hours at Central Park

� Wind: Average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia
Airport

� Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport.

Source

The data were obtained from the New York State Department of Conservation (ozone data)
and the National Weather Service (meteorological data).

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods
for Data Analysis. Belmont, CA: Wadsworth.

Examples

data(airquality)

pairs(airquality, panel = panel.smooth, main = "airquality data")

alias Find Aliases (Dependencies) in a Model

Description

Find aliases (linearly dependent terms) in a linear model specified by a formula.

Usage

alias(object, ...)

## S3 method for class 'formula':
alias(object, data, ...)

## S3 method for class 'lm':
alias(object, complete = TRUE, partial = FALSE,

partial.pattern = FALSE, ...)



16 alias

Arguments

object A fitted model object, for example from lm or aov, or a formula for
alias.formula.

data Optionally, a data frame to search for the objects in the formula.

complete Should information on complete aliasing be included?

partial Should information on partial aliasing be included?

partial.pattern

Should partial aliasing be presented in a schematic way? If this is done,
the results are presented in a more compact way, usually giving the deciles
of the coefficients.

... further arguments passed to or from other methods.

Details

Although the main method is for class "lm", alias is most useful for experimental designs
and so is used with fits from aov. Complete aliasing refers to effects in linear models that
cannot be estimated independently of the terms which occur earlier in the model and so
have their coefficients omitted from the fit. Partial aliasing refers to effects that can be
estimated less precisely because of correlations induced by the design.

Value

A list (of class "listof") containing components

Model Description of the model; usually the formula.

Complete A matrix with columns corresponding to effects that are linearly depen-
dent on the rows; may be of class "mtable" which has its own print
method.

Partial The correlations of the estimable effects, with a zero diagonal.

Note

The aliasing pattern may depend on the contrasts in use: Helmert contrasts are probably
most useful.

The defaults are different from those in S.

Author(s)

The design was inspired by the S function of the same name described in Chambers et al.
(1992).

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed
experiments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie,
Wadsworth & Brooks/Cole.



all 17

Examples

had.VR <- "package:MASS" %in% search()

## The next line is for fractions() which gives neater results

if(!had.VR) res <- require(MASS)

## From Venables and Ripley (2002) p.165.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,55.0,

62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

op <- options(contrasts=c("contr.helmert", "contr.poly"))

npk.aov <- aov(yield ~ block + N*P*K, npk)

alias(npk.aov)

if(!had.VR && res) detach(package:MASS)

options(op)# reset

all Are All Values True?

Description

Given a set of logical vectors, are all of the values true?

Usage

all(..., na.rm = FALSE)

Arguments

... one or more logical vectors.

na.rm logical. If true NA values are removed before the result is computed.

Value

Given a sequence of logical arguments, a logical value indicating whether or not all of the
elements of x are TRUE.

The value returned is TRUE if all the values in x are TRUE, and FALSE if any the values in x
are FALSE.

If x consists of a mix of TRUE and NA values, then value is NA.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

any, the “complement” of all, and stopifnot(*) which is an all(*) “insurance”.



18 all.equal

Examples

range(x <- sort(round(rnorm(10) - 1.2,1)))

if(all(x < 0)) cat("all x values are negative\n")

all.equal Test if Two Objects are (Nearly) Equal

Description

all.equal(x,y) is a utility to compare R objects x and y testing“near equality”. If they are
different, comparison is still made to some extent, and a report of the differences is returned.
Don’t use all.equal directly in if expressions—either use identical or combine the two,
as shown in the documentation for identical.

Usage

all.equal(target, current, ...)

## S3 method for class 'numeric':
all.equal(target, current,

tolerance= .Machine$double.eps ^ 0.5, scale=NULL, ...)

Arguments

target R object.

current other R object, to be compared with target.

... Further arguments for different methods, notably the following two, for
numerical comparison:

tolerance numeric ≥ 0. Differences smaller than tolerance are not considered.

scale numeric scalar > 0 (or NULL). See Details.

Details

There are several methods available, most of which are dispatched by the default method, see
methods("all.equal"). all.equal.list and all.equal.language provide comparison
of recursive objects.

Numerical comparisons for scale = NULL (the default) are done by first computing the
mean absolute difference of the two numerical vectors. If this is smaller than tolerance or
not finite, absolute differences are used, otherwise relative differences scaled by the mean
absolute difference.

If scale is positive, absolute comparisons are after scaling (dividing) by scale.

For complex arguments, Mod of difference is used.

attr.all.equal is used for comparing attributes, returning NULL or character.

Value

Either TRUE or a vector of mode "character" describing the differences between target
and current.

Numerical differences are reported by relative error



all.names 19

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer
(for =).

See Also

==, and all for exact equality testing.

Examples

all.equal(pi, 355/113) # not precise enough (default tol) > relative error

d45 <- pi*(1/4 + 1:10)

stopifnot(

all.equal(tan(d45), rep(1,10))) # TRUE, but

all (tan(d45) == rep(1,10)) # FALSE, since not exactly

all.equal(tan(d45), rep(1,10), tol=0) # to see difference

all.equal(options(), .Options)

all.equal(options(), as.list(.Options))# TRUE

.Options $ myopt <- TRUE

all.equal(options(), as.list(.Options))

rm(.Options)

all.names Find All Names in an Expression

Description

Return a character vector containing all the names which occur in an expression or call.

Usage

all.names(expr, functions = TRUE, max.names = 200, unique = FALSE)

all.vars(expr, functions = FALSE, max.names = 200, unique = TRUE)

Arguments

expr an expression or call from which the names are to be extracted.

functions a logical value indicating whether function names should be included in
the result.

max.names the maximum number of names to be returned.

unique a logical value which indicates whether duplicate names should be re-
moved from the value.

Details

These functions differ only in the default values for their arguments.

Value

A character vector with the extracted names.



20 anova

Examples

all.names(expression(sin(x+y)))

all.vars(expression(sin(x+y)))

anova Anova Tables

Description

Compute analysis of variance (or deviance) tables for one or more fitted model objects.

Usage

anova(object, ...)

Arguments

object an object containing the results returned by a model fitting function (e.g.,
lm or glm).

... additional objects of the same type.

Value

This (generic) function returns an object of class anova. These objects represent analysis-
of-variance and analysis-of-deviance tables. When given a single argument it produces a
table which tests whether the model terms are significant.

When given a sequence of objects, anova tests the models against one another in the order
specified.

The print method for anova objects prints tables in a “pretty” form.

Warning

The comparison between two or more models will only be valid if they are fitted to the same
dataset. This may be a problem if there are missing values and R’s default of na.action
= na.omit is used.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S, Wadsworth &
Brooks/Cole.

See Also

coefficients, effects, fitted.values, residuals, summary, drop1, add1.



anova.glm 21

anova.glm Analysis of Deviance for Generalized Linear Model Fits

Description

Compute an analysis of deviance table for one or more generalized linear model fits.

Usage

## S3 method for class 'glm':
anova(object, ..., dispersion = NULL, test = NULL)

Arguments

object, ... objects of class glm, typically the result of a call to glm, or a list of
objects for the "glmlist" method.

dispersion the dispersion parameter for the fitting family. By default it is obtained
from glm.obj.

test a character string, (partially) matching one of "Chisq", "F" or "Cp". See
stat.anova.

Details

Specifying a single object gives a sequential analysis of deviance table for that fit. That
is, the reductions in the residual deviance as each term of the formula is added in turn are
given in as the rows of a table, plus the residual deviances themselves.

If more than one object is specified, the table has a row for the residual degrees of freedom
and deviance for each model. For all but the first model, the change in degrees of freedom
and deviance is also given. (This only make statistical sense if the models are nested.) It
is conventional to list the models from smallest to largest, but this is up to the user.

The table will optionally contain test statistics (and P values) comparing the reduction in
deviance for the row to the residuals. For models with known dispersion (e.g., binomial
and Poisson fits) the chi-squared test is most appropriate, and for those with dispersion
estimated by moments (e.g., gaussian, quasibinomial and quasipoisson fits) the F test
is most appropriate. Mallows’ Cp statistic is the residual deviance plus twice the estimate
of σ2 times the residual degrees of freedom, which is closely related to AIC (and a multiple
of it if the dispersion is known).

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models by anova or anova.glmlist will only be valid
if they are fitted to the same dataset. This may be a problem if there are missing values
and R’s default of na.action = na.omit is used, and anova.glmlist will detect this with
an error.



22 anova.lm

References

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical
Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

glm, anova.

drop1 for so-called ‘type II’ anova where each term is dropped one at a time respecting
their hierarchy.

Examples

## --- Continuing the Example from '?glm':

anova(glm.D93)

anova(glm.D93, test = "Cp")

anova(glm.D93, test = "Chisq")

anova.lm ANOVA for Linear Model Fits

Description

Compute an analysis of variance table for one or more linear model fits.

Usage

## S3 method for class 'lm':
anova(object, ...)

anova.lmlist(object, ..., scale = 0, test = "F")

Arguments

object, ... objects of class lm, usually, a result of a call to lm.

test a character string specifying the test statistic to be used. Can be one of
"F", "Chisq" or "Cp", with partial matching allowed, or NULL for no test.

scale numeric. An estimate of the noise variance σ2. If zero this will be esti-
mated from the largest model considered.

Details

Specifying a single object gives a sequential analysis of variance table for that fit. That is,
the reductions in the residual sum of squares as each term of the formula is added in turn
are given in as the rows of a table, plus the residual sum of squares.

The table will contain F statistics (and P values) comparing the mean square for the row
to the residual mean square.

If more than one object is specified, the table has a row for the residual degrees of freedom
and sum of squares for each model. For all but the first model, the change in degrees of
freedom and sum of squares is also given. (This only make statistical sense if the models



anova.lm 23

are nested.) It is conventional to list the models from smallest to largest, but this is up to
the user.

Optionally the table can include test statistics. Normally the F statistic is most appropriate,
which compares the mean square for a row to the residual sum of squares for the largest
model considered. If scale is specified chi-squared tests can be used. Mallows’ Cp statistic
is the residual sum of squares plus twice the estimate of σ2 times the residual degrees of
freedom.

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models will only be valid if they are fitted to the same
dataset. This may be a problem if there are missing values and R’s default of na.action
= na.omit is used, and anova.lmlist will detect this with an error.

Note

Versions of R prior to 1.2.0 based F tests on pairwise comparisons, and this behaviour can
still be obtained by a direct call to anovalist.lm.

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

The model fitting function lm, anova.

drop1 for so-called ‘type II’ anova where each term is dropped one at a time respecting
their hierarchy.

Examples

## sequential table

data(LifeCycleSavings)

fit <- lm(sr ~ ., data = LifeCycleSavings)

anova(fit)

## same effect via separate models

fit0 <- lm(sr ~ 1, data = LifeCycleSavings)

fit1 <- update(fit0, . ~ . + pop15)

fit2 <- update(fit1, . ~ . + pop75)

fit3 <- update(fit2, . ~ . + dpi)

fit4 <- update(fit3, . ~ . + ddpi)

anova(fit0, fit1, fit2, fit3, fit4, test="F")

anova(fit4, fit2, fit0, test="F") # unconventional order



24 anscombe

anscombe Anscombe’s Quartet of “Identical” Simple Linear Regressions

Description

Four x-y datasets which have the same traditional statistical properties (mean, variance,
correlation, regression line, etc.), yet are quite different.

Usage

data(anscombe)

Format

A data frame with 11 observations on 8 variables.

x1 == x2 == x3 the integers 4:14, specially arranged
x4 values 8 and 19

y1, y2, y3, y4 numbers in (3, 12.5) with mean 7.5 and sdev 2.03

Source

Tufte, Edward R. (1989) The Visual Display of Quantitative Information, 13–14. Graphics
Press.

References

Anscombe, Francis J. (1973) Graphs in statistical analysis. American Statistician, 27,
17–21.

Examples

data(anscombe)

summary(anscombe)

##-- now some "magic" to do the 4 regressions in a loop:

ff <- y ~ x

for(i in 1:4) {

ff[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)

## or ff[[2]] <- as.name(paste("y", i, sep=""))

## ff[[3]] <- as.name(paste("x", i, sep=""))

assign(paste("lm.",i,sep=""), lmi <- lm(ff, data= anscombe))

print(anova(lmi))

}

## See how close they are (numerically!)

sapply(objects(pat="lm\.[1-4]$"), function(n) coef(get(n)))

lapply(objects(pat="lm\.[1-4]$"), function(n) summary(get(n))$coef)

## Now, do what you should have done in the first place: PLOTS

op <- par(mfrow=c(2,2), mar=.1+c(4,4,1,1), oma= c(0,0,2,0))

for(i in 1:4) {

ff[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)

plot(ff, data =anscombe, col="red", pch=21, bg = "orange", cex = 1.2,



any 25

xlim=c(3,19), ylim=c(3,13))

abline(get(paste("lm.",i,sep="")), col="blue")

}

mtext("Anscombe's 4 Regression data sets", outer = TRUE, cex=1.5)

par(op)

any Are Some Values True?

Description

Given a set of logical vectors, are any of the values true?

Usage

any(..., na.rm = FALSE)

Arguments

... one or more logical vectors.

na.rm logical. If true NA values are removed before the result is computed.

Value

Given a sequence of logical arguments, a logical value indicating whether or not any of the
elements of x are TRUE.

The value returned is TRUE if any the values in x are TRUE, and FALSE if all the values in x
are FALSE.

If x consists of a mix of FALSE and NA values, the value is NA.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

all, the “complement” of any.

Examples

range(x <- sort(round(rnorm(10) - 1.2,1)))

if(any(x < 0)) cat("x contains negative values\n")



26 aov

aov Fit an Analysis of Variance Model

Description

Fit an analysis of variance model by a call to lm for each stratum.

Usage

aov(formula, data = NULL, projections = FALSE, qr = TRUE,
contrasts = NULL, ...)

Arguments

formula A formula specifying the model.

data A data frame in which the variables specified in the formula will be found.
If missing, the variables are searched for in the standard way.

projections Logical flag: should the projections be returned?

qr Logical flag: should the QR decomposition be returned?

contrasts A list of contrasts to be used for some of the factors in the formula. These
are not used for any Error term, and supplying contrasts for factors only
in the Error term will give a warning.

... Arguments to be passed to lm, such as subset or na.action.

Details

This provides a wrapper to lm for fitting linear models to balanced or unbalanced experi-
mental designs.

The main difference from lm is in the way print, summary and so on handle the fit: this
is expressed in the traditional language of the analysis of variance rather than of linear
models.

If the formula contains a single Error term, this is used to specify error strata, and appro-
priate models are fitted within each error stratum.

The formula can specify multiple responses.

Weights can be specified by a weights argument, but should not be used with an Error
term, and are incompletely supported (e.g., not by model.tables).

Value

An object of class c("aov", "lm") or for multiple responses of class c("maov", "aov",
"mlm", "lm") or for multiple error strata of class "aovlist". There are print and summary
methods available for these.

Author(s)

The design was inspired by the S function of the same name described in Chambers et al.
(1992).



aperm 27

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed
experiments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie,
Wadsworth & Brooks/Cole.

See Also

lm, summary.aov, alias, proj, model.tables, TukeyHSD

Examples

## From Venables and Ripley (2002) p.165.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,55.0,

62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

( npk.aov <- aov(yield ~ block + N*P*K, npk) )

summary(npk.aov)

coefficients(npk.aov)

## as a test, not particularly sensible statistically

op <- options(contrasts=c("contr.helmert", "contr.treatment"))

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

npk.aovE

summary(npk.aovE)

options(op)# reset to previous

aperm Array Transposition

Description

Transpose an array by permuting its dimensions and optionally resizing it.

Usage

aperm(a, perm, resize = TRUE)

Arguments

a the array to be transposed.

perm the subscript permutation vector, which must be a permutation of the
integers 1:n, where n is the number of dimensions of a. The default is to
reverse the order of the dimensions.

resize a flag indicating whether the vector should be resized as well as having
its elements reordered (default TRUE).



28 append

Value

A transposed version of array a, with subscripts permuted as indicated by the array perm. If
resize is TRUE, the array is reshaped as well as having its elements permuted, the dimnames
are also permuted; if FALSE then the returned object has the same dimensions as a, and
the dimnames are dropped.

The function t provides a faster and more convenient way of transposing matrices.

Author(s)

Jonathan Rougier, 〈J.C.Rougier@durham.ac.uk〉 did the faster C implementation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

t, to transpose matrices.

Examples

# interchange the first two subscripts on a 3-way array x

x <- array(1:24, 2:4)

xt <- aperm(x, c(2,1,3))

stopifnot(t(xt[,,2]) == x[,,2],

t(xt[,,3]) == x[,,3],

t(xt[,,4]) == x[,,4])

append Vector Merging

Description

Add elements to a vector.

Usage

append(x, values, after=length(x))

Arguments

x the vector to be modified.

values to be included in the modified vector.

after a subscript, after which the values are to be appended.

Value

A vector containing the values in x with the elements of values appended after the specified
element of x.



apply 29

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

append(1:5, 0:1, after=3)

apply Apply Functions Over Array Margins

Description

Returns a vector or array or list of values obtained by applying a function to margins of an
array.

Usage

apply(X, MARGIN, FUN, ...)

Arguments

X the array to be used.

MARGIN a vector giving the subscripts which the function will be applied over. 1
indicates rows, 2 indicates columns, c(1,2) indicates rows and columns.

FUN the function to be applied. In the case of functions like +, %*%, etc., the
function name must be quoted.

... optional arguments to FUN.

Details

If X is not an array but has a dimension attribute, apply attempts to coerce it to an array
via as.matrix if it is two-dimensional (e.g., data frames) or via as.array.

Value

If each call to FUN returns a vector of length n, then apply returns an array of dimension
c(n, dim(X)[MARGIN]) if n > 1. If n equals 1, apply returns a vector if MARGIN has length
1 and an array of dimension dim(X)[MARGIN] otherwise. If n is 0, the result has length 0
but not necessarily the “correct” dimension.

If the calls to FUN return vectors of different lengths, apply returns a list of length
dim(X)[MARGIN].

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

lapply, tapply, and convenience functions sweep and aggregate.



30 approxfun

Examples

## Compute row and column sums for a matrix:

x <- cbind(x1 = 3, x2 = c(4:1, 2:5))

dimnames(x)[[1]] <- letters[1:8]

apply(x, 2, mean, trim = .2)

col.sums <- apply(x, 2, sum)

row.sums <- apply(x, 1, sum)

rbind(cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot( apply(x,2, is.vector)) # not ok in R <= 0.63.2

## Sort the columns of a matrix

apply(x, 2, sort)

##- function with extra args:

cave <- function(x, c1,c2) c(mean(x[c1]),mean(x[c2]))

apply(x,1, cave, c1="x1", c2=c("x1","x2"))

ma <- matrix(c(1:4, 1, 6:8), nr = 2)

ma

apply(ma, 1, table) #--> a list of length 2

apply(ma, 1, quantile)# 5 x n matrix with rownames

stopifnot(dim(ma) == dim(apply(ma, 1:2, sum)))## wasn't ok before R 0.63.1

approxfun Interpolation Functions

Description

Return a list of points which linearly interpolate given data points, or a function performing
the linear (or constant) interpolation.

Usage

approx (x, y = NULL, xout, method="linear", n=50,
yleft, yright, rule = 1, f=0, ties = mean)

approxfun(x, y = NULL, method="linear",
yleft, yright, rule = 1, f=0, ties = mean)

Arguments

x, y vectors giving the coordinates of the points to be interpolated. Alterna-
tively a single plotting structure can be specified: see xy.coords.

xout an optional set of values specifying where interpolation is to take place.

method specifies the interpolation method to be used. Choices are "linear" or
"constant".

n If xout is not specified, interpolation takes place at n equally spaced
points spanning the interval [min(x), max(x)].



approxfun 31

yleft the value to be returned when input x values less than min(x). The
default is defined by the value of rule given below.

yright the value to be returned when input x values greater than max(x). The
default is defined by the value of rule given below.

rule an integer describing how interpolation is to take place outside the interval
[min(x), max(x)]. If rule is 1 then NAs are returned for such points and
if it is 2, the value at the closest data extreme is used.

f For method="constant" a number between 0 and 1 inclusive, indicating
a compromise between left- and right-continuous step functions. If y0
and y1 are the values to the left and right of the point then the value is
y0*(1-f)+y1*f so that f=0 is right-continuous and f=1 is left-continuous.

ties Handling of tied x values. Either a function with a single vector argument
returning a single number result or the string "ordered".

Details

The inputs can contain missing values which are deleted, so at least two complete (x, y)
pairs are required. If there are duplicated (tied) x values and ties is a function it is applied
to the y values for each distinct x value. Useful functions in this context include mean, min,
and max. If ties="ordered" the x values are assumed to be already ordered. The first y
value will be used for interpolation to the left and the last one for interpolation to the right.

Value

approx returns a list with components x and y, containing n coordinates which interpolate
the given data points according to the method (and rule) desired.

The function approxfun returns a function performing (linear or constant) interpolation of
the given data points. For a given set of x values, this function will return the corresponding
interpolated values. This is often more useful than approx.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

spline and splinefun for spline interpolation.

Examples

x <- 1:10

y <- rnorm(10)

par(mfrow = c(2,1))

plot(x, y, main = "approx(.) and approxfun(.)")

points(approx(x, y), col = 2, pch = "*")

points(approx(x, y, method = "constant"), col = 4, pch = "*")

f <- approxfun(x, y)

curve(f(x), 0, 10, col = "green")

points(x, y)

is.function(fc <- approxfun(x, y, method = "const")) # TRUE

curve(fc(x), 0, 10, col = "darkblue", add = TRUE)



32 apropos

## Show treatment of 'ties' :

x <- c(2,2:4,4,4,5,5,7,7,7)

y <- c(1:6, 5:4, 3:1)

approx(x,y, xout=x)$y # warning

(ay <- approx(x,y, xout=x, ties = "ordered")$y)

stopifnot(ay == c(2,2,3,6,6,6,4,4,1,1,1))

approx(x,y, xout=x, ties = min)$y

approx(x,y, xout=x, ties = max)$y

apropos Find Objects by (Partial) Name

Description

apropos returns a character vector giving the names of all objects in the search list matching
what.

find is a different user interface to the same task as apropos.

Usage

apropos(what, where = FALSE, mode = "any")

find(what, mode = "any", numeric. = FALSE, simple.words = TRUE)

Arguments

what name of an object, or regular expression to match against
where, numeric.

a logical indicating whether positions in the search list should also be
returned

mode character; if not "any", only objects who’s mode equals mode are searched.

simple.words logical; if TRUE, the what argument is only searched as whole only word.

Details

If mode != "any" only those objects which are of mode mode are considered. If where is
TRUE, the positions in the search list are returned as the names attribute.

find is a different user interface for the same task as apropos. However, by default
(simple.words == TRUE), only full words are searched.

Author(s)

Kurt Hornik and Martin Maechler (May 1997).

See Also

objects for listing objects from one place, help.search for searching the help system,
search for the search path.



args 33

Examples

## Not run: apropos("lm")

apropos(ls)

apropos("lq")

lm <- 1:pi

find(lm) #> ".GlobalEnv" "package:base"

find(lm, num=TRUE) # numbers with these names

find(lm, num=TRUE, mode="function")# only the second one

rm(lm)

## Not run: apropos(".", mode="list") # a long list

# need a DOUBLE backslash '\\' (in case you don't see it anymore)

apropos("\\[")

## Not run: # everything

length(apropos("."))

# those starting with 'pr'

apropos("^pr")

# the 1-letter things

apropos("^.$")

# the 1-2-letter things

apropos("^..?$")

# the 2-to-4 letter things

apropos("^.{2,4}$")

# the 8-and-more letter things

apropos("^.{8,}$")

table(nchar(apropos("^.{8,}$")))

## End(Not run)

args Argument List of a Function

Description

Displays the argument names and corresponding default values of a function.

Usage

args(name)

Arguments

name an interpreted function. If name is a character string then the function
with that name is found and used.

Details

This function is mainly used interactively. For programming, use formals instead.



34 Arithmetic

Value

A function with identical formal argument list but an empty body if given an interpreted
function; NULL in case of a variable or primitive (non-interpreted) function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

formals, help.

Examples

args(c) # -> NULL (c is a 'primitive' function)

args(plot.default)

Arithmetic Arithmetic Operators

Description

These binary operators perform arithmetic on vector objects.

Usage

x + y
x - y
x * y
x / y
x ^ y
x %% y
x %/% y

Details

1 ^ y and y ^ 0 are 1, always. x ^ y should also give the proper “limit” result when either
argument is infinite (i.e., +- Inf).

Objects such as arrays or time-series can be operated on this way provided they are con-
formable.

Value

They return numeric vectors containing the result of the element by element operations. The
elements of shorter vectors are recycled as necessary (with a warning when they are recycled
only fractionally). The operators are + for addition, - for subtraction * for multiplication,
/ for division and ^ for exponentiation.

%% indicates x mod y and %/% indicates integer division. It is guaranteed that x == (x
%% y) + y * ( x %/% y ) unless y == 0 where the result is NA or NaN (depending on the
typeof of the arguments).



array 35

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

sqrt for miscellaneous and Special for special mathematical functions.

Syntax for operator precedence.

Examples

x <- -1:12

x + 1

2 * x + 3

x %% 2 #-- is periodic

x %/% 5

array Multi-way Arrays

Description

Creates or tests for arrays.

Usage

array(data = NA, dim = length(data), dimnames = NULL)
as.array(x)
is.array(x)

Arguments

data a vector giving data to fill the array.

dim the dim attribute for the array to be created, that is a vector of length
one or more giving the maximal indices in each dimension.

dimnames the names for the dimensions. This is a list with one component for each
dimension, either NULL or a character vector of the length given by dim
for that dimension. The list can be names, and the names will be used as
names for the dimensions.

x an R object.

Value

array returns an array with the extents specified in dim and naming information in
dimnames. The values in data are taken to be those in the array with the leftmost subscript
moving fastest. If there are too few elements in data to fill the array, then the elements in
data are recycled.

as.array() coerces its argument to be an array by attaching a dim attribute to it. It also
attaches dimnames if x has names. The sole purpose of this is to make it possible to access
the dim[names] attribute at a later time.



36 arrows

is.array returns TRUE or FALSE depending on whether its argument is an array (i.e., has
a dim attribute) or not. It is generic: you can write methods to handle of specific classes of
objects, see InternalMethods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

aperm, matrix, dim, dimnames.

Examples

dim(as.array(letters))

array(1:3, c(2,4)) # recycle 1:3 "2 2/3 times"

# [,1] [,2] [,3] [,4]

#[1,] 1 3 2 1

#[2,] 2 1 3 2

# funny object:

str(a0 <- array(1:3, 0))

arrows Add Arrows to a Plot

Description

Draw arrows between pairs of points.

Usage

arrows(x0, y0, x1, y1, length = 0.25, angle = 30, code = 2,
col = par("fg"), lty = NULL, lwd = par("lwd"), xpd = NULL)

Arguments

x0, y0 coordinates of points from which to draw.

x1, y1 coordinates of points to which to draw.

length length of the edges of the arrow head (in inches).

angle angle from the shaft of the arrow to the edge of the arrow head.

code integer code, determining kind of arrows to be drawn.
col, lty, lwd, xpd

usual graphical parameters as in par.



as.data.frame 37

Details

For each i, an arrow is drawn between the point (x0[i], y0[i]) and the point
(x1[i],y1[i]).

If code=2 an arrowhead is drawn at (x0[i],y0[i]) and if code=1 an arrowhead is drawn
at (x1[i],y1[i]). If code=3 a head is drawn at both ends of the arrow. Unless length =
0, when no head is drawn.

The graphical parameters col and lty can be used to specify a color and line texture for
the line segments which make up the arrows (col may be a vector).

The direction of a zero-length arrow is indeterminate, and hence so is the direction of the
arrowheads. To allow for rounding error, arrowheads are omitted (with a warning) on any
arrow of length less than 1/1000 inch.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

segments to draw segments.

Examples

x <- runif(12); y <- rnorm(12)

i <- order(x,y); x <- x[i]; y <- y[i]

plot(x,y, main="arrows(.) and segments(.)")

## draw arrows from point to point :

s <- seq(length(x)-1)# one shorter than data

arrows(x[s], y[s], x[s+1], y[s+1], col= 1:3)

s <- s[-length(s)]

segments(x[s], y[s], x[s+2], y[s+2], col= 'pink')

as.data.frame Coerce to a Data Frame

Description

Functions to check if an object is a data frame, or coerce it if possible.

Usage

as.data.frame(x, row.names = NULL, optional = FALSE)
is.data.frame(x)

Arguments

x any R object.

row.names NULL or a character vector giving the row names for the data frame. Miss-
ing values are not allowed.

optional logical. If TRUE, setting row names and converting column names (to
syntactic names) is optional.



38 as.environment

Details

as.data.frame is a generic function with many methods, and users and packages can supply
further methods.

If a list is supplied, each element is converted to a column in the data frame. Similarly,
each column of a matrix is converted separately. This can be overridden if the object
has a class which has a method for as.data.frame: two examples are matrices of class
"model.matrix" (which are included as a single column) and list objects of class "POSIXlt"
which are coerced to class "POSIXct"

Character variables are converted to factor columns unless protected by I.

If a data frame is supplied, all classes preceding "data.frame" are stripped, and the row
names are changed if that argument is supplied.

If row.names = NULL, row names are constructed from the names or dimnames of x, oth-
erwise are the integer sequence starting at one. Few of the methods check for duplicated
row names.

Value

as.data.frame returns a data frame, normally with all row names "" if optional = TRUE.

is.data.frame returns TRUE if its argument is a data frame (that is, has "data.frame"
amongst its classes) and FALSE otherwise.

Note

In versions of R prior to 1.4.0 logical columns were converted to factors (as in S3 but not
S4).

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame

as.environment Coerce to an Environment Object

Description

Converts a number or a character string to the corresponding environment on the search
path.

Usage

as.environment(object)



as.function 39

Arguments

object the object to convert. If it is already an environment, just return it. If
it is a number, return the environment corresponding to that position on
the search list. If it is a character string, match the string to the names
on the search list.

Value

The corresponding environment object.

Author(s)

John Chambers

See Also

environment for creation and manipulation, search.

Examples

as.environment(1) ## the global environment

identical(globalenv(), as.environment(1)) ## is TRUE

try(as.environment("package:ctest")) ## ctest need not be loaded

as.function Convert Object to Function

Description

as.function is a generic function which is used to convert objects to functions.

as.function.default works on a list x, which should contain the concatenation of a formal
argument list and an expression or an object of mode "call" which will become the function
body. The function will be defined in a specified environment, by default that of the caller.

Usage

as.function(x, ...)

## Default S3 method:
as.function(x, envir = parent.frame(), ...)

Arguments

x object to convert, a list for the default method.

... additional arguments, depending on object

envir environment in which the function should be defined

Value

The desired function.



40 as.POSIX*

Author(s)

Peter Dalgaard

See Also

function; alist which is handy for the construction of argument lists, etc.

Examples

as.function(alist(a=,b=2,a+b))

as.function(alist(a=,b=2,a+b))(3)

as.POSIX* Date-time Conversion Functions

Description

Functions to manipulate objects of classes "POSIXlt" and "POSIXct" representing calendar
dates and times (to the nearest second).

Usage

as.POSIXct(x, tz = "")
as.POSIXlt(x, tz = "")

Arguments

x An object to be converted.

tz A timezone specification to be used for the conversion, if one is required.
System-specific, but "" is the current timezone, and "GMT" is UTC (Co-
ordinated Universal Time, in French).

Details

The as.POSIX* functions convert an object to one of the two classes used to represent
date/times (calendar dates plus time to the nearest second). They can take convert a
wide variety of objects, including objects of the other class and of classes "date" (from
package [date:as.date]date or [date:as.date]survival), "chron" and "dates" (from package
[chron]chron) to these classes. They can also convert character strings of the formats
"2001-02-03" and "2001/02/03" optionally followed by white space and a time in the
format "14:52" or "14:52:03". (Formats such as "01/02/03" are ambiguous but can be
converted via a format specification by strptime.)

Logical NAs can be converted to either of the classes, but no other logical vectors can be.

Value

as.POSIXct and as.POSIXlt return an object of the appropriate class. If tz was specified,
as.POSIXlt will give an appropriate "tzone" attribute.



AsIs 41

Note

If you want to extract specific aspects of a time (such as the day of the week) just convert
it to class "POSIXlt" and extract the relevant component(s) of the list, or if you want
a character representation (such as a named day of the week) use format.POSIXlt or
format.POSIXct.

If a timezone is needed and that specified is invalid on your system, what happens is system-
specific but it will probably be ignored.

See Also

DateTimeClasses for details of the classes; strptime for conversion to and from character
representations.

Examples

(z <- Sys.time()) # the current date, as class "POSIXct"

unclass(z) # a large integer

floor(unclass(z)/86400) # the number of days since 1970-01-01

(z <- as.POSIXlt(Sys.time())) # the current date, as class "POSIXlt"

unlist(unclass(z)) # a list shown as a named vector

as.POSIXlt(Sys.time(), "GMT") # the current time in GMT

AsIs Inhibit Interpretation/Conversion of Objects

Description

Change the class of an object to indicate that it should be treated “as is”.

Usage

I(x)

Arguments

x an object

Details

Function I has two main uses.

� In function data.frame. Protecting an object by enclosing it in I() in a call to
data.frame inhibits the conversion of character vectors to factors. I can also be used
to protect objects which are to be added to a data frame, or converted to a data frame
via as.data.frame.
It achieves this by prepending the class "AsIs" to the object’s classes. Class "AsIs"
has a few of its own methods, including for [, as.data.frame, print and format.

� In function formula. There it is used to inhibit the interpretation of operators such as
"+", "-", "*" and "^" as formula operators, so they are used as arithmetical operators.
This is interpreted as a symbol by terms.formula.



42 assign

Value

A copy of the object with class "AsIs" prepended to the class(es).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, formula

assign Assign a Value to a Name

Description

Assign a value to a name in an environment.

Usage

assign(x, value, pos = -1, envir = as.environment(pos),
inherits = FALSE, immediate = TRUE)

Arguments

x a variable name (given as a quoted string in the function call).

value a value to be assigned to x.

pos where to do the assignment. By default, assigns into the current environ-
ment. See the details for other possibilities.

envir the environment to use. See the details section.

inherits should the enclosing frames of the environment be inspected?

immediate an ignored compatibility feature.

Details

The pos argument can specify the environment in which to assign the object in any of
several ways: as an integer (the position in the search list); as the character string name of
an element in the search list; or as an environment (including using sys.frame to access
the currently active function calls). The envir argument is an alternative way to specify
an environment, but is primarily there for back compatibility.

assign does not dispatch assignment methods, so it cannot be used to set elements of
vectors, names, attributes, etc.

Note that assignment to an attached list or data frame changes the attached copy and not
the orginal object: see attach.



assignOps 43

Value

This function is invoked for its side effect, which is assigning value to the variable x. If no
envir is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE, enclosing environments of the supplied environment are searched until
the variable x is encountered. The value is then assigned in the environment in which the
variable is encountered. If the symbol is not encountered then assignment takes place in
the user’s workspace (the global environment).

If inherits is FALSE, assignment takes place in the initial frame of envir.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

<-, get, exists, environment.

Examples

for(i in 1:6) { #-- Create objects 'r1', 'r2', ... 'r6' --

nam <- paste("r",i, sep=".")

assign(nam, 1:i)

}

ls(pat="^r..$")

##-- Global assignment within a function:

myf <- function(x) {

innerf <- function(x) assign("Global.res", x^2, env = .GlobalEnv)

innerf(x+1)

}

myf(3)

Global.res # 16

a <- 1:4

assign("a[1]", 2)

a[1] == 2 #FALSE

get("a[1]") == 2 #TRUE

assignOps Assignment Operators

Description

Assign a value to a name.



44 assignOps

Usage

x <- value
x <<- value
value -> x
value ->> x

x = value

Arguments

x a variable name (possibly quoted).

value a value to be assigned to x.

Details

There are three different assignment operators: two of them have leftwards and rightwards
forms.

The operators <- and = assign into the environment in which they are evaluated. The <-
can be used anywhere, but the = is only allowed at the top level (that is, in the complete
expression typed by the user) or as one of the subexpressions in a braced list of expressions.

The operators <<- and ->> cause a search to made through the environment for an existing
definition of the variable being assigned. If such a variable is found then its value is redefined,
otherwise assignment takes place globally. Note that their semantics differ from that in the
S language, but is useful in conjunction with the scoping rules of R.

In all the assignment operator expressions, x can be a name or an expression defining a part
of an object to be replaced (e.g., z[[1]]). The name does not need to be quoted, though
it can be.

The leftwards forms of assignment <- = <<- group right to left, the other from left to right.

Value

value. Thus one can use a <- b <- c <- 6.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Chamber, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for
=).

See Also

assign, environment.



assocplot 45

assocplot Association Plots

Description

Produce a Cohen-Friendly association plot indicating deviations from independence of rows
and columns in a 2-dimensional contingency table.

Usage

assocplot(x, col = c("black", "red"), space = 0.3,
main = NULL, xlab = NULL, ylab = NULL)

Arguments

x a two-dimensional contingency table in matrix form.

col a character vector of length two giving the colors used for drawing positive
and negative Pearson residuals, respectively.

space the amount of space (as a fraction of the average rectangle width and
height) left between each rectange.

main overall title for the plot.

xlab a label for the x axis. Defaults to the name of the row variable in x if
non-NULL.

ylab a label for the y axis. Defaults to the column names of the column variable
in x if non-NULL.

Details

For a two-way contingency table, the signed contribution to Pearson’s χ2 for cell i, j is
dij = (fij−eij)/

√
eij , where fij and eij are the observed and expected counts corresponding

to the cell. In the Cohen-Friendly association plot, each cell is represented by a rectangle
that has (signed) height proportional to dij and width proportional to √eij , so that the
area of the box is proportional to the difference in observed and expected frequencies.
The rectangles in each row are positioned relative to a baseline indicating independence
(dij = 0). If the observed frequency of a cell is greater than the expected one, the box rises
above the baseline and is shaded in the color specified by the first element of col, which
defaults to black; otherwise, the box falls below the baseline and is shaded in the color
specified by the second element of col, which defaults to red.

References

Cohen, A. (1980), On the graphical display of the significant components in a two-way
contingency table. Communications in Statistics—Theory and Methods, A9, 1025–1041.

Friendly, M. (1992), Graphical methods for categorical data. SAS User Group Inter-
national Conference Proceedings, 17, 190–200. http://www.math.yorku.ca/SCS/sugi/
sugi17-paper.html

See Also

mosaicplot; chisq.test.

http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html


46 attach

Examples

data(HairEyeColor)

## Aggregate over sex:

x <- margin.table(HairEyeColor, c(1, 2))

x

assocplot(x, main = "Relation between hair and eye color")

attach Attach Set of R Objects to Search Path

Description

The database is attached to the R search path. This means that the database is searched by
R when evaluating a variable, so objects in the database can be accessed by simply giving
their names.

Usage

attach(what, pos = 2, name = deparse(substitute(what)))

Arguments

what “database”. This may currently be a data.frame or list or a R data file
created with save.

pos integer specifying position in search() where to attach.

name alternative way to specify the database to be attached.

Details

When evaluating a variable or function name R searches for that name in the databases
listed by search. The first name of the appropriate type is used.

By attaching a data frame to the search path it is possible to refer to the variables in the
data frame by their names alone, rather than as components of the data frame (eg in the
example below, height rather than women$height).

By default the database is attached in position 2 in the search path, immediately after
the user’s workspace and before all previously loaded packages and previously attached
databases. This can be altered to attach later in the search path with the pos option, but
you cannot attach at pos=1.

Note that by default assignment is not performed in an attached database. Attempting
to modify a variable or function in an attached database will actually create a modified
version in the user’s workspace (the R global environment). If you use assign to assign to
an attached list or data frame, you only alter the attached copy, not the original object.
For this reason attach can lead to confusion.

Value

The environment is returned invisibly with a "name" attribute.



attenu 47

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

library, detach, search, objects, environment, with.

Examples

data(women)

summary(women$height) ## refers to variable 'height' in the data frame

attach(women)

summary(height) ## The same variable now available by name

height <- height*2.54 ## Don't do this. It creates a new variable

detach("women")

summary(height) ## The new variable created by modifying 'height'

rm(height)

attenu The Joyner–Boore Attenuation Data

Description

This data gives peak accelerations measured at various observation stations for 23 earth-
quakes in California. The data have been used by various workers to estimate the attenu-
ating affect of distance on ground acceleration.

Usage

data(attenu)

Format

A data frame with 182 observations on 5 variables.

[,1] event numeric Event Number
[,2] mag numeric Moment Magnitude
[,3] station factor Station Number
[,4] dist numeric Station-hypocenter distance (km)
[,5] accel numeric Peak acceleration (g)

Source

Joyner, W.B., D.M. Boore and R.D. Porcella (1981). Peak horizontal acceleration and veloc-
ity from strong-motion records including records from the 1979 Imperial Valley, California
earthquake. USGS Open File report 81-365. Menlo Park, Ca.

References

Boore, D. M. and Joyner, W.B.(1982) The empirical prediction of ground motion, Bull.
Seism. Soc. Am., 72, S269–S268.



48 attitude

Bolt, B. A. and Abrahamson, N. A. (1982) New attenuation relations for peak and expected
accelerations of strong ground motion, Bull. Seism. Soc. Am., 72, 2307–2321.

Bolt B. A. and Abrahamson, N. A. (1983) Reply to W. B. Joyner & D. M. Boore’s “Com-
ments on: New attenuation relations for peak and expected accelerations for peak and
expected accelerations of strong ground motion”, Bull. Seism. Soc. Am., 73, 1481–1483.

Brillinger, D. R. and Preisler, H. K. (1984) An exploratory analysis of the Joyner-Boore
attenuation data, Bull. Seism. Soc. Am., 74, 1441–1449.

Brillinger, D. R. and Preisler, H. K. (1984) Further analysis of the Joyner-Boore attenuation
data. Manuscript.

Examples

data(attenu)

## check the data class of the variables

sapply(attenu, data.class)

summary(attenu)

pairs(attenu, main = "attenu data")

coplot(accel ~ dist | as.factor(event), data = attenu, show = FALSE)

coplot(log(accel) ~ log(dist) | as.factor(event),

data = attenu, panel = panel.smooth, show.given = FALSE)

attitude The Chatterjee–Price Attitude Data

Description

From a survey of the clerical employees of a large financial organization, the data are aggre-
gated from the questionnaires of the approximately 35 employees for each of 30 (randomly
selected) departments. The numbers give the percent proportion of favourable responses to
seven questions in each department.

Usage

data(attitude)

Format

A dataframe with 30 observations on 7 variables. The first column are the short names
from the reference, the second one the variable names in the data frame:

Y rating numeric Overall rating
X[1] complaints numeric Handling of employee complaints
X[2] privileges numeric Does not allow special privileges
X[3] learning numeric Opportunity to learn
X[4] raises numeric Raises based on performance
X[5] critical numeric Too critical
X[6] advancel numeric Advancement

Source

Chatterjee, S. and Price, B. (1977) Regression Analysis by Example. New York: Wiley.
(Section 3.7, p.68ff of 2nd ed.(1991).)



attr 49

Examples

data(attitude)

pairs(attitude, main = "attitude data")

summary(attitude)

summary(fm1 <- lm(rating ~ ., data = attitude))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))

plot(fm1)

summary(fm2 <- lm(rating ~ complaints, data = attitude))

plot(fm2)

par(opar)

attr Object Attributes

Description

Get or set specific attributes of an object.

Usage

attr(x, which)
attr(x, which) <- value

Arguments

x an object whose attributes are to be accessed.
which a character string specifying which attribute is to be accessed.
value an object, the new value of the attribute.

Value

This function provides access to a single object attribute. The simple form above returns
the value of the named attribute. The assignment form causes the named attribute to take
the value on the right of the assignment symbol.

The first form first looks for an exact match to code amongst the attributed of x, then a
partial match. If no exact match is found and more than one partial match is found, the
result is NULL.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

attributes

Examples

# create a 2 by 5 matrix

x <- 1:10

attr(x,"dim") <- c(2, 5)



50 attributes

attributes Object Attribute Lists

Description

These functions access an object’s attribute list. The first form above returns the an object’s
attribute list. The assignment forms make the list on the right-hand side of the assignment
the object’s attribute list (if appropriate).

Usage

attributes(obj)
attributes(obj) <- value
mostattributes(obj) <- value

Arguments

obj an object

value an appropriate attribute list, or NULL.

Details

The mostattributes assignment takes special care for the dim, names and dimnames at-
tributes, and assigns them only when that is valid whereas as attributes assignment would
give an error in that case.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

attr.

Examples

x <- cbind(a=1:3, pi=pi) # simple matrix w/ dimnames

str(attributes(x))

## strip an object's attributes:

attributes(x) <- NULL

x # now just a vector of length 6

mostattributes(x) <- list(mycomment = "really special", dim = 3:2,

dimnames = list(LETTERS[1:3], letters[1:5]), names = paste(1:6))

x # dim(), but not {dim}names



autoload 51

autoload On-demand Loading of Packages

Description

autoload creates a promise-to-evaluate autoloader and stores it with name name in
.AutoloadEnv environment. When R attempts to evaluate name, autoloader is run, the
package is loaded and name is re-evaluated in the new package’s environment. The result is
that R behaves as if file was loaded but it does not occupy memory.

Usage

autoload(name, package, ...)
autoloader(name, package, ...)
.AutoloadEnv

Arguments

name string giving the name of an object.

package string giving the name of a package containing the object.

... other arguments to library.

Value

This function is invoked for its side-effect. It has no return value as of R 1.7.0.

See Also

delay, library

Examples

autoload("line","eda")

search()

ls("Autoloads")

data(cars)

plot(cars)

z<-line(cars)

abline(coef(z))

search()

detach("package:eda")

search()

z<-line(cars)

search()



52 ave

ave Group Averages Over Level Combinations of Factors

Description

Subsets of x[] are averaged, where each subset consist of those observations with the same
factor levels.

Usage

ave(x, ..., FUN = mean)

Arguments

x A numeric.

... Grouping variables, typically factors, all of the same length as x.

FUN Function to apply for each factor level combination.

Value

A numeric vector, say y of length length(x). If ... is g1,g2, e.g., y[i] is equal to
FUN(x[j], for all j with g1[j]==g1[i] and g2[j]==g2[i]).

See Also

mean, median.

Examples

ave(1:3)# no grouping -> grand mean

data(warpbreaks)

attach(warpbreaks)

ave(breaks, wool)

ave(breaks, tension)

ave(breaks, tension, FUN = function(x)mean(x, trim=.1))

plot(breaks, main =

"ave( Warpbreaks ) for wool x tension combinations")

lines(ave(breaks, wool, tension ), type='s', col = "blue")

lines(ave(breaks, wool, tension, FUN=median), type='s', col = "green")

legend(40,70, c("mean","median"), lty=1,col=c("blue","green"), bg="gray90")

detach()



axis 53

axis Add an Axis to a Plot

Description

Adds an axis to the current plot, allowing the specification of the side, position, labels, and
other options.

Usage

axis(side, at = NULL, labels = TRUE, tick = TRUE, line = NA,
pos = NA, outer = FALSE, font = NA, vfont = NULL,
lty = "solid", lwd = 1, col = NULL, ...)

Arguments

side an integer specifying which side of the plot the axis is to be drawn on.
The axis is placed as follows: 1=below, 2=left, 3=above and 4=right.

at the points at which tick-marks are to be drawn. Non-finite (infinite, NaN
or NA) values are omitted. By default, when NULL, tickmark locations are
computed, see Details below.

labels this can either be a logical value specifying whether (numerical) annota-
tions are to be made at the tickmarks, or a vector of character strings to
be placed at the tickpoints.

tick a logical value specifying whether tickmarks should be drawn
line the number of lines into the margin which the axis will be drawn. This

overrides the value of the graphical parameter mgp[3]. The relative plac-
ing of tickmarks and tick labels is unchanged.

pos the coordinate at which the axis line is to be drawn. this overrides the
value of both line and mgp[3].

outer a logical value indicating whether the axis should be drawn in the outer
plot margin, rather than the standard plot margin.

font font for text.
vfont vector font for text.
lty, lwd line type, width for the axis line and the tick marks.
col color for the axis line and the tick marks. The default NULL means to use

par("fg").
... other graphical parameters may also be passed as arguments to this func-

tion, e.g., las for vertical/horizontal label orientation, or fg instead of
col, see par on these.

Details

The axis line is drawn from the lowest to the highest value of at, but will be clipped at
the plot region. Only ticks which are drawn from points within the plot region (up to a
tolerance for rounding error) are plotted, but the ticks and their labels may well extend
outside the plot region.

When at = NULL, pretty tick mark locations are computed internally, the same
axTicks(side) would, from par("usr","lab"), and par("xlog") (or ylog respectively).



54 axis.POSIXct

Value

This function is invoked for its side effect, which is to add an axis to an already existing
plot.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

axTicks returns the axis tick locations corresponding to at=NULL; pretty is more flexible
for computing pretty tick coordinates and does not depend on (nor adapt to) the coordinate
system in use.

Examples

plot(1:4, rnorm(4), axes=FALSE)

axis(1, 1:4, LETTERS[1:4])

axis(2)

box() #- to make it look "as usual"

plot(1:7, rnorm(7), main = "axis() examples",

type = "s", xaxt="n", frame = FALSE, col = "red")

axis(1, 1:7, LETTERS[1:7], col.axis = "blue")

# unusual options:

axis(4, col = "violet", col.axis="dark violet",lwd = 2)

axis(3, col = "gold", lty = 2, lwd = 0.5)

axis.POSIXct Date-time Plotting Functions

Description

Functions to plot objects of classes "POSIXlt" and "POSIXct" representing calendar dates
and times.

Usage

axis.POSIXct(side, x, at, format, ...)

## S3 method for class 'POSIXct':
plot(x, y, xlab = "", ...)

## S3 method for class 'POSIXlt':
plot(x, y, xlab = "", ...)



axTicks 55

Arguments

x, at A date-time object.

y numeric values to be plotted against x.

xlab a character string giving the label for the x axis.

side See axis.

format See strptime.

... Further arguments to be passed from or to other methods, typically graph-
ical parameters or arguments of plot.default.

Details

The functions plot against an x-axis of date-times. axis.POSIXct works quite hard to
choose suitable time units (years, months, days, hours, minutes or seconds) and a sensible
output format, but this can be overridden by supplying a format specification.

If at is supplied for axis.POSIXct it specifies the locations of the ticks and labels: if x is
specified a suitable grid of labels is chosen.

See Also

DateTimeClasses for details of the classes.

Examples

res <- try(data(beav1, package = "MASS"))

if(!inherits(res, "try-error")) {

attach(beav1)

time <- strptime(paste(1990, day, time %/% 100, time %% 100),

"%Y %j %H %M")

plot(time, temp, type="l") # axis at 4-hour intervals.

# now label every hour on the time axis

plot(time, temp, type="l", xaxt="n")

r <- as.POSIXct(round(range(time), "hours"))

axis.POSIXct(1, at=seq(r[1], r[2], by="hour"), format="%H")

rm(time)

detach(beav1)

}

plot(.leap.seconds, 1:22, type="n", yaxt="n",

xlab="leap seconds", ylab="", bty="n")

rug(.leap.seconds)

axTicks Compute Axis Tickmark Locations

Description

Compute tickmark locations, the same way as R does internally. This is only non-trivial
when log coordinates are active. By default, gives the at values which axis(side) would
use.



56 axTicks

Usage

axTicks(side, axp = NULL, usr = NULL, log = NULL)

Arguments

side integer in 1:4, as for axis.

axp numeric vector of length three, defaulting to par("Zaxp") where “Z” is
“x” or “y” depending on the side argument.

usr numeric vector of length four, defaulting to par("usr") giving horizontal
(‘x’) and vertical (‘y’) user coordinate limits.

log logical indicating if log coordinates are active; defaults to par("Zlog")
where ‘Z’ is as for the axp argument above.

Details

The axp, usr, and log arguments must be consistent as their default values (the par(..)
results) are. Note that the meaning of axp alters very much when log is TRUE, see the
documentation on par(xaxp=.).

axTicks() can be regarded as an R implementation of the C function CreateAtVector() in
‘..../src/main/graphics.c’ which is called by axis(side,*) when no argument at is specified.

Value

numeric vector of coordinate values at which axis tickmarks can be drawn. By default,
when only the first argument is specified, these values should be identical to those that
axis(side) would use or has used.

See Also

axis, par. pretty uses the same algorithm but is independent of the graphics environment
and has more options.

Examples

plot(1:7, 10*21:27)

axTicks(1)

axTicks(2)

stopifnot(identical(axTicks(1), axTicks(3)),

identical(axTicks(2), axTicks(4)))

## Show how axTicks() and axis() correspond :

op <- par(mfrow = c(3,1))

for(x in 9999*c(1,2,8)) {

plot(x,9, log = "x")

cat(formatC(par("xaxp"),wid=5),";",T <- axTicks(1),"\n")

rug(T, col="red")

}

par(op)



backsolve 57

backsolve Solve an Upper or Lower Triangular System

Description

Solves a system of linear equations where the coefficient matrix is upper or lower triangular.

Usage

backsolve(r, x, k= ncol(r), upper.tri = TRUE, transpose = FALSE)
forwardsolve(l, x, k= ncol(l), upper.tri = FALSE, transpose = FALSE)

Arguments

r,l an upper (or lower) triangular matrix giving the coefficients for the system
to be solved. Values below (above) the diagonal are ignored.

x a matrix whose columns give “right-hand sides” for the equations.

k The number of columns of r and rows of x to use.

upper.tri logical; if TRUE (default), the upper triangular part of r is used. Other-
wise, the lower one.

transpose logical; if TRUE, solve r′ ∗ y = x for y, i.e., t(r) %*% y == x.

Value

The solution of the triangular system. The result will be a vector if x is a vector and a
matrix if x is a matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Dongarra, J. J., Bunch,J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: SIAM Publications.

See Also

chol, qr, solve.

Examples

## upper triangular matrix 'r':

r <- rbind(c(1,2,3),

c(0,1,1),

c(0,0,2))

( y <- backsolve(r, x <- c(8,4,2)) ) # -1 3 1

r %*% y # == x = (8,4,2)

backsolve(r, x, transpose = TRUE) # 8 -12 -5



58 bandwidth

bandwidth Bandwidth Selectors for Kernel Density Estimation

Description

Bandwidth selectors for gaussian windows in density.

Usage

bw.nrd0(x)
bw.nrd(x)
bw.ucv(x, nb = 1000, lower, upper)
bw.bcv(x, nb = 1000, lower, upper)
bw.SJ(x, nb = 1000, lower, upper, method = c("ste", "dpi"))

Arguments

x A data vector.

nb number of bins to use.

lower, upper Range over which to minimize. The default is almost always satisfactory.

method Either "ste" (”solve-the-equation”) or "dpi" (”direct plug-in”).

Details

bw.nrd0 implements a rule-of-thumb for choosing the bandwidth of a Gaussian kernel den-
sity estimator. It defaults to 0.9 times the minimum of the standard deviation and the
interquartile range divided by 1.34 times the sample size to the negative one-fifth power
(= Silverman’s “rule of thumb”, Silverman (1986, page 48, eqn (3.31)) unless the quartiles
coincide when a positive result will be guaranteed.

bw.nrd is the more common variation given by Scott (1992), using factor 1.06.

bw.ucv and bw.bcv implement unbiased and biased cross-validation respectively.

bw.SJ implements the methods of Sheather & Jones (1991) to select the bandwidth using
pilot estimation of derivatives.

Value

A bandwidth on a scale suitable for the bw argument of density.

References

Scott, D. W. (1992) Multivariate Density Estimation: Theory, Practice, and Visualization.
Wiley.

Sheather, S. J. and Jones, M. C. (1991) A reliable data-based bandwidth selection method
for kernel density estimation. Journal of the Royal Statistical Society series B, 53, 683–690.

Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Springer.



barplot 59

See Also

density.

bandwidth.nrd, ucv, bcv and width.SJ in package MASS, which are all scaled to the width
argument of density and so give answers four times as large.

Examples

data(precip)

plot(density(precip, n = 1000))

rug(precip)

lines(density(precip, bw="nrd"), col = 2)

lines(density(precip, bw="ucv"), col = 3)

lines(density(precip, bw="bcv"), col = 4)

lines(density(precip, bw="SJ-ste"), col = 5)

lines(density(precip, bw="SJ-dpi"), col = 6)

legend(55, 0.035,

legend = c("nrd0", "nrd", "ucv", "bcv", "SJ-ste", "SJ-dpi"),

col = 1:6, lty = 1)

barplot Bar Plots

Description

Creates a bar plot with vertical or horizontal bars.

Usage

## Default S3 method:
barplot(height, width = 1, space = NULL,

names.arg = NULL, legend.text = NULL, beside = FALSE,
horiz = FALSE, density = NULL, angle = 45,
col = heat.colors(NR), border = par("fg"),
main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL, xpd = TRUE,
axes = TRUE, axisnames = TRUE,
cex.axis = par("cex.axis"), cex.names = par("cex.axis"),
inside = TRUE, plot = TRUE, axis.lty = 0, ...)

Arguments

height either a vector or matrix of values describing the bars which make up the
plot. If height is a vector, the plot consists of a sequence of rectangular
bars with heights given by the values in the vector. If height is a matrix
and beside is FALSE then each bar of the plot corresponds to a column
of height, with the values in the column giving the heights of stacked
“sub-bars” making up the bar. If height is a matrix and beside is TRUE,
then the values in each column are juxtaposed rather than stacked.

width optional vector of bar widths. Re-cycled to length the number of bars
drawn. Specifying a single value will no visible effect unless xlim is spec-
ified.



60 barplot

space the amount of space (as a fraction of the average bar width) left before
each bar. May be given as a single number or one number per bar. If
height is a matrix and beside is TRUE, space may be specified by two
numbers, where the first is the space between bars in the same group,
and the second the space between the groups. If not given explicitly, it
defaults to c(0,1) if height is a matrix and beside is TRUE, and to 0.2
otherwise.

names.arg a vector of names to be plotted below each bar or group of bars. If this
argument is omitted, then the names are taken from the names attribute
of height if this is a vector, or the column names if it is a matrix.

legend.text a vector of text used to construct a legend for the plot, or a logical in-
dicating whether a legend should be included. This is only useful when
height is a matrix. In that case given legend labels should correspond
to the rows of height; if legend.text is true, the row names of height
will be used as labels if they are non-null.

beside a logical value. If FALSE, the columns of height are portrayed as stacked
bars, and if TRUE the columns are portrayed as juxtaposed bars.

horiz a logical value. If FALSE, the bars are drawn vertically with the first bar
to the left. If TRUE, the bars are drawn horizontally with the first at the
bottom.

density a vector giving the the density of shading lines, in lines per inch, for the
bars or bar components. The default value of NULL means that no shading
lines are drawn. Non-positive values of density also inhibit the drawing
of shading lines.

angle the slope of shading lines, given as an angle in degrees (counter-clockwise),
for the bars or bar components.

col a vector of colors for the bars or bar components.
border the color to be used for the border of the bars.
main,sub overall and sub title for the plot.
xlab a label for the x axis.
ylab a label for the y axis.
xlim limits for the x axis.
ylim limits for the y axis.
xpd logical. Should bars be allowed to go outside region?
axes logical. If TRUE, a vertical (or horizontal, if horiz is true) axis is drawn.
axisnames logical. If TRUE, and if there are names.arg (see above), the other axis is

drawn (with lty=0) and labeled.
cex.axis expansion factor for numeric axis labels.
cex.names expansion factor for axis names (bar labels).
inside logical. If TRUE, the lines which divide adjacent (non-stacked!) bars will

be drawn. Only applies when space = 0 (which it partly is when beside
= TRUE).

plot logical. If FALSE, nothing is plotted.
axis.lty the graphics parameter lty applied to the axis and tick marks of the

categorical (default horzontal) axis. Note that by default the axis is sup-
pressed.

... further graphical parameters (par) are passed to plot.window(),
title() and axis.



barplot 61

Details

This is a generic function, it currently only has a default method. A formula interface may
be added eventually.

Value

A numeric vector (or matrix, when beside = TRUE), say mp, giving the coordinates of all
the bar midpoints drawn, useful for adding to the graph.

If beside is true, use colMeans(mp) for the midpoints of each group of bars, see example.

Note

Prior to R 1.6.0, barplot behaved as if axis.lty = 1, unintentionally.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

plot(..., type="h"), dotchart, hist.

Examples

tN <- table(Ni <- rpois(100, lambda=5))

r <- barplot(tN, col='gray')

#- type = "h" plotting *is* 'bar'plot

lines(r, tN, type='h', col='red', lwd=2)

barplot(tN, space = 1.5, axisnames=FALSE,

sub = "barplot(..., space= 1.5, axisnames = FALSE)")

data(VADeaths, package = "base")

barplot(VADeaths, plot = FALSE)

barplot(VADeaths, plot = FALSE, beside = TRUE)

mp <- barplot(VADeaths) # default

tot <- colMeans(VADeaths)

text(mp, tot + 3, format(tot), xpd = TRUE, col = "blue")

barplot(VADeaths, beside = TRUE,

col = c("lightblue", "mistyrose", "lightcyan",

"lavender", "cornsilk"),

legend = rownames(VADeaths), ylim = c(0, 100))

title(main = "Death Rates in Virginia", font.main = 4)

hh <- t(VADeaths)[, 5:1]

mybarcol <- "gray20"

mp <- barplot(hh, beside = TRUE,

col = c("lightblue", "mistyrose",

"lightcyan", "lavender"),

legend = colnames(VADeaths), ylim= c(0,100),

main = "Death Rates in Virginia", font.main = 4,

sub = "Faked upper 2*sigma error bars", col.sub = mybarcol,

cex.names = 1.5)

segments(mp, hh, mp, hh + 2*sqrt(1000*hh/100), col = mybarcol, lwd = 1.5)



62 basename

stopifnot(dim(mp) == dim(hh))# corresponding matrices

mtext(side = 1, at = colMeans(mp), line = -2,

text = paste("Mean", formatC(colMeans(hh))), col = "red")

# Bar shading example

barplot(VADeaths, angle = 15+10*1:5, density = 20, col = "black",

legend = rownames(VADeaths))

title(main = list("Death Rates in Virginia", font = 4))

# border :

barplot(VADeaths, border = "dark blue")

basename Manipulate File Paths

Description

basename removes all of the path up to the last path separator (if any).

dirname returns the part of the path up to (but excluding) the last path separator, or "."
if there is no path separator.

Usage

basename(path)
dirname(path)

Arguments

path character vector, containing path names.

Details

For dirname tilde expansion is done: see the description of path.expand.

Trailing file separators are removed before dissecting the path, and for dirname any trailing
file separators are removed from the result.

Value

A character vector of the same length as path. A zero-length input will give a zero-length
output with no error (unlike R < 1.7.0).

See Also

file.path, path.expand.

Examples

basename(file.path("","p1","p2","p3", c("file1", "file2")))

dirname(file.path("","p1","p2","p3","filename"))



BATCH 63

BATCH Batch Execution of R

Description

Run R non-interactively with input from infile and send output (stdout/stderr) to another
file.

Usage

R CMD BATCH [options] infile [outfile]

Details

Use R CMD BATCH --help to be reminded of the usage.

By default, the input commands are printed along with the output. To suppress this
behavior, add options(echo = FALSE) at the beginning of infile.

The infile can have end of line marked by LF or CRLF (but not just CR), and files with
an incomplete last line (missing end of line (EOL) mark) are processed correctly.

Using R CMD BATCH sets the GUI to "none", so none of x11, jpeg and png are available.

Note

Unlike Splus BATCH, this does not run the R process in the background. In most shells, R
CMD BATCH [options] infile [outfile] & will do so.

Report bugs to 〈r-bugs@r-project.org〉.

Bessel Bessel Functions

Description

Bessel Functions of integer and fractional order, of first and second kind, Jν and Yν , and
Modified Bessel functions (of first and third kind), Iν and Kν .

gammaCody is the (Γ) function as from the Specfun package and originally used in the Bessel
code.

Usage

besselI(x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)
besselJ(x, nu)
besselY(x, nu)
gammaCody(x)



64 Bessel

Arguments

x numeric, ≥ 0.

nu numeric; The order (maybe fractional!) of the corresponding Bessel func-
tion.

expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid
overflow (Iν) or underflow (Kν), respectively.

Details

The underlying C code stems from Netlib (http://www.netlib.org/specfun/r[ijky]
besl).

If expon.scaled = TRUE, e−xIν(x), or exKν(x) are returned.

gammaCody may be somewhat faster but less precise and/or robust than R’s standard gamma.
It is here for experimental purpose mainly, and may be defunct very soon.

For ν < 0, formulae 9.1.2 and 9.6.2 from the reference below are applied (which is probably
suboptimal), unless for besselK which is symmetric in nu.

Value

Numeric vector of the same length of x with the (scaled, if expon.scale=TRUE) values of
the corresponding Bessel function.

Author(s)

Original Fortran code: W. J. Cody, Argonne National Laboratory
Translation to C and adaption to R: Martin Maechler 〈maechler@stat.math.ethz.ch.〉

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. Dover,
New York; Chapter 9: Bessel Functions of Integer Order.

See Also

Other special mathematical functions, as the gamma, Γ(x), and beta, B(x).

Examples

nus <- c(0:5,10,20)

x <- seq(0,4, len= 501)

plot(x,x, ylim = c(0,6), ylab="",type='n', main = "Bessel Functions I_nu(x)")

for(nu in nus) lines(x,besselI(x,nu=nu), col = nu+2)

legend(0,6, leg=paste("nu=",nus), col = nus+2, lwd=1)

x <- seq(0,40,len=801); yl <- c(-.8,.8)

plot(x,x, ylim = yl, ylab="",type='n', main = "Bessel Functions J_nu(x)")

for(nu in nus) lines(x,besselJ(x,nu=nu), col = nu+2)

legend(32,-.18, leg=paste("nu=",nus), col = nus+2, lwd=1)

## Negative nu's :

xx <- 2:7

nu <- seq(-10,9, len = 2001)

http://www.netlib.org/specfun/r[ijky]besl
http://www.netlib.org/specfun/r[ijky]besl


Beta 65

op <- par(lab = c(16,5,7))

matplot(nu, t(outer(xx,nu, besselI)), type = 'l', ylim = c(-50,200),

main = expression(paste("Bessel ",I[nu](x)," for fixed ", x,

", as ",f(nu))),

xlab = expression(nu))

abline(v=0, col = "light gray", lty = 3)

legend(5,200, leg = paste("x=",xx), col=seq(xx), lty=seq(xx))

par(op)

x0 <- 2^(-20:10)

plot(x0,x0^-8, log='xy', ylab="",type='n',

main = "Bessel Functions J_nu(x) near 0\n log - log scale")

for(nu in sort(c(nus,nus+.5))) lines(x0,besselJ(x0,nu=nu), col = nu+2)

legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1)

plot(x0,x0^-8, log='xy', ylab="",type='n',

main = "Bessel Functions K_nu(x) near 0\n log - log scale")

for(nu in sort(c(nus,nus+.5))) lines(x0,besselK(x0,nu=nu), col = nu+2)

legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1)

x <- x[x > 0]

plot(x,x, ylim=c(1e-18,1e11),log="y", ylab="",type='n',

main = "Bessel Functions K_nu(x)")

for(nu in nus) lines(x,besselK(x,nu=nu), col = nu+2)

legend(0,1e-5, leg=paste("nu=",nus), col = nus+2, lwd=1)

yl <- c(-1.6, .6)

plot(x,x, ylim = yl, ylab="",type='n', main = "Bessel Functions Y_nu(x)")

for(nu in nus){xx <- x[x > .6*nu]; lines(xx,besselY(xx,nu=nu), col = nu+2)}

legend(25,-.5, leg=paste("nu=",nus), col = nus+2, lwd=1)

Beta The Beta Distribution

Description

Density, distribution function, quantile function and random generation for the Beta distri-
bution with parameters shape1 and shape2 (and optional non-centrality parameter ncp).

Usage

dbeta(x, shape1, shape2, ncp=0, log = FALSE)
pbeta(q, shape1, shape2, ncp=0, lower.tail = TRUE, log.p = FALSE)
qbeta(p, shape1, shape2, lower.tail = TRUE, log.p = FALSE)
rbeta(n, shape1, shape2)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

shape1, shape2

positive parameters of the Beta distribution.



66 bindenv

ncp non-centrality parameter.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The Beta distribution with parameters shape1 = a and shape2 = b has density

f(x) =
Γ(a+ b)
Γ(a)Γ(b)

xa(1− x)b

for a > 0, b > 0 and 0 ≤ x ≤ 1 where the boundary values at x = 0 or x = 1 are defined as
by continuity (as limits).

Value

dbeta gives the density, pbeta the distribution function, qbeta the quantile function, and
rbeta generates random deviates.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

beta for the Beta function, and dgamma for the Gamma distribution.

Examples

x <- seq(0, 1, length=21)

dbeta(x, 1, 1)

pbeta(x, 1, 1)

bindenv Binding and Environment Adjustments

Description

These functions represent an experimental interface for adjustments to environments and
bindings within environments. They allow for locking environments as well as individual
bindings, and for linking a variable to a function.

Usage

lockEnvironment(env, bindings = FALSE)
environmentIsLocked(env)
lockBinding(sym, env)
unlockBinding(sym, env)
bindingIsLocked(sym, env)
makeActiveBinding(sym, fun, env)
bindingIsActive(sym, env)



bindenv 67

Arguments

env an environment.

bindings logical specifying whether bindings should be locked.

sym a name object or character string

fun a function taking zero or one arguments

Details

The function lockEnvironment locks its environment argument, which must be a proper
environment, not NULL. Locking the NULL (base) environment may be supported later.
Locking the environment prevents adding or removing variable bindings from the environ-
ment. Changing the value of a variable is still possible unless the binding has been locked.

lockBinding locks individual bindings in the specified environment. The value of a locked
binding cannot be changed. Locked bindings may be removed from an environment unless
the environment is locked.

makeActiveBinding installs fun so that getting the value of sym calls fun with no argu-
ments, and assigning to sym calls fun with one argument, the value to be assigned. This
allows things like C variables linked to R variables and variables linked to data bases to be
implemented. It may also be useful for making thread-safe versions of some system globals.

Author(s)

Luke Tierney

Examples

# locking environments

e<-new.env()

assign("x",1, env=e)

get("x",env=e)

lockEnvironment(e)

get("x",env=e)

assign("x",2, env=e)

try(assign("y",2, env=e)) # error

# locking bindings

e<-new.env()

assign("x",1, env=e)

get("x",env=e)

lockBinding("x", e)

try(assign("x",2, env=e)) # error

unlockBinding("x", e)

assign("x",2, env=e)

get("x",env=e)

# active bindings

f<-local({

x <- 1

function(v) {

if (missing(v))

cat("get\n")

else {

cat("set\n")

x <<- v



68 Binomial

}

x

}

})

makeActiveBinding("fred", f, .GlobalEnv)

bindingIsActive("fred", .GlobalEnv)

fred

fred<-2

fred

Binomial The Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the binomial
distribution with parameters size and prob.

Usage

dbinom(x, size, prob, log = FALSE)
pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rbinom(n, size, prob)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

size number of trials.

prob probability of success on each trial.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The binomial distribution with size = n and prob = p has density

p(x) =
(
n

x

)
px(1− p)n−x

for x = 0, . . . , n.

If an element of x is not integer, the result of dbinom is zero, with a warning. p(x) is
computed using Loader’s algorithm, see the reference below.

The quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distri-
bution function.



birthday 69

Value

dbinom gives the density, pbinom gives the distribution function, qbinom gives the quantile
function and rbinom generates random deviates.

If size is not an integer, NaN is returned.

References

Catherine Loader (2000). Fast and Accurate Computation of Binomial Probabili-
ties; manuscript available from http://cm.bell-labs.com/cm/ms/departments/sia/
catherine/dbinom

See Also

dnbinom for the negative binomial, and dpois for the Poisson distribution.

Examples

# Compute P(45 < X < 55) for X Binomial(100,0.5)

sum(dbinom(46:54, 100, 0.5))

## Using "log = TRUE" for an extended range :

n <- 2000

k <- seq(0, n, by = 20)

plot (k, dbinom(k, n, pi/10, log=TRUE), type='l', ylab="log density",

main = "dbinom(*, log=TRUE) is better than log(dbinom(*))")

lines(k, log(dbinom(k, n, pi/10)), col='red', lwd=2)

## extreme points are omitted since dbinom gives 0.

mtext("dbinom(k, log=TRUE)", adj=0)

mtext("extended range", adj=0, line = -1, font=4)

mtext("log(dbinom(k))", col="red", adj=1)

birthday Probability of coincidences

Description

Computes approximate answers to a generalised “birthday paradox” problem. pbirthday
computes the probability of a coincidence and qbirthday computes the number of obser-
vations needed to have a specified probability of coincidence.

Usage

qbirthday(prob = 0.5, classes = 365, coincident = 2)
pbirthday(n, classes = 365, coincident = 2)

Arguments

classes How many distinct categories the people could fall into

prob The desired probability of coincidence

n The number of people

coincident The number of people to fall in the same category

http://cm.bell-labs.com/cm/ms/departments/sia/catherine/dbinom
http://cm.bell-labs.com/cm/ms/departments/sia/catherine/dbinom


70 body

Details

The birthday paradox is that a very small number of people, 23, suffices to have a 50-50
chance that two of them have the same birthday. This function generalises the calculation
to probabilities other than 0.5, numbers of coincident events other than 2, and numbers of
classes other than 365.

This formula is approximate, as the example below shows. For coincident=2 the exact
computation is straightforward and may be preferable.

Value

qbirthday Number of people needed for a probability prob that k of them have the
same one out of classes equiprobable labels.

pbirthday Probability of the specified coincidence

References

Diaconis P, Mosteller F., “Methods for studying coincidences”. JASA 84:853-861

Examples

## the standard version

qbirthday()

## same 4-digit PIN number

qbirthday(classes=10^4)

## 0.9 probability of three coincident birthdays

qbirthday(coincident=3,prob=0.9)

## Chance of 4 coincident birthdays in 150 people

pbirthday(150,coincident=4)

## Accuracy compared to exact calculation

x1<- sapply(10:100, pbirthday)

x2<-1-sapply(10:100, function(n)prod((365:(365-n+1))/rep(365,n)))

par(mfrow=c(2,2))

plot(x1,x2,xlab="approximate",ylab="exact")

abline(0,1)

plot(x1,x1-x2,xlab="approximate",ylab="error")

abline(h=0)

plot(x1,x2,log="xy",xlab="approximate",ylab="exact")

abline(0,1)

plot(1-x1,1-x2,log="xy",xlab="approximate",ylab="exact")

abline(0,1)

body Access to and Manipulation of the Body of a Function

Description

Get or set the body of a function.

Usage

body(fun = sys.function(sys.parent()))
body(fun, envir = parent.frame()) <- value



box 71

Arguments

fun a function object, or see Details.

envir environment in which the function should be defined.

value an expression or a list of R expressions.

Details

For the first form, fun can be a character string naming the function to be manipulated,
which is searched for from the parent environment. If it is not specified, the function calling
body is used.

Value

body returns the body of the function specified.

The assignment form sets the body of a function to the list on the right hand side.

See Also

alist, args, function.

Examples

body(body)

f <- function(x) x^5

body(f) <- expression(5^x)

## or equivalently body(f) <- list(quote(5^x))

f(3) # = 125

str(body(f))

box Draw a Box around a Plot

Description

This function draws a box around the current plot in the given color and linetype. The bty
parameter determines the type of box drawn. See par for details.

Usage

box(which="plot", lty="solid", ...)

Arguments

which character, one of "plot", "figure", "inner" and "outer".

lty line type of the box.

... further graphical parameters, such as bty, col, or lwd, see par.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.



72 boxplot

See Also

rect for drawing of arbitrary rectangles.

Examples

plot(1:7,abs(rnorm(7)), type='h', axes = FALSE)

axis(1, labels = letters[1:7])

box(lty='1373', col = 'red')

boxplot Box Plots

Description

Produce box-and-whisker plot(s) of the given (grouped) values.

Usage

boxplot(x, ...)

## S3 method for class 'formula':
boxplot(formula, data = NULL, ..., subset)

## Default S3 method:
boxplot(x, ..., range = 1.5, width = NULL, varwidth = FALSE,

notch = FALSE, outline = TRUE, names, boxwex = 0.8, plot = TRUE,
border = par("fg"), col = NULL, log = "", pars = NULL,
horizontal = FALSE, add = FALSE, at = NULL)

Arguments

formula a formula, such as y ~ x.

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used for plot-
ting.

x for specifying data from which the boxplots are to be produced as well as
for giving graphical parameters. Additional unnamed arguments specify
further data, either as separate vectors (each corresponding to a compo-
nent boxplot) or as a single list containing such vectors. NAs are allowed
in the data.

... For the formula method, arguments to the default method and graphical
parameters.
For the default method, unnamed arguments are additional data vectors,
and named arguments are graphical parameters in addition to the ones
given by argument pars.

range this determines how far the plot whiskers extend out from the box. If
range is positive, the whiskers extend to the most extreme data point
which is no more than range times the interquartile range from the box.
A value of zero causes the whiskers to extend to the data extremes.



boxplot 73

width a vector giving the relative widths of the boxes making up the plot.

varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the
square-roots of the number of observations in the groups.

notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches
of two plots do not overlap then the medians are significantly different at
the 5 percent level.

outline if outline is not true, the boxplot lines are not drawn.

names group labels which will be printed under each boxplot.

boxwex a scale factor to be applied to all boxes. When there are only a few
groups, the appearance of the plot can be improved by making the boxes
narrower.

plot if TRUE (the default) then a boxplot is produced. If not, the summaries
which the boxplots are based on are returned.

border an optional vector of colors for the outlines of the boxplots. The values
in border are recycled if the length of border is less than the number of
plots.

col if col is non-null it is assumed to contain colors to be used to col the
bodies of the box plots.

log character indicating if x or y or both coordinates should be plotted in log
scale.

pars a list of graphical parameters; these are passed to bxp (if plot is true).

horizontal logical indicating if the boxplots should be horizontal; default FALSE
means vertical boxes.

add logical, if true add boxplot to current plot.

at numeric vector giving the locations where the boxplots should be drawn,
particularly when add = TRUE; defaults to 1:n where n is the number of
boxes.

Details

The generic function boxplot currently has a default method (boxplot.default) and a
formula interface (boxplot.formula).

Value

List with the following components:

stats a matrix, each column contains the extreme of the lower whisker, the
lower hinge, the median, the upper hinge and the extreme of the upper
whisker for one group/plot.

n a vector with the number of observations in each group.

conf a matrix where each column contains the lower and upper extremes of the
notch.

out the values of any data points which lie beyond the extremes of the
whiskers.

group a vector of the same length as out whose elements indicate which group
the outlier belongs to

names a vector of names for the groups



74 boxplot

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See also boxplot.stats.

See Also

boxplot.stats which does the computation, bxp for the plotting; and stripchart for an
alternative (with small data sets).

Examples

## boxplot on a formula:

data(InsectSprays)

boxplot(count ~ spray, data = InsectSprays, col = "lightgray")

# *add* notches (somewhat funny here):

boxplot(count ~ spray, data = InsectSprays,

notch = TRUE, add = TRUE, col = "blue")

data(OrchardSprays)

boxplot(decrease ~ treatment, data = OrchardSprays,

log = "y", col="bisque")

rb <- boxplot(decrease ~ treatment, data = OrchardSprays, col="bisque")

title("Comparing boxplot()s and non-robust mean +/- SD")

mn.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, mean)

sd.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, sd)

xi <- 0.3 + seq(rb$n)

points(xi, mn.t, col = "orange", pch = 18)

arrows(xi, mn.t - sd.t, xi, mn.t + sd.t,

code = 3, col = "pink", angle = 75, length = .1)

## boxplot on a matrix:

mat <- cbind(Uni05 = (1:100)/21, Norm = rnorm(100),

T5 = rt(100, df = 5), Gam2 = rgamma(100, shape = 2))

boxplot(data.frame(mat), main = "boxplot(data.frame(mat), main = ...)")

par(las=1)# all axis labels horizontal

boxplot(data.frame(mat), main = "boxplot(*, horizontal = TRUE)",

horizontal = TRUE)

## Using 'at = ' and adding boxplots -- example idea by Roger Bivand :

data(ToothGrowth)

boxplot(len ~ dose, data = ToothGrowth,

boxwex = 0.25, at = 1:3 - 0.2,

subset= supp == "VC", col="yellow",

main="Guinea Pigs' Tooth Growth",

xlab="Vitamin C dose mg",

ylab="tooth length", ylim=c(0,35))

boxplot(len ~ dose, data = ToothGrowth, add = TRUE,

boxwex = 0.25, at = 1:3 + 0.2,

subset= supp == "OJ", col="orange")

legend(2, 9, c("Ascorbic acid", "Orange juice"),

fill = c("yellow", "orange"))



boxplot.stats 75

boxplot.stats Box Plot Statistics

Description

This function is typically called by boxplot to gather the statistics necessary for producing
box plots, but may be invoked separately.

Usage

boxplot.stats(x, coef = 1.5, do.conf=TRUE, do.out=TRUE)

Arguments

x a numeric vector for which the boxplot will be constructed (NAs and NaNs
are allowed and omitted).

coef this determines how far the plot “whiskers” extend out from the box. If
coef is positive, the whiskers extend to the most extreme data point
which is no more than coef times the length of the box away from the
box. A value of zero causes the whiskers to extend to the data extremes
(and no outliers be returned).

do.conf,do.out

logicals; if FALSE, the conf or out component respectively will be empty
in the result.

Details

The two “hinges” are versions of the first and third quartile, i.e., close to quantile(x,
c(1,3)/4). The hinges equal the quartiles for odd n (where n <- length(x)) and differ
for even n. Where the quartiles only equal observations for n %% 4 == 1 (n ≡ 1 mod 4),
the hinges do so additionally for n %% 4 == 2 (n ≡ 2 mod 4), and are in the middle of two
observations otherwise.

Value

List with named components as follows:

stats a vector of length 5, containing the extreme of the lower whisker, the
lower“hinge”, the median, the upper“hinge”and the extreme of the upper
whisker.

n the number of of non-NA observations in the sample.

conf the lower and upper extremes of the “notch” (if(do.conf)).

out the values of any data points which lie beyond the extremes of the whiskers
(if(do.out)).

Note that $stats and $conf are sorted in increasing order, unlike S, and that $n and $out
include any +- Inf values.



76 bquote

References

Tukey, J. W. (1977) Exploratory Data Analysis. Section 2C.

McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of box plots. The American
Statistician 32, 12–16.

Velleman, P. F. and Hoaglin, D. C. (1981) Applications, Basics and Computing of Ex-
ploratory Data Analysis. Duxbury Press.

Emerson, J. D and Strenio, J. (1983). Boxplots and batch comparison. Chapter 3 of
Understanding Robust and Exploratory Data Analysis, eds. D. C. Hoaglin, F. Mosteller and
J. W. Tukey. Wiley.

See Also

fivenum, boxplot, bxp.

Examples

x <- c(1:100, 1000)

str(b1 <- boxplot.stats(x))

str(b2 <- boxplot.stats(x, do.conf=FALSE, do.out=FALSE))

stopifnot(b1 $ stats == b2 $ stats) # do.out=F is still robust

str(boxplot.stats(x, coef = 3, do.conf=FALSE))

## no outlier treatment:

str(boxplot.stats(x, coef = 0))

str(boxplot.stats(c(x, NA))) # slight change : n + 1

str(r <- boxplot.stats(c(x, -1:1/0)))

stopifnot(r$out == c(1000, -Inf, Inf))

bquote Partial substitution in expressions

Description

An analogue of the LISP backquote macro. bquote quotes its argument except that terms
wrapped in .() are evaluated in the specified where environment.

Usage

bquote(expr, where = parent.frame())

Arguments

expr An expression

where An environment

Value

An expression



browseEnv 77

See Also

quote, substitute

Examples

a<-2

bquote(a==a)

quote(a==a)

bquote(a==.(a))

substitute(a==A, list(A=a))

plot(1:10,a*(1:10), main=bquote(a==.(a)))

browseEnv Browse Objects in Environment

Description

The browseEnv function opens a browser with list of objects currently in sys.frame()
environment.

Usage

browseEnv(envir = .GlobalEnv, pattern, excludepatt = "^last\\.warning",
html = .Platform$OS.type != "mac",
expanded = TRUE, properties = NULL,
main = NULL, debugMe = FALSE)

Arguments

envir an environment the objects of which are to be browsed.

pattern a regular expression for object subselection is passed to the internal ls()
call.

excludepatt a regular expression for dropping objects with matching names.

html is used on non Macintosh machines to display the workspace on a HTML
page in your favorite browser.

expanded whether to show one level of recursion. It can be useful to switch it to
FALSE if your workspace is large. This option is ignored if html is set to
FALSE.

properties a named list of global properties (of the objects chosen) to be showed in the
browser; when NULL (as per default), user, date, and machine information
is used.

main a title string to be used in the browser; when NULL (as per default) a title
is constructed.

debugMe logical switch; if true, some diagnostic output is produced.



78 browser

Details

Very experimental code. Only allows one level of recursion into object structures. The
HTML version is not dynamic.

It can be generalized. See sources (‘..../library/base/R/databrowser.R’) for details.

wsbrowser() is currently just an internally used function; its argument list will certainly
change.

Most probably, this should rather work through using the ‘tkWidget’ package (from www.
Bioconductor.org).

See Also

str, ls.

Examples

if(interactive()) {

## create some interesting objects :

ofa <- ordered(4:1)

ex1 <- expression(1+ 0:9)

ex3 <- expression(u,v, 1+ 0:9)

example(factor, echo = FALSE)

example(table, echo = FALSE)

example(ftable, echo = FALSE)

example(lm, echo = FALSE)

example(str, echo = FALSE)

## and browse them:

browseEnv()

## a (simple) function's environment:

af12 <- approxfun(1:2, 1:2, method = "const")

browseEnv(envir = environment(af12))

}

browser Environment Browser

Description

Interrupt the execution of an expression and allow the inspection of the environment where
browser was called from.

Usage

browser()

Details

A call to browser causes a pause in the execution of the current expression and runs a copy
of the R interpreter which has access to variables local to the environment where the call
took place.

www.Bioconductor.org
www.Bioconductor.org


browseURL 79

Local variables can be listed with ls, and manipulated with R expressions typed to this
sub-interpreter. The interpreter copy is exited by typing c. Execution then resumes at the
statement following the call to browser.

Typing n causes the step-through-debugger, to start and it is possible to step through the
remainder of the function one line at a time.

Typing Q quits the current execution and returns you to the top-level prompt.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

debug, and traceback for the stack on error.

browseURL Load URL into a WWW Browser

Description

Load a given URL into a WWW browser.

Usage

browseURL(url, browser = getOption("browser"))

Arguments

url a non-empty character string giving the URL to be loaded.

browser a non-empty character string giving the name of the program to be used
as hypertext browser. It should be in the PATH, or a full path specified.

Details

If browser supports remote control and R knows how to perform it, the URL is opened in
any already running browser or a new one if necessary. This mechanism currently is avail-
able for browsers which support the "-remote openURL(...)" interface (which includes
Netscape 4.x, 6.2.x (but not 6.0/1), Opera 5/6 and Mozilla >= 0.9.5), Galeon, KDE kon-
queror (via kfmclient) and the GNOME interface to Mozilla. Netscape 7.0 behaves slightly
differently, and you will need to open it first. Note that the type of browser is determined
from its name, so this mechanism will only be used if the browser is installed under its
canonical name.

Because "-remote" will use any browser displaying on the X server (whatever machine it
is running on), the remote control mechanism is only used if DISPLAY points to the local
host. This may not allow displaying more than one URL at a time from a remote host.



80 bug.report

bug.report Send a Bug Report

Description

Invokes an editor to write a bug report and optionally mail it to the automated r-bugs
repository at 〈r-bugs@r-project.org〉. Some standard information on the current version
and configuration of R are included automatically.

Usage

bug.report(subject = "", ccaddress = Sys.getenv("USER"),
method = getOption("mailer"), address = "r-bugs@r-project.org",
file = "R.bug.report")

Arguments

subject Subject of the email. Please do not use single quotes (’) in the subject!
File separate bug reports for multiple bugs

ccaddress Optional email address for copies (default is current user). Use ccaddress
= FALSE for no copies.

method Submission method, one of "mailx", "gnudoit", "none", or "ess".

address Recipient’s email address.

file File to use for setting up the email (or storing it when method is "none"
or sending mail fails).

Details

Currently direct submission of bug reports works only on Unix systems. If the submission
method is "mailx", then the default editor is used to write the bug report. Which editor
is used can be controlled using options, type getOption("editor") to see what editor is
currently defined. Please use the help pages of the respective editor for details of usage.
After saving the bug report (in the temporary file opened) and exiting the editor the report
is mailed using a Unix command line mail utility such as mailx. A copy of the mail is sent
to the current user.

If method is "gnudoit", then an emacs mail buffer is opened and used for sending the
email.

If method is "none" or NULL (which is the default on Windows systems), then only an editor
is opened to help writing the bug report. The report can then be copied to your favorite
email program and be sent to the r-bugs list.

If method is "ess" the body of the mail is simply sent to stdout.

Value

Nothing useful.



bug.report 81

When is there a bug?

If R executes an illegal instruction, or dies with an operating system error message that
indicates a problem in the program (as opposed to something like “disk full”), then it is
certainly a bug.

Taking forever to complete a command can be a bug, but you must make certain that it
was really R’s fault. Some commands simply take a long time. If the input was such that
you KNOW it should have been processed quickly, report a bug. If you don’t know whether
the command should take a long time, find out by looking in the manual or by asking for
assistance.

If a command you are familiar with causes an R error message in a case where its usual
definition ought to be reasonable, it is probably a bug. If a command does the wrong thing,
that is a bug. But be sure you know for certain what it ought to have done. If you aren’t
familiar with the command, or don’t know for certain how the command is supposed to
work, then it might actually be working right. Rather than jumping to conclusions, show
the problem to someone who knows for certain.

Finally, a command’s intended definition may not be best for statistical analysis. This is a
very important sort of problem, but it is also a matter of judgment. Also, it is easy to come
to such a conclusion out of ignorance of some of the existing features. It is probably best
not to complain about such a problem until you have checked the documentation in the
usual ways, feel confident that you understand it, and know for certain that what you want
is not available. The mailing list r-devel@r-project.org is a better place for discussions
of this sort than the bug list.

If you are not sure what the command is supposed to do after a careful reading of the
manual this indicates a bug in the manual. The manual’s job is to make everything clear.
It is just as important to report documentation bugs as program bugs.

If the online argument list of a function disagrees with the manual, one of them must be
wrong, so report the bug.

How to report a bug

When you decide that there is a bug, it is important to report it and to report it in a
way which is useful. What is most useful is an exact description of what commands you
type, from when you start R until the problem happens. Always include the version of R,
machine, and operating system that you are using; type version in R to print this. To help
us keep track of which bugs have been fixed and which are still open please send a separate
report for each bug.

The most important principle in reporting a bug is to report FACTS, not hypotheses or
categorizations. It is always easier to report the facts, but people seem to prefer to strain
to posit explanations and report them instead. If the explanations are based on guesses
about how R is implemented, they will be useless; we will have to try to figure out what
the facts must have been to lead to such speculations. Sometimes this is impossible. But
in any case, it is unnecessary work for us.

For example, suppose that on a data set which you know to be quite large the com-
mand data.frame(x, y, z, monday, tuesday) never returns. Do not report that
data.frame() fails for large data sets. Perhaps it fails when a variable name is a day
of the week. If this is so then when we got your report we would try out the data.frame()
command on a large data set, probably with no day of the week variable name, and not see
any problem. There is no way in the world that we could guess that we should try a day of
the week variable name.



82 builtins

Or perhaps the command fails because the last command you used was a [ method that had
a bug causing R’s internal data structures to be corrupted and making the data.frame()
command fail from then on. This is why we need to know what other commands you have
typed (or read from your startup file).

It is very useful to try and find simple examples that produce apparently the same bug, and
somewhat useful to find simple examples that might be expected to produce the bug but
actually do not. If you want to debug the problem and find exactly what caused it, that is
wonderful. You should still report the facts as well as any explanations or solutions.

Invoking R with the ‘--vanilla’ option may help in isolating a bug. This ensures that the
site profile and saved data files are not read.

A bug report can be generated using the bug.report() function. This automatically in-
cludes the version information and sends the bug to the correct address. Alternatively
the bug report can be emailed to 〈r-bugs@r-project.org〉 or submitted to the Web page at
http://bugs.r-project.org.

Bug reports on contributed packages should perhaps be sent to the package maintainer
rather than to r-bugs.

Author(s)

This help page is adapted from the Emacs manual and the R FAQ

See Also

R FAQ

builtins Returns the names of all built-in objects

Description

Return the names of all the built-in objects. These are fetched directly from the symbol
table of the R interpreter.

Usage

builtins(internal = FALSE)

Arguments

internal a logical indicating whether only “internal” functions (which can be called
via .Internal) should be returned.

http://bugs.r-project.org


bxp 83

bxp Box Plots from Summaries

Description

bxp draws box plots based on the given summaries in z. It is usually called from within
boxplot, but can be invoked directly.

Usage

bxp(z, notch = FALSE, width = NULL, varwidth = FALSE, outline = TRUE,
notch.frac = 0.5, boxwex = 0.8, border = par("fg"), col = NULL,
log = "", pars = NULL, frame.plot = axes, horizontal = FALSE,
add = FALSE, at = NULL, show.names=NULL, ...)

Arguments

z a list containing data summaries to be used in constructing the plots.
These are usually the result of a call to boxplot, but can be generated in
any fashion.

notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches
of two plots do not overlap then the medians are significantly different at
the 5 percent level.

width a vector giving the relative widths of the boxes making up the plot.

varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the
square-roots of the number of observations in the groups.

outline if outline is not true, the boxplot lines are not drawn.

boxwex a scale factor to be applied to all boxes. When there are only a few
groups, the appearance of the plot can be improved by making the boxes
narrower.

notch.frac numeric in (0,1). When notch=TRUE, the fraction of the box width that
the notches should use.

border character, the color of the box borders. Is recycled for multiple boxes.

col character; the color within the box. Is recycled for multiple boxes

log character, indicating if any axis should be drawn in logarithmic scale, as
in plot.default.

frame.plot logical, indicating if a “frame” (box) should be drawn; defaults to TRUE,
unless axes = FALSE is specified.

horizontal logical indicating if the boxplots should be horizontal; default FALSE
means vertical boxes.

add logical, if true add boxplot to current plot.

at numeric vector giving the locations where the boxplots should be drawn,
particularly when add = TRUE; defaults to 1:n where n is the number of
boxes.

show.names Set to TRUE or FALSE to override the defaults on whether an x-axis label
is printed for each group.



84 by

pars,... graphical parameters can be passed as arguments to this function, either
as a list (pars) or normally(...).
Currently, pch, cex, and bg are passed to points,
ylim and axes to the main plot (plot.default), xaxt, yaxt, las to axis
and the others to title.

Value

An invisible vector, actually identical to the at argument, with the coordinates (”x” if
horizontal is false, ”y” otherwise) of box centers, useful for adding to the plot.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

set.seed(753)

str(bx.p <- boxplot(split(rt(100, 4), gl(5,20))))

op <- par(mfrow= c(2,2))

bxp(bx.p, xaxt = "n")

bxp(bx.p, notch = TRUE, axes = FALSE, pch = 4)

bxp(bx.p, notch = TRUE, col= "lightblue", frame= FALSE, outl= FALSE,

main = "bxp(*, frame= FALSE, outl= FALSE)")

bxp(bx.p, notch = TRUE, col= "lightblue", border="red", ylim = c(-4,4),

pch = 22, bg = "green", log = "x", main = "... log='x', ylim=*")

par(op)

op <- par(mfrow= c(1,2))

data(PlantGrowth)

## single group -- no label

boxplot(weight~group,data=PlantGrowth,subset=group=="ctrl")

bx<-boxplot(weight~group,data=PlantGrowth,subset=group=="ctrl",plot=FALSE)

## with label

bxp(bx,show.names=TRUE)

par(op)

by Apply a Function to a Data Frame split by Factors

Description

Function by is an object-oriented wrapper for tapply applied to data frames.

Usage

by(data, INDICES, FUN, ...)

Arguments

data an R object, normally a data frame, possibly a matrix.
INDICES a factor or a list of factors, each of length nrow(x).
FUN a function to be applied to data frame subsets of x.
... further arguments to FUN.



C 85

Details

A data frame is split by row into data frames subsetted by the values of one or more factors,
and function FUN is applied to each subset in term.

Object data will be coerced to a data frame by default.

Value

A list of class "by", giving the results for each subset.

See Also

tapply

Examples

data(warpbreaks)

attach(warpbreaks)

by(warpbreaks[, 1:2], tension, summary)

by(warpbreaks[, 1], list(wool=wool, tension=tension), summary)

by(warpbreaks, tension, function(x) lm(breaks ~ wool, data=x))

## now suppose we want to extract the coefficients by group

tmp <- by(warpbreaks, tension, function(x) lm(breaks ~ wool, data=x))

sapply(tmp, coef)

detach("warpbreaks")

C Sets Contrasts for a Factor

Description

Sets the "contrasts" attribute for the factor.

Usage

C(object, contr, how.many, ...)

Arguments

object a factor or ordered factor

contr which contrasts to use. Can be a matrix with one row for each level of the
factor or a suitable function like contr.poly or a character string giving
the name of the function

how.many the number of contrasts to set, by default one less than nlevels(object).

... additional arguments for the function contr.

Details

For compatibility with S, contr can be treatment, helmert, sum or poly (without quotes)
as shorthand for contr.treatment and so on.



86 c

Value

The factor object with the "contrasts" attribute set.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models
in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

contrasts, contr.sum, etc.

Examples

## reset contrasts to defaults

options(contrasts=c("contr.treatment", "contr.poly"))

data(warpbreaks)

attach(warpbreaks)

tens <- C(tension, poly, 1)

attributes(tens)

detach()

## tension SHOULD be an ordered factor, but as it is not we can use

aov(breaks ~ wool + tens + tension, data=warpbreaks)

## show the use of ... The default contrast is contr.treatment here

summary(lm(breaks ~ wool + C(tension, base=2), data=warpbreaks))

data(esoph) # following on from help(esoph)

model3 <- glm(cbind(ncases, ncontrols) ~ agegp + C(tobgp, , 1) +

C(alcgp, , 1), data = esoph, family = binomial())

summary(model3)

c Combine Values into a Vector or List

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced
to a common type which is the type of the returned value.

Usage

c(..., recursive=FALSE)

Arguments

... objects to be concatenated.

recursive logical. If recursive=TRUE, the function recursively descends through
lists combining all their elements into a vector.



call 87

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

unlist and as.vector to produce attribute-free vectors.

Examples

c(1,7:9)

c(1:5, 10.5, "next")

## append to a list:

ll <- list(A = 1, c="C")

## do *not* use

c(ll, d = 1:3) # which is == c(ll, as.list(c(d=1:3))

## but rather

c(ll, d = list(1:3))# c() combining two lists

c(list(A=c(B=1)), recursive=TRUE)

c(options(), recursive=TRUE)

c(list(A=c(B=1,C=2), B=c(E=7)), recursive=TRUE)

call Function Calls

Description

Create or test for objects of mode "call".

Usage

call(name, ...)
is.call(x)
as.call(x)

Arguments

name a character string naming the function to be called.
... arguments to be part of the call.
x an arbitrary R object.

Details

call returns an unevaluated function call, that is, an unevaluated expression which consists
of the named function applied to the given arguments (name must be a quoted string which
gives the name of a function to be called).
is.call is used to determine whether x is a call (i.e., of mode "call"). It is generic: you
can write methods to handle of specific classes of objects, see InternalMethods.
Objects of mode "list" can be coerced to mode "call". The first element of the list
becomes the function part of the call, so should be a function or the name of one (as a
symbol; a quoted string will not do).



88 capabilities

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

do.call for calling a function by name and argument list; Recall for recursive calling of
functions; further is.language, expression, function.

Examples

is.call(call) #-> FALSE: Functions are NOT calls

# set up a function call to round with argument 10.5

cl <- call("round", 10.5)

is.call(cl)# TRUE

cl

# such a call can also be evaluated.

eval(cl)# [1] 10

capabilities Report Capabilities of this Build of R

Description

Report on the optional features which have been compiled into this build of R.

Usage

capabilities(what = NULL)

Arguments

what character vector or NULL, specifying required components. NULL implies
that all are required.

Value

A named logical vector. Current components are

jpeg Is the jpeg function operational?

png Is the png function operational?

tcltk Is the tcltk package operational?

X11 (Unix) Are X11 and the data editor available?

GNOME (Unix) Is the GNOME GUI in use and are GTK and GNOME graphics devices
available?

libz Is gzfile available? From R 1.5.0 this will always be true.

http/ftp Are url and the internal method for download.file available?

sockets Are make.socket and related functions available?

libxml Is there support for integrating libxml with the R event loop?



capture.output 89

cledit Is command-line editing available in the current R session? This is false in
non-interactive sessions. It will be true if readline supported has been
compiled in and ‘--no-readline’ was not invoked.

IEEE754 Does this platform have IEEE 754 arithmetic? Note that this is more
correctly known by the international standard IEC 60559.

bzip2 Is bzfile available?

PCRE Is the Perl-Compatible Regular Expression library available? This is
needed for the perl = TRUE option to grep are related function.

See Also

.Platform

Examples

capabilities()

if(!capabilities("http/ftp"))

warning("internal download.file() is not available")

## See also the examples for 'connections'.

capture.output Send output to a character string or file

Description

Evaluates its arguments with the output being returned as a character string or sent to a
file. Related to sink in the same way that with is related to attach.

Usage

capture.output(..., file = NULL, append = FALSE)

Arguments

... Expressions to be evaluated

file A file name or a connection, or NULL to return the output as a string. If
the connnection is not open it will be opened and then closed on exit.

append Append or overwrite the file?

Value

A character string, or NULL if a file argument was supplied.

See Also

sink, textConnection



90 cars

Examples

glmout<-capture.output(example(glm))

glmout[1:5]

capture.output(1+1,2+2)

capture.output({1+1;2+2})

## Not run:

## on Unix with enscript available

ps<-pipe("enscript -o tempout.ps","w")

capture.output(example(glm), file=ps)

close(ps)

## End(Not run)

cars Speed and Stopping Distances of Cars

Description

The data give the speed of cars and the distances taken to stop. Note that the data were
recorded in the 1920s.

Usage

data(cars)

Format

A data frame with 50 observations on 2 variables.

[,1] speed numeric Speed (mph)
[,2] dist numeric Stopping distance (ft)

Source

Ezekiel, M. (1930) Methods of Correlation Analysis. Wiley.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(cars)

plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",

las = 1)

lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")

title(main = "cars data")

plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",

las = 1, log = "xy")

title(main = "cars data (logarithmic scales)")

lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")

summary(fm1 <- lm(log(dist) ~ log(speed), data = cars))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))



case/variable.names 91

plot(fm1)

par(opar)

## An example of polynomial regression

plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",

las = 1, xlim = c(0, 25))

d <- seq(0, 25, len = 200)

for(degree in 1:4) {

fm <- lm(dist ~ poly(speed, degree), data = cars)

assign(paste("cars", degree, sep="."), fm)

lines(d, predict(fm, data.frame(speed=d)), col = degree)

}

anova(cars.1, cars.2, cars.3, cars.4)

case/variable.names Case and Variable Names of Fitted Models

Description

Simple utilities returning (non-missing) case names, and (non-eliminated) variable names.

Usage

case.names(object, ...)
## S3 method for class 'lm':
case.names(object, full = FALSE, ...)

variable.names(object, ...)
## S3 method for class 'lm':
variable.names(object, full = FALSE, ...)

Arguments

object an R object, typically a fitted model.

full logical; if TRUE, all names (including zero weights, . . . ) are returned.

... further arguments passed to or from other methods.

Value

A character vector.

See Also

lm

Examples

x <- 1:20

y <- x + (x/4 - 2)^3 + rnorm(20, s=3)

names(y) <- paste("O",x,sep=".")

ww <- rep(1,20); ww[13] <- 0

summary(lmxy <- lm(y ~ x + I(x^2)+I(x^3) + I((x-10)^2),

weights = ww), cor = TRUE)



92 cat

variable.names(lmxy)

variable.names(lmxy, full= TRUE)# includes the last

case.names(lmxy)

case.names(lmxy, full = TRUE)# includes the 0-weight case

cat Concatenate and Print

Description

Prints the arguments, coercing them if necessary to character mode first.

Usage

cat(... , file = "", sep = " ", fill = FALSE, labels = NULL,
append = FALSE)

Arguments

... R objects which are coerced to character strings, concatenated, and
printed, with the remaining arguments controlling the output.

file A connection, or a character string naming the file to print to. If "" (the
default), cat prints to the standard output connection, the console unless
redirected by sink. If it is "|cmd", the output is piped to the command
given by ‘cmd’, by opening a pipe connection.

sep character string to insert between the objects to print.

fill a logical or numeric controlling how the output is broken into successive
lines. If FALSE (default), only newlines created explicitly by ‘\n’ are
printed. Otherwise, the output is broken into lines with print width equal
to the option width if fill is TRUE, or the value of fill if this is numeric.

labels character vector of labels for the lines printed. Ignored if fill is FALSE.

append logical. Only used if the argument file is the name of file (and not a con-
nection or "|cmd"). If TRUE output will be appended to file; otherwise,
it will overwrite the contents of file.

Details

cat converts its arguments to character strings, concatenates them, separating them by the
given sep= string, and then prints them.

No linefeeds are printed unless explicitly requested by ‘\n’ or if generated by filling (if
argument fill is TRUE or numeric.)

cat is useful for producing output in user-defined functions.

Value

None (invisible NULL).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.



Cauchy 93

See Also

print, format, and paste which concatenates into a string.

Examples

iter <- rpois(1, lambda=10)

## print an informative message

cat("iteration = ", iter <- iter + 1, "\n")

## 'fill' and label lines:

cat(paste(letters, 100* 1:26), fill = TRUE,

labels = paste("{",1:10,"}:",sep=""))

Cauchy The Cauchy Distribution

Description

Density, distribution function, quantile function and random generation for the Cauchy
distribution with location parameter location and scale parameter scale.

Usage

dcauchy(x, location = 0, scale = 1, log = FALSE)
pcauchy(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qcauchy(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rcauchy(n, location = 0, scale = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

location, scale

location and scale parameters.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

If location or scale are not specified, they assume the default values of 0 and 1 respec-
tively.

The Cauchy distribution with location l and scale s has density

f(x) =
1
πs

(
1 +

(
x− l

s

)2
)−1

for all x.



94 cbind

Value

dcauchy, pcauchy, and qcauchy are respectively the density, distribution function and
quantile function of the Cauchy distribution. rcauchy generates random deviates from the
Cauchy.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

dt for the t distribution which generalizes dcauchy(*, l = 0, s = 1).

Examples

dcauchy(-1:4)

cbind Combine R Objects by Rows or Columns

Description

Take a sequence of vector, matrix or data frames arguments and combine by columns or
rows, respectively. These are generic functions with methods for other R classes.

Usage

cbind(..., deparse.level = 1)
rbind(..., deparse.level = 1)

Arguments

... vectors or matrices. These can be given as named arguments.

deparse.level integer controlling the construction of labels; currently, 1 is the only pos-
sible value.

Details

The functions cbind and rbind are generic, with methods for data frames. The data frame
method will be used if an argument is a data frame and the rest are vectors or matrices.
There can be other methods; in particular, there is one for time series objects.

The rbind data frame method takes the classes of the columns from the first data frame.
Factors are have their levels expanded as necessary (in the order of the levels of the lev-
elsets of the factors encountered) and the result is an ordered factor if and only if all the
components were ordered factors. (The last point differs from S-PLUS.)

If there are several matrix arguments, they must all have the same number of columns (or
rows) and this will be the number of columns (or rows) of the result. If all the arguments
are vectors, the number of columns (rows) in the result is equal to the length of the longest
vector. Values in shorter arguments are recycled to achieve this length (with a warning if
they are recycled only fractionally).



cbind 95

When the arguments consist of a mix of matrices and vectors the number of columns (rows)
of the result is determined by the number of columns (rows) of the matrix arguments. Any
vectors have their values recycled or subsetted to achieve this length.

For cbind (rbind), vectors of zero length (including NULL) are ignored unless the result
would have zero rows (columns), for S compatibility. (Zero-extent matrices do not occur in
S3 and are not ignored in R.)

Value

A matrix or data frame combining the ... arguments column-wise or row-wise.

For cbind (rbind) the column (row) names are taken from the names of the arguments,
or where those are not supplied by deparsing the expressions given (if that gives a sensible
name). The names will depend on whether data frames are included: see the examples.

Note

The method dispatching is not done via UseMethod(), but by C-internal dispatching.
Therefore, there is no need for, e.g., rbind.default.

The dispatch algorithm is described in the source file (‘.../src/main/bind.c’) as

1. For each argument we get the list of possible class memberships from the class attribute.

2. We inspect each class in turn to see if there is an an applicable method.

3. If we find an applicable method we make sure that it is identical to any method
determined for prior arguments. If it is identical, we proceed, otherwise we immediately
drop through to the default code.

If you want to combine other objects with data frames, it may be necessary to coerce them
to data frames first. (Note that this algorithm can result in calling the data frame method
if the arguments are all either data frames or vectors, and this will result in the coercion of
character vectors to factors.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

c to combine vectors (and lists) as vectors, data.frame to combine vectors and matrices as
a data frame.

Examples

cbind(1, 1:7) # the '1' (= shorter vector) is recycled

cbind(1:7, diag(3))# vector is subset -> warning

cbind(0, rbind(1, 1:3))

cbind(I=0, X=rbind(a=1, b=1:3)) # use some names

xx <- data.frame(I=rep(0,2))

cbind(xx, X=rbind(a=1, b=1:3)) # named differently

cbind(0, matrix(1, nrow=0, ncol=4))#> Warning (making sense)

dim(cbind(0, matrix(1, nrow=2, ncol=0)))#-> 2 x 1



96 character

char.expand Expand a String with Respect to a Target Table

Description

Seeks a unique match of its first argument among the elements of its second. If successful,
it returns this element; otherwise, it performs an action specified by the third argument.

Usage

char.expand(input, target, nomatch = stop("no match"))

Arguments

input a character string to be expanded.

target a character vector with the values to be matched against.

nomatch an R expression to be evaluated in case expansion was not possible.

Details

This function is particularly useful when abbreviations are allowed in function arguments,
and need to be uniquely expanded with respect to a target table of possible values.

See Also

charmatch and pmatch for performing partial string matching.

Examples

locPars <- c("mean", "median", "mode")

char.expand("me", locPars, warning("Could not expand!"))

char.expand("mo", locPars)

character Character Vectors

Description

Create or test for objects of type "character".

Usage

character(length = 0)
as.character(x, ...)
is.character(x)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.



charmatch 97

Details

as.character and is.character are generic: you can write methods to handle specific
classes of objects, see InternalMethods.

Value

character creates a character vector of the specified length. The elements of the vector
are all equal to "".

as.character attempts to coerce its argument to character type; like as.vector it strips
attributes including names.

is.character returns TRUE or FALSE depending on whether its argument is of character
type or not.

Note

as.character truncates components of language objects to 500 characters (was about 70
before 1.3.1).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

paste, substr and strsplit for character concatenation and splitting, chartr for char-
acter translation and casefolding (e.g., upper to lower case) and sub, grep etc for string
matching and substitutions. Note that help.search(keyword = "character") gives even
more links. deparse, which is normally preferable to as.character for language objects.

Examples

form <- y ~ a + b + c

as.character(form) ## length 3

deparse(form) ## like the input

charmatch Partial String Matching

Description

charmatch seeks matches for the elements of its first argument among those of its second.

Usage

charmatch(x, table, nomatch = NA)

Arguments

x the values to be matched.

table the values to be matched against.

nomatch the value returned at non-matching positions.



98 chartr

Details

Exact matches are preferred to partial matches (those where the value to be matched has
an exact match to the initial part of the target, but the target is longer).

If there is a single exact match or no exact match and a unique partial match then the
index of the matching value is returned; if multiple exact or multiple partial matches are
found then 0 is returned and if no match is found then NA is returned.

Author(s)

This function is based on a C function written by Terry Therneau.

See Also

pmatch, match.

grep or regexpr for more general (regexp) matching of strings.

Examples

charmatch("", "") # returns 1

charmatch("m", c("mean", "median", "mode")) # returns 0

charmatch("med", c("mean", "median", "mode")) # returns 2

chartr Character Translation and Casefolding

Description

Translate characters in character vectors, in particular from upper to lower case or vice
versa.

Usage

chartr(old, new, x)
tolower(x)
toupper(x)
casefold(x, upper = FALSE)

Arguments

x a character vector.

old a character string specifying the characters to be translated.

new a character string specifying the translations.

upper logical: translate to upper or lower case?.



check.options 99

Details

chartr translates each character in x that is specified in old to the corresponding character
specified in new. Ranges are supported in the specifications, but character classes and
repreated characters are not. If old contains more characters than new, an error is signaled;
if it contains fewer characters, the extra characters at the end of new are ignored.

tolower and toupper convert upper-case characters in a character vector to lower-case, or
vice versa. Non-alphabetic characters are left unchanged.

casefold is a wrapper for tolower and toupper provided for compatibility with S-PLUS.

See Also

sub and gsub for other substitutions in strings.

Examples

x <- "MiXeD cAsE 123"

chartr("iXs", "why", x)

chartr("a-cX", "D-Fw", x)

tolower(x)

toupper(x)

check.options Set Options with Consistency Checks

Description

Utility function for setting options with some consistency checks. The attributes of
the new settings in new are checked for consistency with the model (often default) list
in name.opt.

Usage

check.options(new, name.opt, reset = FALSE, assign.opt = FALSE,
envir = .GlobalEnv, check.attributes = c("mode", "length"),
override.check = FALSE)

Arguments

new a named list
name.opt character with the name of R object containing the “model” (default) list.
reset logical; if TRUE, reset the options from name.opt. If there is more than

one R object with name name.opt, remove the first one in the search()
path.

assign.opt logical; if TRUE, assign the . . .
envir the environment used for get and assign.
check.attributes

character containing the attributes which check.options should check.
override.check

logical vector of length length(new) (or 1 which entails recycling). For
those new[i] where override.check[i] == TRUE, the checks are overri-
den and the changes made anyway.



100 chickwts

Value

A list of components with the same names as the one called name.opt. The values of the
components are changed from the new list, as long as these pass the checks (when these are
not overridden according to override.check).

Author(s)

Martin Maechler

See Also

ps.options which uses check.options.

Examples

L1 <- list(a=1:3, b=pi, ch="CH")

str(L2 <- check.options(list(a=0:2), name.opt = "L1"))

str(check.options(NULL, reset = TRUE, name.opt = "L1"))

chickwts Chicken Weights by Feed Type

Description

An experiment was conducted to measure and compare the effectiveness of various feed
supplements on the growth rate of chickens.

Usage

data(chickwts)

Format

A data frame with 71 observations on 2 variables.

weight a numeric variable giving the chick weight.

feed a factor giving the feed type.

Details

Newly hatched chicks were randomly allocated into six groups, and each group was given a
different feed supplement. Their weights in grams after six weeks are given along with feed
types.

Source

Anonymous (1948) Biometrika, 35, 214.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.



Chisquare 101

Examples

data(chickwts)

boxplot(weight ~ feed, data = chickwts, col = "lightgray",

varwidth = TRUE, notch = TRUE, main = "chickwt data",

ylab = "Weight at six weeks (gm)")

anova(fm1 <- lm(weight ~ feed, data = chickwts))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))

plot(fm1)

par(opar)

Chisquare The (non-central) Chi-Squared Distribution

Description

Density, distribution function, quantile function and random generation for the chi-squared
(χ2) distribution with df degrees of freedom and optional non-centrality parameter ncp.

Usage

dchisq(x, df, ncp=0, log = FALSE)
pchisq(q, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
qchisq(p, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
rchisq(n, df, ncp=0)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the

number required.
df degrees of freedom (non-negative, but can be non-integer).
ncp non-centrality parameter (non-negative). Note that ncp values larger than

about 1417 are not allowed currently for pchisq and qchisq.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >

x].

Details

The chi-squared distribution with df= n degrees of freedom has density

fn(x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2

for x > 0. The mean and variance are n and 2n.

The non-central chi-squared distribution with df= n degrees of freedom and non-centrality
parameter ncp = λ has density

f(x) = e−λ/2
∞∑

r=0

(λ/2)r

r!
fn+2r(x)



102 Chisquare

for x ≥ 0. For integer n, this is the distribution of the sum of squares of n normals each
with variance one, λ being the sum of squares of the normal means. Note that the degrees
of freedom df= n, can be non-integer, and for non-centrality λ > 0, even n = 0; see the
reference, chapter 29.

Value

dchisq gives the density, pchisq gives the distribution function, qchisq gives the quantile
function, and rchisq generates random deviates.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Johnson, Kotz and Balakrishnan (1995). Continuous Univariate Distributions, Vol 2; Wiley
NY;

See Also

dgamma for the Gamma distribution which generalizes the chi-squared one.

Examples

dchisq(1, df=1:3)

pchisq(1, df= 3)

pchisq(1, df= 3, ncp = 0:4)# includes the above

x <- 1:10

## Chi-squared(df = 2) is a special exponential distribution

all.equal(dchisq(x, df=2), dexp(x, 1/2))

all.equal(pchisq(x, df=2), pexp(x, 1/2))

## non-central RNG -- df=0 is ok for ncp > 0: Z0 has point mass at 0!

Z0 <- rchisq(100, df = 0, ncp = 2.)

stem(Z0)

## Not run:

## visual testing

## do P-P plots for 1000 points at various degrees of freedom

L <- 1.2; n <- 1000; pp <- ppoints(n)

op <- par(mfrow = c(3,3), mar= c(3,3,1,1)+.1, mgp= c(1.5,.6,0),

oma = c(0,0,3,0))

for(df in 2^(4*rnorm(9))) {

plot(pp, sort(pchisq(rr <- rchisq(n,df=df, ncp=L), df=df, ncp=L)),

ylab="pchisq(rchisq(.),.)", pch=".")

mtext(paste("df = ",formatC(df, digits = 4)), line= -2, adj=0.05)

abline(0,1,col=2)

}

mtext(expression("P-P plots : Noncentral "*

chi^2 *"(n=1000, df=X, ncp= 1.2)"),

cex = 1.5, font = 2, outer=TRUE)

par(op)

## End(Not run)



chol 103

chol The Choleski Decomposition

Description

Compute the Choleski factorization of a real symmetric positive-definite square matrix.

Usage

chol(x, pivot = FALSE, LINPACK = pivot)
La.chol(x)

Arguments

x a real symmetric, positive-definite matrix

pivot Should pivoting be used?

LINPACK logical. Should LINPACK be used (for compatibility with R < 1.7.0)?

Details

chol(pivot = TRUE) provides an interface to the LINPACK routine DCHDC. La.chol
provides an interface to the LAPACK routine DPOTRF.

Note that only the upper triangular part of x is used, so that R′R = x when x is symmetric.

If pivot = FALSE and x is not non-negative definite an error occurs. If x is positive semi-
definite (i.e., some zero eigenvalues) an error will also occur, as a numerical tolerance is
used.

If pivot = TRUE, then the Choleski decomposition of a positive semi-definite x can be
computed. The rank of x is returned as attr(Q, "rank"), subject to numerical errors. The
pivot is returned as attr(Q, "pivot"). It is no longer the case that t(Q) %*% Q equals
x. However, setting pivot <- attr(Q, "pivot") and oo <- order(pivot), it is true
that t(Q[, oo]) %*% Q[, oo] equals x, or, alternatively, t(Q) %*% Q equals x[pivot,
pivot]. See the examples.

Value

The upper triangular factor of the Choleski decomposition, i.e., the matrix R such that
R′R = x (see example).

If pivoting is used, then two additional attributes "pivot" and "rank" are also returned.

Warning

The code does not check for symmetry.

If pivot = TRUE and x is not non-negative definite then there will be no error message but
a meaningless result will occur. So only use pivot = TRUE when x is non-negative definite
by construction.



104 chol2inv

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

chol2inv for its inverse (without pivoting), backsolve for solving linear systems with
upper triangular left sides.

qr, svd for related matrix factorizations.

Examples

( m <- matrix(c(5,1,1,3),2,2) )

( cm <- chol(m) )

t(cm) %*% cm #-- = 'm'

crossprod(cm) #-- = 'm'

# now for something positive semi-definite

x <- matrix(c(1:5, (1:5)^2), 5, 2)

x <- cbind(x, x[, 1] + 3*x[, 2])

m <- crossprod(x)

qr(m)$rank # is 2, as it should be

# chol() may fail, depending on numerical rounding:

# chol() unlike qr() does not use a tolerance.

try(chol(m))

(Q <- chol(m, pivot = TRUE)) # NB wrong rank here ... see Warning section.

## we can use this by

pivot <- attr(Q, "pivot")

oo <- order(pivot)

t(Q[, oo]) %*% Q[, oo] # recover m

chol2inv Inverse from Choleski Decomposition

Description

Invert a symmetric, positive definite square matrix from its Choleski decomposition.

Usage

chol2inv(x, size = NCOL(x), LINPACK = FALSE)
La.chol2inv(x, size = ncol(x))

http://www.netlib.org/lapack/lug/lapack_lug.html


chull 105

Arguments

x a matrix. The first nc columns of the upper triangle contain the Choleski
decomposition of the matrix to be inverted.

size the number of columns of x containing the Choleski decomposition.

LINPACK logical. Should LINPACK be used (for compatibility with R < 1.7.0)?

Details

chol2inv(LINPACK=TRUE) provides an interface to the LINPACK routine DPODI.
La.chol2inv provides an interface to the LAPACK routine DPOTRI.

Value

The inverse of the decomposed matrix.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM. Avail-
able on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

chol, solve.

Examples

cma <- chol(ma <- cbind(1, 1:3, c(1,3,7)))

ma %*% chol2inv(cma)

chull Compute Convex Hull of a Set of Points

Description

Computes the subset of points which lie on the convex hull of the set of points specified.

Usage

chull(x, y=NULL)

Arguments

x, y coordinate vectors of points. This can be specified as two vectors x and y,
a 2-column matrix x, a list x with two components, etc, see xy.coords.

Details

xy.coords is used to interpret the specification of the points. The algorithm is that given
by Eddy (1977).

‘Peeling’ as used in the S function chull can be implemented by calling chull recursively.

http://www.netlib.org/lapack/lug/lapack_lug.html


106 citation

Value

An integer vector giving the indices of the points lying on the convex hull, in clockwise
order.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Eddy, W. F. (1977) A new convex hull algorithm for planar sets. ACM Transactions on
Mathematical Software, 3, 398–403.

Eddy, W. F. (1977) Algorithm 523. CONVEX, A new convex hull algorithm for planar
sets[Z]. ACM Transactions on Mathematical Software, 3, 411–412.

See Also

xy.coords,polygon

Examples

X <- matrix(rnorm(2000), ncol=2)

plot(X, cex=0.5)

hpts <- chull(X)

hpts <- c(hpts, hpts[1])

lines(X[hpts, ])

citation Citing R in Publications

Description

How to cite R in publications.

Usage

citation()

Details

Execute function citation() for information on how to cite R in publications.



class 107

class Object Classes

Description

R possesses a simple generic function mechanism which can be used for an object-oriented
style of programming. Method dispatch takes place based on the class of the first argument
to the generic function.

Usage

class(x)
class(x) <- value
unclass(x)
inherits(x, what, which = FALSE)

oldClass(x)
oldClass(x) <- value

Arguments

x a R object

what, value a character vector naming classes.

which logical affecting return value: see Details.

Details

Many R objects have a class attribute, a character vector giving the names of the classes
which the object “inherits” from. If the object does not have a class attribute, it has an
implicit class, "matrix", "array" or the result of mode(x). (Functions oldClass and
oldClass<- get and set the attribute, which can also be done directly.)

When a generic function fun is applied to an object with class attribute c("first",
"second"), the system searches for a function called fun.first and, if it finds it, ap-
plies it to the object. If no such function is found, a function called fun.second is tried. If
no class name produces a suitable function, the function fun.default is used (if it exists).
If there is no class attribute, the implicit class is tried, then the default method.

The function class prints the vector of names of classes an object inherits from. Corre-
spondingly, class<- sets the classes an object inherits from.

unclass returns (a copy of) its argument with its class attribute removed.

inherits indicates whether its first argument inherits from any of the classes specified in
the what argument. If which is TRUE then an integer vector of the same length as what is
returned. Each element indicates the position in the class(x) matched by the element of
what; zero indicates no match. If which is FALSE then TRUE is returned by inherits if any
of the names in what match with any class.



108 close.socket

Formal classes

An additional mechanism of formal classes has been available in packages methods since
R 1.4.0, and as from R 1.7.0 this is attached by default. For objects which have a formal
class, its name is returned by class as a character vector of length one.

The replacement version of the function sets the class to the value provided. For classes
that have a formal definition, directly replacing the class this way is strongly deprecated.
The expression as(object, value) is the way to coerce an object to a particular class.

Note

Functions oldClass and oldClass<- behave in the same way as functions of those names
in S-PLUS 5/6, but in R UseMethod dispatches on the class as returned by class rather
than oldClass.

See Also

UseMethod, NextMethod.

Examples

x <- 10

inherits(x, "a") #FALSE

class(x)<-c("a", "b")

inherits(x,"a") #TRUE

inherits(x, "a", TRUE) # 1

inherits(x, c("a", "b", "c"), TRUE) # 1 2 0

close.socket Close a Socket

Description

Closes the socket and frees the space in the file descriptor table. The port may not be freed
immediately.

Usage

close.socket(socket, ...)

Arguments

socket A socket object

... further arguments passed to or from other methods.

Value

logical indicating success or failure

Author(s)

Thomas Lumley



co2 109

See Also

make.socket, read.socket

co2 Mauna Loa Atmospheric CO2 Concentration

Description

Atmospheric concentrations of CO2 are expressed in parts per million (ppm) and reported
in the preliminary 1997 SIO manometric mole fraction scale.

Usage

data(co2)

Format

A time series of 468 observations; monthly from 1959 to 1997.

Details

The values for February, March and April of 1964 were missing and have been obtained by
interpolating linearly between the values for January and May of 1964.

Source

Keeling, C. D. and Whorf, T. P., Scripps Institution of Oceanography (SIO), University of
California, La Jolla, California USA 92093-0220.

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2.

References

Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

Examples

data(co2)

plot(co2, ylab = expression("Atmospheric concentration of CO"[2]),

las = 1)

title(main = "co2 data set")

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2


110 codes-deprecated

codes-deprecated Factor Codes

Description

This (generic) function returns a numeric coding of a factor. It can also be used to assign
to a factor using the coded form.

It is now Deprecated.

Usage

codes(x, ...)
codes(x, ...) <- value

Arguments

x an object from which to extract or set the codes.

... further arguments passed to or from other methods.

value replacement value.

Value

For an ordered factor, it returns the internal coding (1 for the lowest group, 2 for the second
lowest, etc.).

For an unordered factor, an alphabetical ordering of the levels is assumed, i.e., the level
that is coded 1 is the one whose name is sorted first according to the prevailing collating
sequence. Warning: the sort order may well depend on the locale, and should not be
assumed to be ASCII.

Note

Normally codes is not the appropriate function to use with an unordered factor. Use
unclass or as.numeric to extract the codes used in the internal representation of the
factor, as these do not assume that the codes are sorted.

The behaviour for unordered factors is dubious, but compatible with S version 3. To get
the internal coding of a factor, use as.integer. Note in particular that the codes may not
be the same in different language locales because of collating differences.

See Also

factor, levels, nlevels.

Examples

## Not run:

codes(rep(factor(c(20,10)),3))

x <- gl(3,5)

codes(x)[3] <- 2

x



coef 111

data(esoph)

( ag <- esoph$alcgp[12:1] )

codes(ag)

codes(factor(1:10)) # BEWARE!

## End(Not run)

coef Extract Model Coefficients

Description

coef is a generic function which extracts model coefficients from objects returned by mod-
eling functions. coefficients is an alias for it.

Usage

coef(object, ...)
coefficients(object, ...)

Arguments

object an object for which the extraction of model coefficients is meaningful.

... other arguments.

Details

All object classes which are returned by model fitting functions should provide a coef
method. (Note that the method is coef and not coefficients.)

Value

Coefficients extracted from the model object object.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

fitted.values and residuals for related methods; glm, lm for model fitting.

Examples

x <- 1:5; coef(lm(c(1:3,7,6) ~ x))



112 col2rgb

col Column Indexes

Description

Returns a matrix of integers indicating their column number in the matrix.

Usage

col(x, as.factor=FALSE)

Arguments

x a matrix.

as.factor a logical value indicating whether the value should be returned as a factor
rather than as numeric.

Value

An integer matrix with the same dimensions as x and whose ij-th element is equal to j.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

row to get rows.

Examples

# extract an off-diagonal of a matrix

ma <- matrix(1:12, 3, 4)

ma[row(ma) == col(ma) + 1]

# create an identity 5-by-5 matrix

x <- matrix(0, nr = 5, nc = 5)

x[row(x) == col(x)] <- 1

col2rgb Color to RGB Conversion

Description

“Any R color” to RGB (red/green/blue) conversion.

Usage

col2rgb(col)



col2rgb 113

Arguments

col vector of any of the three kind of R colors, i.e., either a color name (an
element of colors()), a hexadecimal string of the form "#rrggbb", or an
integer i meaning palette()[i].

Details

For integer colors, 0 is shorthand for the current par("bg"), and NA means “nothing”which
effectively does not draw the corresponding item.

For character colors, "NA" is equivalent to NA above.

Value

an integer matrix with three rows and number of columns the length (and names if any) as
col.

Author(s)

Martin Maechler

See Also

rgb, colors, palette, etc.

Examples

col2rgb("peachpuff")

col2rgb(c(blu = "royalblue", reddish = "tomato")) # names kept

col2rgb(1:8)# the ones from the palette() :

col2rgb(paste("gold", 1:4, sep=""))

col2rgb("#08a0ff")

## all three kind of colors mixed :

col2rgb(c(red="red", palette= 1:3, hex="#abcdef"))

##-- NON-INTRODUCTORY examples --

grC <- col2rgb(paste("gray",0:100,sep=""))

table(print(diff(grC["red",])))# '2' or '3': almost equidistant

## The 'named' grays are in between {"slate gray" is not gray, strictly}

col2rgb(c(g66="gray66", darkg= "dark gray", g67="gray67",

g74="gray74", gray = "gray", g75="gray75",

g82="gray82", light="light gray", g83="gray83"))

crgb <- col2rgb(cc <- colors())

colnames(crgb) <- cc

t(crgb)## The whole table

ccodes <- c(256^(2:0) %*% crgb)## = internal codes

## How many names are 'aliases' of each other:

table(tcc <- table(ccodes))

length(uc <- unique(sort(ccodes))) # 502

## All the multiply named colors:

mult <- uc[tcc >= 2]



114 colors

cl <- lapply(mult, function(m) cc[ccodes == m])

names(cl) <- apply(col2rgb(sapply(cl, function(x)x[1])),

2, function(n)paste(n, collapse=","))

str(cl)

## Not run:

if(require(xgobi)) { ## Look at the color cube dynamically :

tc <- t(crgb[, !duplicated(ccodes)])

table(is.gray <- tc[,1] == tc[,2] & tc[,2] == tc[,3])# (397, 105)

xgobi(tc, color = c("gold", "gray")[1 + is.gray])

}

## End(Not run)

colors Color Names

Description

Returns the built-in color names which R knows about.

Usage

colors()

Details

These color names can be used with a col= specification in graphics functions.

An even wider variety of colors can be created with primitives rgb and hsv or the derived
rainbow, heat.colors, etc.

Value

A character vector containing all the built-in color names.

See Also

palette for setting the “palette” of colors for par(col=<num>); rgb, hsv, gray; rainbow
for a nice example; and heat.colors, topo.colors for images.

col2rgb for translating to RGB numbers and extended examples.

Examples

str(colors())



colSums 115

colSums Form Row and Column Sums and Means

Description

Form row and column sums and means for numeric arrays.

Usage

colSums (x, na.rm = FALSE, dims = 1)
rowSums (x, na.rm = FALSE, dims = 1)
colMeans(x, na.rm = FALSE, dims = 1)
rowMeans(x, na.rm = FALSE, dims = 1)

Arguments

x an array of two or more dimensions, containing numeric, complex, integer
or logical values, or a numeric data frame.

na.rm logical. Should missing values (including NaN) be omitted from the calcu-
lations?

dims Which dimensions are regarded as “rows” or “columns” to sum over. For
row*, the sum or mean is over dimensions dims+1, ...; for col* it is
over dimensions 1:dims.

Details

These functions are equivalent to use of apply with FUN = mean or FUN = sum with appro-
priate margins, but are a lot faster. As they are written for speed, they blur over some of
the subtleties of NaN and NA. If na.rm = FALSE and either NaN or NA appears in a sum, the
result will be one of NaN or NA, but which might be platform-dependent.

Value

A numeric or complex array of suitable size, or a vector if the result is one-dimensional.
The dimnames (or names for a vector result) are taken from the original array.

If there are no values in a range to be summed over (after removing missing values with
na.rm = TRUE), that component of the output is set to 0 (*Sums) or NA (*Means), consistent
with sum and mean.

See Also

apply, rowsum

Examples

## Compute row and column sums for a matrix:

x <- cbind(x1 = 3, x2 = c(4:1, 2:5))

rowSums(x); colSums(x)

dimnames(x)[[1]] <- letters[1:8]

rowSums(x); colSums(x); rowMeans(x); colMeans(x)

x[] <- as.integer(x)

rowSums(x); colSums(x)



116 commandArgs

x[] <- x < 3

rowSums(x); colSums(x)

x <- cbind(x1 = 3, x2 = c(4:1, 2:5))

x[3, ] <- NA; x[4, 2] <- NA

rowSums(x); colSums(x); rowMeans(x); colMeans(x)

rowSums(x, na.rm = TRUE); colSums(x, na.rm = TRUE)

rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

## an array

data(UCBAdmissions)

dim(UCBAdmissions)

rowSums(UCBAdmissions); rowSums(UCBAdmissions, dims = 2)

colSums(UCBAdmissions); colSums(UCBAdmissions, dims = 2)

## complex case

x <- cbind(x1 = 3 + 2i, x2 = c(4:1, 2:5) - 5i)

x[3, ] <- NA; x[4, 2] <- NA

rowSums(x); colSums(x); rowMeans(x); colMeans(x)

rowSums(x, na.rm = TRUE); colSums(x, na.rm = TRUE)

rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

commandArgs Extract Command Line Arguments

Description

Provides access to a copy of the command line arguments supplied when this R session was
invoked.

Usage

commandArgs()

Details

These arguments are captured before the standard R command line processing takes place.
This means that they are the unmodified values. If it were useful, we could provide support
an argument which indicated whether we want the unprocessed or processed values.

This is especially useful with the --args command-line flag to R, as all of the command
line after than flag is skipped.

Value

A character vector containing the name of the executable and the user-supplied command
line arguments. The first element is the name of the executable by which R was invoked.
As far as I am aware, the exact form of this element is platform dependent. It may be the
fully qualified name, or simply the last component (or basename) of the application.

See Also

BATCH



comment 117

Examples

commandArgs()

## Spawn a copy of this application as it was invoked.

## system(paste(commandArgs(), collapse=" "))

comment Query or Set a ‘Comment’ Attribute

Description

These functions set and query a comment attribute for any R objects. This is typically
useful for data.frames or model fits.

Contrary to other attributes, the comment is not printed (by print or print.default).

Usage

comment(x)
comment(x) <- value

Arguments

x any R object

value a character vector

See Also

attributes and attr for “normal” attributes.

Examples

x <- matrix(1:12, 3,4)

comment(x) <- c("This is my very important data from experiment #0234",

"Jun 5, 1998")

x

comment(x)

Comparison Relational Operators

Description

Binary operators which allow the comparison of values in vectors.

Usage

x < y
x > y
x <= y
x >= y
x == y
x != y



118 COMPILE

Details

Comparison of strings in character vectors is lexicographic within the strings using the
collating sequence of the locale in use: see locales. The collating sequence of locales such
as ‘en_US’ is normally different from ‘C’ (which should use ASCII) and can be surprising.

Value

A vector of logicals indicating the result of the element by element comparison. The elements
of shorter vectors are recycled as necessary.

Objects such as arrays or time-series can be compared this way provided they are con-
formable.

Note

Don’t use == and != for tests, such as in if expressions, where you must get a single TRUE
or FALSE. Unless you are absolutely sure that nothing unusual can happen, you should use
the identical function instead.

For numerical values, remember == and != do not allow for the finite representation of frac-
tions, nor for rounding error. Using all.equal with identical is almost always preferable.
See the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

Syntax for operator precedence.

Examples

x <- rnorm(20)

x < 1

x[x > 0]

x1 <- 0.5 - 0.3

x2 <- 0.3 - 0.1

x1 == x2 # FALSE on most machines

identical(all.equal(x1, x2), TRUE) # TRUE everywhere

COMPILE Compile Files for Use with R

Description

Compile given source files so that they can subsequently be collected into a shared library
using R CMD SHLIB and be loaded into R using dyn.load().

Usage

R CMD COMPILE [options] srcfiles



complete.cases 119

Arguments

srcfiles A list of the names of source files to be compiled. Currently, C, C++
and FORTRAN are supported; the corresponding files should have the
extensions ‘.c’, ‘.cc’ (or ‘.cpp’ or ‘.C’), and ‘.f’, respectively.

options A list of compile-relevant settings, such as special values for CFLAGS or
FFLAGS, or for obtaining information about usage and version of the utility.

Details

Note that Ratfor is not supported. If you have Ratfor source code, you need to convert it
to FORTRAN. On many Solaris systems mixing Ratfor and FORTRAN code will work.

See Also

SHLIB, dyn.load

complete.cases Find Complete Cases

Description

Return a logical vector indicating which cases are complete, i.e., have no missing values.

Usage

complete.cases(...)

Arguments

... a sequence of vectors, matrices and data frames.

Value

A logical vector specifying which observations/rows have no missing values across the entire
sequence.

See Also

is.na, na.omit, na.fail.

Examples

data(airquality)

x <- airquality[, -1] # x is a regression design matrix

y <- airquality[, 1] # y is the corresponding response

stopifnot(complete.cases(y) != is.na(y))

ok <- complete.cases(x,y)

sum(!ok) # how many are not "ok" ?

x <- x[ok,]

y <- y[ok]



120 complex

complex Complex Vectors

Description

Basic functions which support complex arithmetic in R.

Usage

complex(length.out = 0, real = numeric(), imaginary = numeric(),
modulus = 1, argument = 0)

as.complex(x, ...)
is.complex(x)

Re(x)
Im(x)
Mod(x)
Arg(x)
Conj(x)

Arguments

length.out numeric. Desired length of the output vector, inputs being recycled as
needed.

real numeric vector.

imaginary numeric vector.

modulus numeric vector.

argument numeric vector.

x an object, probably of mode complex.

... further arguments passed to or from other methods.

Details

Complex vectors can be created with complex. The vector can be specified either by giving
its length, its real and imaginary parts, or modulus and argument. (Giving just the length
generates a vector of complex zeroes.)

as.complex attempts to coerce its argument to be of complex type: like as.vector it strips
attributes including names.

Note that is.complex and is.numeric are never both TRUE.

The functions Re, Im, Mod, Arg and Conj have their usual interpretation as returning the
real part, imaginary part, modulus, argument and complex conjugate for complex values.
Modulus and argument are also called the polar coordinates. If z = x+ iy with real x and
y, Mod(z) =

√
x2 + y2, and for φ = Arg(z), x = cos(φ) and y = sin(φ).

In addition, the elementary trigonometric, logarithmic and exponential functions are avail-
able for complex values.

is.complex is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.



conditions 121

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

0i ^ (-3:3)

matrix(1i^ (-6:5), nr=4)#- all columns are the same

0 ^ 1i # a complex NaN

## create a complex normal vector

z <- complex(real = rnorm(100), imag = rnorm(100))

## or also (less efficiently):

z2 <- 1:2 + 1i*(8:9)

## The Arg(.) is an angle:

zz <- (rep(1:4,len=9) + 1i*(9:1))/10

zz.shift <- complex(modulus = Mod(zz), argument= Arg(zz) + pi)

plot(zz, xlim=c(-1,1), ylim=c(-1,1), col="red", asp = 1,

main = expression(paste("Rotation by "," ", pi == 180^o)))

abline(h=0,v=0, col="blue", lty=3)

points(zz.shift, col="orange")

conditions Condition Handling and Recovery

Description

These functions provide a mechanism for handling unusual conditions, including errors and
warnings.

Usage

tryCatch(expr, ..., finally)
withCallingHandlers(expr, ...)

signalCondition(cond)

simpleCondition(message, call = NULL)
simpleError (message, call = NULL)
simpleWarning (message, call = NULL)

## S3 method for class 'condition':
as.character(x, ...)
## S3 method for class 'error':
as.character(x, ...)
## S3 method for class 'condition':
print(x, ...)
## S3 method for class 'restart':
print(x, ...)



122 conditions

conditionCall(c)
## S3 method for class 'condition':
conditionCall(c)
conditionMessage(c)
## S3 method for class 'condition':
conditionMessage(c)

withRestarts(expr, ...)

computeRestarts(cond = NULL)
findRestart(name, cond = NULL)
invokeRestart(r, ...)
invokeRestartInteractively(r)

isRestart(x)
restartDescription(r)
restartFormals(r)

.signalSimpleWarning(msg, call)

.handleSimpleError(h, msg, call)

Arguments

c a condition object.

call call expression.

cond a condition object.

expr expression to be evaluated.

finally expression to be evaluated before returning or exiting.

h function.

message character string.

msg character string.

name character string naming a restart.

r restart object.

x object.

... additional arguments; see details below.

Details

The condition system provides a mechanism for signaling and handling unusual conditions,
including errors and warnings. Conditions are represented as objects that contain infor-
mation about the condition that occurred, such as a message and the call in which the
condition occurred. Currently conditions are S3-style objects, though this may eventually
change.

Conditions are objects inheriting from the abstract class condition. Errors and warn-
ings are objects inheriting from the abstract subclasses error and warning. The
class simpleError is the class used by stop and all internal error signals. Similarly,
simpleWarning is used by warning. The constructors by the same names take a string de-
scribing the condition as argument and an optional call. The functions conditionMessage
and conditionCall ae generic functions that return the message and call of a condition.



conditions 123

Conditions are signaled by signalCondition. In addition, the stop and warning functions
have been modified to also accept condition arguments.

The function tryCatch evaluates its expression argument in a context where the handlers
provided in the ... argument are available. The finally expression is then evaluated
in the context in which tryCatch was called; that is, the handlers supplied to the current
tryCatch call are not active when the finally expression is evaluated.

Handlers provided in the ... argument to tryCatch are established for the duration of the
evaluation of expr. If no condition is signaled when evaluating expr then tryCatch returns
the value of the expression.

If a condition is signaled while evaluating expr then established handlers are checked,
starting with the most recently established ones, for one matching the class of the condition.
When several handlers are supplied in a single tryCatch then the first one is considered
more recent than the second. If a handler is found then control is transferred to the
tryCatch call that established the handler, the handler found and all more recent handlers
are disestablished, the handler is called with the condition as its argument, and the result
returned by the handler is returned as the value of the tryCatch call.

Calling handlers are established by withCallingHandlers. If a condition is signaled and
the applicable handler is a calling handler, then the handler is called by signalCondition
in the context where the condition was signaled but with the available handlers restricted
to those below the handler called in the handler stack. If the handler returns, then the next
handler is tried; once the last handler has been tried, signalCondition returns NULL.

User interrupts signal a condition of class interrupt that inherits directly from class
condition before executing the default interrupt action.

Restarts are used for establishing recovery protocols. They can be established using
withRestarts. One pre-established restart is an abort restart that represents a jump
to top level.

findRestart and computeRestarts find the available restarts. findRestart returns the
most recently established restart of the specified name. computeRestarts returns a list of
all restarts. Both can be given a condition argument and will then ignore restarts that do
not apply to the condition.

invokeRestart transfers control to the point where the specified restart was established
and calls the restart’s handler with the arguments, if any, given as additional arguments
to invokeRestart. The restart argument to invokeRestart can be a character string, in
which case findRestart is used to find the restart.

New restarts for withRestarts can be specified in several ways. The simplest is in
name=function form where the function is the handler to call when the restart is invoked.
Another simple variant is as name=string where the string is stored in the description
field of the restart object returned by findRestart; in this case the handler ignores its
arguments and returns NULL. The most flexible form of a restart specification is as a list
that can include several fields, including hander, description, and test. The test field
should contain a function of one argument, a condition, that returns TRUE if the restart
applies to the condition and FALSE if it does not; the default function returns TRUE for all
conditions.

One additional field that can be specified for a restart is interactive. This should be
a function of no arguments that returns a list of arguments to pass to the restart han-
dler. The list could be obtained by interacting with the user if necessary. The function
invokeRestartInteractively calls this function to obtain the arguments to use when in-
voking the restart. The default interactive method queries the user for values for the
formal arguments of the handler function.



124 confint

.signalSimpleWarning and .handleSimpleError are used internally and should not be
called directly.

References

The tryCatch mechanism is similar to Java error handling. Calling handlers are based on
Common Lisp and Dylan. Restarts are based on the Common Lisp restart mechanism.

See Also

stop and warning signal conditions, and try is essentially a simplified version of tryCatch.

Examples

tryCatch(1, finally=print("Hello"))

e <- simpleError("test error")

## Not run: stop(e)

## Not run: tryCatch(stop(e), finally=print("Hello"))

## Not run: tryCatch(stop("fred"), finally=print("Hello"))

tryCatch(stop(e), error = function(e) e, finally=print("Hello"))

tryCatch(stop("fred"), error = function(e) e, finally=print("Hello"))

withCallingHandlers({ warning("A"); 1+2 }, warning = function(w) {})

{ try(invokeRestart("tryRestart")); 1}

## Not run: { withRestarts(stop("A"), abort = function() {}); 1}

withRestarts(invokeRestart("foo", 1, 2), foo = function(x, y) {x + y})

confint Confidence Intervals for Model Parameters

Description

Computes confidence intervals for one or more parameters in a fitted model. Base has a
method for objects inheriting from class "lm".

Usage

confint(object, parm, level = 0.95, ...)

Arguments

object a fitted model object.

parm a specification of which parameters are to be given confidence intervals,
either a vector of numbers or a vector of names. If missing, all parameters
are considered.

level the confidence level required.

... additional argument(s) for methods

Details

confint is a generic function with no default method. For objects of class "lm" the direct
formulae based on t values are used.

Package MASS contains methods for "glm" and "nls" objects.



conflicts 125

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each pa-
rameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2 in % (by default 2.5% and
97.5%).

See Also

confint.nls

Examples

data(mtcars)

fit <- lm(100/mpg ~ disp + hp + wt + am, data=mtcars)

confint(fit)

confint(fit, "wt")

conflicts Search for Masked Objects on the Search Path

Description

conflicts reports on objects that exist with the same name in two or more places on the
search path, usually because an object in the user’s workspace or a package is masking a
system object of the same name. This helps discover unintentional masking.

Usage

conflicts(where=search(), detail=FALSE)

Arguments

where A subset of the search path, by default the whole search path.
detail If TRUE, give the masked or masking functions for all members of the

search path.

Value

If detail=FALSE, a character vector of masked objects. If detail=TRUE, a list of character
vectors giving the masked or masking objects in that member of the search path. Empty
vectors are omitted.

Examples

lm <- 1:3

conflicts(, TRUE)

## gives something like

# $.GlobalEnv

# [1] "lm"

#

# $package:base

# [1] "lm"

## Remove things from your "workspace" that mask others:

remove(list = conflicts(detail=TRUE)$.GlobalEnv)



126 connections

connections Functions to Manipulate Connections

Description

Functions to create, open and close connections.

Usage

file(description = "", open = "", blocking = TRUE,
encoding = getOption("encoding"))

pipe(description, open = "", encoding = getOption("encoding"))
fifo(description = "", open = "", blocking = FALSE,

encoding = getOption("encoding"))
gzfile(description, open = "", encoding = getOption("encoding"),

compression = 6)
unz(description, filename, open = "", encoding = getOption("encoding"))
bzfile(description, open = "", encoding = getOption("encoding"))
url(description, open = "", blocking = TRUE,

encoding = getOption("encoding"))
socketConnection(host = "localhost", port, server = FALSE,

blocking = FALSE, open = "a+",
encoding = getOption("encoding"))

open(con, ...)
## S3 method for class 'connection':
open(con, open = "r", blocking = TRUE, ...)
close(con, ...)
## S3 method for class 'connection':
close(con, type = "rw", ...)

flush(con)

isOpen(con, rw = "")
isIncomplete(con)

Arguments

description character. A description of the connection. For file and pipe this is
a path to the file to be opened. For url it is a complete URL, includ-
ing schemes (http://, ftp:// or file://). file also accepts complete
URLs.

filename a filename within a zip file.

con a connection.

host character. Host name for port.

port integer. The TCP port number.

server logical. Should the socket be a client or a server?

open character. A description of how to open the connection (if at all). See
Details for possible values.



connections 127

blocking logical. See ‘Blocking’ section below.

encoding An integer vector of length 256.

compression integer in 0–9. The amount of compression to be applied when writing,
from none to maximal. The default is a good space/time compromise.

type character. Currently ignored.

rw character. Empty or "read" or "write", partial matches allowed.

... arguments passed to or from other methods.

Details

The first eight functions create connections. By default the connection is not opened (except
for socketConnection), but may be opened by setting a non-empty value of argument open.

gzfile applies to files compressed by ‘gzip’, and bzfile to those compressed by ‘bzip2’:
such connections can only be binary.

unz reads (only) single files within zip files, in binary mode. The description is the full
path, with ‘.zip’ extension if required.

All platforms support (gz)file connections and url("file://") connections. The other
types may be partially implemented or not implemented at all. (They do work on most
Unix platforms, and all but fifo on Windows.)

Proxies can be specified for url connections: see download.file.

open, close and seek are generic functions: the following applies to the methods relevant
to connections.

open opens a connection. In general functions using connections will open them if they are
not open, but then close them again, so to leave a connection open call open explicitly.

Possible values for the mode open to open a connection are

"r" or "rt" Open for reading in text mode.

"w" or "wt" Open for writing in text mode.

"a" or "at" Open for appending in text mode.

"rb" Open for reading in binary mode.

"wb" Open for writing in binary mode.

"ab" Open for appending in binary mode.

"r+", "r+b" Open for reading and writing.

"w+", "w+b" Open for reading and writing, truncating file initially.

"a+", "a+b" Open for reading and appending.

Not all modes are applicable to all connections: for example URLs can only be opened for
reading. Only file and socket connections can be opened for reading and writing/appending.
For many connections there is little or no difference between text and binary modes, but
there is for file-like connections on Windows, and pushBack is text-oriented and is only
allowed on connections open for reading in text mode.

close closes and destroys a connection.

flush flushes the output stream of a connection open for write/append (where imple-
mented).

If for a file connection the description is "", the file is immediately opened in "w+" mode
and unlinked from the file system. This provides a temporary file to write to and then read
from.



128 connections

The encoding vector is used to map the input from a file or pipe to the platform’s na-
tive character set. Supplied examples are native.enc as well as MacRoman, WinAnsi and
ISOLatin1, whose actual encoding is platform-dependent. Missing characters are mapped
to a space in these encodings.

Value

file, pipe, fifo, url, gzfile and socketConnection return a connection object which
inherits from class "connection" and has a first more specific class.

isOpen returns a logical value, whether the connection is currently open.

isIncomplete returns a logical value, whether last read attempt was blocked, or for an
output text connection whether there is unflushed output.

Blocking

The default condition for all but fifo and socket connections is to be in blocking mode. In
that mode, functions do not return to the R evaluator until they are complete. In non-
blocking mode, operations return as soon as possible, so on input they will return with
whatever input is available (possibly none) and for output they will return whether or not
the write succeeded.

The function readLines behaves differently in respect of incomplete last lines in the two
modes: see its help page.

Even when a connection is in blocking mode, attempts are made to ensure that it does
not block the event loop and hence the operation of GUI parts of R. These do not always
succeed, and the whole process will be blocked during a DNS lookup on Unix, for example.

Most blocking operations on URLs and sockets are subject to the timeout set by
options("timeout"). Note that this is a timeout for no response at all, not for the whole
operation.

Fifos

Fifos default to non-blocking. That follows Svr4 and it probably most natural, but it does
have some implications. In particular, opening a non-blocking fifo connection for writing
(only) will fail unless some other process is reading on the fifo.

Opening a fifo for both reading and writing (in any mode: one can only append to fifos)
connects both sides of the fifo to the R process, and provides an similar facility to file().

Note

R’s connections are modelled on those in S version 4 (see Chambers, 1998). However R goes
well beyond the Svr4 model, for example in output text connections and URL, gzfile, bzfile
and socket connections.

The default mode in R is "r" except for socket connections. This differs from Svr4, where
it is the equivalent of "r+", known as "*".

On platforms where vsnprintf does not return the needed length of output (e.g., Windows)
there is a 100,000 character output limit on the length of line for fifo, gzfile and bzfile
connections: longer lines will be truncated with a warning.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.



connections 129

See Also

textConnection, seek, readLines, readBin, writeLines, writeBin, showConnections,
pushBack.

capabilities to see if gzfile, url, fifo and socketConnection are supported by this
build of R.

Examples

zz <- file("ex.data", "w") # open an output file connection

cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")

cat("One more line\n", file = zz)

close(zz)

readLines("ex.data")

unlink("ex.data")

zz <- gzfile("ex.gz", "w") # compressed file

cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")

close(zz)

readLines(gzfile("ex.gz"))

unlink("ex.gz")

if(capabilities("bzip2")) {

zz <- bzfile("ex.bz2", "w") # bzip2-ed file

cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")

close(zz)

print(readLines(bzfile("ex.bz2")))

unlink("ex.bz2")

}

## An example of a file open for reading and writing

Tfile <- file("test1", "w+")

c(isOpen(Tfile, "r"), isOpen(Tfile, "w")) # both TRUE

cat("abc\ndef\n", file=Tfile)

readLines(Tfile)

seek(Tfile, 0, rw="r") # reset to beginning

readLines(Tfile)

cat("ghi\n", file=Tfile)

readLines(Tfile)

close(Tfile)

unlink("test1")

## We can do the same thing with an anonymous file.

Tfile <- file()

cat("abc\ndef\n", file=Tfile)

readLines(Tfile)

close(Tfile)

if(capabilities("fifo")) {

zz <- fifo("foo", "w+")

writeLines("abc", zz)

print(readLines(zz))

close(zz)

unlink("foo")

}

## Not run: ## Unix examples of use of pipes



130 Constants

# read listing of current directory

readLines(pipe("ls -1"))

# remove trailing commas. Suppose

% cat data2

450, 390, 467, 654, 30, 542, 334, 432, 421,

357, 497, 493, 550, 549, 467, 575, 578, 342,

446, 547, 534, 495, 979, 479

# Then read this by

scan(pipe("sed -e s/,$// data2"), sep=",")

# convert decimal point to comma in output

# both R strings and (probably) the shell need \ doubled

zz <- pipe(paste("sed s/\\\\./,/ >", "outfile"), "w")

cat(format(round(rnorm(100), 4)), sep = "\n", file = zz)

close(zz)

file.show("outfile", delete.file=TRUE)## End(Not run)

## Not run: ## example for Unix machine running a finger daemon

con <- socketConnection(port = 79, blocking = TRUE)

writeLines(paste(system("whoami", intern=TRUE), "\r", sep=""), con)

gsub(" *$", "", readLines(con))

close(con)## End(Not run)

## Not run: ## two R processes communicating via non-blocking sockets

# R process 1

con1 <- socketConnection(port = 6011, server=TRUE)

writeLines(LETTERS, con1)

close(con1)

# R process 2

con2 <- socketConnection(Sys.info()["nodename"], port = 6011)

# as non-blocking, may need to loop for input

readLines(con2)

while(isIncomplete(con2)) {Sys.sleep(1); readLines(con2)}

close(con2)## End(Not run)

Constants Built-in Constants

Description

Constants built into R.

Usage

LETTERS
letters
month.abb
month.name
pi



constrOptim 131

Details

R has a limited number of built-in constants (there is also a rather larger library of data
sets which can be loaded with the function data).

The following constants are available:

� LETTERS: the 26 upper-case letters of the Roman alphabet;

� letters: the 26 lower-case letters of the Roman alphabet;

� month.abb: the three-letter abbreviations for the English month names;

� month.name: the English names for the months of the year;

� pi: the ratio of the circumference of a circle to its diameter.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

data.

Examples

# John Machin (1705) computed 100 decimals of pi :

pi - 4*(4*atan(1/5) - atan(1/239))

constrOptim Linearly constrained optimisation

Description

Minimise a function subject to linear inequality constraints using an adaptive barrier algo-
rithm.

Usage

constrOptim(theta, f, grad, ui, ci, mu = 1e-04, control = list(),
method = if(is.null(grad)) "Nelder-Mead" else "BFGS",
outer.iterations = 100, outer.eps = 1e-05, ...)

Arguments

theta Starting value: must be in the feasible region.

f Function to minimise.

grad Gradient of f.

ui Constraints (see below).

ci Constraints (see below).

mu (Small) tuning parameter.

control Passed to optim.

method Passed to optim.



132 constrOptim

outer.iterations

Iterations of the barrier algorithm.

outer.eps Criterion for relative convergence of the barrier algorithm.

... Other arguments passed to optim

Details

The feasible region is defined by ui %*% theta - ci >= 0. The starting value must be in
the interior of the feasible region, but the minimum may be on the boundary.

A logarithmic barrier is added to enforce the constraints and then optim is called. The
barrier function is chosen so that the objective function should decrease at each outer
iteration. Minima in the interior of the feasible region are typically found quite quickly, but
a substantial number of outer iterations may be needed for a minimum on the boundary.

The tuning parameter mu multiplies the barrier term. Its precise value is often relatively
unimportant. As mu increases the augmented objective function becomes closer to the
original objective function but also less smooth near the boundary of the feasible region.

Any optim method that permits infinite values for the objective function may be used
(currently all but ”L-BFGS-B”). The gradient function must be supplied except with
method="Nelder-Mead".

As with optim, the default is to minimise and maximisation can be performed by setting
control$fnscale to a negative value.

Value

As for optim, but with two extra components: barrier.value giving the value of the barrier
function at the optimum and outer.iterations gives the number of outer iterations (calls
to optim)

References

K. Lange Numerical Analysis for Statisticians. Springer 2001, p185ff

See Also

optim, especially method="L-BGFS-B" which does box-constrained optimisation.

Examples

## from optim

fr <- function(x) { ## Rosenbrock Banana function

x1 <- x[1]

x2 <- x[2]

100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}

grr <- function(x) { ## Gradient of 'fr'

x1 <- x[1]

x2 <- x[2]

c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

200 * (x2 - x1 * x1))

}

optim(c(-1.2,1), fr, grr)

#Box-constraint, optimum on the boundary

constrOptim(c(-1.2,0.9), fr, grr, ui=rbind(c(-1,0),c(0,-1)), ci=c(-1,-1))



contour 133

# x<=0.9, y-x>0.1

constrOptim(c(.5,0), fr, grr, ui=rbind(c(-1,0),c(1,-1)), ci=c(-0.9,0.1))

## Solves linear and quadratic programming problems

## but needs a feasible starting value

#

# from example(solve.QP) in 'quadprog'

# no derivative

fQP <- function(b) {-sum(c(0,5,0)*b)+0.5*sum(b*b)}

Amat <- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3)

bvec <- c(-8,2,0)

constrOptim(c(2,-1,-1), fQP, NULL, ui=t(Amat),ci=bvec)

# derivative

gQP <- function(b) {-c(0,5,0)+b}

constrOptim(c(2,-1,-1), fQP, gQP, ui=t(Amat), ci=bvec)

## Now with maximisation instead of minimisation

hQP <- function(b) {sum(c(0,5,0)*b)-0.5*sum(b*b)}

constrOptim(c(2,-1,-1), hQP, NULL, ui=t(Amat), ci=bvec,

control=list(fnscale=-1))

contour Display Contours

Description

Create a contour plot, or add contour lines to an existing plot.

Usage

contour(x, ...)
## Default S3 method:
contour(x = seq(0, 1, len = nrow(z)), y = seq(0, 1, len = ncol(z)),

z,
nlevels = 10, levels = pretty(zlim, nlevels), labels = NULL,
xlim = range(x, finite = TRUE),
ylim = range(y, finite = TRUE),
zlim = range(z, finite = TRUE),
labcex = 0.6, drawlabels = TRUE, method = "flattest",
vfont = c("sans serif", "plain"),
axes = TRUE, frame.plot = axes,
col = par("fg"), lty = par("lty"), lwd = par("lwd"),
add = FALSE, ...)

Arguments

x,y locations of grid lines at which the values in z are measured. These must
be in ascending order. By default, equally spaced values from 0 to 1 are
used. If x is a list, its components x$x and x$y are used for x and y,
respectively. If the list has component z this is used for z.

z a matrix containing the values to be plotted (NAs are allowed). Note that
x can be used instead of z for convenience.



134 contour

nlevels number of contour levels desired iff levels is not supplied.

levels numeric vector of levels at which to draw contour lines.

labels a vector giving the labels for the contour lines. If NULL then the levels are
used as labels.

labcex cex for contour labelling.

drawlabels logical. Contours are labelled if TRUE.

method character string specifying where the labels will be located. Possible values
are "simple", "edge" and "flattest" (the default). See the Details
section.

vfont if a character vector of length 2 is specified, then Hershey vector fonts
are used for the contour labels. The first element of the vector selects a
typeface and the second element selects a fontindex (see text for more
information).

xlim, ylim, zlim

x-, y- and z-limits for the plot.
axes, frame.plot

logical indicating whether axes or a box should be drawn, see
plot.default.

col color for the lines drawn.

lty line type for the lines drawn.

lwd line width for the lines drawn.

add logical. If TRUE, add to a current plot.

... additional graphical parameters (see par) and the arguments to title
may also be supplied.

Details

contour is a generic function with only a default method in base R.

There is currently no documentation about the algorithm. The source code is in
‘$R HOME/src/main/plot3d.c’.

The methods for positioning the labels on contours are "simple" (draw at the edge of the
plot, overlaying the contour line), "edge" (draw at the edge of the plot, embedded in the
contour line, with no labels overlapping) and "flattest" (draw on the flattest section of
the contour, embedded in the contour line, with no labels overlapping). The second and
third may not draw a label on every contour line.

For information about vector fonts, see the help for text and Hershey.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

filled.contour for “color-filled” contours, image and the graphics demo which can be
invoked as demo(graphics).



contrast 135

Examples

x <- -6:16

op <- par(mfrow = c(2, 2))

contour(outer(x, x), method = "edge", vfont = c("sans serif", "plain"))

z <- outer(x, sqrt(abs(x)), FUN = "/")

## Should not be necessary:

z[!is.finite(z)] <- NA

image(x, x, z)

contour(x, x, z, col = "pink", add = TRUE, method = "edge",

vfont = c("sans serif", "plain"))

contour(x, x, z, ylim = c(1, 6), method = "simple", labcex = 1)

contour(x, x, z, ylim = c(-6, 6), nlev = 20, lty = 2, method = "simple")

par(op)

## Persian Rug Art:

x <- y <- seq(-4*pi, 4*pi, len = 27)

r <- sqrt(outer(x^2, y^2, "+"))

opar <- par(mfrow = c(2, 2), mar = rep(0, 4))

for(f in pi^(0:3))

contour(cos(r^2)*exp(-r/f),

drawlabels = FALSE, axes = FALSE, frame = TRUE)

data("volcano")

rx <- range(x <- 10*1:nrow(volcano))

ry <- range(y <- 10*1:ncol(volcano))

ry <- ry + c(-1,1) * (diff(rx) - diff(ry))/2

tcol <- terrain.colors(12)

par(opar); opar <- par(pty = "s", bg = "lightcyan")

plot(x = 0, y = 0,type = "n", xlim = rx, ylim = ry, xlab = "", ylab = "")

u <- par("usr")

rect(u[1], u[3], u[2], u[4], col = tcol[8], border = "red")

contour(x, y, volcano, col = tcol[2], lty = "solid", add = TRUE,

vfont = c("sans serif", "plain"))

title("A Topographic Map of Maunga Whau", font = 4)

abline(h = 200*0:4, v = 200*0:4, col = "lightgray", lty = 2, lwd = 0.1)

par(opar)

contrast Contrast Matrices

Description

Return a matrix of contrasts.

Usage

contr.helmert(n, contrasts = TRUE)
contr.poly(n, scores = 1:n, contrasts = TRUE)
contr.sum(n, contrasts = TRUE)
contr.treatment(n, base = 1, contrasts = TRUE)



136 contrast

Arguments

n a vector of levels for a factor, or the number of levels.

contrasts a logical indicating whether contrasts should be computed.

scores the set of values over which orthogonal polynomials are to be computed.

base an integer specifying which group is considered the baseline group. Ig-
nored if contrasts is FALSE.

Details

These functions are used for creating contrast matrices for use in fitting analysis of variance
and regression models. The columns of the resulting matrices contain contrasts which can be
used for coding a factor with n levels. The returned value contains the computed contrasts.
If the argument contrasts is FALSE then a square indicator matrix is returned.

cont.helmert returns Helmert contrasts, which contrast the second level with the first, the
third with the average of the first two, and so on. contr.poly returns contrasts based on
orthogonal polynomials. contr.sum uses “sum to zero contrasts”.

contr.treatment contrasts each level with the baseline level (specified by base): the base-
line level is omitted. Note that this does not produce “contrasts” as defined in the standard
theory for linear models as they are not orthogonal to the constant.

Value

A matrix with n rows and k columns, with k=n-1 if contrasts is TRUE and k=n if contrasts
is FALSE.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models
in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

contrasts, C, and aov, glm, lm.

Examples

(cH <- contr.helmert(4))

apply(cH, 2,sum) # column sums are 0!

crossprod(cH) # diagonal -- columns are orthogonal

contr.helmert(4, contrasts = FALSE) # just the 4 x 4 identity matrix

(cT <- contr.treatment(5))

all(crossprod(cT) == diag(4)) # TRUE: even orthonormal

(cP <- contr.poly(3)) # Linear and Quadratic

zapsmall(crossprod(cP), dig=15) # orthonormal up to fuzz



contrasts 137

contrasts Get and Set Contrast Matrices

Description

Set and view the contrasts associated with a factor.

Usage

contrasts(x, contrasts = TRUE)
contrasts(x, how.many) <- value

Arguments

x a factor.

contrasts logical. See Details.

how.many How many contrasts should be made. Defaults to one less than the number
of levels of x. This need not be the same as the number of columns of
ctr.

value either a matrix whose columns give coefficients for contrasts in the levels
of x, or the (quoted) name of a function which computes such matrices.

Details

If contrasts are not set for a factor the default functions from options("contrasts") are
used.

The argument contrasts is ignored if x has a matrix contrasts attribute set. Otherwise
if contrasts = TRUE it is passed to a contrasts function such as contr.treatment and if
contrasts = FALSE an identity matrix is returned.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models
in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

C, contr.helmert, contr.poly, contr.sum, contr.treatment; glm, aov, lm.

Examples

example(factor)

fff <- ff[, drop=TRUE] # reduce to 5 levels.

contrasts(fff) # treatment contrasts by default

contrasts(C(fff, sum))

contrasts(fff, contrasts = FALSE) # the 5x5 identity matrix

contrasts(fff) <- contr.sum(5); contrasts(fff) # set sum contrasts

contrasts(fff, 2) <- contr.sum(5); contrasts(fff) # set 2 contrasts

# supply 2 contrasts, compute 2 more to make full set of 4.

contrasts(fff) <- contr.sum(5)[,1:2]; contrasts(fff)



138 Control

contributors R Project Contributors

Description

The R Who-is-who, describing who made significant contributions to the development of R.

Usage

contributors()

Control Control Flow

Description

These are the basic control-flow constructs of the R language. They function in much the
same way as control statements in any algol-like language.

Usage

if(cond) expr
if(cond) cons.expr else alt.expr
for(var in seq) expr
while(cond) expr
repeat expr
break
next

Details

Note that expr and cons.expr, etc, in the Usage section above means an expression in a
formal sense. This is either a simple expression or a so called compound expression, usually
of the form { expr1 ; expr2 }.

Note that it is a common mistake to forget putting braces ({ .. }) around your state-
ments, e.g., after if(..) or for(....). In particular, you should not have a newline
between } and else to avoid a syntax error in entering a if ... else construct at the
keyboard or via source. For that reason, one (somewhat extreme) attitude of defensive
programming uses braces always, e.g., for if clauses.

The index seq in a for loop is evaluated at the start of the loop; changing it subsequently
does not affect the loop.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

Syntax for the basic R syntax and operators, Paren for parentheses and braces; further,
ifelse, switch.



convolve 139

Examples

for(i in 1:5) print(1:i)

for(n in c(2,5,10,20,50)) {

x <- rnorm(n)

cat(n,":", sum(x^2),"\n")

}

convolve Fast Convolution

Description

Use the Fast Fourier Transform to compute the several kinds of convolutions of two se-
quences.

Usage

convolve(x, y, conj = TRUE, type = c("circular", "open", "filter"))

Arguments

x,y numeric sequences of the same length to be convolved.

conj logical; if TRUE, take the complex conjugate before back-transforming (de-
fault, and used for usual convolution).

type character; one of "circular", "open", "filter" (beginning of word is
ok). For circular, the two sequences are treated as circular, i.e., periodic.
For open and filter, the sequences are padded with 0s (from left and
right) first; "filter" returns the middle sub-vector of "open", namely,
the result of running a weighted mean of x with weights y.

Details

The Fast Fourier Transform, fft, is used for efficiency.

The input sequences x and y must have the same length if circular is true.

Note that the usual definition of convolution of two sequences x and y is given by
convolve(x, rev(y), type = "o").

Value

If r <- convolve(x,y, type = "open") and n <- length(x), m <- length(y), then

rk =
∑

i

xk−m+iyi

where the sum is over all valid indices i, for k = 1, . . . , n+m− 1

If type == "circular", n = m is required, and the above is true for i, k = 1, . . . , n when
xj := xn+j for j < 1.

References

Brillinger, D. R. (1981) Time Series: Data Analysis and Theory, Second Edition. San
Francisco: Holden-Day.



140 coplot

See Also

fft, nextn, and particularly filter (from the ts package) which may be more appropriate.

Examples

x <- c(0,0,0,100,0,0,0)

y <- c(0,0,1, 2 ,1,0,0)/4

zapsmall(convolve(x,y)) # *NOT* what you first thought.

zapsmall(convolve(x, y[3:5], type="f")) # rather

x <- rnorm(50)

y <- rnorm(50)

# Circular convolution *has* this symmetry:

all.equal(convolve(x,y, conj = FALSE),

rev(convolve(rev(y),x)))

n <- length(x <- -20:24)

y <- (x-10)^2/1000 + rnorm(x)/8

Han <- function(y) # Hanning

convolve(y, c(1,2,1)/4, type = "filter")

plot(x,y, main="Using convolve(.) for Hanning filters")

lines(x[-c(1 , n) ], Han(y), col="red")

lines(x[-c(1:2, (n-1):n)], Han(Han(y)), lwd=2, col="dark blue")

coplot Conditioning Plots

Description

This function produces two variants of the conditioning plots discussed in the reference
below.

Usage

coplot(formula, data, given.values, panel = points, rows, columns,
show.given = TRUE, col = par("fg"), pch = par("pch"),
bar.bg = c(num = gray(0.8), fac = gray(0.95)),
xlab = c(x.name, paste("Given :", a.name)),
ylab = c(y.name, paste("Given :", b.name)),
subscripts = FALSE,
axlabels = function(f) abbreviate(levels(f)),
number = 6, overlap = 0.5, xlim, ylim, ...)

co.intervals(x, number = 6, overlap = 0.5)

Arguments

formula a formula describing the form of conditioning plot. A formula of the form y
~ x | a indicates that plots of y versus x should be produced conditional
on the variable a. A formula of the form y ~ x| a * b indicates that
plots of y versus x should be produced conditional on the two variables a
and b.



coplot 141

All three or four variables may be either numeric or factors. When x or y
are factors, the result is almost as if as.numeric() was applied, whereas
for factor a or b, the conditioning (and its graphics if show.given is true)
are adapted.

data a data frame containing values for any variables in the formula. By default
the environment where coplot was called from is used.

given.values a value or list of two values which determine how the conditioning on a
and b is to take place.
When there is no b (i.e., conditioning only on a), usually this is a matrix
with two columns each row of which gives an interval, to be conditioned
on, but is can also be a single vector of numbers or a set of factor levels
(if the variable being conditioned on is a factor). In this case (no b), the
result of co.intervals can be used directly as given.values argument.

panel a function(x, y, col, pch, ...) which gives the action to be carried
out in each panel of the display. The default is points.

rows the panels of the plot are laid out in a rows by columns array. rows gives
the number of rows in the array.

columns the number of columns in the panel layout array.

show.given logical (possibly of length 2 for 2 conditioning variables): should condi-
tioning plots be shown for the corresponding conditioning variables (de-
fault TRUE)

col a vector of colors to be used to plot the points. If too short, the values
are recycled.

pch a vector of plotting symbols or characters. If too short, the values are
recycled.

bar.bg a named vector with components "num" and "fac" giving the background
colors for the (shingle) bars, for numeric and factor conditioning variables
respectively.

xlab character; labels to use for the x axis and the first conditioning variable.
If only one label is given, it is used for the x axis and the default label is
used for the conditioning variable.

ylab character; labels to use for the y axis and any second conditioning variable.

subscripts logical: if true the panel function is given an additional (third) argument
subscripts giving the subscripts of the data passed to that panel.

axlabels function for creating axis (tick) labels when x or y are factors.

number integer; the number of conditioning intervals, for a and b, possibly of
length 2. It is only used if the corresponding conditioning variable is not
a factor.

overlap numeric < 1; the fraction of overlap of the conditioning variables, possibly
of length 2 for x and y direction. When overlap < 0, there will be gaps
between the data slices.

xlim the range for the x axis.

ylim the range for the y axis.

... additional arguments to the panel function.

x a numeric vector.



142 coplot

Details

In the case of a single conditioning variable a, when both rows and columns are unspecified,
a “close to square” layout is chosen with columns >= rows.

In the case of multiple rows, the order of the panel plots is from the bottom and from the
left (corresponding to increasing a, typically).

A panel function should not attempt to start a new plot, but just plot within a given
coordinate system: thus plot and boxplot are not panel functions.

Value

co.intervals(., number, .) returns a (number × 2) matrix, say ci, where ci[k,] is
the range of x values for the k-th interval.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

See Also

pairs, panel.smooth, points.

Examples

## Tonga Trench Earthquakes

data(quakes)

coplot(lat ~ long | depth, data = quakes)

given.depth <- co.intervals(quakes$depth, number=4, overlap=.1)

coplot(lat ~ long | depth, data = quakes, given.v=given.depth, rows=1)

## Conditioning on 2 variables:

ll.dm <- lat ~ long | depth * mag

coplot(ll.dm, data = quakes)

coplot(ll.dm, data = quakes, number=c(4,7), show.given=c(TRUE,FALSE))

coplot(ll.dm, data = quakes, number=c(3,7),

overlap=c(-.5,.1)) # negative overlap DROPS values

data(warpbreaks)

## given two factors

Index <- seq(length=nrow(warpbreaks)) # to get nicer default labels

coplot(breaks ~ Index | wool * tension, data = warpbreaks, show.given = 0:1)

coplot(breaks ~ Index | wool * tension, data = warpbreaks,

col = "red", bg = "pink", pch = 21, bar.bg = c(fac = "light blue"))

## Example with empty panels:

data(state)

attach(data.frame(state.x77))#> don't need 'data' arg. below

coplot(Life.Exp ~ Income | Illiteracy * state.region, number = 3,

panel = function(x, y, ...) panel.smooth(x, y, span = .8, ...))

## y ~ factor -- not really sensical, but 'show off':

coplot(Life.Exp ~ state.region | Income * state.division,

panel = panel.smooth)

detach() # data.frame(state.x77)



copyright 143

copyright Copyrights of Files Used to Build R

Description

R is released under the ‘GNU Public License’: see license for details. The license describes
your right to use R. Copyright is concerned with ownership of intellectual rights, and some
of the software used has conditions that the copyright must be explicitly stated: see the
Details section. We are grateful to these people and other contributors (see contributors)
for the ability to use their work.

Details

The file ‘$R HOME/COPYRIGHTS’ lists the copyrights in full detail.

cor Correlation, Variance and Covariance (Matrices)

Description

var, cov and cor compute the variance of x and the covariance or correlation of x and y
if these are vectors. If x and y are matrices then the covariances (or correlations) between
the columns of x and the columns of y are computed.

cov2cor scales a covariance matrix into the corresponding correlation matrix efficiently.

Usage

var(x, y = NULL, na.rm = FALSE, use)
cov(x, y = NULL, use = "all.obs", method = c("pearson", "kendall", "spearman"))
cor(x, y = NULL, use = "all.obs", method = c("pearson", "kendall", "spearman"))
cov2cor(V)

Arguments

x a numeric vector, matrix or data frame.

y NULL (default) or a vector, matrix or data frame with compatible dimen-
sions to x. The default is equivalent to y = x (but more efficient).

na.rm logical. Should missing values be removed?

use an optional character string giving a method for computing covariances in
the presence of missing values. This must be (an abbreviation of) one of
the strings "all.obs", "complete.obs" or "pairwise.complete.obs".

method a character string indicating which correlation coefficient (or covariance) is
to be computed. One of "pearson" (default), "kendall", or "spearman",
can be abbreviated.

V symmetric numeric matrix, usually positive definite such as a covariance
matrix.



144 cor

Details

For cov and cor one must either give a matrix or data frame for x or give both x and y.

var is just another interface to cov, where na.rm is used to determine the default for use
when that is unspecified. If na.rm is TRUE then the complete observations (rows) are used
(use = "complete") to compute the variance. Otherwise (use = "all"), var will give an
error if there are missing values.

If use is "all.obs", then the presence of missing observations will produce an error. If use
is "complete.obs" then missing values are handled by casewise deletion. Finally, if use has
the value "pairwise.complete.obs" then the correlation between each pair of variables
is computed using all complete pairs of observations on those variables. This can result in
covariance or correlation matrices which are not positive semidefinite.

The denominator n − 1 is used which gives an unbiased estimator of the (co)variance for
i.i.d. observations. These functions return NA when there is only one observation (whereas
S-plus has been returning NaN), and fail if x has length zero.

For cor(), if method is "kendall" or "spearman", Kendall’s τ or Spearman’s ρ statistic is
used to estimate a rank-based measure of association. These are more robust and have be
recommended if the data do not necessarily come from a bivariate normal distribution.
For cov(), a non-Pearson method is unusual but available for the sake of completeness.

Scaling a covariance matrix into a correlation one can be achieved in many ways, mathe-
matically most appealing by multiplication with a diagonal matrix from left and right, or
more efficiently by using sweep(.., FUN = "/") twice. The cov2cor function is even a bit
more efficient, and provided mostly for didactical reasons.

Value

For r <- cor(*, use = "all.obs"), it is now guaranteed that all(r <= 1).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

cor.test (package ctest) for confidence intervals (and tests).
cov.wt for weighted covariance computation, sd for standard deviation (vectors).

Examples

var(1:10)# 9.166667

var(1:5,1:5)# 2.5

## Two simple vectors

cor(1:10,2:11)# == 1

## Correlation Matrix of Multivariate sample:

data(longley)

(Cl <- cor(longley))

## Graphical Correlation Matrix:

symnum(Cl) # highly correlated

## Spearman's rho and Kendall's tau



count.fields 145

symnum(clS <- cor(longley, method = "spearman"))

symnum(clK <- cor(longley, method = "kendall"))

## How much do they differ?

i <- lower.tri(Cl)

cor(cbind(P = Cl[i], S = clS[i], K = clK[i]))

## cov2cor() scales a covariance matrix by its diagonal

## to become the correlation matrix.

cov2cor # see the function definition {and learn ..}

stopifnot(all.equal(Cl, cov2cor(cov(longley))),

all.equal(cor(longley, method="kendall"),

cov2cor(cov(longley, method="kendall"))))

##--- Missing value treatment:

data(swiss)

C1 <- cov(swiss)

range(eigen(C1, only=TRUE)$val) # 6.19 1921

swM <- swiss

swM[1,2] <- swM[7,3] <- swM[25,5] <- NA # create 3 "missing"

try(cov(swM)) # Error: missing obs...

C2 <- cov(swM, use = "complete")

range(eigen(C2, only=TRUE)$val) # 6.46 1930

C3 <- cov(swM, use = "pairwise")

range(eigen(C3, only=TRUE)$val) # 6.19 1938

(scM <- symnum(cor(swM, method = "kendall", use = "complete")))

## Kendall's tau doesn't change much: identical symnum codings!

identical(scM, symnum(cor(swiss, method = "kendall")))

all.equal(cov2cor(cov(swM, method = "kendall", use = "pairwise")),

cor(swM, method = "kendall", use = "pairwise"))

count.fields Count the Number of Fields per Line

Description

count.fields counts the number of fields, as separated by sep, in each of the lines of file
read.

Usage

count.fields(file, sep = "", quote = "\"'", skip = 0,
blank.lines.skip = TRUE, comment.char = "#")

Arguments

file a character string naming an ASCII data file, or a connection, which will
be opened if necessary, and if so closed at the end of the function call.

sep the field separator character. Values on each line of the file are sepa-
rated by this character. By default, arbitrary amounts of whitespace can
separate fields.

quote the set of quoting characters



146 cov.wt

skip the number of lines of the data file to skip before beginning to read data.
blank.lines.skip

logical: if TRUE blank lines in the input are ignored.

comment.char character: a character vector of length one containing a single character
or an empty string.

Details

This used to be used by read.table and can still be useful in discovering problems in
reading a file by that function.

For the handling of comments, see scan.

Value

A vector with the numbers of fields found.

See Also

read.table

Examples

cat("NAME", "1:John", "2:Paul", file = "foo", sep = "\n")

count.fields("foo", sep = ":")

unlink("foo")

cov.wt Weighted Covariance Matrices

Description

Returns a list containing estimates of the weighted covariance matrix and the mean of the
data, and optionally of the (weighted) correlation matrix.

Usage

cov.wt(x, wt = rep(1/nrow(x), nrow(x)), cor = FALSE, center = TRUE)

Arguments

x a matrix or data frame. As usual, rows are observations and columns are
variables.

wt a non-negative and non-zero vector of weights for each observation. Its
length must equal the number of rows of x.

cor A logical indicating whether the estimated correlation weighted matrix
will be returned as well.

center Either a logical or a numeric vector specifying the centers to be used when
computing covariances. If TRUE, the (weighted) mean of each variable is
used, if FALSE, zero is used. If center is numeric, its length must equal
the number of columns of x.



crossprod 147

Details

The covariance matrix is divided by one minus the sum of squares of the weights, so if the
weights are the default (1/n) the conventional unbiased estimate of the covariance matrix
with divisor (n− 1) is obtained. This differs from the behaviour in S-PLUS.

Value

A list containing the following named components:

cov the estimated (weighted) covariance matrix

center an estimate for the center (mean) of the data.

n.obs the number of observations (rows) in x.

wt the weights used in the estimation. Only returned if given as an argument.

cor the estimated correlation matrix. Only returned if cor is TRUE.

See Also

cov and var.

crossprod Matrix Crossproduct

Description

Given matrices x and y as arguments, crossprod returns their matrix cross-product. This
is formally equivalent to, but faster than, the call t(x) %*% y.

Usage

crossprod(x, y = NULL)

Arguments

x, y matrices: y = NULL is taken to be the same matrix as x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

%*% and outer product %o%.

Examples

(z <- crossprod(1:4)) # = sum(1 + 2^2 + 3^2 + 4^2)

drop(z) # scalar



148 curve

cumsum Cumulative Sums, Products, and Extremes

Description

Returns a vector whose elements are the cumulative sums, products, minima or maxima of
the elements of the argument.

Usage

cumsum(x)
cumprod(x)
cummax(x)
cummin(x)

Arguments

x a numeric object.

Details

An NA value in x causes the corresponding and following elements of the return value to be
NA.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (cumsum only.)

Examples

cumsum(1:10)

cumprod(1:10)

cummin(c(3:1, 2:0, 4:2))

cummax(c(3:1, 2:0, 4:2))

curve Draw Function Plots

Description

Draws a curve corresponding to the given function or expression (in x) over the interval
[from,to].

Usage

curve(expr, from, to, n = 101, add = FALSE, type = "l",
ylab = NULL, log = NULL, xlim = NULL, ...)

## S3 method for class 'function':
plot(x, from = 0, to = 1, xlim = NULL, ...)



curve 149

Arguments

expr an expression written as a function of x, or alternatively the name of a
function which will be plotted.

x a ‘vectorizing’ numeric R function.

from,to the range over which the function will be plotted.

n integer; the number of x values at which to evaluate.

add logical; if TRUE add to already existing plot.

xlim numeric of length 2; if specified, it serves as default for c(from, to).

type, ylab, log, ...

graphical parameters can also be specified as arguments. plot.function
passes all these to curve.

Details

The evaluation of expr is at n points equally spaced over the range [from, to], possibly
adapted to log scale. The points determined in this way are then joined with straight lines.
x(t) or expr (with x inside) must return a numeric of the same length as the argument t
or x.

If add = TRUE, c(from,to) default to xlim which defaults to the current x-limits. Further,
log is taken from the current plot when add is true.

This used to be a quick hack which now seems to serve a useful purpose, but can give bad
results for functions which are not smooth.

For “expensive” expressions, you should use smarter tools.

See Also

splinefun for spline interpolation, lines.

Examples

op <- par(mfrow=c(2,2))

curve(x^3-3*x, -2, 2)

curve(x^2-2, add = TRUE, col = "violet")

plot(cos, xlim = c(-pi,3*pi), n = 1001, col = "blue")

chippy <- function(x) sin(cos(x)*exp(-x/2))

curve(chippy, -8, 7, n=2001)

curve(chippy, -8, -5)

for(ll in c("","x","y","xy"))

curve(log(1+x), 1,100, log=ll, sub=paste("log= '",ll,"'",sep=""))

par(op)



150 cut

cut Convert Numeric to Factor

Description

cut divides the range of x into intervals and codes the values in x according to which interval
they fall. The leftmost interval corresponds to level one, the next leftmost to level two and
so on.

Usage

cut(x, ...)

## Default S3 method:
cut(x, breaks, labels = NULL,

include.lowest = FALSE, right = TRUE, dig.lab = 3, ...)

Arguments

x a numeric vector which is to be converted to a factor by cutting.

breaks either a vector of cut points or number giving the number of intervals
which x is to be cut into.

labels labels for the levels of the resulting category. By default, labels are con-
structed using "(a,b]" interval notation. If labels = FALSE, simple
integer codes are returned instead of a factor.

include.lowest

logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right =
FALSE) ‘breaks’ value should be included.

right logical, indicating if the intervals should be closed on the right (and open
on the left) or vice versa.

dig.lab integer which is used when labels are not given. It determines the number
of digits used in formatting the break numbers.

... further arguments passed to or from other methods.

Details

If a labels parameter is specified, its values are used to name the factor levels. If none
is specified, the factor level labels are constructed as "(b1, b2]", "(b2, b3]" etc. for
right=TRUE and as "[b1, b2)", . . . if right=FALSE. In this case, dig.lab indicates how
many digits should be used in formatting the numbers b1, b2, . . . .

Value

A factor is returned, unless labels = FALSE which results in the mere integer level codes.

Note

Instead of table(cut(x, br)), hist(x, br, plot = FALSE) is more efficient and less
memory hungry. Instead of cut(*, labels = FALSE), findInterval() is more efficient.



cut.POSIXt 151

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

split for splitting a variable according to a group factor; factor, tabulate, table,
findInterval().

Examples

Z <- rnorm(10000)

table(cut(Z, br = -6:6))

sum(table(cut(Z, br = -6:6, labels=FALSE)))

sum( hist (Z, br = -6:6, plot=FALSE)$counts)

cut(rep(1,5),4)#-- dummy

tx0 <- c(9, 4, 6, 5, 3, 10, 5, 3, 5)

x <- rep(0:8, tx0)

stopifnot(table(x) == tx0)

table( cut(x, b = 8))

table( cut(x, br = 3*(-2:5)))

table( cut(x, br = 3*(-2:5), right = FALSE))

##--- some values OUTSIDE the breaks :

table(cx <- cut(x, br = 2*(0:4)))

table(cxl <- cut(x, br = 2*(0:4), right = FALSE))

which(is.na(cx)); x[is.na(cx)] #-- the first 9 values 0

which(is.na(cxl)); x[is.na(cxl)] #-- the last 5 values 8

## Label construction:

y <- rnorm(100)

table(cut(y, breaks = pi/3*(-3:3)))

table(cut(y, breaks = pi/3*(-3:3), dig.lab=4))

table(cut(y, breaks = 1*(-3:3), dig.lab=4))# extra digits don't "harm" here

table(cut(y, breaks = 1*(-3:3), right = FALSE))#- the same, since no exact INT!

cut.POSIXt Convert a Date-Time Object to a Factor

Description

Method for cut applied to date-time objects.

Usage

## S3 method for class 'POSIXt':
cut(x, breaks, labels = NULL, start.on.monday = TRUE,

right = FALSE, ...)



152 data

Arguments

x an object inheriting from class "POSIXt".

breaks a vector of cut points or number giving the number of intervals which x is
to be cut into or an interval specification, one of "sec", "min", "hour",
"day", "DSTday", "week", "month" or "year", optionally preceded by an
integer and a space, or followed by "s".

labels labels for the levels of the resulting category. By default, labels are con-
structed from the left-hand end of the intervals (which are include for
the default value of right). If labels = FALSE, simple integer codes are
returned instead of a factor.

start.on.monday

logical. If breaks = "weeks", should the week start on Mondays or Sun-
days?

right, ... arguments to be passed to or from other methods.

Value

A factor is returned, unless labels = FALSE which returns the integer level codes.

See Also

seq.POSIXt, cut

Examples

## random dates in a 10-week period

cut(ISOdate(2001, 1, 1) + 70*86400*runif(100), "weeks")

data Data Sets

Description

Loads specified data sets, or list the available data sets.

Usage

data(..., list = character(0), package = .packages(),
lib.loc = NULL, verbose = getOption("verbose"),
envir = .GlobalEnv)

Arguments

... a sequence of names or literal character strings.

list a character vector.

package a name or character vector giving the packages to look into for data sets.
By default, all packages in the search path are used, then the ‘data’ sub-
directory (if present) of the current working directory.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. If the default
is used, the loaded packages are searched before the libraries.



data 153

verbose a logical. If TRUE, additional diagnostics are printed.
envir the environment where the data should be loaded.

Details

Currently, four formats of data files are supported:

1. files ending ‘.R’ or ‘.r’ are source()d in, with the R working directory changed tem-
porarily to the directory containing the respective file.

2. files ending ‘.RData’ or ‘.rda’ are load()ed.
3. files ending ‘.tab’, ‘.txt’ or ‘.TXT’ are read using read.table(..., header = TRUE),

and hence result in a data frame.
4. files ending ‘.csv’ or ‘.CSV’ are read using read.table(..., header = TRUE, sep =

";"), and also result in a data frame.

If more than one matching file name is found, the first on this list is used.

The data sets to be loaded can be specified as a sequence of names or character strings, or
as the character vector list, or as both.

For each given data set, the first two types (‘.R’ or ‘.r’, and ‘.RData’ or ‘.rda’ files) can
create several variables in the load environment, which might all be named differently from
the data set. The second two (‘.tab’, ‘.txt’, or ‘.TXT’, and ‘.csv’ or ‘.CSV’ files) will always
result in the creation of a single variable with the same name as the data set.

If no data sets are specified, data lists the available data sets. It looks for a new-style data
index in the ‘Meta’ or, if this is not found, an old-style ‘00Index’ file in the ‘data’ directory
of each specified package, and uses these files to prepare a listing. If there is a ‘data’ area
but no index, available data files for loading are computed and included in the listing, and a
warning is given: such packages are incomplete. The information about available data sets
is returned in an object of class "packageIQR". The structure of this class is experimental.
In earlier versions of R, an empty character vector was returned along with listing available
data sets.

If lib.loc is not specified, the data sets are searched for amongst those packages already
loaded, followed by the ‘data’ directory (if any) of the current working directory and then
packages in the specified libraries. If lib.loc is specified, packages are searched for in the
specified libraries, even if they are already loaded from another library.

To just look in the ‘data’ directory of the current working directory, set package = NULL.

Value

a character vector of all data sets specified, or information about all available data sets in
an object of class "packageIQR" if none were specified.

Note

The data files can be many small files. On some file systems it is desirable to save space,
and the files in the ‘data’ directory of an installed package can be zipped up as a zip archive
‘Rdata.zip’. You will need to provide a single-column file ‘filelist’ of file names in that
directory.

One can take advantage of the search order and the fact that a ‘.R’ file will change directory.
If raw data are stored in ‘mydata.txt’ then one can set up ‘mydata.R’ to read ‘mydata.txt’
and pre-process it, e.g., using transform. For instance one can convert numeric vectors to
factors with the appropriate labels. Thus, the ‘.R’ file can effectively contain a metadata
specification for the plaintext formats.



154 data.class

See Also

help for obtaining documentation on data sets, save for creating the second (‘.rda’) kind
of data, typically the most efficient one.

Examples

data() # list all available data sets

data(package = "base") # list the data sets in the base package

data(USArrests, "VADeaths") # load the data sets 'USArrests' and 'VADeaths'

help(USArrests) # give information on data set 'USArrests'

data.class Object Classes

Description

Determine the class of an arbitrary R object.

Usage

data.class(x)

Arguments

x an R object.

Value

character string giving the “class” of x.

The “class” is the (first element) of the class attribute if this is non-NULL, or inferred from
the object’s dim attribute if this is non-NULL, or mode(x).

Simply speaking, data.class(x) returns what is typically useful for method dispatching.
(Or, what the basic creator functions already and maybe eventually all will attach as a class
attribute.)

Note

For compatibility reasons, there is one exception to the rule above: When x is integer, the
result of data.class(x) is "numeric" even when x is classed.

See Also

class

Examples

x <- LETTERS

data.class(factor(x)) # has a class attribute

data.class(matrix(x, nc = 13)) # has a dim attribute

data.class(list(x)) # the same as mode(x)

data.class(x) # the same as mode(x)

stopifnot(data.class(1:2) == "numeric")# compatibility "rule"



data.frame 155

data.frame Data Frames

Description

This function creates data frames, tightly coupled collections of variables which share many
of the properties of matrices and of lists, used as the fundamental data structure by most
of R’s modeling software.

Usage

data.frame(..., row.names = NULL, check.rows = FALSE, check.names = TRUE)

Arguments

... these arguments are of either the form value or tag=value. Component
names are created based on the tag (if present) or the deparsed argument
itself.

row.names NULL or an integer or character string specifying a column to be used as
row names, or a character vector giving the row names for the data frame.

check.rows if TRUE then the rows are checked for consistency of length and names.

check.names logical. If TRUE then the names of the variables in the data frame are
checked to ensure that they are syntactically valid variable names. If
necessary they are adjusted (by make.names) so that they are.

Details

A data frame is a list of variables of the same length with unique row names, given class
"data.frame".

data.frame converts each of its arguments to a data frame by calling
as.data.frame(optional=TRUE). As that is a generic function, methods can be
written to change the behaviour of arguments according to their classes: R comes with
many such methods. Character variables passed to data.frame are converted to factor
columns unless protected by I. If a list or data frame or matrix is passed to data.frame it
is as if each component or column had been passed as a separate argument.

Objects passed to data.frame should have the same number of rows, but atomic vectors,
factors and character vectors protected by I will be recycled a whole number of times if
necessary.

If row names are not supplied in the call to data.frame, the row names are taken from
the first component that has suitable names, for example a named vector or a matrix with
rownames or a data frame. (If that component is subsequently recycled the names are
discarded, with a warning.) If row.names was supplied as NULL or no suitable component
was found the row names are the integer sequence starting at one.

If row names are supplied of length one and the data frame has a single row, the row.names
is taken to specify the row names and not a column (by name or number).

Value

A data frame, a matrix-like stucture whose columns may be of differing types (numeric,
logical, factor and character and so on).



156 data.matrix

Note

In versions of R prior to 1.4.0 logical columns were converted to factors (as in S3 but not
S4).

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

I, plot.data.frame, print.data.frame, row.names, [.data.frame for subsetting
methods, Math.data.frame etc, about Group methods for data.frames; read.table,
make.names.

Examples

L3 <- LETTERS[1:3]

str(d <- data.frame(cbind(x=1, y=1:10), fac=sample(L3, 10, repl=TRUE)))

## The same with automatic column names:

str( data.frame(cbind( 1, 1:10), sample(L3, 10, repl=TRUE)))

is.data.frame(d)

## do not convert to factor, using I() :

str(cbind(d, char = I(letters[1:10])), vec.len = 10)

stopifnot(1:10 == row.names(d))# {coercion}

(d0 <- d[, FALSE]) # NULL data frame with 10 rows

(d.0 <- d[FALSE, ]) # <0 rows> data frame (3 cols)

(d00 <- d0[FALSE,]) # NULL data frame with 0 rows

data.matrix Data Frame to Numeric Matrix

Description

Return the matrix obtained by converting all the variables in a data frame to numeric mode
and then binding them together as the columns of a matrix. Factors and ordered factors
are replaced by their internal codes.

Usage

data.matrix(frame)

Arguments

frame a data frame whose components are logical vectors, factors or numeric
vectors.



dataentry 157

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

as.matrix, data.frame, matrix.

dataentry Spreadsheet Interface for Entering Data

Description

A spreadsheet-like editor for entering or editing data.

Usage

data.entry(..., Modes = NULL, Names = NULL)
dataentry(data, modes)
de(..., Modes = list(), Names = NULL)

Arguments

... A list of variables: currently these should be numeric or character vectors
or list containing such vectors.

Modes The modes to be used for the variables.

Names The names to be used for the variables.

data A list of numeric and/or character vectors.

modes A list of length up to that of data giving the modes of (some of) the
variables. list() is allowed.

Details

The data entry editor is only available on some platforms and GUIs. Where available it
provides a means to visually edit a matrix or a collection of variables (including a data
frame) as described in the “Notes” section.

data.entry has side effects, any changes made in the spreadsheet are reflected in the
variables. The functions de, de.ncols, de.setup and de.restore are designed to help
achieve these side effects. If the user passes in a matrix, X say, then the matrix is broken
into columns before dataentry is called. Then on return the columns are collected and glued
back together and the result assigned to the variable X. If you don’t want this behaviour
use dataentry directly.

The primitive function is dataentry. It takes a list of vectors of possibly different lengths
and modes (the second argument) and opens a spreadsheet with these variables being the
columns. The columns of the dataentry window are returned as vectors in a list when the
spreadsheet is closed.

de.ncols counts the number of columns which are supplied as arguments to data.entry.
It attempts to count columns in lists, matrices and vectors. de.setup sets things up so
that on return the columns can be regrouped and reassigned to the correct name. This is
handled by de.restore.



158 dataentry

Value

de and dataentry return the edited value of their arguments. data.entry invisibly returns
a vector of variable names but its main value is its side effect of assigning new version of
those variables in the user’s workspace.

Note

The details of interface to the data grid may differ by platform and GUI. The following
description applies to the X11-based implementation under Unix.

You can navigate around the grid using the cursor keys or by clicking with the (left) mouse
button on any cell. The active cell is highlighted by thickening the surrounding rectangle.
Moving to the right or down will scroll the grid as needed: there is no constraint to the
rows or columns currently in use.

The are alternative ways to navigate using the keys. Return and (keypad) Enter and
LineFeed all move down. Tab moves right and Shift-Tab move left. Home moves to the top
left.

PageDown or Control-F moves down a page, and PageUp or Control-B up by a page. End
will show the last used column and the last few rows used (in any column).

Using any other key starts an editing process on the currently selected cell: moving away
from that cell enters the edited value whereas Esc cancels the edit and restores the previous
value. When the editing process starts the cell is cleared. In numerical columns (the default)
only letters making up a valid number (including -.eE) are accepted, and entering an invalid
edited value (such as blank) enters NA in that cell. The last entered value can be deleted
using the BackSpace or Del(ete) key. Only a limited number of characters (currently 29)
can be entered in a cell, and if necessary only the start or end of the string will be displayed,
with the omissions indicated by > or <. (The start is shown except when editing.)

Entering a value in a cell further down a column than the last used cell extends the variable
and fills the gap (if any) by NAs (not shown on screen).

The column names can only be selected by clicking in them. This gives a popup menu
to select the column type (currently Real (numeric) or Character) or to change the name.
Changing the type converts the current contents of the column (and converting from Char-
acter to Real may generate NAs.) If changing the name is selected the header cell becomes
editable (and is cleared). As with all cells, the value is entered by moving away from the
cell by clicking elsewhere or by any of the keys for moving down (only).

New columns are created by entering values in them (and not by just assigning a new
name). The mode of the column is auto-detected from the first value entered: if this is a
valid number it gives a numeric column. Unused columns are ignored, so adding data in
var5 to a three-column grid adds one extra variable, not two.

The Copy button copies the currently selected cell: paste copies the last copied value to
the current cell, and right-clicking selects a cell and copies in the value. Initially the value
is blank, and attempts to paste a blank value will have no effect.

Control-L will refresh the display, recalculating field widths to fit the current entries.

In the default mode the column widths are chosen to fit the contents of each column, with a
default of 10 characters for empty columns. you can specify fixed column widths by setting
option de.cellwidth to the required fixed width (in characters). (set it to zero to return
to variable widths). The displayed width of any field is limited to 600 pixels (and by the
window width).



dataframeHelpers 159

See Also

vi, edit: edit uses dataentry to edit data frames.

Examples

# call data entry with variables x and y

## Not run: data.entry(x,y)

dataframeHelpers Data Frame Auxiliary Functions

Description

Auxiliary functions for use with data frames.

Usage

xpdrows.data.frame(x, old.rows, new.rows)

Arguments

x object of class data.frame.
old.rows, new.rows

row names for old and new rows.

Details

xpdrows.data.frame is an auxiliary function which expands the rows of a data frame. It is
used by the data frame methods of [<- and [[<- (which perform subscripted assignments
on a data frame), and not intended to be called directly.

See Also

[.data.frame

date System Date and Time

Description

Returns a character string of the current system date and time.

Usage

date()

Value

The string has the form "Fri Aug 20 11:11:00 1999", i.e., length 24, since it relies on
POSIX’ ctime ensuring the above fixed format. Timezone and Daylight Saving Time are
taken account of, but not indicated in the result.



160 DateTimeClasses

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

(d <- date())

nchar(d) == 24

DateTimeClasses Date-Time Classes

Description

Description of the classes "POSIXlt" and "POSIXct" representing calendar dates and times
(to the nearest second).

Usage

## S3 method for class 'POSIXct':
print(x, ...)

## S3 method for class 'POSIXct':
summary(object, digits = 15, ...)

time + number
time - number
time1 lop time2

Arguments

x, object An object to be printed or summarized from one of the date-time classes.

digits Number of significant digits for the computations: should be high enough
to represent the least important time unit exactly.

... Further arguments to be passed from or to other methods.
time, time1, time2

date-time objects.

number a numeric object.

lop One of ==, !=, <, <=, > or >=.

Details

There are two basic classes of date/times. Class "POSIXct" represents the (signed) number
of seconds since the beginning of 1970 as a numeric vector. Class "POSIXlt" is a named
list of vectors representing

sec 0–61: seconds

min 0–59: minutes

hour 0–23: hours

mday 1–31: day of the month



DateTimeClasses 161

mon 0–11: months after the first of the year.

year Years since 1900.

wday 0–6 day of the week, starting on Sunday.

yday 0–365: day of the year.

isdst Daylight savings time flag. Positive if in force, zero if not, negative if unknown.

The classes correspond to the ANSI C constructs of “calendar time” (the time_t data type)
and “local time” (or broken-down time, the struct tm data type), from which they also
inherit their names.

"POSIXct" is more convenient for including in data frames, and "POSIXlt" is closer to
human-readable forms. A virtual class "POSIXt" inherits from both of the classes: it is
used to allow operations such as subtraction to mix the two classes.

Logical comparisons and limited arithmetic are available for both classes. One can add or
subtract a number of seconds or a difftime object from a date-time object, but not add two
date-time objects. Subtraction of two date-time objects is equivalent to using difftime.
Be aware that "POSIXlt" objects will be interpreted as being in the current timezone for
these operations, unless a timezone has been specified.

"POSIXlt" objects will often have an attribute "tzone", a character vector of length 3 giving
the timezone name from the TZ environment variable and the names of the base timezone
and the alternate (daylight-saving) timezone. Sometimes this may just be of length one,
giving the timezone name.

Unfortunately, the conversion is complicated by the operation of time zones and leap seconds
(22 days have been 86401 seconds long so far: the times of the extra seconds are in the
object .leap.seconds). The details of this are entrusted to the OS services where possible.
This will usually cover the period 1970–2037, and on Unix machines back to 1902 (when
time zones were in their infancy). Outside those ranges we use our own C code. This uses
the offset from GMT in use in the timezone in 2000, and uses the alternate (daylight-saving)
timezone only if isdst is positive.

It seems that some systems use leap seconds but most do not. This is detected and cor-
rected for at build time, so all "POSIXct" times used by R do not include leap seconds.
(Conceivably this could be wrong if the system has changed since build time, just possibly
by changing locales.)

Using c on "POSIXlt" objects converts them to the current time zone.

Warning

Some Unix-like systems (especially Linux ones) do not have "TZ" set, yet have internal
code that expects it (as does POSIX). We have tried to work around this, but if you get
unexpected results try setting "TZ".

See Also

as.POSIXct and as.POSIXlt for conversion between the classes.

strptime for conversion to and from character representations.

Sys.time for clock time as a "POSIXct" object.

difftime for time intervals.

cut.POSIXt, seq.POSIXt, round.POSIXt and trunc.POSIXt for methods for these classes.

weekdays.POSIXt for convenience extraction functions.



162 dcf

Examples

(z <- Sys.time()) # the current date, as class "POSIXct"

Sys.time() - 3600 # an hour ago

as.POSIXlt(Sys.time(), "GMT") # the current time in GMT

format(.leap.seconds) # all 22 leapseconds in your timezone

dcf Read and Write Data in DCF Format

Description

Reads or writes an R object from/to a file in Debian Control File format.

Usage

read.dcf(file, fields=NULL)
write.dcf(x, file = "", append = FALSE,

indent = 0.1 * getOption("width"),
width = 0.9 * getOption("width"))

Arguments

file either a character string naming a file or a connection. "" indicates output
to the console.

fields Fields to read from the DCF file. Default is to read all fields.

x the object to be written, typically a data frame. If not, it is attempted to
coerce x to a data frame.

append logical. If TRUE, the output is appended to the file. If FALSE, any existing
file of the name is destroyed.

indent a positive integer specifying the indentation for continuation lines in out-
put entries.

width a positive integer giving the target column for wrapping lines in the out-
put.

Details

DCF is a simple format for storing databases in plain text files that can easily be directly
read and written by humans. DCF is used in various places to store R system information,
like descriptions and contents of packages.

The DCF rules as implemented in R are:

1. A database consists of one or more records, each with one or more named fields. Not
every record must contain each field, a field may appear only once in a record.

2. Regular lines start with a non-whitespace character.

3. Regular lines are of form tag:value, i.e., have a name tag and a value for the field,
seperated by : (only the first : counts). The value can be empty (=whitespace only).

4. Lines starting with whitespace are continuation lines (to the preceding field) if at least
one character in the line is non-whitespace.



debug 163

5. Records are seperated by one or more empty (=whitespace only) lines.

read.dcf returns a character matrix with one line per record and one column per field.
Leading and trailing whitespace of field values is ignored. If a tag name is specified, but
the corresponding value is empty, then an empty string of length 0 is returned. If the tag
name of a fields is never used in a record, then NA is returned.

See Also

write.table.

Examples

## Create a reduced version of the 'CONTENTS' file in package 'eda'

x <- read.dcf(file = system.file("CONTENTS", package = "eda"),

fields = c("Entry", "Description"))

write.dcf(x)

debug Debug a function

Description

Set or unset the debugging flag on a function.

Usage

debug(fun)
undebug(fun)

Arguments

fun any interpreted R function.

Details

When a function flagged for debugging is entered, normal execution is suspended and the
body of function is executed one statement at a time. A new browser context is initiated for
each step (and the previous one destroyed). Currently you can only debug functions that
have bodies enclosed in braces. This is a bug and will be fixed soon. You take the next step
by typing carriage return, n or next. You can see the values of variables by typing their
names. Typing c or cont causes the debugger to continue to the end of the function. You
can debug new functions before you step in to them from inside the debugger. Typing Q
quits the current execution and returns you to the top–level prompt. Typing where causes
the debugger to print out the current stack trace (all functions that are active). If you have
variables with names that are identical to the controls (eg. c or n ) then you need to use
print(c) and print(n) to evaluate them.

See Also

browser, traceback to see the stack after an Error: ... message; recover for another
debugging approach.



164 debugger

debugger Post-Mortem Debugging

Description

Functions to dump the evaluation environments (frames) and to examine dumped frames.

Usage

dump.frames(dumpto = "last.dump", to.file = FALSE)
debugger(dump = last.dump)

Arguments

dumpto a character string. The name of the object or file to dump to.

to.file logical. Should the dump be to an R object or to a file?

dump An R dump object created by dump.frames.

Details

To use post-mortem debugging, set the option error to be a call to dump.frames. By
default this dumps to an R object "last.dump" in the workspace, but it can be set to
dump to a file (as dump of the object produced by a call to save). The dumped object
contain the call stack, the active environments and the last error message as returned by
geterrmessage.

When dumping to file, dumpto gives the name of the dumped object and the file name has
.rda appended.

A dump object of class "dump.frames" can be examined by calling debugger. This will
give the error message and a list of environments from which to select repeatedly. When
an environment is selected, it is copied and the browser called from within the copy.

If dump.frames is installed as the error handler, execution will continue even in non-
interactive sessions. See the examples for how to dump and then quit.

Value

None.

Note

Functions such as sys.parent and environment applied to closures will not work correctly
inside debugger.

Of course post-mortem debugging will not work if R is too damaged to produce and save
the dump, for example if it has run out of workspace.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.



Defunct 165

See Also

options for setting error options; recover is an interactive debugger working similarly to
debugger but directly after the error occurs.

Examples

## Not run:

options(error=quote(dump.frames("testdump", TRUE)))

f <- function() {

g <- function() stop("test dump.frames")

g()

}

f() # will generate a dump on file "testdump.rda"

options(error=NULL)

## possibly in another R session

load("testdump.rda")

debugger(testdump)

Available environments had calls:

1: f()

2: g()

3: stop("test dump.frames")

Enter an environment number, or 0 to exit

Selection: 1

Browsing in the environment with call:

f()

Called from: debugger.look(ind)

Browse[1]> ls()

[1] "g"

Browse[1]> g

function() stop("test dump.frames")

<environment: 759818>

Browse[1]>

Available environments had calls:

1: f()

2: g()

3: stop("test dump.frames")

Enter an environment number, or 0 to exit

Selection: 0

## A possible setting for non-interactive sessions

options(error=quote({dump.frames(to.file=TRUE); q()}))

## End(Not run)

Defunct Defunct Functions

Description

The functions or variables listed here are no longer part of R as they are not needed (any
more).



166 Defunct

Usage

.Defunct()

Version()
provide(package)
.Provided
category(...)
dnchisq(.)
pnchisq(.)
qnchisq(.)
rnchisq(.)
print.anova.glm(.)
print.anova.lm(.)
print.tabular(.)
print.plot(.)
save.plot(.)
system.test(.)
dotplot(...)
stripplot(...)
getenv(...)
read.table.url(url, method,...)
scan.url(url, file = tempfile(), method, ...)
source.url(url, file = tempfile(), method, ...)
httpclient(url, port=80, error.is.fatal=TRUE, check.MIME.type=TRUE,

file=tempfile(), drop.ctrl.z=TRUE)
parse.dcf(text = NULL, file = "", fields = NULL, versionfix = FALSE)
.Alias(expr)
reshapeWide(x, i = reshape.i, j = reshape.j, val = reshape.v,

jnames = levels(j))
reshapeLong(x,jvars, ilev = row.names(x),

jlev = names(x)[jvars], iname = "reshape.i",
jname = "reshape.j", vname = "reshape.v")

piechart(x, labels = names(x), edges = 200, radius = 0.8,
density = NULL, angle = 45, col = NULL, main = NULL, ...)

print.ordered(.)
.Dyn.libs
.lib.loc
machine()
Machine()
Platform()
restart()
printNoClass(x, digits = NULL, quote = TRUE, na.print = NULL,

print.gap = NULL, right = FALSE, ...)
plot.mts(x, plot.type = c("multiple", "single"), panel = lines,

log = "", col = par("col"), bg = NA, pch = par("pch"),
cex = par("cex"), lty = par("lty"), lwd = par("lwd"),
ann = par("ann"), xlab = "Time", type = "l", main=NULL,
oma=c(6, 0, 5, 0), ...)

Details

.Defunct is the function to which defunct functions are set.



delay 167

category has been an old-S function before there were factors; should be replaced by factor
throughout!

The *chisq() functions now take an optional non-centrality argument, so the *nchisq()
functions are no longer needed.

The new function dev.print() should now be used for saving plots to a file or printing
them.

provide and its object .Provided have been removed. They were never used for their
intended purpose, to allow one package to subsume another.

dotplot and stripplot have been renamed to dotchart and stripchart, respectively.

getenv has been replaced by Sys.getenv.

*.url are replaced by calling read.table, scan or source on a url connection.

httpclient was used by the deprecated "socket" method of download.file.

parse.dcf has been replaced by read.dcf, which is much faster, but has a slightly different
interface.

.Alias provided an unreliable way to create duplicate references to the same object. There
is no direct replacement. Where multiple references to a single object are required for
semantic reasons consider using environments or external pointers. There are some notes
on http://developer.r-project.org.

reshape*, which were experimental, are replaced by reshape. This has a different syntax
and allows multiple time-varying variables.

piechart is the old name for pie, but clashed with usage in Trellis.

.Dyn.libs and .lib.loc were internal variables used for storing and manipulating the
information about packages with dynloaded shared libs, and the known R library trees.
These are now dynamic variables which one can get or set using .dynLibs and .libPaths,
respectively.

Machine() and Platform() were functions returning the variables .Machine and .Platform
respectively.

restart() should be replaced by try(), in preparation for an exception-based implemen-
tation. If you use restart() in a way that cannot be replaced with try() then ask for
help on r-devel.

printNoClass was in package methods and calls directly the internal function
print.default.

plot.mts has been removed, as plot.ts now has the same functionality.

See Also

Deprecated

delay Delay Evaluation

Description

delay creates a promise to evaluate the given expression in the specified environment if its
value is requested. This provides direct access to lazy evaluation mechanism used by R for
the evaluation of (interpreted) functions.

http://developer.r-project.org


168 delete.response

Usage

delay(x, env=.GlobalEnv)

Arguments

x an expression.
env an evaluation environment

Details

This is an experimental feature and its addition is purely for evaluation purposes.

Value

A promise to evaluate the expression. The value which is returned by delay can be assigned
without forcing its evaluation, but any further accesses will cause evaluation.

Examples

x <- delay({

for(i in 1:7)

cat("yippee!\n")

10

})

x^2#- yippee

x^2#- simple number

delete.response Modify Terms Objects

Description

delete.response returns a terms object for the same model but with no response variable.
drop.terms removes variables from the right-hand side of the model. There is also a
"[.terms" method to perform the same function (with keep.response=TRUE).
reformulate creates a formula from a character vector.

Usage

delete.response(termobj)
reformulate(termlabels, response = NULL)
drop.terms(termobj, dropx = NULL, keep.response = FALSE)

Arguments

termobj A terms object
termlabels character vector giving the right-hand side of a model formula.
response character string, symbol or call giving the left-hand side of a model for-

mula.
dropx vector of positions of variables to drop from the right-hand side of the

model.
keep.response Keep the response in the resulting object?



demo 169

Value

delete.response and drop.terms return a terms object.

reformulate returns a formula.

See Also

terms

Examples

ff <- y ~ z + x + w

tt <- terms(ff)

tt

delete.response(tt)

drop.terms(tt, 2:3, keep.response = TRUE)

tt[-1]

tt[2:3]

reformulate(attr(tt, "term.labels"))

## keep LHS :

reformulate("x*w", ff[[2]])

fS <- surv(ft, case) ~ a + b

reformulate(c("a", "b*f"), fS[[2]])

stopifnot(identical( ~ var, reformulate("var")),

identical(~ a + b + c, reformulate(letters[1:3])),

identical( y ~ a + b, reformulate(letters[1:2], "y"))

)

demo Demonstrations of R Functionality

Description

demo is a user-friendly interface to running some demonstration R scripts. demo() gives the
list of available topics.

Usage

demo(topic, device = getOption("device"),
package = .packages(), lib.loc = NULL,
character.only = FALSE, verbose = getOption("verbose"))

Arguments

topic the topic which should be demonstrated, given as a name or literal charac-
ter string, or a character string, depending on whether character.only is
FALSE (default) or TRUE. If omitted, the list of available topics is displayed.

device the graphics device to be used.

package a character vector giving the packages to look into for demos. By default,
all packages in the search path are used.



170 density

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. If the default
is used, the loaded packages are searched before the libraries.

character.only

logical; if TRUE, use topic as character string.

verbose a logical. If TRUE, additional diagnostics are printed.

Details

If no topics are given, demo lists the available demos. The corresponding information is
returned in an object of class "packageIQR". The structure of this class is experimental.
In earlier versions of R, an empty character vector was returned along with listing available
demos.

See Also

source which is called by demo.

Examples

demo() # for attached packages

## All available demos:

demo(package = .packages(all.available = TRUE))

demo(lm.glm)

## Not run:

ch <- "scoping"

demo(ch, character = TRUE)

## End(Not run)

density Kernel Density Estimation

Description

The function density computes kernel density estimates with the given kernel and band-
width.

Usage

density(x, bw = "nrd0", adjust = 1,
kernel = c("gaussian", "epanechnikov", "rectangular", "triangular",

"biweight", "cosine", "optcosine"),
window = kernel, width,
give.Rkern = FALSE,
n = 512, from, to, cut = 3, na.rm = FALSE)



density 171

Arguments

x the data from which the estimate is to be computed.

bw the smoothing bandwidth to be used. The kernels are scaled such that
this is the standard deviation of the smoothing kernel. (Note this differs
from the reference books cited below, and from S-PLUS.)
bw can also be a character string giving a rule to choose the bandwidth.
See bw.nrd.
The specified (or computed) value of bw is multiplied by adjust.

adjust the bandwidth used is actually adjust*bw. This makes it easy to specify
values like “half the default” bandwidth.

kernel, window

a character string giving the smoothing kernel to be used. This must
be one of "gaussian", "rectangular", "triangular", "epanechnikov",
"biweight", "cosine" or "optcosine", with default "gaussian", and
may be abbreviated to a unique prefix (single letter).
"cosine" is smoother than "optcosine", which is the usual “cosine” ker-
nel in the literature and almost MSE-efficient. However, "cosine" is the
version used by S.

width this exists for compatibility with S; if given, and bw is not, will set bw to
width if this is a character string, or to a kernel-dependent multiple of
width if this is numeric.

give.Rkern logical; if true, no density is estimated, and the “canonical bandwidth” of
the chosen kernel is returned instead.

n the number of equally spaced points at which the density is to be es-
timated. When n > 512, it is rounded up to the next power of 2 for
efficiency reasons (fft).

from,to the left and right-most points of the grid at which the density is to be
estimated.

cut by default, the values of left and right are cut bandwidths beyond
the extremes of the data. This allows the estimated density to drop to
approximately zero at the extremes.

na.rm logical; if TRUE, missing values are removed from x. If FALSE any missing
values cause an error.

Details

The algorithm used in density disperses the mass of the empirical distribution function over
a regular grid of at least 512 points and then uses the fast Fourier transform to convolve this
approximation with a discretized version of the kernel and then uses linear approximation
to evaluate the density at the specified points.

The statistical properties of a kernel are determined by σ2
K =

∫
t2K(t)dt which is always

= 1 for our kernels (and hence the bandwidth bw is the standard deviation of the kernel)
and R(K) =

∫
K2(t)dt.

MSE-equivalent bandwidths (for different kernels) are proportional to σKR(K) which is
scale invariant and for our kernels equal to R(K). This value is returned when give.Rkern
= TRUE. See the examples for using exact equivalent bandwidths.

Infinite values in x are assumed to correspond to a point mass at +/-Inf and the density
estimate is of the sub-density on (-Inf, +Inf).



172 density

Value

If give.Rkern is true, the number R(K), otherwise an object with class "density" whose
underlying structure is a list containing the following components.

x the n coordinates of the points where the density is estimated.

y the estimated density values.

bw the bandwidth used.

N the sample size after elimination of missing values.

call the call which produced the result.

data.name the deparsed name of the x argument.

has.na logical, for compatibility (always FALSE).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole (for S version).

Scott, D. W. (1992) Multivariate Density Estimation. Theory, Practice and Visualization.
New York: Wiley.

Sheather, S. J. and Jones M. C. (1991) A reliable data-based bandwidth selection method
for kernel density estimation. J. Roy. Statist. Soc. B, 683–690.

Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.

Venables, W. N. and Ripley, B. D. (1999) Modern Applied Statistics with S-PLUS. New
York: Springer.

See Also

bw.nrd, plot.density, hist.

Examples

plot(density(c(-20,rep(0,98),20)), xlim = c(-4,4))# IQR = 0

# The Old Faithful geyser data

data(faithful)

d <- density(faithful$eruptions, bw = "sj")

d

plot(d)

plot(d, type = "n")

polygon(d, col = "wheat")

## Missing values:

x <- xx <- faithful$eruptions

x[i.out <- sample(length(x), 10)] <- NA

doR <- density(x, bw = 0.15, na.rm = TRUE)

lines(doR, col = "blue")

points(xx[i.out], rep(0.01, 10))

(kernels <- eval(formals(density)$kernel))

## show the kernels in the R parametrization

plot (density(0, bw = 1), xlab = "",



deparse 173

main="R's density() kernels with bw = 1")

for(i in 2:length(kernels))

lines(density(0, bw = 1, kern = kernels[i]), col = i)

legend(1.5,.4, legend = kernels, col = seq(kernels),

lty = 1, cex = .8, y.int = 1)

## show the kernels in the S parametrization

plot(density(0, from=-1.2, to=1.2, width=2, kern="gaussian"), type="l",

ylim = c(0, 1), xlab="", main="R's density() kernels with width = 1")

for(i in 2:length(kernels))

lines(density(0, width=2, kern = kernels[i]), col = i)

legend(0.6, 1.0, legend = kernels, col = seq(kernels), lty = 1)

(RKs <- cbind(sapply(kernels, function(k)density(kern = k, give.Rkern = TRUE))))

100*round(RKs["epanechnikov",]/RKs, 4) ## Efficiencies

if(interactive()) {

data(precip)

bw <- bw.SJ(precip) ## sensible automatic choice

plot(density(precip, bw = bw, n = 2^13),

main = "same sd bandwidths, 7 different kernels")

for(i in 2:length(kernels))

lines(density(precip, bw = bw, kern = kernels[i], n = 2^13), col = i)

## Bandwidth Adjustment for "Exactly Equivalent Kernels"

h.f <- sapply(kernels, function(k)density(kern = k, give.Rkern = TRUE))

(h.f <- (h.f["gaussian"] / h.f)^ .2)

## -> 1, 1.01, .995, 1.007,... close to 1 => adjustment barely visible..

plot(density(precip, bw = bw, n = 2^13),

main = "equivalent bandwidths, 7 different kernels")

for(i in 2:length(kernels))

lines(density(precip, bw = bw, adjust = h.f[i], kern = kernels[i],

n = 2^13), col = i)

legend(55, 0.035, legend = kernels, col = seq(kernels), lty = 1)

}

deparse Expression Deparsing

Description

Turn unevaluated expressions into character strings.

Usage

deparse(expr, width.cutoff = 60,
backtick = mode(expr) %in% c("call", "expression", "("))

Arguments

expr any R expression.
width.cutoff integer in [20, 500] determining the cutoff at which line-breaking is tried.
backtick logical indicating whether symbolic names should be enclosed in backticks

if they don’t follow the standard syntax.



174 Deprecated

Details

This function turns unevaluated expressions (where “expression” is taken in a wider sense
than the strict concept of a vector of mode "expression" used in expression) into char-
acter strings (a kind of inverse parse).

A typical use of this is to create informative labels for data sets and plots. The example
shows a simple use of this facility. It uses the functions deparse and substitute to create
labels for a plot which are character string versions of the actual arguments to the function
myplot.

The default for the backtick option is not to quote single symbols but only composite
expressions. This is a compromise to avoid breaking existing code.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

substitute, parse, expression.

Examples

deparse(args(lm))

deparse(args(lm), width = 500)

myplot <-

function(x, y)

plot(x, y, xlab=deparse(substitute(x)),

ylab=deparse(substitute(y)))

Deprecated Deprecated Functions

Description

These functions are provided for compatibility with older versions of R only, and may be
defunct as soon as of the next release.

Usage

.Deprecated(new)

print.coefmat(x, digits=max(3, getOption("digits") - 2),
signif.stars = getOption("show.signif.stars"),
dig.tst = max(1, min(5, digits - 1)),
cs.ind = 1:k, tst.ind = k + 1, zap.ind = integer(0),
P.values = NULL,
has.Pvalue = nc >= 4 && substr(colnames(x)[nc],1,3) == "Pr(",
eps.Pvalue = .Machine$double.eps,
na.print = "", ...)

codes(x, ...)



deriv 175

codes(x, ...) <- value

anovalist.lm(object, ..., test = NULL)
lm.fit.null(x, y, method = "qr", tol = 1e-07, ...)
lm.wfit.null(x, y, w, method = "qr", tol = 1e-07, ...)
glm.fit.null(x, y, weights = rep(1, nobs), start = NULL,

etastart = NULL, mustart = NULL, offset = rep(0, nobs),
family = gaussian(), control = glm.control(),
intercept = FALSE)

print.atomic(x, quote = TRUE, ...)

Details

.Deprecated("<new name>") is called from deprecated functions. The original help page
for these functions is often available at help("oldName-deprecated") (note the quotes).

tkfilefind is a demo in package tcltk displaying a widget for selecting files but the same
functionality is available in a better form in the tkgetOpenFile and tkgetSaveFile func-
tions. The demo is reported not even to work with recent versions of Tcl and Tk libraries.

print.coefmat is an older name for printCoefmat with a different default for na.print.

codes was almost always used inappropriately. To get the internal coding of a factor, use
unclass, as.vector or as.integer. For ordered factors, codes was equivalent to these,
but for unordered factors it assumed an an alphabetical ordering of the levels in the locale
in use.

anovalist.lm was replaced by anova.lmlist in R 1.2.0.

lm.fit.null and lm.wfit.null are superseded by lm.fit and lm.wfit which handle null
models now. Similarly, glm.fit.null is superseded by glm.fit.

print.atomic differs from print.default only in its argument sequence. It is not a method
for print.

See Also

Defunct,

deriv Symbolic and Algorithmic Derivatives of Simple Expressions

Description

Compute derivatives of simple expressions, symbolically.

Usage

D (expr, name)
deriv(expr, namevec, function.arg, tag = ".expr", hessian = FALSE)
deriv3(expr, namevec, function.arg, tag = ".expr", hessian = TRUE)



176 deriv

Arguments

expr expression or call to be differentiated.

name,namevec character vector, giving the variable names (only one for D()) with respect
to which derivatives will be computed.

function.arg If specified, a character vector of arguments for a function return, or a
function (with empty body) or TRUE, the latter indicating that a function
with argument names namevec should be used.

tag character; the prefix to be used for the locally created variables in result.

hessian a logical value indicating whether the second derivatives should be calcu-
lated and incorporated in the return value.

Details

D is modelled after its S namesake for taking simple symbolic derivatives.

deriv is a generic function with a default and a formula method. It returns a call for
computing the expr and its (partial) derivatives, simultaneously. It uses so-called “algo-
rithmic derivatives”. If function.arg is a function, its arguments can have default values,
see the fx example below.

Currently, deriv.formula just calls deriv.default after extracting the expression to the
right of ~.

deriv3 and its methods are equivalent to deriv and its methods except that hessian
defaults to TRUE for deriv3.

Value

D returns a call and therefore can easily be iterated for higher derivatives.

deriv and deriv3 normally return an expression object whose evaluation returns the
function values with a "gradient" attribute containing the gradient matrix. If hessian is
TRUE the evaluation also returns a "hessian" attribute containing the Hessian array.

If function.arg is specified, deriv and deriv3 return a function with those arguments
rather than an expression.

References

Griewank, A. and Corliss, G. F. (1991) Automatic Differentiation of Algorithms: Theory,
Implementation, and Application. SIAM proceedings, Philadelphia.

Bates, D. M. and Chambers, J. M. (1992) Nonlinear models. Chapter 10 of Statistical
Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

nlm and optim for numeric minimization which could make use of derivatives, nls in package
nls.

Examples

## formula argument :

dx2x <- deriv(~ x^2, "x") ; dx2x

## Not run:

expression({

.value <- x^2



det 177

.grad <- array(0, c(length(.value), 1), list(NULL, c("x")))

.grad[, "x"] <- 2 * x

attr(.value, "gradient") <- .grad

.value

})

## End(Not run)

mode(dx2x)

x <- -1:2

eval(dx2x)

## Something 'tougher':

trig.exp <- expression(sin(cos(x + y^2)))

( D.sc <- D(trig.exp, "x") )

all.equal(D(trig.exp[[1]], "x"), D.sc)

( dxy <- deriv(trig.exp, c("x", "y")) )

y <- 1

eval(dxy)

eval(D.sc)

## function returned:

deriv((y ~ sin(cos(x) * y)), c("x","y"), func = TRUE)

## function with defaulted arguments:

(fx <- deriv(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),

function(b0, b1, th, x = 1:7){} ) )

fx(2,3,4)

## Higher derivatives

deriv3(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),

c("b0", "b1", "th", "x") )

## Higher derivatives:

DD <- function(expr,name, order = 1) {

if(order < 1) stop("'order' must be >= 1")

if(order == 1) D(expr,name)

else DD(D(expr, name), name, order - 1)

}

DD(expression(sin(x^2)), "x", 3)

## showing the limits of the internal "simplify()" :

## Not run:

-sin(x^2) * (2 * x) * 2 + ((cos(x^2) * (2 * x) * (2 * x) + sin(x^2) *

2) * (2 * x) + sin(x^2) * (2 * x) * 2)

## End(Not run)

det Calculate the Determinant of a Matrix

Description

det calculates the determinant of a matrix. determinant is a generic function that returns
separately the modulus of the determinant, optionally on the logarithm scale, and the sign
of the determinant.



178 detach

Usage

det(x, ...)
determinant(x, logarithm = TRUE, ...)

Arguments

x numeric matrix.

logarithm logical; if TRUE (default) return the logarithm of the modulus of the de-
terminant.

... Optional arguments. At present none are used. Previous versions of det
allowed an optional method argument. This argument will be ignored but
will not produce an error.

Value

For det, the determinant of x. For determinant, a list with components

modulus a numeric value. The modulus (absolute value) of the determinant if
logarithm is FALSE; otherwise the logarithm of the modulus.

sign integer; either +1 or −1 according to whether the determinant is positive
or negative.

Note

Often, computing the determinant is not what you should be doing to solve a given problem.

Prior to version 1.8.0 the det function had a method argument to allow use of either a
QR decomposition or an eigenvalue-eigenvector decomposition. The determinant function
now uses an LU decomposition and the det function is simply a wrapper around a call to
determinant.

Examples

(x <- matrix(1:4, ncol=2))

unlist(determinant(x))

det(x)

det(print(cbind(1,1:3,c(2,0,1))))

detach Detach Objects from the Search Path

Description

Detach a database, i.e., remove it from the search() path of available R objects. Usu-
ally, this either a data.frame which has been attached or a package which was required
previously.

Usage

detach(name, pos = 2, version)



dev.xxx 179

Arguments

name The object to detach. Defaults to search()[pos]. This can be a name
or a character string but not a character vector.

pos Index position in search() of database to detach. When name is numeric,
pos = name is used.

version A character string denoting a version number of the package to be loaded.
If no version is given, a suitable default is chosen.

Value

The attached database is returned invisibly, either as data.frame or as list.

Note

You cannot detach either the workspace (position 1) or the base package (the last item in
the search list).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

attach, library, search, objects.

Examples

require(eda)#package

detach(package:eda)

## could equally well use detach("package:eda")

## but NOT pkg <- "package:eda"; detach(pkg)

## Instead, use

library(eda)

pkg <- "package:eda"

detach(pos = match(pkg, search()))

## careful: do not do this unless 'lqs' is not already loaded.

library(lqs)

detach(2)# 'pos' used for 'name'

dev.xxx Control Multiple Devices

Description

These functions provide control over multiple graphics devices.

Only one device is the active device. This is the device in which all graphics operations
occur.

Devices are associated with a name (e.g., "X11" or "postscript") and a number; the "null
device" is always device 1.



180 dev.xxx

dev.off shuts down the specified (by default the current) device. graphics.off() shuts
down all open graphics devices.

dev.set makes the specified device the active device.

A list of the names of the open devices is stored in .Devices. The name of the active device
is stored in .Device.

Usage

dev.cur()
dev.list()
dev.next(which = dev.cur())
dev.prev(which = dev.cur())
dev.off(which = dev.cur())
dev.set(which = dev.next())
graphics.off()

Arguments

which An integer specifying a device number

Value

dev.cur returns the number and name of the active device, or 1, the null device, if none is
active.

dev.list returns the numbers of all open devices, except device 1, the null device. This
is a numeric vector with a names attribute giving the names, or NULL is there is no open
device.

dev.next and dev.prev return the number and name of the next / previous device in the
list of devices. The list is regarded as a circular list, and "null device" will be included
only if there are no open devices.

dev.off returns the name and number of the new active device (after the specified device
has been shut down).

dev.set returns the name and number of the new active device.

See Also

Devices, such as postscript, etc; layout and its links for setting up plotting regions on
the current device.

Examples

## Not run:

## Unix-specific example

x11()

plot(1:10)

x11()

plot(rnorm(10))

dev.set(dev.prev())

abline(0,1)# through the 1:10 points

dev.set(dev.next())

abline(h=0, col="gray")# for the residual plot

dev.set(dev.prev())

dev.off(); dev.off()#- close the two X devices

## End(Not run)



dev2 181

dev2 Copy Graphics Between Multiple Devices

Description

dev.copy copies the graphics contents of the current device to the device specified by which
or to a new device which has been created by the function specified by device (it is an
error to specify both which and device). (If recording is off on the current device, there
are no contents to copy: this will result in no plot or an empty plot.) The device copied to
becomes the current device.

dev.print copies the graphics contents of the current device to a new device which has
been created by the function specified by device and then shuts the new device.

dev.copy2eps is similar to dev.print but produces an EPSF output file, in portrait ori-
entation (horizontal = FALSE)

dev.control allows the user to control the recording of graphics operations in a device. If
displaylist is "inhibit" ("enable") then recording is turned off (on). It is only safe
to change this at the beginning of a plot (just before or just after a new page). Initially
recording is on for screen devices, and off for print devices.

Usage

dev.copy(device, ..., which = dev.next())
dev.print(device = postscript, ...)
dev.copy2eps(...)
dev.control(displaylist = c("inhibit", "enable"))

Arguments

device A device function (e.g., x11, postscript, . . . )

... Arguments to the device function above. For dev.print, this includes
which and by default any postscript arguments.

which A device number specifying the device to copy to

displaylist A character string: the only valid values are "inhibit" and "enable".

Details

For dev.copy2eps, width and height are taken from the current device unless otherwise
specified. If just one of width and height is specified, the other is adjusted to preserve the
aspect ratio of the device being copied. The default file name is Rplot.eps.

The default for dev.print is to produce and print a postscript copy, if
options("printcmd") is set suitably.

dev.print is most useful for producing a postscript print (its default) when the following
applies. Unless file is specified, the plot will be printed. Unless width, height and
pointsize are specified the plot dimensions will be taken from the current device, shrunk
if necessary to fit on the paper. (pointsize is rescaled if the plot is shrunk.) If horizontal
is not specified and the plot can be printed at full size by switching its value this is done
instead of shrinking the plot region.

If dev.print is used with a specified device (even postscript) it sets the width and height
in the same way as dev.copy2eps.



182 dev2bitmap

Value

dev.copy returns the name and number of the device which has been copied to.

dev.print and dev.copy2eps return the name and number of the device which has been
copied from.

Note

Most devices (including all screen devices) have a display list which records all of the
graphics operations that occur in the device. dev.copy copies graphics contents by copying
the display list from one device to another device. Also, automatic redrawing of graphics
contents following the resizing of a device depends on the contents of the display list.

After the command dev.control("inhibit"), graphics operations are not recorded in the
display list so that dev.copy and dev.print will not copy anything and the contents of a
device will not be redrawn automatically if the device is resized.

The recording of graphics operations is relatively expensive in terms of memory so the
command dev.control("inhibit") can be useful if memory usage is an issue.

See Also

dev.cur and other dev.xxx functions

Examples

## Not run:

x11()

plot(rnorm(10), main="Plot 1")

dev.copy(device=x11)

mtext("Copy 1", 3)

dev.print(width=6, height=6, horizontal=FALSE) # prints it

dev.off(dev.prev())

dev.off()

## End(Not run)

dev2bitmap Graphics Device for Bitmap Files via GhostScript

Description

bitmap generates a graphics file. dev2bitmap copies the current graphics device to a file in
a graphics format.

Usage

bitmap(file, type = "png256", height = 6, width = 6, res = 72,
pointsize, ...)

dev2bitmap(file, type = "png256", height = 6, width = 6, res = 72,
pointsize, ...)



dev2bitmap 183

Arguments

file The output file name, with an appropriate extension.

type The type of bitmap. the default is "png256".

height The plot height, in inches.

width The plot width, in inches.

res Resolution, in dots per inch.

pointsize The pointsize to be used for text: defaults to something reasonable given
the width and height

... Other parameters passed to postscript.

Details

dev2bitmap works by copying the current device to a postscript device, and post-
processing the output file using ghostscript. bitmap works in the same way using a
postscript device and postprocessing the output as “printing”.

You will need a version of ghostscript (5.10 and later have been tested): the full path to
the executable can be set by the environment variable R_GSCMD.

The types available will depend on the version of ghostscript, but are likely to in-
clude "pcxmono", "pcxgray", "pcx16", "pcx256", "pcx24b", "pcxcmyk", "pbm", "pbmraw",
"pgm", "pgmraw", "pgnm", "pgnmraw", "pnm", "pnmraw", "ppm", "ppmraw", "pkm",
"pkmraw", "tiffcrle", "tiffg3", "tiffg32d", "tiffg4", "tifflzw", "tiffpack",
"tiff12nc", "tiff24nc", "psmono", "psgray", "psrgb", "bit", "bitrgb", "bitcmyk",
"pngmono", "pnggray", "png16", "png256", "png16m", "jpeg", "jpeggray", "pdfwrite".

Note: despite the name of the functions they can produce PDF via type = "pdfwrite",
and the PDF produced is not bitmapped.

For formats which contain a single image, a file specification like Rplots%03d.png can be
used: this is intepreted by GhostScript.

For dev2bitmap if just one of width and height is specified, the other is chosen to preserve
aspect ratio of the device being copied.

Value

None.

See Also

postscript, png and jpeg and on Windows bmp.

pdf generate PDF directly.

To display an array of data, see image.



184 Devices

deviance Model Deviance

Description

Returns the deviance of a fitted model object.

Usage

deviance(object, ...)

Arguments

object an object for which the deviance is desired.

... additional optional argument.

Details

This is a generic function which can be used to extract deviances for fitted models. Consult
the individual modeling functions for details on how to use this function.

Value

The value of the deviance extracted from the object object.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

df.residual, extractAIC, glm, lm.

Devices List of Graphical Devices

Description

The following graphics devices are currently available:

� postscript Writes PostScript graphics commands to a file

� pdf Write PDF graphics commands to a file

� pictex Writes LaTeX/PicTeX graphics commands to a file

� xfig Device for XFIG graphics file format

� bitmap bitmap pseudo-device via GhostScript (if available).

The following devices will be available if R was compiled to use them and started with the
appropriate ‘--gui’ argument:



Devices 185

� X11 The graphics driver for the X11 Window system

� png PNG bitmap device

� jpeg JPEG bitmap device

� GTK, GNOME Graphics drivers for the GNOME GUI.

None of these are available under R CMD BATCH.

Usage

X11(...)
postscript(...)
pdf(...)
pictex(...)
png(...)
jpeg(...)
GTK(...)
GNOME(...)
xfig(...)
bitmap(...)

dev.interactive()

Details

If no device is open, using a high-level graphics function will cause a device to be opened.
Which device is given by options("device") which is initially set as the most appropriate
for each platform: a screen device in interactive use and postscript otherwise.

Value

dev.interactive() returns a logical, TRUE iff an interactive (screen) device is in use.

See Also

The individual help files for further information on any of the devices listed here;

dev.cur, dev.print, graphics.off, image, dev2bitmap.

capabilities to see if X11, jpeg and png are available.

Examples

## Not run:

## open the default screen device on this platform if no device is

## open

if(dev.cur() == 1) get(getOption("device"))()

## End(Not run)



186 diag

df.residual Residual Degrees-of-Freedom

Description

Returns the residual degrees-of-freedom extracted from a fitted model object.

Usage

df.residual(object, ...)

Arguments

object an object for which the degrees-of-freedom are desired.

... additional optional arguments.

Details

This is a generic function which can be used to extract residual degrees-of-freedom for fitted
models. Consult the individual modeling functions for details details on how to use this
function.

The default method just extracts the df.residual component.

Value

The value of the residual degrees-of-freedom extracted from the object x.

See Also

deviance, glm, lm.

diag Matrix Diagonals

Description

Extract or replace the diagonal of a matrix, or construct a diagonal matrix.

Usage

diag(x = 1, nrow, ncol= )
diag(x) <- value

Arguments

x a matrix, vector or 1D array.

nrow, ncol Optional dimensions for the result.

value either a single value or a vector of length equal to that of the current
diagonal. Should be of a mode which can be coerced to that of x.



diff 187

Value

If x is a matrix then diag(x) returns the diagonal of x. The resulting vector will have
names if the matrix x has matching column and row names.

If x is a vector (or 1D array) of length two or more, then diag(x) returns a diagonal matrix
whose diagonal is x.

If x is a vector of length one then diag(x) returns an identity matrix of order the nearest
integer to x. The dimension of the returned matrix can be specified by nrow and ncol (the
default is square).

The assignment form sets the diagonal of the matrix x to the given value(s).

Note

Using diag(x) can have unexpected effects if x is a vector that could be of length one. Use
diag(x, nrow = length(x)) for consistent behaviour.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

upper.tri, lower.tri, matrix.

Examples

dim(diag(3))

diag(10,3,4) # guess what?

all(diag(1:3) == {m <- matrix(0,3,3); diag(m) <- 1:3; m})

diag(var(M <- cbind(X=1:5, Y=rnorm(5))))#-> vector with names "X" and "Y"

rownames(M) <- c(colnames(M),rep("",3));

M; diag(M) # named as well

diff Lagged Differences

Description

Returns suitably lagged and iterated differences.

Usage

diff(x, ...)

## Default S3 method:
diff(x, lag = 1, differences = 1, ...)

## S3 method for class 'POSIXt':
diff(x, lag = 1, differences = 1, ...)



188 difftime

Arguments

x a numeric vector or matrix containing the values to be differenced.

lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

... further arguments to be passed to or from methods.

Details

diff is a generic function with a default method and ones for classes "ts" and "POSIXt".
NA’s propagate.

Value

If x is a vector of length n and differences=1, then the computed result is equal to the
successive differences x[(1+lag):n] - x[1:(n-lag)].

If difference is larger than one this algorithm is applied recursively to x. Note that the
returned value is a vector which is shorter than x.

If x is a matrix then the difference operations are carried out on each column separately.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

diff.ts, diffinv.

Examples

diff(1:10, 2)

diff(1:10, 2, 2)

x <- cumsum(cumsum(1:10))

diff(x, lag = 2)

diff(x, differences = 2)

diff(.leap.seconds)

difftime Time Intervals

Description

Create, print and round time intervals.



difftime 189

Usage

time1 - time2
difftime(time1, time2, tz = "",

units = c("auto", "secs", "mins", "hours", "days", "weeks"))
as.difftime(tim, format = "%X")

## S3 method for class 'difftime':
round(x, digits = 0)

Arguments

time1, time2 date-time objects.

tz a timezone specification to be used for the conversion. System-specific,
but "" is the current time zone, and "GMT" is UTC.

units character. Units in which the results are desired. Can be abbreviated.

tim character string specifying a time interval.

format character specifying the format of tim.

x an object inheriting from class "difftime".

digits integer. Number of significant digits to retain.

Details

Function difftime takes a difference of two date/time objects (of either class) and returns
an object of class "difftime" with an attribute indicating the units. There is a round
method for objects of this class, as well as methods for the group-generic (see Ops) logical
and arithmetic operations.

If units = "auto", a suitable set of units is chosen, the largest possible (excluding "weeks")
in which all the absolute differences are greater than one.

Subtraction of two date-time objects gives an object of this class, by calling difftime with
units="auto". Alternatively, as.difftime() works on character-coded time intervals.

Limited arithmetic is available on "difftime" objects: they can be added or subtracted,
and multiplied or divided by a numeric vector. In addition, adding or subtracting a numeric
vector implicitly converts the numeric vector to a "difftime" object with the same units
as the "difftime" object.

See Also

DateTimeClasses.

Examples

(z <- Sys.time() - 3600)

Sys.time() - z # just over 3600 seconds.

## time interval between releases of 1.2.2 and 1.2.3.

ISOdate(2001, 4, 26) - ISOdate(2001, 2, 26)

as.difftime(c("0:3:20", "11:23:15"))

as.difftime(c("3:20", "23:15", "2:"), format= "%H:%M")# 3rd gives NA



190 dim

dim Dimensions of an Object

Description

Retrieve or set the dimension of an object.

Usage

dim(x)
dim(x) <- value

Arguments

x an R object, for example a matrix, array or data frame.

value For the default method, either NULL or a numeric vector which coerced to
integer (by truncation).

Details

The functions dim and dim<- are generic.

dim has a method for data.frames, which returns the length of the row.names attribute of
x and the length of x (the numbers of “rows” and “columns”).

Value

For an array (and hence in particular, for a matrix) dim retrieves the dim attribute of the
object. It is NULL or a vector of mode integer.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

ncol, nrow and dimnames.

Examples

x <- 1:12 ; dim(x) <- c(3,4)

x

# simple versions of nrow and ncol could be defined as follows

nrow0 <- function(x) dim(x)[1]

ncol0 <- function(x) dim(x)[2]



dimnames 191

dimnames Dimnames of an Object

Description

Retrieve or set the dimnames of an object.

Usage

dimnames(x)
dimnames(x) <- value

Arguments

x an R object, for example a matrix, array or data frame.

value a possible value for dimnames(x): see “Value”.

Details

The functions dimnames and dimnames<- are generic.

For an array (and hence in particular, for a matrix), they retrieve or set the dimnames
attribute (see attributes) of the object. The list value can have names, and these will be
used to label the dimensions of the array where appropriate.

Both have methods for data frames. The dimnames of a data frame are its row.names
attribute and its names.

As from R 1.8.0 factor components of value will be coerced to character.

Value

The dimnames of a matrix or array can be NULL or a list of the same length as dim(x). If
a list, its components are either NULL or a character vector the length of the appropriate
dimension of x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

rownames, colnames; array, matrix, data.frame.

Examples

## simple versions of rownames and colnames

## could be defined as follows

rownames0 <- function(x) dimnames(x)[[1]]

colnames0 <- function(x) dimnames(x)[[2]]



192 do.call

discoveries Yearly Numbers of Important Discoveries

Description

The numbers of “great” inventions and scientific discoveries in each year from 1860 to 1959.

Usage

data(discoveries)

Format

A time series of 100 values.

Source

The World Almanac and Book of Facts, 1975 Edition, pages 315–318.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(discoveries)

plot(discoveries, ylab = "Number of important discoveries",

las = 1)

title(main = "discoveries data set")

do.call Execute a Function Call

Description

do.call executes a function call from the name of the function and a list of arguments to
be passed to it.

Usage

do.call(what, args)

Arguments

what a character string naming the function to be called.

args a list of arguments to the function call. The names attribute of args gives
the argument names.

Value

The result of the (evaluated) function call.



dotchart 193

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

call which creates an unevaluated call.

Examples

do.call("complex", list(imag = 1:3))

dotchart Cleveland Dot Plots

Description

Draw a Cleveland dot plot.

Usage

dotchart(x, labels = NULL, groups = NULL, gdata = NULL,
cex = par("cex"), pch = 21, gpch = 21, bg = par("bg"),
color = par("fg"), gcolor = par("fg"), lcolor = "gray",
xlim = range(x[is.finite(x)]),
main = NULL, xlab = NULL, ylab = NULL, ...)

Arguments

x either a vector or matrix of numeric values (NAs are allowed). If x is a
matrix the overall plot consists of juxtaposed dotplots for each row.

labels a vector of labels for each point. For vectors the default is to use names(x)
and for matrices the row labels dimnames(x)[[1]].

groups an optional factor indicating how the elements of x are grouped. If x is a
matrix, groups will default to the columns of x.

gdata data values for the groups. This is typically a summary such as the median
or mean of each group.

cex the character size to be used. Setting cex to a value smaller than one can
be a useful way of avoiding label overlap.

pch the plotting character or symbol to be used.
gpch the plotting character or symbol to be used for group values.
bg the background color of plotting characters or symbols to be used; use

par(bg= *) to set the background color of the whole plot.
color the color(s) to be used for points an labels.
gcolor the single color to be used for group labels and values.
lcolor the color(s) to be used for the horizontal lines.
xlim horizontal range for the plot, see plot.window, e.g.
main overall title for the plot, see title.
xlab, ylab axis annotations as in title.
... graphical parameters can also be specified as arguments.



194 double

Value

This function is invoked for its side effect, which is to produce two variants of dotplots as
described in Cleveland (1985).

Dot plots are a reasonable substitute for bar plots.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Cleveland, W. S. (1985) The Elements of Graphing Data. Monterey, CA: Wadsworth.

Examples

data(VADeaths)

dotchart(VADeaths, main = "Death Rates in Virginia - 1940")

op <- par(xaxs="i")# 0 -- 100%

dotchart(t(VADeaths), xlim = c(0,100),

main = "Death Rates in Virginia - 1940")

par(op)

double Double Precision Vectors

Description

Create, coerce to or test for a double-precision vector.

Usage

double(length = 0)
as.double(x, ...)
is.double(x)
single(length = 0)
as.single(x, ...)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Value

double creates a double precision vector of the specified length. The elements of the vector
are all equal to 0.

as.double attempts to coerce its argument to be of double type: like as.vector it strips
attributes including names.

is.double returns TRUE or FALSE depending on whether its argument is of double type
or not. It is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.



download.file 195

Note

R has no single precision data type. All real numbers are stored in double precision format.
The functions as.single and single are identical to as.double and double except they
set the attribute Csingle that is used in the .C and .Fortran interface, and they are
intended only to be used in that context.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

integer.

Examples

is.double(1)

all(double(3) == 0)

download.file Download File from the Internet

Description

This function can be used to download a file from the Internet.

Usage

download.file(url, destfile, method, quiet = FALSE, mode="w",
cacheOK = TRUE)

Arguments

url A character string naming the URL of a resource to be downloaded.

destfile A character string with the name where the downloaded file is saved.
Tilde-expansion is performed.

method Method to be used for downloading files. Currently download methods
"internal", "wget" and "lynx" are available. The default is to choose
the first of these which will be "internal". The method can also be set
through the option "download.file.method": see options().

quiet If TRUE, suppress status messages (if any).

mode character. The mode with which to write the file. Useful values are "w",
"wb" (binary), "a" (append) and "ab". Only used for the "internal"
method.

cacheOK logical. Is a server-side cached value acceptable? Implemented for the
"internal" and "wget" methods.



196 download.file

Details

The function download.file can be used to download a single file as described by url
from the internet and store it in destfile. The url must start with a scheme such as
"http://", "ftp://" or "file://".

cacheOK = FALSE is useful for "http://" URLs, and will attempt to get a copy directly
from the site rather than from an intermediate cache. (Not all platforms support it.) It is
used by CRAN.packages.

The remaining details apply to method "internal" only.

The timeout for many parts of the transfer can be set by the option timeout which defaults
to 60 seconds.

The level of detail provided during transfer can be set by the quiet argument and the
internet.info option. The details depend on the platform and scheme, but setting
internet.info to 0 gives all available details, including all server responses. Using 2
(the default) gives only serious messages, and 3 or more suppresses all messages.

Method "wget" can be used with proxy firewalls which require user/password authentication
if proper values are stored in the configuration file for wget.

Setting Proxies

This applies to the internal code only.

Proxies can be specified via environment variables. Setting "no_proxy" stops any proxy
being tried. Otherwise the setting of "http_proxy" or "ftp_proxy" (or failing that, the
all upper-case version) is consulted and if non-empty used as a proxy site. For FTP trans-
fers, the username and password on the proxy can be specified by "ftp_proxy_user" and
"ftp_proxy_password". The form of "http_proxy" should be "http://proxy.dom.com/"
or "http://proxy.dom.com:8080/" where the port defaults to 80 and the trailing slash
may be omitted. For "ftp_proxy" use the form "ftp://proxy.dom.com:3128/" where the
default port is 21. These environment variables must be set before the download code is
first used: they cannot be altered later by calling Sys.putenv.

Usernames and passwords can be set for HTTP proxy transfers via environment variable
http_proxy_user in the form user:passwd. Alternatively, "http_proxy" can be of the
form "http://user:pass@proxy.dom.com:8080/" for compatibility with wget. Only the
HTTP/1.0 basic authentication scheme is supported.

Note

Methods "wget" and "lynx" are for historical compatibility. They will block all other
activity on the R process.

For methods "wget" and "lynx" a system call is made to the tool given by method, and
the respective program must be installed on your system and be in the search path for
executables.

See Also

options to set the timeout and internet.info options.

url for a finer-grained way to read data from URLs.

url.show, CRAN.packages, download.packages for applications



dput 197

dput Write an Internal Object to a File

Description

Writes an ASCII text representation of an R object to a file or connection, or uses one to
recreate the object.

Usage

dput(x, file = "")
dget(file)

Arguments

x an object.

file either a character string naming a file or a connection. "" indicates output
to the console.

Details

dput opens file and deparses the object x into that file. The object name is not written
(contrary to dump). If x is a function the associated environment is stripped. Hence scoping
information can be lost.

Using dget, the object can be recreated (with the limitations mentioned above).

dput will warn if fewer characters were written to a file than expected, which may indicate
a full or corrupt file system.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

deparse, dump, write.

Examples

## Write an ASCII version of mean to the file "foo"

dput(mean, "foo")

## And read it back into 'bar'

bar <- dget("foo")

unlink("foo")



198 dummy.coef

drop Drop Redundant Extent Information

Description

Delete the dimensions of an array which have only one level.

Usage

drop(x)

Arguments

x an array (including a matrix).

Value

If x is an object with a dim attribute (e.g., a matrix or array), then drop returns an object
like x, but with any extents of length one removed. Any accompanying dimnames attribute
is adjusted and returned with x.

Array subsetting ([) performs this reduction unless used with drop = FALSE, but sometimes
it is useful to invoke drop directly.

See Also

drop1 which is used for dropping terms in models.

Examples

dim(drop(array(1:12, dim=c(1,3,1,1,2,1,2))))# = 3 2 2

drop(1:3 %*% 2:4)# scalar product

dummy.coef Extract Coefficients in Original Coding

Description

This extracts coefficients in terms of the original levels of the coefficients rather than the
coded variables.

Usage

dummy.coef(object, ...)

## S3 method for class 'lm':
dummy.coef(object, use.na = FALSE, ...)

## S3 method for class 'aovlist':
dummy.coef(object, use.na = FALSE, ...)



dummy.coef 199

Arguments

object a linear model fit.

use.na logical flag for coefficients in a singular model. If use.na is true, unde-
termined coefficients will be missing; if false they will get one possible
value.

... arguments passed to or from other methods.

Details

A fitted linear model has coefficients for the contrasts of the factor terms, usually one less in
number than the number of levels. This function re-expresses the coefficients in the original
coding; as the coefficients will have been fitted in the reduced basis, any implied constraints
(e.g., zero sum for contr.helmert or contr.sum will be respected. There will be little
point in using dummy.coef for contr.treatment contrasts, as the missing coefficients are
by definition zero.

The method used has some limitations, and will give incomplete results for terms such as
poly(x, 2)). However, it is adequate for its main purpose, aov models.

Value

A list giving for each term the values of the coefficients. For a multistratum aov model,
such a list for each stratum.

Warning

This function is intended for human inspection of the output: it should not be used for
calculations. Use coded variables for all calculations.

The results differ from S for singular values, where S can be incorrect.

See Also

aov, model.tables

Examples

options(contrasts=c("contr.helmert", "contr.poly"))

## From Venables and Ripley (2002) p.165.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

npk.aov <- aov(yield ~ block + N*P*K, npk)

dummy.coef(npk.aov)

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

dummy.coef(npk.aovE)



200 dump

dump Text Representations of R Objects

Description

This function takes a vector of names of R objects and produces text representations of the
objects on a file or connection. A dump file can be sourced into another R (or S) session.

Usage

dump(list, file = "dumpdata.R", append = FALSE, envir = parent.frame())

Arguments

list character. The names of one or more R objects to be dumped.
file either a character string naming a file or a connection. "" indicates output

to the console.
append if TRUE, output will be appended to file; otherwise, it will overwrite the

contents of file.
envir the environment to search for objects.

Details

At present the implementation of dump is very incomplete and it really only works for
functions and simple vectors.

dump will warn if fewer characters were written to a file than expected, which may indicate
a full or corrupt file system.

The function save is designed to be used for transporting R data between machines.

Note

The envir argument was added at version 1.7.0, and changed the search path for named
objects to include the environment from which dump was called.

As dump is defined in the base namespace, the base package will be searched before the
global environment unless dump is called from the top level or the envir argument is given
explicitly.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

dput, dget,write.

Examples

x <- 1; y <- 1:10

dump(ls(patt='^[xyz]'), "xyz.Rdmped")

unlink("xyz.Rdmped")



duplicated 201

duplicated Determine Duplicate Elements

Description

Determines which elements of a vector of data frame are duplicates of elements with smaller
subscripts, and returns a logical vector indicating which elements (rows) are duplicates.

Usage

duplicated(x, incomparables = FALSE, ...)

## S3 method for class 'array':
duplicated(x, incomparables = FALSE, MARGIN = 1, ...)

Arguments

x an atomic vector or a data frame or an array.

incomparables a vector of values that cannot be compared. Currently, FALSE is the only
possible value, meaning that all values can be compared.

... arguments for particular methods.

MARGIN the array margin to be held fixed: see apply.

Details

This is a generic function with methods for vectors, data frames and arrays (including
matrices).

The data frame method works by pasting together a character representation of the rows
separated by
r, so may be imperfect if the data frame has characters with embedded carriage returns or
columns which do not reliably map to characters.

The array method calculates for each element of the sub-array specified by MARGIN if the
remaining dimensions are identical to those for an earlier element (in row-major order).
This would most commonly be used to find duplicated rows (the default) or columns (with
MARGIN = 2).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

unique.



202 dyn.load

Examples

x <- c(9:20, 1:5, 3:7, 0:8)

## extract unique elements

(xu <- x[!duplicated(x)])

## xu == unique(x) but unique(x) is more efficient

data(iris)

duplicated(iris)[140:143]

data(iris3)

duplicated(iris3, MARGIN = c(1, 3))

dyn.load Foreign Function Interface

Description

Load or unload shared libraries, and test whether a C function or Fortran subroutine is
available.

Usage

dyn.load(x, local = TRUE, now = TRUE)
dyn.unload(x)

is.loaded(symbol, PACKAGE="")
symbol.C(name)
symbol.For(name)

Arguments

x a character string giving the pathname to a shared library or DLL.
local a logical value controlling whether the symbols in the shared library are

stored in their own local table and not shared across shared libraries, or
added to the global symbol table. Whether this has any effect is system-
dependent.

now a logical controlling whether all symbols are resolved (and relocated) im-
mediately the library is loaded or deferred until they are used. This
control is useful for developers testing whether a library is complete and
has all the necessary symbols and for users to ignore missing symbols.
Whether this has any effect is system-dependent.

symbol a character string giving a symbol name.
PACKAGE if supplied, confine the search for the name to the DLL given by this

argument (plus the conventional extension, .so, .sl, .dll, . . . ). This
is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols. Use
PACKAGE="base" for symbols linked in to R. This is used in the same way
as in .C, .Call, .Fortran and .External functions

name a character string giving either the name of a C function or Fortran sub-
routine. Fortran names probably need to be given entirely in lower case
(but this may be system-dependent).



dyn.load 203

Details

See ‘See Also’ and the Writing R Extensions manual for how to create a suitable shared
library. Note that unlike some versions of S-PLUS, dyn.load does not load an object (.o)
file but a shared library or DLL.

Unfortunately a very few platforms (Compaq Tru64) do not handle the PACKAGE argument
correctly, and may incorrectly find symbols linked into R.

The additional arguments to dyn.load mirror the different aspects of the mode argument
to the dlopen() routine on UNIX systems. They are available so that users can exercise
greater control over the loading process for an individual library. In general, the defaults
values are appropriate and one should override them only if there is good reason and you
understand the implications.

The local argument allows one to control whether the symbols in the DLL being attached
are visible to other DLLs. While maintaining the symbols in their own namespace is good
practice, the ability to share symbols across related “chapters” is useful in many cases.
Additionally, on certain platforms and versions of an operating system, certain libraries
must have their symbols loaded globally to successfully resolve all symbols.

One should be careful of the potential side-effect of using lazy loading via the now argument
as FALSE. If a routine is called that has a missing symbol, the process will terminate imme-
diately and unsaved session variables will be lost. The intended use is for library developers
to call specify a value TRUE to check that all symbols are actually resolved and for regular
users to all with FALSE so that missing symbols can be ignored and the available ones can
be called.

The initial motivation for adding these was to avoid such termination in the _init() rou-
tines of the Java virtual machine library. However, symbols loaded locally may not be (read
probably) available to other DLLs. Those added to the global table are available to all other
elements of the application and so can be shared across two different DLLs.

Some systems do not provide (explicit) support for local/global and lazy/eager symbol
resolution. This can be the source of subtle bugs. One can arrange to have warning
messages emitted when unsupported options are used. This is done by setting either of
the options verbose or warn to be non-zero via the options function. Currently, we know
of only 2 platforms that do not provide a value for local load (RTLD LOCAL). These are
IRIX6.4 and unpatched versions of Solaris 2.5.1.

There is a short discussion of these additional arguments with some example code available
at http://cm.bell-labs.com/stat/duncan/R/dynload.

Value

The function dyn.load is used for its side effect which links the specified shared library to
the executing R image. Calls to .C, .Fortran and .External can then be used to execute
compiled C functions or Fortran subroutines contained in the library.

The function dyn.unload unlinks the shared library.

Functions symbol.C and symbol.For map function or subroutine names to the symbol name
in the compiled code: is.loaded checks if the symbol name is loaded and hence available
for use in .C or .Fortran.

Note

The creation of shared libraries and the runtime linking of them into executing programs is
very platform dependent. In recent years there has been some simplification in the process
because the C subroutine call dlopen has become the standard for doing this under UNIX.

http://cm.bell-labs.com/stat/duncan/R/dynload


204 edit

Under UNIX dyn.load uses the dlopen mechanism and should work on all platforms which
support it. On Windows it uses the standard mechanisms for loading 32-bit DLLs.

The original code for loading DLLs in UNIX was provided by Heiner Schwarte. The com-
patibility code for HP-UX was provided by Luke Tierney.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

library.dynam to be used inside a package’s .First.lib initialization.

SHLIB for how to create suitable shared objects.

.C, .Fortran, .External, .Call.

Examples

is.loaded(symbol.For("hcass2")) #-> probably TRUE, as mva is loaded

edit Invoke a Text Editor

Description

Invoke a text editor on an R object.

Usage

## Default S3 method:
edit(name = NULL, file = "", editor = getOption("editor"), ...)
vi(name = NULL, file = "")
emacs(name = NULL, file = "")
pico(name = NULL, file = "")
xemacs(name = NULL, file = "")
xedit(name = NULL, file = "")

Arguments

name a named object that you want to edit. If name is missing then the file
specified by file is opened for editing.

file a string naming the file to write the edited version to.

editor a string naming the text editor you want to use. On Unix the default
is set from the environment variables EDITOR or VISUAL if either is set,
otherwise vi is used. On Windows it defaults to notepad.

... further arguments to be passed to or from methods.



edit.data.frame 205

Details

edit invokes the text editor specified by editor with the object name to be edited. It is a
generic function, currently with a default method and one for data frames and matrices.

data.entry can be used to edit data, and is used by edit to edit matrices and data frames
on systems for which data.entry is available.

It is important to realize that edit does not change the object called name. Instead, a copy
of name is made and it is that copy which is changed. Should you want the changes to
apply to the object name you must assign the result of edit to name. (Try fix if you want
to make permanent changes to an object.)

In the form edit(name), edit deparses name into a temporary file and invokes the editor
editor on this file. Quitting from the editor causes file to be parsed and that value
returned. Should an error occur in parsing, possibly due to incorrect syntax, no value
is returned. Calling edit(), with no arguments, will result in the temporary file being
reopened for further editing.

Note

The functions vi, emacs, pico, xemacs, xedit rely on the corresponding editor being
available and being on the path. This is system-dependent.

See Also

edit.data.frame, data.entry, fix.

Examples

## Not run:

# use xedit on the function mean and assign the changes

mean <- edit(mean, editor = "xedit")

# use vi on mean and write the result to file mean.out

vi(mean, file = "mean.out")

## End(Not run)

edit.data.frame Edit Data Frames and Matrices

Description

Use data editor on data frame or matrix contents.

Usage

## S3 method for class 'data.frame':
edit(name, factor.mode = c("character", "numeric"),

edit.row.names = any(row.names(name) != 1:nrow(name)), ...)

## S3 method for class 'matrix':
edit(name, edit.row.names = any(rownames(name) != 1:nrow(name)), ...)



206 edit.data.frame

Arguments

name A data frame or matrix.

factor.mode How to handle factors (as integers or using character levels) in a data
frame.

edit.row.names

logical. Show the row names be displayed as a separate editable column?

... further arguments passed to or from other methods.

Details

At present, this only works on simple data frames containing numeric, logical or character
vectors and factors. Factors are represented in the spreadsheet as either numeric vectors
(which is more suitable for data entry) or character vectors (better for browsing). After
editing, vectors are padded with NA to have the same length and factor attributes are
restored. The set of factor levels can not be changed by editing in numeric mode; invalid
levels are changed to NA and a warning is issued. If new factor levels are introduced in
character mode, they are added at the end of the list of levels in the order in which they
encountered.

It is possible to use the data-editor’s facilities to select the mode of columns to swap between
numerical and factor columns in a data frame. Changing any column in a numerical matrix
to character will cause the result to be coerced to a character matrix. Changing the mode
of logical columns is not supported.

Value

The edited data frame.

Note

fix(dataframe) works for in-place editing by calling this function.

If the data editor is not available, a dump of the object is presented for editing using the
default method of edit.

At present the data editor is limited to 65535 rows.

Author(s)

Peter Dalgaard

See Also

data.entry, edit

Examples

## Not run:

data(InsectSprays)

edit(InsectSprays)

edit(InsectSprays, factor.mode="numeric")

## End(Not run)



eff.aovlist 207

eff.aovlist Compute Efficiencies of Multistratum Analysis of Variance

Description

Computes the efficiencies of fixed-effect terms in an analysis of variance model with multiple
strata.

Usage

eff.aovlist(aovlist)

Arguments

aovlist The result of a call to aov with a Error term.

Details

Fixed-effect terms in an analysis of variance model with multiple strata may be estimable in
more than one stratum, in which case there is less than complete information in each. The
efficiency is the fraction of the maximum possible precision (inverse variance) obtainable by
estimating in just that stratum.

This is used to pick strata in which to estimate terms in model.tables.aovlist and
elsewhere.

Value

A matrix giving for each non-pure-error stratum (row) the efficiencies for each fixed-effect
term in the model.

See Also

aov, model.tables.aovlist, se.contrast.aovlist

Examples

## for balanced designs all efficiencies are zero or one.

## so as a statistically meaningless test:

options(contrasts=c("contr.helmert", "contr.poly"))

## From Venables and Ripley (2002) p.165.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

eff.aovlist(npk.aovE)



208 effects

effects Effects from Fitted Model

Description

Returns (orthogonal) effects from a fitted model, usually a linear model. This is a generic
function, but currently only has a methods for objects inheriting from classes "lm" and
"glm".

Usage

effects(object, ...)

## S3 method for class 'lm':
effects(object, set.sign=FALSE, ...)

Arguments

object an R object; typically, the result of a model fitting function such as lm.

set.sign logical. If TRUE, the sign of the effects corresponding to coefficients in the
model will be set to agree with the signs of the corresponding coefficients,
otherwise the sign is arbitrary.

... arguments passed to or from other methods.

Details

For a linear model fitted by lm or aov, the effects are the uncorrelated single-degree-of-
freedom values obtained by projecting the data onto the successive orthogonal subspaces
generated by the QR decomposition during the fitting process. The first r (the rank of the
model) are associated with coefficients and the remainder span the space of residuals (but
are not associated with particular residuals).

Empty models do not have effects.

Value

A (named) numeric vector of the same length as residuals, or a matrix if there were
multiple responses in the fitted model, in either case of class "coef".

The first r rows are labelled by the corresponding coefficients, and the remaining rows are
unlabelled. Note that in rank-deficient models the “corresponding” coefficients will be in a
different order if pivoting occurred.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

coef



eigen 209

Examples

y <- c(1:3,7,5)

x <- c(1:3,6:7)

( ee <- effects(lm(y ~ x)) )

c(round(ee - effects(lm(y+10 ~ I(x-3.8))),3))# just the first is different

eigen Spectral Decomposition of a Matrix

Description

Computes eigenvalues and eigenvectors.

Usage

eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE)
La.eigen(x, symmetric, only.values = FALSE,

method = c("dsyevr", "dsyev"))

Arguments

x a matrix whose spectral decomposition is to be computed.

symmetric if TRUE, the matrix is assumed to be symmetric (or Hermitian if complex)
and only its lower triangle is used. If symmetric is not specified, the
matrix is inspected for symmetry.

only.values if TRUE, only the eigenvalues are computed and returned, otherwise both
eigenvalues and eigenvectors are returned.

EISPACK logical. Should EISPACK be used (for compatibility with R < 1.7.0)?

method The LAPACK routine to use in the real symmetric case.

Details

These functions use the LAPACK routines DSYEV/DSYEVR, DGEEV, ZHEEV and
ZGEEV, and eigen(EISPACK=TRUE) provides an interface to the EISPACK routines RS,
RG, CH and CG.

If symmetric is unspecified, the code attempts to determine if the matrix is symmetric up
to plausible numerical inaccuracies. It is faster and surer to set the value yourself.

eigen is preferred to eigen(EISPACK=TRUE) for new projects, but its eigenvectors may
differ in sign and (in the asymmetric case) in normalization. (They may also differ between
methods and between platforms.)

The LAPACK routine DSYEVR is usually substantially faster than DSYEV: see http://
www.cs.berkeley.edu/~demmel/DOE2000/Report0100.html. Most benefits are seen with
an optimized BLAS system.

Using method="dsyevr" requires IEEE 754 arithmetic. Should this not be supported on
your platform, method="dsyev" is used, with a warning.

Computing the eigenvectors is the slow part for large matrices.

http://www.cs.berkeley.edu/~demmel/DOE2000/Report0100.html
http://www.cs.berkeley.edu/~demmel/DOE2000/Report0100.html


210 eigen

Value

The spectral decomposition of x is returned as components of a list with components

values a vector containing the p eigenvalues of x, sorted in decreasing order,
according to Mod(values) in the asymmetric case when they might be
complex (even for real matrices). For real asymmetric matrices the vec-
tor will be complex only if complex conjugate pairs of eigenvalues are
detected.

vectors either a p×p matrix whose columns contain the eigenvectors of x, or NULL
if only.values is TRUE.

For eigen(, symmetric = FALSE, EISPACK =TRUE) the choice of length
of the eigenvectors is not defined by EISPACK. In all other cases the
vectors are normalized to unit length.

Recall that the eigenvectors are only defined up to a constant: even when
the length is specified they are still only defined up to a scalar of modulus
one (the sign for real matrices).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Smith, B. T, Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe,Y., Klema, V., and Moler,
C. B. (1976). Matrix Eigensystems Routines – EISPACK Guide. Springer-Verlag Lecture
Notes in Computer Science.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

svd, a generalization of eigen; qr, and chol for related decompositions.

To compute the determinant of a matrix, the qr decomposition is much more efficient: det.

capabilities to test for IEEE 754 arithmetic.

Examples

eigen(cbind(c(1,-1),c(-1,1)))

eigen(cbind(c(1,-1),c(-1,1)), symmetric = FALSE)# same (different algorithm).

eigen(cbind(1,c(1,-1)), only.values = TRUE)

eigen(cbind(-1,2:1)) # complex values

eigen(print(cbind(c(0,1i), c(-1i,0))))# Hermite ==> real Eigen values

## 3 x 3:

eigen(cbind( 1,3:1,1:3))

eigen(cbind(-1,c(1:2,0),0:2)) # complex values

http://www.netlib.org/lapack/lug/lapack_lug.html


environment 211

environment Environment Access

Description

Get, set, test for and create environments.

Usage

environment(fun = NULL)
environment(fun) <- value
is.environment(obj)
.GlobalEnv
globalenv()
new.env(hash=FALSE, parent=parent.frame())
parent.env(env)
parent.env(env) <- value

Arguments

fun a function, a formula, or NULL, which is the default.

value an environment to associate with the function

obj an arbitrary R object.

hash a logical, if TRUE the environment will be hashed

parent an environment to be used as the parent of the environment created.

env an environment

Details

The global environment .GlobalEnv is the first item on the search path, more often known
as the user’s workspace. It can also be accessed by globalenv().

The variable .BaseNamespaceEnv is part of some experimental support for name space
management.

The replacement function parent.env<- is extremely dangerous as it can be used to de-
structively change environments in ways that violate assumptions made by the internal C
code. It may be removed in the near future.

is.environment is generic: you can write methods to handle of specific classes of objects,
see InternalMethods.

Value

If fun is a function or a formula then environment(fun) returns the environment associated
with that function or formula. If fun is NULL then the current evaluation environment is
returned.

The assignment form sets the environment of the function or formula fun to the value
given.

is.environment(obj) returns TRUE iff obj is an environment.

new.env returns a new (empty) environment enclosed in the parent’s environment, by de-
fault.



212 esoph

parent.env returns the parent environment of its argument.

parent.env<- sets the parent environment of its first argument.

See Also

The envir argument of eval.

Examples

##-- all three give the same:

environment()

environment(environment)

.GlobalEnv

ls(envir=environment(approxfun(1:2,1:2, method="const")))

is.environment(.GlobalEnv)# TRUE

e1 <- new.env(TRUE, NULL)

e2 <- new.env(FALSE, NULL)

assign("a", 3, env=e2)

parent.env(e1) <- e2

get("a", env=e1)

esoph Smoking, Alcohol and (O)esophageal Cancer

Description

Data from a case-control study of (o)esophageal cancer in Ile-et-Vilaine, France.

Usage

data(esoph)

Format

A data frame with records for 88 age/alcohol/tobacco combinations.

[,1] ”agegp” Age group 1 25–34 years
2 35–44
3 45–54
4 55–64
5 65–74
6 75+

[,2] ”alcgp” Alcohol consumption 1 0–39 gm/day
2 40–79
3 80–119
4 120+

[,3] ”tobgp” Tobacco consumption 1 0– 9 gm/day
2 10–19
3 20–29



euro 213

4 30+
[,4] ”ncases” Number of cases
[,5] ”ncontrols” Number of controls

Author(s)

Thomas Lumley

Source

Breslow, N. E. and Day, N. E. (1980) Statistical Methods in Cancer Research. 1: The
Analysis of Case-Control Studies. IARC Lyon / Oxford University Press.

Examples

data(esoph)

summary(esoph)

## effects of alcohol, tobacco and interaction, age-adjusted

model1 <- glm(cbind(ncases, ncontrols) ~ agegp + tobgp * alcgp,

data = esoph, family = binomial())

anova(model1)

## Try a linear effect of alcohol and tobacco

model2 <- glm(cbind(ncases, ncontrols) ~ agegp + unclass(tobgp)

+ unclass(alcgp),

data = esoph, family = binomial())

summary(model2)

## Re-arrange data for a mosaic plot

ttt <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)

ttt[ttt == 1] <- esoph$ncases

tt1 <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)

tt1[tt1 == 1] <- esoph$ncontrols

tt <- array(c(ttt, tt1), c(dim(ttt),2),

c(dimnames(ttt), list(c("Cancer", "control"))))

mosaicplot(tt, main = "esoph data set", color = TRUE)

euro Conversion Rates of Euro Currencies

Description

Conversion rates between the various Euro currencies.

Usage

data(euro)

Format

euro is a named vector of length 11, euro.cross a named matrix of size 11 by 11.



214 eurodist

Details

The data set euro contains the value of 1 Euro in all currencies participating in the Euro-
pean monetary union (Austrian Schilling ATS, Belgian Franc BEF, German Mark DEM,
Spanish Peseta ESP, Finnish Markka FIM, French Franc FRF, Irish Punt IEP, Italian Lira
ITL, Luxembourg Franc LUF, Dutch Guilder NLG and Portugese Escudo PTE). These
conversion rates were fixed by the European Union on December 31, 1998. To convert old
prices to Euro prices, divide by the respective rate and round to 2 digits.
The data set euro.cross contains conversion rates between the various Euro currencies,
i.e., the result of outer(1 / euro, euro).

Examples

data(euro)

cbind(euro)

## These relations hold:

euro == signif(euro,6) # [6 digit precision in Euro's definition]

all(euro.cross == outer(1/euro, euro))

## Convert 20 Euro to Belgian Franc

20 * euro["BEF"]

## Convert 20 Austrian Schilling to Euro

20 / euro["ATS"]

## Convert 20 Spanish Pesetas to Italian Lira

20 * euro.cross["ESP", "ITL"]

dotchart(euro,

main = "euro data: 1 Euro in currency unit")

dotchart(1/euro,

main = "euro data: 1 currency unit in Euros")

dotchart(log(euro, 10),

main = "euro data: log10(1 Euro in currency unit)")

eurodist Distances Between European Cities

Description

The data give the road distances (in km) between 21 cities in Europe. The data are taken
from a table in “The Cambridge Encyclopaedia”.

Usage

data(eurodist)

Format

A dist object based on 21 objects. (You must have the mva package loaded to have the
methods for this kind of object available).

Source

Crystal, D. Ed. (1990) The Cambridge Encyclopaedia. Cambridge: Cambridge University
Press,



eval 215

eval Evaluate an (Unevaluated) Expression

Description

Evaluate an R expression in a specified environment.

Usage

eval(expr, envir = parent.frame(),
enclos = if(is.list(envir) || is.pairlist(envir)) parent.frame())

evalq(expr, envir, enclos)
eval.parent(expr, n = 1)
local(expr, envir = new.env())

Arguments

expr object of mode expression orcall or an “unevaluated expression”.

envir the environment in which expr is to be evaluated. May also be a list, a
data frame, or an integer as in sys.call.

enclos Relevant when envir is a list or a data frame. Specifies the enclosure,
i.e., where R looks for objects not found in envir.

n parent generations to go back

Details

eval evaluates the expression expr argument in the environment specified by envir and
returns the computed value. If envir is not specified, then sys.frame(sys.frame()), the
environment where the call to eval was made is used.

The evalq form is equivalent to eval(quote(expr), ...).

As eval evaluates its first argument before passing it to the evaluator, it allows you to
assign complicated expressions to symbols and then evaluate them. evalq avoids this.

eval.parent(expr, n) is a shorthand for eval(expr, parent.frame(n)).

local evaluates an expression in a local environment. It is equivalent to evalq except the
its default argument creates a new, empty environment. This is useful to create anonymous
recursive functions and as a kind of limited namespace feature since variables defined in the
environment are not visible from the outside.

Note

Due to the difference in scoping rules, there are some differences between R and S in this
area. In particular, the default enclosure in S is the global environment.

When evaluating expressions in data frames that has been passed as argument to a function,
the relevant enclosure is often the caller’s environment, i.e., one needs eval(x, data,
parent.frame()).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (eval only.)



216 example

See Also

expression, quote, sys.frame, parent.frame, environment.

Examples

eval(2 ^ 2 ^ 3)

mEx <- expression(2^2^3); mEx; 1 + eval(mEx)

eval({ xx <- pi; xx^2}) ; xx

a <- 3 ; aa <- 4 ; evalq(evalq(a+b+aa, list(a=1)), list(b=5)) # == 10

a <- 3 ; aa <- 4 ; evalq(evalq(a+b+aa, -1), list(b=5)) # == 12

ev <- function() {

e1 <- parent.frame()

## Evaluate a in e1

aa <- eval(expression(a),e1)

## evaluate the expression bound to a in e1

a <- expression(x+y)

list(aa = aa, eval = eval(a, e1))

}

tst.ev <- function(a = 7) { x <- pi; y <- 1; ev() }

tst.ev()#-> aa : 7, eval : 4.14

##

## Uses of local()

##

# Mutual recursives.

# gg gets value of last assignment, an anonymous version of f.

gg <- local({

k <- function(y)f(y)

f <- function(x) if(x) x*k(x-1) else 1

})

gg(10)

sapply(1:5, gg)

# Nesting locals. a is private storage accessible to k

gg <- local({

k <- local({

a <- 1

function(y){print(a <<- a+1);f(y)}

})

f <- function(x) if(x) x*k(x-1) else 1

})

sapply(1:5, gg)

ls(envir=environment(gg))

ls(envir=environment(get("k", envir=environment(gg))))

example Run an Examples Section from the Online Help



example 217

Description

Run all the R code from the Examples part of R’s online help topic topic with two possible
exceptions, dontrun and dontshow, see Details below.

Usage

example(topic, package = .packages(), lib.loc = NULL,
local = FALSE, echo = TRUE, verbose = getOption("verbose"),
prompt.echo = paste(abbreviate(topic, 6),"> ", sep=""))

Arguments

topic name or literal character string: the online help topic the examples of
which should be run.

package a character vector with package names. By default, all packages in the
search path are used.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. If the default
is used, the loaded packages are searched before the libraries.

local logical: if TRUE evaluate locally, if FALSE evaluate in the workspace.

echo logical; if TRUE, show the R input when sourcing.

verbose logical; if TRUE, show even more when running example code.

prompt.echo character; gives the prompt to be used if echo = TRUE.

Details

If lib.loc is not specified, the packages are searched for amongst those already loaded,
then in the specified libraries. If lib.loc is specified, they are searched for only in the
specified libraries, even if they are already loaded from another library.

An attempt is made to load the package before running the examples, but this will not
replace a package loaded from another location.

If local=TRUE objects are not created in the workspace and so not available for examination
after example completes: on the other hand they cannot clobber objects of the same name
in the workspace.

As detailed in the manual Writing R Extensions, the author of the help page can markup
parts of the examples for two exception rules

dontrun encloses code that should not be run.

dontshow encloses code that is invisible on help pages, but will be run both by the package
checking tools, and the example() function. This was previously testonly, and that
form is still accepted.

Value

(the value of the last evaluated expression).

Note

The examples can be many small files. On some file systems it is desirable to save space,
and the files in the ‘R-ex’ directory of an installed package can be zipped up as a zip archive
‘Rex.zip’.



218 exists

Author(s)

Martin Maechler and others

See Also

demo

Examples

example(InsectSprays)

## force use of the standard package 'eda':

example("smooth", package="eda", lib.loc=.Library)

exists Is an Object Defined?

Description

Search for an R object of the given name on the search path.

Usage

exists(x, where = -1, envir = , frame, mode = "any", inherits = TRUE)

Arguments

x a variable name (given as a character string).
where where to look for the object (see the details section); if omitted, the

function will search, as if the name of the object appeared in unquoted in
an expression.

envir an alternative way to specify an environment to look in, but it’s usually
simpler to just use the where argument.

frame a frame in the calling list. Equivalent to giving where as
sys.frame(frame).

mode the mode of object sought.
inherits should the enclosing frames of the environment be inspected.

Details

The where argument can specify the environment in which to look for the object in any of
several ways: as an integer (the position in the search list); as the character string name of
an element in the search list; or as an environment (including using sys.frame to access
the currently active function calls). The envir argument is an alternative way to specify
an environment, but is primarily there for back compatibility.

This function looks to see if the name x has a value bound to it. If inherits is TRUE and a
value is not found for x, then the parent frames of the environment are searched until the
name x is encountered. Warning: This is the default behaviour for R but not for S.

If mode is specified then only objects of that mode are sought. The function returns TRUE
if the variable is encountered and FALSE if not.

The mode includes collections such as "numeric" and "function": any member of the
collection will suffice.



expand.grid 219

Value

Logical, true if and only if the object is found on the search path.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

get.

Examples

## Define a substitute function if necessary:

if(!exists("some.fun", mode="function"))

some.fun <- function(x) { cat("some.fun(x)\n"); x }

search()

exists("ls", 2) # true even though ls is in pos=3

exists("ls", 2, inherits=FALSE) # false

expand.grid Create a Data Frame from All Combinations of Factors

Description

Create a data frame from all combinations of the supplied vectors or factors. See the
description of the return value for precise details of the way this is done.

Usage

expand.grid(...)

Arguments

... Vectors, factors or a list containing these.

Value

A data frame containing one row for each combination of the supplied factors. The first
factors vary fastest. The columns are labelled by the factors if these are supplied as named
arguments or named components of a list.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

Examples

expand.grid(height = seq(60, 80, 5), weight = seq(100, 300, 50),

sex = c("Male","Female"))



220 expand.model.frame

expand.model.frame Add new variables to a model frame

Description

Evaluates new variables as if they had been part of the formula of the specified model.
This ensures that the same na.action and subset arguments are applied and allows, for
example, x to be recovered for a model using sin(x) as a predictor.

Usage

expand.model.frame(model, extras, envir=environment(formula(model)),
na.expand = FALSE)

Arguments

model a fitted model

extras one-sided formula or vector of character strings describing new variables
to be added

envir an environment to evaluate things in

na.expand logical; see below

Details

If na.expand=FALSE then NA values in the extra variables will be passed to the na.action
function used in model. This may result in a shorter data frame (with na.omit) or an error
(with na.fail). If na.expand=TRUE the returned data frame will have precisely the same
rows as model.frame(model), but the columns corresponding to the extra variables may
contain NA.

Value

A data frame.

See Also

model.frame,predict

Examples

data(trees)

model <- lm(log(Volume) ~ log(Girth) + log(Height), data=trees)

expand.model.frame(model, ~ Girth) # prints data.frame like

dd <- data.frame(x=1:5, y=rnorm(5), z=c(1,2,NA,4,5))

model <- glm(y ~ x, data=dd, subset=1:4, na.action=na.omit)

expand.model.frame(model, "z", na.expand=FALSE) # = default

expand.model.frame(model, "z", na.expand=TRUE)



Exponential 221

Exponential The Exponential Distribution

Description

Density, distribution function, quantile function and random generation for the exponential
distribution with rate rate (i.e., mean 1/rate).

Usage

dexp(x, rate = 1, log = FALSE)
pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE)
rexp(n, rate = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

rate vector of rates.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

If rate is not specified, it assumes the default value of 1.

The exponential distribution with rate λ has density

f(x) = λe−λx

for x ≥ 0.

Value

dexp gives the density, pexp gives the distribution function, qexp gives the quantile function,
and rexp generates random deviates.

Note

The cumulative hazard H(t) = − log(1 − F (t)) is -pexp(t, r, lower = FALSE, log =
TRUE).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.



222 expression

See Also

exp for the exponential function, dgamma for the gamma distribution and dweibull for the
Weibull distribution, both of which generalize the exponential.

Examples

dexp(1) - exp(-1) #-> 0

expression Unevaluated Expressions

Description

Creates or tests for objects of mode "expression".

Usage

expression(...)

is.expression(x)
as.expression(x, ...)

Arguments

... valid R expressions.
x an arbitrary R object.

Value

expression returns a vector of mode "expression" containing its arguments as unevalu-
ated “calls”.

is.expression returns TRUE if expr is an expression object and FALSE otherwise.

as.expression attempts to coerce its argument into an expression object.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

call, eval, function. Further, text and legend for plotting math expressions.

Examples

length(ex1 <- expression(1+ 0:9))# 1

ex1

eval(ex1)# 1:10

length(ex3 <- expression(u,v, 1+ 0:9))# 3

mode(ex3 [3]) # expression

mode(ex3[[3]])# call

rm(ex3)



Extract 223

Extract Extract or Replace Parts of an Object

Description

Operators act on vectors, arrays and lists to extract or replace subsets.

Usage

x[i]
x[i, j, ... , drop=TRUE]
x[[i]]
x[[i, j, ...]]
x$name

.subset(x, ...)

.subset2(x, ...)

Arguments

x object from which to extract elements or in which to replace elements.
i, j, ..., name

elements to extract or replace. i, j are numeric or character or empty
whereas name must be character or an (unquoted) name. Numeric values
are coerced to integer as by as.integer.
For [-indexing only: i, j, ... can be logical vectors, indicating ele-
ments/slices to select. Such vectors are recycled if necessary to match the
corresponding extent. When indexing arrays, i can be a (single) matrix
with as many columns as there are dimensions of x; the result is then a
vector with elements corresponding to the sets of indices in each row of
i.

drop For matrices, and arrays. If TRUE the result is coerced to the lowest
possible dimension (see examples below). This only works for extracting
elements, not for the replacement forms.

Details

These operators are generic. You can write methods to handle subsetting of specific classes
of objects, see InternalMethods as well as [.data.frame and [.factor. The descriptions
here apply only to the default methods.

The most important distinction between [, [[ and $ is that the [ can select more than one
element whereas the other two select a single element. $ does not allow computed indices,
whereas [[ does. x$name is equivalent to x[["name"]] if x is recursive (see is.recursive)
and NULL otherwise.

The [[ operator requires all relevant subscripts to be supplied. With the [ operator an
empty index (a comma separated blank) indicates that all entries in that dimension are
selected.

If one of these expressions appears on the left side of an assignment then that part of x is
set to the value of the right hand side of the assignment.



224 Extract

Indexing by factors is allowed and is equivalent to indexing by the numeric codes
(see factor) and not by the character values which are printed (for which use
[as.character(i)]).

When operating on a list, the [[ operator gives the specified element of the list while the
[ operator returns a list with the specified element(s) in it.

As from R 1.7.0 [[ can be applied recursively to lists, so that if the single index i is a vector
of length p, alist[[i]] is equivalent to alist[[i1]]...[[ip]] providing all but the final
indexing results in a list.

The operators $ and $<- do not evaluate their second argument. It is translated to a string
and that string is used to locate the correct component of the first argument.

When $<- is applied to a NULL x, it coerces x to list(). This is what happens with [[<-
is y is of length greater than one: if y has length 1 or 0, x is coerced to a zero-length vector
of the type of value,

The functions .subset and .subset2 are essentially equivalent to the [ and [[ operators,
except that methods dispatch does not take place. This is to avoid expensive unclassing
when applying the default method to an object. They should not normally be invoked by
end users.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

list, array, matrix.

[.data.frame and [.factor for the behaviour when applied to data.frame and factors.

Syntax for operator precedence, and the R Language reference manual about indexing
details.

Examples

x <- 1:12; m <- matrix(1:6,nr=2); li <- list(pi=pi, e = exp(1))

x[10] # the tenth element of x

m[1,] # the first row of matrix m

m[1, , drop = FALSE] # is a 1-row matrix

m[,c(TRUE,FALSE,TRUE)]# logical indexing

m[cbind(c(1,2,1),3:1)]# matrix index

li[[1]] # the first element of list li

y <- list(1,2,a=4,5)

y[c(3,4)] # a list containing elements 3 and 4 of y

y$a # the element of y named a

## non-integer indices are truncated:

(i <- 3.999999999) # "4" is printed

(1:5)[i] # 3

## recursive indexing into lists

z <- list( a=list( b=9, c='hello'), d=1:5)

unlist(z)

z[[c(1, 2)]]

z[[c(1, 2, 1)]] # both "hello"

z[[c("a", "b")]] <- "new"



Extract.data.frame 225

unlist(z)

Extract.data.frame Extract or Replace Parts of a Data Frame

Description

Extract or replace subsets of data frames.

Usage

x[i]
x[i] <- value
x[i, j, drop = TRUE]
x[i, j] <- value

x[[i]]
x[[i]] <- value
x[[i, j]]
x[[i, j]] <- value

x$name
x$name <- value

Arguments

x data frame.

i, j elements to extract or replace. i, j are numeric or character or, for [
only, empty. Numeric values are coerced to integer as if by as.integer.
For replacement by [, a logical matrix is allowed.

drop logical. If TRUE the result is coerced to the lowest possible dimension:
however, see the Warning below.

value A suitable replacement value: it will be repeated a whole number of times
if necessary and it may be coerced: see the Coercion section. If NULL,
deletes the column if a single column is selected.

name name or literal character string.

Details

Data frames can be indexed in several modes. When [ and [[ are used with a single index,
they index the data frame as if it were a list. In this usage a drop argument is ignored,
with a warning. Using $ is equivalent to using [[ with a single index.

When [ and [[ are used with two indices they act like indexing a matrix: [[ can only be
used to select one element.

If [ returns a data frame it will have unique (and non-missing) row names, if necessary
transforming the row names using make.unique. Similarly, column names will be trans-
formed (if columns are selected more than once).

When drop =TRUE, this is applied to the subsetting of any matrices contained in the data
frame as well as to the data frame itself.



226 Extract.data.frame

The replacement methods can be used to add whole column(s) by specifying non-existent
column(s), in which case the column(s) are added at the right-hand edge of the data frame
and numerical indices must be contiguous to existing indices. On the other hand, rows
can be added at any row after the current last row, and the columns will be in-filled with
missing values.

For [ the replacement value can be a list: each element of the list is used to replace (part of)
one column, recycling the list as necessary. If the columns specified by number are created,
the names (if any) of the corresponding list elements are used to name the columns. If the
replacment is not selecting rows, list values can contain NULL elements which will cause the
corresponding columns to be deleted.

Matrixing indexing using [ is not recommended, and barely supported. For extraction, x
is first coerced to a matrix. For replacement a logical matrix (only) can be used to select
the elements to be replaced in the same ways as for a matrix. Missing values in the matrix
are treated as false, unlike S which does not replace them but uses up the corresponding
values in value.

Value

For [ a data frame, list or a single column (the latter two only when dimensions have been
dropped). If matrix indexing is used for extraction a matrix results.

For [[ a column of the data frame (extraction with one index) or a length-one vector
(extraction with two indices).

For [<-, [[<- and $<-, a data frame.

Coercion

The story over when replacement values are coerced is a complicated one, and one that has
changed during R’s development. This section is a guide only.

When [ and [[ are used to add or replace a whole column, no coercion takes place but
value will be replicated (by calling the generic function rep) to the right length if an exact
number of repeats can be used.

When [ is used with a logical matrix, each value is coerced to the type of the column in
which it is to be placed.

When [ and [[ are used with two indices, the column will be coerced as necessary to
accommodate the value.

Warning

Although the default for drop is TRUE, the default behaviour when only one row is left is
equivalent to specifying drop = FALSE. To drop from a data frame to a list, drop = FALSE
has to specified explicitly.

See Also

subset which is often easier for extraction, data.frame, Extract.

Examples

data(swiss)

sw <- swiss[1:5, 1:4] # select a manageable subset

sw[1:3] # select columns



Extract.factor 227

sw[, 1:3] # same

sw[4:5, 1:3] # select rows and columns

sw[1] # a one-column data frame

sw[, 1, drop = FALSE] # the same

sw[, 1] # a (unamed) vector

sw[[1]] # the same

sw[1,] # a one-row data frame

sw[1,, drop=TRUE] # a list

swiss[ c(1, 1:2), ] # duplicate row, unique row names are created

sw[sw <= 6] <- 6 # logical matrix indexing

sw

## adding a column

sw["new1"] <- LETTERS[1:5] # adds a character column

sw[["new2"]] <- letters[1:5] # ditto

sw[, "new3"] <- LETTERS[1:5] # ditto

# but this got converted to a factor in 1.7.x

sw$new4 <- 1:5

sapply(sw, class)

sw$new4 <- NULL # delete the column

sw

sw[6:8] <- list(letters[10:14], NULL, aa=1:5) # delete col7, update 6, append

sw

## matrices in a data frame

A <- data.frame(x=1:3, y=I(matrix(4:6)), z=I(matrix(letters[1:9],3,3)))

A[1:3, "y"] # a matrix, was a vector prior to 1.8.0

A[1:3, "z"] # a matrix

A[, "y"] # a matrix

Extract.factor Extract or Replace Parts of a Factor

Description

Extract or replace subsets of factors.

Usage

x[i, drop = FALSE]

x[i] <- value

Arguments

x a factor

i a specification of indices – see Extract.

drop logical. If true, unused levels are dropped.

value character: a set of levels. Factor values are coerced to character.



228 extractAIC

Details

When unused levels are dropped the ordering of the remaining levels is preserved.

If value is not in levels(x), a missing value is assigned with a warning.

Any contrasts assigned to the factor are preserved unless drop=TRUE.

Value

A factor with the same set of levels as x unless drop=TRUE.

See Also

factor, Extract.

Examples

## following example(factor)

(ff <- factor(substring("statistics", 1:10, 1:10), levels=letters))

ff[, drop=TRUE]

factor(letters[7:10])[2:3, drop = TRUE]

extractAIC Extract AIC from a Fitted Model

Description

Computes the (generalized) Akaike An Information Criterion for a fitted parametric model.

Usage

extractAIC(fit, scale, k = 2, ...)

Arguments

fit fitted model, usually the result of a fitter like lm.

scale optional numeric specifying the scale parameter of the model, see scale
in step.

k numeric specifying the “weight” of the equivalent degrees of freedom
(≡edf) part in the AIC formula.

... further arguments (currently unused in base R).

Details

This is a generic function, with methods in base R for "aov", "coxph", "glm", "lm",
"negbin" and "survreg" classes.

The criterion used is
AIC = −2 logL+ k × edf,

where L is the likelihood and edf the equivalent degrees of freedom (i.e., the number of
parameters for usual parametric models) of fit.

For linear models with unknown scale (i.e., for lm and aov), −2 logL is computed from the
deviance and uses a different additive constant to AIC.



Extremes 229

k = 2 corresponds to the traditional AIC, using k = log(n) provides the BIC (Bayes IC)
instead.

For further information, particularly about scale, see step.

Value

A numeric vector of length 2, giving

edf the “equivalent degrees of freedom” of the fitted model fit.

AIC the (generalized) Akaike Information Criterion for fit.

Note

These functions are used in add1, drop1 and step and that may be their main use.

Author(s)

B. D. Ripley

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York:
Springer (4th ed).

See Also

AIC, deviance, add1, step

Examples

example(glm)

extractAIC(glm.D93)#>> 5 15.129

Extremes Maxima and Minima

Description

Returns the (parallel) maxima and minima of the input values.

Usage

max(..., na.rm=FALSE)
min(..., na.rm=FALSE)

pmax(..., na.rm=FALSE)
pmin(..., na.rm=FALSE)

Arguments

... numeric arguments.

na.rm a logical indicating whether missing values should be removed.



230 factor

Value

max and min return the maximum or minimum of all the values present in their arguments,
as integer if all are integer, or as double otherwise.

The minimum and maximum of an empty set are +Inf and -Inf (in this order!) which
ensures transitivity, e.g., min(x1, min(x2)) == min(x1,x2). In R versions before 1.5,
min(integer(0)) == .Machine$integer.max, and analogously for max, preserving argu-
ment type, whereas from R version 1.5.0, max(x) == -Inf and min(x) == +Inf whenever
length(x) == 0 (after removing missing values if requested).

If na.rm is FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

pmax and pmin take several vectors (or matrices) as arguments and return a single vector
giving the parallel maxima (or minima) of the vectors. The first element of the result is the
maximum (minimum) of the first elements of all the arguments, the second element of the
result is the maximum (minimum) of the second elements of all the arguments and so on.
Shorter vectors are recycled if necessary. If na.rm is FALSE, NA values in the input vectors
will produce NA values in the output. If na.rm is TRUE, NA values are ignored. attributes
(such as names or dim) are transferred from the first argument (if applicable).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

range (both min and max) and which.min (which.max) for the arg min, i.e., the location
where an extreme value occurs.

Examples

min(5:1,pi)

pmin(5:1, pi)

x <- sort(rnorm(100)); cH <- 1.35

pmin(cH, quantile(x)) # no names

pmin(quantile(x), cH) # has names

plot(x, pmin(cH, pmax(-cH, x)), type='b', main= "Huber's function")

factor Factors

Description

The function factor is used to encode a vector as a factor (the names category and enu-
merated type are also used for factors). If ordered is TRUE, the factor levels are assumed
to be ordered. For compatibility with S there is also a function ordered.

is.factor, is.ordered, as.factor and as.ordered are the membership and coercion
functions for these classes.



factor 231

Usage

factor(x, levels = sort(unique.default(x), na.last = TRUE),
labels = levels, exclude = NA, ordered = is.ordered(x))

ordered(x, ...)

is.factor(x)
is.ordered(x)

as.factor(x)
as.ordered(x)

Arguments

x a vector of data, usually taking a small number of distinct values

levels an optional vector of the values that x might have taken. The default is
the set of values taken by x, sorted into increasing order.

labels either an optional vector of labels for the levels (in the same order as
levels after removing those in exclude), or a character string of length
1.

exclude a vector of values to be excluded when forming the set of levels. This
should be of the same type as x, and will be coerced if necessary.

ordered logical flag to determine if the levels should be regarded as ordered (in
the order given).

... (in ordered(.)): any of the above, apart from ordered itself.

Details

The type of the vector x is not restricted.

Ordered factors differ from factors only in their class, but methods and the model-fitting
functions treat the two classes quite differently.

The encoding of the vector happens as follows. First all the values in exclude are removed
from levels. If x[i] equals levels[j], then the i-th element of the result is j. If no
match is found for x[i] in levels, then the i-th element of the result is set to NA.

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after
removing those in exclude, but this can be altered by supplying labels. This should either
be a set of new labels for the levels, or a character string, in which case the levels are that
character string with a sequence number appended.

factor(x, exclude=NULL) applied to a factor is a no-operation unless there are unused
levels: in that case, a factor with the reduced level set is returned. If exclude is used it
should also be a factor with the same level set as x or a set of codes for the levels to be
excluded.

The codes of a factor may contain NA. For a numeric x, set exclude=NULL to make NA an
extra level ("NA"), by default the last level.

If "NA" is a level, the way to set a code to be missing is to use is.na on the left-hand-side
of an assignment. Under those circumstances missing values are printed as <NA>.

is.factor is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.



232 factor

Value

factor returns an object of class "factor" which has a set of numeric codes the length of
x with a "levels" attribute of mode character. If ordered is true (or ordered is used)
the result has class c("ordered", "factor").

Applying factor to an ordered or unordered factor returns a factor (of the same type) with
just the levels which occur: see also [.factor for a more transparent way to achieve this.

is.factor returns TRUE or FALSE depending on whether its argument is of type factor or
not. Correspondingly, is.ordered returns TRUE when its argument is ordered and FALSE
otherwise.

as.factor coerces its argument to a factor. It is an abbreviated form of factor.

as.ordered(x) returns x if this is ordered, and ordered(x) otherwise.

Warning

The interpretation of a factor depends on both the codes and the "levels" attribute.
Be careful only to compare factors with the same set of levels (in the same order). In
particular, as.numeric applied to a factor is meaningless, and may happen by implicit
coercion. To “revert” a factor f to its original numeric values, as.numeric(levels(f))[f]
is recommended and slightly more efficient than as.numeric(as.character(f)).

The levels of a factor are by default sorted, but the sort order may well depend on the locale
at the time of creation, and should not be assumed to be ASCII.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

[.factor for subsetting of factors.

gl for construction of “balanced” factors and C for factors with specified contrasts. levels
and nlevels for accessing the levels, and codes to get integer codes.

Examples

(ff <- factor(substring("statistics", 1:10, 1:10), levels=letters))

as.integer(ff) # the internal codes

factor(ff) # drops the levels that do not occur

ff[, drop=TRUE] # the same, more transparently

factor(letters[1:20], label="letter")

class(ordered(4:1))# "ordered", inheriting from "factor"

## suppose you want "NA" as a level, and to allowing missing values.

(x <- factor(c(1, 2, "NA"), exclude = ""))

is.na(x)[2] <- TRUE

x # [1] 1 <NA> NA, <NA> used because NA is a level.

is.na(x)

# [1] FALSE TRUE FALSE



factor.scope 233

factor.scope Compute Allowed Changes in Adding to or Dropping from a For-
mula

Description

add.scope and drop.scope compute those terms that can be individually added to or
dropped from a model while respecting the hierarchy of terms.

Usage

add.scope(terms1, terms2)
drop.scope(terms1, terms2)
factor.scope(factor, scope)

Arguments

terms1 the terms or formula for the base model.

terms2 the terms or formula for the upper (add.scope) or lower (drop.scope)
scope. If missing for drop.scope it is taken to be the null formula, so all
terms (except any intercept) are candidates to be dropped.

factor the "factor" attribute of the terms of the base object.

scope a list with one or both components drop and add giving the "factor"
attribute of the lower and upper scopes respectively.

Details

factor.scope is not intended to be called directly by users.

Value

For add.scope and drop.scope a character vector of terms labels. For factor.scope, a
list with components drop and add, character vectors of terms labels.

See Also

add1, drop1, aov, lm

Examples

add.scope( ~ a + b + c + a:b, ~ (a + b + c)^3)

# [1] "a:c" "b:c"

drop.scope( ~ a + b + c + a:b)

# [1] "c" "a:b"



234 faithful

faithful Old Faithful Geyser Data

Description

Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser
in Yellowstone National Park, Wyoming, USA.

Usage

data(faithful)

Format

A data frame with 272 observations on 2 variables.

[,1] eruptions numeric Eruption time in mins
[,2] waiting numeric Waiting time to next eruption

Details

A closer look at faithful$eruptions reveals that these are heavily rounded times origi-
nally in seconds, where multiples of 5 are more frequent than expected under non-human
measurement. For a “better” version of the eruptions times, see the example below.

There are many versions of this dataset around: Azzalini and Bowman (1990) use a more
complete version.

Source

W. Härdle.

References

Härdle, W. (1991) Smoothing Techniques with Implementation in S. New York: Springer.

Azzalini, A. and Bowman, A. W. (1990). A look at some data on the Old Faithful geyser.
Applied Statistics 39, 357–365.

See Also

geyser in package MASS for the Azzalini-Bowman version.

Examples

data(faithful)

f.tit <- "faithful data: Eruptions of Old Faithful"

ne60 <- round(e60 <- 60 * faithful$eruptions)

all.equal(e60, ne60) # relative diff. ~ 1/10000

table(zapsmall(abs(e60 - ne60))) # 0, 0.02 or 0.04

faithful$better.eruptions <- ne60 / 60

te <- table(ne60)

te[te >= 4] # (too) many multiples of 5 !

plot(names(te), te, type="h", main = f.tit, xlab = "Eruption time (sec)")



family 235

plot(faithful[, -3], main = f.tit,

xlab = "Eruption time (min)",

ylab = "Waiting time to next eruption (min)")

lines(lowess(faithful$eruptions, faithful$waiting, f = 2/3, iter = 3),

col = "red")

family Family Objects for Models

Description

Family objects provide a convenient way to specify the details of the models used by func-
tions such as glm. See the documentation for glm for the details on how such model fitting
takes place.

Usage

family(object, ...)

binomial(link = "logit")
gaussian(link ="identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")
quasipoisson(link = "log")

Arguments

link a specification for the model link function. The gaussian family ac-
cepts the links "identity", "log" and "inverse"; the binomial fam-
ily the links "logit", "probit", "log" and "cloglog" (complementary
log-log); the Gamma family the links "inverse", "identity" and "log";
the poisson family the links "log", "identity", and "sqrt" and the
inverse.gaussian family the links "1/mu^2", "inverse", "inverse"
and "log".
The quasi family allows the links "logit", "probit", "cloglog",
"identity", "inverse", "log", "1/mu^2" and "sqrt". The function
power can also be used to create a power link function for the quasi
family.

variance for all families, other than quasi, the variance function is determined by
the family. The quasi family will accept the specifications "constant",
"mu(1-mu)", "mu", "mu^2" and "mu^3" for the variance function.

object the function family accesses the family objects which are stored within
objects created by modelling functions (e.g., glm).

... further arguments passed to methods.



236 family

Details

The quasibinomial and quasipoisson families differ from the binomial and poisson
families only in that the dispersion parameter is not fixed at one, so they can “model” over-
dispersion. For the binomial case see McCullagh and Nelder (1989, pp. 124–8). Although
they show that there is (under some restrictions) a model with variance proportional to
mean as in the quasi-binomial model, note that glm does not compute maximum-likelihood
estimates in that model. The behaviour of S is closer to the quasi- variants.

Author(s)

The design was inspired by S functions of the same names described in Hastie & Pregibon
(1992).

References

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and
Hall.

Dobson, A. J. (1983) An Introduction to Statistical Modelling. London: Chapman and Hall.

Cox, D. R. and Snell, E. J. (1981). Applied Statistics; Principles and Examples. London:
Chapman and Hall.

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical
Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

glm, power.

Examples

nf <- gaussian()# Normal family

nf

str(nf)# internal STRucture

gf <- Gamma()

gf

str(gf)

gf$linkinv

gf$variance(-3:4) #- == (.)^2

## quasipoisson. compare with example(glm)

counts <- c(18,17,15,20,10,20,25,13,12)

outcome <- gl(3,1,9)

treatment <- gl(3,3)

d.AD <- data.frame(treatment, outcome, counts)

glm.qD93 <- glm(counts ~ outcome + treatment, family=quasipoisson())

glm.qD93

anova(glm.qD93, test="F")

summary(glm.qD93)

## for Poisson results use

anova(glm.qD93, dispersion = 1, test="Chisq")

summary(glm.qD93, dispersion = 1)

## tests of quasi

x <- rnorm(100)



FDist 237

y <- rpois(100, exp(1+x))

glm(y ~x, family=quasi(var="mu", link="log"))

# which is the same as

glm(y ~x, family=poisson)

glm(y ~x, family=quasi(var="mu^2", link="log"))

## Not run: glm(y ~x, family=quasi(var="mu^3", link="log")) # should fail

y <- rbinom(100, 1, plogis(x))

# needs to set a starting value for the next fit

glm(y ~x, family=quasi(var="mu(1-mu)", link="logit"), start=c(0,1))

FDist The F Distribution

Description

Density, distribution function, quantile function and random generation for the F distribu-
tion with df1 and df2 degrees of freedom (and optional non-centrality parameter ncp).

Usage

df(x, df1, df2, log = FALSE)
pf(q, df1, df2, ncp=0, lower.tail = TRUE, log.p = FALSE)
qf(p, df1, df2, lower.tail = TRUE, log.p = FALSE)
rf(n, df1, df2)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the

number required.
df1, df2 degrees of freedom.
ncp non-centrality parameter.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >

x].

Details

The F distribution with df1 = n1 and df2 = n2 degrees of freedom has density

f(x) =
Γ(n1/2 + n2/2)
Γ(n1/2)Γ(n2/2)

(
n1

n2

)n1/2

xn1/2−1

(
1 +

n1x

n2

)−(n1+n2)/2

for x > 0.
It is the distribution of the ratio of the mean squares of n1 and n2 independent standard
normals, and hence of the ratio of two independent chi-squared variates each divided by its
degrees of freedom. Since the ratio of a normal and the root mean-square of m independent
normals has a Student’s tm distribution, the square of a tm variate has a F distribution on
1 and m degrees of freedom.
The non-central F distribution is again the ratio of mean squares of independent normals of
unit variance, but those in the numerator are allowed to have non-zero means and ncp is the
sum of squares of the means. See Chisquare for further details on non-central distributions.



238 fft

Value

df gives the density, pf gives the distribution function qf gives the quantile function, and
rf generates random deviates.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

dchisq for chi-squared and dt for Student’s t distributions.

Examples

## the density of the square of a t_m is 2*dt(x, m)/(2*x)

# check this is the same as the density of F_{1,m}

x <- seq(0.001, 5, len=100)

all.equal(df(x^2, 1, 5), dt(x, 5)/x)

## Identity: qf(2*p - 1, 1, df)) == qt(p, df)^2) for p >= 1/2

p <- seq(1/2, .99, length=50); df <- 10

rel.err <- function(x,y) ifelse(x==y,0, abs(x-y)/mean(abs(c(x,y))))

quantile(rel.err(qf(2*p - 1, df1=1, df2=df), qt(p, df)^2), .90)# ~= 7e-9

fft Fast Discrete Fourier Transform

Description

Performs the Fast Fourier Transform of an array.

Usage

fft(z, inverse = FALSE)
mvfft(z, inverse = FALSE)

Arguments

z a real or complex array containing the values to be transformed.

inverse if TRUE, the unnormalized inverse transform is computed (the inverse has
a + in the exponent of e, but here, we do not divide by 1/length(x)).

Value

When z is a vector, the value computed and returned by fft is the unnormalized univariate
Fourier transform of the sequence of values in z. When z contains an array, fft computes
and returns the multivariate (spatial) transform. If inverse is TRUE, the (unnormalized)
inverse Fourier transform is returned, i.e., if y <- fft(z), then z is fft(y, inverse =
TRUE) / length(y).

By contrast, mvfft takes a real or complex matrix as argument, and returns a similar
shaped matrix, but with each column replaced by its discrete Fourier transform. This is
useful for analyzing vector-valued series.



file.access 239

The FFT is fastest when the length of of the series being transformed is highly composite
(i.e., has many factors). If this is not the case, the transform may take a long time to
compute and will use a large amount of memory.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Singleton, R. C. (1979) Mixed Radix Fast Fourier Transforms, in Programs for Digital Signal
Processing, IEEE Digital Signal Processing Committee eds. IEEE Press.

See Also

convolve, nextn.

Examples

x <- 1:4

fft(x)

fft(fft(x), inverse = TRUE)/length(x)

file.access Ascertain File Accessibility

Description

Utility function to access information about files on the user’s file systems.

Usage

file.access(names, mode = 0)

Arguments

names character vector containing file names.

mode integer specifying access mode required.

Details

The mode value can be the exclusive or of the following values

0 test for existence.

1 test for execute permission.

2 test for write permission.

4 test for read permission.

Permission will be computed for real user ID and real group ID (rather than the effective
IDs).

Value

An integer vector with values 0 for success and -1 for failure.



240 file.info

Note

This is intended as a replacement for the S-PLUS function access, a wrapper for the C
function of the same name, which explains the return value encoding. Note that the return
value is false for success.

See Also

file.info

Examples

fa <- file.access(dir("."))

table(fa) # count successes & failures

file.choose Choose a File Interactively

Description

Choose a file interactively.

Usage

file.choose(new = FALSE)

Arguments

new Logical: choose the style of dialog box presented to the user: at present
only new = FALSE is used.

Value

A character vector of length one giving the file path.

file.info Extract File Information

Description

Utility function to extract information about files on the user’s file systems.

Usage

file.info(...)

Arguments

... character vectors containing file names.



file.info 241

Details

What is meant by “file access” and hence the last access time is system-dependent.

On most systems symbolic links are followed, so information is given about the file to which
the link points rather than about the link.

Value

A data frame with row names the file names and columns

size integer: File size in bytes.

isdir logical: Is the file a directory?

mode integer of class "octmode". The file permissions, printed in octal, for
example 644.

mtime, ctime, atime

integer of class "POSIXct": file modification, creation and last access
times.

uid integer: the user ID of the file’s owner.

gid integer: the group ID of the file’s group.

uname character: uid interpreted as a user name.

grname character: gid interpreted as a group name.

Unknown user and group names will be NA.

Entries for non-existent or non-readable files will be NA. The uid, gid, uname and grname
columns may not be supplied on a non-POSIX Unix system.

Note

This function will only be operational on systems with the stat system call, but that seems
very widely available.

See Also

files, file.access, list.files, and DateTimeClasses for the date formats.

Examples

ncol(finf <- file.info(dir()))# at least six

## Not run: finf # the whole list

## Those that are more than 100 days old :

finf[difftime(Sys.time(), finf[,"mtime"], units="days") > 100 , 1:4]

file.info("no-such-file-exists")



242 file.show

file.path Construct Path to File

Description

Construct the path to a file from components in a platform-independent way.

Usage

file.path(..., fsep = .Platform$file.sep)

Arguments

... character vectors.

fsep the path separator to use.

Value

A character vector of the arguments concatenated term-by-term and separated by fsep if
all arguments have positive length; otherwise, an empty character vector.

file.show Display One or More Files

Description

Display one or more files.

Usage

file.show(..., header = rep("",nfiles), title = "R Information",
delete.file=FALSE, pager=getOption("pager"))

Arguments

... one or more character vectors containing the names of the files to be
displayed.

header character vector (of the same length as the number of files specified in
...) giving a header for each file being displayed. Defaults to empty
strings.

title an overall title for the display. If a single separate window is used for the
display, title will be used as the window title. If multiple windows are
used, their titles should combine the title and the file-specific header.

delete.file should the files be deleted after display? Used for temporary files.

pager the pager to be used.

Details

This function provides the core of the R help system, but it can be used for other purposes
as well.



files 243

Note

How the pager is implemented is highly system dependent.

The basic Unix version concatenates the files (using the headers) to a temporary file, and
displays it in the pager selected by the pager argument, which is a character vector speci-
fying a system command to run on the set of files.

Most GUI systems will use a separate pager window for each file, and let the user leave it up
while R continues running. The selection of such pagers could either be done using “magic”
pager names being intercepted by lower-level code (such as "internal" and "console"
on Windows), or by letting pager be an R function which will be called with the same
arguments as file.show and take care of interfacing to the GUI.

Not all implementations will honour delete.file.

Author(s)

Ross Ihaka, Brian Ripley.

See Also

files, list.files, help.

Examples

file.show(file.path(R.home(), "COPYRIGHTS"))

files File Manipulation

Description

These functions provide a low-level interface to the computer’s file system.

Usage

file.create(...)
file.exists(...)
file.remove(...)
file.rename(from, to)
file.append(file1, file2)
file.copy(from, to, overwrite = FALSE)
file.symlink(from, to)
dir.create(path)

Arguments

..., file1, file2, from, to

character vectors, containing file names.

path a character vector containing a single path name.

overwrite logical; should the destination files be overwritten?



244 files

Details

The ... arguments are concatenated to form one character string: you can specify the files
separately or as one vector. All of these functions expand path names: see path.expand.

file.create creates files with the given names if they do not already exist and truncates
them if they do.

file.exists returns a logical vector indicating whether the files named by its argument
exist.

file.remove attempts to remove the files named in its argument.

file.rename attempts to rename a single file.

file.append attempts to append the files named by its second argument to those named
by its first. The R subscript recycling rule is used to align names given in vectors of different
lengths.

file.copy works in a similar way to file.append but with the arguments in the natural
order for copying. Copying to existing destination files is skipped unless overwrite = TRUE.
The to argument can specify a single existing directory.

file.symlink makes symbolic links on those Unix-like platforms which support them. The
to argument can specify a single existing directory.

dir.create creates the last element of the path.

Value

dir.create and file.rename return a logical, true for success.

The remaining functions return a logical vector indicating which operation succeeded for
each of the files attempted.

Author(s)

Ross Ihaka, Brian Ripley

See Also

file.info, file.access, file.path, file.show, list.files, unlink, basename,
path.expand.

Examples

cat("file A\n", file="A")

cat("file B\n", file="B")

file.append("A", "B")

file.create("A")

file.append("A", rep("B", 10))

if(interactive()) file.show("A")

file.copy("A", "C")

dir.create("tmp")

file.copy(c("A", "B"), "tmp")

list.files("tmp")

setwd("tmp")

file.remove("B")

file.symlink(file.path("..", c("A", "B")), ".")

setwd("..")

unlink("tmp", recursive=TRUE)

file.remove("A", "B", "C")



filled.contour 245

filled.contour Level (Contour) Plots

Description

This function produces a contour plot with the areas between the contours filled in solid
color (Cleveland calls this a level plot). A key showing how the colors map to z values is
shown to the right of the plot.

Usage

filled.contour(x = seq(0, 1, len = nrow(z)),
y = seq(0, 1, len = ncol(z)),
z,
xlim = range(x, finite=TRUE),
ylim = range(y, finite=TRUE),
zlim = range(z, finite=TRUE),
levels = pretty(zlim, nlevels), nlevels = 20,
color.palette = cm.colors,
col = color.palette(length(levels) - 1),
plot.title, plot.axes, key.title, key.axes,
asp = NA, xaxs = "i", yaxs = "i", las = 1,
axes = TRUE, frame.plot = axes, ...)

Arguments

x,y locations of grid lines at which the values in z are measured. These must
be in ascending order. By default, equally spaced values from 0 to 1 are
used. If x is a list, its components x$x and x$y are used for x and y,
respectively. If the list has component z this is used for z.

z a matrix containing the values to be plotted (NAs are allowed). Note that
x can be used instead of z for convenience.

xlim x limits for the plot.

ylim y limits for the plot.

zlim z limits for the plot.

levels a set of levels which are used to partition the range of z. Must be strictly
increasing (and finite). Areas with z values between consecutive levels are
painted with the same color.

nlevels if levels is not specified, the range of z, values is divided into approxi-
mately this many levels.

color.palette a color palette function to be used to assign colors in the plot.

col an explicit set of colors to be used in the plot. This argument overrides
any palette function specification.

plot.title statements which add titles the main plot.

plot.axes statements which draw axes (and a box) on the main plot. This overrides
the default axes.

key.title statements which add titles for the plot key.



246 filled.contour

key.axes statements which draw axes on the plot key. This overrides the default
axis.

asp the y/x aspect ratio, see plot.window.

xaxs the x axis style. The default is to use internal labeling.

yaxs the y axis style. The default is to use internal labeling.

las the style of labeling to be used. The default is to use horizontal labeling.
axes, frame.plot

logicals indicating if axes and a box should be drawn, as in plot.default.

... additional graphical parameters, currently only passed to title().

Note

This function currently uses the layout function and so is restricted to a full page display.
As an alternative consider the levelplot function from the lattice package which works in
multipanel displays.

The output produced by filled.contour is actually a combination of two plots; one is
the filled contour and one is the legend. Two separate coordinate systems are set up for
these two plots, but they are only used internally - once the function has returned these
coordinate systems are lost. If you want to annotate the main contour plot, for example to
add points, you can specify graphics commands in the plot.axes argument. An example
is given below.

Author(s)

Ross Ihaka.

References

Cleveland, W. S. (1993) Visualizing Data. Summit, New Jersey: Hobart.

See Also

contour, image, palette; levelplot from package lattice.

Examples

data(volcano)

filled.contour(volcano, color = terrain.colors, asp = 1)# simple

x <- 10*1:nrow(volcano)

y <- 10*1:ncol(volcano)

filled.contour(x, y, volcano, color = terrain.colors,

plot.title = title(main = "The Topography of Maunga Whau",

xlab = "Meters North", ylab = "Meters West"),

plot.axes = { axis(1, seq(100, 800, by = 100))

axis(2, seq(100, 600, by = 100)) },

key.title = title(main="Height\n(meters)"),

key.axes = axis(4, seq(90, 190, by = 10)))# maybe also asp=1

mtext(paste("filled.contour(.) from", R.version.string),

side = 1, line = 4, adj = 1, cex = .66)

# Annotating a filled contour plot

a <- expand.grid(1:20, 1:20)



findInterval 247

b <- matrix(a[,1] + a[,2], 20)

filled.contour(x = 1:20, y = 1:20, z = b,

plot.axes={ axis(1); axis(2); points(10,10) })

## Persian Rug Art:

x <- y <- seq(-4*pi, 4*pi, len = 27)

r <- sqrt(outer(x^2, y^2, "+"))

filled.contour(cos(r^2)*exp(-r/(2*pi)), axes = FALSE)

## rather, the key *should* be labeled:

filled.contour(cos(r^2)*exp(-r/(2*pi)), frame.plot = FALSE, plot.axes = {})

findInterval Find Interval Numbers or Indices

Description

Find the indices of x in vec, where vec must be sorted (non-decreasingly); i.e., if i <-
findInterval(x,v), we have vij ≤ xj < vij+1 where v0 := −∞, vN+1 := +∞, and N <-
length(vec). At the two boundaries, the returned index may differ by 1, depending on
the optional arguments rightmost.closed and all.inside.

Usage

findInterval(x, vec, rightmost.closed = FALSE, all.inside = FALSE)

Arguments

x numeric.

vec numeric, sorted (weakly) increasingly, of length N, say.
rightmost.closed

logical; if true, the rightmost interval, vec[N-1] .. vec[N] is treated
as closed, see below.

all.inside logical; if true, the returned indices are coerced into {1, . . . , N − 1}, i.e.,
0 is mapped to 1 and N to N − 1.

Details

The function findInterval finds the index of one vector x in another, vec, where the
latter must be non-decreasing. Where this is trivial, equivalent to apply( outer(x, vec,
">="), 1, sum), as a matter of fact, the internal algorithm uses interval search ensur-
ing O(n logN) complexity where n <- length(x) (and N <- length(vec)). For (almost)
sorted x, it will be even faster, basically O(n).

This is the same computation as for the empirical distribution function, and indeed,
findInterval(t, sort(X)) is identical to nFn(t;X1, . . . , Xn) where Fn is the empirical
distribution function of X1, . . . , Xn.

When rightmost.closed = TRUE, the result for x[j] = vec[N] (= max(vec)), is N - 1
as for all other values in the last interval.

Value

vector of length length(x) with values in 0:N where N <- length(vec), or values coerced
to 1:(N-1) iff all.inside = TRUE (equivalently coercing all x values inside the intervals).



248 fitted

Author(s)

Martin Maechler

See Also

approx(*, method = "constant") which is a generalization of findInterval(), ecdf for
computing the empirical distribution function which is (up to a factor of n) also basically
the same as findInterval(.).

Examples

N <- 100

X <- sort(round(rt(N, df=2), 2))

tt <- c(-100, seq(-2,2, len=201), +100)

it <- findInterval(tt, X)

tt[it < 1 | it >= N] # only first and last are outside range(X)

fitted Extract Model Fitted Values

Description

fitted is a generic function which extracts fitted values from objects returned by modeling
functions. fitted.values is an alias for it.

All object classes which are returned by model fitting functions should provide a fitted
method. (Note that the generic is fitted and not fitted.values.)

Methods can make use of napredict methods to compensate for the omission of missing
values. The default, lm and glm methods do.

Usage

fitted(object, ...)
fitted.values(object, ...)

Arguments

object an object for which the extraction of model fitted values is meaningful.

... other arguments.

Value

Fitted values extracted from the object x.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

coefficients, glm, lm, residuals.



fivenum 249

fivenum Tukey Five-Number Summaries

Description

Returns Tukey’s five number summary (minimum, lower-hinge, median, upper-hinge, max-
imum) for the input data.

Usage

fivenum(x, na.rm = TRUE)

Arguments

x numeric, maybe including NAs and +/-Infs.

na.rm logical; if TRUE, all NA and NaNs are dropped, before the statistics are
computed.

Value

A numeric vector of length 5 containing the summary information. See boxplot.stats for
more details.

See Also

IQR, boxplot.stats, median, quantile, range.

Examples

fivenum(c(rnorm(100),-1:1/0))

fix Fix an Object

Description

fix invokes edit on x and then assigns the new (edited) version of x in the user’s workspace.

Usage

fix(x, ...)

Arguments

x the name of an R object, as a name or a character string.

... arguments to pass to editor: see edit.

Details

The name supplied as x need not exist as an R object, when a function with no arguments
and an empty body is supplied for editing.



250 force

See Also

edit, edit.data.frame

Examples

## Not run:

## Assume 'my.fun' is a user defined function :

fix(my.fun)

## now my.fun is changed

## Also,

fix(my.data.frame) # calls up data editor

fix(my.data.frame, factor.mode="char") # use of ...

## End(Not run)

force Force evaluation of an Argument

Description

Forces the evaluation of a function argument.

Usage

force(x)

Arguments

x a formal argument.

Details

force forces the evaluation of a formal argument. This can be useful if the argument will
be captured in a closure by the lexical scoping rules and will later be altered by an explicit
assignment or an implicit assignment in a loop or an apply function.

Examples

f <- function(y) function() y

lf <- vector("list", 5)

for (i in seq(along = lf)) lf[[i]] <- f(i)

lf[[1]]() # returns 5

g <- function(y) { force(y); function() y }

lg <- vector("list", 5)

for (i in seq(along = lg)) lg[[i]] <- g(i)

lg[[1]]() # returns 1



Foreign 251

Foreign Foreign Function Interface

Description

Functions to make calls to compiled code that has been loaded into R.

Usage

.C(name, ..., NAOK = FALSE, DUP = TRUE, PACKAGE)
.Fortran(name, ..., NAOK = FALSE, DUP = TRUE, PACKAGE)
.External(name, ..., PACKAGE)

.Call(name, ..., PACKAGE)
.External.graphics(name, ..., PACKAGE)

.Call.graphics(name, ..., PACKAGE)

Arguments

name a character string giving the name of a C function or Fortran subroutine.

... arguments to be passed to the foreign function.

NAOK if TRUE then any NA or NaN or Inf values in the arguments are passed on
to the foreign function. If FALSE, the presence of NA or NaN or Inf values
is regarded as an error.

DUP if TRUE then arguments are “duplicated” before their address is passed to
C or Fortran.

PACKAGE if supplied, confine the search for the name to the DLL given by this
argument (plus the conventional extension, .so, .sl, .dll, . . . ). This
is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols. Use
PACKAGE="base" for symbols linked in to R.

Details

The functions .C and .Fortran can be used to make calls to C and Fortran code.

.External and .External.graphics can be used to call compiled code that uses R objects
in the same way as internal R functions.

.Call and .Call.graphics can be used call compiled code which makes use of internal R
objects. The arguments are passed to the C code as a sequence of R objects. It is included
to provide compatibility with S version 4.

For details about how to write code to use with .Call and .External, see the chapter
on “System and foreign language interfaces” in “Writing R Extensions” in the ‘doc/manual’
subdirectory of the R source tree.

Value

The functions .C and .Fortran return a list similar to the ... list of arguments passed in,
but reflecting any changes made by the C or Fortran code.

.External, .Call, .External.graphics, and .Call.graphics return an R object.

These calls are typically made in conjunction with dyn.load which links DLLs to R.



252 Foreign

The .graphics versions of .Call and .External are used when calling code which makes
low-level graphics calls. They take additional steps to ensure that the device driver display
lists are updated correctly.

Argument types

The mapping of the types of R arguments to C or Fortran arguments in .C or .Fortran is

R C Fortran
integer int * integer
numeric double * double precision
– or – float * real
complex Rcomplex * double complex
logical int * integer
character char ** [see below]
list SEXP * not allowed
other SEXP not allowed

Numeric vectors in R will be passed as type double * to C (and as double precision
to Fortran) unless (i) .C or .Fortran is used, (ii) DUP is false and (iii) the argument has
attribute Csingle set to TRUE (use as.single or single). This mechanism is only intended
to be used to facilitate the interfacing of existing C and Fortran code.

The C type Rcomplex is defined in ‘Complex.h’ as a typedef struct {double r; double
i;}. Fortran type double complex is an extension to the Fortran standard, and the avail-
ability of a mapping of complex to Fortran may be compiler dependent.

Note: The C types corresponding to integer and logical are int, not long as in S.

The first character string of a character vector is passed as a C character array to Fortran:
that string may be usable as character*255 if its true length is passed separately. Only
up to 255 characters of the string are passed back. (How well this works, or even if it works
at all, depends on the C and Fortran compilers and the platform.)

Missing (NA) string values are passed to .C as the string ”NA”. As the C char type can
represent all possible bit patterns there appears to be no way to distinguish missing strings
from the string "NA". If this distinction is important use .Call.

Functions, expressions, environments and other language elements are passed as the internal
R pointer type SEXP. This type is defined in ‘Rinternals.h’ or the arguments can be declared
as generic pointers, void *. Lists are passed as C arrays of SEXP and can be declared as
void * or SEXP *. Note that you cannot assign values to the elements of the list within the
C routine. Assigning values to elements of the array corresponding to the list bypasses R’s
memory management/garbage collection and will cause problems. Essentially, the array
corresponding to the list is read-only. If you need to return S objects created within the C
routine, use the .Call interface.

R functions can be invoked using call_S or call_R and can be passed lists or the simple
types as arguments.

Header files for external code

Writing code for use with .External and .Call will use internal R structures. If possible
use just those defined in ‘Rinternals.h’ and/or the macros in ‘Rdefines.h’, as other header
files are not installed and are even more likely to be changed.



Formaldehyde 253

Note

DUP=FALSE is dangerous.

There are two dangers with using DUP=FALSE.

The first is that if you pass a local variable to .C/.Fortran with DUP=FALSE, your compiled
code can alter the local variable and not just the copy in the return list. Worse, if you
pass a local variable that is a formal parameter of the calling function, you may be able to
change not only the local variable but the variable one level up. This will be very hard to
trace.

The second is that lists are passed as a single R SEXP with DUP=FALSE, not as an array of
SEXP. This means the accessor macros in ‘Rinternals.h’ are needed to get at the list elements
and the lists cannot be passed to call_S/call_R. New code using R objects should be
written using .Call or .External, so this is now only a minor issue.

(Prior to R version 1.2.0 there has a third danger, that objects could be moved in memory
by the garbage collector. The current garbage collector never moves objects.)

It is safe and useful to set DUP=FALSE if you do not change any of the variables that might
be affected, e.g.,

.C("Cfunction", input=x, output=numeric(10)).

In this case the output variable did not exist before the call so it cannot cause trouble. If
the input variable is not changed in the C code of Cfunction you are safe.

Neither .Call nor .External copy their arguments. You should treat arguments you receive
through these interfaces as read-only.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (.C and .Fortran.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.
(.Call.)

See Also

dyn.load.

Formaldehyde Determination of Formaldehyde

Description

These data are from a chemical experiment to prepare a standard curve for the determina-
tion of formaldehyde by the addition of chromatropic acid and concentrated sulpuric acid
and the reading of the resulting purple color on a spectophotometer.

Usage

data(Formaldehyde)

Format

A data frame with 6 observations on 2 variables.



254 formals

[,1] carb numeric Carbohydrate (ml)
[,2] optden numeric Optical Density

Source

Bennett, N. A. and N. L. Franklin (1954) Statistical Analysis in Chemistry and the Chemical
Industry. New York: Wiley.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(Formaldehyde)

plot(optden ~ carb, data = Formaldehyde,

xlab = "Carbohydrate (ml)", ylab = "Optical Density",

main = "Formaldehyde data", col = 4, las = 1)

abline(fm1 <- lm(optden ~ carb, data = Formaldehyde))

summary(fm1)

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))

plot(fm1)

par(opar)

formals Access to and Manipulation of the Formal Arguments

Description

Get or set the formal arguments of a function.

Usage

formals(fun = sys.function(sys.parent()))
formals(fun, envir = parent.frame()) <- value

Arguments

fun a function object, or see Details.

envir environment in which the function should be defined.

value a list of R expressions.

Details

For the first form, fun can be a character string naming the function to be manipulated,
which is searched for from the parent environment. If it is not specified, the function calling
formals is used.

Value

formals returns the formal argument list of the function specified.

The assignment form sets the formals of a function to the list on the right hand side.



format 255

See Also

args for a “human-readable” version, alist, body, function.

Examples

length(formals(lm)) # the number of formal arguments

names(formals(boxplot)) # formal arguments names

f <- function(x)a+b

formals(f) <- alist(a=,b=3) # function(a,b=3)a+b

f(2) # result = 5

format Encode in a Common Format

Description

Format an R object for pretty printing: format.pval is intended for formatting p-values.

Usage

format(x, ...)

## S3 method for class 'AsIs':
format(x, width = 12, ...)

## S3 method for class 'data.frame':
format(x, ..., justify = "none")

## Default S3 method:
format(x, trim = FALSE, digits = NULL,

nsmall = 0, justify = c("left", "right", "none"),
big.mark = "", big.interval = 3,

small.mark = "", small.interval = 5,
decimal.mark = ".", ...)

## S3 method for class 'factor':
format(x, ...)

format.pval(pv, digits = max(1, getOption("digits") - 2),
eps = .Machine$double.eps, na.form = "NA")

prettyNum(x, big.mark = "", big.interval = 3,
small.mark = "", small.interval = 5,

decimal.mark = ".", ...)

Arguments

x any R object (conceptually); typically numeric.

trim logical; if TRUE, leading blanks are trimmed off the strings.



256 format

digits how many significant digits are to be used for numeric x. The default,
NULL, uses options()$digits. This is a suggestion: enough decimal
places will be used so that the smallest (in magnitude) number has this
many significant digits.

nsmall number of digits which will always appear to the right of the decimal point
in formatting real/complex numbers in non-scientific formats. Allowed
values 0 <= nsmall <= 20.

justify should character vector be left-justified, right-justified or left alone. When
justifying, the field width is that of the longest string.

big.mark character; if not empty used as mark between every big.interval deci-
mals before (hence big) the decimal point.

big.interval see big.mark above; defaults to 3.

small.mark character; if not empty used as mark between every small.interval
decimals after (hence small) the decimal point.

small.interval

see small.mark above; defaults to 5.

decimal.mark the character used to indicate the numeric decimal point.

pv a numeric vector.

eps a numerical tolerance: see Details.

na.form character representation of NAs.

width the returned vector has elements of at most width.

... further arguments passed to or from other methods.

Details

These functions convert their first argument to a vector (or array) of character strings
which have a common format (as is done by print), fulfilling length(format*(x, *)) ==
length(x). The trimming with trim = TRUE is useful when the strings are to be used for
plot axis annotation.

format.AsIs deals with columns of complicated objects that have been extracted from a
data frame.

format.pval is mainly an auxiliary function for print.summary.lm etc., and does separate
formatting for fixed, floating point and very small values; those less than eps are formatted
as "< [eps]" (where “[eps]” stands for format(eps, digits).

The function formatC provides a rather more flexible formatting facility for numbers, but
does not provide a common format for several numbers, nor it is platform-independent.

format.data.frame formats the data frame column by column, applying the appropriate
method of format for each column.

prettyNum is the utility function for prettifying x. If x is not a character, format(x[i],
...) is applied to each element, and then it is left unchanged if all the other arguments are
at their defaults. Note that prettyNum(x) may behave unexpectedly if x is a character
not resulting from something like format(<number>).

Note

Currently format drops trailing zeroes, so format(6.001, digits=2) gives "6" and
format(c(6.0, 13.1), digits=2) gives c(" 6", "13").

Character(s) " in input strings x are escaped to \".



format.info 257

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

format.info indicates how something would be formatted; formatC, paste, as.character,
sprintf.

Examples

format(1:10)

zz <- data.frame("(row names)"= c("aaaaa", "b"), check.names=FALSE)

format(zz)

format(zz, justify="left")

## use of nsmall

format(13.7)

format(13.7, nsmall=3)

r <- c("76491283764.97430", "29.12345678901", "-7.1234", "-100.1","1123")

## American:

prettyNum(r, big.mark = ",")

## Some Europeans:

prettyNum(r, big.mark = "'", decimal.mark = ",")

(dd <- sapply(1:10, function(i)paste((9:0)[1:i],collapse="")))

prettyNum(dd, big.mark="'")

pN <- pnorm(1:7, lower=FALSE)

cbind(format (pN, small.mark = " ", digits = 15))

cbind(formatC(pN, small.mark = " ", digits = 17, format = "f"))

format.info format(.) Information

Description

Information is returned on how format(x, digits = options("digits")) would be for-
matted.

Usage

format.info(x, nsmall = 0)

Arguments

x (numeric) vector; potential argument of format(x,...).

nsmall (see format(*, nsmall)).



258 formatC

Value

An integer vector of length 3, say r.

r[1] width (number of characters) used for format(x)

r[2] number of digits after decimal point.

r[3] in 0:2; if ≥1, exponential representation would be used, with exponent
length of r[3]+1.

Note

The result depends on the value of options("digits").

See Also

format, formatC.

Examples

dd <- options("digits") ; options(digits = 7) #-- for the following

format.info(123) # 3 0 0

format.info(pi) # 8 6 0

format.info(1e8) # 5 0 1 - exponential "1e+08"

format.info(1e222)#6 0 2 - exponential "1e+222"

x <- pi*10^c(-10,-2,0:2,8,20)

names(x) <- formatC(x,w=1,dig=3,format="g")

cbind(sapply(x,format))

t(sapply(x, format.info))

## using at least 8 digits right of "."

t(sapply(x, format.info, nsmall = 8))

# Reset old options:

options(dd)

formatC Formatting Using C-style Formats

Description

Formatting numbers individually and flexibly, using C style format specifications.
format.char is a helper function for formatC.

Usage

formatC(x, digits = NULL, width = NULL,
format = NULL, flag = "", mode = NULL,
big.mark = "", big.interval = 3,

small.mark = "", small.interval = 5,
decimal.mark = ".")

format.char(x, width = NULL, flag = "-")



formatC 259

Arguments

x an atomic numerical or character object, typically a vector of real num-
bers.

digits the desired number of digits after the decimal point (format = "f") or
significant digits (format = "g", = "e" or = "fg").
Default: 2 for integer, 4 for real numbers. If less than 0, the C default of
6 digits is used.

width the total field width; if both digits and width are unspecified, width
defaults to 1, otherwise to digits + 1. width = 0 will use width =
digits, width < 0 means left justify the number in this field (equivalent
to flag ="-"). If necessary, the result will have more characters than
width.

format equal to "d" (for integers), "f", "e", "E", "g", "G", "fg" (for reals), or
"s" (for strings). Default is "d" for integers, "g" for reals.
"f" gives numbers in the usual xxx.xxx format; "e" and "E" give
n.ddde+nn or n.dddE+nn (scientific format); "g" and "G" put x[i] into
scientific format only if it saves space to do so.
"fg" uses fixed format as "f", but digits as the minimum number of
significant digits. That this can lead to quite long result strings, see
examples below. Note that unlike signif this prints large numbers with
more significant digits than digits.

flag format modifier as in Kernighan and Ritchie (1988, page 243). "0" pads
leading zeros; "-" does left adjustment, others are "+", " ", and "#".

mode "double" (or "real"), "integer" or "character". Default: Determined
from the storage mode of x.

big.mark, big.interval, small.mark, small.interval, decimal.mark

used for prettying longer decimal sequences, passed to prettyNum: that
help page explains the details.

Details

If you set format it over-rides the setting of mode, so formatC(123.45, mode="double",
format="d") gives 123.

The rendering of scientific format is platform-dependent: some systems use n.ddde+nnn or
n.dddenn rather than n.ddde+nn.

formatC does not necessarily align the numbers on the decimal point, so formatC(c(6.11,
13.1), digits=2, format="fg") gives c("6.1", " 13"). If you want common format-
ting for several numbers, use format.

Value

A character object of same size and attributes as x. Unlike format, each number is for-
matted individually. Looping over each element of x, sprintf(...) is called (inside the C
function str_signif).

format.char(x) and formatC, for character x, do simple (left or right) padding with white
space.

Author(s)

Originally written by Bill Dunlap, later much improved by Martin Maechler, it was first
adapted for R by Friedrich Leisch.



260 formatDL

References

Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition.
Prentice Hall.

See Also

format, sprintf for more general C like formatting.

Examples

xx <- pi * 10^(-5:4)

cbind(format(xx, digits=4), formatC(xx))

cbind(formatC(xx, wid = 9, flag = "-"))

cbind(formatC(xx, dig = 5, wid = 8, format = "f", flag = "0"))

cbind(format(xx, digits=4), formatC(xx, dig = 4, format = "fg"))

format.char(c("a", "Abc", "no way"), wid = -7) # <=> flag = "-"

formatC( c("a", "Abc", "no way"), wid = -7) # <=> flag = "-"

formatC(c((-1:1)/0,c(1,100)*pi), wid=8, dig=1)

xx <- c(1e-12,-3.98765e-10,1.45645e-69,1e-70,pi*1e37,3.44e4)

## 1 2 3 4 5 6

formatC(xx)

formatC(xx, format="fg") # special "fixed" format.

formatC(xx, format="f", dig=80)#>> also long strings

formatDL Format Description Lists

Description

Format vectors of items and their descriptions as 2-column tables or LaTeX-style description
lists.

Usage

formatDL(x, y, style = c("table", "list"),
width = 0.9 * getOption("width"), indent = NULL)

Arguments

x a vector giving the items to be described, or a list of length 2 or a matrix
with 2 columns giving both items and descriptions.

y a vector of the same length as x with the corresponding descriptions. Only
used if x does not already give the descriptions.

style a character string specifying the rendering style of the description infor-
mation. If "table", a two-column table with items and descriptions as
columns is produced (similar to Texinfo’s @table environment. If "list",
a LaTeX-style tagged description list is obtained.

width a positive integer giving the target column for wrapping lines in the out-
put.



formula 261

indent a positive integer specifying the indentation of the second column in table
style, and the indentation of continuation lines in list style. Must not
be greater than width/2, and defaults to width/3 for table style and
width/9 for list style.

Details

After extracting the vectors of items and corresponding descriptions from the arguments,
both are coerced to character vectors.

In table style, items with more than indent - 3 characters are displayed on a line of their
own.

Value

a character vector with the formatted entries.

Examples

## Use R to create the 'INDEX' for package 'eda' from its 'CONTENTS'

x <- read.dcf(file = system.file("CONTENTS", package = "eda"),

fields = c("Entry", "Description"))

x <- as.data.frame(x)

writeLines(formatDL(x$Entry, x$Description))

## or equivalently: writeLines(formatDL(x))

## Same information in tagged description list style:

writeLines(formatDL(x$Entry, x$Description, style = "list"))

## or equivalently: writeLines(formatDL(x, style = "list"))

formula Model Formulae

Description

The generic function formula and its specific methods provide a way of extracting formulae
which have been included in other objects.

as.formula is almost identical, additionally preserving attributes when object already
inherits from "formula". The default value of the env argument is used only when the
formula would otherwise lack an environment.

Usage

y ~ model
formula(x, ...)
as.formula(object, env = parent.frame())

Arguments

x, object an object

... further arguments passed to or from other methods.

env the environment to associate with the result.



262 formula

Details

The models fit by, e.g., the lm and glm functions are specified in a compact symbolic form.
The ~ operator is basic in the formation of such models. An expression of the form y ~
model is interpreted as a specification that the response y is modelled by a linear predictor
specified symbolically by model. Such a model consists of a series of terms separated by
+ operators. The terms themselves consist of variable and factor names separated by :
operators. Such a term is interpreted as the interaction of all the variables and factors
appearing in the term.
In addition to + and :, a number of other operators are useful in model formulae. The
* operator denotes factor crossing: a*b interpreted as a+b+a:b. The ^ operator indicates
crossing to the specified degree. For example (a+b+c)^2 is identical to (a+b+c)*(a+b+c)
which in turn expands to a formula containing the main effects for a, b and c together with
their second-order interactions. The %in% operator indicates that the terms on its left are
nested within those on the right. For example a+b%in%a expands to the formula a+a:b.
The - operator removes the specified terms, so that (a+b+c)^2 - a:b is identical to a + b
+ c + b:c + a:c. It can also used to remove the intercept term: y~x - 1 is a line through
the origin. A model with no intercept can be also specified as y~x + 0 or 0 + y~x.
While formulae usually involve just variable and factor names, they can also involve arith-
metic expressions. The formula log(y) ~ a + log(x) is quite legal. When such arithmetic
expressions involve operators which are also used symbolically in model formulae, there can
be confusion between arithmetic and symbolic operator use.
To avoid this confusion, the function I() can be used to bracket those portions of a model
formula where the operators are used in their arithmetic sense. For example, in the formula
y ~ a + I(b+c), the term b+c is to be interpreted as the sum of b and c.
As from R 1.8.0 variable names can be quoted by backticks ‘like this‘ in formulae,
although there is no guarantee that all code using formulae will accept such non-syntactic
names.

Value

All the functions above produce an object of class "formula" which contains a symbolic
model formula.

Environments

A formula object has an associated environment, and this environment (rather than the
parent environment) is used by model.frame to evaluate variables that are not found in
the supplied data argument.
Formulas created with the ~ operator use the environment in which they were created.
Formulas created with as.formula will use the env argument for their environment. Pre-
existing formulas extracted with as.formula will only have their environment changed if
env is explicitly given.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models
in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

I.
For formula manipulation: terms, and all.vars; for typical use: lm, glm, and coplot.



fourfoldplot 263

Examples

class(fo <- y ~ x1*x2) # "formula"

fo

typeof(fo)# R internal : "language"

terms(fo)

environment(fo)

environment(as.formula("y ~ x"))

environment(as.formula("y ~ x",env=new.env()))

## Create a formula for a model with a large number of variables:

xnam <- paste("x", 1:25, sep="")

(fmla <- as.formula(paste("y ~ ", paste(xnam, collapse= "+"))))

fourfoldplot Fourfold Plots

Description

Creates a fourfold display of a 2 by 2 by k contingency table on the current graphics device,
allowing for the visual inspection of the association between two dichotomous variables in
one or several populations (strata).

Usage

fourfoldplot(x, color = c("#99CCFF", "#6699CC"), conf.level = 0.95,
std = c("margins", "ind.max", "all.max"),
margin = c(1, 2), space = 0.2, main = NULL,
mfrow = NULL, mfcol = NULL)

Arguments

x a 2 by 2 by k contingency table in array form, or as a 2 by 2 matrix if k
is 1.

color a vector of length 2 specifying the colors to use for the smaller and larger
diagonals of each 2 by 2 table.

conf.level confidence level used for the confidence rings on the odds ratios. Must be
a single nonnegative number less than 1; if set to 0, confidence rings are
suppressed.

std a character string specifying how to standardize the table. Must be one
of "margins", "ind.max", or "all.max", and can be abbreviated by the
initial letter. If set to "margins", each 2 by 2 table is standardized to
equate the margins specified by margin while preserving the odds ratio.
If "ind.max" or "all.max", the tables are either individually or simulta-
neously standardized to a maximal cell frequency of 1.

margin a numeric vector with the margins to equate. Must be one of 1, 2, or c(1,
2) (the default), which corresponds to standardizing the row, column, or
both margins in each 2 by 2 table. Only used if std equals "margins".

space the amount of space (as a fraction of the maximal radius of the quarter
circles) used for the row and column lebals.



264 fourfoldplot

main character string for the fourfold title.

mfrow a numeric vector of the form c(nr, nc), indicating that the displays for
the 2 by 2 tables should be arranged in an nr by nc layout, filled by rows.

mfcol a numeric vector of the form c(nr, nc), indicating that the displays for
the 2 by 2 tables should be arranged in an nr by nc layout, filled by
columns.

Details

The fourfold display is designed for the display of 2 by 2 by k tables.

Following suitable standardization, the cell frequencies fij of each 2 by 2 table are shown
as a quarter circle whose radius is proportional to

√
fij so that its area is proportional to

the cell frequency. An association (odds ratio different from 1) between the binary row and
column variables is indicated by the tendency of diagonally opposite cells in one direction
to differ in size from those in the other direction; color is used to show this direction.
Confidence rings for the odds ratio allow a visual test of the null of no association; the
rings for adjacent quadrants overlap iff the observed counts are consistent with the null
hypothesis.

Typically, the number k corresponds to the number of levels of a stratifying variable, and it is
of interest to see whether the association is homogeneous across strata. The fourfold display
visualizes the pattern of association. Note that the confidence rings for the individual odds
ratios are not adjusted for multiple testing.

References

Friendly, M. (1994). A fourfold display for 2 by 2 by k tables. Technical Report
217, York University, Psychology Department. http://www.math.yorku.ca/SCS/Papers/
4fold/4fold.ps.gz

See Also

mosaicplot

Examples

data(UCBAdmissions)

## Use the Berkeley admission data as in Friendly (1995).

x <- aperm(UCBAdmissions, c(2, 1, 3))

dimnames(x)[[2]] <- c("Yes", "No")

names(dimnames(x)) <- c("Sex", "Admit?", "Department")

ftable(x)

## Fourfold display of data aggregated over departments, with

## frequencies standardized to equate the margins for admission

## and sex.

## Figure 1 in Friendly (1994).

fourfoldplot(margin.table(x, c(1, 2)))

## Fourfold display of x, with frequencies in each table

## standardized to equate the margins for admission and sex.

## Figure 2 in Friendly (1994).

fourfoldplot(x)

## Fourfold display of x, with frequencies in each table

http://www.math.yorku.ca/SCS/Papers/4fold/4fold.ps.gz
http://www.math.yorku.ca/SCS/Papers/4fold/4fold.ps.gz


frame 265

## standardized to equate the margins for admission. but not

## for sex.

## Figure 3 in Friendly (1994).

fourfoldplot(x, margin = 2)

frame Create / Start a New Plot Frame

Description

This function (frame is an alias for plot.new) causes the completion of plotting in the
current plot (if there is one) and an advance to a new graphics frame. This is used in all
high-level plotting functions and also useful for skipping plots when a multi-figure region is
in use.

Usage

plot.new()
frame()

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (frame.)

See Also

plot.window, plot.default.

freeny Freeny’s Revenue Data

Description

Freeny’s data on quarterly revenue and explanatory variables.

Usage

data(freeny)

Format

There are three ‘freeny’ data sets.

freeny.y is a time series with 39 observations on quarterly revenue from (1962,2Q) to
(1971,4Q).

freeny.x is a matrix of explanatory variables. The columns are freeny.y lagged 1 quarter,
price index, income level, and market potential.

Finally, freeny is a data frame with variables y, lag.quarterly.revenue, price.index,
income.level, and market.potential obtained from the above two data objects.



266 ftable

Source

A. E. Freeny (1977) A Portable Linear Regression Package with Test Programs. Bell Lab-
oratories memorandum.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

data(freeny)

summary(freeny)

pairs(freeny, main = "freeny data")

summary(fm1 <- lm(y ~ ., data = freeny))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))

plot(fm1)

par(opar)

ftable Flat Contingency Tables

Description

Create “flat” contingency tables.

Usage

ftable(x, ...)

## Default S3 method:
ftable(..., exclude = c(NA, NaN), row.vars = NULL, col.vars = NULL)

Arguments

x, ... R objects which can be interpreted as factors (including character strings),
or a list (or data frame) whose components can be so interpreted, or a
contingency table object of class "table" or "ftable".

exclude values to use in the exclude argument of factor when interpreting non-
factor objects.

row.vars a vector of integers giving the numbers of the variables, or a character
vector giving the names of the variables to be used for the rows of the flat
contingency table.

col.vars a vector of integers giving the numbers of the variables, or a character
vector giving the names of the variables to be used for the columns of the
flat contingency table.



ftable 267

Details

ftable creates “flat” contingency tables. Similar to the usual contingency tables, these
contain the counts of each combination of the levels of the variables (factors) involved.
This information is then re-arranged as a matrix whose rows and columns correspond to
unique combinations of the levels of the row and column variables (as specified by row.vars
and col.vars, respectively). The combinations are created by looping over the variables in
reverse order (so that the levels of the “left-most” variable vary the slowest). Displaying a
contingency table in this flat matrix form (via print.ftable, the print method for objects
of class "ftable") is often preferable to showing it as a higher-dimensional array.

ftable is a generic function. Its default method, ftable.default, first creates a contin-
gency table in array form from all arguments except row.vars and col.vars. If the first
argument is of class "table", it represents a contingency table and is used as is; if it is
a flat table of class "ftable", the information it contains is converted to the usual array
representation using as.ftable. Otherwise, the arguments should be R objects which can
be interpreted as factors (including character strings), or a list (or data frame) whose com-
ponents can be so interpreted, which are cross-tabulated using table. Then, the arguments
row.vars and col.vars are used to collapse the contingency table into flat form. If neither
of these two is given, the last variable is used for the columns. If both are given and their
union is a proper subset of all variables involved, the other variables are summed out.

Function ftable.formula provides a formula method for creating flat contingency tables.

Value

ftable returns an object of class "ftable", which is a matrix with counts of each combi-
nation of the levels of variables with information on the names and levels of the (row and
columns) variables stored as attributes "row.vars" and "col.vars".

See Also

ftable.formula for the formula interface (which allows a data = . argument);
read.ftable for information on reading, writing and coercing flat contingency tables; table
for “ordinary” cross-tabulation; xtabs for formula-based cross-tabulation.

Examples

## Start with a contingency table.

data(Titanic)

ftable(Titanic, row.vars = 1:3)

ftable(Titanic, row.vars = 1:2, col.vars = "Survived")

ftable(Titanic, row.vars = 2:1, col.vars = "Survived")

## Start with a data frame.

data(mtcars)

x <- ftable(mtcars[c("cyl", "vs", "am", "gear")])

x

ftable(x, row.vars = c(2, 4))



268 ftable.formula

ftable.formula Formula Notation for Flat Contingency Tables

Description

Produce or manipulate a flat contingency table using formula notation.

Usage

## S3 method for class 'formula':
ftable(formula, data = NULL, subset, na.action, ...)

Arguments

formula a formula object with both left and right hand sides specifying the column
and row variables of the flat table.

data a data frame, list or environment containing the variables to be cross-
tabulated, or a contingency table (see below).

subset an optional vector specifying a subset of observations to be used. Ignored
if data is a contingency table.

na.action a function which indicates what should happen when the data contain
NAs. Ignored if data is a contingency table.

... further arguments to the default ftable method may also be passed as
arguments, see ftable.default.

Details

This is a method of the generic function ftable.

The left and right hand side of formula specify the column and row variables, respectively,
of the flat contingency table to be created. Only the + operator is allowed for combining the
variables. A . may be used once in the formula to indicate inclusion of all the “remaining”
variables.

If data is an object of class "table" or an array with more than 2 dimensions, it is taken
as a contingency table, and hence all entries should be nonnegative. Otherwise, if it is not
a flat contingency table (i.e., an object of class "ftable"), it should be a data frame or
matrix, list or environment containing the variables to be cross-tabulated. In this case,
na.action is applied to the data to handle missing values, and, after possibly selecting a
subset of the data as specified by the subset argument, a contingency table is computed
from the variables.

The contingency table is then collapsed to a flat table, according to the row and column
variables specified by formula.

Value

A flat contingency table which contains the counts of each combination of the levels of the
variables, collapsed into a matrix for suitably displaying the counts.

See Also

ftable, ftable.default; table.



function 269

Examples

data(Titanic)

Titanic

x <- ftable(Survived ~ ., data = Titanic)

x

ftable(Sex ~ Class + Age, data = x)

function Function Definition

Description

These functions provide the base mechanisms for defining new functions in the R language.

Usage

function( arglist ) expr
return(value)

Arguments

arglist Empty or one or more name or name=expression terms.

value An expression.

Details

In R (unlike S) the names in an argument list cannot be quoted non-standard names.

If value is missing, NULL is returned. If it is a single expression, the value of the evaluated
expression is returned.

If the end of a function is reached without calling return, the value of the last evaluated
expression is returned.

Warning

Prior to R 1.8.0, value could be a series of non-empty expressions separated by commas.
In that case the value returned is a list of the evaluated expressions, with names set to
the expressions where these are the names of R objects. That is, a=foo() names the list
component a and gives it value the result of evaluating foo().

This has been deprecated (and a warning is given), as it was never documented in S, and
whether or not the list is named differs by S versions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

args and body for accessing the arguments and body of a function.

debug for debugging; invisible for return(.)ing invisibly.



270 GammaDist

Examples

norm <- function(x) sqrt(x%*%x)

norm(1:4)

## An anonymous function:

(function(x,y){ z <- x^2 + y^2; x+y+z })(0:7, 1)

GammaDist The Gamma Distribution

Description

Density, distribution function, quantile function and random generation for the Gamma
distribution with parameters shape and scale.

Usage

dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)
qgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)
rgamma(n, shape, rate = 1, scale = 1/rate)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

rate an alternative way to specify the scale.

shape, scale shape and scale parameters.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

If scale is omitted, it assumes the default value of 1.

The Gamma distribution with parameters shape = α and scale = σ has density

f(x) =
1

σαΓ(α)
xα−1e−x/σ

for x > 0, α > 0 and σ > 0. The mean and variance are E(X) = ασ and V ar(X) = ασ2.

Value

dgamma gives the density, pgamma gives the distribution function qgamma gives the quantile
function, and rgamma generates random deviates.



gc 271

Note

The S parametrization is via shape and rate: S has no scale parameter. Prior to 1.4.0 R
only had scale.

The cumulative hazard H(t) = − log(1− F (t)) is -pgamma(t, ..., lower = FALSE, log
= TRUE).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

gamma for the Gamma function, dbeta for the Beta distribution and dchisq for the chi-
squared distribution which is a special case of the Gamma distribution.

Examples

-log(dgamma(1:4, shape=1))

p <- (1:9)/10

pgamma(qgamma(p,shape=2), shape=2)

1 - 1/exp(qgamma(p, shape=1))

gc Garbage Collection

Description

A call of gc causes a garbage collection to take place. gcinfo sets a flag so that
automatic collection is either silent (verbose=FALSE) or prints memory usage statistics
(verbose=TRUE).

Usage

gc(verbose = getOption("verbose"))
gcinfo(verbose)

Arguments

verbose logical; if TRUE, the garbage collection prints statistics about cons cells
and the vector heap.

Details

A call of gc causes a garbage collection to take place. This takes place automatically without
user intervention, and the primary purpose of calling gc is for the report on memory usage.

However, it can be useful to call gc after a large object has been removed, as this may
prompt R to return memory to the operating system.



272 gc.time

Value

gc returns a matrix with rows "Ncells" (cons cells, usually 28 bytes each on 32-bit systems
and 56 bytes on 64-bit systems, and "Vcells" (vector cells, 8 bytes each), and columns
"used" and "gc trigger", each also interpreted in megabytes (rounded up to the next
0.1Mb).

If maxima have been set for either "Ncells" or "Vcells", a fifth column is printed giving
the current limits in Mb (with NA denoting no limit).

gcinfo returns the previous value of the flag.

See Also

Memory on R’s memory management and gctorture if you are an R hacker.

Examples

gc() #- do it now

gcinfo(TRUE) #-- in the future, show when R does it

x <- integer(100000); for(i in 1:18) x <- c(x,i)

gcinfo(verbose = FALSE)#-- don't show it anymore

gc(TRUE)

gc.time Report Time Spent in Garbage Collection

Description

This function reports the time spent in garbage collection so far in the R session while GC
timing was enabled..

Usage

gc.time(on = TRUE)

Arguments

on logical; if TRUE, GC timing is enabled.

Value

A numerical vector of length 5 giving the user CPU time, the system CPU time, the elapsed
time and children’s user and system CPU times (normally both zero).

Warnings

This is experimental functionality, likely to be removed as soon as the next release.

The timings are rounded up by the sampling interval for timing processes, and so are likely
to be over-estimates.

See Also

gc, proc.time for the timings for the session.



gctorture 273

Examples

gc.time()

gctorture Torture Garbage Collector

Description

Provokes garbage collection on (nearly) every memory allocation. Intended to ferret out
memory protection bugs. Also makes R run very slowly, unfortunately.

Usage

gctorture(on = TRUE)

Arguments

on logical; turning it on/off.

Value

Previous value.

Author(s)

Peter Dalgaard

Geometric The Geometric Distribution

Description

Density, distribution function, quantile function and random generation for the geometric
distribution with parameter prob.

Usage

dgeom(x, prob, log = FALSE)
pgeom(q, prob, lower.tail = TRUE, log.p = FALSE)
qgeom(p, prob, lower.tail = TRUE, log.p = FALSE)
rgeom(n, prob)



274 get

Arguments

x, q vector of quantiles representing the number of failures in a sequence of
Bernoulli trials before success occurs.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

prob probability of success in each trial.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The geometric distribution with prob = p has density

p(x) = p(1− p)x

for x = 0, 1, 2, . . .

If an element of x is not integer, the result of pgeom is zero, with a warning.

The quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distri-
bution function.

Value

dgeom gives the density, pgeom gives the distribution function, qgeom gives the quantile
function, and rgeom generates random deviates.

See Also

dnbinom for the negative binomial which generalizes the geometric distribution.

Examples

qgeom((1:9)/10, prob = .2)

Ni <- rgeom(20, prob = 1/4); table(factor(Ni, 0:max(Ni)))

get Return a Variable’s Value

Description

Search for an R object with a given name and return it if found.

Usage

get(x, pos=-1, envir=as.environment(pos), mode="any", inherits=TRUE)



get 275

Arguments

x a variable name (given as a character string).

pos where to look for the object (see the details section); if omitted, the
function will search, as if the name of the object appeared in unquoted in
an expression.

envir an alternative way to specify an environment to look in; see the details
section.

mode the mode of object sought.

inherits should the enclosing frames of the environment be inspected?

Details

The pos argument can specify the environment in which to look for the object in any of
several ways: as an integer (the position in the search list); as the character string name of
an element in the search list; or as an environment (including using sys.frame to access
the currently active function calls). The envir argument is an alternative way to specify
an environment, but is primarily there for back compatibility.

The mode includes collections such as "numeric" and "function": any member of the
collection will suffice.

Value

This function searches the specified environment for a bound variable whose name is given
by the character string x. If the variable’s value is not of the correct mode, it is ignored.

If inherits is FALSE, only the first frame of the specified environment is inspected. If
inherits is TRUE, the search is continued up through the parent frames until a bound value
of the right mode is found.

Using a NULL environment is equivalent to using the current environment.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

exists.

Examples

get("%o%")



276 getAnywhere

getAnywhere Retrieve an R Object, Including from a Namespace

Description

This functions locates all objects with name matching its argument, whether visible on the
search path, registered as an S3 method or in a namespace but not exported.

Usage

getAnywhere(x)

Arguments

x a character string or name.

Details

The function looks at all loaded namespaces, whether or not they are associated with a
package on the search list.

Where functions are found as an S3 method, an attempt is made to find which namespace
registered them. This may not be correct, especially if a namespace is unloaded.

Value

An object of class "getAnywhere". This is a list with components

name the name searched for.

funs a list of objects found

where a character vector explaining where the object(s) were found

visible logical: is the object visible

dups logical: is the object identical to one earlier in the list.

Normally the structure will be hidden by the print method. There is a [ method to extract
one or more of the objects found.

See Also

get, getFromNamespace

Examples

getAnywhere("format.dist")

getAnywhere("simpleLoess") # not exported from modreg



getFromNamespace 277

getFromNamespace Utility functions for Developing Namespaces

Description

Utility functions to access and replace the non-exported functions in a namespace, for use
in developing packages with namespaces.

Usage

getFromNamespace(x, ns, pos = -1, envir = as.environment(pos))
fixInNamespace(x, ns, pos = -1, envir = as.environment(pos), ...)

Arguments

x an object name (given as a character string).

ns a namespace, or character string giving the namespace.

pos where to look for the object: see get.

envir an alternative way to specify an environment to look in.

... arguments to pass to the editor: see edit.

Details

The namespace can be specified in several ways. Using, for example, ns="modreg" is the
most direct, but a loaded package with a namespace can be specified via any of the methods
used for get: ns can also be the environment <namespace:foo>.

fixInNamespace invokes edit on the object named x and assigns the revised object in place
of the original object. For compatibility with fix, x can be unquoted.

Value

getFromNamespace returns the object found (or gives an error).

fixInNamespace is invoked for its side effect of changing the object in the namespace.

Note

fixInNamespace will alter the copy of the object in the namespace, and also a copy reg-
istered as an S3 method. There can be other copies, so the function is not foolproof, but
should be helpful for debugging.

See Also

get, fix, getS3method

Examples

## Not run:

fixInNamespace("predict.ppr", "modreg")

## alternatively

fixInNamespace("predict.ppr", pos = 5)

## End(Not run)



278 getNativeSymbolInfo

getNativeSymbolInfo Obtain a description of a native (C/Fortran) symbol

Description

This finds and returns as comprehensive a description of a dynamically loaded or“exported”
built-in native symbol. It returns information about the name of the symbol, the library in
which it is located and, if available, the number of arguments it expects and by which inter-
face it should be called (i.e .Call, .C, .Fortran, or .External). Additionally, it returns
the address of the symbol and this can be passed to other C routines which can invoke.
Specifically, this provides a way to explicitly share symbols between different dynamically
loaded package libraries. Also, it provides a way to query where symbols were resolved, and
aids diagnosing strange behavior associated with dynamic resolution.

Usage

getNativeSymbolInfo(name, PACKAGE)

Arguments

name the name of the native symbol as used in a call to is.loaded, etc.

PACKAGE an optional argument that specifies to which dynamically loaded library
we restrict the search for this symbol. If this is "base", we search in the
R executable itself.

Details

This uses the same mechanism for resolving symbols as is used in all the native interfaces
(.Call, etc.). If the symbol has been explicitly registered by the shared library in which
it is contained, information about the number of arguments and the interface by which it
should be called will be returned. Otherwise, a generic native symbol object is returned.

Value

If the symbol is not found, an error is raised. Otherwise, the value is a list containing the
following elements:

name the name of the symbol, as given by the name argument.

address the native memory address of the symbol which can be used to invoke the
routine, and also compare with other symbol address. This is an external
pointer object and of class NativeSymbol.

package a list containing 3 elements:

name the short form of the library name which can be used as the value
of the PACKAGE argument in the different native interface functions.

path the fully qualified name of the shared library file.
dynamicLookup a logical value indicating whether dynamic resolution

is used when looking for symbols in this library, or only registered
routines can be located.

numParameters the number of arguments that should be passed in a call to this routine.



getNumCConverters 279

Additionally, the list will have an additional class, being CRoutine, CallRoutine,
FortranRoutine or ExternalRoutine corresponding to the R interface by which it should
be invoked.

Note

One motivation for accessing this reflectance information is to be able to pass native routines
to C routines as “function pointers” in C. This allows us to treat native routines and R
functions in a similar manner, such as when passing an R function to C code that makes
callbacks to that function at different points in its computation (e.g., nls). Additionally,
we can resolve the symbol just once and avoid resolving it repeatedly or using the internal
cache. In the future, one may be able to treat NativeSymbol objects as directly callback
objects.

Author(s)

Duncan Temple Lang

References

For information about registering native routines, see “In Search of C/C++ & FORTRAN
Routines”, R News, volume 1, number 3, 2001, p20–23 (http://CRAN.R-project.org/
doc/Rnews/).

See Also

is.loaded, .C, .Fortran, .External, .Call, dyn.load.

Examples

library(ctest) # normally loaded

getNativeSymbolInfo("dansari")

library(mva) # normally loaded

getNativeSymbolInfo(symbol.For("hcass2"))

getNumCConverters Management of .C argument conversion list

Description

These functions provide facilities to manage the extensible list of converters used to translate
R objects to C pointers for use in .C calls. The number and a description of each element
in the list can be retrieved. One can also query and set the activity status of individual
elements, temporarily ignoring them. And one can remove individual elements.

Usage

getNumCConverters()
getCConverterDescriptions()
getCConverterStatus()
setCConverterStatus(id, status)
removeCConverter(id)

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/


280 getNumCConverters

Arguments

id either a number or a string identifying the element of interest in the
converter list. A string sis matched against the description strings for
each element to identify the element. Integers are specified starting at 1
(rather than 0).

status a logical value specifying whether the element is to be considered active
(TRUE) or not (FALSE).

Details

The internal list of converters is potentially used when converting individual arguments
in a .C call. If an argument has a non-trivial class attribute, we iterate over the list of
converters looking for the first that “matches”. If we find a matching converter, we have it
create the C-level pointer corresponding to the R object. When the call to the C routine is
complete, we use the same converter for that argument to reverse the conversion and create
an R object from the current value in the C pointer. This is done separately for all the
arguments.

The functions documented here provide R user-level capabilities for investigating and man-
aging the list of converters. There is currently no mechanism for adding an element to
the converter list within the R language. This must be done in C code using the routine
R_addToCConverter().

Value

getNumCConverters returns an integer giving the number of elements in the list, both active
and inactive.

getCConverterDescriptions returns a character vector containing the description string
of each element of the converter list.

getCConverterStatus returns a logical vector with a value for each element in the converter
list. Each value indicates whether that converter is active (TRUE) or inactive (FALSE). The
names of the elements are the description strings returned by getCConverterDescriptions.

setCConverterStatus returns the logical value indicating the activity status of the specified
element before the call to change it took effect. This is TRUE for active and FALSE for inactive.

removeCConverter returns TRUE if an element in the converter list was identified and re-
moved. In the case that no such element was found, an error occurs.

Author(s)

Duncan Temple Lang

References

http://developer.R-project.org/CObjectConversion.pdf

See Also

.C

http://developer.R-project.org/CObjectConversion.pdf


getpid 281

Examples

getNumCConverters()

getCConverterDescriptions()

getCConverterStatus()

## Not run:

old <- setCConverterStatus(1,FALSE)

setCConverterStatus(1,old)

## End(Not run)

## Not run:

removeCConverter(1)

removeCConverter(getCConverterDescriptions()[1])

## End(Not run)

getpid Get the Process ID of the R Session

Description

Get the process ID of the R Session. It is guaranteed by the operating system that two R
sessions running simultaneously will have different IDs, but it is possible that R sessions
running at different times will have the same ID.

Usage

Sys.getpid()

Value

An integer, usually a small integer between 0 and 32767 under Unix-alikes and a much small
integer under Windows.

Examples

Sys.getpid()

getS3method Get An S3 Method

Description

Get a method for an S3 generic, possibly from a namespace.

Usage

getS3method(f, class, optional = FALSE)

Arguments

f character: name of the generic.
class character: name of the class.
optional logical: should failure to find the generic or a method be allowed?



282 getwd

Details

S3 methods may be hidden in packages with namespaces, and will not then be found by
get: this function can retrieve such functions, primarily for debugging purposes.

Value

The function found, or NULL if no function is found and optional = TRUE.

See Also

methods, get

Examples

require(modreg)

exists("predict.ppr") # false

getS3method("predict", "ppr")

getwd Get or Set Working Directory

Description

getwd returns an absolute filename representing the current working directory of the R
process; setwd(dir) is used to set the working directory to dir.

Usage

getwd()
setwd(dir)

Arguments

dir A character string.

Value

getwd returns a character vector, or NULL if the working directory is not available on that
platform.

setwd returns NULL invisibly. It will give an error if it does not succeed.

Note

These functions are not implemented on all platforms.

Examples

(WD <- getwd())

if (!is.null(WD)) setwd(WD)



gl 283

gl Generate Factor Levels

Description

Generate factors by specifying the pattern of their levels.

Usage

gl(n, k, length = n*k, labels = 1:n, ordered = FALSE)

Arguments

n an integer giving the number of levels.

k an integer giving the number of replications.

length an integer giving the length of the result.

labels an optional vector of labels for the resulting factor levels.

ordered a logical indicating whether the result should be ordered or not.

Value

The result has levels from 1 to n with each value replicated in groups of length k out to a
total length of length.

gl is modelled on the GLIM function of the same name.

See Also

The underlying factor().

Examples

## First control, then treatment:

gl(2, 8, label = c("Control", "Treat"))

## 20 alternating 1s and 2s

gl(2, 1, 20)

## alternating pairs of 1s and 2s

gl(2, 2, 20)

glm Fitting Generalized Linear Models

Description

glm is used to fit generalized linear models, specified by giving a symbolic description of
the linear predictor and a description of the error distribution.



284 glm

Usage

glm(formula, family = gaussian, data, weights = NULL, subset = NULL,
na.action, start = NULL, etastart = NULL, mustart = NULL,
offset = NULL, control = glm.control(...), model = TRUE,
method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, ...)

glm.fit(x, y, weights = rep(1, nobs),
start = NULL, etastart = NULL, mustart = NULL,
offset = rep(0, nobs), family = gaussian(),
control = glm.control(), intercept = TRUE)

## S3 method for class 'glm':
weights(object, type = c("prior", "working"), ...)

Arguments

formula a symbolic description of the model to be fit. The details of model speci-
fication are given below.

family a description of the error distribution and link function to be used in the
model. This can be a character string naming a family function, a family
function or the result of a call to a family function. (See family for details
of family functions.)

data an optional data frame containing the variables in the model. By de-
fault the variables are taken from environment(formula), typically the
environment from which glm is called.

weights an optional vector of weights to be used in the fitting process.
subset an optional vector specifying a subset of observations to be used in the

fitting process.
na.action a function which indicates what should happen when the data contain NAs.

The default is set by the na.action setting of options, and is na.fail
if that is unset. The “factory-fresh” default is na.omit.

start starting values for the parameters in the linear predictor.
etastart starting values for the linear predictor.
mustart starting values for the vector of means.
offset this can be used to specify an a priori known component to be included

in the linear predictor during fitting.
control a list of parameters for controlling the fitting process. See the documen-

tation for glm.control for details.
model a logical value indicating whether model frame should be included as a

component of the returned value.
method the method to be used in fitting the model. The default method

"glm.fit" uses iteratively reweighted least squares (IWLS). The only
current alternative is "model.frame" which returns the model frame and
does no fitting.

x, y For glm: logical values indicating whether the response vector and model
matrix used in the fitting process should be returned as components of
the returned value.
For glm.fit: x is a design matrix of dimension n * p, and y is a vector
of observations of length n.



glm 285

contrasts an optional list. See the contrasts.arg of model.matrix.default.

object an object inheriting from class "glm".

type character, partial matching allowed. Type of weights to extract from the
fitted model object.

intercept logical. Should an intercept be included?

... further arguments passed to or from other methods.

Details

A typical predictor has the form response ~ terms where response is the (numeric) re-
sponse vector and terms is a series of terms which specifies a linear predictor for response.
For binomial models the response can also be specified as a factor (when the first level
denotes failure and all others success) or as a two-column matrix with the columns giving
the numbers of successes and failures. A terms specification of the form first + second
indicates all the terms in first together with all the terms in second with duplicates
removed.

A specification of the form first:second indicates the the set of terms obtained by tak-
ing the interactions of all terms in first with all terms in second. The specification
first*second indicates the cross of first and second. This is the same as first +
second + first:second.

glm.fit and glm.fit.null are the workhorse functions: the former calls the latter for a
null model (with no intercept).

If more than one of etastart, start and mustart is specified, the first in the list will be
used.

Value

glm returns an object of class inheriting from "glm" which inherits from the class "lm". See
later in this section.

The function summary (i.e., summary.glm) can be used to obtain or print a summary of the
results and the function anova (i.e., anova.glm) to produce an analysis of variance table.

The generic accessor functions coefficients, effects, fitted.values and residuals
can be used to extract various useful features of the value returned by glm.

weights extracts a vector of weights, one for each case in the fit (after subsetting and
na.action).

An object of class "glm" is a list containing at least the following components:

coefficients a named vector of coefficients

residuals the working residuals, that is the residuals in the final iteration of the
IWLS fit.

fitted.values the fitted mean values, obtained by transforming the linear predictors by
the inverse of the link function.

rank the numeric rank of the fitted linear model.

family the family object used.
linear.predictors

the linear fit on link scale.

deviance up to a constant, minus twice the maximized log-likelihood. Where sen-
sible, the constant is chosen so that a saturated model has deviance zero.



286 glm

aic Akaike’s An Information Criterion, minus twice the maximized log-
likelihood plus twice the number of coefficients (so assuming that the
dispersion is known.

null.deviance The deviance for the null model, comparable with deviance. The null
model will include the offset, and an intercept if there is one in the model

iter the number of iterations of IWLS used.

weights the working weights, that is the weights in the final iteration of the IWLS
fit.

prior.weights the case weights initially supplied.

df.residual the residual degrees of freedom.

df.null the residual degrees of freedom for the null model.

y the y vector used. (It is a vector even for a binomial model.)

converged logical. Was the IWLS algorithm judged to have converged?

boundary logical. Is the fitted value on the boundary of the attainable values?

call the matched call.

formula the formula supplied.

terms the terms object used.

data the data argument.

offset the offset vector used.

control the value of the control argument used.

method the name of the fitter function used, in R always "glm.fit".

contrasts (where relevant) the contrasts used.

xlevels (where relevant) a record of the levels of the factors used in fitting.

In addition, non-empty fits will have components qr, R and effects relating to the final
weighted linear fit.

Objects of class "glm" are normally of class c("glm", "lm"), that is inherit from class "lm",
and well-designed methods for class "lm" will be applied to the weighted linear model at
the final iteration of IWLS. However, care is needed, as extractor functions for class "glm"
such as residuals and weights do not just pick out the component of the fit with the
same name.

If a binomial glm model is specified by giving a two-column response, the weights returned
by prior.weights are the total numbers of cases (factored by the supplied case weights)
and the component y of the result is the proportion of successes.

Author(s)

The original R implementation of glm was written by Simon Davies working for Ross Ihaka
at the University of Auckland, but has since been extensively re-written by members of the
R Core team.

The design was inspired by the S function of the same name described in Hastie & Pregibon
(1992).



glm.control 287

References

Dobson, A. J. (1990) An Introduction to Generalized Linear Models. London: Chapman
and Hall.

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical
Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and
Hall.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York:
Springer.

See Also

anova.glm, summary.glm, etc. for glm methods, and the generic functions anova, summary,
effects, fitted.values, and residuals. Further, lm for non-generalized linear models.

esoph, infert and predict.glm have examples of fitting binomial glms.

Examples

## Dobson (1990) Page 93: Randomized Controlled Trial :

counts <- c(18,17,15,20,10,20,25,13,12)

outcome <- gl(3,1,9)

treatment <- gl(3,3)

print(d.AD <- data.frame(treatment, outcome, counts))

glm.D93 <- glm(counts ~ outcome + treatment, family=poisson())

anova(glm.D93)

summary(glm.D93)

## an example with offsets from Venables & Ripley (2002, p.189)

## Not run:

## Need the anorexia data from a recent version of the package 'MASS':

library(MASS)

data(anorexia)

## End(Not run)

anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),

family = gaussian, data = anorexia)

summary(anorex.1)

# A Gamma example, from McCullagh & Nelder (1989, pp. 300-2)

clotting <- data.frame(

u = c(5,10,15,20,30,40,60,80,100),

lot1 = c(118,58,42,35,27,25,21,19,18),

lot2 = c(69,35,26,21,18,16,13,12,12))

summary(glm(lot1 ~ log(u), data=clotting, family=Gamma))

summary(glm(lot2 ~ log(u), data=clotting, family=Gamma))

glm.control Auxiliary for Controlling GLM Fitting

Description

Auxiliary function as user interface for glm fitting. Typically only used when calling glm or
glm.fit.



288 glm.control

Usage

glm.control(epsilon=1e-8, maxit=25, trace=FALSE)

Arguments

epsilon positive convergence tolerance epsilon; the iterations converge when
|dev − devold|/(|dev|+ 0.1) < epsilon.

maxit integer giving the maximal number of IWLS iterations.

trace logical indicating if output should be produced for each iteration.

Details

If epsilon is small, it is also used as the tolerance for the least squares solution.

When trace is true, calls to cat produce the output for each IWLS iteration. Hence,
options(digits = *) can be used to increase the precision, see the example.

Value

A list with the arguments as components.

References

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical
Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

glm.fit, the fitting procedure used by glm.

Examples

### A variation on example(glm) :

## Annette Dobson's example ...

counts <- c(18,17,15,20,10,20,25,13,12)

outcome <- gl(3,1,9)

treatment <- gl(3,3)

oo <- options(digits = 12) # to see more when tracing :

glm.D93X <- glm(counts ~ outcome + treatment, family=poisson(),

trace = TRUE, epsilon = 1e-14)

options(oo)

coef(glm.D93X) # the last two are closer to 0 than in ?glm's glm.D93

# put less so than in R < 1.8.0 when the default was 1e-4



glm.summaries 289

glm.summaries Accessing Generalized Linear Model Fits

Description

These functions are all methods for class glm or summary.glm objects.

Usage

## S3 method for class 'glm':
family(object, ...)

## S3 method for class 'glm':
residuals(object, type = c("deviance", "pearson", "working",

"response", "partial"), ...)

Arguments

object an object of class glm, typically the result of a call to glm.

type the type of residuals which should be returned. The alternatives
are: "deviance" (default), "pearson", "working", "response", and
"partial".

... further arguments passed to or from other methods.

Details

The references define the types of residuals: Davison & Snell is a good reference for the
usages of each.

The partial residuals are a matrix of working residuals, with each column formed by omitting
a term from the model.

References

Davison, A. C. and Snell, E. J. (1991) Residuals and diagnostics. In: Statistical Theory
and Modelling. In Honour of Sir David Cox, FRS, eds. Hinkley, D. V., Reid, N. and Snell,
E. J., Chapman & Hall.

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical
Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and
Hall.

See Also

glm for computing glm.obj, anova.glm; the corresponding generic functions, summary.glm,
coef, deviance, df.residual, effects, fitted, residuals.



290 Gnome

Gnome GNOME Desktop Graphics Device

Description

gnome starts a gnome compatible device driver. gnome is an acronym for GNU Network
Object Model Environment.

Usage

gnome(display="", width=7, height=7, pointsize=12)
GNOME(display="", width=7, height=7, pointsize=12)

Arguments

display the display on which the graphics window will appear. The default is to
use the value in the user’s environment variable DISPLAY.

width the width of the plotting window in inches.

height the height of the plotting window in inches.

pointsize the default pointsize to be used.

Note

This is still in development state.

The GNOME device is only available when explicitly desired at configure/compile time, see
the toplevel ‘INSTALL’ file.

Author(s)

Lyndon Drake 〈lyndon@stat.auckland.ac.nz〉

References

http://www.gnome.org and http://www.gtk.org for the GTK+ (GIMP Tool Kit) libraries.

See Also

x11, Devices.

Examples

## Not run:

gnome(width=9)

## End(Not run)

http://www.gnome.org
http://www.gtk.org


gray 291

gray Gray Level Specification

Description

Create a vector of colors from a vector of gray levels.

Usage

gray(level)
grey(level)

Arguments

level a vector of desired gray levels between 0 and 1; zero indicates "black"
and one indicates "white".

Details

The values returned by gray can be used with a col= specification in graphics functions or
in par.

grey is an alias for gray.

Value

A vector of “colors” of the same length as level.

See Also

rainbow, hsv, rgb.

Examples

gray(0:8 / 8)

grep Pattern Matching and Replacement

Description

grep searches for matches to pattern (its first argument) within the character vector x
(second argument). regexpr does too, but returns more detail in a different format.

sub and gsub perform replacement of matches determined by regular expression matching.



292 grep

Usage

grep(pattern, x, ignore.case = FALSE, extended = TRUE, perl = FALSE,
value = FALSE, fixed = FALSE)

sub(pattern, replacement, x,
ignore.case = FALSE, extended = TRUE, perl = FALSE)

gsub(pattern, replacement, x,
ignore.case = FALSE, extended = TRUE, perl = FALSE)

regexpr(pattern, text, extended = TRUE, perl = FALSE, fixed = FALSE)

Arguments

pattern character string containing a regular expression (or character string for
fixed = TRUE) to be matched in the given character vector.

x, text a character vector where matches are sought.
ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored

during matching.
extended if TRUE, extended regular expression matching is used, and if FALSE basic

regular expressions are used.
perl logical. Should perl-compatible regexps be used if available? Has priority

over extended.
value if FALSE, a vector containing the (integer) indices of the matches deter-

mined by grep is returned, and if TRUE, a vector containing the matching
elements themselves is returned.

fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all
other arguments.

replacement a replacement for matched pattern in sub and gsub.

Details

The two *sub functions differ only in that sub replaces only the first occurrence of a pattern
whereas gsub replaces all occurrences.
For regexpr it is an error for pattern to be NA, otherwise NA is permitted and matches
only itself.
The regular expressions used are those specified by POSIX 1003.2, either extended or basic,
depending on the value of the extended argument, unless perl = TRUE when they are those
of PCRE, ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/. (The exact set
of patterns supported may depend on the version of PCRE installed on the system in use.)

Value

For grep a vector giving either the indices of the elements of x that yielded a match or, if
value is TRUE, the matched elements.
For sub and gsub a character vector of the same length as the original.
For regexpr an integer vector of the same length as text giving the starting position of
the first match, or −1 if there is none, with attribute "match.length" giving the length of
the matched text (or −1 for no match).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole (grep)

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/


grid 293

See Also

regular expression for the details of the pattern specification.

agrep for approximate matching.

tolower, toupper and chartr for character translations. charmatch, pmatch, match.
apropos uses regexps and has nice examples.

Examples

grep("[a-z]", letters)

txt <- c("arm","foot","lefroo", "bafoobar")

if(any(i <- grep("foo",txt)))

cat("'foo' appears at least once in\n\t",txt,"\n")

i # 2 and 4

txt[i]

## Double all 'a' or 'b's; "\" must be escaped, i.e., 'doubled'

gsub("([ab])", "\\1_\\1_", "abc and ABC")

txt <- c("The", "licenses", "for", "most", "software", "are",

"designed", "to", "take", "away", "your", "freedom",

"to", "share", "and", "change", "it.",

"", "By", "contrast,", "the", "GNU", "General", "Public", "License",

"is", "intended", "to", "guarantee", "your", "freedom", "to",

"share", "and", "change", "free", "software", "--",

"to", "make", "sure", "the", "software", "is",

"free", "for", "all", "its", "users")

( i <- grep("[gu]", txt) ) # indices

stopifnot( txt[i] == grep("[gu]", txt, value = TRUE) )

(ot <- sub("[b-e]",".", txt))

txt[ot != gsub("[b-e]",".", txt)]#- gsub does "global" substitution

txt[gsub("g","#", txt) !=

gsub("g","#", txt, ignore.case = TRUE)] # the "G" words

regexpr("en", txt)

## trim trailing white space

str = 'Now is the time '

sub(' +$', '', str) ## spaces only

sub('[[:space:]]+$', '', str) ## white space, POSIX-style

if(capabilities("PCRE"))

sub('\\s+$', '', str, perl = TRUE) ## perl-style white space

grid Add Grid to a Plot

Description

grid adds an nx by ny rectangular grid to an existing plot.



294 grid

Usage

grid(nx = NULL, ny = nx, col = "lightgray", lty = "dotted", lwd = NULL,
equilogs = TRUE)

Arguments

nx,ny number of cells of the grid in x and y direction. When NULL, as per default,
the grid aligns with the tick marks on the corresponding default axis (i.e.,
tickmarks as computed by axTicks). When NA, no grid lines are drawn
in the corresponding direction.

col character or (integer) numeric; color of the grid lines.

lty character or (integer) numeric; line type of the grid lines.

lwd non-negative numeric giving line width of the grid lines; defaults to
par("lwd").

equilogs logical, only used when log coordinates and alignment with the axis tick
marks are active. Settingequilogs = FALSE in that case gives non equidis-
tant tick aligned grid lines.

Note

If more fine tuning is required, use abline(h = ., v = .) directly.

See Also

plot, abline, lines, points.

Examples

plot(1:3)

grid(NA, 5, lwd = 2) # grid only in y-direction

data(iris)

## maybe change the desired number of tick marks: par(lab=c(mx,my,7))

op <- par(mfcol = 1:2)

with(iris,

{

plot(Sepal.Length, Sepal.Width, col = as.integer(Species),

xlim = c(4, 8), ylim = c(2, 4.5), panel.first = grid(),

main = "with(iris, plot(...., panel.first = grid(), ..) )")

plot(Sepal.Length, Sepal.Width, col = as.integer(Species),

panel.first = grid(3, lty=1,lwd=2),

main = "... panel.first = grid(3, lty=1,lwd=2), ..")

}

)

par(op)



groupGeneric 295

groupGeneric Group Generic Functions

Description

Group generic functions can be defined with either S3 and S4 methods (with different
groups). Methods are defined for the group of functions as a whole.

A method defined for an individual member of the group takes precedence over a method
defined for the group as a whole.

When package methods is attached there are objects visible with the names of the group
generics: these functions should never be called directly (a suitable error message will result
if they are).

Usage

## S3 methods have prototypes:
Math(x, ...)
Ops(e1, e2)
Summary(x, ...)
Complex(z)

## S4 methods have prototypes:
Arith(e1, e2)
Compare(e1, e2)
Ops(e1, e2)
Math(x)
Math2(x, digits)
Summary(x, ..., na.rm = FALSE)
Complex(z)

Arguments

x, z, e1, e2 objects.

digits number of digits to be used in round or signif.

... further arguments passed to or from methods.

na.rm logical: should missing values be removed?

S3 Group Dispatching

There are four groups for which S3 methods can be written, namely the "Math", "Ops",
"Summary" and "Complex" groups. These are not R objects, but methods can be supplied
for them and base R contains factor and data.frame methods for the first three groups.
(There is also a ordered method for Ops.)

1. Group "Math":

� abs, sign, sqrt,
floor, ceiling, trunc,
round, signif



296 groupGeneric

� exp, log,
cos, sin, tan,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

� lgamma, gamma, gammaCody,
digamma, trigamma, tetragamma, pentagamma

� cumsum, cumprod, cummax, cummin

2. Group "Ops":

� "+", "-", "*", "/", "^", "%%", "%/%"
� "&", "|", "!"
� "==", "!=", "<", "<=", ">=", ">"

3. Group "Summary":

� all, any
� sum, prod
� min, max
� range

4. Group Complex:

� Arg, Conj, Im, Mod, Re

The number of arguments supplied for "Math" group generic methods is not checked prior to
dispatch. (Prior to R 1.7.0, all those whose default method has one argument were checked,
but the others were not.)

S4 Group Dispatching

When package methods is attached, formal (S4) methods can be defined for groups.

The functions belonging to the various groups are as follows:

Arith "+", "-", "*", "^", "%%", "%/%", "/"

Compare "==", ">", "<", "!=", "<=", ">="

Ops "Arith", "Compare"

Math "log", "sqrt", "log10", "cumprod", "abs", "acos", "acosh", "asin", "asinh",
"atan", "atanh", "ceiling", "cos", "cosh", "cumsum", "exp", "floor", "gamma",
"lgamma", "sin", "sinh", "tan", "tanh", "trunc"

Math2 "round", "signif"

Summary "max", "min", "range", "prod", "sum", "any", "all"

Complex "Arg", "Conj", "Im", "Mod", "Re"

Functions with the group names exist in the methods package but should not be called
directly.

All the functions in these groups (other than the group generics themselves) are basic
functions in R. They are not by default S4 generic functions, and many of them are defined
as primitives, meaning that they do not have formal arguments. However, you can still
define formal methods for them. The effect of doing so is to create an S4 generic function
with the appropriate arguments, in the environment where the method definition is to be
stored. It all works more or less as you might expect, admittedly via a bit of trickery in the
background.



gzcon 297

References

Appendix A, Classes and Methods of
Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. Springer, pp. 352–4.

See Also

methods for methods of non-Internal generic functions.

Examples

methods("Math")

methods("Ops")

methods("Summary")

d.fr <- data.frame(x=1:9, y=rnorm(9))

data.class(1 + d.fr) == "data.frame" ##-- add to d.f. ...

gzcon (De)compress I/O Through Connections

Description

gzcon provides a modified connection that wraps an existing connection, and decompresses
reads or compresses writes through that connection. Standard gzip headers are assumed.

Usage

gzcon(con, level = 6, allowNonCompressed = TRUE)

Arguments

con a connection.

level integer between 0 and 9, the compression level when writing.
allowNonCompressed

logical. When reading, should non-compressed files (lacking the gzip
magic header) be allowed?

Details

If con is open then the modified connection is opened. Closing the wrapper connection will
also close the underlying connection.

Reading from a connection which does not supply a gzip magic header is equivalent to
reading from the original connection if allowNonCompressed is true, otherwise an error.

The original connection is unusable: any object pointing to it will now refer to the modified
connection.



298 HairEyeColor

Value

An object inheriting from class "connection". This is the same connection number as
supplied, but with a modified internal structure.

See Also

gzfile

Examples

## Not run:

## This example may not still be available

## print the value to see what objects were created.

con <- url("http://hesweb1.med.virginia.edu/biostat/s/data/sav/kprats.sav")

print(load(con))

## End(Not run)

## gzfile and gzcon can inter-work.

## Of course here one would used gzfile, but file() can be replaced by

## any other connection generator.

zz <- gzfile("ex.gz", "w")

cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")

close(zz)

readLines(zz<-gzcon(file("ex.gz")))

close(zz)

unlink("ex.gz")

zz <- gzcon(file("ex.gz", "wb"))

cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")

close(zz)

readLines(zz<-gzfile("ex.gz"))

close(zz)

unlink("ex.gz")

HairEyeColor Hair and Eye Color of Statistics Students

Description

Distribution of hair and eye color and sex in 592 statistics students.

Usage

data(HairEyeColor)

Format

A 3-dimensional array resulting from cross-tabulating 592 observations on 3 variables. The
variables and their levels are as follows:

No Name Levels
1 Hair Black, Brown, Red, Blond
2 Eye Brown, Blue, Hazel, Green
3 Sex Male, Female



help 299

Details

This data set is useful for illustrating various techniques for the analysis of contingency
tables, such as the standard chi-squared test or, more generally, log-linear modelling, and
graphical methods such as mosaic plots, sieve diagrams or association plots.

References

Snee, R. D. (1974), Graphical display of two-way contingency tables. The American Statis-
tician, 28, 9–12.

Friendly, M. (1992), Graphical methods for categorical data. SAS User Group Inter-
national Conference Proceedings, 17, 190–200. http://www.math.yorku.ca/SCS/sugi/
sugi17-paper.html

Friendly, M. (1992), Mosaic displays for loglinear models. Proceedings of the Statistical
Graphics Section, American Statistical Association, pp. 61–68. http://www.math.yorku.
ca/SCS/Papers/asa92.html

See Also

chisq.test, loglin, mosaicplot

Examples

data(HairEyeColor)

## Full mosaic

mosaicplot(HairEyeColor)

## Aggregate over sex:

x <- apply(HairEyeColor, c(1, 2), sum)

x

mosaicplot(x, main = "Relation between hair and eye color")

help Documentation

Description

These functions provide access to documentation. Documentation on a topic with name
name (typically, an R object or a data set) can be printed with either help(name) or ?name.

Usage

help(topic, offline = FALSE, package = .packages(),
lib.loc = NULL, verbose = getOption("verbose"),
try.all.packages = getOption("help.try.all.packages"),
htmlhelp = getOption("htmlhelp"),
pager = getOption("pager"))

?topic
type?topic

http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/Papers/asa92.html
http://www.math.yorku.ca/SCS/Papers/asa92.html


300 help

Arguments

topic usually, the name on which documentation is sought. The name may
be quoted or unquoted (but note that if topic is the name of a variable
containing a character string documentation is provided for the name, not
for the character string).
The topic argument may also be a function call, to ask for documentation
on a corresponding method. See the section on method documentation.

offline a logical indicating whether documentation should be displayed on-line to
the screen (the default) or hardcopy of it should be produced.

package a name or character vector giving the packages to look into for documen-
tation. By default, all packages in the search path are used.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. If the default
is used, the loaded packages are searched before the libraries.

verbose logical; if TRUE, the file name is reported.
try.all.packages

logical; see Notes.

htmlhelp logical (or NULL). If TRUE (which is the default after help.start has been
called), the HTML version of the help will be shown in the browser spec-
ified by options("browser"). See browseURL for details of the browsers
that are supported. Where possible an existing browser window is re-used.

pager the pager to be used for file.show.

type the special type of documentation to use for this topic; for example, if the
type is class, documentation is provided for the class with name topic.
The function topicName returns the actual name used in this case. See
the section on method documentation for the uses of type to get help on
formal methods.

Details

In the case of unary and binary operators and control-flow special forms (including if, for
and function), the topic may need to be quoted.

If offline is TRUE, hardcopy of the documentation is produced by running the LaTeX ver-
sion of the help page through latex (note that LaTeX 2e is needed) and dvips. Depending
on your dvips configuration, hardcopy will be sent to the printer or saved in a file. If the
programs are in non-standard locations and hence were not found at compile time, you can
either set the options latexcmd and dvipscmd, or the environment variables R_LATEXCMD
and R_DVIPSCMD appropriately. The appearance of the output can be customized through
a file ‘Rhelp.cfg’ somewhere in your LaTeX search path.

Method Documentation.

The authors of formal (‘S4’) methods can provide documentation on specific methods, as
well as overall documentation on the methods of a particular function. The "?" operator
allows access to this documentation in three ways.

The expression methods ? f will look for the overall documentation methods for the
function f. Currently, this means the documentation file containing the alias f-methods.

There are two different ways to look for documentation on a particular method. The first is
to supply the topic argument in the form of a function call, omitting the type argument.



help 301

The effect is to look for documentation on the method that would be used if this function
call were actually evaluated. See the examples below. If the function is not a generic (no
S4 methods are defined for it), the help reverts to documentation on the function name.

The "?" operator can also be called with type supplied as "method"; in this case also, the
topic argument is a function call, but the arguments are now interpreted as specifying
the class of the argument, not the actual expression that will appear in a real call to the
function. See the examples below.

The first approach will be tedious if the actual call involves complicated expressions, and
may be slow if the arguments take a long time to evaluate. The second approach avoids
these difficulties, but you do have to know what the classes of the actual arguments will be
when they are evaluated.

Both approaches make use of any inherited methods; the signature of the method to be
looked up is found by using selectMethod (see the documentation for getMethod).

Note

Unless lib.loc is specified explicitly, the loaded packages are searched before those in the
specified libraries. This ensures that if a library is loaded from a library not in the known
library trees, then the help from the loaded library is used. If lib.loc is specified explicitly,
the loaded packages are not searched.

If this search fails and argument try.all.packages is TRUE and neither packages nor
lib.loc is specified, then all the packages in the known library trees are searched for help
on topic and a list of (any) packages where help may be found is printed (but no help is
shown). N.B. searching all packages can be slow.

The help files can be many small files. On some file systems it is desirable to save space,
and the text files in the ‘help’ directory of an installed package can be zipped up as a zip
archive ‘Rhelp.zip’. Ensure that file ‘AnIndex’ remains un-zipped. Similarly, all the files in
the ‘latex’ directory can be zipped to ‘Rhelp.zip’.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

help.search() for finding help pages on a “vague” topic; help.start() which opens the
HTML version of the R help pages; library() for listing available packages and the user-
level objects they contain; data() for listing available data sets; methods().

See prompt() to get a prototype for writing help pages of private packages.

Examples

help()

help(help) # the same

help(lapply)

?lapply # the same

help("for") # or ?"for", but the quotes are needed

?"+"

help(package="stepfun") # get help even when package is not loaded



302 help.search

data() # list all available data sets

?women # information about data set "women"

topi <- "women"

## Not run: help(topi) ##--> Error: No documentation for 'topi'

try(help("bs", try.all.packages=FALSE)) # reports not found (an error)

help("bs", try.all.packages=TRUE) # reports can be found in package 'splines'

## Not run:

## define a generic function and some methods

combo <- function(x, y) c(x, y)

setGeneric("combo")

setMethod("combo", c("numeric", "numeric"),

function(x, y) x+y)

## assume we have written some documentation for combo, and its methods ....

?combo ## produces the function documentation

methods?combo ## looks for the overall methods documentation

method?combo("numeric", "numeric") ## documentation for the method above

?combo(1:10, rnorm(10)) ## ... the same method, selected according to

## the arguments (one integer, the other numeric)

?combo(1:10, letters) ## documentation for the default method

## End(Not run)

help.search Search the Help System

Description

Allows for searching the help system for documentation matching a given character string
in the (file) name, alias, title, or keyword entries (or any combination thereof), using either
fuzzy matching or regular expression matching. Names and titles of the matched help
entries are displayed nicely.

Usage

help.search(pattern, fields = c("alias", "concept", "title"),
apropos, keyword, whatis, ignore.case = TRUE,
package = NULL, lib.loc = NULL,
help.db = getOption("help.db"),
verbose = getOption("verbose"),
rebuild = FALSE, agrep = NULL)



help.search 303

Arguments

pattern a character string to be matched in the specified fields. If this is given,
the arguments apropos, keyword, and whatis are ignored.

fields a character vector specifying the fields of the help data bases to be
searched. The entries must be abbreviations of "name", "title",
"alias", "concept", and "keyword", corresponding to the help page’s
(file) name, its title, the topics and concepts it provides documentation
for, and the keywords it can be classified to.

apropos a character string to be matched in the help page topics and title.
keyword a character string to be matched in the help page ‘keywords’. ‘Key-

words’ are really categories: the standard categories are listed in file
‘RHOME/doc/KEYWORDS’ and some package writers have defined their
own. If keyword is specified, agrep defaults to FALSE.

whatis a character string to be matched in the help page topics.
ignore.case a logical. If TRUE, case is ignored during matching; if FALSE, pattern

matching is case sensitive.
package a character vector with the names of packages to search through, or

NULL in which case all available packages in the library trees specified
by lib.loc are searched.

lib.loc a character vector describing the location of R library trees to search
through, or NULL. The default value of NULL corresponds to all libraries
currently known.

help.db a character string giving the file path to a previously built and saved help
data base, or NULL.

verbose logical; if TRUE, the search process is traced.
rebuild a logical indicating whether the help data base should be rebuilt.
agrep if NULL (the default unless keyword is used) and the character string to

be matched consists of alphanumeric characters, whitespace or a dash
only, approximate (fuzzy) matching via agrep is used unless the string
has fewer than 5 characters; otherwise, it is taken to contain a regular
expression to be matched via grep. If FALSE, approximate matching is not
used. Otherwise, one can give a numeric or a list specifying the maximal
distance for the approximate match, see argument max.distance in the
documentation for agrep.

Details

Upon installation of a package, a contents data base which contains the information on
name, title, aliases and keywords and, concepts starting with R 1.8.0, is computed from
the Rd files in the package and serialized as ‘Rd.rds’ in the ‘Meta’ subdirectory of the top-
level package installation directory (or, prior to R 1.7.0, as ‘CONTENTS’ in Debian Control
Format with aliases and keywords collapsed to character strings in the top-level package
installation directory). This, or a pre-built help.search index serialized as ‘hsearch.rds’ in
the ‘Meta’ directory, is the data base searched by help.search().

The arguments apropos and whatis play a role similar to the Unix commands with the
same names.

If possible, the help data base is saved to the file ‘help.db’ in the ‘.R’ subdirectory of the
user’s home directory or the current working directory.

Note that currently, the aliases in the matching help files are not displayed.



304 help.start

Value

The results are returned in an object of class "hsearch", which has a print method for
nicely displaying the results of the query. This mechanism is experimental, and may change
in future versions of R.

See Also

help; help.start for starting the hypertext (currently HTML) version of R’s online doc-
umentation, which offers a similar search mechanism.

apropos uses regexps and has nice examples.

Examples

help.search("linear models") # In case you forgot how to fit linear

# models

help.search("non-existent topic")

## Not run:

help.search("print") # All help pages with topics or title

# matching 'print'

help.search(apropos = "print") # The same

help.search(keyword = "hplot") # All help pages documenting high-level

# plots.

file.show(file.path(R.home(), "doc", "KEYWORDS")) # show all keywords

## Help pages with documented topics starting with 'try'.

help.search("\\btry", fields = "alias")

## Do not use '^' or '$' when matching aliases or keywords

## (unless all packages were installed using R 1.7 or newer).

## End(Not run)

help.start Hypertext Documentation

Description

Start the hypertext (currently HTML) version of R’s online documentation.

Usage

help.start(gui = "irrelevant", browser = getOption("browser"),
remote = NULL)

Arguments

gui just for compatibility with S-PLUS.

browser the name of the program to be used as hypertext browser. It should be
in the PATH, or a full path specified.

remote A character giving a valid URL for the ‘$R HOME’ directory on a remote
location.



Hershey 305

Details

All the packages in the known library trees are linked to directory ‘.R’ in the per-session
temporary directory. The links are re-made each time help.start is run, which should be
done after packages are installed, updated or removed.

If the browser given by the browser argument is different from the default browser as
specified by options("browser"), the default is changed to the given browser so that it
gets used for all future help requests.

See Also

help() for on- and off-line help in ASCII/Editor or PostScript format.

browseURL for how the help file is displayed.

Examples

## Not run:

help.start()

## End(Not run)

Hershey Hershey Vector Fonts in R

Description

If the vfont argument to one of the text-drawing functions (text, mtext, title, axis, and
contour) is a character vector of length 2, Hershey vector fonts are used to render the text.

These fonts have two advantages:

1. vector fonts describe each character in terms of a set of points; R renders the character
by joining up the points with straight lines. This intimate knowledge of the outline of
each character means that R can arbitrarily transform the characters, which can mean
that the vector fonts look better for rotated and 3d text.

2. this implementation was adapted from the GNU libplot library which provides support
for non-ASCII and non-English fonts. This means that it is possible, for example, to
produce weird plotting symbols and Japanese characters.

Drawback:
You cannot use mathematical expressions (plotmath) with Hershey fonts.

Usage

Hershey



306 Hershey

Details

The Hershey characters are organised into a set of fonts, which are specified by a typeface
(e.g., serif or sans serif) and a fontindex or “style” (e.g., plain or italic). The first
element of vfont specifies the typeface and the second element specifies the fontindex. The
first table produced by demo(Hershey) shows the character a produced by each of the
different fonts.

The available typeface and fontindex values are available as list components of the vari-
able Hershey. The allowed pairs for (typeface, fontindex) are:



Hershey 307

serif plain
serif italic
serif bold
serif bold italic
serif cyrillic
serif oblique cyrillic
serif EUC
sans serif plain
sans serif italic
sans serif bold
sans serif bold italic
script plain
script italic
script bold
gothic english plain
gothic german plain
gothic italian plain
serif symbol plain
serif symbol italic
serif symbol bold
serif symbol bold italic
sans serif symbol plain
sans serif symbol italic

and the indices of these are available as Hershey$allowed.

Escape sequences: The string to be drawn can include escape sequences, which all begin
with a \. When R encounters a \, rather than drawing the \, it treats the subsequent
character(s) as a coded description of what to draw.
One useful escape sequence (in the current context) is of the form: \123. The three
digits following the \ specify an octal code for a character. For example, the octal code
for p is 160 so the strings "p" and "\160" are equivalent. This is useful for producing
characters when there is not an appropriate key on your keyboard.
The other useful escape sequences all begin with \\. These are described below.
Remember that backslashes have to be doubled in R character strings, so they need
to be entered with four backslashes.

Symbols: an entire string of Greek symbols can be produced by selecting the Serif Symbol
or Sans Serif Symbol typeface. To allow Greek symbols to be embedded in a string
which uses a non-symbol typeface, there are a set of symbol escape sequences of the
form \\ab. For example, the escape sequence \\*a produces a Greek alpha. The
second table in demo(Hershey) shows all of the symbol escape sequences and the
symbols that they produce.

ISO Latin-1: further escape sequences of the form \\ab are provided for producing ISO
Latin-1 characters (for example, if you only have a US keyboard). Another option is
to use the appropriate octal code. The (non-ASCII) ISO Latin-1 characters are in the
range 241. . . 377. For example, \366 produces the character o with an umlaut. The
third table in demo(Hershey) shows all of the ISO Latin-1 escape sequences.

Special Characters: a set of characters are provided which do not fall into any standard
font. These can only be accessed by escape sequence. For example, \\LI produces
the zodiac sign for Libra, and \\JU produces the astronomical sign for Jupiter. The
fourth table in demo(Hershey) shows all of the special character escape sequences.



308 hist

Cyrillic Characters: cyrillic characters are implemented according to the K018-R encod-
ing. On a US keyboard, these can be produced using the Serif typeface and Cyrillic
(or Oblique Cyrillic) fontindex and specifying an octal code in the range 300 to 337
for lower case characters or 340 to 377 for upper case characters. The fifth table in
demo(Hershey) shows the octal codes for the available cyrillic characters.

Japanese Characters: 83 Hiragana, 86 Katakana, and 603 Kanji characters are imple-
mented according to the EUC (Extended Unix Code) encoding. Each character is
identified by a unique hexadecimal code. The Hiragana characters are in the range
0x2421 to 0x2473, Katakana are in the range 0x2521 to 0x2576, and Kanji are (scat-
tered about) in the range 0x3021 to 0x6d55.
When using the Serif typeface and EUC fontindex, these characters can be produced
by a pair of octal codes. Given the hexadecimal code (e.g., 0x2421), take the first two
digits and add 0x80 and do the same to the second two digits (e.g., 0x21 and 0x24
become 0xa4 and 0xa1), then convert both to octal (e.g., 0xa4 and 0xa1 become 244
and 241). For example, the first Hiragana character is produced by \244\241.
It is also possible to use the hexadecimal code directly. This works for all non-EUC
fonts by specifying an escape sequence of the form \\#J1234. For example, the first
Hiragana character is produced by \\#J2421.
The Kanji characters may be specified in a third way, using the so-called ”Nelson
Index”, by specifying an escape sequence of the form \\#N1234. For example, the
Kanji for “one” is produced by \\#N0001.
demo(Japanese) shows the available Japanese characters.

Raw Hershey Glyphs: all of the characters in the Hershey fonts are stored in a large
array. Some characters are not accessible in any of the Hershey fonts. These characters
can only be accessed via an escape sequence of the form \\#H1234. For example, the
fleur-de-lys is produced by \\#H0746. The sixth and seventh tables of demo(Hershey)
shows all of the available raw glyphs.

References

http://www.gnu.org/software/plotutils/plotutils.html

See Also

demo(Hershey), text, contour.

Japanese for the Japanese characters in the Hershey fonts.

Examples

str(Hershey)

## for tables of examples, see demo(Hershey)

hist Histograms

Description

The generic function hist computes a histogram of the given data values. If plot=TRUE, the
resulting object of class "histogram" is plotted by plot.histogram, before it is returned.

http://www.gnu.org/software/plotutils/plotutils.html


hist 309

Usage

hist(x, ...)

## Default S3 method:
hist(x, breaks = "Sturges", freq = NULL, probability = !freq,

include.lowest = TRUE, right = TRUE,
density = NULL, angle = 45, col = NULL, border = NULL,
main = paste("Histogram of" , xname),
xlim = range(breaks), ylim = NULL,
xlab = xname, ylab,
axes = TRUE, plot = TRUE, labels = FALSE,
nclass = NULL, ...)

Arguments

x a vector of values for which the histogram is desired.

breaks one of:

� a vector giving the breakpoints between histogram cells,
� a single number giving the number of cells for the histogram,
� a character string naming an algorithm to compute the number of

cells (see Details),
� a function to compute the number of cells.

In the last three cases the number is a suggestion only.

freq logical; if TRUE, the histogram graphic is a representation of frequencies,
the counts component of the result; if FALSE, relative frequencies (“prob-
abilities”), component density, are plotted. Defaults to TRUE iff breaks
are equidistant (and probability is not specified).

probability an alias for !freq, for S compatibility.
include.lowest

logical; if TRUE, an x[i] equal to the breaks value will be included in
the first (or last, for right = FALSE) bar. This will be ignored (with a
warning) unless breaks is a vector.

right logical; if TRUE, the histograms cells are right-closed (left open) intervals.

density the density of shading lines, in lines per inch. The default value of NULL
means that no shading lines are drawn. Non-positive values of density
also inhibit the drawing of shading lines.

angle the slope of shading lines, given as an angle in degrees (counter-clockwise).

col a colour to be used to fill the bars. The default of NULL yields unfilled
bars.

border the color of the border around the bars. The default is to use the standard
foreground color.

main, xlab, ylab

these arguments to title have useful defaults here.

xlim, ylim the range of x and y values with sensible defaults. Note that xlim is not
used to define the histogram (breaks), but only for plotting (when plot
= TRUE).

axes logical. If TRUE (default), axes are draw if the plot is drawn.



310 hist

plot logical. If TRUE (default), a histogram is plotted, otherwise a list of breaks
and counts is returned.

labels logical or character. Additionally draw labels on top of bars, if not FALSE;
see plot.histogram.

nclass numeric (integer). For S(-PLUS) compatibility only, nclass is equivalent
to breaks for a scalar or character argument.

... further graphical parameters to title and axis.

Details

The definition of “histogram” differs by source (with country-specific biases). R’s default
with equi-spaced breaks (also the default) is to plot the counts in the cells defined by
breaks. Thus the height of a rectangle is proportional to the number of points falling into
the cell, as is the area provided the breaks are equally-spaced.

The default with non-equi-spaced breaks is to give a plot of area one, in which the area of
the rectangles is the fraction of the data points falling in the cells.

If right = TRUE (default), the histogram cells are intervals of the form (a, b], i.e., they
include their right-hand endpoint, but not their left one, with the exception of the first cell
when include.lowest is TRUE.

For right = FALSE, the intervals are of the form [a, b), and include.lowest really has
the meaning of “include highest”.

A numerical tolerance of 10−7 times the range of the breaks is applied when counting entries
on the edges of bins.

The default for breaks is "Sturges": see nclass.Sturges. Other names for which algo-
rithms are supplied are "Scott" and "FD" / "Friedman-Diaconis" (with corresponding
functions nclass.scott and nclass.FD). Case is ignored and partial matching is used. Al-
ternatively, a function can be supplied which will compute the intended number of breaks
as a function of x.

Value

an object of class "histogram" which is a list with components:

breaks the n+ 1 cell boundaries (= breaks if that was a vector).

counts n integers; for each cell, the number of x[] inside.

density values f̂(xi), as estimated density values. If all(diff(breaks) ==
1), they are the relative frequencies counts/n and in general satisfy∑

i f̂(xi)(bi+1 − bi) = 1, where bi = breaks[i].

intensities same as density. Deprecated, but retained for compatibility.

mids the n cell midpoints.

xname a character string with the actual x argument name.

equidist logical, indicating if the distances between breaks are all the same.

Note

The resulting value does not depend on the values of the arguments freq (or probability)
or plot. This is intentionally different from S.

Prior to R 1.7.0, the element breaks of the result was adjusted for numerical tolerances.
The nominal values are now returned even though tolerances are still used when counting.



hist.POSIXt 311

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Venables, W. N. and Ripley. B. D. (2002) Modern Applied Statistics with S. Springer.

See Also

nclass.Sturges, stem, density, truehist.

Examples

data(islands)

op <- par(mfrow=c(2, 2))

hist(islands)

str(hist(islands, col="gray", labels = TRUE))

hist(sqrt(islands), br = 12, col="lightblue", border="pink")

##-- For non-equidistant breaks, counts should NOT be graphed unscaled:

r <- hist(sqrt(islands), br = c(4*0:5, 10*3:5, 70, 100, 140), col='blue1')

text(r$mids, r$density, r$counts, adj=c(.5, -.5), col='blue3')

sapply(r[2:3], sum)

sum(r$density * diff(r$breaks)) # == 1

lines(r, lty = 3, border = "purple") # -> lines.histogram(*)

par(op)

str(hist(islands, plot= FALSE)) #-> 5 breaks

str(hist(islands, br=12, plot= FALSE)) #-> 10 (~= 12) breaks

str(hist(islands, br=c(12,20,36,80,200,1000,17000), plot = FALSE))

hist(islands, br=c(12,20,36,80,200,1000,17000), freq = TRUE,

main = "WRONG histogram") # and warning

hist.POSIXt Histogram of a Date-Time Object

Description

Method for hist applied to date-time objects.

Usage

## S3 method for class 'POSIXt':
hist(x, breaks, ..., plot = TRUE, freq = FALSE,

start.on.monday = TRUE, format)

Arguments

x an object inheriting from class "POSIXt".

breaks a vector of cut points or number giving the number of intervals which
x is to be cut into or an interval specification, one of "secs", "mins",
"hours", "days", "weeks", "months" or "years".

... graphical parameters, or arguments to hist.default such as
include.lowest, right and labels.



312 hsv

plot logical. If TRUE (default), a histogram is plotted, otherwise a list of breaks
and counts is returned.

freq logical; if TRUE, the histogram graphic is a representation of frequencies,
i.e, the counts component of the result; if FALSE, relative frequencies
(“probabilities”) are plotted.

start.on.monday

logical. If breaks = "weeks", should the week start on Mondays or Sun-
days?

format for the x-axis labels. See strptime.

Value

An object of class "histogram": see hist.

See Also

seq.POSIXt, axis.POSIXct, hist

Examples

hist(.leap.seconds, "years", freq = TRUE)

hist(.leap.seconds,

seq(ISOdate(1970, 1, 10), ISOdate(2002, 1, 1), "5 years"))

## 100 random dates in a 10-week period

random.dates <- ISOdate(2001, 1, 1) + 70*86400*runif(100)

hist(random.dates, "weeks", format = "%d %b")

hsv HSV Color Specification

Description

Create a vector of colors from vectors specifying hue, saturation and value.

Usage

hsv(h=1, s=1, v=1, gamma=1)

Arguments

h,s,v numeric vectors of values in the range [0,1] for “hue”, “saturation” and
“value” to be combined to form a vector of colors. Values in shorter
arguments are recycled.

gamma a “gamma correction”

Value

This function creates a vector of “colors” corresponding to the given values in HSV space.
The values returned by hsv can be used with a col= specification in graphics functions or
in par.



Hyperbolic 313

Gamma correction

For each color, (r, g, b) in RGB space (with all values in [0, 1]), the final color corresponds
to (rgamma, ggamma, bgamma).

See Also

rainbow, rgb, gray.

Examples

hsv(.5,.5,.5)

## Look at gamma effect:

n <- 20; y <- -sin(3*pi*((1:n)-1/2)/n)

op <- par(mfrow=c(3,2),mar=rep(1.5,4))

for(gamma in c(.4, .6, .8, 1, 1.2, 1.5))

plot(y, axes = FALSE, frame.plot = TRUE,

xlab = "", ylab = "", pch = 21, cex = 30,

bg = rainbow(n, start=.85, end=.1, gamma = gamma),

main = paste("Red tones; gamma=",format(gamma)))

par(op)

Hyperbolic Hyperbolic Functions

Description

These functions give the obvious hyperbolic functions. They respectively compute the
hyperbolic cosine, sine, tangent, arc-cosine, arc-sine, arc-tangent.

Usage

cosh(x)
sinh(x)
tanh(x)
acosh(x)
asinh(x)
atanh(x)

Arguments

x a numeric vector

See Also

cos, sin, tan, acos, asin, atan.



314 Hypergeometric

Hypergeometric The Hypergeometric Distribution

Description

Density, distribution function, quantile function and random generation for the hypergeo-
metric distribution.

Usage

dhyper(x, m, n, k, log = FALSE)
phyper(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
qhyper(p, m, n, k, lower.tail = TRUE, log.p = FALSE)
rhyper(nn, m, n, k)

Arguments

x, q vector of quantiles representing the number of white balls drawn without
replacement from an urn which contains both black and white balls.

m the number of white balls in the urn.

n the number of black balls in the urn.

k the number of balls drawn from the urn.

p probability, it must be between 0 and 1.

nn number of observations. If length(nn) > 1, the length is taken to be the
number required.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The hypergeometric distribution is used for sampling without replacement. The density of
this distribution with parameters m, n and k (named Np, N − Np, and n, respectively in
the reference below) is given by

p(x) =
(
m

x

)(
n

k − x

)/(
m+ n

k

)
for x = 0, . . . , k.

Value

dhyper gives the density, phyper gives the distribution function, qhyper gives the quantile
function, and rhyper generates random deviates.

References

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second
Edition. New York: Wiley.



identical 315

Examples

m <- 10; n <- 7; k <- 8

x <- 0:(k+1)

rbind(phyper(x, m, n, k), dhyper(x, m, n, k))

all(phyper(x, m, n, k) == cumsum(dhyper(x, m, n, k)))# FALSE

## but error is very small:

signif(phyper(x, m, n, k) - cumsum(dhyper(x, m, n, k)), dig=3)

identical Test Objects for Exact Equality

Description

The safe and reliable way to test two objects for being exactly equal. It returns TRUE in
this case, FALSE in every other case.

Usage

identical(x, y)

Arguments

x, y any R objects.

Details

A call to identical is the way to test exact equality in if and while statements, as well
as in logical expressions that use && or ||. In all these applications you need to be assured
of getting a single logical value.

Users often use the comparison operators, such as == or !=, in these situations. It looks
natural, but it is not what these operators are designed to do in R. They return an object
like the arguments. If you expected x and y to be of length 1, but it happened that one of
them wasn’t, you will not get a single FALSE. Similarly, if one of the arguments is NA, the
result is also NA. In either case, the expression if(x == y).... won’t work as expected.

The function all.equal is also sometimes used to test equality this way, but it was intended
for something different. First, it tries to allow for“reasonable”differences in numeric results.
Second, it returns a descriptive character vector instead of FALSE when the objects do not
match. Therefore, it is not the right function to use for reliable testing either. (If you do
want to allow for numeric fuzziness in comparing objects, you can combine all.equal and
identical, as shown in the examples below.)

The computations in identical are also reliable and usually fast. There should never
be an error. The only known way to kill identical is by having an invalid pointer at
the C level, generating a memory fault. It will usually find inequality quickly. Checking
equality for two large, complicated objects can take longer if the objects are identical or
nearly so, but represent completely independent copies. For most applications, however,
the computational cost should be negligible.

As from R 1.6.0, identical sees NaN as different from as.double(NA), but all NaNs are
equal (and all NA of the same type are equal).



316 identify

Value

A single logical value, TRUE or FALSE, never NA and never anything other than a single value.

Author(s)

John Chambers

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

all.equal for descriptions of how two objects differ; Comparison for operators that generate
elementwise comparisons.

Examples

identical(1, NULL) ## FALSE -- don't try this with ==

identical(1, 1.) ## TRUE in R (both are stored as doubles)

identical(1, as.integer(1)) ## FALSE, stored as different types

x <- 1.0; y <- 0.99999999999

## how to test for object equality allowing for numeric fuzz

identical(all.equal(x, y), TRUE)

## If all.equal thinks the objects are different, it returns a

## character string, and this expression evaluates to FALSE

# even for unusual R objects :

identical(.GlobalEnv, environment())

identify Identify Points in a Scatter Plot

Description

identify reads the position of the graphics pointer when the (first) mouse button is pressed.
It then searches the coordinates given in x and y for the point closest to the pointer. If this
point is close to the pointer, its index will be returned as part of the value of the call.

Usage

identify(x, ...)

## Default S3 method:
identify(x, y = NULL, labels = seq(along = x), pos = FALSE,

n = length(x), plot = TRUE, offset = 0.5, ...)



identify 317

Arguments

x,y coordinates of points in a scatter plot. Alternatively, any object which
defines coordinates (a plotting structure, time series etc.) can be given as
x and y left undefined.

labels an optional vector, the same length as x and y, giving labels for the points.

pos if pos is TRUE, a component is added to the return value which indicates
where text was plotted relative to each identified point (1=below, 2=left,
3=above and 4=right).

n the maximum number of points to be identified.

plot if plot is TRUE, the labels are printed at the points and if FALSE they are
omitted.

offset the distance (in character widths) which separates the label from identified
points.

... further arguments to par(.).

Details

If in addition, plot is TRUE, the point is labelled with the corresponding element of text.

The labels are placed either below, to the left, above or to the right of the identified point,
depending on where the cursor was.

The identification process is terminated by pressing any mouse button other than the first.

On most devices which support locator, successful selection of a point is indicated by a
bell sound unless options(locatorBell=FALSE

Value

If pos is FALSE, an integer vector containing the indexes of the identified points.

If pos is TRUE, a list containing a component ind, indicating which points were identified
and a component pos, indicating where the labels were placed relative to the identified
points.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

locator



318 image

ifelse Conditional Element Selection

Description

ifelse returns a value with the same shape as test which is filled with elements selected
from either yes or no depending on whether the element of test is TRUE or FALSE. If yes
or no are too short, their elements are recycled.

Usage

ifelse(test, yes, no)

Arguments

test a logical vector

yes return values for true elements of test.

no return values for false elements of test.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

if.

Examples

x <- c(6:-4)

sqrt(x)#- gives warning

sqrt(ifelse(x >= 0, x, NA))# no warning

## Note: the following also gives the warning !

ifelse(x >= 0, sqrt(x), NA)

image Display a Color Image

Description

Creates a grid of colored or gray-scale rectangles with colors corresponding to the values in
z. This can be used to display three-dimensional or spatial data aka “images”. This is a
generic function.

The functions heat.colors, terrain.colors and topo.colors create heat-spectrum (red
to white) and topographical color schemes suitable for displaying ordered data, with n giving
the number of colors desired.



image 319

Usage

image(x, ...)

## Default S3 method:
image(x, y, z, zlim, xlim, ylim, col = heat.colors(12),

add = FALSE, xaxs = "i", yaxs = "i", xlab, ylab,
breaks, oldstyle = FALSE, ...)

Arguments

x,y locations of grid lines at which the values in z are measured. These must
be in (strictly) ascending order. By default, equally spaced values from 0
to 1 are used. If x is a list, its components x$x and x$y are used for x
and y, respectively. If the list has component z this is used for z.

z a matrix containing the values to be plotted (NAs are allowed). Note that
x can be used instead of z for convenience.

zlim the minimum and maximum z values for which colors should be plotted.
Each of the given colors will be used to color an equispaced interval of
this range. The midpoints of the intervals cover the range, so that values
just outside the range will be plotted.

xlim, ylim ranges for the plotted x and y values, defaulting to the range of the finite
values of x and y.

col a list of colors such as that generated by rainbow, heat.colors,
topo.colors, terrain.colors or similar functions.

add logical; if TRUE, add to current plot (and disregard the following argu-
ments). This is rarely useful because image “paints” over existing graph-
ics.

xaxs, yaxs style of x and y axis. The default "i" is appropriate for images. See par.

xlab, ylab each a character string giving the labels for the x and y axis. Default to
the ‘call names’ of x or y, or to "" if these where unspecified.

breaks a set of breakpoints for the colours: must give one more breakpoint than
colour.

oldstyle logical. If true the midpoints of the colour intervals are equally spaced,
and zlim[1] and zlim[2] were taken to be midpoints. (This was the
default prior to R 1.1.0.) The current default is to have colour intervals
of equal lengths between the limits.

... graphical parameters for plot may also be passed as arguments to this
function.

Details

The length of x should be equal to the nrow(z)+1 or nrow(z). In the first case x specifies
the boundaries between the cells: in the second case x specifies the midpoints of the cells.
Similar reasoning applies to y. It probably only makes sense to specify the midpoints of
an equally-spaced grid. If you specify just one row or column and a length-one x or y, the
whole user area in the corresponding direction is filled.

If breaks is specified then zlim is unused and the algorithm used follows cut, so intervals
are closed on the right and open on the left except for the lowest interval.



320 index.search

Note

Based on a function by Thomas Lumley 〈tlumley@u.washington.edu〉.

See Also

filled.contour or heatmap which can look nicer (but are less modular), contour;

heat.colors, topo.colors, terrain.colors, rainbow, hsv, par.

Examples

x <- y <- seq(-4*pi, 4*pi, len=27)

r <- sqrt(outer(x^2, y^2, "+"))

image(z = z <- cos(r^2)*exp(-r/6), col=gray((0:32)/32))

image(z, axes = FALSE, main = "Math can be beautiful ...",

xlab = expression(cos(r^2) * e^{-r/6}))

contour(z, add = TRUE, drawlabels = FALSE)

data(volcano)

x <- 10*(1:nrow(volcano))

y <- 10*(1:ncol(volcano))

image(x, y, volcano, col = terrain.colors(100), axes = FALSE)

contour(x, y, volcano, levels = seq(90, 200, by=5), add = TRUE, col = "peru")

axis(1, at = seq(100, 800, by = 100))

axis(2, at = seq(100, 600, by = 100))

box()

title(main = "Maunga Whau Volcano", font.main = 4)

index.search Search Indices for Help Files

Description

Used to search the indices for help files, possibly under aliases.

Usage

index.search(topic, path, file="AnIndex", type = "help")

Arguments

topic The keyword to be searched for in the indices.

path The path(s) to the packages to be searched.

file The index file to be searched. Normally ‘”AnIndex”’.

type The type of file required.

Details

For each package in path, examine the file file in directory ‘type’, and look up the matching
file stem for topic topic, if any.



infert 321

Value

A character vector of matching files, as if they are in directory type of the corresponding
package. In the special cases of type = "html", "R-ex" and "latex" the file extensions
".html", ".R" and ".tex" are added.

See Also

help, example

infert Infertility after Spontaneous and Induced Abortion

Description

This is a matched case-control study dating from before the availability of conditional
logistic regression.

Usage

data(infert)

Format

1. Education 0 = 0-5 years
1 = 6-11 years
2 = 12+ years

2. age age in years of case
3. parity count
4. number of prior 0 = 0

induced abortions 1 = 1
2 = 2 or more

5. case status 1 = case
0 = control

6. number of prior 0 = 0
spontaneous abortions 1 = 1

2 = 2 or more
7. matched set number 1-83
8. stratum number 1-63

Note

One case with two prior spontaneous abortions and two prior induced abortions is omitted.

Source

Trichopoulos et al. (1976) Br. J. of Obst. and Gynaec. 83, 645–650.



322 influence.measures

Examples

data(infert)

model1 <- glm(case ~ spontaneous+induced, data=infert,family=binomial())

summary(model1)

## adjusted for other potential confounders:

summary(model2 <- glm(case ~ age+parity+education+spontaneous+induced,

data=infert,family=binomial()))

## Really should be analysed by conditional logistic regression

## which is in the survival package

if(require(survival)){

model3 <- clogit(case~spontaneous+induced+strata(stratum),data=infert)

summary(model3)

detach()# survival (conflicts)

}

influence.measures Regression Deletion Diagnostics

Description

This suite of functions can be used to compute some of the regression (leave-one-out dele-
tion) diagnostics for linear and generalized linear models discussed in Belsley, Kuh and
Welsch (1980), Cook and Weisberg (1982), etc.

Usage

influence.measures(model)

rstandard(model, ...)
## S3 method for class 'lm':
rstandard(model, infl = lm.influence(model, do.coef=FALSE),

sd = sqrt(deviance(model)/df.residual(model)), ...)
## S3 method for class 'glm':
rstandard(model, infl = lm.influence(model, do.coef=FALSE), ...)

rstudent(model, ...)
## S3 method for class 'lm':
rstudent(model, infl = lm.influence(model, do.coef=FALSE),

res = infl$wt.res, ...)
## S3 method for class 'glm':
rstudent(model, infl = influence(model, do.coef=FALSE), ...)

dffits(model, infl = , res = )

dfbeta(model, ...)
## S3 method for class 'lm':
dfbeta(model, infl = lm.influence(model, do.coef=TRUE), ...)

dfbetas(model, ...)
## S3 method for class 'lm':
dfbetas(model, infl = lm.influence(model, do.coef=TRUE), ...)



influence.measures 323

covratio(model, infl = lm.influence(model, do.coef=FALSE),
res = weighted.residuals(model))

cooks.distance(model, ...)
## S3 method for class 'lm':
cooks.distance(model, infl = lm.influence(model, do.coef=FALSE),

res = weighted.residuals(model),
sd = sqrt(deviance(model)/df.residual(model)),
hat = infl$hat, ...)

## S3 method for class 'glm':
cooks.distance(model, infl = influence(model, do.coef=FALSE),

res = infl$pear.res, dispersion = summary(model)$dispersion,
hat = infl$hat, ...)

hatvalues(model, ...)
## S3 method for class 'lm':
hatvalues(model, infl = lm.influence(model, do.coef=FALSE), ...)

hat(x, intercept = TRUE)

Arguments

model an R object, typically returned by lm or glm.

infl influence structure as returned by lm.influence or influence (the latter
only for the glm method of rstudent and cooks.distance).

res (possibly weighted) residuals, with proper default.

sd standard deviation to use, see default.

dispersion dispersion (for glm objects) to use, see default.

hat hat values Hii, see default.

x the X or design matrix.

intercept should an intercept column be pre-prended to x?

... further arguments passed to or from other methods.

Details

The primary high-level function is influence.measures which produces a class "infl"
object tabular display showing the DFBETAS for each model variable, DFFITS, covariance
ratios, Cook’s distances and the diagonal elements of the hat matrix. Cases which are
influential with respect to any of these measures are marked with an asterisk.

The functions dfbetas, dffits, covratio and cooks.distance provide direct access to
the corresponding diagnostic quantities. Functions rstandard and rstudent give the stan-
dardized and Studentized residuals respectively. (These re-normalize the residuals to have
unit variance, using an overall and leave-one-out measure of the error variance respectively.)

Values for generalized linear models are approximations, as described in Williams (1987)
(except that Cook’s distances are scaled as F rather than as chi-square values).

The optional infl, res and sd arguments are there to encourage the use of these direct
access functions, in situations where, e.g., the underlying basic influence measures (from
lm.influence or the generic influence) are already available.



324 influence.measures

Note that cases with weights == 0 are dropped from all these functions, but that if a linear
model has been fitted with na.action = na.exclude, suitable values are filled in for the
cases excluded during fitting.

The function hat() exists mainly for S (version 2) compatibility; we recommend using
hatvalues() instead.

Note

For hatvalues, dfbeta, and dfbetas, the method for linear models also works for gener-
alized linear models.

Author(s)

Several R core team members and John Fox, originally in his ‘car’ package.

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

Cook, R. D. and Weisberg, S. (1982) Residuals and Influence in Regression. London:
Chapman and Hall.

Williams, D. A. (1987) Generalized linear model diagnostics using the deviance and single
case deletions. Applied Statistics 36, 181–191.

Fox, J. (1997) Applied Regression, Linear Models, and Related Methods. Sage.

Fox, J. (2002) An R and S-Plus Companion to Applied Regression. Sage Publ.; http:
//www.socsci.mcmaster.ca/jfox/Books/Companion/.

See Also

influence (containing lm.influence).

Examples

## Analysis of the life-cycle savings data

## given in Belsley, Kuh and Welsch.

data(LifeCycleSavings)

lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)

inflm.SR <- influence.measures(lm.SR)

which(apply(inflm.SR$is.inf, 1, any)) # which observations 'are' influential

summary(inflm.SR) # only these

inflm.SR # all

plot(rstudent(lm.SR) ~ hatvalues(lm.SR)) # recommended by some

## The 'infl' argument is not needed, but avoids recomputation:

rs <- rstandard(lm.SR)

iflSR <- influence(lm.SR)

identical(rs, rstandard(lm.SR, infl = iflSR))

## to "see" the larger values:

1000 * round(dfbetas(lm.SR, infl = iflSR), 3)

## Huber's data [Atkinson 1985]

xh <- c(-4:0, 10)

yh <- c(2.48, .73, -.04, -1.44, -1.32, 0)

summary(lmH <- lm(yh ~ xh))

http://www.socsci.mcmaster.ca/jfox/Books/Companion/
http://www.socsci.mcmaster.ca/jfox/Books/Companion/


INSTALL 325

(im <- influence.measures(lmH))

plot(xh,yh, main = "Huber's data: L.S. line and influential obs.")

abline(lmH); points(xh[im$is.inf], yh[im$is.inf], pch=20, col=2)

InsectSprays Effectiveness of Insect Sprays

Description

The counts of insects in agricultural experimental units treated with different insecticides.

Usage

data(InsectSprays)

Format

A data frame with 72 observations on 2 variables.

[,1] count numeric Insect count
[,2] spray factor The type of spray

Source

Beall, G., (1942) The Transformation of data from entomological field experiments,
Biometrika, 29, 243–262.

References

McNeil, D. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(InsectSprays)

boxplot(count ~ spray, data = InsectSprays,

xlab = "Type of spray", ylab = "Insect count",

main = "InsectSprays data", varwidth = TRUE, col = "lightgray")

fm1 <- aov(count ~ spray, data = InsectSprays)

summary(fm1)

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))

plot(fm1)

fm2 <- aov(sqrt(count) ~ spray, data = InsectSprays)

summary(fm2)

plot(fm2)

par(opar)

INSTALL Install Add-on Packages

Description

Utility for installing add-on packages.



326 INSTALL

Usage

R CMD INSTALL [options] [-l lib] pkgs

Arguments

pkgs A list with the path names of the packages to be installed.

lib the path name of the R library tree to install to.

options a list of options through which in particular the process for building the
help files can be controlled.

Details

If used as R CMD INSTALL pkgs without explicitly specifying lib, packages are installed into
the library tree rooted at the first directory given in the environment variable R_LIBS if this
is set and non-null, and to the default library tree (which is rooted at ‘$R HOME/library’)
otherwise.

To install into the library tree lib, use R CMD INSTALL -l lib pkgs.

Both lib and the elements of pkgs may be absolute or relative path names. pkgs can
also contain name of package archive files of the form ‘pkg version.tar.gz’ as obtained from
CRAN, these are then extracted in a temporary directory.

Some package sources contain a ‘configure’ script that can be passed arguments or variables
via the option ‘--configure-args’ and ‘--configure-vars’, respectively, if necessary. The
latter is useful in particular if libraries or header files needed for the package are in non-
system directories. In this case, one can use the configure variables LIBS and CPPFLAGS to
specify these locations (and set these via ‘--configure-vars’), see section “Configuration
variables” in“R Installation and Administration” for more information. One can also bypass
the configure mechanism using the option ‘--no-configure’.

If ‘--no-docs’ is given, no help files are built. Options ‘--no-text’, ‘--no-html’, and
‘--no-latex’ suppress creating the text, HTML, and LaTeX versions, respectively. The
default is to build help files in all three versions.

If the option ‘--save’ is used, the installation procedure creates a binary image of the
package code, which is then loaded when the package is attached, rather than evaluating
the package source at that time. Having a file ‘install.R’ in the package directory makes this
the default behavior for the package (option ‘--no-save’ overrides). You may need ‘--save’
if your package requires other packages to evaluate its own source. If the file ‘install.R’ is
non-empty, it should contain R expressions to be executed when the package is attached,
after loading the saved image. Options to be passed to R when creating the save image can
be specified via ‘--save=ARGS’.

If the attempt to install the package fails, leftovers are removed. If the package was already
installed, the old version is restored.

Use R CMD INSTALL --help for more usage information.

Packages using the methods package

Packages that require the methods package, and that use functions such as setMethod or
setClass, should be installed by creating a binary image.

The presence of a file named ‘install.R’ in the package’s main directory causes an image to
be saved. Note that the file is not in the ‘R’ subdirectory: all the code in that subdirectory
is used to construct the binary image.



integer 327

Normally, the file ‘install.R’ will be empty; if it does contain R expressions these will be
evaluated when the package is attached, e.g. by a call to the function library. (Specifically,
the source code evaluated for a package with a saved image consists of a suitable definition
of .First.lib to ensure loading of the saved image, followed by the R code in file ‘install.R’,
if any.)

See Also

REMOVE, update.packages for automatic update of packages using the internet; the chapter
on “Creating R packages” in “Writing R Extensions” (see the ‘doc/manual’ subdirectory of
the R source tree).

integer Integer Vectors

Description

Creates or tests for objects of type "integer".

Usage

integer(length = 0)
as.integer(x, ...)
is.integer(x)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Value

integer creates a integer vector of the specified length. Each element of the vector is equal
to 0. Integer vectors exist so that data can be passed to C or Fortran code which expects
them.

as.integer attempts to coerce its argument to be of integer type. The answer will be
NA unless the coercion succeeds. Real values larger in modulus than the largest integer are
coerced to NA (unlike S which gives the most extreme integer of the same sign). Non-integral
numeric values are truncated towards zero (i.e., as.integer(x) equals trunc(x) there),
and imaginary parts of complex numbers are discarded (with a warning). Like as.vector
it strips attributes including names.

is.integer returns TRUE or FALSE depending on whether its argument is of integer type or
not. is.integer is generic: you can write methods to handle of specific classes of objects,
see InternalMethods. Note that factors are true for is.integer but false for is.numeric.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.



328 integrate

See Also

round (and ceiling and floor on that help page) to convert to integral values.

Examples

## as.integer() truncates:

x <- pi * c(-1:1,10)

as.integer(x)

integrate Integration of One-Dimensional Functions

Description

Adaptive quadrature of functions of one variable over a finite or infinite interval.

Usage

integrate(f, lower, upper, subdivisions=100,
rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
stop.on.error = TRUE, keep.xy = FALSE, aux = NULL, ...)

Arguments

f an R function taking a numeric first argument and returning a numeric
vector of the same length. Returning a non-finite element will generate
an error.

lower, upper the limits of integration. Can be infinite.

subdivisions the maximum number of subintervals.

rel.tol relative accuracy requested.

abs.tol absolute accuracy requested.

stop.on.error logical. If true (the default) an error stops the function. If false some
errors will give a result with a warning in the message component.

keep.xy unused. For compatibility with S.

aux unused. For compatibility with S.

... additional arguments to be passed to f. Remember to use argument
names not matching those of integrate(.)!

Details

If one or both limits are infinite, the infinite range is mapped onto a finite interval.

For a finite interval, globally adaptive interval subdivision is used in connection with ex-
trapolation by the Epsilon algorithm.

rel.tol cannot be less than max(50*.Machine$double.eps, 0.5e-28) if abs.tol <= 0.



integrate 329

Value

A list of class "integrate" with components

value the final estimate of the integral.
abs.error estimate of the modulus of the absolute error.
subdivisions the number of subintervals produced in the subdivision process.
message "OK" or a character string giving the error message.
call the matched call.

Note

Like all numerical integration routines, these evaluate the function on a finite set of points.
If the function is approximately constant (in particular, zero) over nearly all its range it is
possible that the result and error estimate may be seriously wrong.
When integrating over infinite intervals do so explicitly, rather than just using a large
number as the endpoint. This increases the chance of a correct answer – any function
whose integral over an infinite interval is finite must be near zero for most of that interval.

References

Based on QUADPACK routines dqags and dqagi by R. Piessens and E. deDoncker-
Kapenga, available from Netlib.
See
R. Piessens, E. deDoncker-Kapenga, C. Uberhuber, D. Kahaner (1983) Quadpack: a Sub-
routine Package for Automatic Integration; Springer Verlag.

See Also

The function adapt in the adapt package on CRAN, for multivariate integration.

Examples

integrate(dnorm, -1.96, 1.96)

integrate(dnorm, -Inf, Inf)

## a slowly-convergent integral

integrand <- function(x) {1/((x+1)*sqrt(x))}

integrate(integrand, lower = 0, upper = Inf)

## don't do this if you really want the integral from 0 to Inf

integrate(integrand, lower = 0, upper = 10)

integrate(integrand, lower = 0, upper = 100000)

integrate(integrand, lower = 0, upper = 1000000, stop.on.error = FALSE)

try(integrate(function(x) 2, 0, 1)) ## no vectorizable function

integrate(function(x) rep(2, length(x)), 0, 1) ## correct

## integrate can fail if misused

integrate(dnorm,0,2)

integrate(dnorm,0,20)

integrate(dnorm,0,200)

integrate(dnorm,0,2000)

integrate(dnorm,0,20000) ## fails on many systems

integrate(dnorm,0,Inf) ## works



330 interaction.plot

interaction Compute Factor Interactions

Description

interaction computes a factor which represents the interaction of the given factors. The
result of interaction is always unordered.

Usage

interaction(..., drop = FALSE)

Arguments

... the factors for which interaction is to be computed, or a single list giving
those factors.

drop if drop is TRUE, empty factor levels are dropped from the result. The
default is to retain all factor levels.

Value

A factor which represents the interaction of the given factors. The levels are labelled as the
levels of the individual factors joined by ..

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

factor, :

Examples

a <- gl(2, 2, 8)

b <- gl(2, 4, 8)

interaction(a, b)

interaction.plot Two-way Interaction Plot

Description

Plots the mean (or other summary) of the response for two-way combinations of factors,
thereby illustrating possible interactions.



interaction.plot 331

Usage

interaction.plot(x.factor, trace.factor, response, fun = mean,
type = c("l", "p"), legend = TRUE,
trace.label=deparse(substitute(trace.factor)), fixed=FALSE,
xlab = deparse(substitute(x.factor)), ylab = ylabel,
ylim = range(cells, na.rm=TRUE),
lty = nc:1, col = 1, pch = c(1:9, 0, letters),
xpd = NULL, leg.bg = par("bg"), leg.bty = "n",
xtick = FALSE, xaxt = par("xaxt"), axes = TRUE, ...)

Arguments

x.factor a factor whose levels will form the x axis.

trace.factor another factor whose levels will form the traces.

response a numeric variable giving the response

fun the function to compute the summary. Should return a single real value.

type the type of plot: lines or points.

legend logical. Should a legend be included?

trace.label overall label for the legend.

fixed logical. Should the legend be in the order of the levels of trace.factor
or in the order of the traces at their right-hand ends?

xlab,ylab the x and y label of the plot each with a sensible default.

ylim numeric of length 2 giving the y limits for the plot.

lty line type for the lines drawn, with sensible default.

col the color to be used for plotting.

pch a vector of plotting symbols or characters, with sensible default.

xpd determines clipping behaviour for the legend used, see par(xpd). Per
default, the legend is not clipped at the figure border.

leg.bg, leg.bty

arguments passed to legend().

xtick logical. Should tick marks be used on the x axis?
xaxt, axes, ...

graphics parameters to be passed to the plotting routines.

Details

By default the levels of x.factor are plotted on the x axis in their given order, with extra
space left at the right for the legend (if specified). If x.factor is an ordered factor and the
levels are numeric, these numeric values are used for the x axis.

The response and hence its summary can contain missing values. If so, the missing values
and the line segments joining them are omitted from the plot (and this can be somewhat
disconcerting).

The graphics parameters xlab, ylab, ylim, lty, col and pch are given suitable defaults
(and xlim and xaxs are set and cannot be overriden). The defaults are to cycle through
the line types, use the foreground colour, and to use the symbols 1:9, 0, and the capital
letters to plot the traces.



332 interactive

Note

Some of the argument names and the precise behaviour are chosen for S-compatibility.

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed
experiments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie,
Wadsworth & Brooks/Cole.

Examples

data(ToothGrowth)

attach(ToothGrowth)

interaction.plot(dose, supp, len, fixed=TRUE)

dose <- ordered(dose)

interaction.plot(dose, supp, len, fixed=TRUE, col = 2:3, leg.bty = "o")

detach()

data(OrchardSprays)

with(OrchardSprays, {

interaction.plot(treatment, rowpos, decrease)

interaction.plot(rowpos, treatment, decrease, cex.axis=0.8)

## order the rows by their mean effect

rowpos <- factor(rowpos, levels=sort.list(tapply(decrease, rowpos, mean)))

interaction.plot(rowpos, treatment, decrease, col = 2:9, lty = 1)

})

data(esoph)

with(esoph, {

interaction.plot(agegp, alcgp, ncases/ncontrols)

interaction.plot(agegp, tobgp, ncases/ncontrols, trace.label="tobacco",

fixed=TRUE, xaxt = "n")

})

interactive Is R Running Interactively?

Description

Return TRUE when R is being used interactively and FALSE otherwise.

Usage

interactive()

See Also

source, .First

Examples

.First <- function() if(interactive()) x11()



Internal 333

Internal Call an Internal Function

Description

.Internal performs a call to an internal code which is built in to the R interpreter. Only
true R wizards should even consider using this function.

Usage

.Internal(call)

Arguments

call a call expression

See Also

.Primitive, .C, .Fortran.

InternalMethods Internal Generic Functions

Description

Many R-internal functions are generic and allow methods to be written for.

Details

The following builtin functions are generic as well, i.e., you can write methods for them:

[, [[, $, [<-, [[<-, $<-,

length,

dimnames<-, dimnames, dim<-, dim

c, unlist,

as.character, as.vector, is.array, is.atomic, is.call, is.character, is.complex,
is.double, is.environment, is.function, is.integer, is.language, is.logical,
is.list, is.matrix, is.na, is.nan is.null, is.numeric, is.object, is.pairlist,
is.recursive, is.single, is.symbol.

See Also

methods for the methods of non-Internal generic functions.



334 IQR

invisible Change the Print Mode to Invisible

Description

Return a (temporarily) invisible copy of an object.

Usage

invisible(x)

Arguments

x an arbitrary R object.

Details

This function can be useful when it is desired to have functions return values which can be
assigned, but which do not print when they are not assigned.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

return, function.

Examples

# These functions both return their argument

f1 <- function(x) x

f2 <- function(x) invisible(x)

f1(1)# prints

f2(1)# does not

IQR The Interquartile Range

Description

computes interquartile range of the x values.

Usage

IQR(x, na.rm = FALSE)

Arguments

x a numeric vector.

na.rm logical. Should missing values be removed?



iris 335

Details

Note that this function computes the quartiles using the quantile function rather than fol-
lowing Tukey’s recommendations, i.e., IQR(x) = quantile(x,3/4) - quantile(x,1/4).

For normally N(m, 1) distributed X, the expected value of IQR(X) is 2*qnorm(3/4) =
1.3490, i.e., for a normal-consistent estimate of the standard deviation, use IQR(x) /
1.349.

References

Tukey, J. W. (1977). Exploratory Data Analysis. Reading: Addison-Wesley.

See Also

fivenum, mad which is more robust, range, quantile.

Examples

data(rivers)

IQR(rivers)

iris Edgar Anderson’s Iris Data

Description

This famous (Fisher’s or Anderson’s) iris data set gives the measurements in centimeters of
the variables sepal length and width and petal length and width, respectively, for 50 flowers
from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

Usage

data(iris)
data(iris3)

Format

iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepal.Length,
Sepal.Width, Petal.Length, Petal.Width, and Species.

iris3 gives the same data arranged as a 3-dimensional array of size 50 by 4 by 3, as repre-
sented by S-PLUS. The first dimension gives the case number within the species subsample,
the second the measurements with names Sepal L., Sepal W., Petal L., and Petal W.,
and the third the species.

Source

Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7, Part II, 179–188.

The data were collected by Anderson, Edgar (1935). The irises of the Gaspe Peninsula,
Bulletin of the American Iris Society, 59, 2–5.



336 is.empty.model

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (has iris3 as iris.)

See Also

matplot some examples of which use iris.

Examples

data(iris3)

dni3 <- dimnames(iris3)

ii <- data.frame(matrix(aperm(iris3, c(1,3,2)), ncol=4,

dimnames=list(NULL, sub(" L.",".Length",

sub(" W.",".Width", dni3[[2]])))),

Species = gl(3,50,lab=sub("S","s",sub("V","v",dni3[[3]]))))

data(iris)

all.equal(ii, iris) # TRUE

is.empty.model Check if a Model is Empty

Description

R model notation allows models with no intercept and no predictors. These require spe-
cial handling internally. is.empty.model() checks whether an object describes an empty
model.

Usage

is.empty.model(x)

Arguments

x A terms object or an object with a terms method.

Value

TRUE if the model is empty

See Also

lm,glm

Examples

y <- rnorm(20)

is.empty.model(y ~ 0)

is.empty.model(y ~ -1)

is.empty.model(lm(y ~ 0))



is.finite 337

is.finite Finite, Infinite and NaN Numbers

Description

is.finite and is.infinite return a vector of the same length as x, indicating which
elements are finite (not infinite and not missing).

Inf and -Inf are positive and negative “infinity” whereas NaN means “Not a Number”.

Usage

is.finite(x)
is.infinite(x)
Inf
NaN
is.nan(x)

Arguments

x (numerical) object to be tested.

Details

is.finite returns a vector of the same length as x the jth element of which is TRUE if x[j]
is finite (i.e., it is not one of the values NA, NaN, Inf or -Inf). All elements of character
and generic (list) vectors are false, so is.finite is only useful for logical, integer, numeric
and complex vectors. Complex numbers are finite if both the real and imaginary parts are.

is.infinite returns a vector of the same length as x the jth element of which is TRUE if
x[j] is infinite (i.e., equal to one of Inf or -Inf).

is.nan tests if a numeric value is NaN. Do not test equality to NaN, or even use identical,
since systems typically have many different NaN values. In most ports of R one of these is
used for the numeric missing value NA. It is generic: you can write methods to handle of
specific classes of objects, see InternalMethods.

Note

In R, basically all mathematical functions (including basic Arithmetic), are supposed to
work properly with +/- Inf and NaN as input or output.

The basic rule should be that calls and relations with Infs really are statements with a
proper mathematical limit.

References

ANSI/IEEE 754 Floating-Point Standard.

Currently (6/2002), Bill Metzenthen’s 〈billm@suburbia.net〉 tutorial and examples at
http://www.suburbia.net/~billm/

See Also

NA, ‘Not Available’ which is not a number as well, however usually used for missing values
and applies to many modes, not just numeric.

http://www.suburbia.net/~billm/


338 is.language

Examples

pi / 0 ## = Inf a non-zero number divided by zero creates infinity

0 / 0 ## = NaN

1/0 + 1/0# Inf

1/0 - 1/0# NaN

stopifnot(

1/0 == Inf,

1/Inf == 0

)

sin(Inf)

cos(Inf)

tan(Inf)

is.function Is an Object of Type Function?

Description

Checks whether its argument is a function.

Usage

is.function(x)

Arguments

x an R object.

Details

is.function is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

Value

TRUE if x is a function, and FALSE otherwise.

is.language Is an Object a Language Object?

Description

is.language returns TRUE if x is either a variable name, a call, or an expression.

Usage

is.language(x)



is.object 339

Arguments

x object to be tested.

Details

is.language is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

ll <- list(a = expression(x^2 - 2*x + 1), b = as.name("Jim"),

c = as.expression(exp(1)), d = call("sin", pi))

sapply(ll, typeof)

sapply(ll, mode)

stopifnot(sapply(ll, is.language))

is.object Is an Object “internally classed”?

Description

A function rather for internal use. It returns TRUE if the object x has the R internal OBJECT
attribute set, and FALSE otherwise.

Usage

is.object(x)

Arguments

x object to be tested.

Details

is.object is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

See Also

class, and methods.

Examples

is.object(1) # FALSE

is.object(as.factor(1:3)) # TRUE



340 is.recursive

is.R Are we using R, rather than S?

Description

Test if running under R.

Usage

is.R()

Details

The function has been written such as to correctly run in all versions of R, S and S-PLUS.
In order for code to be runnable in both R and S dialects, either your the code must define
is.R or use it as

if (exists("is.R") && is.function(is.R) && is.R()) {
## R-specific code
} else {
## S-version of code
}

Value

is.R returns TRUE if we are using R and FALSE otherwise.

See Also

R.version, system.

Examples

x <- runif(20); small <- x < 0.4

## 'which()' only exists in R:

if(is.R()) which(small) else seq(along=small)[small]

is.recursive Is an Object Atomic or Recursive?

Description

is.atomic returns TRUE if x does not have a list structure and FALSE otherwise.

is.recursive returns TRUE if x has a recursive (list-like) structure and FALSE otherwise.

Usage

is.atomic(x)
is.recursive(x)



is.single 341

Arguments

x object to be tested.

Details

These are generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

is.list, is.language, etc, and the demo("is.things").

Examples

is.a.r <- function(x) c(is.atomic(x), is.recursive(x))

is.a.r(c(a=1,b=3)) # TRUE FALSE

is.a.r(list()) # FALSE TRUE ??

is.a.r(list(2)) # FALSE TRUE

is.a.r(lm) # FALSE TRUE

is.a.r(y ~ x) # FALSE TRUE

is.a.r(expression(x+1)) # FALSE TRUE (not in 0.62.3!)

is.single Is an Object of Single Precision Type?

Description

is.single reports an error. There are no single precision values in R.

Usage

is.single(x)

Arguments

x object to be tested.

Details

is.single is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.



342 Japanese

islands Areas of the World’s Major Landmasses

Description

The areas in thousands of square miles of the landmasses which exceed 10,000 square miles.

Usage

data(islands)

Format

A named vector of length 48.

Source

The World Almanac and Book of Facts, 1975, page 406.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(islands)

dotchart(log(islands, 10),

main = "islands data: log10(area) (log10(sq. miles))")

dotchart(log(islands[order(islands)], 10),

main = "islands data: log10(area) (log10(sq. miles))")

Japanese Japanese characters in R

Description

The implementation of Hershey vector fonts provides a large number of Japanese characters
(Hiragana, Katakana, and Kanji).

Details

Without keyboard support for typing Japanese characters, the only way to produce these
characters is to use special escape sequences: see Hershey.

For example, the Hiragana character for the sound ”ka” is produced by \\#J242b and the
Katakana character for this sound is produced by \\#J252b. The Kanji ideograph for ”one”
is produced by \\#J306c or \\#N0001.

The output from demo(Japanese) shows tables of the escape sequences for the available
Japanese characters.



jitter 343

References

http://www.gnu.org/software/plotutils/plotutils.html

See Also

demo(Japanese), Hershey, text, contour

Examples

plot(1:9, type="n", axes=FALSE, frame=TRUE, ylab="",

main= "example(Japanese)", xlab= "using Hershey fonts")

par(cex=3)

Vf <- c("serif", "plain")

text(4, 2, "\\#J2438\\#J2421\\#J2451\\#J2473", vfont = Vf)

text(4, 4, "\\#J2538\\#J2521\\#J2551\\#J2573", vfont = Vf)

text(4, 6, "\\#J467c\\#J4b5c", vfont = Vf)

text(4, 8, "Japan", vfont = Vf)

par(cex=1)

text(8, 2, "Hiragana")

text(8, 4, "Katakana")

text(8, 6, "Kanji")

text(8, 8, "English")

jitter Add ‘Jitter’ (Noise) to Numbers

Description

Add a small amount of noise to a numeric vector.

Usage

jitter(x, factor=1, amount = NULL)

Arguments

x numeric to which jitter should be added.
factor numeric
amount numeric; if positive, used as amount (see below), otherwise, if = 0 the

default is factor * z/50.
Default (NULL): factor * d/5 where d is about the smallest difference
between x values.

Details

The result, say r, is r <- x + runif(n, -a, a) where n <- length(x) and a is the
amount argument (if specified).

Let z <- max(x) - min(x) (assuming the usual case). The amount a to be added is either
provided as positive argument amount or otherwise computed from z, as follows:

If amount == 0, we set a <- factor * z/50 (same as S).

If amount is NULL (default), we set a <- factor * d/5 where d is the smallest difference
between adjacent unique (apart from fuzz) x values.

http://www.gnu.org/software/plotutils/plotutils.html


344 kappa

Value

jitter(x,...) returns a numeric of the same length as x, but with an amount of noise
added in order to break ties.

Author(s)

Werner Stahel and Martin Maechler, ETH Zurich

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P.A. (1983) Graphical Methods
for Data Analysis. Wadsworth; figures 2.8, 4.22, 5.4.

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

rug which you may want to combine with jitter.

Examples

round(jitter(c(rep(1,3), rep(1.2, 4), rep(3,3))), 3)

## These two 'fail' with S-plus 3.x:

jitter(rep(0, 7))

jitter(rep(10000,5))

kappa Estimate the Condition Number

Description

An estimate of the condition number of a matrix or of the R matrix of a QR decomposition,
perhaps of a linear fit. The condition number is defined as the ratio of the largest to the
smallest non-zero singular value of the matrix.

Usage

kappa(z, ...)
## S3 method for class 'lm':
kappa(z, ...)
## Default S3 method:
kappa(z, exact = FALSE, ...)
## S3 method for class 'qr':
kappa(z, ...)

kappa.tri(z, exact = FALSE, ...)

Arguments

z A matrix or a the result of qr or a fit from a class inheriting from "lm".

exact logical. Should the result be exact?

... further arguments passed to or from other methods.



kronecker 345

Details

If exact = FALSE (the default) the condition number is estimated by a cheap approxima-
tion. Following S, this uses the LINPACK routine ‘dtrco.f’. However, in R (or S) the exact
calculation is also likely to be quick enough.

kappa.tri is an internal function called by kappa.qr.

Value

The condition number, kappa, or an approximation if exact = FALSE.

Author(s)

The design was inspired by (but differs considerably from) the S function of the same name
described in Chambers (1992).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

svd for the singular value decomposition and qr for the QR one.

Examples

kappa(x1 <- cbind(1,1:10))# 15.71

kappa(x1, exact = TRUE) # 13.68

kappa(x2 <- cbind(x1,2:11))# high! [x2 is singular!]

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }

sv9 <- svd(h9 <- hilbert(9))$ d

kappa(h9)# pretty high!

kappa(h9, exact = TRUE) == max(sv9) / min(sv9)

kappa(h9, exact = TRUE) / kappa(h9) # .677 (i.e., rel.error = 32%)

kronecker Kronecker products on arrays

Description

Computes the generalised kronecker product of two arrays, X and Y. kronecker(X, Y)
returns an array A with dimensions dim(X) * dim(Y).

Usage

kronecker(X, Y, FUN = "*", make.dimnames = FALSE, ...)
X %x% Y



346 labels

Arguments

X A vector or array.

Y A vector or array.

FUN a function; it may be a quoted string.

make.dimnames Provide dimnames that are the product of the dimnames of X and Y.

... optional arguments to be passed to FUN.

Details

If X and Y do not have the same number of dimensions, the smaller array is padded with
dimensions of size one. The returned array comprises submatrices constructed by taking X
one term at a time and expanding that term as FUN(x, Y, ...).

%x% is an alias for kronecker (where FUN is hardwired to "*").

Author(s)

Jonathan Rougier, 〈J.C.Rougier@durham.ac.uk〉

References

Shayle R. Searle (1982) Matrix Algebra Useful for Statistics. John Wiley and Sons.

See Also

outer, on which kronecker is built and %*% for usual matrix multiplication.

Examples

# simple scalar multiplication

( M <- matrix(1:6, ncol=2) )

kronecker(4, M)

# Block diagonal matrix:

kronecker(diag(1, 3), M)

# ask for dimnames

fred <- matrix(1:12, 3, 4, dimnames=list(LETTERS[1:3], LETTERS[4:7]))

bill <- c("happy" = 100, "sad" = 1000)

kronecker(fred, bill, make.dimnames = TRUE)

bill <- outer(bill, c("cat"=3, "dog"=4))

kronecker(fred, bill, make.dimnames = TRUE)

labels Find Labels from Object

Description

Find a suitable set of labels from an object for use in printing or plotting, for example. A
generic function.



lapply 347

Usage

labels(object, ...)

Arguments

object Any R object: the function is generic.
... further arguments passed to or from other methods.

Value

A character vector or list of such vectors. For a vector the results is the names or
seq(along=x), for a data frame or array it is the dimnames (with NULL expanded to
seq(len=d[i])), for a terms object it is the term labels and for an lm object it is the
term labels for estimable terms.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

lapply Apply a Function over a List or Vector

Description

lapply returns a list of the same length as X. Each element of which is the result of applying
FUN to the corresponding element of X.

sapply is a “user-friendly” version of lapply also accepting vectors as X, and returning a
vector or matrix with dimnames if appropriate.

replicate is a wrapper for the common use of sapply for repeated evaluation of an ex-
pression (which will usually involve random number generation).

Usage

lapply(X, FUN, ...)
sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)

replicate(n, expr, simplify = TRUE)

Arguments

X list or vector to be used.
FUN the function to be applied. In the case of functions like +, %*%, etc., the

function name must be quoted.
... optional arguments to FUN.
simplify logical; should the result be simplified to a vector or matrix if possible?
USE.NAMES logical; if TRUE and if X is character, use X as names for the result unless

it had names already.
n Number of replications.
expr Expression to evaluate repeatedly.



348 Last.value

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

apply, tapply.

Examples

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))

# compute the list mean for each list element

lapply(x,mean)

# median and quartiles for each list element

lapply(x, quantile, probs = 1:3/4)

sapply(x, quantile)

str(i39 <- sapply(3:9, seq))# list of vectors

sapply(i39, fivenum)

hist(replicate(100, mean(rexp(10))))

Last.value Value of Last Evaluated Expression

Description

The value of the internal evaluation of a top-level R expression is always assigned to
.Last.value (in package:base) before further processing (e.g., printing).

Usage

.Last.value

Details

The value of a top-level assignment is put in .Last.value, unlike S.

Do not assign to .Last.value in the workspace, because this will always mask the object
of the same name in package:base.

See Also

eval

Examples

## These will not work correctly from example(),

## but they will in make check or if pasted in,

## as example() does not run them at the top level

gamma(1:15) # think of some intensive calculation...

fac14 <- .Last.value # keep them

library("eda") # returns invisibly

.Last.value # shows what library(.) above returned



layout 349

layout Specifying Complex Plot Arrangements

Description

layout divides the device up into as many rows and columns as there are in matrix mat,
with the column-widths and the row-heights specified in the respective arguments.

Usage

layout(mat,
widths = rep(1, dim(mat)[2]),
heights= rep(1, dim(mat)[1]),
respect= FALSE)

layout.show(n = 1)
lcm(x)

Arguments

mat a matrix object specifying the location of the next N figures on the output
device. Each value in the matrix must be 0 or a positive integer. If N is
the largest positive integer in the matrix, then the integers {1, . . . , N −1}
must also appear at least once in the matrix.

widths a vector of values for the widths of columns on the device. Relative widths
are specified with numeric values. Absolute widths (in centimetres) are
specified with the lcm() function (see examples).

heights a vector of values for the heights of rows on the device. Relative and
absolute heights can be specified, see widths above.

respect either a logical value or a matrix object. If the latter, then it must have
the same dimensions as mat and each value in the matrix must be either
0 or 1.

n number of figures to plot.

x a dimension to be intepreted as a number of centimetres.

Details

Figure i is allocated a region composed from a subset of these rows and columns, based on
the rows and columns in which i occurs in mat.

The respect argument controls whether a unit column-width is the same physical mea-
surement on the device as a unit row-height.

layout.show(n) plots (part of) the current layout, namely the outlines of the next n figures.

lcm is a trivial function, to be used as the interface for specifying absolute dimensions for
the widths and heights arguments of layout().

Value

layout returns the number of figures, N , see above.



350 layout

Author(s)

Paul R. Murrell

References

Murrell, P. R. (1999) Layouts: A mechanism for arranging plots on a page. Journal of
Computational and Graphical Statistics, 8, 121-134. Chapter 5 of Paul Murrell’s Ph.D.
thesis.

See Also

par with arguments mfrow, mfcol, or mfg.

Examples

def.par <- par(no.readonly = TRUE)# save default, for resetting...

## divide the device into two rows and two columns

## allocate figure 1 all of row 1

## allocate figure 2 the intersection of column 2 and row 2

layout(matrix(c(1,1,0,2), 2, 2, byrow = TRUE))

## show the regions that have been allocated to each plot

layout.show(2)

## divide device into two rows and two columns

## allocate figure 1 and figure 2 as above

## respect relations between widths and heights

nf <- layout(matrix(c(1,1,0,2), 2, 2, byrow=TRUE), respect=TRUE)

layout.show(nf)

## create single figure which is 5cm square

nf <- layout(matrix(1), widths=lcm(5), heights=lcm(5))

layout.show(nf)

##-- Create a scatterplot with marginal histograms -----

x <- pmin(3, pmax(-3, rnorm(50)))

y <- pmin(3, pmax(-3, rnorm(50)))

xhist <- hist(x, breaks=seq(-3,3,0.5), plot=FALSE)

yhist <- hist(y, breaks=seq(-3,3,0.5), plot=FALSE)

top <- max(c(xhist$counts, yhist$counts))

xrange <- c(-3,3)

yrange <- c(-3,3)

nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)

layout.show(nf)

par(mar=c(3,3,1,1))

plot(x, y, xlim=xrange, ylim=yrange, xlab="", ylab="")

par(mar=c(0,3,1,1))

barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0)

par(mar=c(3,0,1,1))

barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0, horiz=TRUE)

par(def.par)#- reset to default



legend 351

legend Add Legends to Plots

Description

This function can be used to add legends to plots. Note that a call to the function locator
can be used in place of the x and y arguments.

Usage

legend(x, y = NULL, legend, fill = NULL, col = "black", lty, lwd, pch,
angle = NULL, density = NULL, bty = "o", bg = par("bg"),
pt.bg = NA, cex = 1, xjust = 0, yjust = 1,
x.intersp = 1, y.intersp = 1, adj = c(0, 0.5),
text.width = NULL, merge = do.lines && has.pch, trace = FALSE,
plot = TRUE, ncol = 1, horiz = FALSE)

Arguments

x, y the x and y co-ordinates to be used to position the legend. They can be
specified in any way which is accepted by xy.coords: See Details.

legend a vector of text values or an expression of length ≥ 1, or a call (as
resulting from substitute) to appear in the legend.

fill if specified, this argument will cause boxes filled with the specified colors
(or shaded in the specified colors) to appear beside the legend text.

col the color of points or lines appearing in the legend.

lty,lwd the line types and widths for lines appearing in the legend. One of these
two must be specified for line drawing.

pch the plotting symbols appearing in the legend, either as vector of 1-
character strings, or one (multi character) string. Must be specified for
symbol drawing.

angle angle of shading lines.

density the density of shading lines, if numeric and positive. If NULL or negative
or NA color filling is assumed.

bty the type of box to be drawn around the legend. The allowed values are
"o" (the default) and "n".

bg the background color for the legend box. (Note that this is only used if
bty = "n".)

pt.bg the background color for the points.

cex character expansion factor relative to current par("cex").

xjust how the legend is to be justified relative to the legend x location. A value
of 0 means left justified, 0.5 means centered and 1 means right justified.

yjust the same as xjust for the legend y location.

x.intersp character interspacing factor for horizontal (x) spacing.

y.intersp the same for vertical (y) line distances.

adj numeric of length 1 or 2; the string adjustment for legend text. Useful for
y-adjustment when labels are plotmath expressions.



352 legend

text.width the width of the legend text in x ("user") coordinates. Defaults to the
proper value computed by strwidth(legend).

merge logical; if TRUE, “merge” points and lines but not filled boxes. Defaults to
TRUE if there are points and lines.

trace logical; if TRUE, shows how legend does all its magical computations.

plot logical. If FALSE, nothing is plotted but the sizes are returned.

ncol the number of columns in which to set the legend items (default is 1, a
vertical legend).

horiz logical; if TRUE, set the legend horizontally rather than vertically (speci-
fying horiz overrides the ncol specification).

Details

Arguments x, y, legend are interpreted in a non-standard way to allow the coordinates
to be specified via one or two arguments. If legend is missing and y is not numeric, it is
assumed that the second argument is intended to be legend and that the first argument
specifies the coordinates.

The coordinates can be specified in any way which is accepted by xy.coords. If this gives
the coordinates of one point, it is used as the top-left coordinate of the rectangle containing
the legend. If it gives the coordinates of two points, these specify opposite corners of the
rectangle (either pair of corners, in any order).

“Attribute” arguments such as col, pch, lty, etc, are recycled if necessary. merge is not.

Points are drawn after lines in order that they can cover the line with their background
color pt.bg, if applicable.

See the examples for how to right-justify labels.

Value

A list with list components

rect a list with components

w, h positive numbers giving width and height of the legend’s box.
left, top x and y coordinates of upper left corner of the box.

text a list with components

x, y numeric vectors of length length(legend), giving the x and y co-
ordinates of the legend’s text(s).

returned invisibly.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

plot, barplot which uses legend(), and text for more examples of math expressions.



legend 353

Examples

## Run the example in '?matplot' or the following:

leg.txt <- c("Setosa Petals", "Setosa Sepals",

"Versicolor Petals", "Versicolor Sepals")

y.leg <- c(4.5, 3, 2.1, 1.4, .7)

cexv <- c(1.2, 1, 4/5, 2/3, 1/2)

matplot(c(1,8), c(0,4.5), type = "n", xlab = "Length", ylab = "Width",

main = "Petal and Sepal Dimensions in Iris Blossoms")

for (i in seq(cexv)) {

text (1, y.leg[i]-.1, paste("cex=",formatC(cexv[i])), cex=.8, adj = 0)

legend(3, y.leg[i], leg.txt, pch = "sSvV", col = c(1, 3), cex = cexv[i])

}

## 'merge = TRUE' for merging lines & points:

x <- seq(-pi, pi, len = 65)

plot(x, sin(x), type = "l", ylim = c(-1.2, 1.8), col = 3, lty = 2)

points(x, cos(x), pch = 3, col = 4)

lines(x, tan(x), type = "b", lty = 1, pch = 4, col = 6)

title("legend(..., lty = c(2, -1, 1), pch = c(-1,3,4), merge = TRUE)",

cex.main = 1.1)

legend(-1, 1.9, c("sin", "cos", "tan"), col = c(3,4,6),

lty = c(2, -1, 1), pch = c(-1, 3, 4), merge = TRUE, bg='gray90')

## right-justifying a set of labels: thanks to Uwe Ligges

x <- 1:5; y1 <- 1/x; y2 <- 2/x

plot(rep(x, 2), c(y1, y2), type="n", xlab="x", ylab="y")

lines(x, y1); lines(x, y2, lty=2)

temp <- legend(5, 2, legend = c(" ", " "),

text.width = strwidth("1,000,000"),

lty = 1:2, xjust = 1, yjust = 1)

text(temp$rect$left + temp$rect$w, temp$text$y,

c("1,000", "1,000,000"), pos=2)

##--- log scaled Examples ------------------------------

leg.txt <- c("a one", "a two")

par(mfrow = c(2,2))

for(ll in c("","x","y","xy")) {

plot(2:10, log=ll, main=paste("log = '",ll,"'", sep=""))

abline(1,1)

lines(2:3,3:4, col=2) #

points(2,2, col=3) #

rect(2,3,3,2, col=4)

text(c(3,3),2:3, c("rect(2,3,3,2, col=4)",

"text(c(3,3),2:3,\"c(rect(...)\")"), adj = c(0,.3))

legend(list(x=2,y=8), legend = leg.txt, col=2:3, pch=1:2,

lty=1, merge=TRUE)#, trace=TRUE)

}

par(mfrow=c(1,1))

##-- Math expressions: ------------------------------

x <- seq(-pi, pi, len = 65)

plot(x, sin(x), type="l", col = 2,xlab=expression(phi),ylab=expression(f(phi)))

abline(h=-1:1, v=pi/2*(-6:6), col="gray90")

lines(x, cos(x), col = 3, lty = 2)

ex.cs1 <- expression(plain(sin) * phi, paste("cos", phi))# 2 ways



354 length

str(legend(-3, .9, ex.cs1, lty=1:2, plot=FALSE, adj = c(0, .6)))# adj y !

legend(-3, .9, ex.cs1, lty=1:2, col=2:3, adj = c(0, .6))

x <- rexp(100, rate = .5)

hist(x, main = "Mean and Median of a Skewed Distribution")

abline(v = mean(x), col=2, lty=2, lwd=2)

abline(v = median(x), col=3, lty=3, lwd=2)

ex12 <- expression(bar(x) == sum(over(x[i], n), i==1, n),

hat(x) == median(x[i], i==1,n))

str(legend(4.1, 30, ex12, col = 2:3, lty=2:3, lwd=2))

## 'Filled' boxes -- for more, see example(plotfactor)

op <- par(bg="white") # to get an opaque box for the legend

data(PlantGrowth)

plot(cut(weight, 3) ~ group, data = PlantGrowth,

col = NULL, density = 16*(1:3))

par(op)

## Using 'ncol' :

x <- 0:64/64

matplot(x, outer(x, 1:7, function(x, k) sin(k * pi * x)),

type = "o", col = 1:7, ylim = c(-1, 1.5), pch = "*")

op <- par(bg="antiquewhite1")

legend(0, 1.5, paste("sin(",1:7,"pi * x)"), col=1:7, lty=1:7, pch = "*",

ncol = 4, cex=.8)

legend(.8,1.2, paste("sin(",1:7,"pi * x)"), col=1:7, lty=1:7, pch = "*",cex=.8)

legend(0, -.1, paste("sin(",1:4,"pi * x)"), col=1:4, lty=1:4, ncol=2, cex=.8)

legend(0, -.4, paste("sin(",5:7,"pi * x)"), col=5:7, pch=24, ncol=2, cex=1.5,

pt.bg="pink")

par(op)

## point covering line :

y <- sin(3*pi*x)

plot(x, y, type="l", col="blue", main = "points with bg & legend(*, pt.bg)")

points(x, y, pch=21, bg="white")

legend(.4,1, "sin(c x)", pch=21, pt.bg="white", lty=1, col = "blue")

length Length of a Vector or List

Description

Get or set the length of vectors (including lists).

Usage

length(x)
length(x) <- value

Arguments

x a vector or list.

value an integer.



levels 355

Details

length is generic: you can write methods to handle of specific classes of objects, see Inter-
nalMethods.

The replacement form can be used to reset the length of a vector. If a vector is shortened,
extra values are discarded and when a vector is lengthened, it is padded out to its new
length with NAs.

Value

The length of x as an integer of length 1, if x is (or can be coerced to) a vector or list.
Otherwise, length returns NA.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

nchar for counting the number of characters in character vectors.

Examples

length(diag(4))# = 16 (4 x 4)

length(options())# 12 or more

length(y ~ x1 + x2 + x3)# 3

length(expression(x, {y <- x^2; y+2}, x^y)) # 3

levels Levels Attributes

Description

levels provides access to the levels attribute of a variable. The first form returns the value
of the levels of its argument and the second sets the attribute.

The assignment form ("levels<-") of levels is a generic function and new methods can
be written for it. The most important method is that for factors:

Usage

levels(x)
levels(x) <- value

Arguments

x an object, for example a factor.

value A valid value for levels(x). For the default method, NULL or a character
vector. For the factor method, a vector of character strings with length
at least the number of levels of x, or a named list specifying how to rename
the levels.



356 library

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

nlevels.

Examples

## assign individual levels

x <- gl(2, 4, 8)

levels(x)[1] <- "low"

levels(x)[2] <- "high"

x

## or as a group

y <- gl(2, 4, 8)

levels(y) <- c("low", "high")

y

## combine some levels

z <- gl(3, 2, 12)

levels(z) <- c("A", "B", "A")

z

## same, using a named list

z <- gl(3, 2, 12)

levels(z) <- list(A=c(1,3), B=2)

z

## we can add levels this way:

f <- factor(c("a","b"))

levels(f) <- c("c", "a", "b")

f

f <- factor(c("a","b"))

levels(f) <- list(C="C", A="a", B="b")

f

library Loading and Listing of Packages

Description

library and require load add-on packages.

.First.lib is called when a package is loaded; .Last.lib is called when a package is
detached.

.packages returns information about package availability.

.path.package returns information about where a package was loaded from.

.find.package returns the directory paths of installed packages.



library 357

Usage

library(package, help, pos = 2, lib.loc = NULL, character.only = FALSE,
logical.return = FALSE, warn.conflicts = TRUE,
keep.source = getOption("keep.source.pkgs"),
verbose = getOption("verbose"), version)

require(package, quietly = FALSE, warn.conflicts = TRUE,
keep.source = getOption("keep.source.pkgs"),
character.only = FALSE, version, save = TRUE)

.First.lib(libname, pkgname)

.Last.lib(libpath)

.packages(all.available = FALSE, lib.loc = NULL)

.path.package(package = .packages(), quiet = FALSE)

.find.package(package, lib.loc = NULL, quiet = FALSE,
verbose = getOption("verbose"))

.libPaths(new)

.Library

.Autoloaded

Arguments

package, help the name of a package, given as a name or literal character string, or a
character string, depending on whether character.only is FALSE (de-
fault) or TRUE).

pos the position on the search list at which to attach the loaded package. Note
that .First.lib may attach other packages, and pos is computed after
.First.lib has been run. Can also be the name of a position on the
current search list as given by search().

lib.loc a character vector describing the location of R library trees to search
through, or NULL. The default value of NULL corresponds to all libraries
currently known.

character.only

a logical indicating whether package or help can be assumed to be char-
acter strings.

version A character string denoting a version number of the package to be loaded.
If no version is given, a suitable default is chosen.

logical.return

logical. If it is TRUE, FALSE or TRUE is returned to indicate success.
warn.conflicts

logical. If TRUE, warnings are printed about conflicts from attaching
the new package, unless that package contains an object .conflicts.OK.

keep.source logical. If TRUE, functions “keep their source” including comments, see
argument keep.source to options.

verbose a logical. If TRUE, additional diagnostics are printed.
quietly a logical. If TRUE, no message confirming package loading is printed.
save logical or environment. IF TRUE, a call to require from the source for

a package will save the name of the required package in the variable
".required", allowing function detach to warn if a required package
is detached. See section ‘Packages that require other packages’ below.



358 library

libname a character string giving the library directory where the package was
found.

pkgname a character string giving the name of the package.

libpath a character string giving the complete path to the package.

all.available logical; if TRUE return a character vector of all available packages in
lib.loc.

quiet logical. For .path.package, should this not give warnings or an error if
the package(s) are not loaded? For .find.package, should this not give
warnings or an error if the package(s) are not found?

new a character vector with the locations of R library trees.

Details

library(package) and require(package) both load the package with name package.
require is designed for use inside other functions; it returns FALSE and gives a warning
(rather than an error as library() does) if the package does not exist. Both functions
check and update the list of currently loaded packages and do not reload code that is
already loaded.

For large packages, setting keep.source = FALSE may save quite a bit of memory.

If library is called with no package or help argument, it lists all available packages in the
libraries specified by lib.loc, and returns the corresponding information in an object of
class "libraryIQR". The structure of this class may change in future versions. In earlier
versions of R, only the names of all available packages were returned; use .packages(all
= TRUE) for obtaining these. Note that installed.packages() returns even more infor-
mation.

library(help = somename) computes basic information about the package somename, and
returns this in an object of class "packageInfo". The structure of this class may change
in future versions.

.First.lib is called when a package is loaded by library. It is called with two arguments,
the name of the library directory where the package was found (i.e., the corresponding
element of lib.loc), and the name of the package (in that order). It is a good place to
put calls to library.dynam which are needed when loading a package into this function
(don’t call library.dynam directly, as this will not work if the package is not installed in a
“standard” location). .First.lib is invoked after the search path interrogated by search()
has been updated, so as.environment(match("package:name", search())) will return
the environment in which the package is stored. If calling .First.lib gives an error the
loading of the package is abandoned, and the package will be unavailable. Similarly, if the
option ".First.lib" has a list element with the package’s name, this element is called in
the same manner as .First.lib when the package is loaded. This mechanism allows the
user to set package “load hooks” in addition to startup code as provided by the package
maintainers.

.Last.lib is called when a package is detached. Beware that it might be called if

.First.lib has failed, so it should be written defensively. (It is called within try, so
errors will not stop the package being detached.)

.packages() returns the “base names” of the currently attached packages invisibly whereas

.packages(all.available = TRUE) gives (visibly) all packages available in the library
location path lib.loc.

.path.package returns the paths from which the named packages were loaded, or if none
were named, for all currently loaded packages. Unless quiet = TRUE it will warn if some



library 359

of the packages named are not loaded, and given an error if none are. This function is not
meant to be called by users, and its interface might change in future versions.

.find.package returns the paths to the locations where the given packages can be found.
If lib.loc is NULL, then then attached packages are searched before the libraries. If a
package is found more than once, the first match is used. Unless quiet = TRUE a warning
will be given about the named packages which are not found, and an error if none are. If
verbose is true, warnings about packages found more than once are given. This function
is not meant to be called by users, and its interface might change in future versions.

.Autoloaded contains the “base names” of the packages for which autoloading has been
promised.

.Library is a character string giving the location of the default library, the ‘library’ subdi-
rectory of R_HOME. .libPaths is used for getting or setting the library trees that R knows
about (and hence uses when looking for packages). If called with argument new, the library
search path is set to the existing files in unique(new, .Library) and this is returned. If
given no argument, a character vector with the currently known library trees is returned.

The library search path is initialized at startup from the environment variable R_LIBS
(which should be a colon-separated list of directories at which R library trees are rooted)
by calling .libPaths with the directories specified in R_LIBS.

Value

library returns the list of loaded (or available) packages (or TRUE if logical.return is
TRUE). require returns a logical indicating whether the required package is available.

Packages that require other packages

The source code for a package that requires one or more other packages should have a call
to require, preferably near the beginning of the source, and of course before any code
that uses functions, classes or methods from the other package. The default for argument
save will save the names of all required packages in the environment of the new package.
The saved package names are used by detach when a package is detached to warn if other
packages still require the detached package. Also, if a package is installed with saved image
(see INSTALL), the saved package names are used to require these packages when the new
package is attached.

Formal methods

library takes some further actions when package methods is attached (as it is by default).
Packages may define formal generic functions as well as re-defining functions in other pack-
ages (notably base) to be generic, and this information is cached whenever such a package
is loaded after methods and re-defined functions are excluded from the list of conflicts.
The check requires looking for a pattern of objects; the pattern search may be avoided by
defining an object .noGenerics (with any value) in the package. Naturally, if the package
does have any such methods, this will prevent them from being used.

Note

library and require can only load an installed package, and this is detected by having a
‘DESCRIPTION’ file containing a Built: field. Packages installed prior to 1.2.0 (released
in December 2000) will need to be re-installed.

Under Unix-alikes, the code checks that the package was installed under a similar operating
system as given by R.version$platform (the canonical name of the platform under which R



360 library

was compiled), provided it contains compiled code. Packages which do not contain compiled
code can be shared between Unix-alikes, but not to other OSes because of potential problems
with line endings and OS-specific help files.

library and require use the underlying file system services to locate the libraries,
with the result that on case-sensitive file systems package names are case-sensitive (i.e.,
library(foo) is different from library(Foo)), but they are not distinguished on case-
insensitive file systems such as MS Windows. A warning is issued if the user specifies a
name which isn’t a perfect match to the package name, because future versions of R will
require exact matches.

Author(s)

R core; Guido Masarotto for the all.available=TRUE part of .packages.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

attach, detach, search, objects, autoload, library.dynam, data, install.packages
and installed.packages; INSTALL, REMOVE.

Examples

(.packages()) # maybe just "base"

.packages(all = TRUE) # return all available as character vector

library() # list all available packages

library(lib = .Library) # list all packages in the default library

library(help = eda) # documentation on package 'eda'

library(eda) # load package 'eda'

require(eda) # the same

(.packages()) # "eda", too

detach("package:eda")

# if the package name is in a character vector, use

pkg <- "eda"

library(pkg, character.only = TRUE)

detach(pos = match(paste("package", pkg, sep=":"), search()))

require(pkg, character.only = TRUE)

detach(pos = match(paste("package", pkg, sep=":"), search()))

.path.package()

.Autoloaded # maybe "ctest"

.libPaths() # all library trees R knows about

require(nonexistent) # FALSE

## Not run:

## Suppose a package needs to call a shared library named 'fooEXT',

## where 'EXT' is the system-specific extension. Then you should use

.First.lib <- function(lib, pkg) {

library.dynam("foo", pkg, lib)

}



library.dynam 361

## if you want to mask as little as possible, use

library(mypkg, pos = "package:base")

## End(Not run)

library.dynam Loading Shared Libraries

Description

Load the specified file of compiled code if it has not been loaded already, or unloads it.

Usage

library.dynam(chname, package = .packages(), lib.loc = NULL,
verbose = getOption("verbose"),
file.ext = .Platform$dynlib.ext, ...)

library.dynam.unload(chname, libpath,
verbose = getOption("verbose"),
file.ext = .Platform$dynlib.ext)

.dynLibs(new)

Arguments

chname a character string naming a shared library to load.

package a character vector with the names of packages to search through.

lib.loc a character vector describing the location of R library trees to search
through, or NULL. The default value of NULL corresponds to all libraries
currently known.

libpath the path to the loaded package whose shared library is to be unloaded.

verbose a logical value indicating whether an announcement is printed on the
console before loading the shared library. The default value is taken from
the verbose entry in the system options.

file.ext the extension to append to the file name to specify the library to be
loaded. This defaults to the appropriate value for the operating system.

... additional arguments needed by some libraries that are passed to the call
to dyn.load to control how the library is loaded.

new a character vector of packages which have loaded shared libraries.

Details

library.dynam is designed to be used inside a package rather than at the command line, and
should really only be used inside .First.lib on .onLoad. The system-specific extension
for shared libraries (e.g., ‘.so’ or ‘.sl’ on Unix systems) should not be added.

library.dynam.unload is designed for use in .Last.lib or .onUnload.

.dynLibs is used for getting or setting the packages that have loaded shared libraries (using
library.dynam). Versions of R prior to 1.6.0 used an internal global variable .Dyn.libs
for storing this information: this variable is now defunct.



362 license

Value

library.dynam returns a character vector with the names of packages which have used it in
the current R session to load shared libraries. This vector is returned as invisible, unless
the chname argument is missing.

library.dynam.unload returns the updated character vector, invisibly.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

.First.lib, library, dyn.load, .packages, .libPaths

SHLIB for how to create suitable shared libraries.

Examples

library.dynam() # which packages have been "dynamically loaded"

license The R License Terms

Description

The license terms under which R is distributed.

Usage

license()
licence()

Details

R is distributed under the terms of the GNU GENERAL PUBLIC LICENSE Version 2,
June 1991. A copy of this license is in ‘$R HOME/COPYING’.

A small number of files (the API header files and import library) are distributed under
the LESSER GNU GENERAL PUBLIC LICENSE version 2.1. A copy of this license is in
‘$R HOME/COPYING.LIB’.



LifeCycleSavings 363

LifeCycleSavings Intercountry Life-Cycle Savings Data

Description

Data on the savings ratio 1960–1970.

Usage

data(LifeCycleSavings)

Format

A data frame with 50 observations on 5 variables.

[,1] sr numeric aggregate personal savings
[,2] pop15 numeric % of population under 15
[,3] pop75 numeric % of population over 75
[,4] dpi numeric real per-capita disposable income
[,5] ddpi numeric % growth rate of dpi

Details

Under the life-cycle savings hypothesis as developed by Franco Modigliani, the savings
ratio (aggregate personal saving divided by disposable income) is explained by per-capita
disposable income, the percentage rate of change in per-capita disposable income, and
two demographic variables: the percentage of population less than 15 years old and the
percentage of the population over 75 years old. The data are averaged over the decade
1960–1970 to remove the business cycle or other short-term fluctuations.

Source

The data were obtained from Belsley, Kuh and Welsch (1980). They in turn obtained the
data from Sterling (1977).

References

Sterling, Arnie (1977) Unpublished BS Thesis. Massachusetts Institute of Technology.

Belsley, D. A., Kuh. E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

Examples

data(LifeCycleSavings)

pairs(LifeCycleSavings, panel = panel.smooth,

main = "LifeCycleSavings data")

fm1 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)

summary(fm1)



364 lines

lines Add Connected Line Segments to a Plot

Description

A generic function taking coordinates given in various ways and joining the corresponding
points with line segments.

Usage

lines(x, ...)

## Default S3 method:
lines(x, y = NULL, type = "l", col = par("col"),

lty = par("lty"), ...)

Arguments

x, y coordinate vectors of points to join.
type character indicating the type of plotting; actually any of the types as in

plot.
col color to use. This can be vector of length greater than one, but only the

first value will be used.
lty line type to use.
... Further graphical parameters (see par) may also be supplied as argu-

ments, particularly, line type, lty and line width, lwd.

Details

The coordinates can be passed to lines in a plotting structure (a list with x and y compo-
nents), a time series, etc. See xy.coords.

The coordinates can contain NA values. If a point contains NA it either its x or y value, it is
omitted from the plot, and lines are not drawn to or from such points. Thus missing values
can be used to achieve breaks in lines.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

points, plot, and the underlying “primitive” plot.xy.

par for how to specify colors.

Examples

data(cars)

# draw a smooth line through a scatter plot

plot(cars, main="Stopping Distance versus Speed")

lines(lowess(cars))



LINK 365

LINK Create Executable Programs

Description

Front-end for creating executable programs.

Usage

R CMD LINK [options] linkcmd

Arguments

linkcmd a list of commands to link together suitable object files (include library
objects) to create the executable program.

options further options to control the linking, or for obtaining information about
usage and version.

Details

The linker front-end is useful in particular when linking against the R shared library, in
which case linkcmd must contain -lR but need not specify its library path.

Currently only works if the C compiler is used for linking, and no C++ code is used.

Use R CMD LINK --help for more usage information.

list Lists – Generic and Dotted Pairs

Description

Functions to construct, coerce and check for all kinds of R lists.

Usage

list(...)
pairlist(...)

as.list(x, ...)
as.pairlist(x)

is.list(x)
is.pairlist(x)

alist(...)

Arguments

... objects.

x object to be coerced or tested.



366 list

Details

Most lists in R internally are Generic Vectors, whereas traditional dotted pair lists (as in
LISP) are still available.

The arguments to list or pairlist are of the form value or tag=value. The functions
return a list composed of its arguments with each value either tagged or untagged, depending
on how the argument was specified.

alist is like list, except in the handling of tagged arguments with no value. These are
handled as if they described function arguments with no default (cf. formals), whereas
list simply ignores them.

as.list attempts to coerce its argument to list type. For functions, this returns the
concatenation of the list of formals arguments and the function body. For expressions, the
list of constituent calls is returned.

is.list returns TRUE iff its argument is a list or a pairlist of length> 0, whereas
is.pairlist only returns TRUE in the latter case.

is.list and is.pairlist are generic: you can write methods to handle of specific classes
of objects, see InternalMethods.

An empty pairlist, pairlist() is the same as NULL. This is different from list().

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

vector(., mode="list"), c, for concatenation; formals.

Examples

data(cars)

# create a plotting structure

pts <- list(x=cars[,1], y=cars[,2])

plot(pts)

# Argument lists

f <- function()x

# Note the specification of a "..." argument:

formals(f) <- al <- alist(x=, y=2, ...=)

f

str(al)

str(pl <- as.pairlist(ps.options()))

## These are all TRUE:

is.list(pl) && is.pairlist(pl)

!is.null(list())

is.null(pairlist())

!is.list(NULL)

is.pairlist(pairlist())

is.null(as.pairlist(list()))

is.null(as.pairlist(NULL))



list.files 367

list.files List the Files in a Directory/Folder

Description

This function produces a list containing the names of files in the named directory. dir is
an alias.

Usage

list.files(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE)

dir(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE)

Arguments

path a character vector of full path names.
pattern an optional regular expression. Only file names which match the regular

expression will be returned.
all.files a logical value. If FALSE, only the names of visible files are returned. If

TRUE, all file names will be returned.
full.names a logical value. If TRUE, the directory path is prepended to the file names.

If FALSE, only the file names are returned.
recursive logical. Should the listing recurse into directories?

Value

A character vector containing the names of the files in the specified directories, or "" if there
were no files. If a path does not exist or is not a directory or is unreadable it is skipped,
with a warning.

The files are sorted in alphabetical order, on the full path if full.names = TRUE.

Note

File naming conventions are very platform dependent.

recursive = TRUE is not supported on all platforms, and may be ignored, with a warning.

Author(s)

Ross Ihaka, Brian Ripley

See Also

file.info, file.access and files for many more file handling functions.

Examples

list.files(R.home())

## Only files starting with a-l or r (*including* uppercase):

dir("../..", pattern = "^[a-lr]",full.names=TRUE)



368 lm

lm Fitting Linear Models

Description

lm is used to fit linear models. It can be used to carry out regression, single stratum analysis
of variance and analysis of covariance (although aov may provide a more convenient interface
for these).

Usage

lm(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset = NULL, ...)

Arguments

formula a symbolic description of the model to be fit. The details of model speci-
fication are given below.

data an optional data frame containing the variables in the model. By de-
fault the variables are taken from environment(formula), typically the
environment from which lm is called.

subset an optional vector specifying a subset of observations to be used in the
fitting process.

weights an optional vector of weights to be used in the fitting process. If specified,
weighted least squares is used with weights weights (that is, minimizing
sum(w*e^2)); otherwise ordinary least squares is used.

na.action a function which indicates what should happen when the data contain NAs.
The default is set by the na.action setting of options, and is na.fail
if that is unset. The “factory-fresh” default is na.omit.

method the method to be used; for fitting, currently only method="qr" is sup-
ported; method="model.frame" returns the model frame (the same as
with model = TRUE, see below).

model, x, y, qr

logicals. If TRUE the corresponding components of the fit (the model
frame, the model matrix, the response, the QR decomposition) are re-
turned.

singular.ok logical. If FALSE (the default in S but not in R) a singular fit is an error.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

offset this can be used to specify an a priori known component to be included
in the linear predictor during fitting. An offset term can be included in
the formula instead or as well, and if both are specified their sum is used.

... additional arguments to be passed to the low level regression fitting func-
tions (see below).



lm 369

Details

Models for lm are specified symbolically. A typical model has the form response ~ terms
where response is the (numeric) response vector and terms is a series of terms which
specifies a linear predictor for response. A terms specification of the form first + second
indicates all the terms in first together with all the terms in second with duplicates
removed. A specification of the form first:second indicates the set of terms obtained by
taking the interactions of all terms in first with all terms in second. The specification
first*second indicates the cross of first and second. This is the same as first +
second + first:second. If response is a matrix a linear model is fitted to each column
of the matrix. See model.matrix for some further details.

lm calls the lower level functions lm.fit, etc, see below, for the actual numerical computa-
tions. For programming only, you may consider doing likewise.

Value

lm returns an object of class "lm" or for multiple responses of class c("mlm", "lm").

The functions summary and anova are used to obtain and print a summary and analysis
of variance table of the results. The generic accessor functions coefficients, effects,
fitted.values and residuals extract various useful features of the value returned by lm.

An object of class "lm" is a list containing at least the following components:

coefficients a named vector of coefficients

residuals the residuals, that is response minus fitted values.

fitted.values the fitted mean values.

rank the numeric rank of the fitted linear model.

weights (only for weighted fits) the specified weights.

df.residual the residual degrees of freedom.

call the matched call.

terms the terms object used.

contrasts (only where relevant) the contrasts used.

xlevels (only where relevant) a record of the levels of the factors used in fitting.

y if requested, the response used.

x if requested, the model matrix used.

model if requested (the default), the model frame used.

In addition, non-null fits will have components assign, effects and (unless not requested)
qr relating to the linear fit, for use by extractor functions such as summary and effects.

Note

Offsets specified by offset will not be included in predictions by predict.lm, whereas
those specified by an offset term in the formula will be.

Author(s)

The design was inspired by the S function of the same name described in Chambers (1992).
The implementation of model formula by Ross Ihaka was based on Wilkinson & Rogers
(1973).



370 lm.fit

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

Wilkinson, G. N. and Rogers, C. E. (1973) Symbolic descriptions of factorial models for
analysis of variance. Applied Statistics, 22, 392–9.

See Also

summary.lm for summaries and anova.lm for the ANOVA table; aov for a different interface.

The generic functions coef, effects, residuals, fitted, vcov.

predict.lm (via predict) for prediction, including confidence and prediction intervals.

lm.influence for regression diagnostics, and glm for generalized linear models.

The underlying low level functions, lm.fit for plain, and lm.wfit for weighted regression
fitting.

Examples

## Annette Dobson (1990) "An Introduction to Generalized Linear Models".

## Page 9: Plant Weight Data.

ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)

trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

group <- gl(2,10,20, labels=c("Ctl","Trt"))

weight <- c(ctl, trt)

anova(lm.D9 <- lm(weight ~ group))

summary(lm.D90 <- lm(weight ~ group - 1))# omitting intercept

summary(resid(lm.D9) - resid(lm.D90)) #- residuals almost identical

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))

plot(lm.D9, las = 1) # Residuals, Fitted, ...

par(opar)

## model frame :

stopifnot(identical(lm(weight ~ group, method = "model.frame"),

model.frame(lm.D9)))

lm.fit Fitter Functions for Linear Models

Description

These are the basic computing engines called by lm used to fit linear models. These should
usually not be used directly unless by experienced users.

Usage

lm.fit (x, y, offset = NULL, method = "qr", tol = 1e-7,
singular.ok = TRUE, ...)

lm.wfit(x, y, w, offset = NULL, method = "qr", tol = 1e-7,
singular.ok = TRUE, ...)



lm.fit 371

Arguments

x design matrix of dimension n * p.

y vector of observations of length n.

w vector of weights (length n) to be used in the fitting process for the wfit
functions. Weighted least squares is used with weights w, i.e., sum(w *
e^2) is minimized.

offset numeric of length n). This can be used to specify an a priori known
component to be included in the linear predictor during fitting.

method currently, only method="qr" is supported.

tol tolerance for the qr decomposition. Default is 1e-7.

singular.ok logical. If FALSE, a singular model is an error.

... currently disregarded.

Details

The functions lm.{w}fit.null are called by lm.fit or lm.wfit respectively, when x has
zero columns.

Value

a list with components

coefficients p vector

residuals n vector

fitted.values n vector

effects (not null fits)n vector of orthogonal single-df effects. The first rank of
them correspond to non-aliased coeffcients, and are named accordingly.

weights n vector — only for the *wfit* functions.

rank integer, giving the rank

df.residual degrees of freedom of residuals

qr (not null fits) the QR decomposition, see qr.

See Also

lm which you should use for linear least squares regression, unless you know better.

Examples

set.seed(129)

n <- 7 ; p <- 2

X <- matrix(rnorm(n * p), n,p) # no intercept!

y <- rnorm(n)

w <- rnorm(n)^2

str(lmw <- lm.wfit(x=X, y=y, w=w))

str(lm. <- lm.fit (x=X, y=y))



372 lm.influence

lm.influence Regression Diagnostics

Description

This function provides the basic quantities which are used in forming a wide variety of
diagnostics for checking the quality of regression fits.

Usage

influence(model, ...)
## S3 method for class 'lm':
influence(model, do.coef = TRUE, ...)
## S3 method for class 'glm':
influence(model, do.coef = TRUE, ...)

lm.influence(model, do.coef = TRUE)

Arguments

model an object as returned by lm.

do.coef logical indicating if the changed coefficients (see below) are desired.
These need O(n2p) computing time.

... further arguments passed to or from other methods.

Details

The influence.measures() and other functions listed in See Also provide a more
user oriented way of computing a variety of regression diagnostics. These all build on
lm.influence.

An attempt is made to ensure that computed hat values that are probably one are treated
as one, and the corresponding rows in sigma and coefficients are NaN. (Dropping such a
case would normally result in a variable being dropped, so it is not possible to give simple
drop-one diagnostics.)

Value

A list containing the following components of the same length or number of rows n, which
is the number of non-zero weights. Cases omitted in the fit are omitted unless a na.action
method was used (such as na.exclude) which restores them.

hat a vector containing the diagonal of the “hat” matrix.

coefficients (unless do.coef is false) a matrix whose i-th row contains the change
in the estimated coefficients which results when the i-th case is dropped
from the regression. Note that aliased coefficients are not included in the
matrix.

sigma a vector whose i-th element contains the estimate of the residual standard
deviation obtained when the i-th case is dropped from the regression.

wt.res a vector of weighted (or for class glm rather deviance) residuals.



lm.summaries 373

Note

The coefficients returned by the R version of lm.influence differ from those computed
by S. Rather than returning the coefficients which result from dropping each case, we return
the changes in the coefficients. This is more directly useful in many diagnostic measures.
Since these need O(n2p) computing time, they can be omitted by do.coef = FALSE.

Note that cases with weights == 0 are dropped (contrary to the situation in S).

If a model has been fitted with na.action=na.exclude (see na.exclude), cases excluded
in the fit are considered here.

References

See the list in the documentation for influence.measures.

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

summary.lm for summary and related methods;
influence.measures,
hat for the hat matrix diagonals,
dfbetas, dffits, covratio, cooks.distance, lm.

Examples

## Analysis of the life-cycle savings data

## given in Belsley, Kuh and Welsch.

data(LifeCycleSavings)

summary(lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi,

data = LifeCycleSavings),

corr = TRUE)

str(lmI <- lm.influence(lm.SR))

## For more "user level" examples, use example(influence.measures)

lm.summaries Accessing Linear Model Fits

Description

All these functions are methods for class "lm" objects.

Usage

## S3 method for class 'lm':
family(object, ...)

## S3 method for class 'lm':
formula(x, ...)

## S3 method for class 'lm':
residuals(object,



374 lm.summaries

type = c("working", "response", "deviance","pearson", "partial"),
...)

weights(object, ...)

Arguments

object, x an object inheriting from class lm, usually the result of a call to lm or
aov.

... further arguments passed to or from other methods.

type the type of residuals which should be returned.

Details

The generic accessor functions coef, effects, fitted and residuals can be used to extract
various useful features of the value returned by lm.

The working and response residuals are “observed - fitted”. The deviance and pearson
residuals are weighted residuals, scaled by the square root of the weights used in fitting.
The partial residuals are a matrix with each column formed by omitting a term from the
model. In all these, zero weight cases are never omitted (as opposed to the standardized
rstudent residuals).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

The model fitting function lm, anova.lm.

coef, deviance, df.residual, effects, fitted, glm for generalized linear models,
influence (etc on that page) for regression diagnostics, weighted.residuals, residuals,
residuals.glm, summary.lm.

Examples

##-- Continuing the lm(.) example:

coef(lm.D90)# the bare coefficients

## The 2 basic regression diagnostic plots [plot.lm(.) is preferred]

plot(resid(lm.D90), fitted(lm.D90))# Tukey-Anscombe's

abline(h=0, lty=2, col = 'gray')

qqnorm(residuals(lm.D90))



load 375

load Reload Saved Datasets

Description

Reload the datasets written to a file with the function save.

Usage

load(file, envir = parent.frame())
loadURL(url, envir = parent.frame(), quiet = TRUE, ...)

Arguments

file a connection or a character string giving the name of the file to load.

envir the environment where the data should be loaded.

url a character string naming a URL.

quiet, ... additional arguments to download.file.

Details

load can load R objects saved in the current or any earlier format. It can read a compressed
file (see save) directly from a file or from a suitable connection.

loadURL is a convenience wrapper which downloads a file, loads it and deletes the down-
loaded copy.

Value

A character vector of the names of objects created, invisibly.

See Also

save, download.file.

Examples

## save all data

save(list = ls(), file= "all.Rdata")

## restore the saved values to the current environment

load("all.Rdata")

## restore the saved values to the user's workspace

load("all.Rdata", .GlobalEnv)

## Not run:

## This example may not still be available

## print the value to see what objects were created.

print(loadURL("http://hesweb1.med.virginia.edu/biostat/s/data/sav/kprats.sav"))

## End(Not run)



376 localeconv

localeconv Find Details of the Numerical Representations in the Current
Locale

Description

Get details of the numerical representations in the current locale.

Usage

Sys.localeconv()

Value

A character vector with 18 named components. See your ISO C documentation for details
of the meaning.

It is possible to compile R without support for locales, in which case the value will be NULL.

See Also

Sys.setlocale for ways to set locales: by default R uses the C clocal for "LC_NUMERIC"
and "LC_MONETARY".

Examples

Sys.localeconv()

## The results in the default C locale are

## decimal_point thousands_sep grouping int_curr_symbol

## "." "" "" ""

## currency_symbol mon_decimal_point mon_thousands_sep mon_grouping

## "" "" "" ""

## positive_sign negative_sign int_frac_digits frac_digits

## "" "" "127" "127"

## p_cs_precedes p_sep_by_space n_cs_precedes n_sep_by_space

## "127" "127" "127" "127"

## p_sign_posn n_sign_posn

## "127" "127"

## Now try your default locale (which might be "C").

## Not run:

old <- Sys.getlocale()

Sys.setlocale(locale = "")

Sys.localeconv()

Sys.setlocale(locale = old)

## End(Not run)

## Not run: read.table("foo", dec=Sys.localeconv()["decimal_point"])



locales 377

locales Query or Set Aspects of the Locale

Description

Get details of or set aspects of the locale for the R process.

Usage

Sys.getlocale(category = "LC_ALL")
Sys.setlocale(category = "LC_ALL", locale = "")

Arguments

category character string. Must be one of "LC_ALL", "LC_COLLATE", "LC_CTYPE",
"LC_MONETARY", "LC_NUMERIC" or "LC_TIME".

locale character string. A valid locale name on the system in use. Normally ""
(the default) will pick up the default locale for the system.

Details

The locale describes aspects of the internationalization of a program. Initially most aspects
of the locale of R are set to "C" (which is the default for the C language and reflects North-
American usage). R does set "LC_CTYPE" and "LC_COLLATE", which allow the use of a
different character set (typically ISO Latin 1) and alphabetic comparisons in that character
set (including the use of sort) and "LC_TIME" may affect the behaviour of as.POSIXlt
and strptime and functions which use them (but not date).

R can be built with no support for locales, but it is normally available on Unix and is
available on Windows.

Some systems will have other locale categories, but the six described here are those specified
by POSIX.

Value

A character string of length one describing the locale in use (after setting for
Sys.setlocale), or an empty character string if the locale is invalid (with a warning)
or NULL if locale information is unavailable.

For category = "LC_ALL" the details of the string are system-specific: it might be a sin-
gle locale or a set of locales separated by "/" (Solaris) or ";" (Windows). For portabil-
ity, it is best to query categories individually. It is guaranteed that the result of foo <-
Sys.getlocale() can be used in Sys.setlocale("LC_ALL", locale = foo) on the same
machine.

Warning

Setting "LC_NUMERIC" can produce output that R cannot then read by scan or read.table
with their default arguments, which are not locale-specific.

See Also

strptime for uses of category = "LC_TIME". Sys.localeconv for details of numerical
representations.



378 locator

Examples

Sys.getlocale()

Sys.getlocale("LC_TIME")

## Not run:

Sys.setlocale("LC_TIME", "de") # Solaris: details are OS-dependent

Sys.setlocale("LC_TIME", "German") # Windows

## End(Not run)

Sys.setlocale("LC_COLLATE", "C") # turn off locale-specific sorting

locator Graphical Input

Description

Reads the position of the graphics cursor when the (first) mouse button is pressed.

Usage

locator(n = 512, type = "n", ...)

Arguments

n the maximum number of points to locate.

type One of "n", "p", "l" or "o". If "p" or "o" the points are plotted; if "l"
or "o" they are joined by lines.

... additional graphics parameters used if type != "n" for plotting the lo-
cations.

Details

Unless the process is terminated prematurely by the user (see below) at most n positions
are determined.

The identification process can be terminated by pressing any mouse button other than the
first.

The current graphics parameters apply just as if plot.default has been called with the
same value of type. The plotting of the points and lines is subject to clipping, but locations
outside the current clipping rectangle will be returned.

On most devices which support locator, successful selection of a point is indicated by a
bell sound unless options(locatorBell=FALSE) has been set.

If the window is resized or hidden and then exposed before the input process has terminated,
any lines or points drawn by locator will disappear. These will reappear once the input
process has terminated and the window is resized or hidden and exposed again. This is
because the points and lines drawn by locator are not recorded in the device’s display list
until the input process has terminated.

Value

A list containing x and y components which are the coordinates of the identified points in
the user coordinate system, i.e., the one specified by par("usr").



log 379

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

identify

log Logarithms and Exponentials

Description

log computes natural logarithms, log10 computes common (i.e., base 10) logarithms, and
log2 computes binary (i.e., base 2) logarithms. The general form logb(x, base) computes
logarithms with base base (log10 and log2 are only special cases).

log1p(x) computes log(1+x) accurately also for |x| � 1 (and less accurately when x ≈ −1).

exp computes the exponential function.

expm1(x) computes exp(x)− 1 accurately also for |x| � 1.

Usage

log(x, base = exp(1))
logb(x, base = exp(1))
log10(x)
log2(x)
exp(x)
expm1(x)
log1p(x)

Arguments

x a numeric or complex vector.

base positive number. The base with respect to which logarithms are com-
puted. Defaults to e=exp(1).

Value

A vector of the same length as x containing the transformed values. log(0) gives -Inf
(when available).

Note

log and logb are the same thing in R, but logb is preferred if base is specified, for S-PLUS
compatibility.



380 Logic

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (for log,
log10 and exp.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.
(for logb.)

See Also

Trig, sqrt, Arithmetic.

Examples

log(exp(3))

log10(1e7)# = 7

x <- 10^-(1+2*1:9)

cbind(x, log(1+x), log1p(x), exp(x)-1, expm1(x))

Logic Logical Operators

Description

These operators act on logical vectors.

Usage

! x
x & y
x && y
x | y
x || y
xor(x, y)

Arguments

x, y logical vectors

Details

! indicates logical negation (NOT).

& and && indicate logical AND and | and || indicate logical OR. The shorter form performs
elementwise comparisons in much the same way as arithmetic operators. The longer form
evaluates left to right examining only the first element of each vector. Evaluation proceeds
only until the result is determined. The longer form is appropriate for programming control-
flow and typically preferred in if clauses.

xor indicates elementwise exclusive OR.

NA is a valid logical object. Where a component of x or y is NA, the result will be NA if
the outcome is ambiguous. In other words NA & TRUE evaluates to NA, but NA & FALSE
evaluates to FALSE. See the examples below.



logical 381

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

TRUE or logical.

Syntax for operator precedence.

Examples

y <- 1 + (x <- rpois(50, lambda=1.5) / 4 - 1)

x[(x > 0) & (x < 1)] # all x values between 0 and 1

if (any(x == 0) || any(y == 0)) "zero encountered"

## construct truth tables :

x <- c(NA, FALSE, TRUE)

names(x) <- as.character(x)

outer(x, x, "&")## AND table

outer(x, x, "|")## OR table

logical Logical Vectors

Description

Create or test for objects of type "logical", and the basic logical “constants”.

Usage

TRUE
FALSE
T; F

logical(length = 0)
as.logical(x, ...)
is.logical(x)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Details

TRUE and FALSE are part of the R language, where T and F are global variables set to these.
All four are logical(1) vectors.

is.logical is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.



382 Logistic

Value

logical creates a logical vector of the specified length. Each element of the vector is equal
to FALSE.
as.logical attempts to coerce its argument to be of logical type. For factors, this uses
the levels (labels) and not the codes. Like as.vector it strips attributes including names.
is.logical returns TRUE or FALSE depending on whether its argument is of logical type or
not.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Logistic The Logistic Distribution

Description

Density, distribution function, quantile function and random generation for the logistic
distribution with parameters location and scale.

Usage

dlogis(x, location = 0, scale = 1, log = FALSE)
plogis(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qlogis(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rlogis(n, location = 0, scale = 1)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the

number required.
location, scale

location and scale parameters.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >

x].

Details

If location or scale are omitted, they assume the default values of 0 and 1 respectively.
The Logistic distribution with location = µ and scale = σ has distribution function

F (x) =
1

1 + e−(x−µ)/σ

and density

f(x) =
1
σ

e(x−µ)/σ

(1 + e(x−µ)/σ)2

It is a long-tailed distribution with mean µ and variance π2/3σ2.



logLik 383

Value

dlogis gives the density, plogis gives the distribution function, qlogis gives the quantile
function, and rlogis generates random deviates.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

var(rlogis(4000, 0, s = 5))# approximately (+/- 3)

pi^2/3 * 5^2

logLik Extract Log-Likelihood

Description

This function is generic; method functions can be written to handle specific classes of
objects. Classes which already have methods for this function include: glm, lm, nls in
package nls and gls, lme and others in package nlme.

Usage

logLik(object, ...)

## S3 method for class 'logLik':
as.data.frame(x, row.names = NULL, optional = FALSE)

Arguments

object any object from which a log-likelihood value, or a contribution to a log-
likelihood value, can be extracted.

... some methods for this generic function require additional arguments.

x an object of class logLik.
row.names, optional

arguments to the as.data.frame method; see its documentation.

Value

Returns an object, say r, of class logLik which is a number with attributes, attr(r, "df")
(degrees of freedom) giving the number of parameters in the model. There’s a simple print
method for logLik objects.

The details depend on the method function used; see the appropriate documentation.

Author(s)

Jose Pinheiro and Douglas Bates



384 logLik.glm

See Also

logLik.lm, logLik.glm, logLik.gls, logLik.lme, etc.

Examples

## see the method function documentation

x <- 1:5

lmx <- lm(x ~ 1)

logLik(lmx) # using print.logLik() method

str(logLik(lmx))

logLik.glm Extract Log-Likelihood from an glm Object

Description

Returns the log-likelihood value of the generalized linear model represented by object
evaluated at the estimated coefficients.

Usage

## S3 method for class 'glm':
logLik(object, ...)

Arguments

object an object inheriting from class "glm".

... further arguments to be passed to or from methods.

Details

As a family does not have to specify how to calculate the log-likelihood, this is based on
the family’s function to compute the AIC. For gaussian, Gamma and inverse.gaussian
families it assumed that the dispersion of the GLM is estimated and has been included in
the AIC, and for all other families it is assumed that the dispersion is known.

Not that this procedure is not completely accurate for the gamma and inverse gaussian
families, as the estimate of dispersion used is not the MLE.

Value

the log-likelihood of the linear model represented by object evaluated at the estimated
coefficients.

See Also

glm, logLik.lm



logLik.lm 385

logLik.lm Extract Log-Likelihood from an lm Object

Description

If REML = FALSE, returns the log-likelihood value of the linear model represented by object
evaluated at the estimated coefficients; else, the restricted log-likelihood evaluated at the
estimated coefficients is returned.

Usage

## S3 method for class 'lm':
logLik(object, REML = FALSE, ...)

Arguments

object an object inheriting from class "lm".
REML an optional logical value. If TRUE the restricted log-likelihood is returned,

else, if FALSE, the log-likelihood is returned. Defaults to FALSE.
... further arguments to be passed to or from methods.

Value

an object of class logLik, the (restricted) log-likelihood of the linear model represented by
object evaluated at the estimated coefficients. Note that error variance σ2 is estimated in
lm() and hence counted as well.

Author(s)

Jose Pinheiro and Douglas Bates

References

Harville, D.A. (1974). Bayesian inference for variance components using only error con-
trasts. Biometrika, 61, 383–385.

See Also

lm

Examples

data(attitude)

(fm1 <- lm(rating ~ ., data = attitude))

logLik(fm1)

logLik(fm1, REML = TRUE)

res <- try(data(Orthodont, package="nlme"))

if(!inherits(res, "try-error")) {

fm1 <- lm(distance ~ Sex * age, Orthodont)

print(logLik(fm1))

print(logLik(fm1, REML = TRUE))

}



386 loglin

loglin Fitting Log-Linear Models

Description

loglin is used to fit log-linear models to multidimensional contingency tables by Iterative
Proportional Fitting.

Usage

loglin(table, margin, start = rep(1, length(table)), fit = FALSE,
eps = 0.1, iter = 20, param = FALSE, print = TRUE)

Arguments

table a contingency table to be fit, typically the output from table.

margin a list of vectors with the marginal totals to be fit.
(Hierarchical) log-linear models can be specified in term of these marginal
totals which give the “maximal” factor subsets contained in the model.
For example, in a three-factor model, list(c(1, 2), c(1, 3)) specifies
a model which contains parameters for the grand mean, each factor, and
the 1-2 and 1-3 interactions, respectively (but no 2-3 or 1-2-3 interaction),
i.e., a model where factors 2 and 3 are independent conditional on factor
1 (sometimes represented as ‘[12][13]’).
The names of factors (i.e., names(dimnames(table))) may be used rather
than numeric indices.

start a starting estimate for the fitted table. This optional argument is impor-
tant for incomplete tables with structural zeros in table which should
be preserved in the fit. In this case, the corresponding entries in start
should be zero and the others can be taken as one.

fit a logical indicating whether the fitted values should be returned.

eps maximum deviation allowed between observed and fitted margins.

iter maximum number of iterations.

param a logical indicating whether the parameter values should be returned.

print a logical. If TRUE, the number of iterations and the final deviation are
printed.

Details

The Iterative Proportional Fitting algorithm as presented in Haberman (1972) is used for
fitting the model. At most iter iterations are performed, convergence is taken to occur
when the maximum deviation between observed and fitted margins is less than eps. All
internal computations are done in double precision; there is no limit on the number of
factors (the dimension of the table) in the model.

Assuming that there are no structural zeros, both the Likelihood Ratio Test and Pearson
test statistics have an asymptotic chi-squared distribution with df degrees of freedom.

Package MASS contains loglm, a front-end to loglin which allows the log-linear model to
be specified and fitted in a formula-based manner similar to that of other fitting functions
such as lm or glm.



Lognormal 387

Value

A list with the following components.

lrt the Likelihood Ratio Test statistic.

pearson the Pearson test statistic (X-squared).

df the degrees of freedom for the fitted model. There is no adjustment for
structural zeros.

margin list of the margins that were fit. Basically the same as the input margin,
but with numbers replaced by names where possible.

fit An array like table containing the fitted values. Only returned if fit is
TRUE.

param A list containing the estimated parameters of the model. The “standard”
constraints of zero marginal sums (e.g., zero row and column sums for a
two factor parameter) are employed. Only returned if param is TRUE.

Author(s)

Kurt Hornik

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Haberman, S. J. (1972) Log-linear fit for contingency tables—Algorithm AS51. Applied
Statistics, 21, 218–225.

Agresti, A. (1990) Categorical data analysis. New York: Wiley.

See Also

table

Examples

data(HairEyeColor)

## Model of joint independence of sex from hair and eye color.

fm <- loglin(HairEyeColor, list(c(1, 2), c(1, 3), c(2, 3)))

fm

1 - pchisq(fm$lrt, fm$df)

## Model with no three-factor interactions fits well.

Lognormal The Log Normal Distribution

Description

Density, distribution function, quantile function and random generation for the log normal
distribution whose logarithm has mean equal to meanlog and standard deviation equal to
sdlog.



388 Lognormal

Usage

dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE)
plnorm(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
qlnorm(p, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
rlnorm(n, meanlog = 0, sdlog = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

meanlog, sdlog

mean and standard deviation of the distribution on the log scale with
default values of 0 and 1 respectively.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The log normal distribution has density

f(x) =
1√

2πσx
e−(log(x)−µ)2/2σ2

where µ and σ are the mean and standard deviation of the logarithm. The mean is E(X) =
exp(µ + 1/2σ2), and the variance V ar(X) = exp(2µ + σ2)(exp(σ2) − 1) and hence the
coefficient of variation is

√
exp(σ2)− 1 which is approximately σ when that is small (e.g.,

σ < 1/2).

Value

dlnorm gives the density, plnorm gives the distribution function, qlnorm gives the quantile
function, and rlnorm generates random deviates.

Note

The cumulative hazard H(t) = − log(1− F (t)) is -plnorm(t, r, lower = FALSE, log =
TRUE).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

dnorm for the normal distribution.

Examples

dlnorm(1) == dnorm(0)



longley 389

longley Longley’s Economic Regression Data

Description

A macroeconomic data set which provides a well-known example for a highly collinear
regression.

Usage

data(longley)

Format

A data frame with 7 economical variables, observed yearly from 1947 to 1962 (n = 16).

GNP.deflator: GNP implicit price deflator (1954 = 100)

GNP: Gross National Product.

Unemployed: number of unemployed.

Armed.Forces: number of people in the armed forces.

Population: ‘noninstitutionalized’ population ≥ 14 years of age.

Year: the year (time).

Employed: number of people employed.

The regression lm(Employed ~ .) is known to be highly collinear.

Source

J. W. Longley (1967) An appraisal of least-squares programs from the point of view of the
user. Journal of the American Statistical Association, 62, 819–841.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

## give the data set in the form it is used in S-PLUS:

data(longley)

longley.x <- data.matrix(longley[, 1:6])

longley.y <- longley[, "Employed"]

pairs(longley, main = "longley data")

summary(fm1 <- lm(Employed ~ ., data = longley))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))

plot(fm1)

par(opar)



390 lowess

lower.tri Lower and Upper Triangular Part of a Matrix

Description

Returns a matrix of logicals the same size of a given matrix with entries TRUE in the lower
or upper triangle.

Usage

lower.tri(x, diag = FALSE)
upper.tri(x, diag = FALSE)

Arguments

x a matrix.

diag logical. Should the diagonal be included?

See Also

diag, matrix.

Examples

(m2 <- matrix(1:20, 4, 5))

lower.tri(m2)

m2[lower.tri(m2)] <- NA

m2

lowess Scatter Plot Smoothing

Description

This function performs the computations for the LOWESS smoother (see the reference
below). lowess returns a list containing components x and y which give the coordinates of
the smooth. The smooth should be added to a plot of the original points with the function
lines.

Usage

lowess(x, y = NULL, f = 2/3, iter=3, delta = 0.01 * diff(range(xy$x[o])))



ls 391

Arguments

x, y vectors giving the coordinates of the points in the scatter plot. Alterna-
tively a single plotting structure can be specified.

f the smoother span. This gives the proportion of points in the plot which
influence the smooth at each value. Larger values give more smoothness.

iter the number of robustifying iterations which should be performed. Using
smaller values of iter will make lowess run faster.

delta values of x which lie within delta of each other are replaced by a single
value in the output from lowess. Defaults to 1/100th of the range of x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Cleveland, W. S. (1979) Robust locally weighted regression and smoothing scatterplots. J.
Amer. Statist. Assoc. 74, 829–836.

Cleveland, W. S. (1981) LOWESS: A program for smoothing scatterplots by robust locally
weighted regression. The American Statistician, 35, 54.

See Also

loess (in package modreg), a newer formula based version of lowess (with different de-
faults!).

Examples

data(cars)

plot(cars, main = "lowess(cars)")

lines(lowess(cars), col = 2)

lines(lowess(cars, f=.2), col = 3)

legend(5, 120, c(paste("f = ", c("2/3", ".2"))), lty = 1, col = 2:3)

ls List Objects

Description

ls and objects return a vector of character strings giving the names of the objects in the
specified environment. When invoked with no argument at the top level prompt, ls shows
what data sets and functions a user has defined. When invoked with no argument inside a
function, ls returns the names of the functions local variables. This is useful in conjunction
with browser.

Usage

ls(name, pos = -1, envir = as.environment(pos),
all.names = FALSE, pattern)

objects(name, pos= -1, envir = as.environment(pos),
all.names = FALSE, pattern)



392 ls

Arguments

name which environment to use in listing the available objects. Defaults to the
current environment. Although called name for back compatibility, in fact
this argument can specify the environment in any form; see the details
section.

pos An alternative argument to name for specifying the environment as a po-
sition in the search list. Mostly there for back compatibility.

envir an alternative argument to name for specifying the environment evaluation
environment. Mostly there for back compatibility.

all.names a logical value. If TRUE, all object names are returned. If FALSE, names
which begin with a ‘.’ are omitted.

pattern an optional regular expression. Only names matching pattern are re-
turned.

Details

The name argument can specify the environment from which object names are taken in one
of several forms: as an integer (the position in the search list); as the character string name
of an element in the search list; or as an explicit environment (including using sys.frame
to access the currently active function calls). By default, the environment of the call to ls
or objects is used. The pos and envir arguments are an alternative way to specify an
environment, but are primarily there for back compatibility.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

apropos (or find) for finding objects in the whole search path; grep for more details on
“regular expressions”; class, methods, etc., for object-oriented programming.

Examples

.Ob <- 1

ls(pat="O")

ls(pat="O", all = TRUE) # also shows ".[foo]"

# shows an empty list because inside myfunc no variables are defined

myfunc <- function() {ls()}

myfunc()

# define a local variable inside myfunc

myfunc <- function() {y <- 1; ls()}

myfunc() # shows "y"



ls.diag 393

ls.diag Compute Diagnostics for ‘lsfit’ Regression Results

Description

Computes basic statistics, including standard errors, t- and p-values for the regression
coefficients.

Usage

ls.diag(ls.out)

Arguments

ls.out Typically the result of lsfit()

Value

A list with the following numeric components.

std.dev The standard deviation of the errors, an estimate of σ.

hat diagonal entries hii of the hat matrix H

std.res standardized residuals

stud.res studentized residuals

cooks Cook’s distances

dfits DFITS statistics

correlation correlation matrix

std.err standard errors of the regression coefficients

cov.scaled Scaled covariance matrix of the coefficients

cov.unscaled Unscaled covariance matrix of the coefficients

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

See Also

hat for the hat matrix diagonals, ls.print, lm.influence, summary.lm, anova.

Examples

##-- Using the same data as the lm(.) example:

lsD9 <- lsfit(x = as.numeric(gl(2, 10, 20)), y = weight)

dlsD9 <- ls.diag(lsD9)

str(dlsD9, give.attr=FALSE)

abs(1 - sum(dlsD9$hat) / 2) < 10*.Machine$double.eps # sum(h.ii) = p

plot(dlsD9$hat, dlsD9$stud.res, xlim=c(0,0.11))

abline(h = 0, lty = 2, col = "lightgray")



394 lsfit

ls.print Print ‘lsfit’ Regression Results

Description

Computes basic statistics, including standard errors, t- and p-values for the regression
coefficients and prints them if print.it is TRUE.

Usage

ls.print(ls.out, digits = 4, print.it = TRUE)

Arguments

ls.out Typically the result of lsfit()

digits The number of significant digits used for printing

print.it a logical indicating whether the result should also be printed

Value

A list with the components

summary The ANOVA table of the regression

coef.table matrix with regression coefficients, standard errors, t- and p-values

Note

Usually, you’d rather use summary(lm(...)) and anova(lm(...)) for obtaining similar
output.

See Also

ls.diag, lsfit, also for examples; lm, lm.influence which usually are preferable.

lsfit Find the Least Squares Fit

Description

The least squares estimate of β in the model

Y = Xβ + ε

is found.

Usage

lsfit(x, y, wt=NULL, intercept=TRUE, tolerance=1e-07, yname=NULL)



lsfit 395

Arguments

x a matrix whose rows correspond to cases and whose columns correspond
to variables.

y the responses, possibly a matrix if you want to fit multiple left hand sides.

wt an optional vector of weights for performing weighted least squares.

intercept whether or not an intercept term should be used.

tolerance the tolerance to be used in the matrix decomposition.

yname names to be used for the response variables.

Details

If weights are specified then a weighted least squares is performed with the weight given to
the j th case specified by the j th entry in wt.

If any observation has a missing value in any field, that observation is removed before the
analysis is carried out. This can be quite inefficient if there is a lot of missing data.

The implementation is via a modification of the LINPACK subroutines which allow for
multiple left-hand sides.

Value

A list with the following named components:

coef the least squares estimates of the coefficients in the model (β as stated
above).

residuals residuals from the fit.

intercept indicates whether an intercept was fitted.

qr the QR decomposition of the design matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

lm which usually is preferable; ls.print, ls.diag.

Examples

##-- Using the same data as the lm(.) example:

lsD9 <- lsfit(x = unclass(gl(2,10)), y = weight)

ls.print(lsD9)



396 mad

mad Median Absolute Deviation

Description

Compute the median absolute deviation, i.e., the (lo-/hi-) median of the absolute deviations
from the median, and (by default) adjust by a factor for asymptotically normal consistency.

Usage

mad(x, center = median(x), constant = 1.4826, na.rm = FALSE,
low = FALSE, high = FALSE)

Arguments

x a numeric vector.

center Optionally, the centre: defauls to the median.

constant scale factor.

na.rm if TRUE then NA values are stripped from x before computation takes place.

low if TRUE, compute the“lo-median”, i.e., for even sample size, do not average
the two middle values, but take the smaller one.

high if TRUE, compute the “hi-median”, i.e., take the larger of the two middle
values for even sample size.

Details

The actual value calculated is constant * cMedian(abs(x - center)) with the default
value of center being median(x), and cMedian being the usual, the“low”or“high”median,
see the arguments description for low and high above.

The default constant = 1.4826 (approximately 1/Φ−1( 3
4 ) = 1/qnorm(3/4)) ensures con-

sistency, i.e.,
E[mad(X1, . . . , Xn)] = σ

for Xi distributed as N(µ, σ2) and large n.

If na.rm is TRUE then NA values are stripped from x before computation takes place. If this
is not done then an NA value in x will cause mad to return NA.

See Also

IQR which is simpler but less robust, median, var.

Examples

mad(c(1:9))

print(mad(c(1:9), constant=1)) ==

mad(c(1:8,100), constant=1) # = 2 ; TRUE

x <- c(1,2,3, 5,7,8)

sort(abs(x - median(x)))

c(mad(x, co=1), mad(x, co=1, lo = TRUE), mad(x, co=1, hi = TRUE))



mahalanobis 397

mahalanobis Mahalanobis Distance

Description

Returns the Mahalanobis distance of all rows in x and the vector µ =center with respect
to Σ =cov. This is (for vector x) defined as

D2 = (x− µ)′Σ−1(x− µ)

Usage

mahalanobis(x, center, cov, inverted=FALSE, tol.inv = 1e-7)

Arguments

x vector or matrix of data with, say, p columns.

center mean vector of the distribution or second data vector of length p.

cov covariance matrix (p× p) of the distribution.

inverted logical. If TRUE, cov is supposed to contain the inverse of the covariance
matrix.

tol.inv tolerance to be used for computing the inverse (if inverted is false), see
solve.

Author(s)

Friedrich Leisch

See Also

cov, var

Examples

ma <- cbind(1:6, 1:3)

(S <- var(ma))

mahalanobis(c(0,0), 1:2, S)

x <- matrix(rnorm(100*3), ncol = 3)

stopifnot(mahalanobis(x, 0, diag(ncol(x))) == rowSums(x*x))

##- Here, D^2 = usual Euclidean distances

Sx <- cov(x)

D2 <- mahalanobis(x, rowMeans(x), Sx)

plot(density(D2, bw=.5), main="Mahalanobis distances, n=100, p=3"); rug(D2)

qqplot(qchisq(ppoints(100), df=3), D2,

main = expression("Q-Q plot of Mahalanobis" * ~D^2 *

" vs. quantiles of" * ~ chi[3]^2))

abline(0, 1, col = 'gray')



398 make.names

make.link Create a Link for GLM families

Description

This function is used with the family functions in glm(). Given a link, it returns a link
function, an inverse link function, the derivative dµ/dη and a function for domain checking.

Usage

make.link(link)

Arguments

link character or numeric; one of "logit", "probit", "cloglog",
"identity", "log", "sqrt", "1/mu^2", "inverse", or number, say λ
resulting in power link = µλ.

Value

A list with components

linkfun Link function function(mu)

linkinv Inverse link function function(eta)

mu.eta Derivative function(eta) dµ/dη

valideta function(eta){ TRUE if all of eta is in the domain of linkinv }.

See Also

glm, family.

Examples

str(make.link("logit"))

l2 <- make.link(2)

l2$linkfun(0:3)# 0 1 4 9

l2$mu.eta(eta= 1:2)#= 1/(2*sqrt(eta))

make.names Make Syntactically Valid Names

Description

Make syntactically valid names out of character vectors.

Usage

make.names(names, unique = FALSE)



make.packages.html 399

Arguments

names character vector to be coerced to syntactically valid names. This is co-
erced to character if necessary.

unique logical; if TRUE, the resulting elements are unique. This may be desired
for, e.g., column names.

Details

A syntactically valid name consists of letters, numbers, and the dot character and starts
with a letter or the dot. Names such as ".2" are not valid, and neither are the reserved
words.

The character "X" is prepended if necessary. All invalid characters are translated to ".". A
missing value is translated to "NA". Names which match R keywords have a dot appended
to them. Duplicated values are altered by make.unique.

Value

A character vector of same length as names with each changed to a syntactically valid name.

See Also

make.unique, names, character, data.frame.

Examples

make.names(c("a and b", "a_and_b"), unique=TRUE)

# "a.and.b" "a.and.b.1"

data(state)

state.name[make.names(state.name) != state.name] # those 10 with a space

make.packages.html Update HTML documentation files

Description

Functions to re-create the HTML documentation files to reflect all installed packages.

Usage

make.packages.html(lib.loc = .libPaths())

Arguments

lib.loc character vector. List of libraries to be included.

Details

This sets up the links from packages in libraries to the ‘.R’ subdirectory of the per-sesson
directory (see tempdir) and then creates the ‘packages.html’ and ‘index.txt’ files to point to
those links.

If a package is available in more than one library tree, all the copies are linked, after the
first with suffix .1 etc.



400 make.socket

Value

Logical, whether the function succeeded in recreating the files.

See Also

help.start

make.socket Create a Socket Connection

Description

With server = FALSE attempts to open a client socket to the specified port and host.
With server = TRUE listens on the specified port for a connection and then returns a
server socket. It is a good idea to use on.exit to ensure that a socket is closed, as you only
get 64 of them.

Usage

make.socket(host = "localhost", port, fail = TRUE, server = FALSE)

Arguments

host name of remote host

port port to connect to/listen on

fail failure to connect is an error?

server a server socket?

Value

An object of class "socket".

socket socket number. This is for internal use

port port number of the connection

host name of remote computer

Warning

I don’t know if the connecting host name returned when server = TRUE can be trusted. I
suspect not.

Author(s)

Thomas Lumley

References

Adapted from Luke Tierney’s code for XLISP-Stat, in turn based on code from Robbins
and Robbins ”Practical UNIX Programming”



make.tables 401

See Also

close.socket, read.socket

Examples

daytime <- function(host = "localhost"){

a <- make.socket(host, 13)

on.exit(close.socket(a))

read.socket(a)

}

## Offical time (UTC) from US Naval Observatory

## Not run: daytime("tick.usno.navy.mil")

make.tables Create model.tables

Description

These are support functions for (the methods of) model.tables and probably not much of
use otherwise.

Usage

make.tables.aovproj (proj.cols, mf.cols, prjs, mf,
fun = "mean", prt = FALSE, ...)

make.tables.aovprojlist(proj.cols, strata.cols, model.cols, projections,
model, eff, fun = "mean", prt = FALSE, ...)

See Also

model.tables

make.unique Make Character Strings Unique

Description

Makes the elements of a character vector unique by appending sequence numbers to dupli-
cates.

Usage

make.unique(names, sep = ".")

Arguments

names a character vector

sep a character string used to separate a duplicate name from its sequence
number.



402 makepredictcall

Details

The algorithm used by make.unique has the property that make.unique(c(A, B)) ==
make.unique(c(make.unique(A), B)).

In other words, you can append one string at a time to a vector, making it unique each
time, and get the same result as applying make.unique to all of the strings at once.

If character vector A is already unique, then make.unique(c(A, B)) preserves A.

Value

A character vector of same length as names with duplicates changed.

Author(s)

Thomas P Minka

See Also

make.names

Examples

make.unique(c("a", "a", "a"))

make.unique(c(make.unique(c("a", "a")), "a"))

make.unique(c("a", "a", "a.2", "a"))

make.unique(c(make.unique(c("a", "a")), "a.2", "a"))

rbind(data.frame(x=1), data.frame(x=2), data.frame(x=3))

rbind(rbind(data.frame(x=1), data.frame(x=2)), data.frame(x=3))

makepredictcall Utility Function for Safe Prediction

Description

A utility to help model.frame.default create the right matrices when predicting from
models with terms like poly or ns.

Usage

makepredictcall(var, call)

Arguments

var A variable.

call The term in the formula, as a call.



manglePackageName 403

Details

This is a generic function with methods for poly, bs and ns: the default method handles
scale. If model.frame.default encounters such a term when creating a model frame, it
modifies the predvars attribute of the terms supplied to replace the term with one that
will work for predicting new data. For example makepredictcall.ns adds arguments for
the knots and intercept.

To make use of this, have your model-fitting function return the terms attribute of the
model frame, or copy the predvars attribute of the terms attribute of the model frame to
your terms object.

To extend this, make sure the term creates variables with a class, and write a suitable
method for that class.

Value

A replacement for call for the predvars attribute of the terms.

See Also

model.frame, poly, scale, bs, ns, cars

Examples

## using poly: this did not work in R < 1.5.0

data(women)

fm <- lm(weight ~ poly(height, 2), data = women)

plot(women, xlab = "Height (in)", ylab = "Weight (lb)")

ht <- seq(57, 73, len = 200)

lines(ht, predict(fm, data.frame(height=ht)))

## see also example(cars)

## see bs and ns for spline examples.

manglePackageName Mangle the Package Name

Description

This function takes the package name and the package version number and pastes them
together with a separating underscore.

Usage

manglePackageName(pkgName, pkgVersion)

Arguments

pkgName The package name, as a character string.

pkgVersion The package version, as a character string.



404 manova

Value

A character string with the two inputs pasted together.

Examples

manglePackageName("foo", "1.2.3")

manova Multivariate Analysis of Variance

Description

A class for the multivariate analysis of variance.

Usage

manova(...)

Arguments

... Arguments to be passed to aov.

Details

Class "manova" differs from class "aov" in selecting a different summary method. Function
manova calls aov and then add class "manova" to the result object for each stratum.

Value

See aov and the comments in Details here.

Note

manova does not support multistratum analysis of variance, so the formula should not
include an Error term.

References

Krzanowski, W. J. (1988) Principles of Multivariate Analysis. A User’s Perspective. Ox-
ford.

Hand, D. J. and Taylor, C. C. (1987) Multivariate Analysis of Variance and Repeated
Measures. Chapman and Hall.

See Also

aov, summary.manova, the latter containing examples.



mapply 405

mapply Apply a function to multiple list or vector arguments

Description

A multivariate version of sapply. mapply applies FUN to the first elements of each
. . . argument, the second elements, the third elements, and so on. Arguments are recy-
cled if necessary.

Usage

mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)

Arguments

FUN Function to apply

... Arguments to vectorise over (list or vector)

MoreArgs A list of other arguments to FUN

SIMPLIFY Attempt to reduce the result to a vector or matrix?

USE.NAMES If the first . . . argument is character and the result doesn’t already have
names, use it as the names

Value

A list, vector, or matrix.

See Also

sapply

Examples

mapply(rep, 1:4, 4:1)

mapply(rep, times=1:4, x=4:1)

mapply(rep, times=1:4, MoreArgs=list(x=42))

margin.table Compute table margin

Description

For a contingency table in array form, compute the sum of table entries for a given index.

Usage

margin.table(x, margin=NULL)



406 mat.or.vec

Arguments

x an array

margin index number (1 for rows, etc.)

Details

This is really just apply(x, margin, sum) packaged up for newbies, except that if margin
has length zero you get sum(x).

Value

The relevant marginal table. The class of x is copied to the output table, except in the
summation case.

Author(s)

Peter Dalgaard

Examples

m<-matrix(1:4,2)

margin.table(m,1)

margin.table(m,2)

mat.or.vec Create a Matrix or a Vector

Description

mat.or.vec creates an nr by nc zero matrix if nc is greater than 1, and a zero vector of
length nr if nc equals 1.

Usage

mat.or.vec(nr, nc)

Arguments

nr, nc numbers of rows and columns.

Examples

mat.or.vec(3, 1)

mat.or.vec(3, 2)



match 407

match Value Matching

Description

match returns a vector of the positions of (first) matches of its first argument in its second.

%in% is a more intuitive interface as a binary operator, which returns a logical vector
indicating if there is a match or not for its left operand.

Usage

match(x, table, nomatch = NA, incomparables = FALSE)

x %in% table

Arguments

x the values to be matched.

table the values to be matched against.

nomatch the value to be returned in the case when no match is found. Note that
it is coerced to integer.

incomparables a vector of values that cannot be matched. Any value in x matching a
value in this vector is assigned the nomatch value. Currently, FALSE is
the only possible value, meaning that all values can be matched.

Details

%in% is currently defined as
"%in%" <- function(x, table) match(x, table, nomatch = 0) > 0

Factors are converted to character vectors, and then x and table are coerced to a common
type (the later of the two types in R’s ordering, logical < integer < numeric < complex <
character) before matching.

Value

In both cases, a vector of the same length as x.

match: An integer vector giving the position in table of the first match if there is a match,
otherwise nomatch.

If x[i] is found to equal table[j] then the value returned in the i-th position of the return
value is j, for the smallest possible j. If no match is found, the value is nomatch.

%in%: A logical vector, indicating if a match was located for each element of x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.



408 match.arg

See Also

pmatch and charmatch for (partial) string matching, match.arg, etc for function argument
matching.

is.element for an S-compatible equivalent of %in%.

Examples

## The intersection of two sets :

intersect <- function(x, y) y[match(x, y, nomatch = 0)]

intersect(1:10,7:20)

1:10 %in% c(1,3,5,9)

sstr <- c("c","ab","B","bba","c","@","bla","a","Ba","%")

sstr[sstr %in% c(letters,LETTERS)]

"%w/o%" <- function(x,y) x[!x %in% y] #-- x without y

(1:10) %w/o% c(3,7,12)

match.arg Argument Verification Using Partial Matching

Description

match.arg matches arg against a table of candidate values as specified by choices.

Usage

match.arg(arg, choices)

Arguments

arg a character string

choices a character vector of candidate values

Details

In the one-argument form match.arg(arg), the choices are obtained from a default setting
for the formal argument arg of the function from which match.arg was called.

Matching is done using pmatch, so arg may be abbreviated.

Value

The unabbreviated version of the unique partial match if there is one; otherwise, an error
is signalled.

See Also

pmatch, match.fun, match.call.



match.call 409

Examples

## Extends the example for 'switch'

center <- function(x, type = c("mean", "median", "trimmed")) {

type <- match.arg(type)

switch(type,

mean = mean(x),

median = median(x),

trimmed = mean(x, trim = .1))

}

x <- rcauchy(10)

center(x, "t") # Works

center(x, "med") # Works

## Not run:

center(x, "m") # Error

## End(Not run)

match.call Argument Matching

Description

match.call returns a call in which all of the arguments are specified by their names. The
most common use is to get the call of the current function, with all arguments named.

Usage

match.call(definition = NULL, call = sys.call(sys.parent()),
expand.dots = TRUE)

Arguments

definition a function, by default the function from which match.call is called.

call an unevaluated call to the function specified by definition, as generated
by call.

expand.dots logical. Should arguments matching ... in the call be included or left as
a ... argument?

Value

An object of class call.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

call, pmatch, match.arg, match.fun.



410 match.fun

Examples

match.call(get, call("get", "abc", i = FALSE, p = 3))

## -> get(x = "abc", pos = 3, inherits = FALSE)

fun <- function(x, lower = 0, upper = 1) {

structure((x - lower) / (upper - lower), CALL = match.call())

}

fun(4 * atan(1), u = pi)

match.fun Function Verification for “Function Variables”

Description

When called inside functions that take a function as argument, extract the desired function
object while avoiding undesired matching to objects of other types.

Usage

match.fun(FUN, descend = TRUE)

Arguments

FUN item to match as function.

descend logical; control whether to search past non-function objects.

Details

match.fun is not intended to be used at the top level since it will perform matching in the
parent of the caller.

If FUN is a function, it is returned. If it is a symbol or a character vector of length one,
it will be looked up using get in the environment of the parent of the caller. If it is of
any other mode, it is attempted first to get the argument to the caller as a symbol (using
substitute twice), and if that fails, an error is declared.

If descend = TRUE, match.fun will look past non-function objects with the given name;
otherwise if FUN points to a non-function object then an error is generated.

This is now used in base functions such as apply, lapply, outer, and sweep.

Value

A function matching FUN or an error is generated.

Bugs

The descend argument is a bit of misnomer and probably not actually needed by anything.
It may go away in the future.

It is impossible to fully foolproof this. If one attaches a list or data frame containing a
character object with the same name of a system function, it will be used.

Author(s)

Peter Dalgaard and Robert Gentleman, based on an earlier version by Jonathan Rougier.



matmult 411

See Also

match.arg, get

Examples

# Same as get("*"):

match.fun("*")

# Overwrite outer with a vector

outer <- 1:5

## Not run:

match.fun(outer, descend = FALSE) #-> Error: not a function

## End(Not run)

match.fun(outer) # finds it anyway

is.function(match.fun("outer")) # as well

matmult Matrix Multiplication

Description

Multiplies two matrices, if they are conformable. If one argument is a vector, it will be
coerced to a either a row or column matrix to make the two arguments conformable. If
both are vectors it will return the inner product.

Usage

a %*% b

Arguments

a, b numeric or complex matrices or vectors.

Value

The matrix product. Use drop to get rid of dimensions which have only one level.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

matrix, Arithmetic, diag.

Examples

x <- 1:4

(z <- x %*% x) # scalar ("inner") product (1 x 1 matrix)

drop(z) # as scalar

y <- diag(x)

z <- matrix(1:12, ncol = 3, nrow = 4)

y %*% z



412 matplot

y %*% x

x %*% z

matplot Plot Columns of Matrices

Description

Plot the columns of one matrix against the columns of another.

Usage

matplot(x, y, type = "p", lty = 1:5, lwd = 1, pch = NULL, col = 1:6,
cex = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
..., add = FALSE, verbose = getOption("verbose"))

matpoints(x, y, type = "p", lty = 1:5, lwd = 1, pch = NULL, col = 1:6, ...)
matlines (x, y, type = "l", lty = 1:5, lwd = 1, pch = NULL, col = 1:6, ...)

Arguments

x,y vectors or matrices of data for plotting. The number of rows should match.
If one of them are missing, the other is taken as y and an x vector of 1:n
is used. Missing values (NAs) are allowed.

type character string (length 1 vector) or vector of 1-character strings indicat-
ing the type of plot for each column of y, see plot for all possible types.
The first character of type defines the first plot, the second character the
second, etc. Characters in type are cycled through; e.g., "pl" alternately
plots points and lines.

lty,lwd vector of line types and widths. The first element is for the first column,
the second element for the second column, etc., even if lines are not plotted
for all columns. Line types will be used cyclically until all plots are drawn.

pch character string or vector of 1-characters or integers for plotting charac-
ters, see points. The first character is the plotting-character for the first
plot, the second for the second, etc. The default is the digits (1 through
9, 0) then the letters.

col vector of colors. Colors are used cyclically.

cex vector of character expansion sizes, used cyclically.

xlab, ylab titles for x and y axes, as in plot.

xlim, ylim ranges of x and y axes, as in plot.

... Graphical parameters (see par) and any further arguments of plot, typi-
cally plot.default, may also be supplied as arguments to this function.
Hence, the high-level graphics control arguments described under par and
the arguments to title may be supplied to this function.

add logical. If TRUE, plots are added to current one, using points and lines.

verbose logical. If TRUE, write one line of what is done.



matplot 413

Details

Points involving missing values are not plotted.

The first column of x is plotted against the first column of y, the second column of x
against the second column of y, etc. If one matrix has fewer columns, plotting will cycle
back through the columns again. (In particular, either x or y may be a vector, against
which all columns of the other argument will be plotted.)

The first element of col, cex, lty, lwd is used to plot the axes as well as the first line.

Because plotting symbols are drawn with lines and because these functions may be changing
the line style, you should probably specify lty=1 when using plotting symbols.

Side Effects

Function matplot generates a new plot; matpoints and matlines add to the current one.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

plot, points, lines, matrix, par.

Examples

matplot((-4:5)^2, main = "Quadratic") # almost identical to plot(*)

sines <- outer(1:20, 1:4, function(x, y) sin(x / 20 * pi * y))

matplot(sines, pch = 1:4, type = "o", col = rainbow(ncol(sines)))

x <- 0:50/50

matplot(x, outer(x, 1:8, function(x, k) sin(k*pi * x)),

ylim = c(-2,2), type = "plobcsSh",

main= "matplot(,type = \"plobcsSh\" )")

## pch & type = vector of 1-chars :

matplot(x, outer(x, 1:4, function(x, k) sin(k*pi * x)),

pch = letters[1:4], type = c("b","p","o"))

data(iris) # is data.frame with 'Species' factor

table(iris$Species)

iS <- iris$Species == "setosa"

iV <- iris$Species == "versicolor"

op <- par(bg = "bisque")

matplot(c(1, 8), c(0, 4.5), type= "n", xlab = "Length", ylab = "Width",

main = "Petal and Sepal Dimensions in Iris Blossoms")

matpoints(iris[iS,c(1,3)], iris[iS,c(2,4)], pch = "sS", col = c(2,4))

matpoints(iris[iV,c(1,3)], iris[iV,c(2,4)], pch = "vV", col = c(2,4))

legend(1, 4, c(" Setosa Petals", " Setosa Sepals",

"Versicolor Petals", "Versicolor Sepals"),

pch = "sSvV", col = rep(c(2,4), 2))

nam.var <- colnames(iris)[-5]

nam.spec <- as.character(iris[1+50*0:2, "Species"])

iris.S <- array(NA, dim = c(50,4,3), dimnames = list(NULL, nam.var, nam.spec))

for(i in 1:3) iris.S[,,i] <- data.matrix(iris[1:50+50*(i-1), -5])



414 matrix

matplot(iris.S[,"Petal.Length",], iris.S[,"Petal.Width",], pch="SCV",

col = rainbow(3, start = .8, end = .1),

sub = paste(c("S", "C", "V"), dimnames(iris.S)[[3]],

sep = "=", collapse= ", "),

main = "Fisher's Iris Data")

matrix Matrices

Description

matrix creates a matrix from the given set of values.

as.matrix attempts to turn its argument into a matrix.

is.matrix tests if its argument is a (strict) matrix. It is generic: you can write methods
to handle of specific classes of objects, see InternalMethods.

Usage

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
as.matrix(x)
is.matrix(x)

Arguments

data an optional data vector.

nrow the desired number of rows

ncol the desired number of columns

byrow logical. If FALSE (the default) the matrix is filled by columns, otherwise
the matrix is filled by rows.

dimnames A dimnames attribute for the matrix: a list of length 2.

x an R object.

Details

If either of nrow or ncol is not given, an attempt is made to infer it from the length of
data and the other parameter.

is.matrix returns TRUE if x is a matrix (i.e., it is not a data.frame and has a dim attribute
of length 2) and FALSE otherwise.

as.matrix is a generic function. The method for data frames will convert any non-numeric
column into a character vector using format and so return a character matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

data.matrix, which attempts to convert to a numeric matrix.



maxCol 415

Examples

is.matrix(as.matrix(1:10))

data(warpbreaks)

!is.matrix(warpbreaks)# data.frame, NOT matrix!

str(warpbreaks)

str(as.matrix(warpbreaks))#using as.matrix.data.frame(.) method

maxCol Find Maximum Position in Matrix

Description

Find the maximum position for each row of a matrix, breaking ties at random.

Usage

max.col(m)

Arguments

m numerical matrix

Details

Ties are broken at random. The determination of “tie” assumes that the entries are proba-
bilities: there is a relative tolerance of 10−5, relative to the largest entry in the row.

Value

index of a maximal value for each row, an integer vector of length nrow(m).

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York:
Springer (4th ed).

See Also

which.max for vectors.

Examples

data(swiss)

table(mc <- max.col(swiss))# mostly "1" and "5", 5 x "2" and once "4"

swiss[unique(print(mr <- max.col(t(swiss)))) , ] # 3 33 45 45 33 6



416 mean

mean Arithmetic Mean

Description

Generic function for the (trimmed) arithmetic mean.

Usage

mean(x, ...)

## Default S3 method:
mean(x, trim = 0, na.rm = FALSE, ...)

Arguments

x An R object. Currently there are methods for numeric data frames, nu-
meric vectors and dates. A complex vector is allowed for trim = 0, only.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of x
before the mean is computed.

na.rm a logical value indicating whether NA values should be stripped before the
computation proceeds.

... further arguments passed to or from other methods.

Value

For a data frame, a named vector with the appropriate method being applied column by
column.

If trim is zero (the default), the arithmetic mean of the values in x is computed.

If trim is non-zero, a symmetrically trimmed mean is computed with a fraction of trim
observations deleted from each end before the mean is computed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

weighted.mean, mean.POSIXct

Examples

x <- c(0:10, 50)

xm <- mean(x)

c(xm, mean(x, trim = 0.10))

data(USArrests)

mean(USArrests, trim = 0.2)



median 417

median Median Value

Description

Compute the sample median of the vector of values given as its argument.

Usage

median(x, na.rm=FALSE)

Arguments

x a numeric vector containing the values whose median is to be computed.

na.rm a logical value indicating whether NA values should be stripped before the
computation proceeds.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

quantile for general quantiles.

Examples

median(1:4)# = 2.5 [even number]

median(c(1:3,100,1000))# = 3 [odd, robust]

Memory Memory Available for Data Storage

Description

Use command line options to control the memory available for R.

Usage

R --min-vsize=vl --max-vsize=vu --min-nsize=nl --max-nsize=nu

mem.limits(nsize = NA, vsize = NA)

Arguments

vl, vu, vsize Heap memory in bytes.

nl, nu, nsize Number of cons cells.



418 Memory

Details

R has a variable-sized workspace (from version 1.2.0). There is now much less need to set
memory options than previously, and most users will never need to set these. They are
provided both as a way to control the overall memory usage (which can also be done by
operating-system facilities such as limit on Unix), and since setting larger values of the
minima will make R slightly more efficient on large tasks.

To understand the options, one needs to know that R maintains separate areas for fixed
and variable sized objects. The first of these is allocated as an array of “cons cells” (Lisp
programmers will know what they are, others may think of them as the building blocks of
the language itself, parse trees, etc.), and the second are thrown on a “heap” of “Vcells” of
8 bytes each. Effectively, the input v is rounded up to the nearest multiple of 8.

Each cons cell occupies 28 bytes on a 32-bit machine, (usually) 56 bytes on a 64-bit machine.

The ‘--*-nsize’ options can be used to specify the number of cons cells and the ‘--*-vsize’
options specify the size of the vector heap in bytes. Both options must be integers or
integers followed by G, M, K, or k meaning Giga (230 = 1073741824) Mega (220 = 1048576),
(computer) Kilo (210 = 1024), or regular kilo (1000).

The ‘--min-*’ options set the minimal sizes for the number of cons cells and for the vector
heap. These values are also the initial values, but thereafter R will grow or shrink the
areas depending on usage, but never exceeding the limits set by the ‘--max-*’ options nor
decreasing below the initial values.

The default values are currently minima of 350k cons cells, 6Mb of vector heap and no
maxima (other than machine resources). The maxima can be changed during an R session
by calling mem.limits. (If this is called with the default values, it reports the current
settings.)

You can find out the current memory consumption (the heap and cons cells used as numbers
and megabytes) by typing gc() at the R prompt. Note that following gcinfo(TRUE),
automatic garbage collection always prints memory use statistics. Maxima will never be
reduced below the current values for triggering garbage collection, and attempts to do so
will be silently ignored.

When using read.table, the memory requirements are in fact higher than anticipated,
because the file is first read in as one long string which is then split again. Use scan if
possible in case you run out of memory when reading in a large table.

Value

(mem.limits) an integer vector giving the current settings of the maxima, possibly NA.

Note

For backwards compatibility, options ‘--nsize’ and ‘--vsize’ are equivalent to
‘--min-nsize’ and ‘--min-vsize’.

See Also

gc for information on the garbage collector, memory.profile for profiling the usage of cons
cells.

Examples

# Start R with 10MB of heap memory and 500k cons cells, limit to

# 100Mb and 1M cells



memory.profile 419

## Not run:

## Unix

R --min-vsize=10M --max-vsize=100M --min-nsize=500k --max-nsize=1M

## End(Not run)

memory.profile Profile the Usage of Cons Cells

Description

Lists the usage of the cons cells by SEXPREC type.

Usage

memory.profile()

Details

The current types and their uses are listed in the include file ‘Rinternals.h’. There will be
blanks in the list corresponding to types that are no longer in use (types 11 and 12 at the
time of writing). Also FUNSXP is not included.

Value

A vector of counts, named by the types.

See Also

gc for the overall usage of cons cells.

Examples

memory.profile()

menu Menu Interaction Function

Description

menu presents the user with a menu of choices labelled from 1 to the number of choices. To
exit without choosing an item one can select ‘0’.

Usage

menu(choices, graphics = FALSE, title = "")

Arguments

choices a character vector of choices

graphics a logical indicating whether a graphics menu should be used. Currently
unused.

title a character string to be used as the title of the menu



420 merge

Value

The number corresponding to the selected item, or 0 if no choice was made.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

## Not run:

switch(menu(c("List letters", "List LETTERS")) + 1,

cat("Nothing done\n"), letters, LETTERS)

## End(Not run)

merge Merge Two Data Frames

Description

Merge two data frames by common columns or row names, or do other versions of database
“join” operations.

Usage

merge(x, y, ...)

## Default S3 method:
merge(x, y, ...)

## S3 method for class 'data.frame':
merge(x, y, by = intersect(names(x), names(y)),

by.x = by, by.y = by, all = FALSE, all.x = all, all.y = all,
sort = TRUE, suffixes = c(".x",".y"), ...)

Arguments

x, y data frames, or objects to be coerced to one
by, by.x, by.y

specifications of the common columns. See Details.

all logical; all=L is shorthand for all.x=L and all.y=L.

all.x logical; if TRUE, then extra rows will be added to the output, one for each
row in x that has no matching row in y. These rows will have NAs in those
columns that are usually filled with values from y. The default is FALSE,
so that only rows with data from both x and y are included in the output.

all.y logical; analogous to all.x above.

sort logical. Should the results be sorted on the by columns?

suffixes character(2) specifying the suffixes to be used for making non-by names()
unique.

... arguments to be passed to or from methods.



merge 421

Details

By default the data frames are merged on the columns with names they both have, but
separate specifications of the columns can be given by by.x and by.y. Columns can be
specified by name, number or by a logical vector: the name "row.names" or the number
0 specifies the row names. The rows in the two data frames that match on the specified
columns are extracted, and joined together. If there is more than one match, all possible
matches contribute one row each.
If the by.* vector are of length 0, the result, r, is the “Cartesian product” of x and y, i.e.,
dim(r) = c(nrow(x)*nrow, ncol(x) + ncol(y)).

If all.x is true, all the non matching cases of x are appended to the result as well, with
NA filled in the corresponding columns of y; analogously for all.y.

If the remaining columns in the data frames have any common names, these have suffixes
(".x" and ".y" by default) appended to make the names of the result unique.

Value

A data frame. The rows are by default lexicographically sorted on the common columns,
but are otherwise in the order in which they occurred in y. The columns are the common
columns followed by the remaining columns in x and then those in y. If the matching
involved row names, an extra column Row.names is added at the left, and in all cases the
result has no special row names.

See Also

data.frame, by, cbind

Examples

authors <- data.frame(

surname = c("Tukey", "Venables", "Tierney", "Ripley", "McNeil"),

nationality = c("US", "Australia", "US", "UK", "Australia"),

deceased = c("yes", rep("no", 4)))

books <- data.frame(

name = c("Tukey", "Venables", "Tierney",

"Ripley", "Ripley", "McNeil", "R Core"),

title = c("Exploratory Data Analysis",

"Modern Applied Statistics ...",

"LISP-STAT",

"Spatial Statistics", "Stochastic Simulation",

"Interactive Data Analysis",

"An Introduction to R"),

other.author = c(NA, "Ripley", NA, NA, NA, NA,

"Venables & Smith"))

(m1 <- merge(authors, books, by.x = "surname", by.y = "name"))

(m2 <- merge(books, authors, by.x = "name", by.y = "surname"))

stopifnot(as.character(m1[,1]) == as.character(m2[,1]),

all.equal(m1[, -1], m2[, -1][ names(m1)[-1] ]),

dim(merge(m1, m2, by = integer(0))) == c(36, 10))

## "R core" is missing from authors and appears only here :

merge(authors, books, by.x = "surname", by.y = "name", all = TRUE)



422 methods

methods List Methods for S3 Generic Functions or Classes

Description

List all available methods for an S3 generic function, or all methods for a class.

Usage

methods(generic.function, class)

Arguments

generic.function

a generic function, or a character string naming a generic function.

class a symbol or character string naming a class: only used if
generic.function is not supplied.

Details

Function methods can be used to find out about the methods for a particular generic
function or class. The functions listed are those which are named like methods and may
not actually be methods (known exceptions are discarded in the code). Note that the listed
methods may not be user-visible objects, but often help will be available for them.

If class is used, we check that a matching generic can be found for each user-visible object
named.

Value

An object of class "MethodsFunction", a character vector of function names with an "info"
attribute. There is a print method which marks with an asterisk any methods which are
not visible: such functions can be examined by getS3method or getAnywhere.

The "info" attribute is a data frame, currently with a logical column, visible and a factor
column from (indicating where the methods were found).

Note

This scheme is called S3 (S version 3). For new projects, it is recommended to use the more
flexible and robust S4 scheme provided in the methods package. Functions can have both
S3 and S4 methods, and function showMethods will list the S4 methods (possibly none).

The original methods function was written by Martin Maechler.

References

Chambers, J. M. (1992) Classes and methods: object-oriented programming in S. Ap-
pendix A of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth
& Brooks/Cole.

See Also

S3Methods, class, getS3method



missing 423

Examples

methods(summary)

methods(class = "aov")

methods("[[") ##- does not list the C-internal ones...

methods("$") # currently none

methods("$<-") # replacement function

methods("+") # binary operator

methods("Math") # group generic

## Not run:

methods(print)

## End(Not run)

missing Does a Formal Argument have a Value?

Description

missing can be used to test whether a value was specified as an argument to a function.

Usage

missing(x)

Arguments

x a formal argument.

Details

missing(x) is only reliable if x has not been altered since entering the function: in partic-
ular it will always be false after x <- match.arg(x).

The example shows how a plotting function can be written to work with either a pair of
vectors giving x and y coordinates of points to be plotted or a single vector giving y values
to be plotted against their indexes.

Currently missing can only be used in the immediate body of the function that defines the
argument, not in the body of a nested function or a local call. This may change in the
future.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

substitute for argument expression; NA for “missing values” in data.



424 mode

Examples

myplot <- function(x,y) {

if(missing(y)) {

y <- x

x <- 1:length(y)

}

plot(x,y)

}

mode The (Storage) Mode of an Object

Description

Get or set the type or storage mode of an object.

Usage

mode(x)
mode(x) <- value
storage.mode(x)
storage.mode(x) <- value

Arguments

x any R object.

value a character string giving the desired (storage) mode of the object.

Details

Both mode and storage.mode return a character string giving the (storage) mode of the
object — often the same — both relying on the output of typeof(x), see the example
below.

The two assignment versions are currently identical. Both mode(x) <- newmode and
storage.mode(x) <- newmode change the mode or storage.mode of object x to newmode.

As storage mode "single" is only a pseudo-mode in R, it will not be reported by mode or
storage.mode: use attr(object, "Csingle") to examine this. However, the assignment
versions can be used to set the mode to "single", which sets the real mode to "double"
and the "Csingle" attribute to TRUE. Setting any other mode will remove this attribute.

Note (in the examples below) that some calls have mode "(" which is S compatible.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

typeof for the R-internal “mode”, attributes.



model.extract 425

Examples

sapply(options(),mode)

cex3 <- c("NULL","1","1:1","1i","list(1)","data.frame(x=1)", "pairlist(pi)",

"c", "lm", "formals(lm)[[1]]", "formals(lm)[[2]]",

"y~x","expression((1))[[1]]", "(y~x)[[1]]", "expression(x <- pi)[[1]][[1]]")

lex3 <- sapply(cex3, function(x) eval(parse(text=x)))

mex3 <- t(sapply(lex3, function(x) c(typeof(x), storage.mode(x), mode(x))))

dimnames(mex3) <- list(cex3, c("typeof(.)","storage.mode(.)","mode(.)"))

mex3

## This also makes a local copy of 'pi':

storage.mode(pi) <- "complex"

storage.mode(pi)

rm(pi)

model.extract Extract Components from a Model Frame

Description

Returns the response, offset, subset, weights or other special components of a model frame
passed as optional arguments to model.frame.

Usage

model.extract(frame, component)
model.offset(x)
model.response(data, type = "any")
model.weights(x)

Arguments

frame, x, data

A model frame.

component literal character string or name. The name of a component to extract,
such as "weights", "subset".

type One of "any", "numeric", "double". Using the either of latter two co-
erces the result to have storage mode "double".

Details

model.extract is provided for compatibility with S, which does not have the more specific
functions.

model.offset and model.response are equivalent to model.frame(, "offset") and
model.frame(, "response") respectively.

model.weights is slightly different from model.frame(, "weights") in not naming the
vector it returns.

Value

The specified component of the model frame, usually a vector.



426 model.frame

See Also

model.frame, offset

Examples

data(esoph)

a <- model.frame(cbind(ncases,ncontrols) ~ agegp+tobgp+alcgp, data=esoph)

model.extract(a, "response")

stopifnot(model.extract(a, "response") == model.response(a))

a <- model.frame(ncases/(ncases+ncontrols) ~ agegp+tobgp+alcgp,

data = esoph, weights = ncases+ncontrols)

model.response(a)

model.extract(a, "weights")

a <- model.frame(cbind(ncases,ncontrols) ~ agegp,

something = tobgp, data = esoph)

names(a)

stopifnot(model.extract(a, "something") == esoph$tobgp)

model.frame Extracting the “Environment” of a Model Formula

Description

model.frame (a generic function) and its methods return a data.frame with the variables
needed to use formula and any ... arguments.

Usage

model.frame(formula, ...)

## Default S3 method:
model.frame(formula, data = NULL,

subset = NULL, na.action = na.fail,
drop.unused.levels = FALSE, xlev = NULL, ...)

## S3 method for class 'aovlist':
model.frame(formula, data = NULL, ...)

## S3 method for class 'glm':
model.frame(formula, data, na.action, ...)

## S3 method for class 'lm':
model.frame(formula, data, na.action, ...)

Arguments

formula a model formula

data data.frame, list, environment or object coercible to data.frame con-
taining the variables in formula.



model.matrix 427

subset a specification of the rows to be used: defaults to all rows. This can be any
valid indexing vector (see [.data.frame for the rows of data or if that
is not supplied, a data frame made up of the variables used in formula.

na.action how NAs are treated. The default is first, any na.action attribute of
data, second a na.action setting of options, and third na.fail if that
is unset. The “factory-fresh” default is na.omit.

drop.unused.levels

should factors have unused levels dropped? Defaults to FALSE.

xlev a named list of character vectors giving the full set of levels to be assumed
for each factor.

... further arguments such as subset, offset and weights. NULL arguments
are treated as missing.

Details

Variables in the formula, subset and in ... are looked for first in data and then in the
environment of formula: see the help for formula() for further details.

First all the variables needed are collected into a data frame. Then subset expression is
evaluated, and it is is used as a row index to the data frame. Then the na.action function
is applied to the data frame (and may well add attributes). The levels of any factors in the
data frame are adjusted according to the drop.unused.levels and xlev arguments.

Value

A data.frame containing the variables used in formula plus those specified ....

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

model.matrix for the “design matrix”, formula for formulas and expand.model.frame for
model.frame manipulation.

Examples

data(cars)

data.class(model.frame(dist ~ speed, data = cars))

model.matrix Construct Design Matrices

Description

model.matrix creates a design matrix.



428 model.matrix

Usage

model.matrix(object, ...)

## Default S3 method:
model.matrix(object, data = environment(object),

contrasts.arg = NULL, xlev = NULL, ...)

Arguments

object an object of an appropriate class. For the default method, a model formula
or terms object.

data a data frame created with model.frame.

contrasts.arg A list, whose entries are contrasts suitable for input to the contrasts
replacement function and whose names are the names of columns of data
containing factors.

xlev to be used as argument of model.frame if data has no "terms" attribute.

... further arguments passed to or from other methods.

Details

model.matrix creates a design matrix from the description given in terms(formula), using
the data in data which must contain columns with the same names as would be created by
a call to model.frame(formula) or, more precisely, by evaluating attr(terms(formula),
"variables"). There may be other columns and the order is not important. If contrasts
is specified it overrides the default factor coding for that variable.

In interactions, the variable whose levels vary fastest is the first one to appear in the formula
(and not in the term), so in ~ a + b + b:a the interaction will have a varying fastest.

By convention, if the response variable also appears on the right-hand side of the formula
it is dropped (with a warning), although interactions involving the term are retained.

Value

The design matrix for a regression model with the specified formula and data.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

model.frame, model.extract, terms

Examples

data(trees)

ff <- log(Volume) ~ log(Height) + log(Girth)

str(m <- model.frame(ff, trees))

mat <- model.matrix(ff, m)

dd <- data.frame(a = gl(3,4), b = gl(4,1,12))# balanced 2-way

options("contrasts")



model.tables 429

model.matrix(~ a + b, dd)

model.matrix(~ a + b, dd, contrasts = list(a="contr.sum"))

model.matrix(~ a + b, dd, contrasts = list(a="contr.sum", b="contr.poly"))

m.orth <- model.matrix(~a+b, dd, contrasts = list(a="contr.helmert"))

crossprod(m.orth)# m.orth is ALMOST orthogonal

model.tables Compute Tables of Results from an Aov Model Fit

Description

Computes summary tables for model fits, especially complex aov fits.

Usage

model.tables(x, ...)

## S3 method for class 'aov':
model.tables(x, type = "effects", se = FALSE, cterms, ...)

## S3 method for class 'aovlist':
model.tables(x, type = "effects", se = FALSE, ...)

Arguments

x a model object, usually produced by aov

type type of table: currently only "effects" and "means" are implemented.

se should standard errors be computed?

cterms A character vector giving the names of the terms for which tables should
be computed. The default is all tables.

... further arguments passed to or from other methods.

Details

For type = "effects" give tables of the coefficients for each term, optionally with standard
errors.

For type = "means" give tables of the mean response for each combinations of levels of the
factors in a term.

Value

An object of class "tables.aov", as list which may contain components

tables A list of tables for each requested term.

n The replication information for each term.

se Standard error information.

Warning

The implementation is incomplete, and only the simpler cases have been tested thoroughly.

Weighted aov fits are not supported.



430 morley

See Also

aov, proj, replications, TukeyHSD, se.contrast

Examples

## From Venables and Ripley (2002) p.165.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

npk.aov <- aov(yield ~ block + N*P*K, npk)

model.tables(npk.aov, "means", se=TRUE)

## as a test, not particularly sensible statistically

options(contrasts=c("contr.helmert", "contr.treatment"))

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

model.tables(npk.aovE, se=TRUE)

model.tables(npk.aovE, "means")

morley Michaelson-Morley Speed of Light Data

Description

The classical data of Michaelson and Morley on the speed of light. The data consists of five
experiments, each consisting of 20 consecutive ‘runs’. The response is the speed of light
measurement, suitably coded.

Usage

data(morley)

Format

A data frame contains the following components:

Expt The experiment number, from 1 to 5.

Run The run number within each experiment.

Speed Speed-of-light measurement.

Details

The data is here viewed as a randomized block experiment with ‘experiment’ and ‘run’ as
the factors. ‘run’ may also be considered a quantitative variate to account for linear (or
polynomial) changes in the measurement over the course of a single experiment.

Source

A. J. Weekes (1986) A Genstat Primer. London: Edward Arnold.



mosaicplot 431

Examples

data(morley)

morley$Expt <- factor(morley$Expt)

morley$Run <- factor(morley$Run)

attach(morley)

plot(Expt, Speed, main = "Speed of Light Data", xlab = "Experiment No.")

fm <- aov(Speed ~ Run + Expt, data = morley)

summary(fm)

fm0 <- update(fm, . ~ . - Run)

anova(fm0, fm)

detach(morley)

mosaicplot Mosaic Plots

Description

Plots a mosaic on the current graphics device.

Usage

mosaicplot(x, ...)

## Default S3 method:
mosaicplot(x, main = deparse(substitute(x)),

sub = NULL, xlab = NULL, ylab = NULL,
sort = NULL, off = NULL, dir = NULL,
color = FALSE, shade = FALSE, margin = NULL,
cex.axis = 0.66, las = par("las"),
type = c("pearson", "deviance", "FT"), ...)

## S3 method for class 'formula':
mosaicplot(formula, data = NULL, ...,

main = deparse(substitute(data)), subset)

Arguments

x a contingency table in array form, with optional category labels specified
in the dimnames(x) attribute. The table is best created by the table()
command.

main character string for the mosaic title.

sub character string for the mosaic sub-title (at bottom).

xlab,ylab x- and y-axis labels used for the plot; by default, the first and second
element of names(dimnames(X)) (i.e., the name of the first and second
variable in X).

sort vector ordering of the variables, containing a permutation of the integers
1:length(dim(x)) (the default).

off vector of offsets to determine percentage spacing at each level of the mo-
saic (appropriate values are between 0 and 20, and the default is 10 at each
level). There should be one offset for each dimension of the contingency
table.



432 mosaicplot

dir vector of split directions ("v" for vertical and "h" for horizontal) for each
level of the mosaic, one direction for each dimension of the contingency
table. The default consists of alternating directions, beginning with a
vertical split.

color logical or (recycling) vector of colors for color shading, used only when
shade is FALSE. The default color=FALSE gives empty boxes with no
shading.

shade a logical indicating whether to produce extended mosaic plots, or a nu-
meric vector of at most 5 distinct positive numbers giving the absolute
values of the cut points for the residuals. By default, shade is FALSE, and
simple mosaics are created. Using shade = TRUE cuts absolute values at
2 and 4.

margin a list of vectors with the marginal totals to be fit in the log-linear model.
By default, an independence model is fitted. See loglin for further in-
formation.

cex.axis The magnification to be used for axis annotation, as a multiple of
par("cex").

las numeric; the style of axis labels, see par.

type a character string indicating the type of residual to be represented. Must
be one of "pearson" (giving components of Pearson’s χ2), "deviance"
(giving components of the likelihood ratio χ2), or "FT" for the Freeman-
Tukey residuals. The value of this argument can be abbreviated.

formula a formula, such as y ~ x.

data a data frame (or list), or a contingency table from which the variables in
formula should be taken.

... further arguments to be passed to or from methods.

subset an optional vector specifying a subset of observations in the data frame
to be used for plotting.

Details

This is a generic function. It currently has a default method (mosaicplot.default) and a
formula interface (mosaicplot.formula).

Extended mosaic displays show the standardized residuals of a loglinear model of the counts
from by the color and outline of the mosaic’s tiles. (Standardized residuals are often referred
to a standard normal distribution.) Negative residuals are drawn in shaded of red and with
broken outlines; positive ones are drawn in blue with solid outlines.

For the formula method, if data is an object inheriting from classes "table" or "ftable",
or an array with more than 2 dimensions, it is taken as a contingency table, and hence all
entries should be nonnegative. In this case, the left-hand side of formula should be empty,
and the variables on the right-hand side should be taken from the names of the dimnames
attribute of the contingency table. A marginal table of these variables is computed, and a
mosaic of this table is produced.

Otherwise, data should be a data frame or matrix, list or environment containing the
variables to be cross-tabulated. In this case, after possibly selecting a subset of the data
as specified by the subset argument, a contingency table is computed from the variables
given in formula, and a mosaic is produced from this.

See Emerson (1998) for more information and a case study with television viewer data from
Nielsen Media Research.



mtcars 433

Author(s)

S-PLUS original by John Emerson 〈emerson@stat.yale.edu〉. Originally modified and en-
hanced for R by KH.

References

Hartigan, J.A., and Kleiner, B. (1984) A mosaic of television ratings. The American Statis-
tician, 38, 32–35.

Emerson, J. W. (1998) Mosaic displays in S-PLUS: a general implementation and a case
study. Statistical Computing and Graphics Newsletter (ASA), 9, 1, 17–23.

Friendly, M. (1994) Mosaic displays for multi-way contingency tables. Journal of the Amer-
ican Statistical Association, 89, 190–200.

The home page of Michael Friendly (http://www.math.yorku.ca/SCS/friendly.html)
provides information on various aspects of graphical methods for analyzing categorical data,
including mosaic plots.

See Also

assocplot, loglin.

Examples

data(Titanic)

mosaicplot(Titanic, main = "Survival on the Titanic", color = TRUE)

## Formula interface for tabulated data:

mosaicplot(~ Sex + Age + Survived, data = Titanic, color = TRUE)

data(HairEyeColor)

mosaicplot(HairEyeColor, shade = TRUE)

## Independence model of hair and eye color and sex. Indicates that

## there are significantly more blue eyed blonde females than expected

## in the case of independence (and too few brown eyed blonde females).

mosaicplot(HairEyeColor, shade = TRUE, margin = list(c(1,2), 3))

## Model of joint independence of sex from hair and eye color. Males

## are underrepresented among people with brown hair and eyes, and are

## overrepresented among people with brown hair and blue eyes, but not

## "significantly".

## Formula interface for raw data: visualize crosstabulation of numbers

## of gears and carburettors in Motor Trend car data.

data(mtcars)

mosaicplot(~ gear + carb, data = mtcars, color = TRUE, las = 1)

mosaicplot(~ gear + carb, data = mtcars, color = 2:3, las = 1)# color recycling

mtcars Motor Trend Car Road Tests

Description

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel
consumption and 10 aspects of automobile design and performance for 32 automobiles
(1973–74 models).

http://www.math.yorku.ca/SCS/friendly.html


434 mtext

Usage

data(mtcars)

Format

A data frame with 32 observations on 11 variables.

[, 1] mpg Miles/(US) gallon
[, 2] cyl Number of cylinders
[, 3] disp Displacement (cu.in.)
[, 4] hp Gross horsepower
[, 5] drat Rear axle ratio
[, 6] wt Weight (lb/1000)
[, 7] qsec 1/4 mile time
[, 8] vs V/S
[, 9] am Transmission (0 = automatic, 1 = manual)
[,10] gear Number of forward gears
[,11] carb Number of carburettors

Source

Henderson and Velleman (1981), Building multiple regression models interactively. Biomet-
rics, 37, 391–411.

Examples

data(mtcars)

pairs(mtcars, main = "mtcars data")

coplot(mpg ~ disp | as.factor(cyl), data = mtcars,

panel = panel.smooth, rows = 1)

mtext Write Text into the Margins of a Plot

Description

Text is written in one of the four margins of the current figure region or one of the outer
margins of the device region.

Usage

mtext(text, side = 3, line = 0, outer = FALSE, at = NA,
adj = NA, cex = NA, col = NA, font = NA, vfont = NULL, ...)

Arguments

text one or more character strings or expressions.

side on which side of the plot (1=bottom, 2=left, 3=top, 4=right).

line on which MARgin line, starting at 0 counting outwards.

outer use outer margins if available.



mtext 435

at give location in user-coordinates. If length(at)==0 (the default), the
location will be determined by adj.

adj adjustment for each string. For strings parallel to the axes, adj=0 means
left or bottom alignment, and adj=1 means right or top aligment. If adj
is not a finite value (the default), the value par("las") determines the
adjustment. For strings plotted parallel to the axis the default is to centre
the string.

... Further graphical parameters (see text and par) ; currently supported
are:

cex character expansion factor (default = 1).

col color to use.

font font for text.

vfont vector font for text.

Details

The “user coordinates” in the outer margins always range from zero to one, and are not
affected by the user coordinates in the figure region(s) — R is differing here from other
implementations of S.

The arguments side, line, at, at, adj, the further graphical parameters and even outer
can be vectors, and recycling will take place to plot as many strings as the longest of the
vector arguments. Note that a vector adj has a different meaning from text.

adj = 0.5 will centre the string, but for outer=TRUE on the device region rather than the
plot region.

Parameter las will determine the orientation of the string(s). For strings plotted perpen-
dicular to the axis the default justifcation is to place the end of the string nearest the axis
on the specified line.

Note that if the text is to be plotted perpendicular to the axis, adj determines the justifi-
cation of the string and the position along the axis unless at is specified.

Side Effects

The given text is written onto the current plot.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

title, text, plot, par; plotmath for details on mathematical annotation.

Examples

plot(1:10, (-4:5)^2, main="Parabola Points", xlab="xlab")

mtext("10 of them")

for(s in 1:4)

mtext(paste("mtext(..., line= -1, {side, col, font} = ",s,

", cex = ", (1+s)/2, ")"), line = -1,

side=s, col=s, font=s, cex= (1+s)/2)



436 Multinomial

mtext("mtext(..., line= -2)", line = -2)

mtext("mtext(..., line= -2, adj = 0)", line = -2, adj =0)

##--- log axis :

plot(1:10, exp(1:10), log='y', main="log='y'", xlab="xlab")

for(s in 1:4) mtext(paste("mtext(...,side=",s,")"), side=s)

Multinomial The Multinomial Distribution

Description

Generate multinomially distributed random number vectors and compute multinomial“den-
sity” probabilities.

Usage

rmultinom(n, size, prob)
dmultinom(x, size = NULL, prob, log = FALSE)

Arguments

x vector of length K of integers in 0:size.

n number of random vectors to draw.

size integer, say N , specifying the total number of objects that are put into K
boxes in the typical multinomial experiment. For dmultinom, it defaults
to sum(x).

prob numeric non-negative vector of length K, specifying the probability for
the K classes; is internally normalized to sum 1.

log logical; if TRUE, log probabilities are computed.

Details

If x is a K-component vector, dmultinom(x, prob) is the probability

P (X1 = x1, . . . , XK = xk) = C ×
K∏

j=1

π
xj

j

where C is the “multinomial coefficient”C = N !/(x1! · · ·xK !) and N =
∑K

j=1 xj .
By definition, each component Xj is binomially distributed as Bin(size, prob[j]) for
j = 1, . . . ,K.

The rmultinom() algorithm draws binomials from Bin(nj , Pj) sequentially, where n1 = N
(N := size), P1 = π1 (π is prob scaled to sum 1), and for j ≥ 2, recursively nj =
N −

∑j−1
k=1 nk and Pj = πj/(1−

∑j−1
k=1 πk).

Value

For rmultinom(), an integer K x n matrix where each column is a random vector gener-
ated according to the desired multinomial law, and hence summing to size. Whereas the
transposed result would seem more natural at first, the returned matrix is more efficient
because of columnwise storage.



n2mfrow 437

Note

dmultinom is currently not vectorized at all and has no C interface (API); this may be
amended in the future.

See Also

rbinom which is a special case conceptually.

Examples

rmultinom(10, size = 12, prob=c(0.1,0.2,0.8))

pr <- c(1,3,6,10) # normalization not necessary for generation

rmultinom(10, 20, prob = pr)

## all possible outcomes of Multinom(N = 3, K = 3)

X <- t(as.matrix(expand.grid(0:3, 0:3))); X <- X[, colSums(X) <= 3]

X <- rbind(X, 3:3 - colSums(X)); dimnames(X) <- list(letters[1:3], NULL)

X

round(apply(X, 2, function(x) dmultinom(x, prob = c(1,2,5))), 3)

n2mfrow Compute Default mfrow From Number of Plots

Description

Easy setup for plotting multiple figures (in a rectangular layout) on one page. This computes
a sensible default for par(mfrow).

Usage

n2mfrow(nr.plots)

Arguments

nr.plots integer; the number of plot figures you’ll want to draw.

Value

A length two integer vector nr, nc giving the number of rows and columns, fulfilling nr
>= nc >= 1 and nr * nc >= nr.plots.

Author(s)

Martin Maechler

See Also

par, layout.



438 NA

Examples

n2mfrow(8) # 3 x 3

n <- 5 ; x <- seq(-2,2, len=51)

## suppose now that 'n' is not known {inside function}

op <- par(mfrow = n2mfrow(n))

for (j in 1:n)

plot(x, x^j, main = substitute(x^ exp, list(exp = j)), type='l', col="blue")

sapply(1:10, n2mfrow)

NA Not Available / “Missing” Values

Description

NA is a logical constant of length 1 which contains a missing value indicator. NA can be
freely coerced to any other vector type.
The generic function is.na indicates which elements are missing.
The generic function is.na<- sets elements to NA.

Usage

NA
is.na(x)
## S3 method for class 'data.frame':
is.na(x)

is.na(x) <- value

Arguments

x an R object to be tested.
value a suitable index vector for use with x.

Details

The NA of character type is as from R 1.5.0 distinct from the string "NA". Programmers
who need to specify an explicit string NA should use as.character(NA) rather than "NA",
or set elements to NA using is.na<-.
is.na(x) works elementwise when x is a list. The method dispatching is C-internal,
rather than via UseMethod.
Function is.na<- may provide a safer way to set missingness. It behaves differently for
factors, for example.

Value

The default method for is.na returns a logical vector of the same “form” as its argument
x, containing TRUE for those elements marked NA or NaN (!) and FALSE otherwise. dim,
dimnames and names attributes are preserved.
The method is.na.data.frame returns a logical matrix with the same dimensions as the
data frame, and with dimnames taken from the row and column names of the data frame.



na.action 439

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

NaN, is.nan, etc., and the utility function complete.cases.

na.action, na.omit, na.fail on how methods can be tuned to deal with missing values.

Examples

is.na(c(1, NA)) #> FALSE TRUE

is.na(paste(c(1, NA))) #> FALSE FALSE

na.action NA Action

Description

na.action is a generic function, and na.action.default its default method.

Usage

na.action(object, ...)

Arguments

object any object whose NA action is given.

... further arguments special methods could require.

Value

The “NA action” which should be applied to object whenever NAs are not desired.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

options("na.action"), na.omit, na.fail

Examples

na.action(c(1, NA))



440 na.fail

na.fail Handle Missing Values in Objects

Description

These generic functions are useful for dealing with NAs in e.g., data frames. na.fail returns
the object if it does not contain any missing values, and signals an error otherwise. na.omit
returns the object with incomplete cases removed. na.pass returns the object unchanged.

Usage

na.fail(object, ...)
na.omit(object, ...)
na.exclude(object, ...)
na.pass(object, ...)

Arguments

object an R object, typically a data frame
... further arguments special methods could require.

Details

At present these will handle vectors, matrices and data frames comprising vectors and
matrices (only).

If na.omit removes cases, the row numbers of the cases form the "na.action" attribute of
the result, of class "omit".

na.exclude differs from na.omit only in the class of the "na.action" attribute of the
result, which is "exclude". This gives different behaviour in functions making use of
naresid and napredict: when na.exclude is used the residuals and predictions are padded
to the correct length by inserting NAs for cases omitted by na.exclude.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

na.action; options with argument na.action for setting “NA actions”; and lm and glm
for functions using these.

Examples

DF <- data.frame(x = c(1, 2, 3), y = c(0, 10, NA))

na.omit(DF)

m <- as.matrix(DF)

na.omit(m)

stopifnot(all(na.omit(1:3) == 1:3)) # does not affect objects with no NA's

try(na.fail(DF))#> Error: missing values in ...

options("na.action")



name 441

name Variable Names or Symbols, respectively

Description

as.symbol coerces its argument to be a symbol, or equivalently, a name. The argument
must be of mode "character". as.name is an alias for as.symbol.

is.symbol (and is.name equivalently) returns TRUE or FALSE depending on whether its
argument is a symbol (i.e., name) or not.

Usage

as.symbol(x)
is.symbol(y)

as.name(x)
is.name(y)

Arguments

x, y objects to be coerced or tested.

Details

is.symbol is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

Note

The term“symbol”is from the LISP background of R, whereas“name”has been the standard
S term for this.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

call, is.language. For the internal object mode, typeof.

Examples

an <- as.name("arrg")

is.name(an) # TRUE

str(an)# symbol



442 names

names The Names Attribute of an Object

Description

Functions to get or set the names of an object.

Usage

names(x)
names(x) <- value

Arguments

x an R object.

value a character vector of up to the same length as x, or NULL.

Details

names is a generic accessor function, and names<- is a generic replacement function. The
default methods get and set the "names" attribute of a vector or list.

If value is shorter than x, it is extended by character NAs to the length of x.

It is possible to update just part of the names attribute via the general rules: see the
examples. This works because the expression there is evaluated as z <- "names<-"(z,
"[<-"(names(z), 3, "c2")).

Value

For names, NULL or a character vector of the same length as x.

For names<-, the updated object. (Note that the value of names(x) <- value is that of
the assignment, value, not the return value from the left-hand side.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

data(islands)

# print the names attribute of the islands data set

names(islands)

# remove the names attribute

names(islands) <- NULL

z <- list(a=1, b="c", c=1:3)

names(z)

# change just the name of the third element.

names(z)[3] <- "c2"

z



naprint 443

## assign just one name

z <- 1:3

names(z)

# change just the name of the third element.

names(z)[2] <- "b"

z

naprint Adjust for Missing Values

Description

Use missing value information to report the effects of an na.action.

Usage

naprint(x, ...)

Arguments

x An object produced by an na.action function.

... further arguments passed to or from other methods.

Details

This is a generic function, and the exact information differs by method. naprint.omit
reports the number of rows omitted: naprint.default reports an empty string.

Value

A character string providing information on missing values, for example the number.

naresid Adjust for Missing Values

Description

Use missing value information to adjust residuals and predictions.

Usage

naresid(omit, x, ...)
napredict(omit, x, ...)

Arguments

omit an object produced by an na.action function, typically the "na.action"
attribute of the result of na.omit or na.exclude.

x a vector, data frame, or matrix to be adjusted based upon the missing
value information.

... further arguments passed to or from other methods.



444 nargs

Details

These are utility functions used to allow predict and resid methods for modelling functions
to compensate for the removal of NAs in the fitting process. They are used by the default,
"lm" and "glm" methods, and by further methods in packages MASS, rpart and survival.

The default methods do nothing. The method for the na.exclude action to pad the object
with NAs in the correct positions to have the same number of rows as the original data
frame.

Currently naresid and napredict are identical, but future methods need not be. naresid
is used for residuals, and napredict for fitted values and predictions.

Value

These return a similar object to x.

Note

Packages rpart and survival5 used to contain versions of these functions that had an
na.omit action equivalent to that now used for na.exclude.

nargs The Number of Arguments to a Function

Description

When used inside a function body, nargs returns the number of arguments supplied to that
function, including positional arguments left blank.

Usage

nargs()

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

args, formals and sys.call.

Examples

tst <- function(a, b = 3, ...) {nargs()}

tst() # 0

tst(clicketyclack) # 1 (even non-existing)

tst(c1, a2, rr3) # 3

foo <- function(x, y, z, w) {

cat("call was", deparse(match.call()), "\n")

nargs()

}

foo() # 0



nchar 445

foo(,,3) # 3

foo(z=3) # 1, even though this is the same call

nargs()# not really meaningful

nchar Count the Number of Characters

Description

nchar takes a character vector as an argument and returns a vector whose elements contain
the number of characters in the corresponding element of x.

Usage

nchar(x)

Arguments

x character vector, or a vector to be coerced to a character vector.

Details

The internal equivalent of as.character is performed on x. If you want to operate on
non-vector objects passing them through deparse first will be required.

Value

The number of characters as the string will be printed (integer 2 for a missing string).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

strwidth giving width of strings for plotting; paste, substr, strsplit

Examples

x <- c("asfef","qwerty","yuiop[","b","stuff.blah.yech")

nchar(x)

# 5 6 6 1 15

nchar(deparse(mean))

# 23 1 16 45 11 64 2 17 50 43 2 17 1



446 nclass

nclass Compute the Number of Classes for a Histogram

Description

Compute the number of classes for a histogram, for use internally in hist.

Usage

nclass.Sturges(x)
nclass.scott(x)
nclass.FD(x)

Arguments

x A data vector.

Details

nclass.Sturges uses Sturges’ formula, implicitly basing bin sizes on the range of the data.

nclass.scott uses Scott’s choice for a normal distribution based on the estimate of the
standard error.

nclass.FD uses the Freedman-Diaconis choice based on the inter-quartile range.

Value

The suggested number of classes.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S-PLUS. Springer,
page 112.

Freedman, D. and Diaconis, P. (1981) On the histogram as a density estimator: L2 theory.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 57, 453–476.

Scott, D. W. (1979) On optimal and data-based histograms. Biometrika 66, 605–610.

Scott, D. W. (1992) Multivariate Density Estimation. Theory, Practice, and Visualization.
Wiley.

See Also

hist



NegBinomial 447

NegBinomial The Negative Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the negative
binomial distribution with parameters size and prob.

Usage

dnbinom(x, size, prob, mu, log = FALSE)
pnbinom(q, size, prob, mu, lower.tail = TRUE, log.p = FALSE)
qnbinom(p, size, prob, mu, lower.tail = TRUE, log.p = FALSE)
rnbinom(n, size, prob, mu)

Arguments

x vector of (non-negative integer) quantiles.
q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the

number required.
size target for number of successful trials, or dispersion parameter (the shape

parameter of the gamma mixing distribution).
prob probability of success in each trial.
mu alternative parametrization via mean: see Details
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >

x].

Details

The negative binomial distribution with size = n and prob = p has density

p(x) =
Γ(x+ n)
Γ(n)x!

pn(1− p)x

for x = 0, 1, 2, . . .

This represents the number of failures which occur in a sequence of Bernoulli trials before
a target number of successes is reached.

A negative binomial distribution can arise as a mixture of Poisson distributions with mean
distributed as a gamma (pgamma) distribution with scale parameter (1 - prob)/prob and
shape parameter size. (This definition allows non-integer values of size.) In this model
prob = scale/(1+scale), and the mean is size * (1 - prob)/prob)

The alternative parametrization (often used in ecology) is by the mean mu, and size, the
dispersion parameter, where prob = size/(size+mu). In this parametrization the variance
is mu + mu^2/size.

If an element of x is not integer, the result of dnbinom is zero, with a warning.

The quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distri-
bution function.



448 nextn

Value

dnbinom gives the density, pnbinom gives the distribution function, qnbinom gives the quan-
tile function, and rnbinom generates random deviates.

See Also

dbinom for the binomial, dpois for the Poisson and dgeom for the geometric distribution,
which is a special case of the negative binomial.

Examples

x <- 0:11

dnbinom(x, size = 1, prob = 1/2) * 2^(1 + x) # == 1

126 / dnbinom(0:8, size = 2, prob = 1/2) #- theoretically integer

## Cumulative ('p') = Sum of discrete prob.s ('d'); Relative error :

summary(1 - cumsum(dnbinom(x, size = 2, prob = 1/2)) /

pnbinom(x, size = 2, prob = 1/2))

x <- 0:15

size <- (1:20)/4

persp(x,size, dnb <- outer(x,size,function(x,s)dnbinom(x,s, pr= 0.4)),

xlab = "x", ylab = "s", zlab="density", theta = 150)

title(tit <- "negative binomial density(x,s, pr = 0.4) vs. x & s")

image (x,size, log10(dnb), main= paste("log [",tit,"]"))

contour(x,size, log10(dnb),add=TRUE)

## Alternative parametrization

x1 <- rnbinom(500, mu = 4, size = 1)

x2 <- rnbinom(500, mu = 4, size = 10)

x3 <- rnbinom(500, mu = 4, size = 100)

h1 <- hist(x1, breaks = 20, plot = FALSE)

h2 <- hist(x2, breaks = h1$breaks, plot = FALSE)

h3 <- hist(x3, breaks = h1$breaks, plot = FALSE)

barplot(rbind(h1$counts, h2$counts, h3$counts),

beside = TRUE, col = c("red","blue","cyan"),

names.arg = round(h1$breaks[-length(h1$breaks)]))

nextn Highly Composite Numbers

Description

nextn returns the smallest integer, greater than or equal to n, which can be obtained as a
product of powers of the values contained in factors. nextn is intended to be used to find
a suitable length to zero-pad the argument of fft to so that the transform is computed
quickly. The default value for factors ensures this.

Usage

nextn(n, factors=c(2,3,5))



nhtemp 449

Arguments

n an integer.

factors a vector of positive integer factors.

See Also

convolve, fft.

Examples

nextn(1001) # 1024

table(sapply(599:630, nextn))

nhtemp Average Yearly Temperatures in New Haven

Description

The mean annual temperature in degrees Fahrenheit in New Haven, Connecticut, from 1912
to 1971.

Usage

data(nhtemp)

Format

A time series of 60 observations.

Source

Vaux, J. E. and Brinker, N. B. (1972) Cycles, 1972, 117–121.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(nhtemp)

plot(nhtemp, main = "nhtemp data",

ylab = "Mean annual temperature in New Haven, CT (deg. F)")



450 nlm

nlevels The Number of Levels of a Factor

Description

Return the number of levels which its argument has.

Usage

nlevels(x)

Arguments

x an object, usually a factor.

Details

If the argument is not a factor, NA is returned.

The actual factor levels (if they exist) can be obtained with the levels function.

Examples

nlevels(gl(3,7)) # = 3

nlm Non-Linear Minimization

Description

This function carries out a minimization of the function f using a Newton-type algorithm.
See the references for details.

Usage

nlm(f, p, hessian = FALSE, typsize=rep(1, length(p)), fscale=1,
print.level = 0, ndigit=12, gradtol = 1e-6,
stepmax = max(1000 * sqrt(sum((p/typsize)^2)), 1000),
steptol = 1e-6, iterlim = 100, check.analyticals = TRUE, ...)

Arguments

f the function to be minimized. If the function value has an attribute called
gradient or both gradient and hessian attributes, these will be used
in the calculation of updated parameter values. Otherwise, numerical
derivatives are used. deriv returns a function with suitable gradient
attribute. This should be a function a vector of the length of p followed
by any other arguments specified in dots.

p starting parameter values for the minimization.

hessian if TRUE, the hessian of f at the minimum is returned.

typsize an estimate of the size of each parameter at the minimum.



nlm 451

fscale an estimate of the size of f at the minimum.

print.level this argument determines the level of printing which is done during the
minimization process. The default value of 0 means that no printing
occurs, a value of 1 means that initial and final details are printed and a
value of 2 means that full tracing information is printed.

ndigit the number of significant digits in the function f.

gradtol a positive scalar giving the tolerance at which the scaled gradient is consid-
ered close enough to zero to terminate the algorithm. The scaled gradient
is a measure of the relative change in f in each direction p[i] divided by
the relative change in p[i].

stepmax a positive scalar which gives the maximum allowable scaled step length.
stepmax is used to prevent steps which would cause the optimization
function to overflow, to prevent the algorithm from leaving the area of
interest in parameter space, or to detect divergence in the algorithm.
stepmax would be chosen small enough to prevent the first two of these
occurrences, but should be larger than any anticipated reasonable step.

steptol A positive scalar providing the minimum allowable relative step length.

iterlim a positive integer specifying the maximum number of iterations to be
performed before the program is terminated.

check.analyticals

a logical scalar specifying whether the analytic gradients and Hessians,
if they are supplied, should be checked against numerical derivatives at
the initial parameter values. This can help detect incorrectly formulated
gradients or Hessians.

... additional arguments to f.

Details

If a gradient or hessian is supplied but evaluates to the wrong mode or length, it will be
ignored if check.analyticals = TRUE (the default) with a warning. The hessian is not
even checked unless the gradient is present and passes the sanity checks.

From the three methods available in the original source, we always use method “1” which
is line search.

Value

A list containing the following components:

minimum the value of the estimated minimum of f.

estimate the point at which the mininum value of f is obtained.

gradient the gradient at the estimated minimum of f.

hessian the hessian at the estimated minimum of f (if requested).

code an integer indicating why the optimization process terminated.

1: relative gradient is close to zero, current iterate is probably solution.
2: successive iterates within tolerance, current iterate is probably solu-

tion.
3: last global step failed to locate a point lower than estimate. Ei-

ther estimate is an approximate local minimum of the function or
steptol is too small.



452 noquote

4: iteration limit exceeded.
5: maximum step size stepmax exceeded five consecutive times. Either

the function is unbounded below, becomes asymptotic to a finite value
from above in some direction or stepmax is too small.

iterations the number of iterations performed.

References

Dennis, J. E. and Schnabel, R. B. (1983) Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ.

Schnabel, R. B., Koontz, J. E. and Weiss, B. E. (1985) A modular system of algorithms for
unconstrained minimization. ACM Trans. Math. Software, 11, 419–440.

See Also

optim. optimize for one-dimensional minimization and uniroot for root finding. deriv
to calculate analytical derivatives.

For nonlinear regression, nls (in package nls), may be of better use.

Examples

f <- function(x) sum((x-1:length(x))^2)

nlm(f, c(10,10))

nlm(f, c(10,10), print.level = 2)

str(nlm(f, c(5), hessian = TRUE))

f <- function(x, a) sum((x-a)^2)

nlm(f, c(10,10), a=c(3,5))

f <- function(x, a)

{

res <- sum((x-a)^2)

attr(res, "gradient") <- 2*(x-a)

res

}

nlm(f, c(10,10), a=c(3,5))

## more examples, including the use of derivatives.

## Not run: demo(nlm)

noquote Class for “no quote” Printing of Character Strings

Description

Print character strings without quotes.

Usage

noquote(obj)
## S3 method for class 'noquote':
print(x, ...)
## S3 method for class 'noquote':
c(..., recursive = FALSE)



Normal 453

Arguments

obj any R object, typically a vector of character strings.

x an object of class "noquote".

... further options passed to next methods, such as print.

recursive for compatibility with the generic c function.

Details

noquote returns its argument as an object of class "noquote". There is a method for c()
and subscript method ("[.noquote") which ensures that the class is not lost by subsetting.
The print method (print.noquote) prints character stringss without quotes ("...").

These functions exist both as utilities and as an example of using (S3) class and object
orientation.

Author(s)

Martin Maechler 〈maechler@stat.math.ethz.ch〉

See Also

methods, class, print.

Examples

letters

nql <- noquote(letters)

nql

nql[1:4] <- "oh"

nql[1:12]

cmp.logical <- function(log.v)

{

## Purpose: compact printing of logicals

log.v <- as.logical(log.v)

noquote(if(length(log.v)==0)"()" else c(".","|")[1+log.v])

}

cmp.logical(runif(20) > 0.8)

Normal The Normal Distribution

Description

Density, distribution function, quantile function and random generation for the normal
distribution with mean equal to mean and standard deviation equal to sd.

Usage

dnorm(x, mean=0, sd=1, log = FALSE)
pnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean=0, sd=1)



454 Normal

Arguments

x,q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

mean vector of means.

sd vector of standard deviations.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

If mean or sd are not specified they assume the default values of 0 and 1, respectively.

The normal distribution has density

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

where µ is the mean of the distribution and σ the standard deviation.

qnorm is based on Wichura’s algorithm AS 241 which provides precise results up to about
16 digits.

Value

dnorm gives the density, pnorm gives the distribution function, qnorm gives the quantile
function, and rnorm generates random deviates.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Wichura, M. J. (1988) Algorithm AS 241: The Percentage Points of the Normal Distribu-
tion. Applied Statistics, 37, 477–484.

See Also

runif and .Random.seed about random number generation, and dlnorm for the Lognormal
distribution.

Examples

dnorm(0) == 1/ sqrt(2*pi)

dnorm(1) == exp(-1/2)/ sqrt(2*pi)

dnorm(1) == 1/ sqrt(2*pi*exp(1))

## Using "log = TRUE" for an extended range :

par(mfrow=c(2,1))

plot(function(x)dnorm(x, log=TRUE), -60, 50, main = "log { Normal density }")

curve(log(dnorm(x)), add=TRUE, col="red",lwd=2)

mtext("dnorm(x, log=TRUE)", adj=0); mtext("log(dnorm(x))", col="red", adj=1)



NotYet 455

plot(function(x)pnorm(x, log=TRUE), -50, 10, main = "log { Normal Cumulative }")

curve(log(pnorm(x)), add=TRUE, col="red",lwd=2)

mtext("pnorm(x, log=TRUE)", adj=0); mtext("log(pnorm(x))", col="red", adj=1)

## if you want the so-called 'error function'

erf <- function(x) 2 * pnorm(x * sqrt(2)) - 1

## and the so-called 'complementary error function'

erfc <- function(x) 2 * pnorm(x * sqrt(2), lower=FALSE)

NotYet Not Yet Implemented Functions and Unused Arguments

Description

In order to pinpoint missing functionality, the R core team uses these functions for missing
R functions and not yet used arguments of existing R functions (which are typically there
for compatibility purposes).

You are very welcome to contribute your code . . .

Usage

.NotYetImplemented()

.NotYetUsed(arg, error = TRUE)

Arguments

arg an argument of a function that is not yet used.

error a logical. If TRUE, an error is signalled; if FALSE; only a warning is given.

See Also

the contrary, Deprecated and Defunct for outdated code.

Examples

plot.mlm # to see how the "NotYetImplemented"

# reference is made automagically

try(plot.mlm())

barplot(1:5, inside = TRUE) # 'inside' is not yet used



456 nrow

nrow The Number of Rows/Columns of an Array

Description

nrow and ncol return the number of rows or columns present in x. NCOL and NROW do the
same treating a vector as 1-column matrix.

Usage

nrow(x)
ncol(x)
NCOL(x)
NROW(x)

Arguments

x a vector, array or data frame

Value

an integer of length 1 or NULL.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole (ncol and nrow.)

See Also

dim which returns all dimensions; array, matrix.

Examples

ma <- matrix(1:12, 3, 4)

nrow(ma) # 3

ncol(ma) # 4

ncol(array(1:24, dim = 2:4)) # 3, the second dimension

NCOL(1:12) # 1

NROW(1:12) # 12



ns-alt 457

ns-alt Experimental Alternative Name Specification Support

Description

Alternative interface for specifying a name space within the code of a package.

Usage

.Export(...)

.Import(...)

.ImportFrom(name, ...)

.S3method(generic, class, method)

Arguments

... name or literal character string arguments.
name name or literal character string.
generic name or literal character string.
class name or literal character string.
method optional character or function argument.

Details

As an experimental alternative to using a ‘NAMESPACE’ file it is possible to add a name
space to a package by adding a Namespace: <package_name> entry to the ‘DESCRIPTION’
file and placing directives to specify imports and exports directly in package code. These
directives should be viewed as declarations, not as function calls. Except to the optional
method argument to .S3method arguments are not evaluated. These directives should only
be used at top level of package code except as noted below.
.Export is used to declare exports. Its arguments should be literal names or character
strings. .Export should only be used at package top level.
.Import is used to declare the import of entire name spaces. Its arguments should be
literal names or character strings. .ImportFrom is used to declare the import of selected
variables from a single name space. The first argument is a literal name or character string
identifying the source name space; the remaining arguments are literal names or character
strings identifying the variables to import. As an experimental feature both .Import and
.ImportFrom can be used to import variables into a local environment. The drawback of
allowing this is that dependencies cannot be determined easily at package load time, and
as a result this feature may need to be dropped.
.S3method is used to declare a method for S3-style UseMethod dispatch. This is needed
since methods in packages that are imported but not on the search path might not be
visible to the standard dispatch mechanism at a call site. The first argument is the name
of the generic, the second specifies the class. The third argument is optional and defaults
to the usual concatenation of generic and class separated by a period. If supplied, the
third argument should evaluate to a character string or a function. If the third argument is
omitted or a character string is supplied, then a function by that name must be defined. If
a function is supplied, it is used as the method. When the method is specified as a name,
explicitly or implicitly, the function lookup is handled lazily; this allows the definition to
occur after the .S3method declaration and also integrates with possible data base storage
of package code.



458 ns-dblcolon

Author(s)

Luke Tierney

Examples

## Not run:

## code for package/name space 'foo'

x <- 1

f <- function(y) c(x,y)

print.foo <- function(x, ...) cat("<a foo>\n")

.Export(f)

S3method(print,foo)

## code for package/name space 'bar'

.Import(foo)

c <- function(...) sum(...)

g <- function(y) f(c(y, 7))

h <- function(y) y+9

.Export(g, h)

## End(Not run)

ns-dblcolon Double Colon and Triple Colon Operators

Description

Accessing exported and internal variables in a name space.

Usage

pkg::name
pkg:::name

Arguments

pkg package name symbol or literal character string.

name variable name symbol or literal character string.

Details

The expression pkg::name returns the value of the exported variable name in package pkg if
the package has a name space. The expression pkg:::name returns the value of the internal
variable name in package pkg if the package has a name space. The package will be loaded
if it was not loaded already before the call. Assignment into name spaces is not supported.

Examples

base::log

base::"+"



ns-internals 459

ns-internals Name Space Internals

Description

Internal name space support functions. Not intended to be called directly.

Usage

asNamespace(ns, base.OK = TRUE)
getNamespaceInfo(ns, which)
importIntoEnv(impenv, impnames, expenv, expnames)
isBaseNamespace(ns)
namespaceExport(ns, vars)
namespaceImport(self, ...)
namespaceImportFrom(self, ns, vars)
namespaceImportClasses(self, ns, vars)
namespaceImportMethods(self, ns, vars)
packageHasNamespace(package, package.lib)
parseNamespaceFile(package, package.lib, mustExist = TRUE)
registerS3method(genname, class, method, envir = parent.frame())
setNamespaceInfo(ns, which, val)
.mergeExportMethods(new, ns)

Arguments

ns string or name space environment.

base.OK logical.

impenv environment.

expenv name space environment.

vars character vector.

self name space environment.

package string naming the package/name space to load.

package.lib character vector specifying library.

mustExist logical.

genname character.

class character.

envir environment.

which character.

val any object.

... character arguments.

Author(s)

Luke Tierney



460 ns-lowlev

ns-lowlev Low Level Name Space Support Functions

Description

Low level name space support functions.

Usage

attachNamespace(ns, pos = 2)
loadNamespace(package, lib.loc = NULL,

keep.source = getOption("keep.source.pkgs"),
partial = FALSE, declarativeOnly = FALSE)

loadedNamespaces()
unloadNamespace(ns)
loadingNamespaceInfo()
saveNamespaceImage(package, rdafile, lib.loc = NULL,

keep.source = getOption("keep.source.pkgs"))

Arguments

ns string or namespace object.

pos integer specifying position to attach.

package string naming the package/name space to load.

lib.loc character vector specifying library search path.

keep.source logical specifying whether to retain source.

partial logical; if true, stop just after laoding code.
declarativeOnly

logical; disables .Import, etc, if true.

Details

The functions loadNamespace and attachNamespace are usually called implicitly when
library is used to load a name space and any imports needed. However it may be useful
to call these functions directly at times.

loadNamespace loads the specified name space and registers it in an internal data base. A
request to load a name space that is already loaded has no effect. The arguments have the
same meaning as the corresponding arguments to library. After loading, loadNamespace
looks for a hook function named .onLoad as an internal variable in the name space (it
should not be exported). This function is called with the same arguments as .First.lib.
Partial loading is used so support installation with the ‘--save’ option.

loadNamespace does not attach the name space it loads to the search path.
attachNamespace can be used to attach a frame containing the exported values of a name
space to the search path. The hook function .onAttach is run after the name space exports
are attached, but this is not likely to be useful. Shared library loading and setting of options
should be handled at load time by the .onLoad hook.

loadedNamespaces returns a character vector of the names of the loaded name spaces.

unloadNamespace can be used to force a name space to be unloaded. An error is signaled
if the name space is imported by other loaded name spaces. If defined, a hook function



ns-reflect.Rd 461

.onUnload, analogous to .Last.lib, is run before removing the name space from the
internal registry. unloadNamespace will first detach a package of the same name if one is
on the path, thereby running a .Last.lib function in the package if one is exported.

loadingNamespaceInfo returns a list of the arguments that would be passed to .onLoad
when a name space is being loaded. An error is signaled of a name space is not currently
being loaded.

saveNamespaceImage is used to save name space images for packages installed with
‘--save’.

Author(s)

Luke Tierney

ns-reflect.Rd Name Space Reflection Support

Description

Functions to support reflection on name space objects.

Usage

getExportedValue(ns, name)
getNamespace(name)
getNamespaceExports(ns)
getNamespaceImports(ns)
getNamespaceName(ns)
getNamespaceUsers(ns)
getNamespaceVersion(ns)

Arguments

ns string or name space object.
name string or name.

Details

getExportedValue returns the value of the exported variable name in name space ns.

getNamespace returns the environment representing the name space name. The name space
is loaded if necessary.

getNamespaceExports returns a character vector of the names exported by ns.

getNamespaceImports returns a representation of the imports used by name space ns. This
representation is experimental and subject to change.

getNamespaceName and getNamespaceVersion return the name and version of the name
space ns.

getNamespaceUsers returns a character vector of the names of the name spaces that import
name space ns.

Author(s)

Luke Tierney



462 nsl

ns-topenv Top Level Environment

Description

Finding the top level environment.

Usage

topenv(envir = parent.frame(), matchThisEnv = getOption("topLevelEnvironment"))

Arguments

envir environment.

matchThisEnv return this environment, if it matches before any other criterion is
satisfied. The default, the option “topLevelEnvironment”, is set by
sys.source, which treats a specific environment as the top level envi-
ronment. Supplying the argument as NULL means it will never match.

Details

topenv returns the first top level environment found when searching envir and its parent
environments. An environment is considered top level if it is the internal environment of a
name space, a package environment in the search path, or .GlobalEnv.

Examples

topenv(.GlobalEnv)

topenv(new.env())

nsl Look up the IP Address by Hostname

Description

Interface to gethostbyname.

Usage

nsl(hostname)

Arguments

hostname the name of the host.

Value

The IP address, as a character string, or NULL if the call fails.



NULL 463

Note

This was included as a test of internet connectivity, to fail if the node running R is not
connected. It will also return NULL if BSD networking is not supported, including the header
file ‘arpa/inet.h’.

Examples

## Not run: nsl("www.r-project.org")

NULL The Null Object

Description

NULL represents the null object in R. NULL is used mainly to represent the lists with zero
length, and is often returned by expressions and functions whose value is undefined.

as.null ignores its argument and returns the value NULL.

is.null returns TRUE if its argument is NULL and FALSE otherwise.

Usage

NULL
as.null(x, ...)
is.null(x)

Arguments

x an object to be tested or coerced.

... ignored.

Details

is.null is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

is.null(list()) # FALSE (on purpose!)

is.null(integer(0))# F

is.null(logical(0))# F

as.null(list(a=1,b='c'))



464 numeric

numeric Numeric Vectors

Description

numeric creates a real vector of the specified length. The elements of the vector are all
equal to 0.

as.numeric attempts to coerce its argument to numeric type (either integer or real).

is.numeric returns TRUE if its argument is of type real or type integer and FALSE otherwise.

Usage

numeric(length = 0)
as.numeric(x, ...)
is.numeric(x)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Details

is.numeric is generic: you can write methods to handle of specific classes of objects, see
InternalMethods.

Note that factors are false for is.numeric but true for is.integer.

Note

R has no single precision data type. All real numbers are stored in double precision format.
While as.numeric is a generic function, user methods must be written for as.double,
which it calls

as.numeric for factors yields the codes underlying the factor levels, not the numeric rep-
resentation of the labels.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

as.numeric(c("-.1"," 2.7 ","B")) # (-0.1, 2.7, NA) + warning

as.numeric(factor(5:10))



object.size 465

object.size Report the Space Allocated for an Object

Description

Provides an estimate of the memory that is being used to store an R object.

Usage

object.size(x)

Arguments

x An R object.

Details

Exactly which parts of the memory allocation should be attributed to which object is not
clear-cut. This function merely provides a rough indication. For example, it will not detect
if character storage for character strings are shared between identical elements (which it
will be if rep was used, for example).

The calculation is of the size of the object, and excludes the space needed to store its name
in the symbol table.

Value

An estimate of the memory allocation attributable to the object, in bytes.

Examples

object.size(letters)

object.size(ls)

## find the 10 largest objects in base

z <- sapply(ls("package:base"), function(x) object.size(get(x, envir=NULL)))

as.matrix(rev(sort(z))[1:10])

octmode Display Numbers in Octal

Description

Convert or print integers in octal format, with as many digits as are needed to display the
largest, using leading zeroes as necessary.

Usage

## S3 method for class 'octmode':
as.character(x, ...)
## S3 method for class 'octmode':
format(x, ...)
## S3 method for class 'octmode':
print(x, ...)



466 offset

Arguments

x An object inheriting from class "octmode".

... further arguments passed to or from other methods.

Details

Class "octmode" consists of integer vectors with that class attribute, used merely to ensure
that they are printed in octal notation, specifically for Unix-like file permissions such as
755.

See Also

These are auxiliary functions for file.info

offset Include an Offset in a Model Formula

Description

An offset is a term to be added to a linear predictor, such as in a generalised linear model,
with known coefficient 1 rather than an estimated coefficient.

Usage

offset(object)

Arguments

object An offset to be included in a model frame

Value

The input value.

See Also

model.offset, model.frame.

For examples see glm, Insurance.



on.exit 467

on.exit Function Exit Code

Description

on.exit records the expression given as its argument as needing to be executed when the
current function exits (either naturally or as the result of an error). This is useful for
resetting graphical parameters or performing other cleanup actions.

If no expression is provided, i.e., the call is on.exit(), then the current on.exit code is
removed.

Usage

on.exit(expr, add = FALSE)

Arguments

expr an expression to be executed.

add if TRUE, add expr to be executed after any previously set expressions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

sys.on.exit to see the current expression.

Examples

opar <- par(mai = c(1,1,1,1))

on.exit(par(opar))

optim General-purpose Optimization

Description

General-purpose optimization based on Nelder–Mead, quasi-Newton and conjugate-gradient
algorithms. It includes an option for box-constrained optimization and simulated annealing.

Usage

optim(par, fn, gr = NULL,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE, ...)



468 optim

Arguments

par Initial values for the parameters to be optimized over.
fn A function to be minimized (or maximized), with first argument the vector

of parameters over which minimization is to take place. It should return
a scalar result.

gr A function to return the gradient for the "BFGS", "CG" and "L-BFGS-B"
methods. If it is NULL, a finite-difference approximation will be used.
For the "SANN" method it specifies a function to generate a new candidate
point. If it is NULL a default Gaussian Markov kernel is used.

method The method to be used. See Details.
lower, upper Bounds on the variables for the "L-BFGS-B" method.
control A list of control parameters. See Details.
hessian Logical. Should a numerically differentiated Hessian matrix be returned?
... Further arguments to be passed to fn and gr.

Details

By default this function performs minimization, but it will maximize if control$fnscale
is negative.

The default method is an implementation of that of Nelder and Mead (1965), that uses
only function values and is robust but relatively slow. It will work reasonably well for
non-differentiable functions.

Method "BFGS" is a quasi-Newton method (also known as a variable metric algorithm),
specifically that published simultaneously in 1970 by Broyden, Fletcher, Goldfarb and
Shanno. This uses function values and gradients to build up a picture of the surface to
be optimized.

Method "CG" is a conjugate gradients method based on that by Fletcher and Reeves (1964)
(but with the option of Polak–Ribiere or Beale–Sorenson updates). Conjugate gradient
methods will generally be more fragile that the BFGS method, but as they do not store a
matrix they may be successful in much larger optimization problems.

Method "L-BFGS-B" is that of Byrd et. al. (1994) which allows box constraints, that is
each variable can be given a lower and/or upper bound. The initial value must satisfy the
constraints. This uses a limited-memory modification of the BFGS quasi-Newton method.
If non-trivial bounds are supplied, this method will be selected, with a warning.

Nocedal and Wright (1999) is a comprehensive reference for the previous three methods.

Method "SANN" is by default a variant of simulated annealing given in Belisle (1992).
Simulated-annealing belongs to the class of stochastic global optimization methods. It
uses only function values but is relatively slow. It will also work for non-differentiable func-
tions. This implementation uses the Metropolis function for the acceptance probability. By
default the next candidate point is generated from a Gaussian Markov kernel with scale
proportional to the actual temperature. If a function to generate a new candidate point
is given, method "SANN" can also be used to solve combinatorial optimization problems.
Temperatures are decreased according to the logarithmic cooling schedule as given in Belisle
(1992, p. 890). Note that the "SANN" method depends critically on the settings of the con-
trol parameters. It is not a general-purpose method but can be very useful in getting to a
good value on a very rough surface.

Function fn can return NA or Inf if the function cannot be evaluated at the supplied value,
but the initial value must have a computable finite value of fn. (Except for method "L-
BFGS-B" where the values should always be finite.)



optim 469

optim can be used recursively, and for a single parameter as well as many.

The control argument is a list that can supply any of the following components:

trace Non-negative integer. If positive, tracing information on the progress of the op-
timization is produced. Higher values may produce more tracing information: for
method "L-BFGS-B" there are six levels of tracing. (To understand exactly what these
do see the source code: higher levels give more detail.)

fnscale An overall scaling to be applied to the value of fn and gr during optimization. If
negative, turns the problem into a maximization problem. Optimization is performed
on fn(par)/fnscale.

parscale A vector of scaling values for the parameters. Optimization is performed on
par/parscale and these should be comparable in the sense that a unit change in any
element produces about a unit change in the scaled value.

ndeps A vector of step sizes for the finite-difference approximation to the gradient, on
par/parscale scale. Defaults to 1e-3.

maxit The maximum number of iterations. Defaults to 100 for the derivative-based meth-
ods, and 500 for "Nelder-Mead". For "SANN" maxit gives the total number of function
evaluations. There is no other stopping criterion. Defaults to 10000.

abstol The absolute convergence tolerance. Only useful for non-negative functions, as a
tolerance for reaching zero.

reltol Relative convergence tolerance. The algorithm stops if it is unable to reduce
the value by a factor of reltol * (abs(val) + reltol) at a step. Defaults to
sqrt(.Machine$double.eps), typically about 1e-8.

alpha, beta, gamma Scaling parameters for the "Nelder-Mead" method. alpha is the re-
flection factor (default 1.0), beta the contraction factor (0.5) and gamma the expansion
factor (2.0).

REPORT The frequency of reports for the "BFGS" and "L-BFGS-B" methods if
control$trace is positive. Defaults to every 10 iterations.

type for the conjugate-gradients method. Takes value 1 for the Fletcher–Reeves update, 2
for Polak–Ribiere and 3 for Beale–Sorenson.

lmm is an integer giving the number of BFGS updates retained in the "L-BFGS-B" method,
It defaults to 5.

factr controls the convergence of the "L-BFGS-B" method. Convergence occurs when the
reduction in the objective is within this factor of the machine tolerance. Default is
1e7, that is a tolerance of about 1e-8.

pgtol helps controls the convergence of the "L-BFGS-B" method. It is a tolerance on the
projected gradient in the current search direction. This defaults to zero, when the
check is suppressed.

temp controls the "SANN" method. It is the starting temperature for the cooling schedule.
Defaults to 10.

tmax is the number of function evaluations at each temperature for the "SANN" method.
Defaults to 10.

Value

A list with components:

par The best set of parameters found.

value The value of fn corresponding to par.



470 optim

counts A two-element integer vector giving the number of calls to fn and gr
respectively. This excludes those calls needed to compute the Hessian, if
requested, and any calls to fn to compute a finite-difference approximation
to the gradient.

convergence An integer code. 0 indicates successful convergence. Error codes are

1 indicates that the iteration limit maxit had been reached.
10 indicates degeneracy of the Nelder–Mead simplex.
51 indicates a warning from the "L-BFGS-B" method; see component

message for further details.
52 indicates an error from the "L-BFGS-B" method; see component

message for further details.

message A character string giving any additional information returned by the op-
timizer, or NULL.

hessian Only if argument hessian is true. A symmetric matrix giving an estimate
of the Hessian at the solution found. Note that this is the Hessian of the
unconstrained problem even if the box constraints are active.

Note

optim will work with one-dimensional pars, but the default method does not work well
(and will warn). Use optimize instead.

The code for methods "Nelder-Mead", "BFGS" and "CG" was based originally on Pascal
code in Nash (1990) that was translated by p2c and then hand-optimized. Dr Nash has
agreed that the code can be made freely available.

The code for method "L-BFGS-B" is based on Fortran code by Zhu, Byrd, Lu-Chen and
Nocedal obtained from Netlib (file ‘opt/lbfgs bcm.shar’: another version is in ‘toms/778’).

The code for method "SANN" was contributed by A. Trapletti.

References

Belisle, C. J. P. (1992) Convergence theorems for a class of simulated annealing algorithms
on Rd. J Applied Probability, 29, 885–895.

Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995) A limited memory algorithm for bound
constrained optimization. SIAM J. Scientific Computing, 16, 1190–1208.

Fletcher, R. and Reeves, C. M. (1964) Function minimization by conjugate gradients. Com-
puter Journal 7, 148–154.

Nash, J. C. (1990) Compact Numerical Methods for Computers. Linear Algebra and Func-
tion Minimisation. Adam Hilger.

Nelder, J. A. and Mead, R. (1965) A simplex algorithm for function minimization. Computer
Journal 7, 308–313.

Nocedal, J. and Wright, S. J. (1999) Numerical Optimization. Springer.

See Also

nlm, optimize, constrOptim



optim 471

Examples

fr <- function(x) { ## Rosenbrock Banana function

x1 <- x[1]

x2 <- x[2]

100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}

grr <- function(x) { ## Gradient of 'fr'

x1 <- x[1]

x2 <- x[2]

c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

200 * (x2 - x1 * x1))

}

optim(c(-1.2,1), fr)

optim(c(-1.2,1), fr, grr, method = "BFGS")

optim(c(-1.2,1), fr, NULL, method = "BFGS", hessian = TRUE)

optim(c(-1.2,1), fr, grr, method = "CG")

optim(c(-1.2,1), fr, grr, method = "CG", control=list(type=2))

optim(c(-1.2,1), fr, grr, method = "L-BFGS-B")

flb <- function(x)

{ p <- length(x); sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) }

## 25-dimensional box constrained

optim(rep(3, 25), flb, NULL, "L-BFGS-B",

lower=rep(2, 25), upper=rep(4, 25)) # par[24] is *not* at boundary

## "wild" function , global minimum at about -15.81515

fw <- function (x)

10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80

plot(fw, -50, 50, n=1000, main = "optim() minimising 'wild function'")

res <- optim(50, fw, method="SANN",

control=list(maxit=20000, temp=20, parscale=20))

res

## Now improve locally

(r2 <- optim(res$par, fw, method="BFGS"))

points(r2$par, r2$val, pch = 8, col = "red", cex = 2)

## Combinatorial optimization: Traveling salesman problem

library(mva) # normally loaded

library(ts) # for embed, normally loaded

data(eurodist)

eurodistmat <- as.matrix(eurodist)

distance <- function(sq) { # Target function

sq2 <- embed(sq, 2)

return(sum(eurodistmat[cbind(sq2[,2],sq2[,1])]))

}

genseq <- function(sq) { # Generate new candidate sequence

idx <- seq(2, NROW(eurodistmat)-1, by=1)

changepoints <- sample(idx, size=2, replace=FALSE)

tmp <- sq[changepoints[1]]

sq[changepoints[1]] <- sq[changepoints[2]]

sq[changepoints[2]] <- tmp

return(sq)



472 optimize

}

sq <- c(1,2:NROW(eurodistmat),1) # Initial sequence

distance(sq)

set.seed(2222) # chosen to get a good soln quickly

res <- optim(sq, distance, genseq, method="SANN",

control = list(maxit=6000, temp=2000, trace=TRUE))

res # Near optimum distance around 12842

loc <- cmdscale(eurodist)

rx <- range(x <- loc[,1])

ry <- range(y <- -loc[,2])

tspinit <- loc[sq,]

tspres <- loc[res$par,]

s <- seq(NROW(tspres)-1)

plot(x, y, type="n", asp=1, xlab="", ylab="",

main="initial solution of traveling salesman problem")

arrows(tspinit[s,1], -tspinit[s,2], tspinit[s+1,1], -tspinit[s+1,2],

angle=10, col="green")

text(x, y, names(eurodist), cex=0.8)

plot(x, y, type="n", asp=1, xlab="", ylab="",

main="optim() 'solving' traveling salesman problem")

arrows(tspres[s,1], -tspres[s,2], tspres[s+1,1], -tspres[s+1,2],

angle=10, col="red")

text(x, y, names(eurodist), cex=0.8)

optimize One Dimensional Optimization

Description

The function optimize searches the interval from lower to upper for a minimum or maxi-
mum of the function f with respect to its first argument.

optimise is an alias for optimize.

Usage

optimize(f = , interval = , lower = min(interval),
upper = max(interval), maximum = FALSE,
tol = .Machine$double.eps^0.25, ...)

optimise(f = , interval = , lower = min(interval),
upper = max(interval), maximum = FALSE,
tol = .Machine$double.eps^0.25, ...)

Arguments

f the function to be optimized. The function is either minimized or maxi-
mized over its first argument depending on the value of maximum.

interval a vector containing the end-points of the interval to be searched for the
minimum.



optimize 473

lower the lower end point of the interval to be searched.

upper the upper end point of the interval to be searched.

maximum logical. Should we maximize or minimize (the default)?

tol the desired accuracy.

... additional arguments to f.

Details

The method used is a combination of golden section search and successive parabolic inter-
polation. Convergence is never much slower than that for a Fibonacci search. If f has a
continuous second derivative which is positive at the minimum (which is not at lower or
upper), then convergence is superlinear, and usually of the order of about 1.324.

The function f is never evaluated at two points closer together than ε|x0| + (tol/3),
where ε is approximately sqrt(.Machine$double.eps) and x0 is the final abscissa
optimize()$minimum.
If f is a unimodal function and the computed values of f are always unimodal when sepa-
rated by at least ε |x| + (tol/3), then x0 approximates the abcissa of the global minimum
of f on the interval lower,upper with an error less than ε|x0|+ tol.
If f is not unimodal, then optimize() may approximate a local, but perhaps non-global,
minimum to the same accuracy.

The first evaluation of f is always at x1 = a + (1 − φ)(b − a) where (a,b) = (lower,
upper) and φ = (

√
5 − 1)/2 = 0.61803.. is the golden section ratio. Almost always, the

second evaluation is at x2 = a+φ(b− a). Note that a local minimum inside [x1, x2] will be
found as solution, even when f is constant in there, see the last example.

It uses a C translation of Fortran code (from Netlib) based on the Algol 60 procedure
localmin given in the reference.

Value

A list with components minimum (or maximum) and objective which give the location of
the minimum (or maximum) and the value of the function at that point.

References

Brent, R. (1973) Algorithms for Minimization without Derivatives. Englewood Cliffs N.J.:
Prentice-Hall.

See Also

nlm, uniroot.

Examples

f <- function (x,a) (x-a)^2

xmin <- optimize(f, c(0, 1), tol = 0.0001, a = 1/3)

xmin

## See where the function is evaluated:

optimize(function(x) x^2*(print(x)-1), l=0, u=10)

## "wrong" solution with unlucky interval and piecewise constant f():

f <- function(x) ifelse(x > -1, ifelse(x < 4, exp(-1/abs(x - 1)), 10), 10)

fp <- function(x) { print(x); f(x) }



474 options

plot(f, -2,5, ylim = 0:1, col = 2)

optimize(fp, c(-4, 20))# doesn't see the minimum

optimize(fp, c(-7, 20))# ok

options Options Settings

Description

Allow the user to set and examine a variety of global “options” which affect the way in
which R computes and displays its results.

Usage

options(...)
getOption(x)
.Options

Arguments

... any options can be defined, using name = value.
However, only the ones below are used in “base R”.
Further, options(’name’) == options()[’name’], see the example.

x a character string holding an option name.

Details

Invoking options() with no arguments returns a list with the current values of the options.
Note that not all options listed below are set initially. To access the value of a single option,
one should use getOption("width"), e.g., rather than options("width") which is a list
of length one.

.Options also always contains the options() list, for S compatibility. You must use it
“read only” however.

Value

For options, a list (in any case) with the previous values of the options changed, or all
options when no arguments were given.

Options used in base R

prompt: a string, used for R’s prompt; should usually end in a blank (" ").

continue: a string setting the prompt used for lines which continue over one line.

width: controls the number of characters on a line. You may want to change this if you
re-size the window that R is running in. Valid values are 10. . . 10000 with default
normally 80. (The valid values are in file ‘Print.h’ and can be changed by re-compiling
R.)

digits: controls the number of digits to print when printing numeric values. It is a sug-
gestion only. Valid values are 1. . . 22 with default 7. See print.default.



options 475

editor: sets the default text editor, e.g., for edit. Set from the environment variable
VISUAL on UNIX.

pager: the (stand-alone) program used for displaying ASCII files on R’s console, also used
by file.show and sometimes help. Defaults to ‘$R HOME/bin/pager’.

browser: default HTML browser used by help.start() on UNIX, or a non-default browser
on Windows.

pdfviewer: default PDF viewer. Set from the environment variable R_PDFVIEWER.
mailer: default mailer used by bug.report(). Can be "none".
contrasts: the default contrasts used in model fitting such as with aov or lm. A character

vector of length two, the first giving the function to be used with unordered factors
and the second the function to be used with ordered factors.

defaultPackages: the packages that are attached by default when R starts up. Ini-
tially set from value of the environment variables R_DefaultPackages, or if
that is unset to c("ts", "nls", "modreg", "mva", "ctest", "methods"). (Set
R_DEFAULT_PACKAGES to NULL or a comma-separated list of package names.) A call to
options should be in your ‘.Rprofile’ file to ensure that the change takes effect before
the base package is initialized (see Startup).

expressions: sets a limit on the number of nested expressions that will be evaluated. Valid
values are 25. . . 100000 with default 500.

keep.source: When TRUE, the source code for functions (newly defined or loaded) is stored
in their "source" attribute (see attr) allowing comments to be kept in the right places.
The default is interactive(), i.e., TRUE for interactive use.

keep.source.pkgs: As for keep.source, for functions in packages loaded by library or
require. Defaults to FALSE unless the environment variable R_KEEP_PKG_SOURCE is
set to yes.

na.action: the name of a function for treating missing values (NA’s) for certain situations.
papersize: the default paper format used by postscript; set by environment variable

R_PAPERSIZE when R is started and defaulting to "a4" if that is unset or invalid.
printcmd: the command used by postscript for printing; set by environment variable

R_PRINTCMD when R is started. This should be a command that expects either input
to be piped to ‘stdin’ or to be given a single filename argument.

latexcmd, dvipscmd: character strings giving commands to be used in off-line printing of
help pages.

show.signif.stars, show.coef.Pvalues: logical, affecting P value printing, see
print.coefmat.

ts.eps: the relative tolerance for certain time series (ts) computations.
error: either a function or an expression governing the handling of non-catastrophic errors

such as those generated by stop as well as by signals and internally detected errors. If
the option is a function, a call to that function, with no arguments, is generated as the
expression. The default value is NULL: see stop for the behaviour in that case. The
function dump.frames provides one alternative that allows post-mortem debugging.

show.error.messages: a logical. Should error messages be printed? Intended for use with
try or a user-installed error handler.

warn: sets the handling of warning messages. If warn is negative all warnings are ignored.
If warn is zero (the default) warnings are stored until the top–level function returns.
If fewer than 10 warnings were signalled they will be printed otherwise a message
saying how many (max 50) were signalled. A top–level variable called last.warning
is created and can be viewed through the function warnings. If warn is one, warnings
are printed as they occur. If warn is two or larger all warnings are turned into errors.



476 options

warning.length: sets the truncation limit for error and warning messages. A non-negative
integer, with allowed values 100–8192, default 1000.

warning.expression: an R code expression to be called if a warning is generated, replacing
the standard message. If non-null is called irrespective of the value of option warn.

check.bounds: logical, defaulting to FALSE. If true, a warning is produced whenever a
“generalized vector” (atomic or list) is extended, by something like x <- 1:3; x[5]
<- 6.

echo: logical. Only used in non-interactive mode, when it controls whether input is echoed.
Command-line option ‘-slave’ sets this initially to FALSE.

verbose: logical. Should R report extra information on progress? Set to TRUE by the
command-line option ‘-verbose’.

device: a character string giving the default device for that session. This defaults to
the normal screen device (e.g., x11, windows or gtk) for an interactive session, and
postscript in batch use or if a screen is not available.

X11colortype: The default colour type for X11 devices.

CRAN: The URL of the preferred CRAN node for use by update.packages. Defaults to
http://cran.r-project.org.

download.file.method: Method to be used for download.file. Currently download
methods "internal", "wget" and "lynx" are available. There is no default for this
option, when method = "auto" is chosen: see download.file.

unzip: the command used for unzipping help files. Defaults to the value of R_UNZIPCMD,
which is set in ‘etc/Renviron’ if an unzip command was found during configuration.

de.cellwidth: integer: the cell widths (number of characters) to be used in the data editor
dataentry. If this is unset, 0, negative or NA, variable cell widths are used.

encoding: An integer vector of length 256 holding an input encoding. Defaults to
native.enc (= 0:255). See connections.

timeout: integer. The timeout for some Internet operations, in seconds. Default 60 sec-
onds. See download.file and connections.

internet.info: The minimum level of information to be printed on URL downloads etc.
Default is 2, for failure causes. Set to 1 or 0 to get more information.

scipen: integer. A penalty to be applied when deciding to print numeric values in fixed or
exponential notation. Positive values bias towards fixed and negative towards scientific
notation: fixed notation will be preferred unless it is more than scipen digits wider.

locatorBell: logical. Should selection in locator and identify be confirmed by a bell.
Default TRUE. Honoured at least on X11 and windows devices.

The default settings of some of these options are

prompt "> " continue "+ "
width 80 digits 7
expressions 500 keep.source TRUE
show.signif.stars TRUE show.coef.Pvalues TRUE
na.action na.omit ts.eps 1e-5
error NULL show.error.messags TRUE
warn 0 warning.length 1000
echo TRUE verbose FALSE
scipen 0 locatorBell TRUE

http://cran.r-project.org


OrchardSprays 477

Others are set from environment variables or are platform-dependent.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

options() # printing all current options

op <- options(); str(op) # nicer printing

# .Options is the same:

all(sapply(1:length(op), function(i) all(.Options[[i]] == op[[i]])))

options('width')[[1]] == options()$width # the latter needs more memory

options(digits=20)

pi

# set the editor, and save previous value

old.o <- options(editor="nedit")

old.o

options(check.bounds = TRUE)

x <- NULL; x[4] <- "yes" # gives a warning

options(digits=5)

print(1e5)

options(scipen=3); print(1e5)

options(op) # reset (all) initial options

options('digits')

## Not run:

## set contrast handling to be like S

options(contrasts=c("contr.helmert", "contr.poly"))

## End(Not run)

## Not run:

## on error, terminate the R session with error status 66

options(error=quote(q("no", status=66, runLast=FALSE)))

stop("test it")

## End(Not run)

## Not run:

## set an error action for debugging: see ?debugger.

options(error=dump.frames)

## A possible setting for non-interactive sessions

options(error=quote({dump.frames(to.file=TRUE); q()}))

## End(Not run)

OrchardSprays Potency of Orchard Sprays

Description

An experiment was conducted to assess the potency of various constituents of orchard sprays
in repelling honeybees, using a Latin square design.



478 order

Usage

data(OrchardSprays)

Format

A data frame with 64 observations on 4 variables.

[,1] rowpos numeric Row of the design
[,2] colpos numeric Column of the design
[,3] treatment factor Treatment level
[,4] decrease numeric Response

Details

Individual cells of dry comb were filled with measured amounts of lime sulphur emulsion in
sucrose solution. Seven different concentrations of lime sulphur ranging from a concentration
of 1/100 to 1/1,562,500 in successive factors of 1/5 were used as well as a solution containing
no lime sulphur.

The responses for the different solutions were obtained by releasing 100 bees into the cham-
ber for two hours, and then measuring the decrease in volume of the solutions in the various
cells.

An 8× 8 Latin square design was used and the treatments were coded as follows:

A highest level of lime sulphur
B next highest level of lime sulphur
.
.
.

G lowest level of lime sulphur
H no lime sulphur

Source

Finney, D. J. (1947) Probit Analysis. Cambridge.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(OrchardSprays)

pairs(OrchardSprays, main = "OrchardSprays data")

order Ordering Permutation

Description

order returns a permutation which rearranges its first argument into ascending or descend-
ing order, breaking ties by further arguments. sort.list is the same, using only one
argument.



order 479

Usage

order(..., na.last = TRUE, decreasing = FALSE)

sort.list(x, partial = NULL, na.last = TRUE, decreasing = FALSE,
method = c("shell", "quick", "radix"))

Arguments

... a sequence of vectors, all of the same length.

x a vector.

partial vector of indices for partial sorting.

decreasing logical. Should the sort order be increasing or decreasing?

na.last for controlling the treatment of NAs. If TRUE, missing values in the data
are put last; if FALSE, they are put first; if NA, they are removed.

method the method to be used: partial matches are allowed.

Details

In the case of ties in the first vector, values in the second are used to break the ties. If the
values are still tied, values in the later arguments are used to break the tie (see the first
example). The sort used is stable (except for method = "quick"), so any unresolved ties
will be left in their original ordering.

The default method for sort.list is a good compromise. Method "quick" is only sup-
ported for numeric x with na.last=NA, and is not stable, but will be faster for long vectors.
Method "radix" is only implemented for integer x with a range of less than 100,000. For
such x it is very fast (and stable), and hence is ideal for sorting factors.

partial is supplied for compatibility with other implementations of S, but no other values
are accepted and ordering is always complete.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

sort and rank.

Examples

(ii <- order(x <- c(1,1,3:1,1:4,3), y <- c(9,9:1), z <-c(2,1:9)))

## 6 5 2 1 7 4 10 8 3 9

rbind(x,y,z)[,ii] # shows the reordering (ties via 2nd & 3rd arg)

## Suppose we wanted descending order on y. A simple solution is

rbind(x,y,z)[, order(x, -y, z)]

## For character vectors we can make use of rank:

cy <- as.character(y)

rbind(x,y,z)[, order(x, -rank(y), z)]

## rearrange matched vectors so that the first is in ascending order

x <- c(5:1, 6:8, 12:9)



480 outer

y <- (x - 5)^2

o <- order(x)

rbind(x[o], y[o])

## tests of na.last

a <- c(4, 3, 2, NA, 1)

b <- c(4, NA, 2, 7, 1)

z <- cbind(a, b)

(o <- order(a, b)); z[o, ]

(o <- order(a, b, na.last = FALSE)); z[o, ]

(o <- order(a, b, na.last = NA)); z[o, ]

## Not run:

## speed examples for long vectors: timings are immediately after gc()

x <- factor(sample(letters, 1e6, replace=TRUE))

system.time(o <- sort.list(x)) ## 4 secs

stopifnot(!is.unsorted(x[o]))

system.time(o <- sort.list(x, method="quick", na.last=NA)) # 0.4 sec

stopifnot(!is.unsorted(x[o]))

system.time(o <- sort.list(x, method="radix")) # 0.04 sec

stopifnot(!is.unsorted(x[o]))

xx <- sample(1:26, 1e7, replace=TRUE)

system.time(o <- sort.list(xx, method="radix")) # 0.4 sec

xx <- sample(1:100000, 1e7, replace=TRUE)

system.time(o <- sort.list(xx, method="radix")) # 4 sec

## End(Not run)

outer Outer Product of Arrays

Description

The outer product of the arrays X and Y is the array A with dimension c(dim(X),
dim(Y)) where element A[c(arrayindex.x, arrayindex.y)] = FUN(X[arrayindex.x],
Y[arrayindex.y], ...).

Usage

outer(X, Y, FUN="*", ...)
X %o% Y

Arguments

X A vector or array.
Y A vector or array.
FUN a function to use on the outer products, it may be a quoted string.
... optional arguments to be passed to FUN.

Details

FUN must be a function (or the name of it) which expects at least two arguments and which
operates elementwise on arrays.
Where they exist, the [dim]names of X and Y will be preserved.
%o% is an alias for outer (where FUN cannot be changed from "*").



p.adjust 481

Author(s)

Jonathan Rougier

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

%*% for usual (inner) matrix vector multiplication; kronecker which is based on outer.

Examples

x <- 1:9; names(x) <- x

# Multiplication & Power Tables

x %o% x

y <- 2:8; names(y) <- paste(y,":",sep="")

outer(y, x, "^")

outer(month.abb, 1999:2003, FUN = "paste")

## three way multiplication table:

x %o% x %o% y[1:3]

p.adjust Adjust p-values for multiple comparisons

Description

Given a set of p-values, returns p-values adjusted using one of several methods.

Usage

p.adjust(p, method=p.adjust.methods, n=length(p))

p.adjust.methods

Arguments

p vector of p-values

method correction method

n number of comparisons

Details

The adjustment methods include the Bonferroni correction ("bonferroni") in which the
p-values are multiplied by the number of comparisons. Four less conservative corrections
are also included by Holm (1979) ("holm"), Hochberg (1988) ("hochberg"), Hommel (1988)
("hommel") and Benjamini & Hochberg (1995) ("fdr"), respectively. A pass-through option
("none") is also included. The set of methods are contained in the p.adjust.methods vector



482 p.adjust

for the benefit of methods that need to have the method as an option and pass it on to
p.adjust.

The first four methods are designed to give strong control of the family wise error rate.
There seems no reason to use the unmodified Bonferroni correction because it is dominated
by Holm’s method, which is also valid under arbitrary assumptions.

Hochberg’s and Hommel’s methods are valid when the hypothesis tests are independent or
when they are non-negatively associated (Sarkar, 1998; Sarkar and Chang, 1997). Hommel’s
method is more powerful than Hochberg’s, but the difference is usually small and the
Hochberg p-values are faster to compute.

The "fdr" method of Benjamini and Hochberg (1995) controls the false discovery rate,
the expected proportion of false discoveries amongst the rejected hypotheses. The false
discovery rate is a less stringent condition than the family wise error rate, so Benjamini
and Hochberg’s method is more powerful than the other methods.

Value

A vector of corrected p-values.

References

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal Statistical Society Series
B, 57, 289–300.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics, 6, 65–70.

Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified
Bonferroni test. Biometrika, 75, 383–386.

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance.
Biometrika, 75, 800–803.

Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology, 46, 561–
576. (An excellent review of the area.)

Sarkar, S. (1998). Some probability inequalities for ordered MTP2 random variables: a
proof of Simes conjecture. Annals of Statistics, 26, 494–504.

Sarkar, S., and Chang, C. K. (1997). Simes’ method for multiple hypothesis testing with
positively dependent test statistics. Journal of the American Statistical Association, 92,
1601–1608.

Wright, S. P. (1992). Adjusted P-values for simultaneous inference. Biometrics, 48, 1005–
1013. (Explains the adjusted P-value approach.)

See Also

pairwise.* functions in the ctest package, such as pairwise.t.test.

Examples

x <- rnorm(50, m=c(rep(0,25),rep(3,25)))

p <- 2*pnorm( -abs(x))

round(p, 3)

round(p.adjust(p), 3)



package.contents 483

round(p.adjust(p,"bonferroni"), 3)

round(p.adjust(p,"fdr"), 3)

package.contents Package Contents and Description

Description

Parses and returns the ‘CONTENTS’ and ‘DESCRIPTION’ file of a package.

Usage

package.contents(pkg, lib.loc = NULL)
package.description(pkg, lib.loc = NULL, fields = NULL)

Arguments

pkg a character string with the package name.

lib.loc a character vector describing the location of R library trees to search
through, or NULL. The default value of NULL corresponds to all libraries
currently known.

fields a character vector giving the tags of fields to return (if other fields occur
in the file they are ignored).

Value

package.contents returns NA if there is no ‘CONTENTS’ file for the given package; other-
wise, a character matrix with column names c("Entry", "Keywords", "Description")
and rows giving the corresponding entries in the CONTENTS data base for each Rd file in
the package.

If a ‘DESCRIPTION’ for the given package is found and can successfully be read,
package.description returns a named character vector with the values of the (given)
fields as elements and the tags as names. If not, it returns a named vector of NAs with the
field tags as names if fields is not null, and NA otherwise.

See Also

read.dcf

Examples

package.contents("mva")

package.contents("mva")[, c("Entry", "Description")]

package.description("ts")

package.description("ts")[c("Package", "Version")]

## NOTE: No subscripting using '$' or abbreviated field tags!



484 package.skeleton

package.dependencies Check Package Dependencies

Description

Parses and checks the dependencies of a package against the currently installed version of
R [and other packages].

Usage

package.dependencies(x, check=FALSE)

Arguments

x A matrix of package descriptions as returned by CRAN.packages.

check If TRUE, return logical vector of check results. If FALSE, return parsed list
of dependencies.

Details

Currently we only check if the package conforms with the currently running version of R.
IN the future we might add checks for inter-package dependencies.

See Also

update.packages

package.skeleton Create a skeleton for a new package

Description

package.skeleton automates some of the setup for a new package. It creates directories,
saves functions and data to appropriate places, and creates skeleton help files and ‘README’
files describing further steps in packaging.

Usage

package.skeleton(name="anRpackage", list, environment=.GlobalEnv,
path=".", force=FALSE)

Arguments

name directory name for your package

list vector of names of R objects to put in the package

environment if list is omitted, the contents of this environment are packaged

path path to put the package directories in

force If FALSE will not overwrite an existing directory



packageStatus 485

Value

used for its side-effects.

References

Read the Writing R Extensions manual for more details

See Also

install.packages

Examples

## Not run:

f<-function(x,y) x+y

g<-function(x,y) x-y

d<-data.frame(a=1,b=2)

e<-rnorm(1000)

package.skeleton(list=c("f","g","d","e"),name="AnExample")

## End(Not run)

packageStatus Package Management Tools

Description

Summarize information about installed packages and packages available at various
repositories, and automatically upgrade outdated packages. These tools will replace
update.packages and friends in the future and are currently work in progress.

Usage

packageStatus(lib.loc = NULL, repositories = getOption("repositories"))

## S3 method for class 'packageStatus':
summary(object, ...)

## S3 method for class 'packageStatus':
update(object, lib.loc = levels(object$inst$LibPath),

repositories = levels(object$avail$Repository), ...)

## S3 method for class 'packageStatus':
upgrade(object, ask = TRUE, ...)

Arguments

lib.loc a character vector describing the location of R library trees to search
through, or NULL. The default value of NULL corresponds to all libraries
currently known.

repositories a character vector of URLs describing the location of R package reposito-
ries on the Internet or on the local machine.

object return value of packageStatus.



486 page

ask if TRUE, the user is prompted which packages should be upgraded and
which not.

... currently not used.

Examples

## Not run:

x <- packageStatus()

print(x)

summary(x)

upgrade(x)

x <- update(x)

print(x)

## End(Not run)

page Invoke a Pager on an R Object

Description

Displays a representation of the object named by x in a pager.

Usage

page(x, method = c("dput", "print"), ...)

Arguments

x the name of an R object.

method The default method is to dump the object via dput. An alternative is to
print to a file.

... additional arguments for file.show. Intended for setting pager as title
and delete.file are already used.

See Also

file.show, edit, fix.

To go to a new page when graphing, see frame.



pairs 487

pairs Scatterplot Matrices

Description

A matrix of scatterplots is produced.

Usage

pairs(x, ...)

## S3 method for class 'formula':
pairs(formula, data = NULL, ..., subset)

## Default S3 method:
pairs(x, labels, panel = points, ...,

lower.panel = panel, upper.panel = panel,
diag.panel = NULL, text.panel = textPanel,
label.pos = 0.5 + has.diag/3,
cex.labels = NULL, font.labels = 1,
row1attop = TRUE, gap = 1)

Arguments

x the coordinates of points given as columns of a matrix.

formula a formula, such as y ~ x.

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used for plot-
ting.

labels the names of the variables.

panel function(x,y,...) which is used to plot the contents of each panel of
the display.

... graphical parameters can be given as arguments to plot.
lower.panel, upper.panel

separate panel functions to be used below and above the diagonal respec-
tively.

diag.panel optional function(x, ...) to be applied on the diagonals.

text.panel optional function(x, y, labels, cex, font, ...) to be applied on
the diagonals.

label.pos y position of labels in the text panel.
cex.labels, font.labels

graphics parameters for the text panel.

row1attop logical. Should the layout be matrix-like with row 1 at the top, or graph-
like with row 1 at the bottom?

gap Distance between subplots, in margin lines.



488 pairs

Details

The ijth scatterplot contains x[,i] plotted against x[,j]. The “scatterplot” can be cus-
tomised by setting panel functions to appear as something completely different. The off-
diagonal panel functions are passed the appropriate columns of x as x and y: the diagonal
panel function (if any) is passed a single column, and the text.panel function is passed a
single (x, y) location and the column name.

The graphical parameters pch and col can be used to specify a vector of plotting symbols
and colors to be used in the plots.

The graphical parameter oma will be set by pairs.default unless supplied as an argument.

A panel function should not attempt to start a new plot, but just plot within a given
coordinate system: thus plot and boxplot are not panel functions.

Author(s)

Enhancements for R 1.0.0 contributed by Dr. Jens Oehlschlaegel-Akiyoshi and R-core mem-
bers.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

data(iris)

pairs(iris[1:4], main = "Anderson's Iris Data -- 3 species",

pch = 21, bg = c("red", "green3", "blue")[unclass(iris$Species)])

## formula method

data(swiss)

pairs(~ Fertility + Education + Catholic, data = swiss,

subset = Education < 20, main = "Swiss data, Education < 20")

data(USJudgeRatings)

pairs(USJudgeRatings)

## put histograms on the diagonal

panel.hist <- function(x, ...)

{

usr <- par("usr"); on.exit(par(usr))

par(usr = c(usr[1:2], 0, 1.5) )

h <- hist(x, plot = FALSE)

breaks <- h$breaks; nB <- length(breaks)

y <- h$counts; y <- y/max(y)

rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)

}

pairs(USJudgeRatings[1:5], panel=panel.smooth,

cex = 1.5, pch = 24, bg="light blue",

diag.panel=panel.hist, cex.labels = 2, font.labels=2)

## put (absolute) correlations on the upper panels,

## with size proportional to the correlations.

panel.cor <- function(x, y, digits=2, prefix="", cex.cor)

{



palette 489

usr <- par("usr"); on.exit(par(usr))

par(usr = c(0, 1, 0, 1))

r <- abs(cor(x, y))

txt <- format(c(r, 0.123456789), digits=digits)[1]

txt <- paste(prefix, txt, sep="")

if(missing(cex.cor)) cex <- 0.8/strwidth(txt)

text(0.5, 0.5, txt, cex = cex * r)

}

pairs(USJudgeRatings, lower.panel=panel.smooth, upper.panel=panel.cor)

palette Set or View the Graphics Palette

Description

View or manipulate the color palette which is used when a col= has a numeric index.

Usage

palette(value)

Arguments

value an optional character vector.

Details

If value has length 1, it is taken to be the name of a built in color palette. If value has
length greater than 1 it is assumed to contain a description of the colors which are to make
up the new palette (either by name or by RGB levels).

If value is omitted or has length 0, no change is made the current palette.

Currently, the only built-in palette is "default".

Value

The palette which was in effect. This is invisible unless the argument is omitted.

See Also

colors for the vector of built-in“named”colors; hsv, gray, rainbow, terrain.colors,. . . to
construct colors;

col2rgb for translating colors to RGB 3-vectors.

Examples

palette() # obtain the current palette

palette(rainbow(6)) # six color rainbow

(palette(gray(seq(0,.9,len=25)))) # gray scales; print old palette

matplot(outer(1:100,1:30), type='l', lty=1,lwd=2, col=1:30,

main = "Gray Scales Palette",

sub = "palette(gray(seq(0,.9,len=25)))")

palette("default") # reset back to the default



490 Palettes

Palettes Color Palettes

Description

Create a vector of n “contiguous” colors.

Usage

rainbow(n, s = 1, v = 1, start = 0, end = max(1,n - 1)/n, gamma = 1)
heat.colors(n)
terrain.colors(n)
topo.colors(n)
cm.colors(n)

Arguments

n the number of colors (≥ 1) to be in the palette.

s,v the “saturation” and “value” to be used to complete the HSV color de-
scriptions.

start the (corrected) hue in [0,1] at which the rainbow begins.

end the (corrected) hue in [0,1] at which the rainbow ends.

gamma the gamma correction, see argument gamma in hsv.

Details

Conceptually, all of these functions actually use (parts of) a line cut out of the 3-dimensional
color space, parametrized by hsv(h,s,v, gamma), where gamma= 1 for the foo.colors
function, and hence, equispaced hues in RGB space tend to cluster at the red, green and
blue primaries.

Some applications such as contouring require a palette of colors which do not“wrap around”
to give a final color close to the starting one.

With rainbow, the parameters start and end can be used to specify particular subranges of
hues. The following values can be used when generating such a subrange: red=0, yellow=1

6 ,
green=2

6 , cyan=3
6 , blue=4

6 and magenta=5
6 .

Value

A character vector, cv, of color names. This can be used either to create a user–defined color
palette for subsequent graphics by palette(cv), a col= specification in graphics functions
or in par.

See Also

colors, palette, hsv, rgb, gray and col2rgb for translating to RGB numbers.



panel.smooth 491

Examples

# A Color Wheel

pie(rep(1,12), col=rainbow(12))

##------ Some palettes ------------

demo.pal <-

function(n, border = if (n<32) "light gray" else NA,

main = paste("color palettes; n=",n),

ch.col = c("rainbow(n, start=.7, end=.1)", "heat.colors(n)",

"terrain.colors(n)", "topo.colors(n)", "cm.colors(n)"))

{

nt <- length(ch.col)

i <- 1:n; j <- n / nt; d <- j/6; dy <- 2*d

plot(i,i+d, type="n", yaxt="n", ylab="", main=main)

for (k in 1:nt) {

rect(i-.5, (k-1)*j+ dy, i+.4, k*j,

col = eval(parse(text=ch.col[k])), border = border)

text(2*j, k * j +dy/4, ch.col[k])

}

}

n <- if(.Device == "postscript") 64 else 16

# Since for screen, larger n may give color allocation problem

demo.pal(n)

panel.smooth Simple Panel Plot

Description

An example of a simple useful panel function to be used as argument in e.g., coplot or
pairs.

Usage

panel.smooth(x, y, col = par("col"), bg = NA, pch = par("pch"), cex = 1,
col.smooth = "red", span = 2/3, iter=3, ...)

Arguments

x,y numeric vectors of the same length
col,bg,pch,cex

numeric or character codes for the color(s), point type and size of points;
see also par.

col.smooth color to be used by lines for drawing the smooths.

span smoothing parameter f for lowess, see there.

iter number of robustness iterations for lowess.

... further arguments to lines.

See Also

coplot and pairs where panel.smooth is typically used; lowess.



492 par

Examples

data(swiss)

pairs(swiss, panel = panel.smooth, pch = ".")# emphasize the smooths

pairs(swiss, panel = panel.smooth, lwd = 2, cex= 1.5, col="blue")# hmm...

par Set or Query Graphical Parameters

Description

par can be used to set or query graphical parameters. Parameters can be set by specifying
them as arguments to par in tag = value form, or by passing them as a list of tagged
values.

Usage

par(..., no.readonly = FALSE)

<highlevel plot> (..., <tag> = <value>)

Arguments

... arguments in tag = value form, or a list of tagged values. The tags must
come from the graphical parameters described below.

no.readonly logical; if TRUE and there are no other arguments, only parameters are
returned which can be set by a subsequent par() call.

Details

Parameters are queried by giving one or more character vectors to par.

par() (no arguments) or par(no.readonly=TRUE) is used to get all the graphical pa-
rameters (as a named list). Their names are currently taken from the variable .Pars.
.Pars.readonly contains the names of the par arguments which are readonly.

R.O. indicates read-only arguments: These may only be used in queries, i.e., they do
not set anything.

All but these R.O. and the following low-level arguments can be set as well in high-level
and mid-level plot functions, such as plot, points, lines, axis, title, text, mtext:

� "ask"

� "fig", "fin"

� "mai", "mar", "mex"

� "mfrow", "mfcol", "mfg"

� "new"

� "oma", "omd", "omi"

� "pin", "plt", "ps", "pty"

� "usr"

� "xlog", "ylog"



par 493

Value

When parameters are set, their former values are returned in an invisible named list.
Such a list can be passed as an argument to par to restore the parameter values. Use
par(no.readonly = TRUE) for the full list of parameters that can be restored.

When just one parameter is queried, the value is a character string. When two or more
parameters are queried, the result is a list of character strings, with the list names giving
the parameters.

Note the inconsistency: setting one parameter returns a list, but querying one parameter
returns a vector.

Graphical Parameters

adj The value of adj determines the way in which text strings are justified. A value of 0
produces left-justified text, 0.5 centered text and 1 right-justified text. (Any value in
[0, 1] is allowed, and on most devices values outside that interval will also work.) Note
that the adj argument of text also allows adj = c(x, y) for different adjustment in
x- and y- direction.

ann If set to FALSE, high-level plotting functions do not annotate the plots they produce
with axis and overall titles. The default is to do annotation.

ask logical. If TRUE, the user is asked for input, before a new figure is drawn.

bg The color to be used for the background of plots. A description of how colors are
specified is given below.

bty A character string which determined the type of box which is drawn about plots. If bty
is one of "o", "l", "7", "c", "u", or "]" the resulting box resembles the corresponding
upper case letter. A value of "n" suppresses the box.

cex A numerical value giving the amount by which plotting text and symbols should be
scaled relative to the default.

cex.axis The magnification to be used for axis annotation relative to the current.

cex.lab The magnification to be used for x and y labels relative to the current.

cex.main The magnification to be used for main titles relative to the current.

cex.sub The magnification to be used for sub-titles relative to the current.

cin R.O.; character size (width,height) in inches.

col A specification for the default plotting color. A description of how colors are specified
is given below.

col.axis The color to be used for axis annotation.

col.lab The color to be used for x and y labels.

col.main The color to be used for plot main titles.

col.sub The color to be used for plot sub-titles.

cra R.O.; size of default character (width,height) in “rasters” (pixels).

crt A numerical value specifying (in degrees) how single characters should be rotated. It is
unwise to expect values other than multiples of 90 to work. Compare with srt which
does string rotation.

csi R.O.; height of (default sized) characters in inches.

cxy R.O.; size of default character (width,height) in user coordinate units. par("cxy")
is par("cin")/par("pin") scaled to user coordinates. Note that c(strwidth(ch),
strwidth(ch)) for a given string ch is usually much more precise.



494 par

din R.O.; the device dimensions in inches.

err (Unimplemented ; R is silent when points outside the plot region are not plotted.) The
degree of error reporting desired.

fg The color to be used for the foreground of plots. This is the default color is used for
things like axes and boxes around plots. A description of how colors are specified is
given below.

fig A numerical vector of the form c(x1, x2, y1, y2) which gives the (NDC) coordinates
of the figure region in the display region of the device.

fin A numerical vector of the form c(x, y) which gives the size of the figure region in
inches.

font An integer which specifies which font to use for text. If possible, device drivers arrange
so that 1 corresponds to plain text, 2 to bold face, 3 to italic and 4 to bold italic.

font.axis The font to be used for axis annotation.

font.lab The font to be used for x and y labels.

font.main The font to be used for plot main titles.

font.sub The font to be used for plot sub-titles.

gamma the gamma correction, see argument gamma to hsv.

lab A numerical vector of the form c(x, y, len) which modifies the way that axes are
annotated. The values of x and y give the (approximate) number of tickmarks on the
x and y axes and len specifies the label size. The default is c(5, 5, 7). Currently,
len is unimplemented.

las numeric in {0,1,2,3}; the style of axis labels.

0: always parallel to the axis [default ],
1: always horizontal,
2: always perpendicular to the axis,
3: always vertical.

Note that other string/character rotation (via argument srt to par) does not affect
the axis labels.

lty The line type. Line types can either be specified as an integer (0=blank, 1=solid,
2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the char-
acter strings "blank", "solid", "dashed", "dotted", "dotdash", "longdash", or
"twodash", where "blank" uses ‘invisible lines’ (i.e., doesn’t draw them).
Alternatively, a string of up to 8 characters (from c(1:9, "A":"F")) may be given,
giving the length of line segments which are alternatively drawn and skipped. See
section ‘Line Type Specification’ below.

lwd The line width, a positive number, defaulting to 1.

mai A numerical vector of the form c(bottom, left, top, right) which gives the margin
size specified in inches.

mar A numerical vector of the form c(bottom, left, top, right) which gives the lines
of margin to be specified on the four sides of the plot. The default is c(5, 4, 4, 2)
+ 0.1.

mex mex is a character size expansion factor which is used to describe coordinates in the
margins of plots.

mfcol, mfrow A vector of the form c(nr, nc). Subsequent figures will be drawn in an
nr-by-nc array on the device by columns (mfcol), or rows (mfrow), respectively.
Consider the alternatives, layout and split.screen.



par 495

mfg A numerical vector of the form c(i, j) where i and j indicate which figure in an
array of figures is to be drawn next (if setting) or is being drawn (if enquiring). The
array must already have been set by mfcol or mfrow.
For compatibility with S, the form c(i, j, nr, nc) is also accepted, when nr and
nc should be the current number of rows and number of columns. Mismatches will be
ignored, with a warning.

mgp The margin line (in mex units) for the axis title, axis labels and axis line. The default
is c(3, 1, 0).

mkh The height in inches of symbols to be drawn when the value of pch is an integer.
Completely ignored currently.

new logical, defaulting to FALSE. If set to TRUE, the next high-level plotting command
(actually plot.new) should not clean the frame before drawing “as if it was on a new
device”.

oma A vector of the form c(bottom, left, top, right) giving the size of the outer mar-
gins in lines of text.

omd A vector of the form c(x1, x2, y1, y2) giving the outer margin region in NDC (=
normalized device coordinates), i.e., as fraction (in [0, 1]) of the device region.

omi A vector of the form c(bottom, left, top, right) giving the size of the outer mar-
gins in inches.

pch Either an integer specifying a symbol or a single character to be used as the default in
plotting points.

pin The width and height of the current plot in inches.

plt A vector of the form c(x1, x2, y1, y2) giving the coordinates of the plot region as
fractions of the current figure region.

ps integer; the pointsize of text and symbols.

pty A character specifying the type of plot region to be used; "s" generates a square
plotting region and "m" generates the maximal plotting region.

smo (Unimplemented) a value which indicates how smooth circles and circular arcs should
be.

srt The string rotation in degrees. See the comment about crt.

tck The length of tick marks as a fraction of the smaller of the width or height of the
plotting region. If tck >= 0.5 it is interpreted as a fraction of the relevant side, so if
tck=1 grid lines are drawn. The default setting (tck = NA) is to use tcl = -0.5 (see
below).

tcl The length of tick marks as a fraction of the height of a line of text. The default value
is -0.5; setting tcl = NA sets tck = -0.01 which is S’ default.

tmag A number specifying the enlargement of text of the main title relative to the other
annotating text of the plot.

type character; the default plot type desired, see plot.default(type=...), defaulting to
"p".

usr A vector of the form c(x1, x2, y1, y2) giving the extremes of the user coordinates
of the plotting region. When a logarithmic scale is in use (i.e., par("xlog") is true,
see below), then the x-limits will be 10 ^ par("usr")[1:2]. Similarly for the y-axis.

xaxp A vector of the form c(x1, x2, n) giving the coordinates of the extreme tick marks
and the number of intervals between tick-marks when par("xlog") is false. Otherwise,
when log coordinates are active, the three values have a different meaning: For a small



496 par

range, n is negative, and the ticks are as in the linear case, otherwise, n is in 1:3,
specifying a case number, and x1 and x2 are the lowest and highest power of 10 inside
the user coordinates, par("usr")[1:2]. See axTicks() for more details.

xaxs The style of axis interval calculation to be used for the x-axis. Possible values are
"r", "i", "e", "s", "d". The styles are generally controlled by the range of data
or xlim, if given. Style "r" (regular) first extends the data range by 4 percent and
then finds an axis with pretty labels that fits within the range. Style "i" (internal)
just finds an axis with pretty labels that fits within the original data range. Style
"s" (standard) finds an axis with pretty labels within which the original data range
fits. Style "e" (extended) is like style "s", except that it is also ensured that there is
room for plotting symbols within the bounding box. Style "d" (direct) specifies that
the current axis should be used on subsequent plots. (Only "r" and "i" styles are
currently implemented)

xaxt A character which specifies the axis type. Specifying "n" causes an axis to be set up,
but not plotted. The standard value is "s": for compatibility with S values "l" and
"e" are accepted but are equivalent to "s".

xlog logical value (see log in plot.default). If TRUE, a logarithmic scale is in use (e.g.,
after plot(*, log = "x")). For a new device, it defaults to FALSE, i.e., linear scale.

xpd A logical value or NA. If FALSE, all plotting is clipped to the plot region, if TRUE, all
plotting is clipped to the figure region, and if NA, all plotting is clipped to the device
region.

yaxp A vector of the form c(y1, y2, n) giving the coordinates of the extreme tick marks
and the number of intervals between tick-marks unless for log coordinates, see xaxp
above.

yaxs The style of axis interval calculation to be used for the y-axis. See xaxs above.

yaxt A character which specifies the axis type. Specifying "n" causes an axis to be set up,
but not plotted.

ylog a logical value; see xlog above.

Color Specification

Colors can be specified in several different ways. The simplest way is with a character
string giving the color name (e.g., "red"). A list of the possible colors can be obtained with
the function colors. Alternatively, colors can be specified directly in terms of their RGB
components with a string of the form "#RRGGBB" where each of the pairs RR, GG, BB consist
of two hexadecimal digits giving a value in the range 00 to FF. Colors can also be specified
by giving an index into a small table of colors, the palette. This provides compatibility
with S. Index 0 corresponds to the background color.

Additionally, "transparent" or (integer) NA is transparent, useful for filled areas (such as
the background!), and just invisible for things like lines or text.

The functions rgb, hsv, gray and rainbow provide additional ways of generating colors.

Line Type Specification

Line types can either be specified by giving an index into a small built in table of line types
(1 = solid, 2 = dashed, etc, see lty above) or directly as the lengths of on/off stretches of
line. This is done with a string of an even number (up to eight) of characters, namely non-
zero (hexadecimal) digits which give the lengths in consecutive positions in the string. For
example, the string "33" specifies three units on followed by three off and "3313" specifies



par 497

three units on followed by three off followed by one on and finally three off. The ‘units’
here are (on most devices) proportional to lwd, and with lwd = 1 are in pixels or points.

The five standard dash-dot line types (lty = 2:6) correspond to c("44", "13", "1343",
"73", "2262").

Note that NA is not a valid value for lty.

Note

The effect of restoring all the (settable) graphics parameters as in the examples is hard
to predict if the device has been resized. Several of them are attempting to set the same
things in different ways, and those last in the alphabet will win. In particular, the settings
of mai, mar, pin, plt and pty interact, as do the outer margin settings, the figure layout
and figure region size.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

plot.default for some high-level plotting parameters; colors, gray, rainbow, rgb;
options for other setup parameters; graphic devices x11, postscript and setting up device
regions by layout and split.screen.

Examples

op <- par(mfrow = c(2, 2), # 2 x 2 pictures on one plot

pty = "s") # square plotting region,

# independent of device size

## At end of plotting, reset to previous settings:

par(op)

## Alternatively,

op <- par(no.readonly = TRUE) # the whole list of settable par's.

## do lots of plotting and par(.) calls, then reset:

par(op)

par("ylog") # FALSE

plot(1 : 12, log = "y")

par("ylog") # TRUE

plot(1:2, xaxs = "i") # 'inner axis' w/o extra space

stopifnot(par("xaxp")[1:2] == 1:2 &&

par("usr") [1:2] == 1:2)

( nr.prof <-

c(prof.pilots=16,lawyers=11,farmers=10,salesmen=9,physicians=9,

mechanics=6,policemen=6,managers=6,engineers=5,teachers=4,

housewives=3,students=3,armed.forces=1))

par(las = 3)

barplot(rbind(nr.prof)) # R 0.63.2: shows alignment problem

par(las = 0)# reset to default



498 Paren

## 'fg' use:

plot(1:12, type = "b", main="'fg' : axes, ticks and box in gray",

fg = gray(0.7), bty="7" , sub=R.version.string)

ex <- function() {

old.par <- par(no.readonly = TRUE) # all par settings which

# could be changed.

on.exit(par(old.par))

## ...

## ... do lots of par() settings and plots

## ...

invisible() #-- now, par(old.par) will be executed

}

ex()

Paren Parentheses and Braces

Description

Open parenthesis, (, and open brace, {, are .Primitive functions in R.

Effectively, ( is semantically equivalent to the identity function(x) x, whereas { is slightly
more interesting, see examples.

Usage

( ... )

{ ... }

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

if, return, etc for other objects used in the R language itself.

Syntax for operator precedence.

Examples

f <- get("(")

e <- expression(3 + 2 * 4)

f(e) == e # TRUE

do <- get("{")

do(x <- 3, y <- 2*x-3, 6-x-y); x; y



parse 499

parse Parse Expressions

Description

parse returns the parsed but unevaluated expressions in a list. Each element of the list is
of mode expression.

Usage

parse(file = "", n = NULL, text = NULL, prompt = "?")

Arguments

file a connection, or a character string giving the name of a file or a URL to
read the expressions from. If file is "" and text is missing or NULL then
input is taken from the console.

n the number of statements to parse. If n is negative the file is parsed in
its entirety.

text character vector. The text to parse. Elements are treated as if they were
lines of a file.

prompt the prompt to print when parsing from the keyboard. NULL means to use
R’s prompt, getOption("prompt").

NULL means to use R’s prompt, getOption("prompt").

Details

All versions of R accept input from a connection with end of line marked by LF (as used
on Unix), CRLF (as used on DOS/Windows) or CR (as used on classic MacOS). The final
line can be incomplete, that is missing the final EOL marker.

See source for the limits on the size of functions that can be parsed (by default).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

scan, source, eval, deparse.

Examples

cat("x <- c(1,4)\n x ^ 3 -10 ; outer(1:7,5:9)\n", file="xyz.Rdmped")

# parse 3 statements from the file "xyz.Rdmped"

parse(file = "xyz.Rdmped", n = 3)

unlink("xyz.Rdmped")



500 paste

paste Concatenate Strings

Description

Concatenate vectors after converting to character.

Usage

paste(..., sep = " ", collapse = NULL)

Arguments

... one or more R objects, to be coerced to character vectors.

sep a character string to separate the terms.

collapse an optional character string to separate the results.

Details

paste converts its arguments to character strings, and concatenates them (separating them
by the string given by sep). If the arguments are vectors, they are concatenated term-by-
term to give a character vector result.

If a value is specified for collapse, the values in the result are then concatenated into a
single string, with the elements being separated by the value of collapse.

Value

A character vector of the concatenated values. Thus will be of length zero if all the objects
are unless collapse is non-NULL, in which case it is a single empty string.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

String manipulation with as.character, substr, nchar, strsplit; further, cat which
concatenates and writes to a file, and sprintf for C like string construction.

Examples

paste(1:12) # same as as.character(1:12)

paste("A", 1:6, sep = "")

paste("Today is", date())



path.expand 501

path.expand Expand File Paths

Description

Expand a path name, for example by replacing a leading tilde by the user’s home directory
(if defined on that platform).

Usage

path.expand(path)

Arguments

path character vector containing one or more path names.

Details

On some Unix versions, a leading ~user will expand to the home directory of user, but
not on Unix versions without readline installed.

See Also

basename

Examples

path.expand("~/foo")

pdf PDF Graphics Device

Description

pdf starts the graphics device driver for producing PDF graphics.

Usage

pdf(file = ifelse(onefile, "Rplots.pdf", "Rplot%03d.pdf"),
width = 6, height = 6, onefile = TRUE, family = "Helvetica",
title = "R Graphics Output", encoding, bg, fg, pointsize)

Arguments

file a character string giving the name of the file.

width, height the width and height of the graphics region in inches.

onefile logical: if true (the default) allow multiple figures in one file. If false,
generate a file name containing the page number.



502 pdf

family the font family to be used, one of "AvantGarde", "Bookman", "Courier",
"Helvetica", "Helvetica-Narrow", "NewCenturySchoolbook",
"Palatino" or "Times".

title title string to embed in the file.

encoding the name of an encoding file. Defaults to "ISOLatin1.enc" in the
‘R HOME/afm’ directory, which is used if the path does not contain a
path separator. An extension ".enc" can be omitted.

pointsize the default point size to be used.

bg the default background color to be used.

fg the default foreground color to be used.

Details

pdf() opens the file file and the PDF commands needed to plot any graphics requested
are sent to that file.

See postscript for details of encodings, as the internal code is shared between the drivers.
The native PDF encoding is given in file ‘PDFDoc.enc’.

pdf writes uncompressed PDF. It is primarily intended for producing PDF graphics for
inclusion in other documents, and PDF-includers such as pdftex are usually able to handle
compression.

At present the PDF is fairly simple, with each page being represented as a single stream. The
R graphics model does not distinguish graphics objects at the level of the driver interface.

Note

Acrobat Reader does not use the fonts specified but rather emulates them from multiple-
master fonts. This can be seen in imprecise centring of characters, for example the multiply
and divide signs in Helvetica.

See Also

Devices, postscript

Examples

## Not run:

## Test function for encodings

TestChars <- function(encoding="ISOLatin1")

{

pdf(encoding=encoding)

par(pty="s")

plot(c(0,15), c(0,15), type="n", xlab="", ylab="")

title(paste("Centred chars in encoding", encoding))

grid(15, 15, lty=1)

for(i in c(32:255)) {

x <- i

y <- i

points(x, y, pch=i)

}

dev.off()

}

## there will be many warnings.

TestChars("ISOLatin2")



persp 503

## doesn't view properly in US-spec Acrobat 5.05, but gs7.04 works.

## Lots of characters are not centred.

## End(Not run)

persp Perspective Plots

Description

This function draws perspective plots of surfaces over the x–y plane. persp is a generic
function.

Usage

persp(x, ...)

## Default S3 method:
persp(x = seq(0, 1, len = nrow(z)), y = seq(0, 1, len = ncol(z)), z,

xlim = range(x), ylim = range(y), zlim = range(z, na.rm = TRUE),
xlab = NULL, ylab = NULL, zlab = NULL, main = NULL, sub = NULL,
theta = 0, phi = 15, r = sqrt(3), d = 1, scale = TRUE, expand = 1,
col = "white", border = NULL, ltheta = -135, lphi = 0, shade = NA,
box = TRUE, axes = TRUE, nticks = 5, ticktype = "simple",
...)

Arguments

x, y locations of grid lines at which the values in z are measured. These must
be in ascending order. By default, equally spaced values from 0 to 1 are
used. If x is a list, its components x$x and x$y are used for x and y,
respectively.

z a matrix containing the values to be plotted (NAs are allowed). Note that
x can be used instead of z for convenience.

xlim, ylim, zlim

x-, y- and z-limits. The plot is produced so that the rectangular volume
defined by these limits is visible.

xlab, ylab, zlab

titles for the axes. N.B. These must be character strings; expressions are
not accepted. Numbers will be coerced to character strings.

main, sub main and sub title, as for title.
theta, phi angles defining the viewing direction. theta gives the azimuthal direction

and phi the colatitude.
r the distance of the eyepoint from the centre of the plotting box.
d a value which can be used to vary the strength of the perspective trans-

formation. Values of d greater than 1 will lessen the perspective effect
and values less and 1 will exaggerate it.

scale before viewing the x, y and z coordinates of the points defining the surface
are transformed to the interval [0,1]. If scale is TRUE the x, y and z
coordinates are transformed separately. If scale is FALSE the coordinates
are scaled so that aspect ratios are retained. This is useful for rendering
things like DEM information.



504 persp

expand a expansion factor applied to the z coordinates. Often used with 0 <
expand < 1 to shrink the plotting box in the z direction.

col the color(s) of the surface facets. Transparent colours are ignored. This
is recycled to the (nx− 1)(ny − 1) facets.

border the color of the line drawn around the surface facets. A value of NA will
disable the drawing of borders. This is sometimes useful when the surface
is shaded.

ltheta, lphi if finite values are specified for ltheta and lphi, the surface is shaded as
though it was being illuminated from the direction specified by azimuth
ltheta and colatitude lphi.

shade the shade at a surface facet is computed as ((1+d)/2)^shade, where d is
the dot product of a unit vector normal to the facet and a unit vector in
the direction of a light source. Values of shade close to one yield shading
similar to a point light source model and values close to zero produce
no shading. Values in the range 0.5 to 0.75 provide an approximation to
daylight illumination.

box should the bounding box for the surface be displayed. The default is TRUE.

axes should ticks and labels be added to the box. The default is TRUE. If box
is FALSE then no ticks or labels are drawn.

ticktype character: "simple" draws just an arrow parallel to the axis to indicate
direction of increase; "detailed" draws normal ticks as per 2D plots.

nticks the (approximate) number of tick marks to draw on the axes. Has no
effect if ticktype is "simple".

... additional graphical parameters (see par).

Details

The plots are produced by first transforming the coordinates to the interval [0,1]. The
surface is then viewed by looking at the origin from a direction defined by theta and phi.
If theta and phi are both zero the viewing direction is directly down the negative y axis.
Changing theta will vary the azimuth and changing phi the colatitude.

Value

The viewing transformation matrix, say VT, a 4× 4 matrix suitable for projecting 3D coor-
dinates (x, y, z) into the 2D plane using homogenous 4D coordinates (x, y, z, t). It can be
used to superimpose additional graphical elements on the 3D plot, by lines() or points(),
e.g. using the function trans3d given in the last examples section below.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

contour and image.



phones 505

Examples

## More examples in demo(persp) !!

## -----------

# (1) The Obligatory Mathematical surface.

# Rotated sinc function.

x <- seq(-10, 10, length= 30)

y <- x

f <- function(x,y) { r <- sqrt(x^2+y^2); 10 * sin(r)/r }

z <- outer(x, y, f)

z[is.na(z)] <- 1

op <- par(bg = "white")

persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue")

persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue",

ltheta = 120, shade = 0.75, ticktype = "detailed",

xlab = "X", ylab = "Y", zlab = "Sinc( r )"

) -> res

round(res, 3)

# (2) Add to existing persp plot :

trans3d <- function(x,y,z, pmat) {

tr <- cbind(x,y,z,1) %*% pmat

list(x = tr[,1]/tr[,4], y= tr[,2]/tr[,4])

}

xE <- c(-10,10); xy <- expand.grid(xE, xE)

points(trans3d(xy[,1], xy[,2], 6, pm = res), col = 2, pch =16)

lines (trans3d(x, y=10, z= 6 + sin(x), pm = res), col = 3)

phi <- seq(0, 2*pi, len = 201)

r1 <- 7.725 # radius of 2nd maximum

xr <- r1 * cos(phi)

yr <- r1 * sin(phi)

lines(trans3d(xr,yr, f(xr,yr), res), col = "pink", lwd=2)## (no hidden lines)

# (3) Visualizing a simple DEM model

data(volcano)

z <- 2 * volcano # Exaggerate the relief

x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)

y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)

## Don't draw the grid lines : border = NA

par(bg = "slategray")

persp(x, y, z, theta = 135, phi = 30, col = "green3", scale = FALSE,

ltheta = -120, shade = 0.75, border = NA, box = FALSE)

par(op)

phones The World’s Telephones

Description

The number of telephones in various regions of the world (in thousands).



506 pictex

Usage

data(phones)

Format

A matrix with 7 rows and 8 columns. The columns of the matrix give the figures for a given
region, and the rows the figures for a year.

The regions are: North America, Europe, Asia, South America, Oceania, Africa, Central
America.

The years are: 1951, 1956, 1957, 1958, 1959, 1960, 1961.

Source

AT&T (1961) The World’s Telephones.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(phones)

matplot(rownames(phones), phones, type = "b", log = "y",

xlab = "Year", ylab = "Number of telephones (1000's)")

legend(1951.5, 80000, colnames(phones), col = 1:6, lty = 1:5, pch = rep(21, 7))

title(main = "phones data: log scale for response")

pictex A PicTeX Graphics Driver

Description

This function produces graphics suitable for inclusion in TeX and LaTeX documents.

Usage

pictex(file = "Rplots.tex", width = 5, height = 4, debug = FALSE,
bg = "white", fg = "black")

Arguments

file the file where output will appear.

width The width of the plot in inches.

height the height of the plot in inches.

debug should debugging information be printed.

bg the background color for the plot.

fg the foreground color for the plot.



pictex 507

Details

This driver does not have any font metric information, so the use of plotmath is not
supported.

Multiple plots will be placed as separate environments in the output file.

Author(s)

This driver was provided by Valerio Aimale 〈valerio@svpop.com.dist.unige.it〉 of the De-
partment of Internal Medicine, University of Genoa, Italy.

References

Knuth, D. E. (1984) The TeXbook. Reading, MA: Addison-Wesley.

Lamport, L. (1994) LATEX: A Document Preparation System. Reading, MA: Addison-
Wesley.

Goossens, M., Mittelbach, F. and Samarin, A. (1994) The LATEX Companion. Reading,
MA: Addison-Wesley.

See Also

postscript, Devices.

Examples

pictex()

plot(1:11,(-5:5)^2, type='b', main="Simple Example Plot")

dev.off()

##--------------------

## Not run:

%% LaTeX Example

\documentclass{article}

\usepackage{pictex}

\begin{document}

%...

\begin{figure}[h]

\centerline{\input{Rplots.tex}}

\caption{}

\end{figure}

%...

\end{document}

%%-- TeX Example --

\input pictex

$$ \input Rplots.tex $$

## End(Not run)

##--------------------

unlink("Rplots.tex")



508 pie

pie Pie Charts

Description

Draw a pie chart.

Usage

pie(x, labels = names(x), edges = 200, radius = 0.8,
density = NULL, angle = 45, col = NULL, border = NULL, lty = NULL,
main = NULL, ...)

Arguments

x a vector of positive quantities. The values in x are displayed as the areas
of pie slices.

labels a vector of character strings giving names for the slices. For empty or NA
labels, no pointing line is drawn either.

edges the circular outline of the pie is approximated by a polygon with this
many edges.

radius the pie is drawn centered in a square box whose sides range from −1 to
1. If the character strings labeling the slices are long it may be necessary
to use a smaller radius.

density the density of shading lines, in lines per inch. The default value of NULL
means that no shading lines are drawn. Non-positive values of density
also inhibit the drawing of shading lines.

angle the slope of shading lines, given as an angle in degrees (counter-clockwise).

col a vector of colors to be used in filling or shading the slices. If missing a set
of 6 pastel colours is used, unless density is specified when par("fg") is
used.

border, lty (possibly vectors) arguments passed to polygon which draws each slice.

main an overall title for the plot.

... graphical parameters can be given as arguments to pie. They will affect
the main title and labels only.

Note

Pie charts are a very bad way of displaying information. The eye is good at judging linear
measures and bad at judging relative areas. A bar chart or dot chart is a preferable way of
displaying this type of data.

Cleveland (1985), page 264: “Data that can be shown by pie charts always can be shown
by a dot chart. This means that judgements of position along a common scale can be made
instead of the less accurate angle judgements.” This statement is based on the empirical
investigations of Cleveland and McGill as well as investigations by perceptual psychologists.

Prior to R 1.5.0 this was known as piechart, which is the name of a Trellis function, so
the name was changed to be compatible with S.



PkgUtils 509

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Cleveland, W. S. (1985) The elements of graphing data. Wadsworth: Monterey, CA, USA.

See Also

dotchart.

Examples

pie(rep(1, 24), col = rainbow(24), radius = 0.9)

pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

names(pie.sales) <- c("Blueberry", "Cherry",

"Apple", "Boston Cream", "Other", "Vanilla Cream")

pie(pie.sales) # default colours

pie(pie.sales,

col = c("purple", "violetred1", "green3", "cornsilk", "cyan", "white"))

pie(pie.sales, col = gray(seq(0.4,1.0,length=6)))

pie(pie.sales, density = 10, angle = 15 + 10 * 1:6)

n <- 200

pie(rep(1,n), labels="", col=rainbow(n), border=NA,

main = "pie(*, labels=\"\", col=rainbow(n), border=NA,..")

PkgUtils Utilities for Building and Checking Add-on Packages

Description

Utilities for checking whether the sources of an R add-on package work correctly, and for
building a source or binary package from them.

Usage

R CMD build [options] pkgdirs
R CMD check [options] pkgdirs

Arguments

pkgdirs a list of names of directories with sources of R add-on packages.

options further options to control the processing, or for obtaining information
about usage and version of the utility.

Details

R CMD check checks R add-on packages from their sources, performing a wide variety of
diagnostic checks.

R CMD build builds R source or binary packages from their sources. It will create index
files in the sources if necessary, so it is often helpful to run build before check.

Use R CMD foo --help to obtain usage information on utility foo.



510 plot

Several of the options to build --binary are passed to INSTALL so consult its help for the
details.

See Also

The chapter “Processing Rd format” in “Writing R Extensions” (see the ‘doc/manual’ sub-
directory of the R source tree).

INSTALL is called by build --binary.

PlantGrowth Results from an Experiment on Plant Growth

Description

Results from an experiment to compare yields (as measured by dried weight of plants)
obtained under a control and two different treatment conditions.

Usage

data(PlantGrowth)

Format

A data frame of 30 cases on 2 variables.

[, 1] weight numeric
[, 2] group factor

The levels of group are ‘ctrl’, ‘trt1’, and ‘trt2’.

Source

Dobson, A. J. (1983) An Introduction to Statistical Modelling. London: Chapman and Hall.

Examples

## One factor ANOVA example from Dobson's book, cf. Table 7.4:

data(PlantGrowth)

boxplot(weight ~ group, data = PlantGrowth, main = "PlantGrowth data",

ylab = "Dried weight of plants", col = "lightgray",

notch = TRUE, varwidth = TRUE)

anova(lm(weight ~ group, data = PlantGrowth))

plot Generic X-Y Plotting

Description

Generic function for plotting of R objects. For more details about the graphical parameter
arguments, see par.



plot 511

Usage

plot(x, y, ...)

Arguments

x the coordinates of points in the plot. Alternatively, a single plotting
structure, function or any R object with a plot method can be provided.

y the y coordinates of points in the plot, optional if x is an appropriate
structure.

... graphical parameters can be given as arguments to plot. Many methods
will also accept the following arguments:

type what type of plot should be drawn. Possible types are

� "p" for points,
� "l" for lines,
� "b" for both,
� "c" for the lines part alone of "b",
� "o" for both “overplotted”,
� "h" for “histogram” like (or “high-density”) vertical lines,
� "s" for stair steps,
� "S" for other steps, see Details below,
� "n" for no plotting.

All other types give a warning or an error; using, e.g., type = "punkte"
being equivalent to type = "p" for S compatibility.

main an overall title for the plot: see title.

sub a sub title for the plot: see title.

xlab a title for the x axis: see title.

ylab a title for the y axis: see title.

Details

For simple scatter plots, plot.default will be used. However, there are plot meth-
ods for many R objects, including functions, data.frames, density objects, etc. Use
methods(plot) and the documentation for these.

The two step types differ in their x-y preference: Going from (x1, y1) to (x2, y2) with
x1 < x2, type = "s" moves first horizontal, then vertical, whereas type = "S" moves the
other way around.

See Also

plot.default, plot.formula and other methods; points, lines, par.

Examples

data(cars)

plot(cars)

lines(lowess(cars))

plot(sin, -pi, 2*pi)



512 plot.default

## Discrete Distribution Plot:

plot(table(rpois(100,5)), type = "h", col = "red", lwd=10,

main="rpois(100,lambda=5)")

## Simple quantiles/ECDF, see ecdf() {library(stepfun)} for a better one:

plot(x <- sort(rnorm(47)), type = "s", main = "plot(x, type = \"s\")")

points(x, cex = .5, col = "dark red")

plot.data.frame Plot Method for Data Frames

Description

plot.data.frame, a method of the plot generic, uses stripchart for one variable,
plot.default (scatterplot) for two variables, and pairs (scatterplot matrix) otherwise.

Usage

## S3 method for class 'data.frame':
plot(x, ...)

Arguments

x object of class data.frame.
... further arguments to stripchart, plot.default or pairs.

See Also

data.frame

Examples

data(OrchardSprays)

plot(OrchardSprays[1], method="jitter")

plot(OrchardSprays[c(4,1)])

plot(OrchardSprays)

plot.default The Default Scatterplot Function

Description

Draw a scatter plot with“decorations” such as axes and titles in the active graphics window.

Usage

## Default S3 method:
plot(x, y = NULL, type = "p", xlim = NULL, ylim = NULL,

log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
ann = par("ann"), axes = TRUE, frame.plot = axes,
panel.first = NULL, panel.last = NULL,
col = par("col"), bg = NA, pch = par("pch"),
cex = 1, lty = par("lty"), lab = par("lab"),
lwd = par("lwd"), asp = NA, ...)



plot.default 513

Arguments

x,y the x and y arguments provide the x and y coordinates for the plot. Any
reasonable way of defining the coordinates is acceptable. See the function
xy.coords for details.

type 1-character string giving the type of plot desired. The following values
are possible, for details, see plot: "p" for points, "l" for lines, "o" for
overplotted points and lines, "b", "c") for (empty if "c") points joined
by lines, "s" and "S" for stair steps and "h" for histogram-like vertical
lines. Finally, "n" does not produce any points or lines.

xlim the x limits (min,max) of the plot.

ylim the y limits of the plot.

log a character string which contains "x" if the x axis is to be logarithmic,
"y" if the y axis is to be logarithmic and "xy" or "yx" if both axes are to
be logarithmic.

main a main title for the plot.

sub a sub title for the plot.

xlab a label for the x axis.

ylab a label for the y axis.

ann a logical value indicating whether the default annotation (title and x and
y axis labels) should appear on the plot.

axes a logical value indicating whether axes should be drawn on the plot.

frame.plot a logical indicating whether a box should be drawn around the plot.

panel.first an expression to be evaluated after the plot axes are set up but before any
plotting takes place. This can be useful for drawing background grids or
scatterplot smooths.

panel.last an expression to be evaluated after plotting has taken place.

col The colors for lines and points. Multiple colors can be specified so that
each point can be given its own color. If there are fewer colors than points
they are recycled in the standard fashion. Lines will all be plotted in the
first colour specified.

bg background color for open plot symbols, see points.

pch a vector of plotting characters or symbols: see points.

cex a numerical vector giving the amount by which plotting text and symbols
should be scaled relative to the default.

lty the line type, see par.

lab the specification for the (approximate) numbers of tick marks on the x
and y axes.

lwd the line width not yet supported for postscript.

asp the y/x aspect ratio, see plot.window.

... graphical parameters as in par may also be passed as arguments.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Cleveland, W. S. (1985) The Elements of Graphing Data. Monterey, CA: Wadsworth.



514 plot.density

See Also

plot, plot.window, xy.coords.

Examples

data(cars)

Speed <- cars$speed

Distance <- cars$dist

plot(Speed, Distance, panel.first = grid(8,8),

pch = 0, cex = 1.2, col = "blue")

plot(Speed, Distance,

panel.first = lines(lowess(Speed, Distance), lty = "dashed"),

pch = 0, cex = 1.2, col = "blue")

## Show the different plot types

x <- 0:12

y <- sin(pi/5 * x)

op <- par(mfrow = c(3,3), mar = .1+ c(2,2,3,1))

for (tp in c("p","l","b", "c","o","h", "s","S","n")) {

plot(y ~ x, type = tp,

main = paste("plot(*, type = \"",tp,"\")",sep=""))

if(tp == "S") {

lines(x,y, type = "s", col = "red", lty = 2)

mtext("lines(*, type = \"s\", ...)", col = "red", cex=.8)

}

}

par(op)

##--- Log-Log Plot with custom axes

lx <- seq(1,5, length=41)

yl <- expression(e^{-frac(1,2) * {log[10](x)}^2})

y <- exp(-.5*lx^2)

op <- par(mfrow=c(2,1), mar=par("mar")+c(0,1,0,0))

plot(10^lx, y, log="xy", type="l", col="purple",

main="Log-Log plot", ylab=yl, xlab="x")

plot(10^lx, y, log="xy", type="o", pch='.', col="forestgreen",

main="Log-Log plot with custom axes", ylab=yl, xlab="x",

axes = FALSE, frame.plot = TRUE)

axis(1, at = my.at <- 10^(1:5), labels = formatC(my.at, format="fg"))

at.y <- 10^(-5:-1)

axis(2, at = at.y, labels = formatC(at.y, format="fg"), col.axis="red")

par(op)

plot.density Plot Method for Kernel Density Estimation

Description

The plot method for density objects.

Usage

## S3 method for class 'density':
plot(x, main = NULL, xlab = NULL, ylab = "Density", type = "l",

zero.line = TRUE, ...)



plot.design 515

Arguments

x a “density” object.
main, xlab, ylab, type

plotting parameters with useful defaults.

... further plotting parameters.

zero.line logical; if TRUE, add a base line at y = 0

Value

None.

References

See Also

density.

plot.design Plot Univariate Effects of a ‘Design’ or Model

Description

Plot univariate effects of one ore more factors, typically for a designed experiment as
analyzed by aov(). Further, in S this a method of the plot generic function for design
objects.

Usage

plot.design(x, y = NULL, fun = mean, data = NULL, ...,
ylim = NULL, xlab = "Factors", ylab = NULL, main = NULL,
ask = NULL, xaxt = par("xaxt"), axes = TRUE, xtick = FALSE)

Arguments

x either a data frame containing the design factors and optionally the re-
sponse, or a formula or terms object.

y the response, if not given in x.

fun a function (or name of one) to be applied to each subset. It must return
one number for a numeric (vector) input.

data data frame containing the variables referenced by x when that is formula
like.

... graphical arguments such as col, see par.

ylim range of y values, as in plot.default.

xlab x axis label, see title.

ylab y axis label with a “smart” default.

main main title, see title.



516 plot.design

ask logical indicating if the user should be asked before a new page is started
– in the case of multiple y’s.

xaxt character giving the type of x axis.

axes logical indicating if axes should be drawn.

xtick logical indicating if “ticks” (one per factor) should be drawn on the x axis.

Details

The supplied function will be called once for each level of each factor in the design and the
plot will show these summary values. The levels of a particular factor are shown along a
vertical line, and the overall value of fun() for the response is drawn as a horizontal line.

This is a new R implementation which will not be completely compatible to the earlier S
implementations. This is not a bug but might still change.

Note

A big effort was taken to make this closely compatible to the S version. However, col (and
fg) specification has different effects.

Author(s)

Roberto Frisullo and Martin Maechler

References

Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Chapman & Hall,
London, the white book, pp. 546–7 (and 163–4).

Freeny, A. E. and Landwehr, J. M. (1990) Displays for data from large designed experiments;
Computer Science and Statistics: Proc. 22nd Sympİnterface, 117–126, Springer Verlag.

See Also

interaction.plot for a “standard graphic” of designed experiments.

Examples

data(warpbreaks)

plot.design(warpbreaks)# automatic for data frame with one numeric var.

Form <- breaks ~ wool + tension

summary(fm1 <- aov(Form, data = warpbreaks))

plot.design( Form, data = warpbreaks, col = 2)# same as above

## More than one y :

data(esoph)

str(esoph)

plot.design(esoph) ## two plots; if interactive you are "ask"ed

## or rather, compare mean and median:

op <- par(mfcol = 1:2)

plot.design(ncases/ncontrols ~ ., data = esoph, ylim = c(0,0.8))

plot.design(ncases/ncontrols ~ ., data = esoph, ylim = c(0,0.8), fun = median)

par(op)



plot.factor 517

plot.factor Plotting Factor Variables

Description

This functions implements a“scatterplot”method for factor arguments of the generic plot
function. Actually, boxplot or barplot are used when appropriate.

Usage

## S3 method for class 'factor':
plot(x, y, legend.text = levels(y), ...)

Arguments

x,y numeric or factor. y may be missing.
legend.text a vector of text used to construct a legend for the plot. Only used if y is

present and a factor.
... Further arguments to plot, see also par.

See Also

plot.default, plot.formula, barplot, boxplot.

Examples

data(PlantGrowth)

plot(PlantGrowth) # -> plot.data.frame

plot(weight ~ group, data = PlantGrowth) # numeric vector ~ factor

plot(cut(weight, 2) ~ group, data = PlantGrowth) # factor ~ factor

## passing "..." to barplot() eventually:

plot(cut(weight, 3) ~ group, data = PlantGrowth, density = 16*(1:3),col=NULL)

plot(PlantGrowth$group, axes=FALSE, main="no axes")# extremly silly

plot.formula Formula Notation for Scatterplots

Description

Specify a scatterplot or add points or lines via a formula.

Usage

## S3 method for class 'formula':
plot(formula, data = parent.frame(), ..., subset,

ylab = varnames[response], ask = TRUE)

## S3 method for class 'formula':
points(formula, data = parent.frame(), ..., subset)

## S3 method for class 'formula':
lines(formula, data = parent.frame(), ..., subset)



518 plot.histogram

Arguments

formula a formula, such as y ~ x.

data a data.frame (or list) from which the variables in formula should be taken.

... Further graphical parameters may also be passed as arguments, see par.
horizontal = TRUE is also accepted.

subset an optional vector specifying a subset of observations to be used in the
fitting process.

ylab the y label of the plot(s).

ask logical, see par.

Details

Both the terms in the formula and the ... arguments are evaluated in data enclosed in
parent.frame() if data is a list or a data frame. The terms of the formula and those
arguments in ... that are of the same length as data are subjected to the subsetting
specified in subset. If the formula in plot.formula contains more than one non-response
term, a series of plots of y against each term is given. A plot against the running index can
be specified as plot(y~1).

If y is an object (ie. has a class attribute) then plot.formula looks for a plot method for
that class first. Otherwise, the class of x will determine the type of the plot. For factors this
will be a parallel boxplot, and argument horizontal = TRUE can be used (see boxplot).

Value

These functions are invoked for their side effect of drawing in the active graphics device.

See Also

plot.default, plot.factor.

Examples

data(airquality)

op <- par(mfrow=c(2,1))

plot(Ozone ~ Wind, data = airquality, pch=as.character(Month))

plot(Ozone ~ Wind, data = airquality, pch=as.character(Month),

subset = Month != 7)

par(op)

plot.histogram Plot Histograms

Description

These are methods for objects of class "histogram", typically produced by hist.



plot.histogram 519

Usage

## S3 method for class 'histogram':
plot(x, freq = equidist, density = NULL, angle = 45,

col = NULL, border = par("fg"), lty = NULL,
main = paste("Histogram of", x$xname), sub = NULL,
xlab = x$xname, ylab, xlim = range(x$breaks), ylim = NULL,
axes = TRUE, labels = FALSE, add = FALSE, ...)

## S3 method for class 'histogram':
lines(x, ...)

Arguments

x a histogram object, or a list with components density, mid, etc, see
hist for information about the components of x.

freq logical; if TRUE, the histogram graphic is to present a representation of
frequencies, i.e, x$counts; if FALSE, relative frequencies (“probabilities”),
i.e., x$density, are plotted. The default is true for equidistant breaks
and false otherwise.

col a colour to be used to fill the bars. The default of NULL yields unfilled
bars.

border the color of the border around the bars.
angle, density

select shading of bars by lines: see rect.

lty the line type used for the bars, see also lines.
main, sub, xlab, ylab

these arguments to title have useful defaults here.

xlim, ylim the range of x and y values with sensible defaults.

axes logical, indicating if axes should be drawn.

labels logical or character. Additionally draw labels on top of bars, if not FALSE;
if TRUE, draw the counts or rounded densities; if labels is a character,
draw itself.

add logical. If TRUE, only the bars are added to the current plot. This is what
lines.histogram(*) does.

... further graphical parameters to title and axis.

Details

lines.histogram(*) is the same as plot.histogram(*, add = TRUE).

See Also

hist, stem, density.

Examples

data(women)

str(wwt <- hist(women$weight, nc= 7, plot = FALSE))

plot(wwt, labels = TRUE) # default main & xlab using wwt$xname

plot(wwt, border = "dark blue", col = "light blue",

main = "Histogram of 15 women's weights", xlab = "weight [pounds]")



520 plot.lm

## Fake "lines" example, using non-default labels:

w2 <- wwt; w2$counts <- w2$counts - 1

lines(w2, col = "Midnight Blue", labels = ifelse(w2$counts, "> 1", "1"))

plot.lm Plot Diagnostics for an lm Object

Description

Four plots (selectable by which) are currently provided: a plot of residuals against fitted
values, a Scale-Location plot of

√
|residuals| against fitted values, a Normal Q-Q plot, and

a plot of Cook’s distances versus row labels.

Usage

## S3 method for class 'lm':
plot(x, which = 1:4,

caption = c("Residuals vs Fitted", "Normal Q-Q plot",
"Scale-Location plot", "Cook's distance plot"),

panel = points,
sub.caption = deparse(x$call), main = "",
ask = prod(par("mfcol")) < length(which) && dev.interactive(),
...,
id.n = 3, labels.id = names(residuals(x)), cex.id = 0.75)

Arguments

x lm object, typically result of lm or glm.

which If a subset of the plots is required, specify a subset of the numbers 1:4.

caption Captions to appear above the plots

panel Panel function. A useful alternative to points is panel.smooth.

sub.caption common title—above figures if there are multiple; used as sub (s.title)
otherwise.

main title to each plot—in addition to the above caption.

ask logical; if TRUE, the user is asked before each plot, see par(ask=.).

... other parameters to be passed through to plotting functions.

id.n number of points to be labelled in each plot, starting with the most ex-
treme.

labels.id vector of labels, from which the labels for extreme points will be chosen.
NULL uses observation numbers.

cex.id magnification of point labels.



plot.lm 521

Details

sub.caption—by default the function call—is shown as a subtitle (under the x-axis title)
on each plot when plots are on separate pages, or as a subtitle in the outer margin (if any)
when there are multiple plots per page.

The“Scale-Location”plot, also called“Spread-Location”or“S-L”plot, takes the square root
of the absolute residuals in order to diminish skewness (

√
|E| is much less skewed than |E|

for Gaussian zero-mean E).

This ‘S-L’ and the Q-Q plot use standardized residuals which have identical variance (under
the hypothesis). They are given as Ri/(s×

√
1− hii) where hii are the diagonal entries of

the hat matrix, influence()$hat, see also hat.

Author(s)

John Maindonald and Martin Maechler.

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

Cook, R. D. and Weisberg, S. (1982) Residuals and Influence in Regression. London:
Chapman and Hall.

Hinkley, D. V. (1975) On power transformations to symmetry. Biometrika 62, 101–111.

McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and
Hall.

See Also

termplot, lm.influence, cooks.distance.

Examples

## Analysis of the life-cycle savings data

## given in Belsley, Kuh and Welsch.

data(LifeCycleSavings)

plot(lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings))

## 4 plots on 1 page; allow room for printing model formula in outer margin:

par(mfrow = c(2, 2), oma = c(0, 0, 2, 0))

plot(lm.SR)

plot(lm.SR, id.n = NULL) # no id's

plot(lm.SR, id.n = 5, labels.id = NULL)# 5 id numbers

## Fit a smmooth curve, where applicable:

plot(lm.SR, panel = panel.smooth)

## Gives a smoother curve

plot(lm.SR, panel = function(x,y) panel.smooth(x, y, span = 1))

par(mfrow=c(2,1))# same oma as above

plot(lm.SR, which = 1:2, sub.caption = "Saving Rates, n=50, p=5")



522 plot.table

plot.table Plot Methods for ‘table’ Objects

Description

This is a method of the generic plot function for (contingency) table objects. Whereas
for two- and more dimensional tables, a mosaicplot is drawn, one-dimensional ones are
plotted “bar like”.

Usage

## S3 method for class 'table':
plot(x, type = "h", ylim = c(0, max(x)), lwd = 2,

xlab = NULL, ylab = NULL, frame.plot = is.num, ...)

Arguments

x a table (like) object.

type plotting type.

ylim range of y-axis.

lwd line width for bars when type = "h" is used in the 1D case.

xlab, ylab x- and y-axis labels.

frame.plot logical indicating if a frame (box) should be drawn in the 1D case. De-
faults to true when x has dimnames coerceable to numbers.

... further graphical arguments, see plot.default.

Details

The current implementation (R 1.2) is somewhat experimental and will be improved and
extended.

See Also

plot.factor, the plot method for factors.

Examples

## 1-d tables

(Poiss.tab <- table(N = rpois(200, lam= 5)))

plot(Poiss.tab, main = "plot(table(rpois(200, lam=5)))")

data(state)

plot(table(state.division))

## 4-D :

data(Titanic)

plot(Titanic, main ="plot(Titanic, main= *)")



plot.ts 523

plot.ts Plotting Time-Series Objects

Description

Plotting method for objects inheriting from class "ts".

Usage

## S3 method for class 'ts':
plot(x, y = NULL, plot.type = c("multiple", "single"),

xy.labels, xy.lines, panel = lines, nc, ...)

## S3 method for class 'ts':
lines(x, ...)

Arguments

x, y time series objects, usually inheriting from class "ts".

plot.type for multivariate time series, should the series by plotted separately (with
a common time axis) or on a single plot?

xy.labels logical, indicating if text() labels should be used for an x-y plot, or
character, supplying a vector of labels to be used. The default is to label
for up to 150 points, and not for more.

xy.lines logical, indicating if lines should be drawn for an x-y plot. Defaults to
the value of xy.labels if that is logical, otherwise to TRUE.

panel a function(x, col, bg, pch, type, ...) which gives the action to
be carried out in each panel of the display for plot.type="multiple".
The default is lines.

nc the number of columns to use when type="multiple". Defaults to 1 for
up to 4 series, otherwise to 2.

... additional graphical arguments, see plot, plot.default and par.

Details

If y is missing, this function creates a time series plot, for multivariate series of one of two
kinds depending on plot.type.

If y is present, both x and y must be univariate, and a “scatter” plot y ~ x will be drawn,
enhanced by using text if xy.labels is TRUE or character, and lines if xy.lines is TRUE.

See Also

ts for basic time series construction and access functionality.



524 plot.window

Examples

## Multivariate

z <- ts(matrix(rt(300, df = 3), 100, 3), start=c(1961, 1), frequency=12)

plot(z, type = "b") # multiple

plot(z, plot.type="single", lty=1:3, col=4:2)

## A phase plot:

data(nhtemp)

plot(nhtemp, c(nhtemp[-1], NA), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")

## a clearer way to do this would be

## Not run:

library(ts)

plot(nhtemp, lag(nhtemp, 1), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")

## End(Not run)

library(ts) # normally loaded

data(sunspots)

## xy.lines and xy.labels are FALSE for large series:

plot(lag(sunspots, 1), sunspots, pch = ".")

data(EuStockMarkets)

SMI <- EuStockMarkets[, "SMI"]

plot(lag(SMI, 1), SMI, pch = ".")

plot(lag(SMI, 20), SMI, pch = ".", log = "xy",

main = "4 weeks lagged SMI stocks -- log scale", xy.lines= TRUE)

plot.window Set up World Coordinates for Graphics Window

Description

This function sets up the world coordinate system for a graphics window. It is called by
higher level functions such as plot.default (after plot.new).

Usage

plot.window(xlim, ylim, log = "", asp = NA, ...)

Arguments

xlim, ylim numeric of length 2, giving the x and y coordinates ranges.

log character; indicating which axes should be in log scale.

asp numeric, giving the aspect ratio y/x.

... further graphical parameters as in par.



plot.xy 525

Details

Note that if asp is a finite positive value then the window is set up so that one data unit
in the x direction is equal in length to asp × one data unit in the y direction.

The special case asp == 1 produces plots where distances between points are represented
accurately on screen. Values with asp > 1 can be used to produce more accurate maps
when using latitude and longitude.

Usually, one should rather use the higher level functions such as plot, hist, image, . . . ,
instead and refer to their help pages for explanation of the arguments.

See Also

xy.coords, plot.xy, plot.default.

Examples

##--- An example for the use of 'asp' :

library(mva) # normally loaded

data(eurodist)

loc <- cmdscale(eurodist)

rx <- range(x <- loc[,1])

ry <- range(y <- -loc[,2])

plot(x, y, type="n", asp=1, xlab="", ylab="")

abline(h = pretty(rx, 10), v = pretty(ry, 10), col = "lightgray")

text(x, y, names(eurodist), cex=0.8)

plot.xy Basic Internal Plot Function

Description

This is the internal function that does the basic plotting of points and lines. Usually,
one should rather use the higher level functions instead and refer to their help pages for
explanation of the arguments.

Usage

plot.xy(xy, type, pch=1, lty="solid", col=par("fg"), bg=NA, cex=1, ...)

Arguments

xy A four-element list as results from xy.coords.

type 1 character code.

pch character or integer code for kind of points/lines, see points.default.

lty line type code, see lines.

col color code or name, see colors, palette.

bg background (“fill”) color for open plot symbols.

cex character expansion.

... further graphical parameters.



526 plotmath

See Also

plot, plot.default, points, lines.

Examples

points.default # to see how it calls "plot.xy(xy.coords(x, y), ...)"

plotmath Mathematical Annotation in R

Description

If the text argument to one of the text-drawing functions (text, mtext, axis) in R is an
expression, the argument is interpreted as a mathematical expression and the output will
be formatted according to TeX-like rules. Expressions can also be used for titles, subtitles
and x- and y-axis labels (but not for axis labels on persp plots).

Details

A mathematical expression must obey the normal rules of syntax for any R expression, but
it is interpreted according to very different rules than for normal R expressions.

It is possible to produce many different mathematical symbols, generate sub- or superscripts,
produce fractions, etc.

The output from demo(plotmath) includes several tables which show the available features.
In these tables, the columns of grey text show sample R expressions, and the columns of
black text show the resulting output.

The available features are also described in the tables below:

Syntax Meaning
x + y x plus y
x - y x minus y
x*y juxtapose x and y
x/y x forwardslash y
x %+-% y x plus or minus y
x %/% y x divided by y
x %*% y x times y
x[i] x subscript i
x^2 x superscript 2
paste(x, y, z) juxtapose x, y, and z
sqrt(x) square root of x
sqrt(x, y) yth root of x
x == y x equals y
x != y x is not equal to y
x < y x is less than y
x <= y x is less than or equal to y
x > y x is greater than y
x >= y x is greater than or equal to y
x %~~% y x is approximately equal to y
x %=~% y x and y are congruent
x %==% y x is defined as y



plotmath 527

x %prop% y x is proportional to y
plain(x) draw x in normal font
bold(x) draw x in bold font
italic(x) draw x in italic font
bolditalic(x) draw x in bolditalic font
list(x, y, z) comma-separated list
... ellipsis (height varies)
cdots ellipsis (vertically centred)
ldots ellipsis (at baseline)
x %subset% y x is a proper subset of y
x %subseteq% y x is a subset of y
x %notsubset% y x is not a subset of y
x %supset% y x is a proper superset of y
x %supseteq% y x is a superset of y
x %in% y x is an element of y
x %notin% y x is not an element of y
hat(x) x with a circumflex
tilde(x) x with a tilde
dot(x) x with a dot
ring(x) x with a ring
bar(xy) xy with bar
widehat(xy) xy with a wide circumflex
widetilde(xy) xy with a wide tilde
x %<->% y x double-arrow y
x %->% y x right-arrow y
x %<-% y x left-arrow y
x %up% y x up-arrow y
x %down% y x down-arrow y
x %<=>% y x is equivalent to y
x %=>% y x implies y
x %<=% y y implies x
x %dblup% y x double-up-arrow y
x %dbldown% y x double-down-arrow y
alpha – omega Greek symbols
Alpha – Omega uppercase Greek symbols
infinity infinity symbol
partialdiff partial differential symbol
32*degree 32 degrees
60*minute 60 minutes of angle
30*second 30 seconds of angle
displaystyle(x) draw x in normal size (extra spacing)
textstyle(x) draw x in normal size
scriptstyle(x) draw x in small size
scriptscriptstyle(x) draw x in very small size
x ~~ y put extra space between x and y
x + phantom(0) + y leave gap for ”0”, but don’t draw it
x + over(1, phantom(0)) leave vertical gap for ”0” (don’t draw)
frac(x, y) x over y
over(x, y) x over y
atop(x, y) x over y (no horizontal bar)
sum(x[i], i==1, n) sum x[i] for i equals 1 to n
prod(plain(P)(X==x), x) product of P(X=x) for all values of x



528 plotmath

integral(f(x)*dx, a, b) definite integral of f(x) wrt x
union(A[i], i==1, n) union of A[i] for i equals 1 to n
intersect(A[i], i==1, n) intersection of A[i]
lim(f(x), x %->% 0) limit of f(x) as x tends to 0
min(g(x), x > 0) minimum of g(x) for x greater than 0
inf(S) infimum of S
sup(S) supremum of S
x^y + z normal operator precedence
x^(y + z) visible grouping of operands
x^{y + z} invisible grouping of operands
group("(",list(a, b),"]") specify left and right delimiters
bgroup("(",atop(x,y),")") use scalable delimiters
group(lceil, x, rceil) special delimiters

References

Murrell, P. and Ihaka, R. (2000) An approach to providing mathematical annotation in
plots. Journal of Computational and Graphical Statistics, 9, 582–599.

See Also

demo(plotmath), axis, mtext, text, title, substitute quote, bquote

Examples

x <- seq(-4, 4, len = 101)

y <- cbind(sin(x), cos(x))

matplot(x, y, type = "l", xaxt = "n",

main = expression(paste(plain(sin) * phi, " and ",

plain(cos) * phi)),

ylab = expression("sin" * phi, "cos" * phi), # only 1st is taken

xlab = expression(paste("Phase Angle ", phi)),

col.main = "blue")

axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),

lab = expression(-pi, -pi/2, 0, pi/2, pi))

## How to combine "math" and numeric variables :

plot(1:10, type="n", xlab="", ylab="", main = "plot math & numbers")

theta <- 1.23 ; mtext(bquote(hat(theta) == .(theta)))

for(i in 2:9)

text(i,i+1, substitute(list(xi,eta) == group("(",list(x,y),")"),

list(x=i, y=i+1)))

plot(1:10, 1:10)

text(4, 9, expression(hat(beta) == (X^t * X)^{-1} * X^t * y))

text(4, 8.4, "expression(hat(beta) == (X^t * X)^{-1} * X^t * y)",

cex = .8)

text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n)))

text(4, 6.4, "expression(bar(x) == sum(frac(x[i], n), i==1, n))",

cex = .8)

text(8, 5, expression(paste(frac(1, sigma*sqrt(2*pi)), " ",

plain(e)^{frac(-(x-mu)^2, 2*sigma^2)})),

cex = 1.2)



pmatch 529

pmatch Partial String Matching

Description

pmatch seeks matches for the elements of its first argument among those of its second.

Usage

pmatch(x, table, nomatch = NA, duplicates.ok = FALSE)

Arguments

x the values to be matched.

table the values to be matched against.

nomatch the value returned at non-matching or multiply partially matching posi-
tions.

duplicates.ok should elements be in table be used more than once?

Details

The behaviour differs by the value of duplicates.ok. Consider first the case if this is
true. First exact matches are considered, and the positions of the first exact matches are
recorded. Then unique partial matches are considered, and if found recorded. (A partial
match occurs if the whole of the element of x matches the beginning of the element of
table.) Finally, all remaining elements of x are regarded as unmatched. In addition, an
empty string can match nothing, not even an exact match to an empty string. This is the
appropriate behaviour for partial matching of character indices, for example.

If duplicates.ok is FALSE, values of table once matched are excluded from the search
for subsequent matches. This behaviour is equivalent to the R algorithm for argument
matching, except for the consideration of empty strings (which in argument matching are
matched after exact and partial matching to any remaining arguments).

charmatch is similar to pmatch with duplicates.ok true, the differences being that it
differentiates between no match and an ambiguous partial match, it does match empty
strings, and it does not allow multiple exact matches.

Value

A numeric vector of integers (including NA if nomatch = NA) of the same length as x, giving
the indices of the elements in table which matched, or nomatch.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

match, charmatch and match.arg, match.fun, match.call, for function argument match-
ing etc., grep etc for more general (regexp) matching of strings.



530 png

Examples

pmatch("", "") # returns NA

pmatch("m", c("mean", "median", "mode")) # returns NA

pmatch("med", c("mean", "median", "mode")) # returns 2

pmatch(c("", "ab", "ab"), c("abc", "ab"), dup=FALSE)

pmatch(c("", "ab", "ab"), c("abc", "ab"), dup=TRUE)

## compare

charmatch(c("", "ab", "ab"), c("abc", "ab"))

png JPEG and PNG graphics devices

Description

A graphics device for JPEG or PNG format bitmap files.

Usage

jpeg(filename = "Rplot%03d.jpeg", width = 480, height = 480,
pointsize = 12, quality = 75, bg = "white", ...)

png(filename ="Rplot%03d.png", width = 480, height = 480,
pointsize = 12, bg = "white", ...)

Arguments

filename the name of the output file. The page number is substituted if an integer
format is included in the character string. (The result must be less than
PATH_MAX characters long, and may be truncated if not.) Tilde expansion
is performed where supported by the platform.

width the width of the device in pixels.

height the height of the device in pixels.

pointsize the default pointsize of plotted text.

quality the ‘quality’ of the JPEG image, as a percentage. Smaller values will give
more compression but also more degradation of the image.

bg default background colour.

... additional arguments to the X11 device.

Details

Plots in PNG and JPEG format can easily be converted to many other bitmap formats,
and both can be displayed in most modern web browsers. The PNG format is lossless and
is best for line diagrams and blocks of solid colour. The JPEG format is lossy, but may be
useful for image plots, for example.

png supports transparent backgrounds: use bg = "transparent". Not all PNG viewers
render files with transparency correctly. When transparency is in use a very light grey is
used as the background and so will appear as transparent if used in the plot. This allows
opaque white to be used, as on the example.

R can be compiled without support for either or both of these devices: this will be reported
if you attempt to use them on a system where they are not supported. They will not be



png 531

available if R has been started with ‘--gui=none’ (and will give a different error message),
and they may not be usable unless the X11 display is available to the owner of the R process.

Value

A plot device is opened: nothing is returned to the R interpreter.

Warning

If you plot more than one page on one of these devices and do not include somthing like %d
for the sequence number in file, the file will contain the last page plotted.

Note

These are based on the X11 device, so the additional arguments to that device work, but
are rarely appropriate. The colour handling will be that of the X11 device in use.

Author(s)

Guido Masarotto and Brian Ripley

See Also

Devices, dev.print

capabilities to see if these devices are supported by this build of R.

bitmap provides an alternative way to generate PNG and JPEG plots that does not depend
on accessing the X11 display but does depend on having GhostScript installed.

Examples

## these examples will work only if the devices are available

## and the X11 display is available.

## copy current plot to a PNG file

## Not run: dev.print(png, file="myplot.png", width=480, height=480)

png(file="myplot.png", bg="transparent")

plot(1:10)

rect(1, 5, 3, 7, col="white")

dev.off()

jpeg(file="myplot.jpeg")

example(rect)

dev.off()

## End(Not run)



532 points

points Add Points to a Plot

Description

points is a generic function to draw a sequence of points at the specified coordinates. The
specified character(s) are plotted, centered at the coordinates.

Usage

points(x, ...)

## Default S3 method:
points(x, y = NULL, type = "p", pch = par("pch"),

col = par("col"), bg = NA, cex = 1, ...)

Arguments

x, y coordinate vectors of points to plot.

type character indicating the type of plotting; actually any of the types as in
plot.

pch plotting “character”, i.e., symbol to use. pch can either be a character
or an integer code for a set of graphics symbols. The full set of S symbols
is available with pch=0:18, see the last picture from example(points),
i.e., the examples below.

In addition, there is a special set of R plotting symbols which can be ob-
tained with pch=19:25 and 21:25 can be colored and filled with different
colors:

� pch=19: solid circle,

� pch=20: bullet (smaller circle),

� pch=21: circle,

� pch=22: square,

� pch=23: diamond,

� pch=24: triangle point-up,

� pch=25: triangle point down.

Values pch=26:32 are currently unused, and pch=32:255 give the text
symbol in the encoding in use (see postscript).

col color code or name, see par.

bg background (“fill”) color for open plot symbols

cex character expansion: a numerical vector.

... Further graphical parameters (see plot.xy and par) may also be supplied
as arguments.



Poisson 533

Details

The coordinates can be passed in a plotting structure (a list with x and y components), a
two-column matrix, a time series, . . . . See xy.coords.

Arguments pch, col, bg and cex can be vectors (which will be recycled as needed) giving
a value for each point plotted. Points whose x, y, pch, col or cex value is NA are omitted
from the plot.

Graphical parameters are permitted as arguments to this function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

plot, lines, and the underlying “primitive” plot.xy.

Examples

plot(-4:4, -4:4, type = "n")# setting up coord. system

points(rnorm(200), rnorm(200), col = "red")

points(rnorm(100)/2, rnorm(100)/2, col = "blue", cex = 1.5)

op <- par(bg = "light blue")

x <- seq(0,2*pi, len=51)

## something "between type='b' and type='o'":

plot(x, sin(x), type="o", pch=21, bg=par("bg"), col = "blue", cex=.6,

main='plot(..., type="o", pch=21, bg=par("bg"))')

par(op)

##-------- Showing all the extra & some char graphics symbols ------------

Pex <- 3 ## good for both .Device=="postscript" and "x11"

ipch <- 1:(np <- 25+11); k <- floor(sqrt(np)); dd <- c(-1,1)/2

rx <- dd + range(ix <- (ipch-1) %/% k)

ry <- dd + range(iy <- 3 + (k-1)-(ipch-1) %% k)

pch <- as.list(ipch)

pch[25+ 1:11] <- as.list(c("*",".", "o","O","0","+","-",":","|","%","#"))

plot(rx, ry, type="n", axes = FALSE, xlab = "", ylab = "",

main = paste("plot symbols : points (... pch = *, cex =", Pex,")"))

abline(v = ix, h = iy, col = "lightgray", lty = "dotted")

for(i in 1:np) {

pc <- pch[[i]]

points(ix[i], iy[i], pch = pc, col = "red", bg = "yellow", cex = Pex)

## red symbols with a yellow interior (where available)

text(ix[i] - .3, iy[i], pc, col = "brown", cex = 1.2)

}

Poisson The Poisson Distribution

Description

Density, distribution function, quantile function and random generation for the Poisson
distribution with parameter lambda.



534 Poisson

Usage

dpois(x, lambda, log = FALSE)
ppois(q, lambda, lower.tail = TRUE, log.p = FALSE)
qpois(p, lambda, lower.tail = TRUE, log.p = FALSE)
rpois(n, lambda)

Arguments

x vector of (non-negative integer) quantiles.
q vector of quantiles.
p vector of probabilities.
n number of random values to return.
lambda vector of positive means.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >

x].

Details

The Poisson distribution has density

p(x) =
λxe−λ

x!
for x = 0, 1, 2, . . .. The mean and variance are E(X) = V ar(X) = λ.
If an element of x is not integer, the result of dpois is zero, with a warning. p(x) is
computed using Loader’s algorithm, see the reference in dbinom.
The quantile is left continuous: qgeom(q, prob) is the largest integer x such that P (X ≤
x) < q.
Setting lower.tail = FALSE allows to get much more precise results when the default,
lower.tail = TRUE would return 1, see the example below.

Value

dpois gives the (log) density, ppois gives the (log) distribution function, qpois gives the
quantile function, and rpois generates random deviates.

See Also

dbinom for the binomial and dnbinom for the negative binomial distribution.

Examples

-log(dpois(0:7, lambda=1) * gamma(1+ 0:7)) # == 1

Ni <- rpois(50, lam= 4); table(factor(Ni, 0:max(Ni)))

1 - ppois(10*(15:25), lambda=100) # becomes 0 (cancellation)

ppois(10*(15:25), lambda=100, lower=FALSE) # no cancellation

par(mfrow = c(2, 1))

x <- seq(-0.01, 5, 0.01)

plot(x, ppois(x, 1), type="s", ylab="F(x)", main="Poisson(1) CDF")

plot(x, pbinom(x, 100, 0.01),type="s", ylab="F(x)",

main="Binomial(100, 0.01) CDF")



poly 535

poly Compute Orthogonal Polynomials

Description

Returns or evaluates orthogonal polynomials of degree 1 to degree over the specified set of
points x. These are all orthogonal to the constant polynomial of degree 0.

Usage

poly(x, ..., degree = 1, coefs = NULL)
polym(..., degree = 1)

## S3 method for class 'poly':
predict(object, newdata, ...)

Arguments

x, newdata a numeric vector at which to evaluate the polynomial. x can also be a
matrix.

degree the degree of the polynomial

coefs for prediction, coefficients from a previous fit.

object an object inheriting from class "poly", normally the result of a call to
poly with a single vector argument.

... poly, polym: further vectors.
predict.poly: arguments to be passed to or from other methods.

Details

Although formally degree should be named (as it follows ...), an unnamed second argu-
ment of length 1 will be interpreted as the degree.

The orthogonal polynomial is summarized by the coefficients, which can be used to evaluate
it via the three-term recursion given in Kennedy & Gentle (1980, pp. 343-4), and use in
the “predict” part of the code.

Value

For poly with a single vector argument:
A matrix with rows corresponding to points in x and columns corresponding to the degree,
with attributes "degree" specifying the degrees of the columns and "coefs" which contains
the centring and normalization constants used in constructing the orthogonal polynomials.
The matrix is given class c("poly", "matrix") as from R 1.5.0.

Other cases of poly and polym, and predict.poly: a matrix.

Note

This routine is intended for statistical purposes such as contr.poly: it does not attempt
to orthogonalize to machine accuracy.



536 polygon

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

Kennedy, W. J. Jr and Gentle, J. E. (1980) Statistical Computing Marcel Dekker.

See Also

contr.poly

Examples

(z <- poly(1:10, 3))

predict(z, seq(2, 4, 0.5))

poly(seq(4, 6, 0.5), 3, coefs = attr(z, "coefs"))

polym(1:4, c(1, 4:6), degree=3) # or just poly()

poly(cbind(1:4, c(1, 4:6)), degree=3)

polygon Polygon Drawing

Description

polygon draws the polygons whose vertices are given in x and y.

Usage

polygon(x, y = NULL, density = NULL, angle = 45,
border = NULL, col = NA, lty = NULL, xpd = NULL, ...)

Arguments

x,y vectors containing the coordinates of the vertices of the polygon.

density the density of shading lines, in lines per inch. The default value of NULL
means that no shading lines are drawn. A zero value of density means
no shading lines whereas negative values (and NA) suppress shading (and
so allow color filling).

angle the slope of shading lines, given as an angle in degrees (counter-clockwise).

col the color for filling the polygon. The default, NA, is to leave polygons
unfilled.

border the color to draw the border. The default, NULL, uses par("fg"). Use
border = NA to omit borders.
For compatibility with S, border can also be logical, it which case FALSE
is equivalent to NA (borders omitted) and TRUE is equivalent to NULL (use
the foreground colour),

lty the line type to be used, as in par.

xpd (where) should clipping take place? Defaults to par("xpd").

... graphical parameters can be given as arguments to polygon.



polygon 537

Details

The coordinates can be passed in a plotting structure (a list with x and y components), a
two-column matrix, . . . . See xy.coords.

It is assumed that the polygon is closed by joining the last point to the first point.

The coordinates can contain missing values. The behaviour is similar to that of lines,
except that instead of breaking a line into several lines, NA values break the polygon into
several complete polygons (including closing the last point to the first point). See the
examples below.

When multiple polygons are produced, the values of density, angle, col, border, and lty
are recycled in the usual manner.

Bugs

The present shading algorithm can produce incorrect results for self-intesecting polygons.

Author(s)

The code implementing polygon shading was donated by Kevin Buhr 〈buhr@stat.wisc.edu〉.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

segments for even more flexibility, lines, rect, box, abline.

par for how to specify colors.

Examples

x <- c(1:9,8:1)

y <- c(1,2*(5:3),2,-1,17,9,8,2:9)

op <- par(mfcol=c(3,1))

for(xpd in c(FALSE,TRUE,NA)) {

plot(1:10, main=paste("xpd =", xpd)) ; box("figure", col = "pink", lwd=3)

polygon(x,y, xpd=xpd, col = "orange", lty=2, lwd=2, border = "red")

}

par(op)

n <- 100

xx <- c(0:n, n:0)

yy <- c(c(0,cumsum(rnorm(n))), rev(c(0,cumsum(rnorm(n)))))

plot (xx, yy, type="n", xlab="Time", ylab="Distance")

polygon(xx, yy, col="gray", border = "red")

title("Distance Between Brownian Motions")

# Multiple polygons from NA values

# and recycling of col, border, and lty

op <- par(mfrow=c(2,1))

plot(c(1,9), 1:2, type="n")

polygon(1:9, c(2,1,2,1,1,2,1,2,1),

col=c("red", "blue"),

border=c("green", "yellow"),



538 polyroot

lwd=3, lty=c("dashed", "solid"))

plot(c(1,9), 1:2, type="n")

polygon(1:9, c(2,1,2,1,NA,2,1,2,1),

col=c("red", "blue"),

border=c("green", "yellow"),

lwd=3, lty=c("dashed", "solid"))

par(op)

# Line-shaded polygons

plot(c(1,9), 1:2, type="n")

polygon(1:9, c(2,1,2,1,NA,2,1,2,1),

density=c(10, 20), angle=c(-45, 45))

polyroot Find Zeros of a Real or Complex Polynomial

Description

Find zeros of a real or complex polynomial.

Usage

polyroot(z)

Arguments

z the vector of polynomial coefficients in increasing order.

Details

A polynomial of degree n− 1,

p(x) = z1 + z2x+ · · ·+ znx
n−1

is given by its coefficient vector z[1:n]. polyroot returns the n− 1 complex zeros of p(x)
using the Jenkins-Traub algorithm.

If the coefficient vector z has zeroes for the highest powers, these are discarded.

Value

A complex vector of length n − 1, where n is the position of the largest non-zero element
of z.

References

Jenkins and Traub (1972) TOMS Algorithm 419. Comm. ACM, 15, 97–99.

See Also

uniroot for numerical root finding of arbitrary functions; complex and the zero example
in the demos directory.



pos.to.env 539

Examples

polyroot(c(1, 2, 1))

round(polyroot(choose(8, 0:8)), 11) # guess what!

for (n1 in 1:4) print(polyroot(1:n1), digits = 4)

polyroot(c(1, 2, 1, 0, 0)) # same as the first

pos.to.env Convert Positions in the Search Path to Environments

Description

Returns the environment at a specified position in the search path.

Usage

pos.to.env(x)

Arguments

x an integer between 1 and length(search()), the length of the search
path.

Details

Several R functions for manipulating objects in environments (such as get and ls) allow
specifying environments via corresponding positions in the search path. pos.to.env is
a convenience function for programmers which converts these positions to corresponding
environments; users will typically have no need for it.

Examples

pos.to.env(1) # R_GlobalEnv

# the next returns NULL, which is how package:base is represented.

pos.to.env(length(search()))

postscript PostScript Graphics

Description

postscript starts the graphics device driver for producing PostScript graphics.

The auxiliary function ps.options can be used to set and view (if called without arguments)
default values for the arguments to postscript.



540 postscript

Usage

postscript(file = ifelse(onefile, "Rplots.ps", "Rplot%03d.ps"),
onefile = TRUE,
paper, family, encoding, bg, fg,
width, height, horizontal, pointsize,
pagecentre, print.it, command, title = "R Graphics Output")

ps.options(paper, horizontal, width, height, family, encoding,
pointsize, bg, fg,
onefile = TRUE, print.it = FALSE, append = FALSE,
reset = FALSE, override.check = FALSE)

.PostScript.Options

Arguments

file a character string giving the name of the file. If it is "", the output is
piped to the command given by the argument command. If it is "|cmd",
the output is piped to the command given by ‘cmd’.
For use with onefile=FALSE give a printf format such as
"Rplot%03d.ps" (the default in that case).

paper the size of paper in the printer. The choices are "a4", "letter", "legal"
and "executive" (and these can be capitalized). Also, "special" can
be used, when the width and height specify the paper size. A further
choice is "default", which is the default. If this is selected, the papersize
is taken from the option "papersize" if that is set and to "a4" if it is
unset or empty.

horizontal the orientation of the printed image, a logical. Defaults to true, that is
landscape orientation on paper sizes with width less than height.

width, height the width and height of the graphics region in inches. The default is to
use the entire page less a 0.25 inch border on each side.

family the font family to be used. EITHER a single character string OR a
character vector of length four or five. See the section ‘Families’.

encoding the name of an encoding file. Defaults to ”ISOLatin1.enc” in the
‘R HOME/afm’ directory, which is used if the path does not contain a
path separator. An extension ".enc" can be omitted.

pointsize the default point size to be used.

bg the default background color to be used. If "transparent" (or an equiv-
alent specification), no background is painted.

fg the default foreground color to be used.

onefile logical: if true (the default) allow multiple figures in one file. If false,
generate a file name containing the page number and use an EPSF header
and no DocumentMedia comment.

pagecentre logical: should the device region be centred on the page: defaults to true.

print.it logical: should the file be printed when the device is closed? (This only
applies if file is a real file name.)

command the command to be used for “printing”. Defaults to option "printcmd";
this can also be selected as "default".

append logical; currently disregarded; just there for compatibility reasons.



postscript 541

reset, override.check

logical arguments passed to check.options. See the Examples.

title title string to embed in the file.

Details

postscript opens the file file and the PostScript commands needed to plot any graphics
requested are stored in that file. This file can then be printed on a suitable device to obtain
hard copy.

A postscript plot can be printed via postscript in two ways.

1. Setting print.it = TRUE causes the command given in argument command to be called
with argument "file" when the device is closed. Note that the plot file is not deleted
unless command arranges to delete it.

2. file="" or file="|cmd" can be used to print using a pipe on systems that support
‘popen’. Failure to open the command will probably be reported to the terminal but
not to ‘popen’, in which case close the device by dev.off immediately.

The postscript produced by R is EPS (Encapsulated PostScript) compatible, and can be
included into other documents, e.g., into LaTeX, using
includegraphics{<filename>}. For use in this way you will probably want to set
horizontal = FALSE, onefile = FALSE, paper = "special".

Most of the PostScript prologue used is taken from the R character vector .ps.prolog.
This is marked in the output, and can be changed by changing that vector. (This is only
advisable for PostScript experts.)

ps.options needs to be called before calling postscript, and the default values it sets can
be overridden by supplying arguments to postscript.

Families

The argument family specifies the font family to be used. In normal use it is
one of "AvantGarde", "Bookman", "Courier", "Helvetica", "Helvetica-Narrow",
"NewCenturySchoolbook", "Palatino" or "Times", and refers to the standard Adobe
PostScript fonts of those names which are included (or cloned) in all common PostScript
devices.

Many PostScript emulators (including those based on ghostscript) use the URW equiv-
alents of these fonts, which are "URWGothic", "URWBookman", "NimbusMon", "NimbusSan",
"NimbusSanCond", "CenturySch", "URWPalladio" and "NimbusRom" respectively. If your
PostScript device is using URW fonts, you will obtain access to more characters and more ap-
proriate metrics by using these names. To make these easier to remember, "URWHelvetica"
== "NimbusSan" and "URWTimes" == "NimbusRom" are also supported.

It is also possible to specify family="ComputerModern". This is intended to use with the
Type 1 versions of the TeX CM fonts. It will normally be possible to include such output
in TeX or LaTeX provided it is processed with dvips -Ppfb -j0 or the equivalent on your
system. (-j0 turns off font subsetting.)

If the second form of argument "family" is used, it should be a character vector of four
or five paths to Adobe Font Metric files for the regular, bold, italic, bold italic and (op-
tionally) symbol fonts to be used. If these paths do not contain the file separator, they are
taken to refer to files in the R directory ‘R HOME/afm’. Thus the default Helvetica family
can be specified by family = c("hv______.afm", "hvb_____.afm", "hvo_____.afm",
"hvbo____.afm", "sy______.afm"). It is the user’s responsibility to check that suitable
fonts are made available, and that they contain the needed characters when re-encoded.



542 postscript

The fontnames used are taken from the FontName fields of the afm files. The software in-
cluding the PostScript plot file should either embed the font outlines (usually from ‘.pfb’ or
‘.pfa’ files) or use DSC comments to instruct the print spooler to do so.

Encodings

Encodings describe which glyphs are used to display the character codes (in the range
0–255). By default R uses ISOLatin1 encoding, and the examples for text are in that
encoding. However, the encoding used on machines running R may well be different, and
by using the encoding argument the glyphs can be matched to encoding in use.

None of this will matter if only ASCII characters (codes 32–126) are used as all the encod-
ings agree over that range. Some encodings are supersets of ISOLatin1, too. However, if
accented and special characters do not come out as you expect, you may need to change the
encoding. Three other encodings are supplied with R: "WinAnsi.enc" and "MacRoman.enc"
correspond to the encodings normally used on Windows and MacOS (at least by Adobe),
and "PDFDoc.enc" is the first 256 characters of the Unicode encoding, the standard for
PDF.

If you change the encoding, it is your responsibility to ensure that the PostScript font
contains the glyphs used. One issue here is the Euro symbol which is in the WinAnsi and
MacRoman encodings but may well not be in the PostScript fonts. (It is in the URW
variants; it is not in the supplied Adobe Font Metric files.)

There is one exception. Character 45 ("-") is always set as minus (its value in Adobe
ISOLatin1) even though it is hyphen in the other encodings. Hyphen is available as character
173 (octal 0255) in ISOLatin1.

Author(s)

Support for Computer Modern fonts is based on a contribution by Brian D’Urso
〈durso@hussle.harvard.edu〉.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

Devices, check.options which is called from both ps.options and postscript.

Examples

## Not run:

# open the file "foo.ps" for graphics output

postscript("foo.ps")

# produce the desired graph(s)

dev.off() # turn off the postscript device

postscript("|lp -dlw")

# produce the desired graph(s)

dev.off() # plot will appear on printer

# for URW PostScript devices

postscript("foo.ps", family = "NimbusSan")

## for inclusion in Computer Modern TeX documents, perhaps



power 543

postscript("cm_test.eps", width = 4.0, height = 3.0,

horizontal = FALSE, onefile = FALSE, paper = "special",

family = "ComputerModern")

## The resultant postscript file can be used by dvips -Ppfb -j0.

## To test out encodings, you can use

TestChars <- function(encoding="ISOLatin1", family="URWHelvetica")

{

postscript(encoding=encoding, family=family)

par(pty="s")

plot(c(0,15), c(0,15), type="n", xlab="", ylab="")

title(paste("Centred chars in encoding", encoding))

grid(15, 15, lty=1)

for(i in c(32:255)) {

x <- i

y <- i

points(x, y, pch=i)

}

dev.off()

}

## there will be many warnings. We use URW to get a complete enough

## set of font metrics.

TestChars()

TestChars("ISOLatin2")

TestChars("WinAnsi")

## End(Not run)

stopifnot(unlist(ps.options()) == unlist(.PostScript.Options))

ps.options(bg = "pink")

str(ps.options(reset = TRUE))

### ---- error checking of arguments: ----

ps.options(width=0:12, onefile=0, bg=pi)

# override the check for 'onefile', but not the others:

str(ps.options(width=0:12, onefile=1, bg=pi,

override.check = c(FALSE,TRUE,FALSE)))

power Create a Power Link Object

Description

Creates a link object based on the link function η = µλ.

Usage

power(lambda = 1)

Arguments

lambda a real number.



544 ppoints

Details

If lambda is non-negative, it is taken as zero, and the log link is obtained. The default
lambda = 1 gives the identity link.

Value

A list with components linkfun, linkinv, mu.eta, and valideta. See make.link for
information on their meaning.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

make.link, family

To raise a number to a power, see Arithmetic.

To calculate the power of a test, see various functions in the ctest package, e.g.,
power.t.test.

Examples

power()

quasi(link=power(1/3))[c("linkfun", "linkinv")]

ppoints Ordinates for Probability Plotting

Description

Generates the sequence of “probability”points (1:m - a)/(m + (1-a)-a) where m is either
n, if length(n)==1, or length(n).

Usage

ppoints(n, a = ifelse(n <= 10, 3/8, 1/2))

Arguments

n either the number of points generate or a vector of observations.

a the offset fraction to be used; typically in (0, 1).

Details

If 0 < a < 1, the resulting values are within (0, 1) (excluding boundaries). In any case, the
resulting sequence is symmetric in [0, 1], i.e., p + rev(p) == 1.

ppoints() is used in qqplot and qqnorm to generate the set of probabilities at which to
evaluate the inverse distribution.



precip 545

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

qqplot, qqnorm.

Examples

ppoints(4) # the same as ppoints(1:4)

ppoints(10)

ppoints(10, a=1/2)

precip Annual Precipitation in US Cities

Description

The average amount of precipitation (rainfall) in inches for each of 70 United States (and
Puerto Rico) cities.

Usage

data(precip)

Format

A named vector of length 70.

Source

Statistical Abstracts of the United States, 1975.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(precip)

dotchart(precip[order(precip)], main = "precip data")

title(sub = "Average annual precipitation (in.)")



546 predict.glm

predict Model Predictions

Description

predict is a generic function for predictions from the results of various model fitting func-
tions. The function invokes particular methods which depend on the class of the first
argument.

The function predict.lm makes predictions based on the results produced by lm.

Usage

predict (object, ...)

Arguments

object a model object for which prediction is desired.

... additional arguments affecting the predictions produced.

Value

The form of the value returned by predict depends on the class of its argument. See the
documentation of the particular methods for details of what is produced by that method.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

predict.lm.

Examples

## All the "predict" methods visible in your current search() path.

## NB most of the methods in the base packages are hidden.

for(fn in methods("predict"))

try(cat(fn,":\n\t",deparse(args(get(fn))),"\n"), silent = TRUE)

predict.glm Predict Method for GLM Fits

Description

Obtains predictions and optionally estimates standard errors of those predictions from a
fitted generalized linear model object.



predict.glm 547

Usage

## S3 method for class 'glm':
predict(object, newdata = NULL,

type = c("link", "response", "terms"),
se.fit = FALSE, dispersion = NULL, terms = NULL,
na.action = na.pass, ...)

Arguments

object a fitted object of class inheriting from "glm".

newdata optionally, a new data frame from which to make the predictions. If
omitted, the fitted linear predictors are used.

type the type of prediction required. The default is on the scale of the linear
predictors; the alternative "response" is on the scale of the response
variable. Thus for a default binomial model the default predictions are of
log-odds (probabilities on logit scale) and type = "response" gives the
predicted probabilities. The "terms" option returns a matrix giving the
fitted values of each term in the model formula on the linear predictor
scale.
The value of this argument can be abbreviated.

se.fit logical switch indicating if standard errors are required.

dispersion the dispersion of the GLM fit to be assumed in computing the standard
errors. If omitted, that returned by summary applied to the object is used.

terms with type="terms" by default all terms are returned. A character vector
specifies which terms are to be returned

na.action function determining what should be done with missing values in newdata.
The default is to predict NA.

... further arguments passed to or from other methods.

Value

If se = FALSE, a vector or matrix of predictions. If se = TRUE, a list with components

fit Predictions

se.fit Estimated standard errors
residual.scale

A scalar giving the square root of the dispersion used in computing the
standard errors.

See Also

glm, SafePrediction

Examples

## example from Venables and Ripley (2002, pp. 190-2.)

ldose <- rep(0:5, 2)

numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)

sex <- factor(rep(c("M", "F"), c(6, 6)))

SF <- cbind(numdead, numalive=20-numdead)

budworm.lg <- glm(SF ~ sex*ldose, family=binomial)



548 predict.lm

summary(budworm.lg)

plot(c(1,32), c(0,1), type = "n", xlab = "dose",

ylab = "prob", log = "x")

text(2^ldose, numdead/20, as.character(sex))

ld <- seq(0, 5, 0.1)

lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,

sex=factor(rep("M", length(ld)), levels=levels(sex))),

type = "response"))

lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,

sex=factor(rep("F", length(ld)), levels=levels(sex))),

type = "response"))

predict.lm Predict method for Linear Model Fits

Description

Predicted values based on linear model object

Usage

## S3 method for class 'lm':
predict(object, newdata, se.fit = FALSE, scale = NULL, df = Inf,

interval = c("none", "confidence", "prediction"),
level = 0.95, type = c("response", "terms"),
terms = NULL, na.action = na.pass, ...)

Arguments

object Object of class inheriting from "lm"

newdata Data frame in which to predict

se.fit A switch indicating if standard errors are required.

scale Scale parameter for std.err. calculation

df Degrees of freedom for scale

interval Type of interval calculation

level Tolerance/confidence level

type Type of prediction (response or model term)

terms If type="terms", which terms (default is all terms)

na.action function determining what should be done with missing values in newdata.
The default is to predict NA.

... further arguments passed to or from other methods.



predict.lm 549

Details

predict.lm produces predicted values, obtained by evaluating the regression function in
the frame newdata (which defaults to model.frame(object). If the logical se.fit is TRUE,
standard errors of the predictions are calculated. If the numeric argument scale is set
(with optional df), it is used as the residual standard deviation in the computation of the
standard errors, otherwise this is extracted from the model fit. Setting intervals specifies
computation of confidence or prediction (tolerance) intervals at the specified level.

If the fit is rank-deficient, some of the columns of the design matrix will have been dropped.
Prediction from such a fit only makes sense if newdata is contained in the same subspace
as the original data. That cannot be checked accurately, so a warning is issued.

Value

predict.lm produces a vector of predictions or a matrix of predictions and bounds with
column names fit, lwr, and upr if interval is set. If se.fit is TRUE, a list with the
following components is returned:

fit vector or matrix as above

se.fit standard error of predictions

residual.scale

residual standard deviations

df degrees of freedom for residual

Note

Offsets specified by offset in the fit by lm will not be included in predictions, whereas
those specified by an offset term in the formula will be.

See Also

The model fitting function lm, predict, SafePrediction

Examples

## Predictions

x <- rnorm(15)

y <- x + rnorm(15)

predict(lm(y ~ x))

new <- data.frame(x = seq(-3, 3, 0.5))

predict(lm(y ~ x), new, se.fit = TRUE)

pred.w.plim <- predict(lm(y ~ x), new, interval="prediction")

pred.w.clim <- predict(lm(y ~ x), new, interval="confidence")

matplot(new$x,cbind(pred.w.clim, pred.w.plim[,-1]),

lty=c(1,2,2,3,3), type="l", ylab="predicted y")



550 presidents

preplot Pre-computations for a Plotting Objeect

Description

Compute an object to be used for plots relating to the given model object.

Usage

preplot(object, ...)

Arguments

object a fitted model object.

... additional arguments for specific methods.

Details

Only the generic function is currently provided in base R, but some add-on packages have
methods. Principally here for S compatibility.

Value

An object set up to make a plot that describes object.

presidents Quarterly Approval Ratings of US Presidents

Description

The (approximately) quarterly approval rating for the President of the United states from
the first quarter of 1945 to the last quarter of 1974.

Usage

data(presidents)

Format

A time series of 120 values.

Details

The data are actually a fudged version of the approval ratings. See McNeil’s book for
details.

Source

The Gallup Organisation.



pretty 551

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(presidents)

plot(presidents, las = 1, ylab = "Approval rating (%)",

main = "presidents data")

pressure Vapor Pressure of Mercury as a Function of Temperature

Description

Data on the relation between temperature in degrees Celsius and vapor pressure of mercury
in millimeters (of mercury).

Usage

data(pressure)

Format

A data frame with 19 observations on 2 variables.

[, 1] temperature numeric temperature (deg C)
[, 2] pressure numeric pressure (mm)

Source

Weast, R. C., ed. (1973) Handbook of Chemistry and Physics. CRC Press.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(pressure)

plot(pressure, xlab = "Temperature (deg C)",

ylab = "Pressure (mm of Hg)",

main = "pressure data: Vapor Pressure of Mercury")

plot(pressure, xlab = "Temperature (deg C)", log = "y",

ylab = "Pressure (mm of Hg)",

main = "pressure data: Vapor Pressure of Mercury")

pretty Pretty Breakpoints



552 pretty

Description

Compute a sequence of about n+1 equally spaced nice values which cover the range of the
values in x. The values are chosen so that they are 1, 2 or 5 times a power of 10.

Usage

pretty(x, n = 5, min.n = n %/% 3, shrink.sml = 0.75,
high.u.bias = 1.5, u5.bias = .5 + 1.5*high.u.bias,
eps.correct = 0)

Arguments

x numeric vector

n integer giving the desired number of intervals. Non-integer values are
rounded down.

min.n nonnegative integer giving the minimal number of intervals. If min.n ==
0, pretty(.) may return a single value.

shrink.sml positive numeric by a which a default scale is shrunk in the case when
range(x) is “very small” (usually 0).

high.u.bias non-negative numeric, typically > 1. The interval unit is determined as
{1,2,5,10} times b, a power of 10. Larger high.u.bias values favor larger
units.

u5.bias non-negative numeric multiplier favoring factor 5 over 2. Default and
“optimal”: u5.bias = .5 + 1.5*high.u.bias.

eps.correct integer code, one of {0,1,2}. If non-0, an “epsilon correction” is made at
the boundaries such that the result boundaries will be outside range(x);
in the small case, the correction is only done if eps.correct >=2.

Details

Let d <- max(x) - min(x) ≥ 0. If d is not (very close) to 0, we let c <- d/n, otherwise
more or less c <- max(abs(range(x)))*shrink.sml / min.n. Then, the 10 base b is
10blog10(c)c such that b ≤ c < 10b.

Now determine the basic unit u as one of {1, 2, 5, 10}b, depending on c/b ∈ [1, 10) and the
two “bias” coefficients, h =high.u.bias and f =u5.bias.

. . . . . . . . .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

pretty(1:15) # 0 2 4 6 8 10 12 14 16

pretty(1:15, h=2)# 0 5 10 15

pretty(1:15, n=4)# 0 5 10 15

pretty(1:15 * 2) # 0 5 10 15 20 25 30

pretty(1:20) # 0 5 10 15 20

pretty(1:20, n=2) # 0 10 20

pretty(1:20, n=10)# 0 2 4 ... 20



Primitive 553

for(k in 5:11) {

cat("k=",k,": "); print(diff(range(pretty(100 + c(0, pi*10^-k)))))}

##-- more bizarre, when min(x) == max(x):

pretty(pi)

add.names <- function(v) { names(v) <- paste(v); v}

str(lapply(add.names(-10:20), pretty))

str(lapply(add.names(0:20), pretty, min = 0))

sapply( add.names(0:20), pretty, min = 4)

pretty(1.234e100)

pretty(1001.1001)

pretty(1001.1001, shrink = .2)

for(k in -7:3)

cat("shrink=",formatC(2^k,wid=9),":",

formatC(pretty(1001.1001, shrink = 2^k), wid=6),"\n")

Primitive Call a “Primitive” Internal Function

Description

.Primitive returns an entry point to a “primitive” (internally implemented) function.

The advantage of .Primitive over .Internal functions is the potential efficiency of argu-
ment passing.

Usage

.Primitive(name)

Arguments

name name of the R function.

See Also

.Internal.

Examples

mysqrt <- .Primitive("sqrt")

c

.Internal # this one *must* be primitive!

get("if") # just 'if' or 'print(if)' are not syntactically ok.



554 print

print Print Values

Description

print prints its argument and returns it invisibly (via invisible(x)). It is a generic
function which means that new printing methods can be easily added for new classes.

Usage

print(x, ...)

## S3 method for class 'factor':
print(x, quote = FALSE, max.levels = NULL,

width = getOption("width"), ...)

## S3 method for class 'table':
print(x, digits = getOption("digits"), quote = FALSE,

na.print = "", zero.print = "0", justify = "none", ...)

Arguments

x an object used to select a method.

... further arguments passed to or from other methods.

quote logical, indicating whether or not strings should be printed with surround-
ing quotes.

max.levels integer, indicating how many levels should be printed for a factor; if 0,
no extra ”Levels” line will be printed. The default, NULL, entails chosing
max.levels such that the levels print on one line of width width.

width only used when max.levels is NULL, see above.

digits minimal number of significant digits, see print.default.

na.print character string (or NULL) indicating NA values in printed output, see
print.default.

zero.print character specifying how zeros (0) should be printed; for sparse tables,
using "." can produce stronger results.

justify character indicating if strings should left- or right-justified or left alone,
passed to format.

Details

The default method, print.default has its own help page. Use methods("print") to get
all the methods for the print generic.

print.factor allows some customization and is used for printing ordered factors as well.

print.table for printing tables allows other customization.

See noquote as an example of a class whose main purpose is a specific print method.



print.data.frame 555

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

The default method print.default, and help for the methods above; further options,
noquote.

For more customizable (but cumbersome) printing, see cat, format or also write.

Examples

ts(1:20)#-- print is the "Default function" --> print.ts(.) is called

rr <- for(i in 1:3) print(1:i)

rr

## Printing of factors

data(attenu)

attenu$station ## 117 levels -> `max.levels' depending on width

data(esoph) ## ordered : levels "l1 < l2 < .."

esoph$agegp[1:12]

esoph$alcgp[1:12]

## Printing of sparse (contingency) tables

set.seed(521)

t1 <- round(abs(rt(200, df=1.8)))

t2 <- round(abs(rt(200, df=1.4)))

table(t1,t2) # simple

print(table(t1,t2), zero.print = ".")# nicer to read

print.data.frame Printing Data Frames

Description

Print a data frame.

Usage

## S3 method for class 'data.frame':
print(x, ..., digits = NULL, quote = FALSE, right = TRUE)

Arguments

x object of class data.frame.

... optional arguments to print or plot methods.

digits the minimum number of significant digits to be used.

quote logical, indicating whether or not entries should be printed with surround-
ing quotes.

right logical, indicating whether or not strings should be right-aligned. The
default is left-alignment.



556 print.default

Details

This calls format which formats the data frame column-by-column, then converts to a
character matrix and dispatches to the print method for matrices.

When quote = TRUE only the entries are quoted not the row names nor the column names.

See Also

data.frame.

print.default Default Printing

Description

print.default is the default method of the generic print function which prints its argu-
ment. print.matrix is currently identical, but was not prior to 1.7.0.

Usage

## Default S3 method:
print(x, digits = NULL, quote = TRUE, na.print = NULL,

print.gap = NULL, right = FALSE, ...)

Arguments

x the object to be printed.

digits a non-null value for digits specifies the minimum number of significant
digits to be printed in values. If digits is NULL, the value of digits set
by options is used.

quote logical, indicating whether or not strings (characters) should be printed
with surrounding quotes.

na.print a character string which is used to indicate NA values in printed output,
or NULL (see Details)

print.gap an integer, giving the spacing between adjacent columns in printed ma-
trices and arrays, or NULL meaning 1.

right logical, indicating whether or not strings should be right-aligned. The
default is left-alignment.

... further arguments to be passed to or from other methods. They are
ignored in these functions.

Details

Prior to R 1.7.0, print.matrix did not print attributes and did not have a digits argument.

The default for printing NAs is to print NA (without quotes) unless this is a character NA and
quote = FALSE, when <NA> is printed.

The same number of decimal places is used throughout a vector, This means that digits
specifies the minimum number of significant digits to be used, and that at least one entry
will be printed with that minimum number.



print.ts 557

As from R 1.7.0 attributes are printed respecting their class(es), using the values of digits
to print.default, but using the default values (for the methods called) of the other argu-
ments.

When the methods package is attached, print will call show for methods with formal classes
if called with no optional arguments.

See Also

The generic print, options. The "noquote" class and print method.

Examples

pi

print(pi, digits = 16)

LETTERS[1:16]

print(LETTERS, quote = FALSE)

print.ts Printing Time-Series Objects

Description

Print method for time series objects.

Usage

## S3 method for class 'ts':
print(x, calendar, ...)

Arguments

x a time series object.

calendar enable/disable the display of information about month names, quarter
names or year when printing. The default is TRUE for a frequency of 4 or
12, FALSE otherwise.

... additional arguments to print.

Details

This is the print methods for objects inheriting from class "ts".

See Also

print, ts.

Examples

print(ts(1:10, freq = 7, start = c(12, 2)), calendar = TRUE)



558 printCoefmat

printCoefmat Print Coefficient Matrices

Description

Utility function to be used in “higher level” print methods, such as print.summary.lm,
print.summary.glm and print.anova. The goal is to provide a flexible interface with
smart defaults such that often, only x needs to be specified.

Usage

printCoefmat(x, digits=max(3, getOption("digits") - 2),
signif.stars = getOption("show.signif.stars"),
dig.tst = max(1, min(5, digits - 1)),
cs.ind = 1:k, tst.ind = k + 1, zap.ind = integer(0),
P.values = NULL,
has.Pvalue = nc >= 4 && substr(colnames(x)[nc],1,3) == "Pr(",
eps.Pvalue = .Machine$double.eps,
na.print = "NA", ...)

Arguments

x a numeric matrix like object, to be printed.

digits minimum number of significant digits to be used for most numbers.

signif.stars logical; if TRUE, P-values are additionally encoded visually as “significance
stars” in order to help scanning of long coefficient tables. It defaults to
the show.signif.stars slot of options.

dig.tst minimum number of significant digits for the test statistics, see tst.ind.

cs.ind indices (integer) of column numbers which are (like) coefficients and
standard errors to be formatted together.

tst.ind indices (integer) of column numbers for test statistics.

zap.ind indices (integer) of column numbers which should be formatted by
zapsmall, i.e., by “zapping” values close to 0.

P.values logical or NULL; if TRUE, the last column of x is formatted by format.pval
as P values. If P.values = NULL, the default, it is set to TRUE only
if link{options}("show.coef.Pvalue") is TRUE and x has at least 4
columns and the last column name of x starts with "Pr(".

has.Pvalue logical; if TRUE, the last column of x contains P values; in that case, it is
printed iff P.values (above).

eps.Pvalue number,..

na.print a character string to code NA values in printed output.

... further arguments for print.

Value

Invisibly returns its argument, x.



prmatrix 559

Author(s)

Martin Maechler

See Also

print.summary.lm, format.pval, format.

Examples

cmat <- cbind(rnorm(3, 10), sqrt(rchisq(3, 12)))

cmat <- cbind(cmat, cmat[,1]/cmat[,2])

cmat <- cbind(cmat, 2*pnorm(-cmat[,3]))

colnames(cmat) <- c("Estimate", "Std.Err", "Z value", "Pr(>z)")

printCoefmat(cmat[,1:3])

printCoefmat(cmat)

options(show.coef.Pvalues = FALSE)

printCoefmat(cmat, digits=2)

printCoefmat(cmat, digits=2, P.values = TRUE)

options(show.coef.Pvalues = TRUE)# revert

prmatrix Print Matrices, Old-style

Description

An earlier method for printing matrices, provided for S compatibility.

Usage

prmatrix(x, rowlab =, collab =,
quote = TRUE, right = FALSE, na.print = NULL, ...)

Arguments

x numeric or character matrix.

rowlab,collab (optional) character vectors giving row or column names respectively. By
default, these are taken from dimnames(x).

quote logical; if TRUE and x is of mode "character", quotes (") are used.

right if TRUE and x is of mode "character", the output columns are right-
justified.

na.print how NAs are printed. If this is non-null, its value is used to represent NA.

... arguments for print methods.

Details

prmatrix is an earlier form of print.matrix, and is very similar to the S function of the
same name.

Value

Invisibly returns its argument, x.



560 proc.time

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

print.default, and other print methods.

Examples

prmatrix(m6 <- diag(6), row = rep("",6), coll=rep("",6))

chm <- matrix(scan(system.file("help", "AnIndex", package = "eda"),

what = ""), , 2, byrow = TRUE)

chm # uses print.matrix()

prmatrix(chm, collab = paste("Column",1:3), right=TRUE, quote=FALSE)

proc.time Running Time of R

Description

proc.time determines how much time (in seconds) the currently running R process already
consumed.

Usage

proc.time()

Value

A numeric vector of length 5, containing the user, system, and total elapsed times for the
currently running R process, and the cumulative sum of user and system times of any child
processes spawned by it.

The resolution of the times will be system-specific; it is common for them to be recorded
to of the order of 1/100 second, and elapsed time is rounded to the nearest 1/100.

It is most useful for“timing”the evaluation of R expressions, which can be done conveniently
with system.time.

Note

It is possible to compile R without support for proc.time, when the function will not exist.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

system.time for timing a valid R expression, gc.time for how much of the time was spent
in garbage collection.



prod 561

Examples

## Not run:

## a way to time an R expression: system.time is preferred

ptm <- proc.time()

for (i in 1:50) mad(runif(500))

proc.time() - ptm

## End(Not run)

prod Product of Vector Elements

Description

prod returns the product of all the values present in its arguments.

Usage

prod(..., na.rm = FALSE)

Arguments

... numeric vectors.

na.rm logical. Should missing values be removed?

Details

If na.rm is FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

sum, cumprod, cumsum.

Examples

print(prod(1:7)) == print(gamma(8))



562 proj

profile Generic Function for Profiling Models

Description

Investigates behavior of objective function near the solution represented by fitted.

See documentation on method functions for further details.

Usage

profile(fitted, ...)

Arguments

fitted the original fitted model object.

... additional parameters. See documentation on individual methods.

Value

A list with an element for each parameter being profiled. See the individual methods for
further details.

See Also

profile.nls in package nls, profile.glm in package MASS, . . .

For profiling code, see Rprof.

proj Projections of Models

Description

proj returns a matrix or list of matrices giving the projections of the data onto the terms
of a linear model. It is most frequently used for aov models.

Usage

proj(object, ...)

## S3 method for class 'aov':
proj(object, onedf = FALSE, unweighted.scale = FALSE, ...)

## S3 method for class 'aovlist':
proj(object, onedf = FALSE, unweighted.scale = FALSE, ...)

## Default S3 method:
proj(object, onedf = TRUE, ...)

## S3 method for class 'lm':
proj(object, onedf = FALSE, unweighted.scale = FALSE, ...)



proj 563

Arguments

object An object of class "lm" or a class inheriting from it, or an object with a
similar structure including in particular components qr and effects.

onedf A logical flag. If TRUE, a projection is returned for all the columns of the
model matrix. If FALSE, the single-column projections are collapsed by
terms of the model (as represented in the analysis of variance table).

unweighted.scale

If the fit producing object used weights, this determines if the projections
correspond to weighted or unweighted observations.

... Swallow and ignore any other arguments.

Details

A projection is given for each stratum of the object, so for aov models with an Error term
the result is a list of projections.

Value

A projection matrix or (for multi-stratum objects) a list of projection matrices.

Each projection is a matrix with a row for each observations and either a column for each
term (onedf = FALSE) or for each coefficient (onedf = TRUE). Projection matrices from the
default method have orthogonal columns representing the projection of the response onto
the column space of the Q matrix from the QR decomposition. The fitted values are the
sum of the projections, and the sum of squares for each column is the reduction in sum of
squares from fitting that column (after those to the left of it).

The methods for lm and aov models add a column to the projection matrix giving the
residuals (the projection of the data onto the orthogonal complement of the model space).

Strictly, when onedf = FALSE the result is not a projection, but the columns represent
sums of projections onto the columns of the model matrix corresponding to that term. In
this case the matrix does not depend on the coding used.

Author(s)

The design was inspired by the S function of the same name described in Chambers et al.
(1992).

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed
experiments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie,
Wadsworth & Brooks/Cole.

See Also

aov, lm, model.tables

Examples

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,



564 prompt

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

npk.aov <- aov(yield ~ block + N*P*K, npk)

proj(npk.aov)

## as a test, not particularly sensible

options(contrasts=c("contr.helmert", "contr.treatment"))

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

proj(npk.aovE)

prompt Produce Prototype of an R Documentation File

Description

Facilitate the constructing of files documenting R objects.

Usage

prompt(object, filename = NULL, name = NULL, ...)
## Default S3 method:
prompt(object, filename = NULL, name = NULL,

force.function = FALSE, ...)
## S3 method for class 'data.frame':
prompt(object, filename = NULL, name = NULL, ...)

Arguments

object an R object, typically a function for the default method.

filename usually, a connection or a character string giving the name of the file to
which the documentation shell should be written. The default corresponds
to a file whose name is name followed by ".Rd". Can also be NA (see below).

name a character string specifying the name of the object.
force.function

a logical. If TRUE, treat object as function in any case.

... further arguments passed to or from other methods.

Details

Unless filename is NA, a documentation shell for object is written to the file specified by
filename, and a message about this is given. For function objects, this shell contains the
proper function and argument names. R documentation files thus created still need to be
edited and moved into the ‘man’ subdirectory of the package containing the object to be
documented.

If filename is NA, a list-style representation of the documentation shell is created and
returned. Writing the shell to a file amounts to cat(unlist(x), file = filename, sep
= "\n"), where x is the list-style representation.

When prompt is used in for loops or scripts, the explicit name specification will be useful.



prompt 565

Value

If filename is NA, a list-style representation of the documentation shell. Otherwise, the
name of the file written to is returned invisibly.

Warning

Currently, calling prompt on a non-function object assumes that the object is in fact a
data set and hence documents it as such. This may change in future versions of R. Use
promptData to create documentation skeletons for data sets.

Note

The documentation file produced by prompt.data.frame does not have the same format
as many of the data frame documentation files in the base package. We are trying to settle
on a preferred format for the documentation.

Author(s)

Douglas Bates for prompt.data.frame

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

promptData, help and the chapter on“Writing R documentation” in“Writing R Extensions”
(see the ‘doc/manual’ subdirectory of the R source tree).

To prompt the user for input, see readline.

Examples

prompt(plot.default)

prompt(interactive, force.function = TRUE)

unlink("plot.default.Rd")

unlink("interactive.Rd")

data(women) # data.frame

prompt(women)

unlink("women.Rd")

data(sunspots) # non-data.frame data

prompt(sunspots)

unlink("sunspots.Rd")



566 promptData

promptData Generate a Shell for Documentation of Data Sets

Description

Generates a shell of documentation for a data set.

Usage

promptData(object, filename = NULL, name = NULL)

Arguments

object an R object to be documented as a data set.

filename usually, a connection or a character string giving the name of the file to
which the documentation shell should be written. The default corresponds
to a file whose name is name followed by ".Rd". Can also be NA (see below).

name a character string specifying the name of the object.

Details

Unless filename is NA, a documentation shell for object is written to the file specified by
filename, and a message about this is given.

If filename is NA, a list-style representation of the documentation shell is created and
returned. Writing the shell to a file amounts to cat(unlist(x), file = filename, sep
= "\n"), where x is the list-style representation.

Currently, only data frames are handled explicitly by the code.

Value

If filename is NA, a list-style representation of the documentation shell. Otherwise, the
name of the file written to is returned invisibly.

Warning

This function is still experimental. Both interface and value might change in future versions.
In particular, it may be preferable to use a character string naming the data set and
optionally a specification of where to look for it instead of using object/name as we currently
do. This would be different from prompt, but consistent with other prompt-style functions
in package methods, and also allow prompting for data set documentation without explicitly
having to load the data set.

See Also

prompt

Examples

data(sunspots)

promptData(sunspots)

unlink("sunspots.Rd")



prop.table 567

prop.table Express table entries as fraction of marginal table

Description

This is really sweep(x, margin, margin.table(x, margin), "/") for newbies, except
that if margin has length zero, then one gets x/sum(x).

Usage

prop.table(x, margin=NULL)

Arguments

x table

margin index, or vector of indices to generate margin for

Value

Table like x expressed relative to margin

Author(s)

Peter Dalgaard

See Also

margin.table

Examples

m<-matrix(1:4,2)

m

prop.table(m,1)

pushBack Push Text Back on to a Connection

Description

Functions to push back text lines onto a connection, and to enquire how many lines are
currently pushed back.

Usage

pushBack(data, connection, newLine = TRUE)
pushBackLength(connection)



568 qqnorm

Arguments

data a character vector.

connection A connection.

newLine logical. If true, a newline is appended to each string pushed back.

Details

Several character strings can be pushed back on one or more occasions. The occasions form
a stack, so the first line to be retrieved will be the first string from the last call to pushBack.
Lines which are pushed back are read prior to the normal input from the connection, by
the normal text-reading functions such as readLines and scan.

Pushback is only allowed for readable connections.

Not all uses of connections respect pushbacks, in particular the input connection is still
wired directly, so for example parsing commands from the console and scan("") ignore
pushbacks on stdin.

Value

pushBack returns nothing.

pushBackLength returns number of lines currently pushed back.

See Also

connections, readLines.

Examples

zz <- textConnection(LETTERS)

readLines(zz, 2)

pushBack(c("aa", "bb"), zz)

pushBackLength(zz)

readLines(zz, 1)

pushBackLength(zz)

readLines(zz, 1)

readLines(zz, 1)

close(zz)

qqnorm Quantile-Quantile Plots

Description

qqnorm is a generic functions the default method of which produces a normal QQ plot of
the values in y. qqline adds a line to a normal quantile-quantile plot which passes through
the first and third quartiles.

qqplot produces a QQ plot of two datasets.

Graphical parameters may be given as arguments to qqnorm, qqplot and qqline.



qqnorm 569

Usage

qqnorm(y, ...)
## Default S3 method:
qqnorm(y, ylim, main = "Normal Q-Q Plot",

xlab = "Theoretical Quantiles",
ylab = "Sample Quantiles", plot.it = TRUE, datax = FALSE,
...)

qqline(y, datax = FALSE, ...)
qqplot(x, y, plot.it = TRUE, xlab = deparse(substitute(x)),

ylab = deparse(substitute(y)), ...)

Arguments

x The first sample for qqplot.

y The second or only data sample.

xlab, ylab, main

plot labels.

plot.it logical. Should the result be plotted?

datax logical. Should data values be on the x-axis?

ylim, ... graphical parameters.

Value

For qqnorm and qqplot, a list with components

x The x coordinates of the points that were/would be plotted

y The original y vector, i.e., the corresponding y coordinates including NAs.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

ppoints.

Examples

y <- rt(200, df = 5)

qqnorm(y); qqline(y, col = 2)

qqplot(y, rt(300, df = 5))

data(precip)

qqnorm(precip, ylab = "Precipitation [in/yr] for 70 US cities")



570 qr

qr The QR Decomposition of a Matrix

Description

qr computes the QR decomposition of a matrix. It provides an interface to the techniques
used in the LINPACK routine DQRDC or the LAPACK routines DGEQP3 and (for complex
matrices) ZGEQP3.

Usage

qr(x, tol = 1e-07 , LAPACK = FALSE)
qr.coef(qr, y)
qr.qy(qr, y)
qr.qty(qr, y)
qr.resid(qr, y)
qr.fitted(qr, y, k = qr$rank)
qr.solve(a, b, tol = 1e-7)
## S3 method for class 'qr':
solve(a, b, ...)

is.qr(x)
as.qr(x)

Arguments

x a matrix whose QR decomposition is to be computed.

tol the tolerance for detecting linear dependencies in the columns of x. Only
used if LAPACK is false and x is real.

qr a QR decomposition of the type computed by qr.

y, b a vector or matrix of right-hand sides of equations.

a A QR decomposition or (qr.solve only) a rectangular matrix.

k effective rank.

LAPACK logical. For real x, if true use LAPACK otherwise use LINPACK.

... further arguments passed to or from other methods

Details

The QR decomposition plays an important role in many statistical techniques. In particular
it can be used to solve the equation Ax = b for given matrix A, and vector b. It is useful
for computing regression coefficients and in applying the Newton-Raphson algorithm.

The functions qr.coef, qr.resid, and qr.fitted return the coefficients, residuals and
fitted values obtained when fitting y to the matrix with QR decomposition qr. qr.qy and
qr.qty return Q %*% y and t(Q) %*% y, where Q is the Q matrix.

All the above functions keep dimnames (and names) of x and y if there are.

solve.qr is the method for solve for qr objects. qr.solve solves systems of equations
via the QR decomposition: if a is a QR decomposition it is the same as solve.qr, but if
a is a rectangular matrix the QR decomposition is computed first. Either will handle over-



qr 571

and under-determined systems, providing a minimal-length solution or a least-squares fit if
appropriate.

is.qr returns TRUE if x is a list with components named qr, rank and qraux and FALSE
otherwise.

It is not possible to coerce objects to mode "qr". Objects either are QR decompositions or
they are not.

Value

The QR decomposition of the matrix as computed by LINPACK or LAPACK. The
components in the returned value correspond directly to the values returned by
DQRDC/DGEQP3/ZGEQP3.

qr a matrix with the same dimensions as x. The upper triangle contains
the R of the decomposition and the lower triangle contains information
on the Q of the decomposition (stored in compact form). Note that the
storage used by DQRDC and DGEQP3 differs.

qraux a vector of length ncol(x) which contains additional information on Q.

rank the rank of x as computed by the decomposition: always full rank in the
LAPACK case.

pivot information on the pivoting strategy used during the decomposition.

Non-complex QR objects computed by LAPACK have the attribute "useLAPACK" with
value TRUE.

Note

To compute the determinant of a matrix (do you really need it?), the QR decomposition is
much more efficient than using Eigen values (eigen). See det.

Using LAPACK (including in the complex case) uses column pivoting and does not attempt
to detect rank-deficient matrices.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

qr.Q, qr.R, qr.X for reconstruction of the matrices. solve.qr, lsfit, eigen, svd.

det (using qr) to compute the determinant of a matrix.

http://www.netlib.org/lapack/lug/lapack_lug.html


572 QR.Auxiliaries

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }

h9 <- hilbert(9); h9

qr(h9)$rank #--> only 7

qrh9 <- qr(h9, tol = 1e-10)

qrh9$rank #--> 9

##-- Solve linear equation system H %*% x = y :

y <- 1:9/10

x <- qr.solve(h9, y, tol = 1e-10) # or equivalently :

x <- qr.coef(qrh9, y) #-- is == but much better than

#-- solve(h9) %*% y

h9 %*% x # = y

QR.Auxiliaries Reconstruct the Q, R, or X Matrices from a QR Object

Description

Returns the original matrix from which the object was constructed or the components of
the decomposition.

Usage

qr.X(qr, complete = FALSE, ncol =)
qr.Q(qr, complete = FALSE, Dvec =)
qr.R(qr, complete = FALSE)

Arguments

qr object representing a QR decomposition. This will typically have come
from a previous call to qr or lsfit.

complete logical expression of length 1. Indicates whether an arbitrary orthogonal
completion of the Q or X matrices is to be made, or whether the R
matrix is to be completed by binding zero-value rows beneath the square
upper triangle.

ncol integer in the range 1:nrow(qr$qr). The number of columns to be in
the reconstructed X. The default when complete is FALSE is the first
min(ncol(X), nrow(X)) columns of the original X from which the qr
object was constructed. The default when complete is TRUE is a square
matrix with the original X in the first ncol(X) columns and an arbitrary
orthogonal completion (unitary completion in the complex case) in the
remaining columns.

Dvec vector (not matrix) of diagonal values. Each column of the returned Q
will be multiplied by the corresponding diagonal value. Defaults to all 1s.

Value

qr.X returns X, the original matrix from which the qr object was constructed, provided
ncol(X) <= nrow(X). If complete is TRUE or the argument ncol is greater than ncol(X),
additional columns from an arbitrary orthogonal (unitary) completion of X are returned.



quakes 573

qr.Q returns Q, the order-nrow(X) orthogonal (unitary) transformation represented by
qr. If complete is TRUE, Q has nrow(X) columns. If complete is FALSE, Q has ncol(X)
columns. When Dvec is specified, each column of Q is multiplied by the corresponding
value in Dvec.

qr.R returns R, the upper triangular matrix such that X == Q %*% R. The number of rows
of R is nrow(X) or ncol(X), depending on whether complete is TRUE or FALSE.

See Also

qr, qr.qy.

Examples

data(LifeCycleSavings)

p <- ncol(x <- LifeCycleSavings[,-1]) # not the 'sr'

qrstr <- qr(x) # dim(x) == c(n,p)

qrstr $ rank # = 4 = p

Q <- qr.Q(qrstr) # dim(Q) == dim(x)

R <- qr.R(qrstr) # dim(R) == ncol(x)

X <- qr.X(qrstr) # X == x

range(X - as.matrix(x))# ~ < 6e-12

## X == Q %*% R :

Q %*% R

quakes Locations of Earthquakes off Fiji

Description

The data set give the locations of 1000 seismic events of MB > 4.0. The events occurred in
a cube near Fiji since 1964.

Usage

data(quakes)

Format

A data frame with 1000 observations on 5 variables.

[,1] lat numeric Latitude of event
[,2] long numeric Longitude
[,3] depth numeric Depth (km)
[,4] mag numeric Richter Magnitude
[,5] stations numeric Number of stations reporting

Details

There are two clear planes of seismic activity. One is a major plate junction; the other is
the Tonga trench off New Zealand. These data constitute a subsample from a larger dataset
of containing 5000 observations.



574 quantile

Source

This is one of the Harvard PRIM-H project data sets. They in turn obtained it from Dr.
John Woodhouse, Dept. of Geophysics, Harvard University.

Examples

data(quakes)

pairs(quakes, main = "Fiji Earthquakes, N = 1000", cex.main=1.2, pch=".")

quantile Sample Quantiles

Description

The generic function quantile produces sample quantiles corresponding to the given prob-
abilities. The smallest observation corresponds to a probability of 0 and the largest to a
probability of 1.

Usage

quantile(x, ...)

## Default S3 method:
quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE,

names = TRUE, ...)

Arguments

x numeric vectors whose sample quantiles are wanted.

probs numeric vector with values in [0, 1].

na.rm logical; if true, any NA and NaN’s are removed from x before the quantiles
are computed.

names logical; if true, the result has a names attribute. Set to FALSE for speedup
with many probs.

... further arguments passed to or from other methods.

Details

A vector of length length(probs) is returned; if names = TRUE, it has a names attribute.

quantile(x,p) as a function of p linearly interpolates the points ( (i-1)/(n-1), ox[i] ), where
ox <- sort(x) and n <- length(x).

This gives quantile(x, p) == (1-f)*ox[i] + f*ox[i+1], where r <- 1 + (n-1)*p, i
<- floor(r), f <- r - i and ox[n+1] := ox[n].

NA and NaN values in probs are propagated to the result.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.



quartz 575

See Also

ecdf (in the stepfun package) for empirical distributions of which quantile is the “inverse”;
boxplot.stats and fivenum for computing “versions” of quartiles, etc.

Examples

quantile(x <- rnorm(1001))# Extremes & Quartiles by default

quantile(x, probs=c(.1,.5,1,2,5,10,50, NA)/100)

quartz MacOS X Quartz device

Description

quartz starts a graphics device driver for the MacOS X System. This can only be done on
machines that run MacOS X.

Usage

quartz(display = "", width = 5, height = 5, pointsize = 12,
family = "Helvetica", antialias = TRUE, autorefresh = TRUE)

Arguments

display the display on which the graphics window will appear. The default is to
use the value in the user’s environment variable DISPLAY.

width the width of the plotting window in inches.

height the height of the plotting window in inches.

pointsize the default pointsize to be used.

family this is the family name of the Postscript font that will be used by the
device.

antialias whether to use antialiasing. It is never the case to set it FALSE

autorefresh logical specifying if realtime refreshing should be done. If FALSE, the
system is charged to refresh the context of the device window.

Details

Quartz is the graphic engine based on the PDF format. It is used by the graphic interface
of MacOS X to render high quality graphics. As PDF it is device independent and can be
rescaled without loss of definition.

Calling quartz() sets .Device to "quartz".

See Also

Devices.



576 quit

quit Terminate an R Session

Description

The function quit or its alias q terminate the current R session.

Usage

quit(save = "default", status = 0, runLast = TRUE)
q(save = "default", status = 0, runLast = TRUE)

.Last <- function(x) { ...... }

Arguments

save a character string indicating whether the environment (workspace) should
be saved, one of "no", "yes", "ask" or "default".

status the (numerical) error status to be returned to the operating system, where
relevant. Conventionally 0 indicates successful completion.

runLast should .Last() be executed?

Details

save must be one of "no", "yes", "ask" or "default". In the first case the workspace is
not saved, in the second it is saved and in the third the user is prompted and can also decide
not to quit. The default is to ask in interactive use but may be overridden by command-line
arguments (which must be supplied in non-interactive use).

Immediately before terminating, the function .Last() is executed if it exists and runLast
is true. If in interactive use there are errors in the .Last function, control will be returned
to the command prompt, so do test the function thoroughly.

Some error statuses are used by R itself. The default error handler for non-interactive
effectively calls q("no", 1, FALSE) and returns error code 1. Error status 2 is used for R
‘suicide’, that is a catastrophic failure, and other small numbers are used by specific ports
for initialization failures. It is recommended that users choose statuses of 10 or more.

Valid values of status are system-dependent, but 0:255 are normally valid.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

.First for setting things on startup.



R.home 577

Examples

## Not run:

## Unix-flavour example

.Last <- function() {

cat("Now sending PostScript graphics to the printer:\n")

system("lpr Rplots.ps")

cat("bye bye...\n")

}

quit("yes")

## End(Not run)

R.home Return the R Home Directory

Description

Return the R home directory.

Usage

R.home()

Value

A character string giving the current home directory.

R.Version Version Information

Description

R.Version() provides detailed information about the version of R running.
R.version is a variable (a list) holding this information (and version is a copy of it
for S compatibility), whereas R.version.string is a simple character string, useful for
plotting, etc.

Usage

R.Version()
R.version
R.version.string

Value

R.Version returns a list with components

platform the platform for which R was built. Under Unix, a triplet of the form
CPU-VENDOR-OS, as determined by the configure script. E.g, "i586-
unknown-linux".

arch the architecture (CPU) R was built on/for.



578 r2dtable

os the underlying operating system

system CPU and OS.

status the status of the version (e.g., "Alpha")

status.rev the status revision level

major the major version number

minor the minor version number

year the year the version was released

month the month the version was released

day the day the version was released

language always "R".

Note

Do not use R.version$os to test the platform the code is running on: use
.Platform$OS.type instead. Slightly different versions of the OS may report different
values of R.version$os, as may different versions of R.

See Also

.Platform.

Examples

R.version$os # to check how lucky you are ...

plot(0) # any plot

mtext(R.version.string, side=1,line=4,adj=1)# a useful bottom-right note

r2dtable Random 2-way Tables with Given Marginals

Description

Generate random 2-way tables with given marginals using Patefield’s algorithm.

Usage

r2dtable(n, r, c)

Arguments

n a non-negative numeric giving the number of tables to be drawn.

r a non-negative vector of length at least 2 giving the row totals, to be
coerced to integer. Must sum to the same as c.

c a non-negative vector of length at least 2 giving the column totals, to be
coerced to integer.

Value

A list of length n containing the generated tables as its components.



Random 579

References

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables
with given row and column totals. Applied Statistics 30, 91–97.

Examples

## Fisher's Tea Drinker data.

TeaTasting <-

matrix(c(3, 1, 1, 3),

nr = 2,

dimnames = list(Guess = c("Milk", "Tea"),

Truth = c("Milk", "Tea")))

## Simulate permutation test for independence based on the maximum

## Pearson residuals (rather than their sum).

rowTotals <- rowSums(TeaTasting)

colTotals <- colSums(TeaTasting)

nOfCases <- sum(rowTotals)

expected <- outer(rowTotals, colTotals, "*") / nOfCases

maxSqResid <- function(x) max((x - expected) ^ 2 / expected)

simMaxSqResid <-

sapply(r2dtable(1000, rowTotals, colTotals), maxSqResid)

sum(simMaxSqResid >= maxSqResid(TeaTasting)) / 1000

## Fisher's exact test gives p = 0.4857 ...

Random Random Number Generation

Description

.Random.seed is an integer vector, containing the random number generator (RNG) state
for random number generation in R. It can be saved and restored, but should not be altered
by the user.

RNGkind is a more friendly interface to query or set the kind of RNG in use.

RNGversion can be used to set the random generators as they were in an earlier R version
(for reproducibility).

set.seed is the recommended way to specify seeds.

Usage

.Random.seed <- c(rng.kind, n1, n2, ...)
save.seed <- .Random.seed

RNGkind(kind = NULL, normal.kind = NULL)
RNGversion(vstr)
set.seed(seed, kind = NULL)

Arguments

kind character or NULL. If kind is a character string, set R’s RNG to the kind
desired. If it is NULL, return the currently used RNG. Use "default" to
return to the R default.



580 Random

normal.kind character string or NULL. If it is a character string, set the method of
Normal generation. Use "default" to return to the R default.

seed a single value, interpreted as an integer.

vstr a character string containing a version number, e.g., "1.6.2"

rng.kind integer code in 0:k for the above kind.

n1, n2, ... integers. See the details for how many are required (which depends on
rng.kind).

Details

The currently available RNG kinds are given below. kind is partially matched to this list.
The default is "Mersenne-Twister".

"Wichmann-Hill" The seed, .Random.seed[-1] == r[1:3] is an integer vector of length
3, where each r[i] is in 1:(p[i] - 1), where p is the length 3 vector of primes,
p = (30269, 30307, 30323). The Wichmann–Hill generator has a cycle length of
6.9536 × 1012 (= prod(p-1)/4, see Applied Statistics (1984) 33, 123 which corrects
the original article).

"Marsaglia-Multicarry": A multiply-with-carry RNG is used, as recommended by George
Marsaglia in his post to the mailing list ‘sci.stat.math’. It has a period of more than
260 and has passed all tests (according to Marsaglia). The seed is two integers (all
values allowed).

"Super-Duper": Marsaglia’s famous Super-Duper from the 70’s. This is the original version
which does not pass the MTUPLE test of the Diehard battery. It has a period of
≈ 4.6× 1018 for most initial seeds. The seed is two integers (all values allowed for the
first seed: the second must be odd).
We use the implementation by Reeds et al. (1982–84).
The two seeds are the Tausworthe and congruence long integers, respectively. A one-
to-one mapping to S’s .Random.seed[1:12] is possible but we will not publish one,
not least as this generator is not exactly the same as that in recent versions of S-PLUS.

"Mersenne-Twister": From Matsumoto and Nishimura (1998). A twisted GFSR with
period 219937 − 1 and equidistribution in 623 consecutive dimensions (over the whole
period). The “seed” is a 624-dimensional set of 32-bit integers plus a current position
in that set.

"Knuth-TAOCP": From Knuth (1997). A GFSR using lagged Fibonacci sequences with
subtraction. That is, the recurrence used is

Xj = (Xj−100 −Xj−37) mod 230

and the “seed” is the set of the 100 last numbers (actually recorded as 101 numbers,
the last being a cyclic shift of the buffer). The period is around 2129.

"Knuth-TAOCP-2002": The 2002 version which not backwards compatible with the earlier
version: the initialization of the GFSR from the seed was altered. R did not allow you
to choose consecutive seeds, the reported ‘weakness’, and already scrambled the seeds.

"user-supplied": Use a user-supplied generator. See Random.user for details.

normal.kind can be "Kinderman-Ramage", "Buggy Kinderman-Ramage", "Ahrens-
Dieter", "Box-Muller", "Inversion" (the default), or "user-supplied". (For inversion,
see the reference in qnorm.) The Kinderman-Ramage generator used in versions prior to
1.7.1 had several approximation errors and should only be used for reproduction of older
results.



Random 581

set.seed uses its single integer argument to set as many seeds as are required. It is intended
as a simple way to get quite different seeds by specifying small integer arguments, and also
as a way to get valid seed sets for the more complicated methods (especially "Mersenne-
Twister" and "Knuth-TAOCP").

Value

.Random.seed is an integer vector whose first element codes the kind of RNG and normal
generator. The lowest two decimal digits are in 0:(k-1) where k is the number of available
RNGs. The hundreds represent the type of normal generator (starting at 0).

In the underlying C, .Random.seed[-1] is unsigned; therefore in R .Random.seed[-1]
can be negative.

RNGkind returns a two-element character vector of the RNG and normal kinds in use before
the call, invisibly if either argument is not NULL. RNGversion returns the same information.

set.seed returns NULL, invisibly.

Note

Initially, there is no seed; a new one is created from the current time when one is required.
Hence, different sessions will give different simulation results, by default.

.Random.seed saves the seed set for the uniform random-number generator, at least for
the system generators. It does not necessarily save the state of other generators, and in
particular does not save the state of the Box–Muller normal generator. If you want to
reproduce work later, call set.seed rather than set .Random.seed.

As from R 1.8.0, .Random.seed is only looked for in the user’s workspace.

Author(s)

of RNGkind: Martin Maechler. Current implementation, B. D. Ripley

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (set.seed, storing in .Random.seed.)

Wichmann, B. A. and Hill, I. D. (1982) Algorithm AS 183: An Efficient and Portable
Pseudo-random Number Generator, Applied Statistics, 31, 188–190; Remarks: 34, 198 and
35, 89.

De Matteis, A. and Pagnutti, S. (1993) Long-range Correlation Analysis of the Wichmann-
Hill Random Number Generator, Statist. Comput., 3, 67–70.

Marsaglia, G. (1997) A random number generator for C. Discussion paper, posting on
Usenet newsgroup sci.stat.math on September 29, 1997.

Reeds, J., Hubert, S. and Abrahams, M. (1982–4) C implementation of SuperDuper, Uni-
versity of California at Berkeley. (Personal communication from Jim Reeds to Ross Ihaka.)

Marsaglia, G. and Zaman, A. (1994) Some portable very-long-period random number gen-
erators. Computers in Physics, 8, 117–121.

Matsumoto, M. and Nishimura, T. (1998) Mersenne Twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator, ACM Transactions on Modeling and
Computer Simulation, 8, 3–30.
Source code at http://www.math.keio.ac.jp/~matumoto/emt.html.

http://www.math.keio.ac.jp/~matumoto/emt.html


582 Random

Knuth, D. E. (1997) The Art of Computer Programming. Volume 2, third edition.
Source code at http://www-cs-faculty.stanford.edu/~knuth/taocp.html.

Knuth, D. E. (2002) The Art of Computer Programming. Volume 2, third edition, ninth
printing.
See http://Sunburn.Stanford.EDU/~knuth/news02.html.

Kinderman, A. J. and Ramage, J. G. (1976) Computer generation of normal random vari-
ables. Journal of the American Statistical Association 71, 893-896.

Ahrens, J.H. and Dieter, U. (1973) Extensions of Forsythe’s method for random sampling
from the normal distribution. Mathematics of Computation 27, 927-937.

Box, G.E.P. and Muller, M.E. (1958) A note on the generation of normal random deviates.
Annals of Mathmatical Statistics 29, 610–611.

See Also

runif, rnorm, . . . .

Examples

runif(1); .Random.seed; runif(1); .Random.seed

## If there is no seed, a "random" new one is created:

rm(.Random.seed); runif(1); .Random.seed

RNGkind("Wich")# (partial string matching on 'kind')

## This shows how 'runif(.)' works for Wichmann-Hill,

## using only R functions:

p.WH <- c(30269, 30307, 30323)

a.WH <- c( 171, 172, 170)

next.WHseed <- function(i.seed = .Random.seed[-1])

{ (a.WH * i.seed) %% p.WH }

my.runif1 <- function(i.seed = .Random.seed)

{ ns <- next.WHseed(i.seed[-1]); sum(ns / p.WH) %% 1 }

rs <- .Random.seed

(WHs <- next.WHseed(rs[-1]))

u <- runif(1)

stopifnot(

next.WHseed(rs[-1]) == .Random.seed[-1],

all.equal(u, my.runif1(rs))

)

## ----

.Random.seed

ok <- RNGkind()

RNGkind("Super")#matches "Super-Duper"

RNGkind()

.Random.seed # new, corresponding to Super-Duper

## Reset:

RNGkind(ok[1])

http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://Sunburn.Stanford.EDU/~knuth/news02.html


Random.user 583

Random.user User-supplied Random Number Generation

Description

Function RNGkind allows user-coded uniform and normal random number generators to be
supplied. The details are given here.

Details

A user-specified uniform RNG is called from entry points in dynamically-loaded compiled
code. The user must supply the entry point user_unif_rand, which takes no arguments
and returns a pointer to a double. The example below will show the general pattern.

Optionally, the user can supply the entry point user_unif_init, which is called with an
unsigned int argument when RNGkind (or set.seed) is called, and is intended to be used
to initialize the user’s RNG code. The argument is intended to be used to set the “seeds”;
it is the seed argument to set.seed or an essentially random seed if RNGkind is called.

If only these functions are supplied, no information about the generator’s state is recorded
in .Random.seed. Optionally, functions user_unif_nseed and user_unif_seedloc can be
supplied which are called with no arguments and should return pointers to the number of
“seeds” and to an integer array of “seeds”. Calls to GetRNGstate and PutRNGstate will then
copy this array to and from .Random.seed.

A user-specified normal RNG is specified by a single entry point user_norm_rand, which
takes no arguments and returns a pointer to a double.

Warning

As with all compiled code, mis-specifying these functions can crash R. Do include the
‘R ext/Random.h’ header file for type checking.

Examples

## Not run:

## Marsaglia's conguential PRNG

#include <R_ext/Random.h>

static Int32 seed;

static double res;

static int nseed = 1;

double * user_unif_rand()

{

seed = 69069 * seed + 1;

res = seed * 2.32830643653869e-10;

return &res;

}

void user_unif_init(Int32 seed_in) { seed = seed_in; }

int * user_unif_nseed() { return &nseed; }

int * user_unif_seedloc() { return (int *) &seed; }

/* ratio-of-uniforms for normal */



584 randu

#include <math.h>

static double x;

double * user_norm_rand()

{

double u, v, z;

do {

u = unif_rand();

v = 0.857764 * (2. * unif_rand() - 1);

x = v/u; z = 0.25 * x * x;

if (z < 1. - u) break;

if (z > 0.259/u + 0.35) continue;

} while (z > -log(u));

return &x;

}

## Use under Unix:

R SHLIB urand.c

R

> dyn.load("urand.so")

> RNGkind("user")

> runif(10)

> .Random.seed

> RNGkind(, "user")

> rnorm(10)

> RNGkind()

[1] "user-supplied" "user-supplied"

## End(Not run)

randu Random Numbers from Congruential Generator RANDU

Description

400 triples of successive random numbers were taken from the VAX FORTRAN function
RANDU running under VMS 1.5.

Usage

data(randu)

Format

A data frame with 400 observations on 3 variables named x, y and z which give the first,
second and third random number in the triple.

Details

In three dimensional displays it is evident that the triples fall on 15 parallel planes in 3-space.
This can be shown theoretically to be true for all triples from the RANDU generator.

These particular 400 triples start 5 apart in the sequence, that is they are ((U[5i+1], U[5i+2],
U[5i+3]), i= 0, . . . , 399), and they are rounded to 6 decimal places.

Under VMS versions 2.0 and higher, this problem has been fixed.



range 585

Source

David Donoho

Examples

## Not run:

## We could re-generate the dataset by the following R code

seed <- as.double(1)

RANDU <- function() {

seed <<- ((2^16 + 3) * seed) %% (2^31)

seed/(2^31)

}

for(i in 1:400) {

U <- c(RANDU(), RANDU(), RANDU(), RANDU(), RANDU())

print(round(U[1:3], 6))

}

## End(Not run)

range Range of Values

Description

range returns a vector containing the minimum and maximum of all the given arguments.

Usage

range(..., na.rm = FALSE)

## Default S3 method:
range(..., na.rm = FALSE, finite = FALSE)

Arguments

... any numeric objects.

na.rm logical, indicating if NA’s should be omitted.

finite logical, indicating if all non-finite elements should be omitted.

Details

This is a generic function; currently, it has only a default method (range.default).

It is also a member of the Summary group of functions, see Methods.

If na.rm is FALSE, NA and NaN values in any of the arguments will cause NA values to be
returned, otherwise NA values are ignored.

If finite is TRUE, the minimum and maximum of all finite values is computed, i.e.,
finite=TRUE includes na.rm=TRUE.

A special situation occurs when there is no (after omission of NAs) nonempty argument left,
see min.



586 rank

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

min, max, Methods.

Examples

print(r.x <- range(rnorm(100)))

diff(r.x) # the SAMPLE range

x <- c(NA, 1:3, -1:1/0); x

range(x)

range(x, na.rm = TRUE)

range(x, finite = TRUE)

rank Sample Ranks

Description

Returns the sample ranks of the values in a numeric vector. Ties, i.e., equal values, result
in ranks being averaged, by default.

Usage

rank(x, na.last = TRUE, ties.method = c("average", "first", "random"))

Arguments

x a numeric vector.

na.last for controlling the treatment of NAs. If TRUE, missing values in the data
are put last; if FALSE, they are put first; if NA, they are removed; if "keep"
they are kept.

ties.method a character string specifying how ties are treated, see below; can be ab-
breviated.

Details

If all components are different, the ranks are well defined, with values in 1:n where n <-
length(x) and we assume no NAs for the moment. Otherwise, with some values equal,
called ‘ties’, the argument ties.method determines the result at the corresponding indices.
The "first" method results in a permutation with increasing values at each index set of
ties. The "random" method puts these in random order whereas the default, "average",
replaces them by their mean.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.



RdUtils 587

See Also

order and sort.

Examples

(r1 <- rank(x1 <- c(3, 1, 4, 15, 92)))

x2 <- c(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5)

names(x2) <- letters[1:11]

(r2 <- rank(x2)) # ties are averaged

## rank() is "idempotent": rank(rank(x)) == rank(x) :

stopifnot(rank(r1) == r1, rank(r2) == r2)

## ranks without averaging

rank(x2, ties.method= "first") # first occurrence wins

rank(x2, ties.method= "random") # ties broken at random

rank(x2, ties.method= "random") # and again

RdUtils Utilities for Processing Rd Files

Description

Utilities for converting files in R documentation (Rd) format to other formats or create
indices from them, and for converting documentation in other formats to Rd format.

Usage

R CMD Rdconv [options] file
R CMD Rd2dvi [options] files
R CMD Rd2txt [options] file
R CMD Sd2Rd [options] file

Arguments

file the path to a file to be processed.

files a list of file names specifying the R documentation sources to use, by
either giving the paths to the files, or the path to a directory with the
sources of a package.

options further options to control the processing, or for obtaining information
about usage and version of the utility.

Details

Rdconv converts Rd format to other formats. Currently, plain text, HTML, LaTeX, S
version 3 (Sd), and S version 4 (.sgml) formats are supported. It can also extract the
examples for run-time testing.

Rd2dvi and Rd2txt are user-level programs for producing DVI/PDF output or pretty text
output from Rd sources.

Sd2Rd converts S (version 3 or 4) documentation formats to Rd format.

Use R CMD foo --help to obtain usage information on utility foo.



588 read.00Index

Note

Conversion to S version 3/4 formats is rough: there are some .Rd constructs for which there
is no natural analogue. They are intended as a starting point for hand-tuning.

See Also

The chapter “Processing Rd format” in “Writing R Extensions” (see the ‘doc/manual’ sub-
directory of the R source tree).

read.00Index Read 00Index-style Files

Description

Read item/description information from 00Index-style files. Such files are description lists
rendered in tabular form, and currently used for the object, data and demo indices and
‘TITLE’ files of add-on packages.

Usage

read.00Index(file)

Arguments

file the name of a file to read data values from. If the specified file is "", then
input is taken from the keyboard (in this case input can be terminated
by a blank line). Alternatively, file can be a connection, which will be
opened if necessary, and if so closed at the end of the function call.

Value

a character matrix with 2 columns named "Item" and "Description" which hold the items
and descriptions.

See Also

formatDL for the inverse operation of creating a 00Index-style file from items and their
descriptions.



read.ftable 589

read.ftable Manipulate Flat Contingency Tables

Description

Read, write and coerce “flat” contingency tables.

Usage

read.ftable(file, sep = "", quote = "\"",
row.var.names, col.vars, skip = 0)

write.ftable(x, file = "", quote = TRUE, digits = getOption("digits"))

## S3 method for class 'ftable':
as.table(x, ...)

Arguments

file either a character string naming a file or a connection which the data are
to be read from or written to. "" indicates input from the console for
reading and output to the console for writing.

sep the field separator string. Values on each line of the file are separated by
this string.

quote a character string giving the set of quoting characters for read.ftable;
to disable quoting altogether, use quote="". For write.table, a logi-
cal indicating whether strings in the data will be surrounded by double
quotes.

row.var.names a character vector with the names of the row variables, in case these
cannot be determined automatically.

col.vars a list giving the names and levels of the column variables, in case these
cannot be determined automatically.

skip the number of lines of the data file to skip before beginning to read data.

x an object of class "ftable".

digits an integer giving the number of significant digits to use for (the cell entries
of) x.

... further arguments to be passed to or from methods.

Details

read.ftable reads in a flat-like contingency table from a file. If the file contains the written
representation of a flat table (more precisely, a header with all information on names and
levels of column variables, followed by a line with the names of the row variables), no
further arguments are needed. Similarly, flat tables with only one column variable the
name of which is the only entry in the first line are handled automatically. Other variants
can be dealt with by skipping all header information using skip, and providing the names
of the row variables and the names and levels of the column variable using row.var.names
and col.vars, respectively. See the examples below.



590 read.fwf

Note that flat tables are characterized by their “ragged” display of row (and maybe also
column) labels. If the full grid of levels of the row variables is given, one should instead use
read.table to read in the data, and create the contingency table from this using xtabs.

write.ftable writes a flat table to a file, which is useful for generating “pretty” ASCII
representations of contingency tables.

as.table.ftable converts a contingency table in flat matrix form to one in standard array
form. This is a method for the generic function as.table.

References

Agresti, A. (1990) Categorical data analysis. New York: Wiley.

See Also

ftable for more information on flat contingencty tables.

Examples

## Agresti (1990), page 157, Table 5.8.

## Not in ftable standard format, but o.k.

file <- tempfile()

cat(" Intercourse\n",

"Race Gender Yes No\n",

"White Male 43 134\n",

" Female 26 149\n",

"Black Male 29 23\n",

" Female 22 36\n",

file = file)

file.show(file)

ft <- read.ftable(file)

ft

unlink(file)

## Agresti (1990), page 297, Table 8.16.

## Almost o.k., but misses the name of the row variable.

file <- tempfile()

cat(" \"Tonsil Size\"\n",

" \"Not Enl.\" \"Enl.\" \"Greatly Enl.\"\n",

"Noncarriers 497 560 269\n",

"Carriers 19 29 24\n",

file = file)

file.show(file)

ft <- read.ftable(file, skip = 2,

row.var.names = "Status",

col.vars = list("Tonsil Size" =

c("Not Enl.", "Enl.", "Greatly Enl.")))

ft

unlink(file)

read.fwf Read Fixed Width Format Files



read.fwf 591

Description

Read a “table” of f ixed width formatted data into a data.frame.

Usage

read.fwf(file, widths, header = FALSE, sep = "\t", as.is = FALSE,
skip = 0, row.names, col.names, n = -1, ...)

Arguments

file the name of the file which the data are to be read from.
Alternatively, file can be a connection, which will be opened if neces-
sary, and if so closed at the end of the function call.

widths integer vector, giving the widths of the fixed-width fields (of one line).

header a logical value indicating whether the file contains the names of the vari-
ables as its first line.

sep character; the separator used internally; should be a character that does
not occur in the file.

as.is see read.table.

skip number of initial lines to skip; see read.table.

row.names see read.table.

col.names see read.table.

n the maximum number of records (lines) to be read, defaulting to no limit.

... further arguments to be passed to read.table.

Details

Fields that are of zero-width or are wholly beyond the end of the line in file are replaced
by NA.

Value

A data.frame as produced by read.table which is called internally.

Author(s)

Brian Ripley for R version: original Perl by Kurt Hornik.

See Also

scan and read.table.

Examples

ff <- tempfile()

cat(file=ff, "123456", "987654", sep="\n")

read.fwf(ff, width=c(1,2,3)) #> 1 23 456 \ 9 87 654

unlink(ff)

cat(file=ff, "123", "987654", sep="\n")

read.fwf(ff, width=c(1,0, 2,3)) #> 1 NA 23 NA \ 9 NA 87 654

unlink(ff)



592 read.socket

read.socket Read from or Write to a Socket

Description

read.socket reads a string from the specified socket, write.socket writes to the specified
socket. There is very little error checking done by either.

Usage

read.socket(socket, maxlen=256, loop=FALSE)
write.socket(socket, string)

Arguments

socket a socket object
maxlen maximum length of string to read
loop wait for ever if there is nothing to read?
string string to write to socket

Value

read.socket returns the string read.

Author(s)

Thomas Lumley

See Also

close.socket, make.socket

Examples

finger <- function(user, host = "localhost", port = 79, print = TRUE)

{

if (!is.character(user))

stop("user name must be a string")

user <- paste(user,"\r\n")

socket <- make.socket(host, port)

on.exit(close.socket(socket))

write.socket(socket, user)

output <- character(0)

repeat{

ss <- read.socket(socket)

if (ss == "") break

output <- paste(output, ss)

}

close.socket(socket)

if (print) cat(output)

invisible(output)

}

## Not run: finger("root") ## only works if your site provides a finger daemon



read.table 593

read.table Data Input

Description

Reads a file in table format and creates a data frame from it, with cases corresponding to
lines and variables to fields in the file.

Usage

read.table(file, header = FALSE, sep = "", quote = "\"'", dec = ".",
row.names, col.names, as.is = FALSE, na.strings = "NA",
colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#")

read.csv(file, header = TRUE, sep = ",", quote="\"", dec=".",
fill = TRUE, ...)

read.csv2(file, header = TRUE, sep = ";", quote="\"", dec=",",
fill = TRUE, ...)

read.delim(file, header = TRUE, sep = "\t", quote="\"", dec=".",
fill = TRUE, ...)

read.delim2(file, header = TRUE, sep = "\t", quote="\"", dec=",",
fill = TRUE, ...)

Arguments

file the name of the file which the data are to be read from. Each row of the
table appears as one line of the file. If it does not contain an absolute
path, the file name is relative to the current working directory, getwd().
Tilde-expansion is performed where supported.
Alternatively, file can be a connection, which will be opened if neces-
sary, and if so closed at the end of the function call. (If stdin() is used,
the prompts for lines may be somewhat confusing. Terminate input with
an EOF signal, Ctrl-D on Unix and Ctrl-Z on Windows.)
file can also be a complete URL.

header a logical value indicating whether the file contains the names of the vari-
ables as its first line. If missing, the value is determined from the file
format: header is set to TRUE if and only if the first row contains one
fewer field than the number of columns.

sep the field separator character. Values on each line of the file are separated
by this character. If sep = "" (the default for read.table) the separator
is “white space”, that is one or more spaces, tabs or newlines.

quote the set of quoting characters. To disable quoting altogether, use
quote="". See scan for the behaviour on quotes embedded in quotes.

dec the character used in the file for decimal points.



594 read.table

row.names a vector of row names. This can be a vector giving the actual row names,
or a single number giving the column of the table which contains the row
names, or character string giving the name of the table column containing
the row names.
If there is a header and the first row contains one fewer field than the
number of columns, the first column in the input is used for the row
names. Otherwise if row.names is missing, the rows are numbered.
Using row.names = NULL forces row numbering.

col.names a vector of optional names for the variables. The default is to use "V"
followed by the column number.

as.is the default behavior of read.table is to convert character variables
(which are not converted to logical, numeric or complex) to factors. The
variable as.is controls this conversion. Its value is either a vector of log-
icals (values are recycled if necessary), or a vector of numeric or character
indices which specify which columns should not be converted to factors.
Note: to suppress all conversions including those of numeric columns, set
colClasses = "character".

na.strings a vector of strings which are to be interpreted as NA values. Blank fields
are also considered to be missing values.

colClasses character. A vector of classes to be assumed for the columns. Recy-
cled as necessary. If this is not one of the atomic vector classes (logi-
cal, integer, numeric, complex and character), there needs to be an as
method for conversion from "character" to the specified class, or NA
when type.convert is used. NB: as is in package methods.

nrows the maximum number of rows to read in. Negative values are ignored.

skip the number of lines of the data file to skip before beginning to read data.

check.names logical. If TRUE then the names of the variables in the data frame are
checked to ensure that they are syntactically valid variable names. If
necessary they are adjusted (by make.names) so that they are, and also
to ensure that there are no duplicates.

fill logical. If TRUE then in case the rows have unequal length, blank fields
are implicitly added. See Details.

strip.white logical. Used only when sep has been specified, and allows the stripping
of leading and trailing white space from character fields (numeric fields
are always stripped). See scan for further details, remembering that the
columns may include the row names.

blank.lines.skip

logical: if TRUE blank lines in the input are ignored.

comment.char character: a character vector of length one containing a single character
or an empty string. Use "" to turn off the interpretation of comments
altogether.

... Further arguments to read.table.

Details

If row.names is not specified and the header line has one less entry than the number of
columns, the first column is taken to be the row names. This allows data frames to be read
in from the format in which they are printed. If row.names is specified and does not refer
to the first column, that column is discarded from such files.



read.table 595

The number of data columns is determined by looking at the first five lines of input (or the
whole file if it has less than five lines), or from the length of col.names if it is specified
and is longer. This could conceivably be wrong if fill or blank.lines.skip are true, so
specify col.names if necessary.

read.csv and read.csv2 are identical to read.table except for the defaults. They are
intended for reading “comma separated value” files (‘.csv’) or the variant used in countries
that use a comma as decimal point and a semicolon as field separator. Similarly, read.delim
and read.delim2 are for reading delimited files, defaulting to the TAB character for the
delimiter. Notice that header = TRUE and fill = TRUE in these variants.

The rest of the line after a comment character is skipped; quotes are not processed in com-
ments. Complete comment lines are allowed provided blank.lines.skip = TRUE; however,
comment lines prior to the header must have the comment character in the first non-blank
column.

Fields with embedded newlines are not supported (even if quoted).

Value

A data frame (data.frame) containing a representation of the data in the file. Empty input
is an error unless col.names is specified, when a 0-row data frame is returned: similarly
giving just a header line if header = TRUE results in a 0-row data frame.

This function is the principal means of reading tabular data into R.

Note

The columns referred to in as.is and colClasses include the column of row names (if
any).

Less memory will be used if colClasses is specified as one of the five atomic vector classes.

Using nrows, even as a mild over-estimate, will help memory usage.

Using comment.char = "" will be appreciably faster.

read.table is not the right tool for reading large matrices, especially those with many
columns: it is designed to read data frames which may have columns of very different
classes. Use scan instead.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

The R Data Import/Export manual.

scan, type.convert, read.fwf for reading f ixed w idth f ormatted input; write.table;
data.frame.

count.fields can be useful to determine problems with reading files which result in reports
of incorrect record lengths.



596 readBin

readBin Transfer Binary Data To and From Connections

Description

Read binary data from a connection, or write binary data to a connection.

Usage

readBin(con, what, n = 1, size = NA, signed = TRUE,
endian = .Platform$endian)

writeBin(object, con, size = NA, endian = .Platform$endian)

readChar(con, nchars)
writeChar(object, con, nchars = nchar(object), eos = "")

Arguments

con A connection object or a character string.

what Either an object whose mode will give the mode of the vector
to be read, or a character vector of length one describing the
mode: one of "numeric", "double", "integer", "int", "logical",
"complex", "character".

n integer. The (maximal) number of records to be read. You can use an
over-estimate here, but not too large as storage is reserved for n items.

size integer. The number of bytes per element in the byte stream. The default,
NA, uses the natural size. Size changing is not supported for complex
vectors.

signed logical. Only used for integers of sizes 1 and 2, when it determines if the
quantity on file should be regarded as a signed or unsigned integer.

endian The endian-ness ("big" or "little" of the target system for the file.
Using "swap" will force swapping endian-ness.

object An R object to be written to the connection.

nchars integer, giving the lengths of (unterminated) character strings to be read
or written.

eos character. The terminator to be written after each string, followed by an
ASCII nul; use NULL for no terminator at all.

Details

If the con is a character string, the functions call file to obtain an file connection which
is opened for the duration of the function call.

If the connection is open it is read/written from its current position. If it is not open, it is
opened for the duration of the call and then closed again.

If size is specified and not the natural size of the object, each element of the vector is
coerced to an appropriate type before being written or as it is read. Possible sizes are 1,
2, 4 and possibly 8 for integer or logical vectors, and 4, 8 and possibly 12/16 for numeric
vectors. (Note that coercion occurs as signed types except if signed = FALSE when reading



readBin 597

integers of sizes 1 and 2.) Changing sizes is unlikely to preserve NAs, and the extended
precision sizes are unlikely to be portable across platforms.

readBin and writeBin read and write C-style zero-terminated character strings. Input
strings are limited to 10000 characters. readChar and writeChar allow more flexibility,
and can also be used on text-mode connections.

Handling R’s missing and special (Inf, -Inf and NaN) values is discussed in the R Data
Import/Export manual.

Value

For readBin, a vector of appropriate mode and length the number of items read (which
might be less than n).

For readChar, a character vector of length the number of items read (which might be less
than length(nchars)).

For writeBin and writeChar, none.

Note

Integer read/writes of size 8 will be available if either C type long is of size 8 bytes or C
type long long exists and is of size 8 bytes.

Real read/writes of size sizeof(long double) (usually 12 or 16 bytes) will be available
only if that type is available and different from double.

Note that as R character strings cannot contain ASCII nul, strings read by readChar which
contain such characters will appear to be shorter than requested, but the additional bytes
are read from the file.

If the character length requested for readChar is longer than the data available on the con-
nection, what is available is returned. For writeChar if too many characters are requested
the output is zero-padded, with a warning.

If readBin(what=character()) is used incorrectly on a file which does not contain C-style
charcter strings, warnings (usually many) are given as from version 1.6.2. The input will
be broken into pieces of length 10000 with any final part being discarded.

See Also

The R Data Import/Export manual.

connections, readLines, writeLines.

.Machine for the sizes of long, long long and long double.

Examples

zz <- file("testbin", "wb")

writeBin(1:10, zz)

writeBin(pi, zz, endian="swap")

writeBin(pi, zz, size=4)

writeBin(pi^2, zz, size=4, endian="swap")

writeBin(pi+3i, zz)

writeBin("A test of a connection", zz)

z <- paste("A very long string", 1:100, collapse=" + ")

writeBin(z, zz)

if(.Machine$sizeof.long == 8 || .Machine$sizeof.longlong == 8)

writeBin(as.integer(5^(1:10)), zz, size = 8)



598 readline

if((s <-.Machine$sizeof.longdouble) > 8) writeBin((pi/3)^(1:10), zz, size = s)

close(zz)

zz <- file("testbin", "rb")

readBin(zz, integer(), 4)

readBin(zz, integer(), 6)

readBin(zz, numeric(), 1, endian="swap")

readBin(zz, numeric(), size=4)

readBin(zz, numeric(), size=4, endian="swap")

readBin(zz, complex(), 1)

readBin(zz, character(), 1)

z2 <- readBin(zz, character(), 1)

if(.Machine$sizeof.long == 8 || .Machine$sizeof.longlong == 8)

readBin(zz, integer(), 10, size = 8)

if((s <-.Machine$sizeof.longdouble) > 8) readBin(zz, numeric(), 10, size = s)

close(zz)

unlink("testbin")

stopifnot(z2 == z)

## test fixed-length strings

zz <- file("testbin", "wb")

x <- c("a", "this will be truncated", "abc")

nc <- c(3, 10, 3)

writeChar(x, zz, nc, eos=NULL)

writeChar(x, zz, eos="\r\n")

close(zz)

zz <- file("testbin", "rb")

readChar(zz, nc)

readChar(zz, nchar(x)+3) # need to read the terminator explicitly

close(zz)

unlink("testbin")

## signed vs unsigned ints

zz <- file("testbin", "wb")

x <- as.integer(seq(0, 255, 32))

writeBin(x, zz, size=1)

writeBin(x, zz, size=1)

x <- as.integer(seq(0, 60000, 10000))

writeBin(x, zz, size=2)

writeBin(x, zz, size=2)

close(zz)

zz <- file("testbin", "rb")

readBin(zz, integer(), 8, size=1)

readBin(zz, integer(), 8, size=1, signed=FALSE)

readBin(zz, integer(), 7, size=2)

readBin(zz, integer(), 7, size=2, signed=FALSE)

close(zz)

unlink("testbin")

readline Read a Line from the Terminal

Description

readline reads a line from the terminal



readLines 599

Usage

readline(prompt = "")

Arguments

prompt the string printed when prompting the user for input. Should usually end
with a space " ".

Details

The prompt string will be truncated to a maximum allowed length, normally 256 chars (but
can be changed in the source code).

Value

A character vector of length one.

Examples

fun <- function() {

ANSWER <- readline("Are you a satisfied R user? ")

if (substr(ANSWER, 1, 1) == "n")

cat("This is impossible. YOU LIED!\n")

else

cat("I knew it.\n")

}

fun()

readLines Read Text Lines from a Connection

Description

Read text lines from a connection.

Usage

readLines(con = stdin(), n = -1, ok = TRUE)

Arguments

con A connection object or a character string.

n integer. The (maximal) number of lines to read. Negative values indicate
that one should read up to the end of the connection.

ok logical. Is it OK to reach the end of the connection before n > 0 lines are
read? If not, an error will be generated.



600 real

Details

If the con is a character string, the functions call file to obtain an file connection which
is opened for the duration of the function call.

If the connection is open it is read from its current position. If it is not open, it is opened
for the duration of the call and then closed again.

If the final line is incomplete (no final EOL marker) the behaviour depends on whether
the connection is blocking or not. For a blocking text-mode connection (or a non-text-
mode connection) the line will be accepted, with a warning. For a non-blocking text-mode
connection the incomplete line is pushed back, silently.

Value

A character vector of length the number of lines read.

See Also

connections, writeLines, readBin, scan

Examples

cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file="ex.data",

sep="\n")

readLines("ex.data", n=-1)

unlink("ex.data") # tidy up

## difference in blocking

cat("123\nabc", file = "test1")

readLines("test1") # line with a warning

con <- file("test1", "r", blocking = FALSE)

readLines(con) # empty

cat(" def\n", file = "test1", append = TRUE)

readLines(con) # gets both

close(con)

unlink("test1") # tidy up

real Real Vectors

Description

real creates a double precision vector of the specified length. Each element of the vector
is equal to 0.

as.real attempts to coerce its argument to be of real type.

is.real returns TRUE or FALSE depending on whether its argument is of real type or not.

Usage

real(length = 0)
as.real(x, ...)
is.real(x)



Recall 601

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Note

R has no single precision data type. All real numbers are stored in double precision format.

Recall Recursive Calling

Description

Recall is used as a placeholder for the name of the function in which it is called. It allows
the definition of recursive functions which still work after being renamed, see example below.

Usage

Recall(...)

Arguments

... all the arguments to be passed.

See Also

do.call and call.

Examples

## A trivial (but inefficient!) example:

fib <- function(n) if(n<=2) {if(n>=0) 1 else 0} else Recall(n-1) + Recall(n-2)

fibonacci <- fib; rm(fib)

## renaming wouldn't work without Recall

fibonacci(10) # 55

recordPlot Record and Replay Plots

Description

Functions to save the current plot in an R variable, and to replay it.

Usage

recordPlot()
replayPlot(x)



602 recover

Arguments

x A saved plot.

Details

These functions record and replay the displaylist of the current graphics device. The re-
turned object is of class "recordedplot", and replayPlot acts as a print method for that
class.

The format of recorded plots was changed in R 1.4.0: plots saved in earlier versions can still
be replayed.

Value

recordPlot returns an object of class "recordedplot", a list with components:

displaylist The saved display list, as a pairlist.

gpar The graphics state, as an integer vector.

replayPlot has no return value.

recover Browsing after an Error

Description

This function allows the user to browse directly on any of the currently active function calls,
and is suitable as an error option. The expression options(error=recover) will make this
the error option.

Usage

recover()

Details

When called, recover prints the list of current calls, and prompts the user to select one of
them. The standard R browser is then invoked from the corresponding environment; the
user can type ordinary S language expressions to be evaluated in that environment.

When finished browsing in this call, type c to return to recover from the browser. Type
another frame number to browse some more, or type 0 to exit recover.

The use of recover largely supersedes dump.frames as an error option, unless you really
want to wait to look at the error. If recover is called in non-interactive mode, it behaves
like dump.frames. For computations involving large amounts of data, recover has the
advantage that it does not need to copy out all the environments in order to browse in
them. If you do decide to quit interactive debugging, call dump.frames directly while
browsing in any frame (see the examples).

WARNING : The special Q command to go directly from the browser to the prompt level
of the evaluator currently interacts with recover to effectively turn off the error option for
the next error (on subsequent errors, recover will be called normally).



recover 603

Value

Nothing useful is returned. However, you can invoke recover directly from a function,
rather than through the error option shown in the examples. In this case, execution con-
tinues after you type 0 to exit recover.

Compatibility Note

The R recover function can be used in the same way as the S-Plus function of the same
name; therefore, the error option shown is a compatible way to specify the error action.
However, the actual functions are essentially unrelated and interact quite differently with
the user. The navigating commands up and down do not exist in the R version; instead,
exit the browser and select another frame.

References

John M. Chambers (1998). Programming with Data; Springer.
See the compatibility note above, however.

See Also

browser for details about the interactive computations; options for setting the error option;
dump.frames to save the current environments for later debugging.

Examples

## Not run:

options(error = recover) # setting the error option

### Example of interaction

> myFit <- lm(y ~ x, data = xy, weights = w)

Error in lm.wfit(x, y, w, offset = offset, ...) :

missing or negative weights not allowed

Enter a frame number, or 0 to exit

1:lm(y ~ x, data = xy, weights = w)

2:lm.wfit(x, y, w, offset = offset, ...)

Selection: 2

Called from: eval(expr, envir, enclos)

Browse[1]> objects() # all the objects in this frame

[1] "method" "n" "ny" "offset" "tol" "w"

[7] "x" "y"

Browse[1]> w

[1] -0.5013844 1.3112515 0.2939348 -0.8983705 -0.1538642

[6] -0.9772989 0.7888790 -0.1919154 -0.3026882

Browse[1]> dump.frames() # save for offline debugging

Browse[1]> c # exit the browser

Enter a frame number, or 0 to exit

1:lm(y ~ x, data = xy, weights = w)

2:lm.wfit(x, y, w, offset = offset, ...)

Selection: 0 # exit recover

>

## End(Not run)



604 rect

rect Draw a Rectangle

Description

rect draws a rectangle (or sequence of rectangles) with the given coordinates, fill and border
colors.

Usage

rect(xleft, ybottom, xright, ytop, density = NULL, angle = 45,
col = NULL, border = NULL, lty = NULL, lwd = par("lwd"),
xpd = NULL, ...)

Arguments

xleft a vector (or scalar) of left x positions.

ybottom a vector (or scalar) of bottom y positions.

xright a vector (or scalar) of right x positions.

ytop a vector (or scalar) of top y positions.

density the density of shading lines, in lines per inch. The default value of NULL
means that no shading lines are drawn. A zero value of density means
no shading lines whereas negative values (and NA) suppress shading (and
so allow color filling).

angle angle (in degrees) of the shading lines.

col color(s) to fill or shade the rectangle(s) with. The default NULL, or also NA
do not fill, i.e., draw transparent rectangles, unless density is specified.

border color for rectangle border(s).

lty line type for borders; defaults to "solid".

lwd width for borders.

xpd logical (“expand”); defaults to par("xpd"). See par(xpd= ).

... other graphical parameters can be given as arguments.

Details

The positions supplied, i.e., xleft, ..., are relative to the current plotting region. If the
x-axis goes from 100 to 200 then xleft must be larger than 100 and xright must be less
than 200.

It is a primitive function used in hist, barplot, legend, etc.

See Also

box for the“standard”box around the plot; polygon and segments for flexible line drawing.

par for how to specify colors.



reg.finalizer 605

Examples

## set up the plot region:

op <- par(bg = "thistle")

plot(c(100, 250), c(300, 450), type = "n", xlab="", ylab="",

main = "2 x 11 rectangles; 'rect(100+i,300+i, 150+i,380+i)'")

i <- 4*(0:10)

## draw rectangles with bottom left (100, 300)+i and top right (150, 380)+i

rect(100+i, 300+i, 150+i, 380+i, col=rainbow(11, start=.7,end=.1))

rect(240-i, 320+i, 250-i, 410+i, col=heat.colors(11), lwd=i/5)

## Background alternating ( transparent / "bg" ) :

j <- 10*(0:5)

rect(125+j, 360+j, 141+j, 405+j/2, col = c(NA,0), border = "gold", lwd = 2)

rect(125+j, 296+j/2, 141+j, 331+j/5, col = c(NA,"midnightblue"))

mtext("+ 2 x 6 rect(*, col = c(NA,0)) and col = c(NA,\"m..blue\"))")

## an example showing colouring and shading

plot(c(100, 200), c(300, 450), type= "n", xlab="", ylab="")

rect(100, 300, 125, 350) # transparent

rect(100, 400, 125, 450, col="green", border="blue") # coloured

rect(115, 375, 150, 425, col=par("bg"), border="transparent")

rect(150, 300, 175, 350, density=10, border="red")

rect(150, 400, 175, 450, density=30, col="blue",

angle=-30, border="transparent")

legend(180, 450, legend=1:4, fill=c(NA, "green", par("fg"), "blue"),

density=c(NA, NA, 10, 30), angle=c(NA, NA, 30, -30))

par(op)

reg.finalizer Finalization of objects

Description

Registers an R function to be called upon garbage collection of object.

Usage

reg.finalizer(e, f)

Arguments

e Object to finalize. Must be environment or external pointer.

f Function to call on finalization. Must accept a single argument, which
will be the object to finalize.

Value

NULL.



606 regex

Note

The purpose of this function is mainly to allow objects that refer to external items (a
temporary file, say) to perform cleanup actions when they are no longer referenced from
within R. This only makes sense for objects that are never copied on assignment, hence the
restriction to environments and external pointers.

Examples

f <- function(e) print("cleaning....")

g <- function(x){e<-environment(); reg.finalizer(e,f)}

g()

invisible(gc()) # trigger cleanup

regex Regular Expressions as used in R

Description

This help page documents the regular expression patterns supported by grep and related
functions regexpr, sub and gsub, as well as by strsplit.

This is preliminary documentation.

Details

A ‘regular expression’ is a pattern that describes a set of strings. Three types of regular
expressions are used in R, extended regular expressions, used by grep(extended = TRUE)
(its default), basic regular expressions, as used by grep(extended = FALSE), and Perl-like
regular expressions used by grep(perl = TRUE).

Other functions which use regular expressions (often via the use of grep) include apropos,
browseEnv, help.search, list.files, ls and strsplit. These will all use extended reg-
ular expressions, unless strsplit is called with argument extended = FALSE.

Patterns are described here as they would be printed by cat: do remember that backslashes
need to be doubled in entering R character strings from the keyboard.

Extended Regular Expressions

This section covers the regular expressions allowed if extended = TRUE in grep, regexpr,
sub, gsub and strsplit. They use the GNU implementation of the POSIX 1003.2 standard.

Regular expressions are constructed analogously to arithmetic expressions, by using various
operators to combine smaller expressions.

The fundamental building blocks are the regular expressions that match a single charac-
ter. Most characters, including all letters and digits, are regular expressions that match
themselves. Any metacharacter with special meaning may be quoted by preceding it with
a backslash. The metacharacters are . \ | ( ) [ { ^ $ * + ?.

A character class is a list of characters enclosed by [ and ] matches any single character in
that list; if the first character of the list is the caret ^, then it matches any character not in
the list. For example, the regular expression [0123456789] matches any single digit, and
[^abc] matches anything except the characters a, b or c. A range of characters may be
specified by giving the first and last characters, separated by a hyphen. (Character ranges
are interpreted in the collation order of the current locale.)



regex 607

Certain named classes of characters are predefined. Their interpretation depends on the
locale (see locales); the interpretation below is that of the POSIX locale.

[:alnum:] Alphanumeric characters: [:alpha:] and [:digit:].

[:alpha:] Alphabetic characters: [:lower:] and [:upper:].

[:blank:] Blank characters: space and tab.

[:cntrl:] Control characters. In ASCII, these characters have octal codes 000 through
037, and 177 (DEL). In another character set, these are the equivalent characters, if
any.

[:digit:] Digits: 0 1 2 3 4 5 6 7 8 9.

[:graph:] Graphical characters: [:alnum:] and [:punct:].

[:lower:] Lower-case letters in the current locale.

[:print:] Printable characters: [:alnum:], [:punct:] and space.

[:punct:] Punctuation characters: ! " # $ % & ’ ( ) * + , - . / : ; < = > ?
@ [ \ ] ^ _ ‘ { | } ~.

[:space:] Space characters: tab, newline, vertical tab, form feed, carriage return, and
space.

[:upper:] Upper-case letters in the current locale.

[:xdigit:] Hexadecimal digits: 0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f.

For example, [[:alnum:]] means [0-9A-Za-z], except the latter depends upon the locale
and the character encoding, whereas the former is independent of locale and character set.
(Note that the brackets in these class names are part of the symbolic names, and must be
included in addition to the brackets delimiting the bracket list.) Most metacharacters lose
their special meaning inside lists. To include a literal ], place it first in the list. Similarly,
to include a literal ^, place it anywhere but first. Finally, to include a literal -, place it first
or last. (Only these and \ remain special inside character classes.)

The period . matches any single character. The symbol \w is documented to be synonym
for [[:alnum:]] and \W is its negation. However, \w also matches underscore in the GNU
grep code used in R.

The caret ^ and the dollar sign $ are metacharacters that respectively match the empty
string at the beginning and end of a line. The symbols \< and \> respectively match the
empty string at the beginning and end of a word. The symbol \b matches the empty string
at the edge of a word, and \B matches the empty string provided it is not at the edge of a
word.

A regular expression may be followed by one of several repetition quantifiers:

? The preceding item is optional and will be matched at most once.

* The preceding item will be matched zero or more times.

+ The preceding item will be matched one or more times.

{n} The preceding item is matched exactly n times.

{n,} The preceding item is matched n or more times.

{n,m} The preceding item is matched at least n times, but not more than m times.

Repetition is greedy, so the maximal possible number of repeats is used.

Two regular expressions may be concatenated; the resulting regular expression matches any
string formed by concatenating two substrings that respectively match the concatenated
subexpressions.



608 regex

Two regular expressions may be joined by the infix operator |; the resulting regular expres-
sion matches any string matching either subexpression. For example, abba|cde matches
either the string abba or the string cde. Note that alternation does not work inside character
classes, where | has its literal meaning.

Repetition takes precedence over concatenation, which in turn takes precedence over alter-
nation. A whole subexpression may be enclosed in parentheses to override these precedence
rules.

The backreference \N, where N is a single digit, matches the substring previously matched
by the Nth parenthesized subexpression of the regular expression.

The current code attempts to support traditional usage by assuming that { is not special if
it would be the start of an invalid interval specification. (POSIX allows this behaviour as
an extension but we advise users not to rely on it.)

Basic Regular Expressions

This section covers the regular expressions allowed if extended = FALSE in grep, regexpr,
sub, gsub and strsplit.

In basic regular expressions the metacharacters ?, +, {, |, (, and ) lose their special meaning;
instead use the backslashed versions \?, \+, \ {, \|, \(, and \). Thus the metacharacters
are . \ [ ^ $ *.

Perl Regular Expressions

The perl = TRUE argument to grep, regexpr, sub and gsub switches to the PCRE library
that implements regular expression pattern matching using the same syntax and semantics
as Perl 5, with just a few differences. Character tables created in the C locale at compile
time are used in this version, but locale-specific tables will be used in later versions of R.

For complete details please consult the man pages for PCRE (especially man pcrepattern
or if that does not exist, man pcre) on your system or from the sources at ftp://ftp.csx.
cam.ac.uk/pub/software/programming/pcre/. If PCRE support was compiled from the
sources within R, the PCRE version is 3.9 as described here: PCRE ≥ 4.0 supports more
of the Perl regular expressions.

All the regular expressions described for extended regular expressions are accepted except \<
and \>: in Perl all backslashed metacharacters are alphanumeric and backslashed symbols
always are interpreted as a literal character. { is not special if it would be the start of an
invalid interval specification. There can be more than 9 backreferences.

The construct (?...) is used for Perl extensions in a variety of ways depending on what
immediately follows the ?.

Perl-like matching can work in several modes, set by the options (?i) (caseless, equivalent
to Perl’s /i), (?m) (multiline, equivalent to Perl’s /m), (?s) (single line, so a dot matches
all characters, even new lines: equivalent to Perl’s /s) and (?x) (extended, whitespace data
characters are ignored unless escaped and comments are allowed: equivalent to Perl’s /x).
These can be concatenated, so for example, (?im) sets caseless multiline matching. It is
also possible to unset these options by preceding the letter with a hyphen, and to combine
setting and unsetting such as (?im-sx). These settings can be applied within patterns, and
then apply to the remainder of the pattern. Additional options not in Perl include (?U) to
set ‘ungreedy’ mode (so matching is minimal unless ? is used, when it is greedy). Initially
none of these options are set.

The escape sequences \d, \s and \w represent any decimal digit, space character and and
‘word’ character (letter, digit or underscore in the current locale) respectively, and their

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/


relevel 609

upper-case versions represent their negation. In PCRE 3.9 the vertical tab is not regarded
as a whitespace character, but it is in PCRE ≥ 4.0. (Perl itself changed around version
5.004.)

Escape sequence \a is BEL, \e is ESC, \f is FF, \n is LF, \r is CR and \t is TAB. In addition
\cx is cntrl-x for any x, \ddd is the octal character ddd (for up to three digits unless
interpretable as a backreference), and \xhh specifies a character in hex.

Outside a character class, \b matches a word boundary, \B is its negation, \A matches at
start of subject (even in multiline mode, unlike ^), \Z matches at end of a subject or before
newline at end, \z matches at end of a subject. and \G matches at first matching position
in a subject. \C matches a single byte. including a newline.

The same repetition quantifiers as extended POSIX are supported. However, if a quantifier
is followed by ?, the match is ‘ungreedy’, that is as short as possible rather than as long as
possible (unless the meanings are reversed by the (?U) option.)

The sequence (?# marks the start of a comment which continues up to the next closing
parenthesis. Nested parentheses are not permitted. The characters that make up a comment
play no part at all in the pattern matching.

If the extended option is set, an unescaped # character outside a character class introduces
a comment that continues up to the next newline character in the pattern.

The pattern (?:...) groups characters just as parentheses do but does not make a back-
reference.

Patterns (?=...) and (?!...) are zero-width positive and negative lookahead assertions:
they match if an attempt to match the ... forward from the current position would succeed
(or not), but use up no characters in the string being processed. Patterns (?<=...) and
(?<!...) are the lookbehind equivalents: they do not allow repetition quantifiers nor \C
in ....

Named subpatterns, atomic grouping, possessive qualifiers and conditional and recursive
patterns are not covered here.

Author(s)

This help page is based on the documentation of GNU grep 2.4.2, from which the C code
used by R has been taken, the pcre man page from PCRE 3.9 and the pcrepattern man
page from PCRE 4.4.

See Also

grep, apropos, browseEnv, help.search, list.files, ls and strsplit.

relevel Reorder Levels of Factor

Description

The levels of a factor are re-ordered so that the level specified by ref is first and the others
are moved down. This is useful for contr.treatment contrasts which take the first level as
the reference.

Usage

relevel(x, ref, ...)



610 REMOVE

Arguments

x An unordered factor.

ref The reference level.

... Additional arguments for future methods.

Value

A factor of the same length as x.

See Also

factor, contr.treatment

Examples

data(warpbreaks)

warpbreaks$tension <- relevel(warpbreaks$tension, ref="M")

summary(lm(breaks ~ wool + tension, data=warpbreaks))

REMOVE Remove Add-on Packages

Description

Utility for removing add-on packages.

Usage

R CMD REMOVE [options] [-l lib] pkgs

Arguments

pkgs a list with the names of the packages to be removed.

lib the path name of the R library tree to remove from. May be absolute or
relative.

options further options.

Details

If used as R CMD REMOVE pkgs without explicitly specifying lib, packages are removed from
the library tree rooted at the first directory given in $R_LIBS if this is set and non-null, and
to the default library tree (which is rooted at ‘$R HOME/library’) otherwise.

To remove from the library tree lib, use R CMD REMOVE -l lib pkgs.

Use R CMD REMOVE --help for more usage information.

See Also

INSTALL



remove 611

remove Remove Objects from a Specified Environment

Description

remove and rm can be used to remove objects. These can be specified successively as
character strings, or in the character vector list, or through a combination of both. All
objects thus specified will be removed.

If envir is NULL then the the currently active environment is searched first.

If inherits is TRUE then parents of the supplied directory are searched until a variable with
the given name is encountered. A warning is printed for each variable that is not found.

Usage

remove(..., list = character(0), pos = -1, envir = as.environment(pos),
inherits = FALSE)

rm (..., list = character(0), pos = -1, envir = as.environment(pos),
inherits = FALSE)

Arguments

... the objects to be removed, supplied individually and/or as a character
vector

list a character vector naming objects to be removed.

pos where to do the removal. By default, uses the current environment. See
the details for other possibilities.

envir the environment to use. See the details section.

inherits should the enclosing frames of the environment be inspected?

Details

The pos argument can specify the environment from which to remove the objects in any of
several ways: as an integer (the position in the search list); as the character string name of
an element in the search list; or as an environment (including using sys.frame to access
the currently active function calls). The envir argument is an alternative way to specify
an environment, but is primarily there for back compatibility.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

ls, objects



612 rep

Examples

tmp <- 1:4

## work with tmp and cleanup

rm(tmp)

## Not run:

## remove (almost) everything in the working environment.

## You will get no warning, so don't do this unless you are really sure.

rm(list = ls())

## End(Not run)

remove.packages Remove Installed Packages

Description

Removes installed packages and updates index information as necessary.

Usage

remove.packages(pkgs, lib, version)

Arguments

pkgs a character vector with the names of the packages to be removed.
lib a character string giving the library directory to move the packages from.
version A character string specifying a specific version of the package to remove.

If none is provided, the system will remove an unversioned install of the
package.

See Also

REMOVE for a command line version; install.packages for installing packages.

rep Replicate Elements of Vectors and Lists

Description

rep replicates the values in x. It is a generic function, and the default method is described
here.

rep.int is a faster simplified version for the commonest case.

Usage

rep(x, times, ...)

## Default S3 method:
rep(x, times, length.out, each, ...)

rep.int(x, times)



rep 613

Arguments

x a vector (of any mode including a list) or a pairlist or a POSIXct or
POSIXlt object.

times non-negative integer. A vector giving the number of times to repeat each
element if of length length(x), or to repeat the whole vector if of length
1.

length.out integer. (Optional.) The desired length of the output vector.

each optional integer. Each element of x is repeated each times.

... further arguments to be passed to or from other methods.

Details

If times consists of a single integer, the result consists of the values in x repeated this many
times. If times is a vector of the same length as x, the result consists of x[1] repeated
times[1] times, x[2] repeated times[2] times and so on.

length.out may be given in place of times, in which case x is repeated as many times as
is necessary to create a vector of this length. If both length.out and times are specified,
times determines the replication, and length.out can be used to truncate the output
vector (or extend it by NAs).

Non-integer values of times will be truncated towards zero. If times is a computed quantity
it is prudent to add a small fuzz.

Value

A vector of the same class as x.

Note

If the original vector has names, these are also replicated and so will almost always contain
duplicates.

If length.out is used to extend the vector, the behaviour is different from that of S-PLUS,
which recycles the existing vector.

Function rep.int is a simple case handled by internal code, and provided as a separate
function purely for S compatibility.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

seq, sequence.

Examples

rep(1:4, 2)

rep(1:4, each = 2) # not the same.

rep(1:4, c(2,2,2,2)) # same as second.

rep(1:4, c(2,1,2,1))

rep(1:4, each = 2, len = 4) # first 4 only.

rep(1:4, each = 2, len = 10) # 8 integers plus two NAs



614 replace

rep(1, 40*(1-.8)) # length 7 on most platforms

rep(1, 40*(1-.8)+1e-7) # better

## replicate a list

fred <- list(happy = 1:10, name = "squash")

rep(fred, 5)

# date-time objects

x <- .leap.seconds[1:3]

rep(x, 2)

rep(as.POSIXlt(x), rep(2, 3))

replace Replace Values in a Vector

Description

replace replaces the values in x with indexes given in list by those given in values. If
necessary, the values in values are recycled.

Usage

replace(x, list, values)

Arguments

x vector

list an index vector

values replacement values

Value

A vector with the values replaced.

Note

x is unchanged: remember to assign the result.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.



replications 615

replications Number of Replications of Terms

Description

Returns a vector or a list of the number of replicates for each term in the formula.

Usage

replications(formula, data=NULL, na.action)

Arguments

formula a formula or a terms object or a data frame.

data a data frame used to find the objects in formula.

na.action function for handling missing values. Defaults to a na.action attribute
of data, then a setting of the option na.action, or na.fail if that is not
set.

Details

If formula is a data frame and data is missing, formula is used for data with the formula
~ ..

Value

A vector or list with one entry for each term in the formula giving the number(s) of repli-
cations for each level. If all levels are balanced (have the same number of replications) the
result is a vector, otherwise it is a list with a component for each terms, as a vector, matrix
or array as required.

A test for balance is !is.list(replications(formula,data)).

Author(s)

The design was inspired by the S function of the same name described in Chambers et al.
(1992).

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed
experiments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie,
Wadsworth & Brooks/Cole.

See Also

model.tables



616 reshape

Examples

## From Venables and Ripley (2002) p.165.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

replications(~ . - yield, npk)

reshape Reshape Grouped Data

Description

This function reshapes a data frame between ‘wide’ format with repeated measurements in
separate columns of the same record and ‘long’ format with the repeated measurements in
separate records.

Usage

reshape(data, varying = NULL, v.names = NULL, timevar = "time",
idvar = "id", ids = 1:NROW(data),
times = seq(length = length(varying[[1]])),
drop = NULL, direction, new.row.names = NULL,
split = list(regexp="\\.", include=FALSE))

Arguments

data a data frame
varying names of sets of variables in the wide format that correspond to single

variables in long format (‘time-varying’). A list of vectors (or optionally
a matrix for direction="wide"). See below for more details and options.

v.names names of variables in the long format that correspond to multiple variables
in the wide format.

timevar the variable in long format that differentiates multiple records from the
same group or individual.

idvar the variable in long format that identifies multiple records from the same
group/individual. This variable may also be present in wide format.

ids the values to use for a newly created idvar variable in long format.
times the values to use for a newly created timevar variable in long format.
drop a vector of names of variables to drop before reshaping
direction character string, either "wide" to reshape to wide format, or "long" to

reshape to long format.
new.row.names logical; if TRUE and direction="wide", create new row names in long

format from the values of the id and time variables.
split information for guessing the varying, v.names, and times arguments.

See below for details.



reshape 617

Details

The arguments to this function are described in terms of longitudinal data, as that is the
application motivating the functions. A ‘wide’ longitudinal dataset will have one record
for each individual with some time-constant variables that occupy single columns and some
time-varying variables that occupy a column for each time point. In ‘long’ format there
will be multiple records for each individual, with some variables being constant across these
records and others varying across the records. A ‘long’ format dataset also needs a ‘time’
variable identifying which time point each record comes from and an ‘id’ variable showing
which records refer to the same person.

If the data frame resulted from a previous reshape then the operation can be reversed by
specifying just the direction argument. The other arguments are stored as attributes on
the data frame.

If direction="long" and no varying or v.names arguments are supplied it is assumed
that all variables except idvar and timevar are time-varying. They are all expanded into
multiple variables in wide format.

If direction="wide" the varying argument can be a vector of column names or col-
umn numbers (converted to column names). The function will attempt to guess the
v.names and times from these names. The default is variable names like x.1, x.2,where
split=list(regexp="\.",include=FALSE) to specifies to split at the dot and drop it from
the name. To have alphabetic followed by numeric times use split=list(regexp="[A-Za-
z][0-9]",include=TRUE). This splits between the alphabetic and numeric parts of the
name and does not drop the regular expression.

Value

The reshaped data frame with added attributes to simplify reshaping back to the original
form.

See Also

stack, aperm

Examples

data(Indometh,package="nls")

summary(Indometh)

wide <- reshape(Indometh, v.names="conc", idvar="Subject",

timevar="time", direction="wide")

wide

reshape(wide, direction="long")

reshape(wide, idvar="Subject", varying=list(names(wide)[2:12]),

v.names="conc", direction="long")

## times need not be numeric

df <- data.frame(id=rep(1:4,rep(2,4)), visit=I(rep(c("Before","After"),4)),

x=rnorm(4), y=runif(4))

df

reshape(df, timevar="visit", idvar="id", direction="wide")

## warns that y is really varying

reshape(df, timevar="visit", idvar="id", direction="wide", v.names="x")

## unbalanced 'long' data leads to NA fill in 'wide' form

df2 <- df[1:7,]



618 residuals

df2

reshape(df2, timevar="visit", idvar="id", direction="wide")

## Alternative regular expressions for guessing names

df3 <- data.frame(id=1:4, age=c(40,50,60,50), dose1=c(1,2,1,2),

dose2=c(2,1,2,1), dose4=c(3,3,3,3))

reshape(df3, direction="long", varying=3:5,

split=list(regexp="[a-z][0-9]", include=TRUE))

## an example that isn't longitudinal data

data(state)

state.x77 <- as.data.frame(state.x77)

long <- reshape(state.x77, idvar="state", ids=row.names(state.x77),

times=names(state.x77), timevar="Characteristic",

varying=list(names(state.x77)), direction="long")

reshape(long, direction="wide")

reshape(long, direction="wide", new.row.names=unique(long$state))

residuals Extract Model Residuals

Description

residuals is a generic function which extracts model residuals from objects returned by
modeling functions.

The abbreviated form resid is an alias for residuals. It is intended to encourage users to
access object components through an accessor function rather than by directly referencing
an object slot.

All object classes which are returned by model fitting functions should provide a residuals
method. (Note that the method is ‘residuals’ and not ‘resid’.)

Methods can make use of naresid methods to compensate for the omission of missing
values. The default method does.

Usage

residuals(object, ...)
resid(object, ...)

Arguments

object an object for which the extraction of model residuals is meaningful.

... other arguments.

Value

Residuals extracted from the object object.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.



rev 619

See Also

coefficients, fitted.values, glm, lm.

rev Reverse Elements

Description

rev provides a reversed version of its argument. It is generic function with a default method
for vectors and one for dendrograms.

Note that this is no longer needed (nor efficient) for obtaining vectors sorted into descending
order, since that is now rather more directly achievable by sort(x, decreasing=TRUE).

Usage

rev(x)
## Default S3 method:
rev(x)

Arguments

x a vector or another object for which reversion is defined.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

seq, sort.

Examples

x <- c(1:5,5:3)

## sort into descending order; first more efficiently:

stopifnot(sort(x, decreasing = TRUE) == rev(sort(x)))

stopifnot(rev(1:7) == 7:1)#- don't need 'rev' here



620 RHOME

rgb RGB Color Specification

Description

This function creates “colors” corresponding to the given intensities (between 0 and max) of
the red, green and blue primaries. The names argument may be used to provide names for
the colors.

The values returned by rgb can be used with a col= specification in graphics functions or
in par.

Usage

rgb(red, green, blue, names=NULL, maxColorValue = 1)

Arguments

red, blue, green

vectors of same length with values in [0,M ] where M is maxColorValue.
When this is 255, the red, blue and green values are coerced to integers
in 0:255 and the result is computed most efficiently.

names character. The names for the resulting vector.

maxColorValue number giving the maximum of the color values range, see above.

See Also

col2rgb the “inverse” for translating R colors to RGB vectors; rainbow, hsv, gray.

Examples

rgb(0,1,0)

(u01 <- seq(0,1, length=11))

stopifnot(rgb(u01,u01,u01) == gray(u01))

reds <- rgb((0:15)/15, g=0,b=0, names=paste("red",0:15,sep="."))

reds

rgb(0, 0:12, 0, max = 255)# integer input

RHOME R Home Directory

Description

Returns the location of the R home directory, which is the root of the installed R tree.

Usage

R RHOME



rivers 621

rivers Lengths of Major North American Rivers

Description

This data set gives the lengths (in miles) of 141“major”rivers in North America, as compiled
by the US Geological Survey.

Usage

data(rivers)

Format

A vector containing 141 observations.

Source

World Almanac and Book of Facts, 1975, page 406.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

rle Run Length Encoding

Description

Compute the lengths and values of runs of equal values in a vector – or the reverse operation.

Usage

rle(x)
inverse.rle(x, ...)

Arguments

x a simple vector for rle() or an object of class "rle" for inverse.rle().

... further arguments which are ignored in R.

Value

rle() returns an object of class "rle" which is a list with components

lengths an integer vector containing the length of each run.

values a vector of the same length as lengths with the corresponding values.

inverse.rle() is the inverse function of rle().



622 Round

Examples

x <- rev(rep(6:10, 1:5))

rle(x)

## lengths [1:5] 5 4 3 2 1

## values [1:5] 10 9 8 7 6

z <- c(TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE,TRUE)

rle(z)

rle(as.character(z))

stopifnot(x == inverse.rle(rle(x)),

z == inverse.rle(rle(z)))

Round Rounding of Numbers

Description

ceiling takes a single numeric argument x and returns a numeric vector containing the
smallest integers not less than the corresponding elements of x.
floor takes a single numeric argument x and returns a numeric vector containing the largest
integers not greater than the corresponding elements of x.
round rounds the values in its first argument to the specified number of decimal places
(default 0). Note that for rounding off a 5, the IEEE standard is used, “go to the even
digit”. Therefore round(0.5) is 0 and round(-1.5) is -2.
signif rounds the values in its first argument to the specified number of significant digits.
trunc takes a single numeric argument x and returns a numeric vector containing the
integers by truncating the values in x toward 0.
zapsmall determines a digits argument dr for calling round(x, digits = dr) such that
values “close to zero” (compared with the maximal absolute one) are “zapped”, i.e., treated
as 0.

Usage

ceiling(x)
floor(x)
round(x, digits = 0)
signif(x, digits = 6)
trunc(x)
zapsmall(x, digits= getOption("digits"))

Arguments

x a numeric vector.
digits integer indicating the precision to be used.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (except zapsmall.)
Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.
(zapsmall.)



round.POSIXt 623

See Also

as.integer.

Examples

round(.5 + -2:4) # IEEE rounding: -2 0 0 2 2 4 4

( x1 <- seq(-2, 4, by = .5) )

round(x1)#-- IEEE rounding !

x1[trunc(x1) != floor(x1)]

x1[round(x1) != floor(x1 + .5)]

(non.int <- ceiling(x1) != floor(x1))

x2 <- pi * 100^(-1:3)

round(x2, 3)

signif(x2, 3)

print (x2 / 1000, digits=4)

zapsmall(x2 / 1000, digits=4)

zapsmall(exp(1i*0:4*pi/2))

round.POSIXt Round / Truncate Data-Time Objects

Description

Round or truncate date-time objects.

Usage

## S3 method for class 'POSIXt':
round(x, units=c("secs", "mins", "hours", "days"))
## S3 method for class 'POSIXt':
trunc(x, units=c("secs", "mins", "hours", "days"))

Arguments

x an object inheriting from "POSIXt".

units one of the units listed. Can be abbreviated.

Details

The time is rounded or truncated to the second, minute, hour or day. Timezones are only
relevant to days, when midnight in the current timezone is used.

Value

An object of class "POSIXlt".

See Also

DateTimeClasses



624 row

Examples

round(.leap.seconds + 1000, "hour")

trunc.POSIXt(Sys.time(), "day")

row Row Indexes

Description

Returns a matrix of integers indicating their row number in the matrix.

Usage

row(x, as.factor = FALSE)

Arguments

x a matrix.

as.factor a logical value indicating whether the value should be returned as a factor
rather than as numeric.

Value

An integer matrix with the same dimensions as x and whose ij-th element is equal to i.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

col to get columns.

Examples

x <- matrix(1:12, 3, 4)

# extract the diagonal of a matrix

dx <- x[row(x) == col(x)]

dx

# create an identity 5-by-5 matrix

x <- matrix(0, nr = 5, nc = 5)

x[row(x) == col(x)] <- 1

x



row.names 625

row.names Get and Set Row Names for Data Frames

Description

All data frames have a row names attribute, a character vector of length the number of
rows with no duplicates nor missing values.

For convenience, these are generic functions for which users can write other methods, and
there are default methods for arrays. The description here is for the data.frame method.

Usage

row.names(x)
row.names(x) <- value

Arguments

x object of class "data.frame", or any other class for which a method has
been defined.

value a vector with the same length as the number of rows of x, to be coerced
to character. Duplicated or missing values are not allowed.

Value

row.names returns a character vector.

row.names<- returns a data frame with the row names changed.

Note

row.names is similar to rownames for arrays, and it has a method that calls rownames for
an array argument.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, rownames.



626 row/colnames

row/colnames Row and Column Names

Description

Retrieve or set the row or column names of a matrix-like object.

Usage

rownames(x, do.NULL = TRUE, prefix = "row")
rownames(x) <- value

colnames(x, do.NULL = TRUE, prefix = "col")
colnames(x) <- value

Arguments

x a matrix-like R object, with at least two dimensions for colnames.

do.NULL logical. Should this create names if they are NULL?

prefix for created names.

value a valid value for that component of dimnames(x). For a matrix or ar-
ray this is either NULL or a character vector of length the appropriate
dimension.

Details

The extractor functions try to do something sensible for any matrix-like object x. If the
object has dimnames the first component is used as the row names, and the second com-
ponent (if any) is used for the col names. For a data frame, rownames and colnames are
equivalent to row.names and names respectively.

If do.NULL is FALSE, a character vector (of length NROW(x) or NCOL(x)) is returned in any
case, prepending prefix to simple numbers, if there are no dimnames or the corresponding
component of the dimnames is NULL.

For a data frame, value for rownames should be a character vector of unique names, and
for colnames a character vector of unique syntactically-valid names. (Note: uniqueness and
validity are not enforced.)

See Also

dimnames, case.names, variable.names.

Examples

m0 <- matrix(NA, 4, 0)

rownames(m0)

m2 <- cbind(1,1:4)

colnames(m2, do.NULL = FALSE)

colnames(m2) <- c("x","Y")

rownames(m2) <- rownames(m2, do.NULL = FALSE, prefix = "Obs.")

m2



rowsum 627

rowsum Give row sums of a matrix or data frame, based on a grouping
variable

Description

Compute sums across rows of a matrix-like object for each level of a grouping variable.
rowsum is generic, with methods for matrices and data frames.

Usage

rowsum(x, group, reorder = TRUE, ...)

Arguments

x a matrix, data frame or vector of numeric data. Missing values are al-
lowed.

group a vector giving the grouping, with one element per row of x. Missing
values will be treated as another group and a warning will be given

reorder if TRUE, then the result will be in order of sort(unique(group)), if
FALSE, it will be in the order that rows were encountered.

... other arguments for future methods

Details

The default is to reorder the rows to agree with tapply as in the example below. Reordering
should not add noticeably to the time except when there are very many distinct values of
group and x has few columns.

The original function was written by Terry Therneau, but this is a new implementation
using hashing that is much faster for large matrices.

To add all the rows of a matrix (ie, a single group) use rowSums, which should be even
faster.

Value

a matrix or data frame containing the sums. There will be one row per unique value of
group.

See Also

tapply, aggregate,rowSums

Examples

x <- matrix(runif(100), ncol=5)

group <- sample(1:8, 20, TRUE)

xsum <- rowsum(x, group)

## Slower versions

xsum2 <- tapply(x, list(group[row(x)], col(x)), sum)

xsum3<- aggregate(x,list(group),sum)



628 Rprof

Rprof Enable Profiling of R’s Execution

Description

Enable or disable profiling of the execution of R expressions.

Usage

Rprof(filename = "Rprof.out", append = FALSE, interval = 0.02)

Arguments

filename The file to be used for recording the profiling results. Set to NULL or ""
to disable profiling.

append logical: should the file be over-written or appended to?

interval real: time interval between samples.

Details

Enabling profiling automatically disables any existing profiling to another or the same file.

Profiling works by writing out the call stack every interval seconds, to the file specified.
Either the summaryRprof function or the Perl script R CMD Rprof can be used to process
the output file to produce a summary of the usage; use R CMD Rprof --help for usage
information.

Note that the timing interval cannot be too small: once the timer goes off, the information
is not recorded until the next clock tick (probably every 10msecs). Thus the interval is
rounded to the nearest integer number of clock ticks, and is made to be at least one clock
tick (at which resolution the total time spent is liable to be underestimated).

Note

Profiling is not available on all platforms. By default, it is attempted to compile support
for profiling. Configure R with ‘--disable-R-profiling’ to change this.

As R profiling uses the same mechanisms as C profiling, the two cannot be used together,
so do not use Rprof in an executable built for profiling.

See Also

The chapter on “Tidying and profiling R code” in “Writing R Extensions” (see the
‘doc/manual’ subdirectory of the R source tree).

summaryRprof

Examples

## Not run:

Rprof()

## some code to be profiled

Rprof(NULL)

## some code NOT to be profiled

Rprof(append=TRUE)



rug 629

## some code to be profiled

Rprof(NULL)

...

## Now post-process the output as described in Details

## End(Not run)

rug Add a Rug to a Plot

Description

Adds a rug representation (1-d plot) of the data to the plot.

Usage

rug(x, ticksize=0.03, side=1, lwd=0.5, col,
quiet = getOption("warn") < 0, ...)

Arguments

x A numeric vector

ticksize The length of the ticks making up the ‘rug’. Positive lengths give inwards
ticks.

side On which side of the plot box the rug will be plotted. Normally 1 (bottom)
or 3 (top).

lwd The line width of the ticks.

col The colour the ticks are plotted in, default is black.

quiet logical indicating if there should be a warning about clipped values.

... further arguments, passed to axis(...), such as line or pos for specify-
ing the location of the rug.

Details

Because of the way rug is implemented, only values of x that fall within the plot region are
included. There will be a warning if any finite values are omitted, but non-finite values are
omitted silently.

Because of the way colours are done the axis itself is coloured the same as the ticks. You
can always replot the box in black if you don’t like this feature.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

jitter which you may want for ties in x.



630 sample

Examples

data(faithful)

with(faithful, {

plot(density(eruptions, bw=0.15))

rug(eruptions)

rug(jitter(eruptions, amount = .01), side = 3, col = "light blue")

})

sample Random Samples and Permutations

Description

sample takes a sample of the specified size from the elements of x using either with or
without replacement.

Usage

sample(x, size, replace = FALSE, prob = NULL)

Arguments

x Either a (numeric, complex, character or logical) vector of more than one
element from which to choose, or a positive integer.

size non-negative integer giving the number of items to choose.

replace Should sampling be with replacement?

prob A vector of probability weights for obtaining the elements of the vector
being sampled.

Details

If x has length 1, sampling takes place from 1:x. Note that this convenience feature may
lead to undesired behaviour when x is of varying length sample(x). See the resample()
example below.

By default size is equal to length(x) so that sample(x) generates a random permutation
of the elements of x (or 1:x).

The optional prob argument can be used to give a vector of weights for obtaining the
elements of the vector being sampled. They need not sum to one, but they should be
nonnegative and not all zero. If replace is false, these probabilities are applied sequentially,
that is the probability of choosing the next item is proportional to the probabilities amongst
the remaining items. The number of nonzero weights must be at least size in this case.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.



save 631

Examples

x <- 1:12

# a random permutation

sample(x)

# bootstrap sampling -- only if length(x) > 1 !

sample(x,replace=TRUE)

# 100 Bernoulli trials

sample(c(0,1), 100, replace = TRUE)

## More careful bootstrapping -- Consider this when using sample()

## programmatically (i.e., in your function or simulation)!

# sample()'s surprise -- example

x <- 1:10

sample(x[x > 8]) # length 2

sample(x[x > 9]) # oops -- length 10!

try(sample(x[x > 10]))# error!

## This is safer:

resample <- function(x, size, ...)

if(length(x) <= 1) { if(!missing(size) && size == 0) x[FALSE] else x

} else sample(x, size, ...)

resample(x[x > 8])# length 2

resample(x[x > 9])# length 1

resample(x[x > 10])# length 0

save Save R Objects

Description

save writes a external representation of R objects to the specified file. The objects can be
read back from the file at a later date by using the function load (or data in some cases).

save.image() is just a short-cut for “save my current environment”, i.e., save(list =
ls(all=TRUE), file = ".RData"). It is what also happens with q("yes").

Usage

save(..., list = character(0), file = stop("'file' must be specified"),
ascii = FALSE, version = NULL, envir = parent.frame(),
compress = FALSE)

save.image(file = ".RData", version = NULL, ascii = FALSE,
compress = FALSE, safe = TRUE)

sys.load.image(name, quiet)
sys.save.image(name)

Arguments

... the names of the objects to be saved.



632 save

list A character vector containing the names of objects to be saved.

file a connection or the name of the file where the data will be saved. Must
be a file name for workspace format version 1.

ascii if TRUE, an ASCII representation of the data is written. This is useful
for transporting data between machines of different types. The default
value of ascii is FALSE which leads to a more compact binary file being
written.

version the workspace format version to use. NULL specifies the current default
format. The version used from R 0.99.0 to R 1.3.1 was version 1. The
default format as from R 1.4.0 is version 2.

envir environment to search for objects to be saved.

compress logical specifying whether saving to a named file is to use compression.
Ignored when file is a connection and for workspace format version 1.

safe logical. If TRUE, a temporary file is used for creating the saved workspace.
The temporary file is renamed to file if the save succeeds. This preserves
an existing workspace file if the save fails, but at the cost of using extra
disk space during the save.

name name of image file to save or load.

quiet logical specifying whether a message should be printed.

Details

All R platforms use the XDR representation of binary objects in binary save-d files, and
these are portable across all R platforms.

Default values for save.image options can be modified with the save.image.defaults
option. This mechanism is experimental and subject to change.

sys.save.image is a system function that is called by q() and its GUI analogs;
sys.load.image is called by the startup code. These functions should not be called directly
and are subject to change.

sys.save.image closes all connections first, to ensure that it is able to open a connection
to save the image. This is appropriate when called from q() and allies, but reinforces the
warning that it should not be called directly.

Warning

The ... arguments only give the names of the objects to be saved: they are searched for in
the environment given by the envir argument, and the actual objects given as arguments
need not be those found.

See Also

dput, dump, load, data.

Examples

x <- runif(20)

y <- list(a = 1, b = TRUE, c = "oops")

save(x, y, file = "xy.Rdata")

save.image()

unlink("xy.Rdata")

unlink(".RData")



savehistory 633

# set save.image defaults using option:

options(save.image.defaults=list(ascii=TRUE, safe=FALSE))

save.image()

unlink(".RData")

savehistory Load or Save or Display the Commands History

Description

Load or save or display the commands history.

Usage

loadhistory(file = ".Rhistory")
savehistory(file = ".Rhistory")
history(max.show = 25, reverse = FALSE)

Arguments

file The name of the file in which to save the history, or from which to load
it. The path is relative to the current working directory.

max.show The maximum number of lines to show. Inf will give all of the currently
available history.

reverse logical. If true, the lines are shown in reverse order. Note: this is not
useful when there are continuation lines.

Details

This works under the readline and GNOME interfaces, but not if readline is not available
(for example, in batch use).

Note

If you want to save the history (almost) every session, you can put a call to savehistory()
in .Last.

Examples

## Not run:

.Last <- function()

if(interactive()) try(savehistory("~/.Rhistory"))

## End(Not run)



634 scale

scale Scaling and Centering of Matrix-like Objects

Description

scale is generic function whose default method centers and/or scales the columns of a
numeric matrix.

Usage

scale(x, center = TRUE, scale = TRUE)

Arguments

x a numeric matrix(like object).

center either a logical value or a numeric vector of length equal to the number
of columns of x.

scale either a logical value or a numeric vector of length equal to the number
of columns of x.

Details

The value of center determines how column centering is performed. If center is a numeric
vector with length equal to the number of columns of x, then each column of x has the
corresponding value from center subtracted from it. If center is TRUE then centering
is done by subtracting the column means (omitting NAs) of x from their corresponding
columns, and if center is FALSE, no centering is done.

The value of scale determines how column scaling is performed (after centering). If scale
is a numeric vector with length equal to the number of columns of x, then each column of
x is divided by the corresponding value from scale. If scale is TRUE then scaling is done
by dividing the (centered) columns of x by their root-mean-square, and if scale is FALSE,
no scaling is done.

The root-mean-square for a column is obtained by computing the square-root of the sum-
of-squares of the non-missing values in the column divided by the number of non-missing
values minus one.

Value

For scale.default, the centered, scaled matrix. The numeric centering and scalings used
(if any) are returned as attributes "scaled:center" and "scaled:scale"

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

sweep which allows centering (and scaling) with arbitrary statistics.

For working with the scale of a plot, see par.



scan 635

Examples

x <- matrix(1:10, nc=2)

(centered.x <- scale(x, scale=FALSE))

cov(centered.scaled.x <- scale(x))# all 1

scan Read Data Values

Description

Read data into a vector or list from the console or file.

Usage

scan(file = "", what = double(0), nmax = -1, n = -1, sep = "",
quote = if (sep=="\n") "" else "'\"", dec = ".",
skip = 0, nlines = 0, na.strings = "NA",
flush = FALSE, fill = FALSE, strip.white = FALSE, quiet = FALSE,
blank.lines.skip = TRUE, multi.line = TRUE, comment.char = "")

Arguments

file the name of a file to read data values from. If the specified file is "", then
input is taken from the keyboard (in this case input can be terminated by
a blank line or an EOF signal, Ctrl-D on Unix and Ctrl-Z on Windows.).
Otherwise, the file name is interpreted relative to the current working
directory (given by getwd()), unless it specifies an absolute path. Tilde-
expansion is performed where supported.
Alternatively, file can be a connection, which will be opened if neces-
sary, and if so closed at the end of the function call.
file can also be a complete URL.

what the type of what gives the type of data to be read. If what is a list,
it is assumed that the lines of the data file are records each contain-
ing length(what) items (“fields”). The supported types are logical,
integer, numeric, complex, character and list: list values should
have elements which are one of the first five types listed or NULL.

nmax the maximum number of data values to be read, or if what is a list, the
maximum number of records to be read. If omitted (and nlines is not
set to a positive value), scan will read to the end of file.

n the maximum number of data values to be read, defaulting to no limit.

sep by default, scan expects to read white-space delimited input fields. Al-
ternatively, sep can be used to specify a character which delimits fields.
A field is always delimited by a newline unless it is quoted.

quote the set of quoting characters as a single character string.

dec decimal point character.

skip the number of lines of the input file to skip before beginning to read data
values.

nlines the maximum number of lines of data to be read.



636 scan

na.strings character vector. Elements of this vector are to be interpeted as missing
(NA) values.

flush logical: if TRUE, scan will flush to the end of the line after reading the
last of the fields requested. This allows putting comments after the last
field, but precludes putting more that one record on a line.

fill logical: if TRUE, scan will implicitly add empty fields to any lines with
fewer fields than implied by what.

strip.white vector of logical value(s) corresponding to items in the what argument.
It is used only when sep has been specified, and allows the stripping of
leading and trailing white space from character fields (numeric fields
are always stripped).
If strip.white is of length 1, it applies to all fields; otherwise, if
strip.white[i] is TRUE and the i-th field is of mode character (be-
cause what[i] is) then the leading and trailing white space from field i
is stripped.

quiet logical: if FALSE (default), scan() will print a line, saying how many items
have been read.

blank.lines.skip

logical: if TRUE blank lines in the input are ignored, except when counting
skip and nlines.

multi.line logical. Only used if what is a list. If FALSE, all of a record must appear
on one line (but more than one record can appear on a single line). Note
that using fill = TRUE implies that a record will terminated at the end
of a line.

comment.char character: a character vector of length one containing a single character
or an empty string. Use "" to turn off the interpretation of comments
altogether (the default).

Details

The value of what can be a list of types, in which case scan returns a list of vectors with the
types given by the types of the elements in what. This provides a way of reading columnar
data. If any of the types is NULL, the corresponding field is skipped (but a NULL component
appears in the result).

The type of what or its components can be one of the five atomic types or NULL,

Empty numeric fields are always regarded as missing values. Empty character fields are
scanned as empty character vectors, unless na.strings contains "" when they are regarded
as missing values.

If sep is the default (""), the character \ in a quoted string escapes the following character,
so quotes may included in the string by escaping them.

If sep is non-default, the fields may be quoted in the style of ‘.csv’ files where separators
inside quotes ( or "") are ignored and quotes may be put inside strings by doubling
them. However, if sep = "\n" it is assumed by default that one wants to read entire lines
verbatim.

Quoting is only interpreted in character fields, and as from R 1.8.0 in NULL fields (which
might be skipping character fields).

Note that since sep is a separator and not a terminator, reading a file by scan("foo",
sep="\n", blank.lines.skip=FALSE) will give an empty file line if the file ends in a
linefeed and not if it does not. This might not be what you expected; see also readLines.



screen 637

If comment.char occurs (except inside a quoted character field), it signals that the rest
of the line should be regarded as a comment and be discarded. Lines beginning with a
comment character (possibly after white space) are treated as blank lines.

Value

if what is a list, a list of the same length and same names (as any) as what.

Otherwise, a vector of the type of what.

Note

The default for multi.line differs from S. To read one record per line, use flush = TRUE
and multi.line = FALSE.

If number of items is not specified, the internal mechanism re-allocates memory in powers
of two and so could use up to three times as much memory as needed. (It needs both old
and new copies.) If you can, specify either n or nmax whenever inputting a large vector,
and nmax or nlines when inputting a large list.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

read.table for more user-friendly reading of data matrices; readLines to read a file a line
at a time. write.

Examples

cat("TITLE extra line", "2 3 5 7", "11 13 17", file="ex.data", sep="\n")

pp <- scan("ex.data", skip = 1, quiet= TRUE)

scan("ex.data", skip = 1)

scan("ex.data", skip = 1, nlines=1)# only 1 line after the skipped one

str(scan("ex.data", what = list("","",""))) # flush is F -> read "7"

str(scan("ex.data", what = list("","",""), flush = TRUE))

unlink("ex.data") # tidy up

screen Creating and Controlling Multiple Screens on a Single Device

Description

split.screen defines a number of regions within the current device which can, to some
extent, be treated as separate graphics devices. It is useful for generating multiple plots on
a single device. Screens can themselves be split, allowing for quite complex arrangements
of plots.

screen is used to select which screen to draw in.

erase.screen is used to clear a single screen, which it does by filling with the background
colour.

close.screen removes the specified screen definition(s).



638 screen

Usage

split.screen(figs, screen = , erase = TRUE)
screen(n = , new = TRUE)
erase.screen(n = )
close.screen(n, all.screens = FALSE)

Arguments

figs A two-element vector describing the number of rows and the number of
columns in a screen matrix or a matrix with 4 columns. If a matrix, then
each row describes a screen with values for the left, right, bottom, and
top of the screen (in that order) in NDC units.

screen A number giving the screen to be split.

erase logical: should be selected screen be cleared?

n A number indicating which screen to prepare for drawing (screen), erase
(erase.screen), or close (close.screen).

new A logical value indicating whether the screen should be erased as part of
the preparation for drawing in the screen.

all.screens A logical value indicating whether all of the screens should be closed.

Details

The first call to split.screen places R into split-screen mode. The other split-screen
functions only work within this mode. While in this mode, certain other commands
should be avoided (see WARNINGS below). Split-screen mode is exited by the command
close.screen(all = TRUE)

Value

split.screen returns a vector of screen numbers for the newly-created screens. With no
arguments, split.screen returns a vector of valid screen numbers.

screen invisibly returns the number of the selected screen. With no arguments, screen
returns the number of the current screen.

close.screen returns a vector of valid screen numbers.

screen, erase.screen, and close.screen all return FALSE if R is not in split-screen mode.

Warning

The recommended way to use these functions is to completely draw a plot and all additions
(ie. points and lines) to the base plot, prior to selecting and plotting on another screen. The
behavior associated with returning to a screen to add to an existing plot is unpredictable
and may result in problems that are not readily visible.

These functions are totally incompatible with the other mechanisms for arranging plots on
a device: par(mfrow), par(mfcol), and layout().

The functions are also incompatible with some plotting functions, such as coplot, which
make use of these other mechanisms.

The functions should not be used with multiple devices.

erase.screen will appear not to work if the background colour is transparent (as it is by
default on most devices).



sd 639

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

par, layout, Devices, dev.*

Examples

if (interactive()) {

par(bg = "white") # default is likely to be transparent

split.screen(c(2,1)) # split display into two screens

split.screen(c(1,3), screen = 2) # now split the bottom half into 3

screen(1) # prepare screen 1 for output

plot(10:1)

screen(4) # prepare screen 4 for output

plot(10:1)

close.screen(all = TRUE) # exit split-screen mode

split.screen(c(2,1)) # split display into two screens

split.screen(c(1,2),2) # split bottom half in two

plot(1:10) # screen 3 is active, draw plot

erase.screen() # forgot label, erase and redraw

plot(1:10, ylab= "ylab 3")

screen(1) # prepare screen 1 for output

plot(1:10)

screen(4) # prepare screen 4 for output

plot(1:10, ylab="ylab 4")

screen(1, FALSE) # return to screen 1, but do not clear

plot(10:1, axes=FALSE, lty=2, ylab="") # overlay second plot

axis(4) # add tic marks to right-hand axis

title("Plot 1")

close.screen(all = TRUE) # exit split-screen mode

}

sd Standard Deviation

Description

This function computes the standard deviation of the values in x. If na.rm is TRUE then
missing values are removed before computation proceeds. If x is a matrix or a data frame,
a vector of the standard deviation of the columns is returned.

Usage

sd(x, na.rm = FALSE)

Arguments

x a numeric vector, matrix or data frame.

na.rm logical. Should missing values be removed?



640 se.contrast

See Also

var for its square, and mad, the most robust alternative.

Examples

sd(1:2) ^ 2

se.aov Internal Functions Used by model.tables

Description

Internal function for use by model.tables.

Usage

se.aov(object, n, type = "means")
se.aovlist(object, dn.proj, dn.strata, factors, mf, efficiency,

n, type = "diff.means", ...)

See Also

model.tables

se.contrast Standard Errors for Contrasts in Model Terms

Description

Returns the standard errors for one or more contrasts in an aov object.

Usage

se.contrast(object, ...)
## S3 method for class 'aov':
se.contrast(object, contrast.obj,

coef = contr.helmert(ncol(contrast))[, 1],
data = NULL, ...)

Arguments

object A suitable fit, usually from aov.
contrast.obj The contrasts for which standard errors are requested. This can be speci-

fied via a list or via a matrix. A single contrast can be specified by a list of
logical vectors giving the cells to be contrasted. Multiple contrasts should
be specified by a matrix, each column of which is a numerical contrast
vector (summing to zero).

coef used when contrast.obj is a list; it should be a vector of the same length
as the list with zero sum. The default value is the first Helmert contrast,
which contrasts the first and second cell means specified by the list.

data The data frame used to evaluate contrast.obj.
... further arguments passed to or from other methods.



search 641

Details

Contrasts are usually used to test if certain means are significantly different; it can be easier
to use se.contrast than compute them directly from the coefficients.

In multistratum models, the contrasts can appear in more than one stratum; the contrast
and standard error are computed in the lowest stratum and adjusted for efficiencies and
comparisons between strata.

Suitable matrices for use with coef can be found by calling contrasts and indexing the
columns by a factor.

Value

A vector giving the standard errors for each contrast.

See Also

contrasts, model.tables

Examples

## From Venables and Ripley (2002) p.165.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block = gl(6,4), N = factor(N), P = factor(P),

K = factor(K), yield = yield)

options(contrasts=c("contr.treatment", "contr.poly"))

npk.aov1 <- aov(yield ~ block + N + K, npk)

se.contrast(npk.aov1, list(N=="0", N=="1"), data=npk)

# or via a matrix

cont <- matrix(c(-1,1), 2, 1, dimnames=list(NULL, "N"))

se.contrast(npk.aov1, cont[N, , drop=FALSE]/12, data=npk)

## test a multi-stratum model

npk.aov2 <- aov(yield ~ N + K + Error(block/(N + K)), npk)

se.contrast(npk.aov2, list(N == "0", N == "1"))

search Give Search Path for R Objects

Description

Gives a list of attached packages (see library), and R objects, usually data.frames.

Usage

search()
searchpaths()



642 seek

Value

A character vector, starting with ".GlobalEnv", and ending with "package:base" which
is R’s base package required always.

searchpaths gives a similar character vector, with the entries for packages being the path
to the package used to load the code.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (search.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.
(searchPaths.)

See Also

attach and detach to change the search “path”, objects to find R objects in there.

Examples

search()

searchpaths()

seek Functions to Reposition Connections

Description

Functions to re-position connections.

Usage

seek(con, ...)
## S3 method for class 'connection':
seek(con, where = NA, origin = "start", rw = "", ...)

isSeekable(con)

truncate(con, ...)

Arguments

con a connection.

where integer. A file position (relative to the origin specified by origin), or NA.

rw character. Empty or "read" or "write", partial matches allowed.

origin character. One of "start", "current", "end".

... further arguments passed to or from other methods.



segments 643

Details

seek with where = NA returns the current byte offset of a connection (from the beginning),
and with a non-missing where argument the connection is re-positioned (if possible) to the
specified position. isSeekable returns whether the connection in principle supports seek:
currently only (possibly compressed) file connections do.

File connections can be open for both writing/appending, in which case R keeps separate
positions for reading and writing. Which seek refers to can be set by its rw argument: the
default is the last mode (reading or writing) which was used. Most files are only opened for
reading or writing and so default to that state. If a file is open for reading and writing but
has not been used, the default is to give the reading position (0).

The initial file position for reading is always at the beginning. The initial position for
writing is at the beginning of the file for modes "r+" and "r+b", otherwise at the end of
the file. Some platforms only allow writing at the end of the file in the append modes.

truncate truncates a file opened for writing at its current position. It works only for file
connections, and is not implemented on all platforms.

Value

seek returns the current position (before any move), as a byte offset, if relevant, or 0 if not.

truncate returns NULL: it stops with an error if it fails (or is not implemented).

isSeekable returns a logical value, whether the connection is support seek.

See Also

connections

segments Add Line Segments to a Plot

Description

Draw line segments between pairs of points.

Usage

segments(x0, y0, x1, y1,
col = par("fg"), lty = par("lty"), lwd = par("lwd"), ...)

Arguments

x0,y0 coordinates of points from which to draw.

x1,y1 coordinates of points to which to draw.

col, lty, lwd usual graphical parameters as in par.

... further graphical parameters (from par).



644 seq

Details

For each i, a line segment is drawn between the point (x0[i], y0[i]) and the point
(x1[i],y1[i]).

The graphical parameters col and lty can be used to specify a color and line texture for
the line segments (col may be a vector).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

arrows, polygon for slightly easier and less flexible line drawing, and lines for the usual
polygons.

Examples

x <- runif(12); y <- rnorm(12)

i <- order(x,y); x <- x[i]; y <- y[i]

plot(x,y, main="arrows(.) and segments(.)")

## draw arrows from point to point :

s <- seq(length(x)-1)# one shorter than data

arrows(x[s], y[s], x[s+1], y[s+1], col= 1:3)

s <- s[-length(s)]

segments(x[s], y[s], x[s+2], y[s+2], col= 'pink')

seq Sequence Generation

Description

Generate regular sequences.

Usage

from:to
a:b

seq(from, to)
seq(from, to, by=)
seq(from, to, length=)
seq(along)

Arguments

from starting value of sequence.

to (maximal) end value of the sequence.

by increment of the sequence.

length desired length of the sequence.

along take the length from the length of this argument.

a,b factors of same length.



seq 645

Details

The binary operator : has two meanings: for factors a:b is equivalent to interaction(a,
b) (except for labelling by la:lb not la.lb). For numeric arguments a:b is equivalent to
seq(from=a, to=b).

The interpretation of the unnamed arguments of seq is not standard, and it is recommended
always to name the arguments when programming.

Function seq is generic, and only the default method is described here.

The operator : and the first seq(.) form generate the sequence from, from+1, . . . , to.

The second form generates from, from+by, . . . , to.

The third generates a sequence of length equally spaced values from from to to.

The last generates the sequence 1, 2, . . . , length(along), unless the argument is of length
1 when it is interpreted as a length argument.

If from and to are factors of the same length, then from : to returns the “cross” of the
two.

Very small sequences (with from - to of the order of 1e-14 times the larger of the ends)
will return from.

Value

The result is of mode "integer" if from is (numerically equal to an) integer and by is not
specified.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

The method seq.POSIXt.

rep, sequence, row, col.

As an alternative to using : for factors, interaction.

Examples

1:4

pi:6 # float

6:pi # integer

seq(0,1, length=11)

str(seq(rnorm(20)))

seq(1,9, by = 2) # match

seq(1,9, by = pi)# stay below

seq(1,6, by = 3)

seq(1.575, 5.125, by=0.05)

seq(17) # same as 1:17

for (x in list(NULL, letters[1:6], list(1,pi)))

cat("x=",deparse(x),"; seq(along = x):",seq(along = x),"\n")

f1 <- gl(2,3); f1



646 seq.POSIXt

f2 <- gl(3,2); f2

f1:f2 # a factor, the "cross" f1 x f2

seq.POSIXt Generate Regular Sequences of Dates

Description

The method for seq for data-time classes.

Usage

## S3 method for class 'POSIXt':
seq(from, to, by, length.out=NULL, along.with=NULL, ...)

Arguments

from starting date. Required

to end date. Optional. If supplied must be after from.

by increment of the sequence. Optional. See Details.

length.out integer, optional. desired length of the sequence.

along.with take the length from the length of this argument.

... arguments passed to or from other methods.

Details

by can be specified in several ways.

� A number, taken to be in seconds.

� A object of class difftime

� A character string, containing one of "sec", "min", "hour", "day", "DSTday", "week",
"month" or "year". This can optionally be preceded by an integer and a space, or
followed by "s".

The difference between "day" and "DSTday" is that the former ignores changes to/from
daylight savings time and the latter takes the same clock time each day. ("week" ignores
DST, but "7 DSTdays") can be used as an alternative. "month" and "year" allow for DST
as from R 1.5.0.)

Value

A vector of class "POSIXct".

See Also

DateTimeClasses



sequence 647

Examples

## first days of years

seq(ISOdate(1910,1,1), ISOdate(1999,1,1), "years")

## by month

seq(ISOdate(2000,1,1), by="month", length=12)

## quarters

seq(ISOdate(1990,1,1), ISOdate(2000,1,1), by="3 months")

## days vs DSTdays

seq(ISOdate(2000,3,20), by="day", length = 10)

seq(ISOdate(2000,3,20), by="DSTday", length = 10)

seq(ISOdate(2000,3,20), by="7 DSTdays", length = 4)

sequence Create A Vector of Sequences

Description

For each element of nvec the sequence seq(nvec[i]) is created. These are appended and
the result returned.

Usage

sequence(nvec)

Arguments

nvec an integer vector each element of which specifies the upper bound of a
sequence.

See Also

gl, seq, rep.

Examples

sequence(c(3,2))# the concatenated sequences 1:3 and 1:2.

#> [1] 1 2 3 1 2

serialize Simple Serialization Interface

Description

A simple low level interface for serializing to connections.

Usage

serialize(object, connection, ascii = FALSE, refhook = NULL)
unserialize(connection, refhook = NULL)
.saveRDS(object, file = "", ascii = FALSE, version = NULL,

compress = FALSE, refhook = NULL)
.readRDS(file, refhook = NULL)



648 sets

Arguments

object R object to serialize.

file a connection or the name of the file where the R object is saved to or read
from.

ascii a logical. If TRUE, an ASCII representation is written; otherwise (default),
a more compact binary one is used.

version the workspace format version to use. NULL specifies the current default
format. The version used from R 0.99.0 to R 1.3.1 was version 1. The
default format as from R 1.4.0 is version 2.

compress a logical specifying whether saving to a named file is to use compression.
Ignored when file is a connection and for workspace format version 1.

connection an open connection.

refhook a hook function for handling reference objects.

Details

The function serialize writes object to the specified connection. Sharing of reference ob-
jects is preserved within the object but not across separate calls to serialize. If connection
is NULL then object is serialized to a scaler string, which is returned as the result of
serialize. For a text mode connection, the default value of ascii is set to TRUE.

unserialize reads an object from connection. connection may also be a scaler string.

The refhook functions can be used to customize handling of non-system reference objects
(all external pointers and weak references, and all environments other than name space and
package environments and .GlobalEnv). The hook function for serialize should return a
character vector for references it wants to handle; otherwise it should return NULL. The hook
for unserialize will be called with character vectors supplied to serialize and should
return an appropriate object.

Warning

These functions are still experimental. Both names, interfaces and values might change in
future versions. .saveRDS and .readRDS are intended for internal use.

Examples

x<-serialize(list(1,2,3),NULL)

unserialize(x)

sets Set Operations

Description

Performs set union, intersection, (asymmetric!) difference, equality and membership on
two vectors.



SHLIB 649

Usage

union(x, y)
intersect(x, y)
setdiff(x, y)
setequal(x, y)
is.element(el, set)

Arguments

x, y, el, set vectors (of the same mode) containing a sequence of items (conceptually)
with no duplicated values.

Details

Each of union, intersect and setdiff will remove any duplicated values in the arguments.

is.element(x, y) is identical to x %in% y.

Value

A vector of the same mode as x or y for setdiff and intersect, respectively, and of a
common mode for union.

A logical scalar for setequal and a logical of the same length as x for is.element.

See Also

%in%

Examples

(x <- c(sort(sample(1:20, 9)),NA))

(y <- c(sort(sample(3:23, 7)),NA))

union(x, y)

intersect(x, y)

setdiff(x, y)

setdiff(y, x)

setequal(x, y)

## True for all possible x & y :

setequal( union(x,y),

c(setdiff(x,y), intersect(x,y), setdiff(y,x)))

is.element(x, y)# length 10

is.element(y, x)# length 8

SHLIB Build Shared Library for Dynamic Loading

Description

Compile given source files using R CMD COMPILE, and then link all specified object files into
a shared library which can be loaded into R using dyn.load or library.dynam.



650 showConnections

Usage

R CMD SHLIB [options] [-o libname] files

Arguments

files a list specifying the object files to be included in the shared library. You
can also include the name of source files, for which the object files are
automagically made from their sources.

libname the full name of the shared library to be built, including the extension
(typically ‘.so’ on Unix systems). If not given, the name of the library is
taken from the first file.

options Further options to control the processing, or for obtaining information
about usage and version of the utility.

See Also

COMPILE, dyn.load, library.dynam

showConnections Display Connections

Description

Display aspects of connections.

Usage

showConnections(all=FALSE)
getConnection(what)
closeAllConnections()

stdin()
stdout()
stderr()

Arguments

all logical: if true all connections, including closed ones and the standard ones
are displayed. If false only open user-created connections are included.

what integer: a row number of the table given by showConnections.

Details

stdin(), stdout() and stderr() are standard connections corresponding to input, output
and error on the console respectively (and not necessarily to file streams). They are text-
mode connections of class "terminal" which cannot be opened or closed, and are read-only,
write-only and write-only respectively. The stdout() and stderr() connections can be re-
directed by sink.

showConnections returns a matrix of information. If a connection object has been lost or
forgotten, getConnection will take a row number from the table and return a connection
object for that connection, which can be used to close the connection, for example.



sign 651

closeAllConnections closes (and destroys) all open user connections, restoring all sink
diversions as it does so.

Value

stdin(), stdout() and stderr() return connection objects.

showConnections returns a character matrix of information with a row for each connection,
by default only for open non-standard connections.

getConnection returns a connection object, or NULL.

See Also

connections

Examples

showConnections(all = TRUE)

textConnection(letters)

# oops, I forgot to record that one

showConnections()

# class description mode text isopen can read can write

#3 "letters" "textConnection" "r" "text" "opened" "yes" "no"

## Not run: close(getConnection(3))

showConnections()

sign Sign Function

Description

sign returns a vector with the signs of the corresponding elements of x (the sign of a real
number is 1, 0, or −1 if the number is positive, zero, or negative, respectively).

Note that sign does not operate on complex vectors.

Usage

sign(x)

Arguments

x a numeric vector

See Also

abs

Examples

sign(pi) # == 1

sign(-2:3)# -1 -1 0 1 1 1



652 SignRank

Signals Interrupting Execution of R

Description

On receiving SIGUSR1 R will save the workspace and quit. SIGUSR2 has the same result
except that the .Last function and on.exit expressions will not be called.

Usage

kill -USR1 pid
kill -USR2 pid

Arguments

pid The process ID of the R process

Warning

It is possible that one or more R objects will be undergoing modification at the time the
signal is sent. These objects could be saved in a corrupted form.

SignRank Distribution of the Wilcoxon Signed Rank Statistic

Description

Density, distribution function, quantile function and random generation for the distribution
of the Wilcoxon Signed Rank statistic obtained from a sample with size n.

Usage

dsignrank(x, n, log = FALSE)
psignrank(q, n, lower.tail = TRUE, log.p = FALSE)
qsignrank(p, n, lower.tail = TRUE, log.p = FALSE)
rsignrank(nn, n)

Arguments

x,q vector of quantiles.

p vector of probabilities.

nn number of observations. If length(nn) > 1, the length is taken to be the
number required.

n numbers of observations in the sample. Must be positive integers less
than 50.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].



sink 653

Details

This distribution is obtained as follows. Let x be a sample of size n from a continuous
distribution symmetric about the origin. Then the Wilcoxon signed rank statistic is the
sum of the ranks of the absolute values x[i] for which x[i] is positive. This statistic
takes values between 0 and n(n + 1)/2, and its mean and variance are n(n + 1)/4 and
n(n+ 1)(2n+ 1)/24, respectively.

Value

dsignrank gives the density, psignrank gives the distribution function, qsignrank gives
the quantile function, and rsignrank generates random deviates.

Author(s)

Kurt Hornik 〈hornik@ci.tuwien.ac.at〉

See Also

dwilcox etc, for the two-sample Wilcoxon rank sum statistic.

Examples

par(mfrow=c(2,2))

for(n in c(4:5,10,40)) {

x <- seq(0, n*(n+1)/2, length=501)

plot(x, dsignrank(x,n=n), type='l', main=paste("dsignrank(x,n=",n,")"))

}

sink Send R Output to a File

Description

sink diverts R output to a connection.

sink.number() reports how many diversions are in use.

sink.number(type = "message") reports the number of the connection currently being
used for error messages.

Usage

sink(file = NULL, append = FALSE, type = c("output", "message"))
sink.number(type = c("output", "message"))

Arguments

file a connection or a character string naming the file to write to, or NULL to
stop sink-ing.

append logical. If TRUE, output will be appended to file; otherwise, it will
overwrite the contents of file.

type character. Either the output stream or the messages stream.



654 sink

Details

sink diverts R output to a connection. If file is a character string, a file connection with
that name will be established for the duration of the diversion.

Normal R output is diverted by the default type = "output". Only prompts and warn-
ing/error messages continue to appear on the terminal. The latter can diverted by type =
"message" (see below).

sink() or sink(file=NULL) ends the last diversion (of the specified type). As from R
version 1.3.0 there is a stack of diversions for normal output, so output reverts to the
previous diversion (if there was one). The stack is of up to 21 connections (20 diversions).

If file is a connection if will be opened if necessary.

Sink-ing the messages stream should be done only with great care. For that stream file
must be an already open connection, and there is no stack of connections.

Value

For sink.

For sink.number() the number (0, 1, 2, . . . ) of diversions of output in place.

For sink.number("message") the connection number used for messages, 2 if no diversion
has been used.

Warning

Don’t use a connection that is open for sink for any other purpose. The software will stop
you closing one such inadvertently.

Do not sink the messages stream unless you understand the source code implementing it
and hence the pitfalls.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

capture.output

Examples

sink("sink-examp.txt")

i <- 1:10

outer(i, i, "*")

sink()

unlink("sink-examp.txt")

## Not run:

## capture all the output to a file.

zz <- file("all.Rout", open="wt")

sink(zz)

sink(zz, type="message")

try(log("a"))

## back to the console

sink(type="message")



slice.index 655

sink()

try(log("a"))

## End(Not run)

sleep Student’s Sleep Data

Description

Data which show the effect of two soporific drugs (increase in hours of sleep) on groups
consisting of 10 patients each.

Usage

data(sleep)

Format

A data frame with 20 observations on 2 variables.

[, 1] extra numeric increase in hours of sleep
[, 2] group factor patient group

Source

Student (1908) The probable error of the mean. Biometrika, 6, 20.

References

Scheffé, Henry (1959) The Analysis of Variance. New York, NY: Wiley.

Examples

data(sleep)

## ANOVA

anova(lm(extra ~ group, data = sleep))

slice.index Slice Indexes in an Array

Description

Returns a matrix of integers indicating the number of their slice in a given array.

Usage

slice.index(x, MARGIN)



656 slotOp

Arguments

x an array. If x has no dimension attribute, it is considered a one-
dimensional array.

MARGIN an integer giving the dimension number to slice by.

Value

An integer array y with dimensions corresponding to those of x such that all elements of
slice number i with respect to dimension MARGIN have value i.

See Also

row and col for determining row and column indexes; in fact, these are special cases of
slice.index corresponding to MARGIN equal to 1 and 2, respectively when x is a matrix.

Examples

x <- array(1 : 24, c(2, 3, 4))

slice.index(x, 2)

slotOp Extract Slots

Description

Extract tbe contents of a slot in a object with a formal class structure.

Usage

object@name

Arguments

object An object from a formally defined class.

name The character-string name of the slot.

Details

These operators support the formal classes of package methods. See slot for further details.
Currently there is no checking that the object is an instance of a class.

See Also

Extract, slot



socketSelect 657

socketSelect Wait on Socket Connections

Description

Waits for the first of several socket connections to become available.

Usage

socketSelect(socklist, write = FALSE, timeout = NULL)

Arguments

socklist list of open socket connections

write logical. If TRUE wait for corresponding socket to become available for
writing; otherwise wait for it to become available for reading.

timeout numeric or NULL. Time in seconds to wait for a socket to become available;
NULL means wait indefinitely.

Details

The values in write are recycled if necessary to make up a logical vector the same length as
socklist. Socket connections can appear more than once in socklist; this can be useful
if you want to determine whether a socket is available for reading or writing.

Value

Logical the same length as socklist indicating whether the corresponding socket connec-
tion is available for output or input, depending on the corresponding value of write.

Examples

## Not run:

## test whether socket connection s is available for writing or reading

socketSelect(list(s,s),c(TRUE,FALSE),timeout=0)

## End(Not run)

solve Solve a System of Equations

Description

This generic function solves the equation a %*% x = b for x, where b can be either a vector
or a matrix.

Usage

solve(a, b, ...)

## Default S3 method:
solve(a, b, tol, LINPACK = FALSE, ...)



658 solve

Arguments

a a square numeric or complex matrix containing the coefficients of the
linear system.

b a numeric or complex vector or matrix giving the right-hand side(s) of the
linear system. If missing, b is taken to be an identity matrix and solve
will return the inverse of a.

tol the tolerance for detecting linear dependencies in the columns of
a. If LINPACK is TRUE the default is 1e-7, otherwise it is
.Machine$double.eps. Future versions of R may use a tighter tolerance.
Not presently used with complex matrices a.

LINPACK logical. Should LINPACK be used (for compatibility with R < 1.7.0)?

... further arguments passed to or from other methods

Details

As from R 1.3.0, a or b can be complex, in which case LAPACK routine ZESV is used. This
uses double complex arithmetic which might not be available on all platforms.

The row and column names of the result are taken from the column names of a and of b
respectively. As from R 1.7.0 if b is missing the column names of the result are the row
names of a. No check is made that the column names of a and the row names of b are
equal.

For back-compatibility a can be a (real) QR decomposition, although qr.solve should be
called in that case. qr.solve can handle non-square systems.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

solve.qr for the qr method, backsolve, qr.solve.

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }

h8 <- hilbert(8); h8

sh8 <- solve(h8)

round(sh8 %*% h8, 3)

A <- hilbert(4)

A[] <- as.complex(A)

## might not be supported on all platforms

try(solve(A))



sort 659

sort Sorting or Ordering Vectors

Description

Sort (or order) a numeric or complex vector (partially) into ascending (or descending) order.

Usage

sort(x, partial = NULL, na.last = NA, decreasing = FALSE,
method = c("shell", "quick"), index.return = FALSE)

is.unsorted(x, na.rm = FALSE)

Arguments

x a numeric or complex vector.

partial a vector of indices for partial sorting.

na.last for controlling the treatment of NAs. If TRUE, missing values in the data
are put last; if FALSE, they are put first; if NA, they are removed.

decreasing logical. Should the sort be increasing or decreasing?

method character specifying the algorithm used.

index.return logical indicating if the ordering index vector should be returned as well;
this is only available for the default na.last = NA.

na.rm logical. Should missing values be removed?

Details

If partial is not NULL, it is taken to contain indices of elements of x which are to be placed
in their correct positions by partial sorting. After the sort, the values specified in partial
are in their correct position in the sorted array. Any values smaller than these values are
guaranteed to have a smaller index in the sorted array and any values which are greater are
guaranteed to have a bigger index in the sorted array.

The sort order for character vectors will depend on the collating sequence of the locale in
use: see Comparison.

is.unsorted returns a logical indicating if x is sorted increasingly, i.e., is.unsorted(x) is
true if any(x != sort(x)) (and there are no NAs).

method = "shell" uses Shellsort (an O(n4/3) variant from Sedgewick (1996)). If x has
names a stable sort is used, so ties are not reordered. (This only matters if names are
present.)

Method "quick" uses Singleton’s Quicksort implementation and is only available when x
is numeric (double or integer) and partial is NULL. It is normally somewhat faster than
Shellsort (perhaps twice as fast on vectors of length a million) but has poor performance in
the rare worst case. (Peto’s modification using a pseudo-random midpoint is used to make
the worst case rarer.) This is not a stable sort, and ties may be reordered.



660 sort

Value

For sort the sorted vector unless index.return is true, when the result is a list with
components named x and ix containing the sorted numbers and the ordering index vector.
In the latter case, if method == "quick" ties may be reversed in the ordering, unlike
sort.list, as quicksort is not stable.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Sedgewick, R. (1986) A new upper bound for Shell sort. J. Algorithms 7, 159–173.

Singleton, R. C. (1969) An efficient algorithm for sorting with minimal storage: Algorithm
347. Communications of the ACM 12, 185–187.

See Also

order, rank.

Examples

data(swiss)

x <- swiss$Education[1:25]

x; sort(x); sort(x, partial = c(10, 15))

median # shows you another example for 'partial'

## illustrate 'stable' sorting (of ties):

sort(c(10:3,2:12), method = "sh", index=TRUE) # is stable

## $x : 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12

## $ix: 9 8 10 7 11 6 12 5 13 4 14 3 15 2 16 1 17 18 19

sort(c(10:3,2:12), method = "qu", index=TRUE) # is not

## $x : 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12

## $ix: 9 10 8 7 11 6 12 5 13 4 14 3 15 16 2 17 1 18 19

## ^^^^^

## Not run: ## Small speed comparison simulation:

N <- 2000

Sim <- 20

rep <- 50 # << adjust to your CPU

c1 <- c2 <- numeric(Sim)

for(is in 1:Sim){

x <- rnorm(N)

gc() ## sort should not have to pay for gc

c1[is] <- system.time(for(i in 1:rep) sort(x, method = "shell"))[1]

c2[is] <- system.time(for(i in 1:rep) sort(x, method = "quick"))[1]

stopifnot(sort(x, meth = "s") == sort(x, meth = "q"))

}

100 * rbind(ShellSort = c1, QuickSort = c2)

cat("Speedup factor of quick sort():\n")

summary({qq <- c1 / c2; qq[is.finite(qq)]})

## A larger test

x <- rnorm(1e6)

gc()

system.time(x1 <- sort(x, method = "shell"))

gc()



source 661

system.time(x2 <- sort(x, method = "quick"))

stopifnot(identical(x1, x2))

## End(Not run)

source Read R Code from a File or a Connection

Description

source causes R to accept its input from the named file (the name must be quoted). Input is
read from that file until the end of the file is reached. parse is used to scan the expressions
in, they are then evaluated sequentially in the chosen environment.

Usage

source(file, local = FALSE, echo = verbose, print.eval = echo,
verbose = getOption("verbose"), prompt.echo = getOption("prompt"),
max.deparse.length = 150, chdir = FALSE)

Arguments

file a connection or a character string giving the name of the file or URL to
read from.

local if local is FALSE, the statements scanned are evaluated in the user’s
workspace (the global environment), otherwise in the environment calling
source.

echo logical; if TRUE, each expression is printed after parsing, before evaluation.

print.eval logical; if TRUE, the result of eval(i) is printed for each expression i;
defaults to echo.

verbose if TRUE, more diagnostics (than just echo = TRUE) are printed during
parsing and evaluation of input, including extra info for each expression.

prompt.echo character; gives the prompt to be used if echo = TRUE.
max.deparse.length

integer; is used only if echo is TRUE and gives the maximal length of the
“echo” of a single expression.

chdir logical; if TRUE, the R working directory is changed to the directory con-
taining file for evaluating.

Details

All versions of R accept input from a connection with end of line marked by LF (as used
on Unix), CRLF (as used on DOS/Windows) or CR (as used on Mac). The final line can
be incomplete, that is missing the final EOL marker.

If options(”keep.source”) is true (the default), the source of functions is kept so they can
be listed exactly as input. This imposes a limit of 128K chars on the function size and
a nesting limit of 265. Use option(keep.source = FALSE) when these limits might take
effect: if exceeded they generate an error.



662 Special

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

demo which uses source; eval, parse and scan; options("keep.source").

Special Special Functions of Mathematics

Description

Special mathematical functions related to the beta and gamma functions.

Usage

beta(a, b)
lbeta(a, b)
gamma(x)
lgamma(x)
digamma(x)
trigamma(x)
tetragamma(x)
pentagamma(x)
choose(n, k)
lchoose(n, k)

Arguments

a, b, x numeric vectors.

n, k integer vectors.

Details

The functions beta and lbeta return the beta function and the natural logarithm of the
beta function,

B(a, b) =
Γ(a)Γ(b)
Γ(a+ b)

.

The functions gamma and lgamma return the gamma function Γ(x) and the natural logarithm
of the absolute value of the gamma function.

The functions digamma, trigamma, tetragamma and pentagamma return the first, second,
third and fourth derivatives of the logarithm of the gamma function.

digamma(x) = ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)
Γ(x)

The functions choose and lchoose return binomial coefficients and their logarithms.



splinefun 663

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (for gamma and lgamma.)

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York:
Dover. Chapter 6: Gamma and Related Functions.

See Also

Arithmetic for simple, sqrt for miscellaneous mathematical functions and Bessel for the
real Bessel functions.

Examples

choose(5, 2)

for (n in 0:10) print(choose(n, k = 0:n))

## gamma has discontinuities are 0, -1, -2, ...

## Not run:

## use plots of points to show this.

curve(gamma(x),-3,4, n=1001, ylim=c(-10,100),

col="red", lwd=2, main="gamma(x)")

abline(h=0,v=0, lty=3, col="midnightblue")

## End(Not run)

x <- seq(.1, 4, length = 201); dx <- diff(x)[1]

par(mfrow = c(2, 3))

for (ch in c("", "l","di","tri","tetra","penta")) {

is.deriv <- nchar(ch) >= 2

if (is.deriv) dy <- diff(y) / dx

nm <- paste(ch, "gamma", sep = "")

y <- get(nm)(x)

plot(x, y, type = "l", main = nm, col = "red")

abline(h = 0, col = "lightgray")

if (is.deriv) lines(x[-1], dy, col = "blue", lty = 2)

}

splinefun Interpolating Splines

Description

Perform cubic spline interpolation of given data points, returning either a list of points
obtained by the interpolation or a function performing the interpolation.

Usage

splinefun(x, y = NULL, method = "fmm")

spline(x, y = NULL, n = 3*length(x), method = "fmm",
xmin = min(x), xmax = max(x))



664 splinefun

Arguments

x,y vectors giving the coordinates of the points to be interpolated. Alterna-
tively a single plotting structure can be specified: see xy.coords.

method specifies the type of spline to be used. Possible values are "fmm",
"natural" and "periodic".

n interpolation takes place at n equally spaced points spanning the interval
[xmin, xmax].

xmin left-hand endpoint of the interpolation interval.

xmax right-hand endpoint of the interpolation interval.

Details

If method = "fmm", the spline used is that of Forsythe, Malcolm and Moler (an exact cubic
is fitted through the four points at each end of the data, and this is used to determine the
end conditions). Natural splines are used when method = "natural", and periodic splines
when method = "periodic".

These interpolation splines can also be used for extrapolation, that is prediction at points
outside the range of x. Extrapolation makes little sense for method = "fmm"; for natural
splines it is linear using the slope of the interpolating curve at the nearest data point.

Value

spline returns a list containing components x and y which give the ordinates where inter-
polation took place and the interpolated values.

splinefun returns a function which will perform cubic spline interpolation of the given
data points. This is often more useful than spline.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Forsythe, G. E., Malcolm, M. A. and Moler, C. B. (1977) Computer Methods for Mathe-
matical Computations.

See Also

approx and approxfun for constant and linear interpolation.

Package splines, especially interpSpline and periodicSpline for interpolation splines.
That package also generates spline bases that can be used for regression splines.

smooth.spline in package modreg for smoothing splines.

Examples

op <- par(mfrow = c(2,1), mgp = c(2,.8,0), mar = .1+c(3,3,3,1))

n <- 9

x <- 1:n

y <- rnorm(n)

plot(x, y, main = paste("spline[fun](.) through", n, "points"))

lines(spline(x, y))

lines(spline(x, y, n = 201), col = 2)



split 665

y <- (x-6)^2

plot(x, y, main = "spline(.) -- 3 methods")

lines(spline(x, y, n = 201), col = 2)

lines(spline(x, y, n = 201, method = "natural"), col = 3)

lines(spline(x, y, n = 201, method = "periodic"), col = 4)

legend(6,25, c("fmm","natural","periodic"), col=2:4, lty=1)

f <- splinefun(x, y)

ls(envir = environment(f))

splinecoef <- eval(expression(z), envir = environment(f))

curve(f(x), 1, 10, col = "green", lwd = 1.5)

points(splinecoef, col = "purple", cex = 2)

par(op)

split Divide into Groups

Description

split divides the data in the vector x into the groups defined by f. The assignment forms
replace values corresponding to such a division. Unsplit reverses the effect of split.

Usage

split(x, f)
split(x, f) <- value
unsplit(value, f)

Arguments

x vector or data frame containing values to be divided into groups.

f a “factor” such that factor(f) defines the grouping, or a list of such
factors in which case their interaction is used for the grouping.

value a list of vectors or data frames compatible with a splitting of x

Details

split and split<- are generic functions with default and data.frame methods.

f is recycled as necessary and if the length of x is not a multiple of the length of f a warning
is printed. unsplit works only with lists of vectors. The data frame method can also be
used to split a matrix into a list of matrices, and the assignment form likewise, provided
they are invoked explicitly.

Value

The value returned from split is a list of vectors containing the values for the groups. The
components of the list are named by the factor levels given be f. If f is longer than x some
of these will be of zero length. The assignment forms return their right hand side. unsplit
returns a vector for which split(x, f) equals value



666 sprintf

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

cut

Examples

n <- 10; nn <- 100

g <- factor(round(n * runif(n * nn)))

x <- rnorm(n * nn) + sqrt(as.numeric(g))

xg <- split(x, g)

boxplot(xg, col = "lavender", notch = TRUE, varwidth = TRUE)

sapply(xg, length)

sapply(xg, mean)

## Calculate z-scores by group

z <- unsplit(lapply(split(x, g), scale), g)

tapply(z, g, mean)

# or

z <- x

split(z, g) <- lapply(split(x, g), scale)

tapply(z, g, sd)

## Split a matrix into a list by columns

ma <- cbind(x = 1:10, y = (-4:5)^2)

split(ma, col(ma))

split(1:10, 1:2)

sprintf Use C-style String Formatting Commands

Description

A wrapper for the C function sprintf, that returns a character vector of length one con-
taining a formatted combination of text and variable values.

Usage

sprintf(fmt, ...)

Arguments

fmt a format string.

... values to be passed into fmt. Only logical, integer, real and character
vectors are accepted, and only the first value is read from each vector.



sprintf 667

Details

This is a wrapper for the system’s C call. Attempts are made to check that the mode of the
values passed match the format supplied, and R’s special values (NA, Inf, -Inf and NaN)
are handled correctly.

The following is abstracted from K&R (see References, below). The string fmt contains
normal characters, which are passed through to the output string, and also special characters
that operate on the arguments provided through .... Special characters start with a % and
terminate with one of the letters in the set difeEgGs%. These letters denote the following
types:

d,i Integer value

f Double precision value, in decimal notation of the form ”[-]mmm.ddd”. The number of
decimal places is specified by the precision: the default is 6; a precision of 0 suppresses
the decimal point.

e,E Double precision value, in decimal notation of the form [-]m.ddde[+-]xx or
[-]m.dddE[+-]xx

g,G Double precision value, in %e or %E format if the exponent is less than -4 or greater
than or equal to the precision, and %f format otherwise

s Character string

% Literal % (none of the formatting characters given below are permitted in this case)

In addition, between the initial % and the terminating conversion character there may be,
in any order:

m.n Two numbers separated by a period, denoting the field width (m) and the precision (n)

- Left adjustment of converted argument in its field

+ Always print number with sign

a space Prefix a space if the first number is not a sign

0 For numbers, pad to the field width with leading zeros

Value

A character vector of length one. Character NAs are converted to "NA".

Author(s)

Original code by Jonathan Rougier, 〈J.C.Rougier@durham.ac.uk〉

References

Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition,
Prentice Hall. describes the format options in table B-1 in the Appendix.

See Also

formatC for a way of formatting vectors of numbers in a similar fashion.

paste for another way of creating a vector combining text and values.



668 sQuote

Examples

## be careful with the format: most things in R are floats

sprintf("%s is %f feet tall\n", "Sven", 7) # OK

try(sprintf("%s is %i feet tall\n", "Sven", 7)) # not OK

sprintf("%s is %i feet tall\n", "Sven", as.integer(7)) # OK again

## use a literal % :

sprintf("%.0f%% said yes (out of a sample of size %.0f)", 66.666, 3)

## various formats of pi :

sprintf("%f", pi)

sprintf("%.3f", pi)

sprintf("%1.0f", pi)

sprintf("%5.1f", pi)

sprintf("%05.1f", pi)

sprintf("%+f", pi)

sprintf("% f", pi)

sprintf("%-10f", pi)# left justified

sprintf("%e", pi)

sprintf("%E", pi)

sprintf("%g", pi)

sprintf("%g", 1e6 * pi) # -> exponential

sprintf("%.9g", 1e6 * pi) # -> "fixed"

sprintf("%G", 1e-6 * pi)

## no truncation:

sprintf("%1.f",101)

## More sophisticated:

lapply(c("a", "ABC", "and an even longer one"),

function(ch) sprintf("10-string '%10s'", ch))

sapply(1:18, function(n)

sprintf(paste("e with %2d digits = %.",n,"g",sep=""),

n, exp(1)))

sQuote Quote Text

Description

Single or double quote text by combining with appropriate single or double left and right
quotation marks.

Usage

sQuote(x)
dQuote(x)



stack 669

Arguments

x an R object, to be coerced to a character vector.

Details

The purpose of the functions is to provide a simple means of markup for quoting text to be
used in the R output, e.g., in warnings or error messages.

The choice of the appropriate quotation marks depends on both the locale and the available
character sets. Older Unix/X11 fonts displayed the grave accent (0x60) and the apostrophe
(0x27) in a way that they could also be used as matching open and close single quotation
marks. Using modern fonts, or non-Unix systems, these characters no longer produce
matching glyphs. Unicode provides left and right single quotation mark characters (U+2018
and U+2019); if Unicode cannot be assumed, it seems reasonable to use the apostrophe as
an undirectional single quotation mark.

Similarly, Unicode has left and right double quotation mark characters (U+201C and
U+201D); if only ASCII’s typewriter characteristics can be employed, than the ASCII
quotation mark (0x22) should be used as both the left and right double quotation mark.

sQuote and dQuote currently only provide undirectional ASCII quotation style, but may
be enhanced in the future.

References

Markus Kuhn, “ASCII and Unicode quotation marks”. http://www.cl.cam.ac.uk/
~mgk25/ucs/quotes.html

Examples

paste("argument", sQuote("x"), "must be non-zero")

stack Stack or Unstack Vectors from a Data Frame or List

Description

Stacking vectors concatenates multiple vectors into a single vector along with a factor
indicating where each observation originated. Unstacking reverses this operation.

Usage

stack(x, ...)
## Default S3 method:
stack(x, ...)
## S3 method for class 'data.frame':
stack(x, select, ...)

unstack(x, ...)
## Default S3 method:
unstack(x, form, ...)
## S3 method for class 'data.frame':
unstack(x, form = formula(x), ...)

http://www.cl.cam.ac.uk/~mgk25/ucs/quotes.html
http://www.cl.cam.ac.uk/~mgk25/ucs/quotes.html


670 stackloss

Arguments

x object to be stacked or unstacked
select expression, indicating variables to select from a data frame
form a two-sided formula whose left side evaluates to the vector to be unstacked

and whose right side evaluates to the indicator of the groups to create.
Defaults to formula(x) in unstack.data.frame.

... further arguments passed to or from other methods.

Details

The stack function is used to transform data available as separate columns in a data frame
or list into a single column that can be used in an analysis of variance model or other linear
model. The unstack function reverses this operation.

Value

unstack produces a list of columns according to the formula form. If all the columns have
the same length, the resulting list is coerced to a data frame.
stack produces a data frame with two columns

values the result of concatenating the selected vectors in x

ind a factor indicating from which vector in x the observation originated

Author(s)

Douglas Bates

See Also

lm, reshape

Examples

data(PlantGrowth)

formula(PlantGrowth) # check the default formula

pg <- unstack(PlantGrowth) # unstack according to this formula

pg

stack(pg) # now put it back together

stack(pg, select = -ctrl) # omitting one vector

stackloss Brownlee’s Stack Loss Plant Data

Description

Operational data of a plant for the oxidation of ammonia to nitric acid.

Usage

data(stackloss)

Format

stackloss is a data frame with 21 observations on 4 variables.



standardGeneric 671

[,1] Air Flow Flow of cooling air
[,2] Water Temp Cooling Water Inlet Temperature
[,3] Acid Conc. Concentration of acid [per 1000, minus 500]
[,4] stack.loss Stack loss

For compatibility with S-PLUS, the data sets stack.x, a matrix with the first three (inde-
pendent) variables of the data frame, and stack.loss, the numeric vector giving the fourth
(dependent) variable, are provided as well.

Details

“Obtained from 21 days of operation of a plant for the oxidation of ammonia (NH3) to
nitric acid (HNO3). The nitric oxides produced are absorbed in a countercurrent absorption
tower”. (Brownlee, cited by Dodge, slightly reformatted by MM.)

Air Flow represents the rate of operation of the plant. Water Temp is the temperature
of cooling water circulated through coils in the absorption tower. Acid Conc. is the
concentration of the acid circulating, minus 50, times 10: that is, 89 corresponds to 58.9
per cent acid. stack.loss (the dependent variable) is 10 times the percentage of the
ingoing ammonia to the plant that escapes from the absorption column unabsorbed; that
is, an (inverse) measure of the over-all efficiency of the plant.

Source

Brownlee, K. A. (1960, 2nd ed. 1965) Statistical Theory and Methodology in Science and
Engineering. New York: Wiley. pp. 491–500.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Dodge, Y. (1996) The guinea pig of multiple regression. In: Robust Statistics, Data Anal-
ysis, and Computer Intensive Methods; In Honor of Peter Huber’s 60th Birthday, 1996,
Lecture Notes in Statistics 109, Springer-Verlag, New York.

Examples

data(stackloss)

summary(lm.stack <- lm(stack.loss ~ stack.x))

standardGeneric Formal Method System Placeholders

Description

Routines which are primitives used with the methods package. They should not be used
without it and do not need to be called directly in any case.

Usage

standardGeneric(f)



672 stars

Details

standardGeneric dispatches the method defined for a generic function f, using the actual
arguments in the frame from which it is called.

Author(s)

John Chambers

stars Star (Spider/Radar) Plots and Segment Diagrams

Description

Draw star plots or segment diagrams of a multivariate data set. With one single location,
also draws “spider” (or “radar”) plots.

Usage

stars(x, full = TRUE, scale = TRUE, radius = TRUE,
labels = dimnames(x)[[1]], locations = NULL,
nrow = NULL, ncol = NULL, len = 1,
key.loc = NULL, key.labels = dimnames(x)[[2]], key.xpd = TRUE,
xlim = NULL, ylim = NULL, flip.labels = NULL,
draw.segments = FALSE, col.segments = 1:n.seg, col.stars = NA,
axes = FALSE, frame.plot = axes,
main = NULL, sub = NULL, xlab = "", ylab = "",
cex = 0.8, lwd = 0.25, lty = par("lty"), xpd = FALSE,
mar = pmin(par("mar"),

1.1+ c(2*axes+ (xlab != ""), 2*axes+ (ylab != ""), 1,0)),
add=FALSE, plot=TRUE, ...)

Arguments

x matrix or data frame of data. One star or segment plot will be produced
for each row of x. Missing values (NA) are allowed, but they are treated
as if they were 0 (after scaling, if relevant).

full logical flag: if TRUE, the segment plots will occupy a full circle. Otherwise,
they occupy the (upper) semicircle only.

scale logical flag: if TRUE, the columns of the data matrix are scaled indepen-
dently so that the maximum value in each column is 1 and the minimum
is 0. If FALSE, the presumption is that the data have been scaled by some
other algorithm to the range [0, 1].

radius logical flag: in TRUE, the radii corresponding to each variable in the data
will be drawn.

labels vector of character strings for labeling the plots. Unlike the S function
stars, no attempt is made to construct labels if labels = NULL.

locations Either two column matrix with the x and y coordinates used to place
each of the segment plots; or numeric of length 2 when all plots should be
superimposed (for a “spider plot”). By default, locations = NULL, the
segment plots will be placed in a rectangular grid.



stars 673

nrow, ncol integers giving the number of rows and columns to use when locations
is NULL. By default, nrow == ncol, a square layout will be used.

len scale factor for the length of radii or segments.
key.loc vector with x and y coordinates of the unit key.
key.labels vector of character strings for labeling the segments of the unit key. If

omitted, the second component of dimnames(x) is used, if available.
key.xpd clipping switch for the unit key (drawing and labeling), see par("xpd").
xlim vector with the range of x coordinates to plot.
ylim vector with the range of y coordinates to plot.
flip.labels logical indicating if the label locations should flip up and down from dia-

gram to diagram. Defaults to a somewhat smart heuristic.
draw.segments logical. If TRUE draw a segment diagram.
col.segments color vector (integer or character, see par), each specifying a color for one

of the segments (variables). Ignored if draw.segments = FALSE.
col.stars color vector (integer or character, see par), each specifying a color for one

of the stars (cases). Ignored if draw.segments = TRUE.
axes logical flag: if TRUE axes are added to the plot.
frame.plot logical flag: if TRUE, the plot region is framed.
main a main title for the plot.
sub a sub title for the plot.
xlab a label for the x axis.
ylab a label for the y axis.
cex character expansion factor for the labels.
lwd line width used for drawing.
lty line type used for drawing.
xpd logical or NA indicating if clipping should be done, see par(xpd = .).
mar argument to par(mar = *), typically chosing smaller margings than by

default.
... further arguments, passed to the first call of plot(), see plot.default

and to box() if frame.plot is true.
add logical, if TRUE add stars to current plot.
plot logical, if FALSE, nothing is plotted.

Details

Missing values are treated as 0.

Each star plot or segment diagram represents one row of the input x. Variables (columns)
start on the right and wind counterclockwise around the circle. The size of the (scaled)
column is shown by the distance from the center to the point on the star or the radius of
the segment representing the variable.

Only one page of output is produced.

Note

This code started life as spatial star plots by David A. Andrews. See http://www.udallas.
edu:8080/~andrews/software/software.html.

Prior to 1.4.1, scaling only shifted the maximum to 1, although documented as here.

http://www.udallas.edu:8080/~andrews/software/software.html
http://www.udallas.edu:8080/~andrews/software/software.html


674 stars

Author(s)

Thomas S. Dye

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

data(mtcars)

stars(mtcars[, 1:7], key.loc = c(14, 2),

main = "Motor Trend Cars : stars(*, full = F)", full = FALSE)

stars(mtcars[, 1:7], key.loc = c(14, 1.5),

main = "Motor Trend Cars : full stars()",flip.labels=FALSE)

## 'Spider' or 'Radar' plot:

stars(mtcars[, 1:7], locations = c(0,0), radius = FALSE,

key.loc=c(0,0), main="Motor Trend Cars", lty = 2)

## Segment Diagrams:

palette(rainbow(12, s = 0.6, v = 0.75))

stars(mtcars[, 1:7], len = 0.8, key.loc = c(12, 1.5),

main = "Motor Trend Cars", draw.segments = TRUE)

stars(mtcars[, 1:7], len = 0.6, key.loc = c(1.5, 0),

main = "Motor Trend Cars", draw.segments = TRUE,

frame.plot=TRUE, nrow = 4, cex = .7)

data(USJudgeRatings)

## scale linearly (not affinely) to [0, 1]

USJudge <- apply(USJudgeRatings, 2, function(x) x/max(x))

Jnam <- case.names(USJudgeRatings)

Snam <- abbreviate(substring(Jnam,1,regexpr("[,.]",Jnam) - 1), 7)

stars(USJudge, labels = Jnam, scale = FALSE,

key.loc = c(13, 1.5), main = "Judge not ...", len = 0.8)

stars(USJudge, labels = Snam, scale = FALSE,

key.loc = c(13, 1.5), radius = FALSE)

loc <- stars(USJudge, labels = NULL, scale = FALSE,

radius = FALSE, frame.plot = TRUE,

key.loc = c(13, 1.5), main = "Judge not ...", len = 1.2)

text(loc, Snam, col = "blue", cex = 0.8, xpd = TRUE)

## 'Segments':

stars(USJudge, draw.segments = TRUE, scale = FALSE, key.loc = c(13,1.5))

## 'Spider':

stars(USJudgeRatings, locations=c(0,0), scale=FALSE,radius = FALSE,

col.stars=1:10, key.loc = c(0,0), main="US Judges rated")

## 'Radar-Segments'

stars(USJudgeRatings[1:10,], locations = 0:1, scale=FALSE,

draw.segments = TRUE, col.segments=0, col.stars=1:10,key.loc= 0:1,

main="US Judges 1-10 ")

palette("default")

stars(cbind(1:16,10*(16:1)),draw.segments=TRUE,

main = "A Joke -- do *not* use symbols on 2D data!")



start 675

start Encode the Terminal Times of Time Series

Description

Extract and encode the times the first and last observations were taken. Provided only for
compatibility with S version 2.

Usage

start(x, ...)
end(x, ...)

Arguments

x a univariate or multivariate time-series, or a vector or matrix.

... extra arguments for future methods.

Details

These are generic functions, which will use the tsp attribute of x if it exists. Their default
methods decode the start time from the original time units, so that for a monthly series
1995.5 is represented as c(1995, 7). For a series of frequency f, time n+i/f is presented
as c(n, i+1) (even for i = 0 and f = 1).

Warning

The representation used by start and end has no meaning unless the frequency is supplied.

See Also

ts, time, tsp.

Startup Initialization at Start of an R Session

Description

In R, the startup mechanism is as follows.

Unless ‘--no-environ’ was given on the command line, R searches for user and site files to
process for setting environment variables. The name of the site file is the one pointed to by
the environment variable R_ENVIRON; if this is unset or empty, ‘$R HOME/etc/Renviron.site’
is used (if it exists, which it does not in a“factory-fresh”installation). The user files searched
for are ‘.Renviron’ in the current or in the user’s home directory (in that order). See Details
for how the files are read.

Then R searches for the site-wide startup profile unless the command line option
‘--no-site-file’ was given. The name of this file is taken from the value of the R_PROFILE
environment variable. If this variable is unset, the default is ‘$R HOME/etc/Rprofile.site’,
which is used if it exists (which it does not in a “factory-fresh” installation). This code is



676 Startup

loaded into package base. Users need to be careful not to unintentionally overwrite objects
in base, and it is normally advisable to use local if code needs to be executed: see the
examples.

Then, unless ‘--no-init-file’ was given, R searches for a file called ‘.Rprofile’ in the
current directory or in the user’s home directory (in that order) and sources it into the user
workspace.

It then loads a saved image of the user workspace from ‘.RData’ if there is one (unless
‘--no-restore-data’ was specified, or ‘--no-restore’, on the command line).

Next, if a function .First is found on the search path, it is executed as .First(). Finally,
function .First.sys() in the base package is run. This calls require to attach the default
packages specified by options("defaultPackages").

A function .First (and .Last) can be defined in appropriate ‘.Rprofile’ or ‘Rprofile.site’
files or have been saved in ‘.RData’. If you want a different set of packages than the default
ones when you start, insert a call to options in the ‘.Rprofile’ or ‘Rprofile.site’ file. For
example, options(defaultPackages = character()) will attach no extra packages on
startup. Alternatively, set R_DEFAULT_PACKAGES=NULL as an environment variable before
running R. Using options(defaultPackages = "") or R_DEFAULT_PACKAGES="" enforces
the R system default.

The commands history is read from the file specified by the environment vari-
able R_HISTFILE (default ‘.Rhistory’) unless ‘--no-restore-history’ was specified (or
‘--no-restore’).

The command-line flag ‘--vanilla’ implies ‘--no-site-file’, ‘--no-init-file’,
‘--no-restore’ and ‘--no-environ’.

Usage

.First <- function() { ...... }

.Rprofile <startup file>

Details

Note that there are two sorts of files used in startup: environment files which contain lists
of environment variables to be set, and profile files which contain R code.

Lines in a site or user environment file should be either comment lines starting with #, or
lines of the form name=value. The latter sets the environmental variable name to value,
overriding an existing value. If value is of the form ${foo-bar}, the value is that of the
environmental variable foo if that exists and is set to a non-empty value, otherwise bar.
This construction can be nested, so bar can be of the same form (as in ${foo-${bar-
blah}}).

Leading and trailing white space in value are stripped. value is processed in a similar
way to a Unix shell. In particular quotes are stripped, and backslashes are removed except
inside quotes.

Historical notes

Prior to R version 1.4.0, the environment files searched were ‘.Renviron’ in the current
directory, the file pointed to by R_ENVIRON if set, and ‘.Renviron’ in the user’s home directory.

Prior to R version 1.2.1, ‘.Rprofile’ was sourced after ‘.RData’ was loaded, although the
documented order was as here.



Startup 677

The format for site and user environment files was changed in version 1.2.0. Older files are
quite likely to work but may generate warnings on startup if they contained unnecessary
export statements.

Values in environment files were not processed prior to version 1.4.0.

Note

The file ‘$R HOME/etc/Renviron’ is always read very early in the start-up processing. It
contains environment variables set by R in the configure process. Values in that file can be
overriden in site or user environment files: do not change ‘$R HOME/etc/Renviron’ itself.

See Also

.Last for final actions before termination.

For profiling code, see Rprof.

Examples

## Not run:

# Example ~/.Renviron on Unix

R_LIBS=~/R/library

PAGER=/usr/local/bin/less

# Example .Renviron on Windows

R_LIBS=C:/R/library

MY_TCLTK=yes

TCL_LIBRARY=c:/packages/Tcl/lib/tcl8.4

# Example of .Rprofile

options(width=65, digits=5)

options(show.signif.stars=FALSE)

ps.options(horizontal=FALSE)

set.seed(1234)

.First <- function() cat("\n Welcome to R!\n\n")

.Last <- function() cat("\n Goodbye!\n\n")

# Example of Rprofile.site

local({

old <- getOption("defaultPackages")

options(defaultPackages = c(old, "MASS"))

})

## if .Renviron contains

FOOBAR="coo\bar"doh\ex"abc\"def'"

## then we get

> cat(Sys.getenv("FOOBAR"), "\n")

coo\bardoh\exabc"def'

## End(Not run)



678 stat.anova

stat.anova GLM Anova Statistics

Description

This is a utility function, used in lm and glm methods for anova(..., test != NULL) and
should not be used by the average user.

Usage

stat.anova(table, test = c("Chisq", "F", "Cp"), scale, df.scale, n)

Arguments

table numeric matrix as results from anova.glm(..., test=NULL).

test a character string, matching one of "Chisq", "F" or "Cp".

scale a weighted residual sum of squares.

df.scale degrees of freedom corresponding to scale.

n number of observations.

Value

A matrix which is the original table, augmented by a column of test statistics, depending
on the test argument.

References

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical
Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

anova.lm, anova.glm.

Examples

##-- Continued from '?glm':

print(ag <- anova(glm.D93))

stat.anova(ag$table, test = "Cp",

scale = sum(resid(glm.D93, "pearson")^2)/4, df = 4, n = 9)



state 679

state US State Facts and Figures

Description

Data sets related to the 50 states of the United States of America.

Usage

data(state)

Details

R currently contains the following “state” data sets. Note that all data are arranged accord-
ing to alphabetical order of the state names.

state.abb: character vector of 2-letter abbreviations for the state names.
state.area: numeric vector of state areas (in square miles).
state.center: list with components named x and y giving the approximate geographic

center of each state in negative longitude and latitude. Alaska and Hawaii are placed
just off the West Coast.

state.division: factor giving state divisions (New England, Middle Atlantic, South At-
lantic, East South Central, West South Central, East North Central, West North
Central, Mountain, and Pacific).

state.name: character vector giving the full state names.
state.region: factor giving the region (Northeast, South, North Central, West) that each

state belongs to.
state.x77: matrix with 50 rows and 8 columns giving the following statistics in the re-

spective columns.
Population: population estimate as of July 1, 1975
Income: per capita income (1974)
Illiteracy: illiteracy (1970, percent of population)
Life Exp: life expectancy in years (1969–71)
Murder: murder and non-negligent manslaughter rate per 100,000 population (1976)
HS Grad: percent high-school graduates (1970)
Frost: mean number of days with minimum temperature below freezing (1931–1960)

in capital or large city
Area: land area in square miles

Source

U.S. Department of Commerce, Bureau of the Census (1977) Statistical Abstract of the
United States.

U.S. Department of Commerce, Bureau of the Census (1977) County and City Data Book.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.



680 step

stem Stem-and-Leaf Plots

Description

stem produces a stem-and-leaf plot of the values in x. The parameter scale can be used
to expand the scale of the plot. A value of scale=2 will cause the plot to be roughly twice
as long as the default.

Usage

stem(x, scale = 1, width = 80, atom = 1e-08)

Arguments

x a numeric vector.

scale This controls the plot length.

width The desired width of plot.

atom a tolerance.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

data(islands)

stem(islands)

stem(log10(islands))

step Choose a model by AIC in a Stepwise Algorithm

Description

Select a formula-based model by AIC.

Usage

step(object, scope, scale = 0,
direction = c("both", "backward", "forward"),
trace = 1, keep = NULL, steps = 1000, k = 2, ...)



step 681

Arguments

object an object representing a model of an appropriate class (mainly "lm" and
"glm"). This is used as the initial model in the stepwise search.

scope defines the range of models examined in the stepwise search. This should
be either a single formula, or a list containing components upper and
lower, both formulae. See the details for how to specify the formulae and
how they are used.

scale used in the definition of the AIC statistic for selecting the models, cur-
rently only for lm, aov and glm models.

direction the mode of stepwise search, can be one of "both", "backward", or
"forward", with a default of "both". If the scope argument is miss-
ing the default for direction is "backward".

trace if positive, information is printed during the running of step. Larger
values may give more detailed information.

keep a filter function whose input is a fitted model object and the associated
AIC statistic, and whose output is arbitrary. Typically keep will select a
subset of the components of the object and return them. The default is
not to keep anything.

steps the maximum number of steps to be considered. The default is 1000
(essentially as many as required). It is typically used to stop the process
early.

k the multiple of the number of degrees of freedom used for the penalty.
Only k = 2 gives the genuine AIC: k = log(n) is sometimes referred to
as BIC or SBC.

... any additional arguments to extractAIC.

Details

step uses add1 and drop1 repeatedly; it will work for any method for which they work, and
that is determined by having a valid method for extractAIC. When the additive constant
can be chosen so that AIC is equal to Mallows’ Cp, this is done and the tables are labelled
appropriately.

The set of models searched is determined by the scope argument. The right-hand-side of
its lower component is always included in the model, and right-hand-side of the model
is included in the upper component. If scope is a single formula, it specifes the upper
component, and the lower model is empty. If scope is missing, the initial model is used as
the upper model.

Models specified by scope can be templates to update object as used by update.formula.

There is a potential problem in using glm fits with a variable scale, as in that case the de-
viance is not simply related to the maximized log-likelihood. The function extractAIC.glm
makes the appropriate adjustment for a gaussian family, but may need to be amended for
other cases. (The binomial and poisson families have fixed scale by default and do not
correspond to a particular maximum-likelihood problem for variable scale.)

Value

the stepwise-selected model is returned, with up to two additional components. There is
an "anova" component corresponding to the steps taken in the search, as well as a "keep"
component if the keep= argument was supplied in the call. The "Resid. Dev" column of



682 step

the analysis of deviance table refers to a constant minus twice the maximized log likelihood:
it will be a deviance only in cases where a saturated model is well-defined (thus excluding
lm, aov and survreg fits, for example).

Warning

The model fitting must apply the models to the same dataset. This may be a problem if
there are missing values and R’s default of na.action = na.omit is used. We suggest you
remove the missing values first.

Note

This function differs considerably from the function in S, which uses a number of approxi-
mations and does not compute the correct AIC.

This is a minimal implementation. Use stepAIC for a wider range of object classes.

Author(s)

B. D. Ripley: step is a slightly simplified version of stepAIC in package MASS (Venables
& Ripley, 2002 and earlier editions).

The idea of a step function follows that described in Hastie & Pregibon (1992); but the
implementation in R is more general.

References

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical
Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York:
Springer (4th ed).

See Also

stepAIC, add1, drop1

Examples

example(lm)

step(lm.D9)

data(swiss)

summary(lm1 <- lm(Fertility ~ ., data = swiss))

slm1 <- step(lm1)

summary(slm1)

slm1$anova



stop 683

stop Stop Function Execution

Description

stop stops execution of the current expression and executes an error action.

geterrmessage gives the last error message.

Usage

stop(..., call. = TRUE)
geterrmessage()

Arguments

... character vectors (which are pasted together with no separator), a condi-
tion object, or NULL.

call. logical, indicating if the call should become part of the error message.

Details

The error action is controlled by error handlers established within the executing code and
by the current default error handler set by options(error=). The error is first signaled
as if using signalCondition(). If there are no handlers or if all handlers return, then
the error message is printed (if options("show.error.messages") is true) and the default
error handler is used. The default behaviour (the NULL error-handler) in interactive use
is to return to the top level prompt or the top level browser, and in non-interactive use
to (effectively) call q("no", status=1, runLast=FALSE). The default handler stores the
error message in a buffer; it can be retrieved by geterrmessage(). It also stores a trace of
the call stack that can be retrieved by traceback().

Errors will be truncated to getOption("warning.length") characters, default 1000.

Value

geterrmessage gives the last error message, as character string ending in "\n".

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

warning, try to catch errors and retry, and options for setting error handlers. stopifnot
for validity testing. tryCatch and withCallingHandlers can be used to establish custom
handlers while executing an expression.



684 stopifnot

Examples

options(error = expression(NULL))# don't stop on stop(.) << Use with CARE! >>

iter <- 12

if(iter > 10) stop("too many iterations")

tst1 <- function(...) stop("dummy error")

tst1(1:10,long,calling,expression)

tst2 <- function(...) stop("dummy error", call. = FALSE)

tst2(1:10,long,calling,expression,but.not.seen.in.Error)

options(error = NULL)# revert to default

stopifnot Ensure the ‘Truth’ of R Expressions

Description

If any of the expressions in ... are not all TRUE, stop is called, producing an error message
indicating the first element of ... which was not true.

Usage

stopifnot(...)

Arguments

... any number of (logical) R expressions which should evaluate to TRUE.

Details

stopifnot(A, B) is conceptually equivalent to { if(!all(A)) stop(...) ;
if(!all(B)) stop(...) }.

Value

(NULL if all statements in ... are TRUE.)

See Also

stop, warning.

Examples

stopifnot(1 == 1, all.equal(pi, 3.14159265), 1 < 2) # all TRUE

m <- matrix(c(1,3,3,1), 2,2)

stopifnot(m == t(m), diag(m) == rep(1,2)) # all(.) |=> TRUE

options(error = expression(NULL))# "disable stop(.)" << Use with CARE! >>

stopifnot(all.equal(pi, 3.141593), 2 < 2, all(1:10 < 12), "a" < "b")

stopifnot(all.equal(pi, 3.1415927), 2 < 2, all(1:10 < 12), "a" < "b")



str 685

options(error = NULL)# revert to default error handler

str Compactly Display the Structure of an Arbitrary R Object

Description

Compactly display the internal structure of an R object, a “diagnostic” function and an
alternative to summary (and to some extent, dput). Ideally, only one line for each “basic”
structure is displayed. It is especially well suited to compactly display the (abbreviated)
contents of (possibly nested) lists. The idea is to give reasonable output for any R object.
It calls args for (non-primitive) function objects.

ls.str and lsf.str are useful “versions” of ls, calling str on each object. They are
not foolproof and should rather not be used for programming, but are provided for their
usefulness.

Usage

str(object, ...)

## S3 method for class 'data.frame':
str(object, ...)

## Default S3 method:
str(object, max.level = 0, vec.len = 4, digits.d = 3,

nchar.max = 128, give.attr = TRUE, give.length = TRUE,
wid = getOption("width"), nest.lev = 0,
indent.str = paste(rep(" ", max(0, nest.lev + 1)), collapse = ".."),
...)

ls.str(pos = 1, pattern, ..., envir = as.environment(pos), mode = "any",
max.level = 1, give.attr = FALSE)

lsf.str(pos = 1, ..., envir = as.environment(pos))

Arguments

object any R object about which you want to have some information.

max.level maximal level of nesting which is applied for displaying nested structures,
e.g., a list containing sub lists. Default 0: Display all nesting levels.

vec.len numeric (>= 0) indicating how many “first few” elements are displayed
of each vector. The number is multiplied by different factors (from .5 to
3) depending on the kind of vector. Default 4.

digits.d number of digits for numerical components (as for print).

nchar.max maximal number of characters to show for character strings. Longer
strings are truncated, see longch example below.

give.attr logical; if TRUE (default), show attributes as sub structures.

give.length logical; if TRUE (default), indicate length (as [1:...]).



686 str

wid the page width to be used. The default is the currently active
options("width").

nest.lev current nesting level in the recursive calls to str.

indent.str the indentation string to use.

... potential further arguments (required for Method/Generic reasons).

pos integer indicating search path position.

envir environment to use, see ls.

pattern a regular expression passed to ls. Only names matching pattern are
considered.

mode character specifying the mode of objects to consider. Passed to exists
and get.

Value

str does not return anything, for efficiency reasons. The obvious side effect is output to
the terminal.

ls.str and lsf.str invisibly return a character vector of the matching names, similarly
to ls.

Author(s)

Martin Maechler 〈maechler@stat.math.ethz.ch〉 since 1990.

See Also

summary, args.

Examples

## The following examples show some of 'str' capabilities

str(1:12)

str(ls)

str(args)#- more useful than args(args) !

data(freeny); str(freeny)

str(str)

str(.Machine, digits = 20)

str( lsfit(1:9,1:9))

str( lsfit(1:9,1:9), max =1)

op <- options(); str(op)#- save first; otherwise internal options() is used.

need.dev <- !exists(".Device") || is.null(.Device)

if(need.dev) postscript()

str(par()); if(need.dev) graphics.off()

ch <- letters[1:12]; is.na(ch) <- 3:5

str(ch) # character NA's

nchar(longch <- paste(rep(letters,100), collapse=""))

str(longch)

str(longch, nchar.max = 52)

lsf.str()#- how do the functions look like which I am using?

ls.str(mode = "list")#- what are the structured objects I have defined?

## which base functions have "file" in their name ?



stripchart 687

lsf.str(pos = length(search()), pattern = "file")

stripchart 1-D Scatter Plots

Description

stripchart produces one dimensional scatter plots (or dot plots) of the given data. These
plots are a good alternative to boxplots when sample sizes are small.

Usage

stripchart(x, method="overplot", jitter=0.1, offset=1/3,
vertical=FALSE, group.names, add = FALSE, at = NULL,
xlim=NULL, ylim=NULL, main="", ylab="", xlab="",
log="", pch=0, col=par("fg"), cex=par("cex"))

Arguments

x the data from which the plots are to be produced. The data can be
specified as a single vector, or as list of vectors, each corresponding to a
component plot. Alternatively a symbolic specification of the form x ~
g can be given, indicating the the observations in the vector x are to be
grouped according to the levels of the factor g. NAs are allowed in the
data.

method the method to be used to separate coincident points. The default method
"overplot" causes such points to be overplotted, but it is also possible to
specify "jitter" to jitter the points, or "stack" have coincident points
stacked. The last method only makes sense for very granular data.

jitter when jittering is used, jitter gives the amount of jittering applied.

offset when stacking is used, points are stacked this many line-heights (symbol
widths) apart.

vertical when vertical is TRUE the plots are drawn vertically rather than the default
horizontal.

group.names group labels which will be printed alongside (or underneath) each plot.

add logical, if true add boxplot to current plot.

at numeric vector giving the locations where the boxplots should be drawn,
particularly when add = TRUE; defaults to 1:n where n is the number of
boxes.

xlim, ylim, main, ylab, xlab, log, pch, col, cex

Graphical parameters.

Details

Extensive examples of the use of this kind of plot can be found in Box, Hunter and Hunter
or Seber and Wild.



688 strptime

Examples

x <- rnorm(50)

xr<- round(x, 1)

stripchart(x) ; m <- mean(par("usr")[1:2])

text(m, 1.04, "stripchart(x, \"overplot\")")

stripchart(xr, method = "stack", add = TRUE, at = 1.2)

text(m, 1.35, "stripchart(round(x,1), \"stack\")")

stripchart(xr, method = "jitter", add = TRUE, at = 0.7)

text(m, 0.85, "stripchart(round(x,1), \"jitter\")")

data(OrchardSprays)

with(OrchardSprays,

stripchart(decrease ~ treatment,

main = "stripchart(Orchardsprays)", ylab = "decrease",

vertical = TRUE, log = "y"))

with(OrchardSprays,

stripchart(decrease ~ treatment, at = c(1:8)^2,

main = "stripchart(Orchardsprays)", ylab = "decrease",

vertical = TRUE, log = "y"))

strptime Date-time Conversion Functions to and from Character

Description

Functions to convert between character representations and objects of classes "POSIXlt"
and "POSIXct" representing calendar dates and times.

Usage

## S3 method for class 'POSIXct':
format(x, format = "", tz = "", usetz = FALSE, ...)
## S3 method for class 'POSIXlt':
format(x, format = "", usetz = FALSE, ...)

## S3 method for class 'POSIXt':
as.character(x, ...)

strftime(x, format="", usetz = FALSE, ...)
strptime(x, format)

ISOdatetime(year, month, day, hour, min, sec, tz = "")
ISOdate(year, month, day, hour = 12, min = 0, sec = 0, tz = "GMT")

Arguments

x An object to be converted.
tz A timezone specification to be used for the conversion. System-specific,

but "" is the current time zone, and "GMT" is UTC.
format A character string. The default is "%Y-%m-%d %H:%M:%S" if any com-

ponent has a time component which is not midnight, and "%Y-%m-%d"
otherwise.



strptime 689

... Further arguments to be passed from or to other methods.

usetz logical. Should the timezone be appended to the output? This is used
in printing time, and as a workaround for problems with using "%Z" on
most Linux systems.

year, month, day

numerical values to specify a day.
hour, min, sec

numerical values for a time within a day.

Details

strftime is an alias for format.POSIXlt, and format.POSIXct first converts to class
"POSIXct" by calling as.POSIXct. Note that only that conversion depends on the time
zone.

The usual vector re-cycling rules are applied to x and format so the answer will be of length
that of the longer of the vectors.

Locale-specific conversions to and from character strings are used where appropriate and
available. This affects the names of the days and months, the AM/PM indicator (if used)
and the separators in formats such as %x and %X.

The details of the formats are system-specific, but the following are defined by the POSIX
standard for strftime and are likely to be widely available. Any character in the format
string other than the % escapes is interpreted literally (and %% gives %).

%a Abbreviated weekday name.

%A Full weekday name.

%b Abbreviated month name.

%B Full month name.

%c Date and time, locale-specific.

%d Day of the month as decimal number (01–31).

%H Hours as decimal number (00–23).

%I Hours as decimal number (01–12).

%j Day of year as decimal number (001–366).

%m Month as decimal number (01–12).

%M Minute as decimal number (00–59).

%p AM/PM indicator in the locale. Used in conjuction with %I and not with %H.

%S Second as decimal number (00–61), allowing for up to two leap-seconds.

%U Week of the year as decimal number (00–53) using the first Sunday as day 1 of week 1.

%w Weekday as decimal number (0–6, Sunday is 0).

%W Week of the year as decimal number (00–53) using the first Monday as day 1 of week 1.

%x Date, locale-specific.

%X Time, locale-specific.

%y Year without century (00–99). If you use this on input, which century you get is system-
specific. So don’t! Often values up to 69 are prefixed by 20 and 70–99 by 19.

%Y Year with century.

%Z (output only.) Time zone as a character string (empty if not available). Note: do not
use this on Linux unless the TZ environment variable is set.



690 strptime

Where leading zeros are shown they will be used on output but are optional on input.

ISOdatetime and ISOdate are convenience wrappers for strptime, that differ only in their
defaults.

Value

The format methods and strftime return character vectors representing the time.

strptime turns character representations into an object of class "POSIXlt".

ISOdatetime and ISOdate return an object of class "POSIXct".

Note

The default formats follow the rules of the ISO 8601 international standard which expresses
a day as "2001-02-03" and a time as "14:01:02" using leading zeroes as here. The ISO
form uses no space to separate dates and times.

If the date string does not specify the date completely, the returned answer may be system-
specific. The most common behaviour is to assume that unspecified seconds, minutes or
hours are zero, and a missing year, month or day is the current one.

If the timezone specified is invalid on your system, what happens is system-specific but it
will probably be ignored.

OS facilities will probably not print years before 1CE (aka 1AD) correctly.

References

International Organization for Standardization (1988, 1997, . . . ) ISO 8601. Data elements
and interchange formats – Information interchange – Representation of dates and times.
The 1997 version is available on-line at ftp://ftp.qsl.net/pub/g1smd/8601v03.pdf

See Also

DateTimeClasses for details of the date-time classes; locales to query or set a locale.

Your system’s help pages on strftime and strptime to see how to specify their formats.

Examples

## locale-specific version of date()

format(Sys.time(), "%a %b %d %X %Y")

## we would include the timezone as in

## format(Sys.time(), "%a %b %d %X %Y %Z")

## but this crashes some Linux systems

## read in date info in format 'ddmmmyyyy'

## This will give NA(s) in some locales; setting the C locale

## as in the commented lines will overcome this on most systems.

## lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")

x <- c("1jan1960", "2jan1960", "31mar1960", "30jul1960")

z <- strptime(x, "%d%b%Y")

## Sys.setlocale("LC_TIME", lct)

z

## read in date/time info in format 'm/d/y h:m:s'

dates <- c("02/27/92", "02/27/92", "01/14/92",

"02/28/92", "02/01/92")

ftp://ftp.qsl.net/pub/g1smd/8601v03.pdf


strsplit 691

times <- c("23:03:20", "22:29:56", "01:03:30",

"18:21:03", "16:56:26")

x <- paste(dates, times)

z <- strptime(x, "%m/%d/%y %H:%M:%S")

z

strsplit Split the Elements of a Character Vector

Description

Split the elements of a character vector x into substrings according to the presence of
substring split within them.

Usage

strsplit(x, split, extended = TRUE)

Arguments

x character vector, to be split.

split character vector containing a regular expression to use as“split”. If empty
matches occur, in particular if split has length 0, x is split into single
characters. If split has length greater than 1, it is re-cycled along x.

extended if TRUE, extended regular expression matching is used, and if FALSE basic
regular expressions are used.

Details

Arguments x and split will be coerced to character, so you will see uses with split=NULL
to mean split=character(0), including in the examples below.

Note that spltting into single characters can be done via split=character(0) or split="";
the first is more efficient.

Value

A list of length length(x) the i-th element of which contains the vector of splits of x[i].

See Also

paste for the reverse, grep and sub for string search and manipulation; further nchar,
substr.

regular expression for the details of the pattern specification.



692 structure

Examples

noquote(strsplit("A text I want to display with spaces", NULL)[[1]])

x <- c(as = "asfef", qu = "qwerty", "yuiop[", "b", "stuff.blah.yech")

# split x on the letter e

strsplit(x,"e")

unlist(strsplit("a.b.c", "."))

## [1] "" "" "" "" ""

## Note that 'split' is a regexp!

## If you really want to split on '.', use

unlist(strsplit("a.b.c", "\\."))

## [1] "a" "b" "c"

## a useful function: rev() for strings

strReverse <- function(x)

sapply(lapply(strsplit(x,NULL), rev), paste, collapse="")

strReverse(c("abc", "Statistics"))

## get the first names of the members of R-core

a <- readLines(file.path(R.home(),"AUTHORS"))[-(1:8)]

a <- a[(0:2)-length(a)]

(a <- sub(" .*","", a))

# and reverse them

strReverse(a)

structure Attribute Specification

Description

structure returns the given object with its attributes set.

Usage

structure(.Data, ...)

Arguments

.Data an object which will have various attributes attached to it.

... attributes, specified in tag=value form, which will be attached to data.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

structure(1:6, dim = 2:3)



strwidth 693

strwidth Plotting Dimensions of Character Strings and Math Expressions

Description

These functions compute the width or height, respectively, of the given strings or mathe-
matical expressions s[i] on the current plotting device in user coordinates, inches or as
fraction of the figure width par("fin").

Usage

strwidth(s, units = "user", cex = NULL)
strheight(s, units = "user", cex = NULL)

Arguments

s character vector or expressions whose string widths in plotting units
are to be determined. An attempt is made to coerce other vectors to
character, and other language objects to expressions.

units character indicating in which units s is measured; should be one of
"user", "inches", "figure"; partial matching is performed.

cex character expansion to which is applies. By default, the current
par("cex") is used.

Value

Numeric vector with the same length as s, giving the width or height for each s[i]. NA
strings are given width and height 0 (as they are not plotted).

See Also

text, nchar

Examples

str.ex <- c("W","w","I",".","WwI.")

op <- par(pty='s'); plot(1:100,1:100, type="n")

sw <- strwidth(str.ex); sw

all.equal(sum(sw[1:4]), sw[5])#- since the last string contains the others

sw.i <- strwidth(str.ex, "inches"); 25.4 * sw.i # width in [mm]

unique(sw / sw.i)

# constant factor: 1 value

mean(sw.i / strwidth(str.ex, "fig")) / par('fin')[1] # = 1: are the same

## See how letters fall in classes -- depending on graphics device and font!

all.lett <- c(letters, LETTERS)

shL <- strheight(all.lett, units = "inches") * 72 # 'big points'

table(shL) # all have same heights ...

mean(shL)/par("cin")[2] # around 0.6

(swL <- strwidth(all.lett, units="inches") * 72) # 'big points'

split(all.lett, factor(round(swL, 2)))



694 strwrap

sumex <- expression(sum(x[i], i=1,n), e^{i * pi} == -1)

strwidth(sumex)

strheight(sumex)

par(op)#- reset to previous setting

strwrap Wrap Character Strings to Format Paragraphs

Description

Each character string in the input is first split into paragraphs (on lines containing whites-
pace only). The paragraphs are then formatted by breaking lines at word boundaries. The
target columns for wrapping lines and the indentation of the first and all subsequent lines
of a paragraph can be controlled independently.

Usage

strwrap(x, width = 0.9 * getOption("width"), indent = 0, exdent = 0,
prefix = "", simplify = TRUE)

Arguments

x a character vector

width a positive integer giving the target column for wrapping lines in the out-
put.

indent a non-negative integer giving the indentation of the first line in a para-
graph.

exdent a non-negative integer specifying the indentation of subsequent lines in
paragraphs.

prefix a character string to be used as prefix for each line.

simplify a logical. If TRUE, the result is a single character vector of line text;
otherwise, it is a list of the same length as x the elements of which are
character vectors of line text obtained from the corresponding element of
x. (Hence, the result in the former case is obtained by unlisting that of
the latter.)

Details

Whitespace in the input is destroyed. Double spaces after periods (thought as representing
sentence ends) are preserved. Currently, it possible sentence ends at line breaks are not
considerd specially.

Indentation is relative to the number of characters in the prefix string.



subset 695

Examples

## Read in file 'THANKS'.

x <- paste(readLines(file.path(R.home(), "THANKS")), collapse = "\n")

## Split into paragraphs and remove the first three ones

x <- unlist(strsplit(x, "\n[ \t\n]*\n"))[-(1:3)]

## Join the rest

x <- paste(x, collapse = "\n\n")

## Now for some fun:

writeLines(strwrap(x, width = 60))

writeLines(strwrap(x, width = 60, indent = 5))

writeLines(strwrap(x, width = 60, exdent = 5))

writeLines(strwrap(x, prefix = "THANKS> "))

subset Subsetting Vectors and Data Frames

Description

Return subsets of vectors or data frames which meet conditions.

Usage

subset(x, ...)

## Default S3 method:
subset(x, subset, ...)

## S3 method for class 'data.frame':
subset(x, subset, select, ...)

Arguments

x object to be subsetted.
subset logical expression.
select expression, indicating columns to select from a data frame.
... further arguments to be passed to or from other methods.

Details

For ordinary vectors, the result is simply x[subset & !is.na(subset)].

For data frames, the subset argument works similarly on the rows. Note that subset will
be evaluated in the data frame, so columns can be referred to (by name) as variables.

The select argument exists only for the method for data frames. It works by first replacing
names in the selection expression with the corresponding column numbers in the data frame
and then using the resulting integer vector to index the columns. This allows the use of
the standard indexing conventions so that for example ranges of columns can be specified
easily.

Value

An object similar to x contain just the selected elements (for a vector), rows and columns
(for a data frame), and so on.



696 substitute

Author(s)

Peter Dalgaard

See Also

[, transform

Examples

data(airquality)

subset(airquality, Temp > 80, select = c(Ozone, Temp))

subset(airquality, Day == 1, select = -Temp)

subset(airquality, select = Ozone:Wind)

with(airquality, subset(Ozone, Temp > 80))

substitute Substituting and Quoting Expressions

Description

substitute returns the parse tree for the (unevaluated) expression expr, substituting any
variables bound in env.

quote simply returns its argument. The argument is not evaluated and can be any R
expression.

Usage

substitute(expr, env=<<see below>>)
quote(expr)

Arguments

expr Any syntactically valid R expression

env An environment or a list object. Defaults to the current evaluation envi-
ronment.

Details

The typical use of substitute is to create informative labels for data sets and plots. The
myplot example below shows a simple use of this facility. It uses the functions deparse
and substitute to create labels for a plot which are character string versions of the actual
arguments to the function myplot.

Substitution takes place by examining each component of the parse tree as follows: If it is
not a bound symbol in env, it is unchanged. If it is a promise object, i.e., a formal argument
to a function or explicitly created using delay(), the expression slot of the promise replaces
the symbol. If it is an ordinary variable, its value is substituted, unless env is .GlobalEnv
in which case the symbol is left unchanged.



substitute 697

Value

The mode of the result is generally "call" but may in principle be any type. In particular,
single-variable expressions have mode "name" and constants have the appropriate base
mode.

Note

Substitute works on a purely lexical basis. There is no guarantee that the resulting expres-
sion makes any sense.

Substituting and quoting often causes confusion when the argument is expression(...).
The result is a call to the expression constructor function and needs to be evaluated with
eval to give the actual expression object.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

missing for argument “missingness”, bquote for partial substitution, sQuote and dQuote
for adding quotation marks to strings.

Examples

(s.e <- substitute(expression(a + b), list(a = 1))) #> expression(1 + b)

(s.s <- substitute( a + b, list(a = 1))) #> 1 + b

c(mode(s.e), typeof(s.e)) # "call", "language"

c(mode(s.s), typeof(s.s)) # (the same)

# but:

(e.s.e <- eval(s.e)) #> expression(1 + b)

c(mode(e.s.e), typeof(e.s.e)) # "expression", "expression"

substitute(x <- x + 1, list(x=1)) # nonsense

myplot <- function(x, y)

plot(x, y, xlab=deparse(substitute(x)),

ylab=deparse(substitute(y)))

## Simple examples about lazy evaluation, etc:

f1 <- function(x, y = x) { x <- x + 1; y }

s1 <- function(x, y = substitute(x)) { x <- x + 1; y }

s2 <- function(x, y) { if(missing(y)) y <- substitute(x); x <- x + 1; y }

a <- 10

f1(a)# 11

s1(a)# 11

s2(a)# a

typeof(s2(a))# "symbol"



698 substr

substr Substrings of a Character Vector

Description

Extract or replace substrings in a character vector.

Usage

substr(x, start, stop)
substring(text, first, last = 1000000)
substr(x, start, stop) <- value
substring(text, first, last = 1000000) <- value

Arguments

x, text a character vector

start, first integer. The first element to be replaced.

stop, last integer. The last element to be replaced.

value a character vector, recycled if necessary.

Details

substring is compatible with S, with first and last instead of start and stop. For
vector arguments, it expands the arguments cyclically to the length of the longest.

When extracting, if start is larger than the string length then "" is returned.

For the replacement functions, if start is larger than the string length then no replacement
is done. If the portion to be replaced is longer than the replacement string, then only the
portion the length of the string is replaced.

Value

For substr, a character vector of the same length as x.

For substring, a character vector of length the longest of the arguments.

Note

The S4 version of substring<- ignores last; this version does not.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (substring.)

See Also

strsplit, paste, nchar.



sum 699

Examples

substr("abcdef",2,4)

substring("abcdef",1:6,1:6)

## strsplit is more efficient ...

substr(rep("abcdef",4),1:4,4:5)

x <- c("asfef", "qwerty", "yuiop[", "b", "stuff.blah.yech")

substr(x, 2, 5)

substring(x, 2, 4:6)

substring(x, 2) <- c("..", "+++")

x

sum Sum of Vector Elements

Description

sum returns the sum of all the values present in its arguments. If na.rm is FALSE an NA
value in any of the arguments will cause a value of NA to be returned, otherwise NA values
are ignored.

Usage

sum(..., na.rm=FALSE)

Arguments

... numeric or complex vectors.

na.rm logical. Should missing values be removed?

Value

The sum. If all of ... are of type integer, then so is the sum, and in that case the result
will be NA (with a warning) if integer overflow occurs.

NB: the sum of an empty set is zero, by definition.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.



700 summary

summary Object Summaries

Description

summary is a generic function used to produce result summaries of the results of various
model fitting functions. The function invokes particular methods which depend on the
class of the first argument.

Usage

summary(object, ...)

## Default S3 method:
summary(object, ..., digits = max(3, getOption("digits")-3))
## S3 method for class 'data.frame':
summary(object, maxsum = 7,

digits = max(3, getOption("digits")-3), ...)
## S3 method for class 'factor':
summary(object, maxsum = 100, ...)
## S3 method for class 'matrix':
summary(object, ...)

Arguments

object an object for which a summary is desired.

maxsum integer, indicating how many levels should be shown for factors.

digits integer, used for number formatting with signif() (for
summary.default) or format() (for summary.data.frame).

... additional arguments affecting the summary produced.

Details

For factors, the frequency of the first maxsum - 1 most frequent levels is shown, where
the less frequent levels are summarized in "(Others)" (resulting in maxsum frequencies).

The functions summary.lm and summary.glm are examples of particular methods which
summarise the results produced by lm and glm.

Value

The form of the value returned by summary depends on the class of its argument. See the
documentation of the particular methods for details of what is produced by that method.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

anova, summary.glm, summary.lm.



summary.aov 701

Examples

data(attenu)

summary(attenu, digits = 4) #-> summary.data.frame(...), default precision

summary(attenu $ station, maxsum = 20) #-> summary.factor(...)

lst <- unclass(attenu$station) > 20 # logical with NAs

## summary.default() for logicals -- different from *.factor:

summary(lst)

summary(as.factor(lst))

summary.aov Summarize an Analysis of Variance Model

Description

Summarize an analysis of variance model.

Usage

## S3 method for class 'aov':
summary(object, intercept = FALSE, split,

expand.split = TRUE, keep.zero.df = TRUE, ...)

## S3 method for class 'aovlist':
summary(object, ...)

Arguments

object An object of class "aov" or "aovlist".

intercept logical: should intercept terms be included?

split an optional named list, with names corresponding to terms in the model.
Each component is itself a list with integer components giving contrasts
whose contributions are to be summed.

expand.split logical: should the split apply also to interactions involving the factor?

keep.zero.df logical: should terms with no degrees of freedom be included?

... Arguments to be passed to or from other methods, for summary.aovlist
including those for summary.aov.

Value

An object of class c("summary.aov", "listof") or "summary.aovlist" respectively.

Note

The use of expand.split = TRUE is little tested: it is always possible to set it to FALSE
and specify exactly all the splits required.

See Also

aov, summary, model.tables, TukeyHSD



702 summary.glm

Examples

## From Venables and Ripley (2002) p.165.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,55.0,

62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

( npk.aov <- aov(yield ~ block + N*P*K, npk) )

summary(npk.aov)

coefficients(npk.aov)

# Cochran and Cox (1957, p.164)

# 3x3 factorial with ordered factors, each is average of 12.

CC <- data.frame(

y = c(449, 413, 326, 409, 358, 291, 341, 278, 312)/12,

P = ordered(gl(3, 3)), N = ordered(gl(3, 1, 9))

)

CC.aov <- aov(y ~ N * P, data = CC , weights = rep(12, 9))

summary(CC.aov)

# Split both main effects into linear and quadratic parts.

summary(CC.aov, split = list(N = list(L = 1, Q = 2), P = list(L = 1, Q = 2)))

# Split only the interaction

summary(CC.aov, split = list("N:P" = list(L.L = 1, Q = 2:4)))

# split on just one var

summary(CC.aov, split = list(P = list(lin = 1, quad = 2)))

summary(CC.aov, split = list(P = list(lin = 1, quad = 2)),

expand.split=FALSE)

summary.glm Summarizing Generalized Linear Model Fits

Description

These functions are all methods for class glm or summary.glm objects.

Usage

## S3 method for class 'glm':
summary(object, dispersion = NULL, correlation = FALSE,

symbolic.cor = FALSE, ...)

## S3 method for class 'summary.glm':
print(x, digits = max(3, getOption("digits") - 3),

symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)



summary.glm 703

Arguments

object an object of class "glm", usually, a result of a call to glm.
x an object of class "summary.glm", usually, a result of a call to

summary.glm.
dispersion the dispersion parameter for the fitting family. By default it is obtained

from object.
correlation logical; if TRUE, the correlation matrix of the estimated parameters is

returned and printed.
digits the number of significant digits to use when printing.
symbolic.cor logical. If TRUE, print the correlations in a symbolic form (see symnum)

rather than as numbers.
signif.stars logical. If TRUE, “significance stars” are printed for each coefficient.
... further arguments passed to or from other methods.

Details

print.summary.glm tries to be smart about formatting the coefficients, standard errors,
etc. and additionally gives “significance stars” if signif.stars is TRUE.
Aliased coefficients are omitted in the returned object but (as from R 1.8.0) restored by the
print method.
Correlations are printed to two decimal places (or symbolically): to see the actual correla-
tions print summary(object)$correlation directly.

Value

summary.glm returns an object of class "summary.glm", a list with components

call the component from object.
family the component from object.
deviance the component from object.
contrasts the component from object.
df.residual the component from object.
null.deviance the component from object.
df.null the component from object.
deviance.resid

the deviance residuals: see residuals.glm.
coefficients the matrix of coefficients, standard errors, z-values and p-values. Aliased

coefficients are omitted.
aliased named logical vector showing if the original coefficients are aliased.
dispersion eother the supplied argument or the estimated dispersion if the latter in

NULL

df a 3-vector of the rank of the model and the number of residual degrees of
freedom, plus number of non-aliased coefficients.

cov.unscaled the unscaled (dispersion = 1) estimated covariance matrix of the esti-
mated coefficients.

cov.scaled ditto, scaled by dispersion.
correlation (only if correlation is true.) The estimated correlations of the estimated

coefficients.
symbolic.cor (only if correlation is true.) The value of the argument symbolic.cor.



704 summary.lm

See Also

glm, summary.

Examples

## --- Continuing the Example from '?glm':

summary(glm.D93)

summary.lm Summarizing Linear Model Fits

Description

summary method for class "lm".

Usage

## S3 method for class 'lm':
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

## S3 method for class 'summary.lm':
print(x, digits = max(3, getOption("digits") - 3),

symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

Arguments

object an object of class "lm", usually, a result of a call to lm.

x an object of class "summary.lm", usually, a result of a call to summary.lm.

correlation logical; if TRUE, the correlation matrix of the estimated parameters is
returned and printed.

digits the number of significant digits to use when printing.

symbolic.cor logical. If TRUE, print the correlations in a symbolic form (see symnum)
rather than as numbers.

signif.stars logical. If TRUE, “significance stars” are printed for each coefficient.

... further arguments passed to or from other methods.

Details

print.summary.lm tries to be smart about formatting the coefficients, standard errors, etc.
and additionally gives “significance stars” if signif.stars is TRUE.

Correlations are printed to two decimal places (or symbolically): to see the actual correla-
tions print summary(object)$correlation directly.



summary.lm 705

Value

The function summary.lm computes and returns a list of summary statistics of the fitted
linear model given in object, using the components (list elements) "call" and "terms"
from its argument, plus

residuals the weighted residuals, the usual residuals rescaled by the square root of
the weights specified in the call to lm.

coefficients a p× 4 matrix with columns for the estimated coefficient, its standard er-
ror, t-statistic and corresponding (two-sided) p-value. Aliased coefficients
are omitted.

aliased named logical vector showing if the original coefficients are aliased.

sigma the square root of the estimated variance of the random error

σ̂2 =
1

n− p

∑
i

R2
i ,

where Ri is the i-th residual, residuals[i].

df degrees of freedom, a 3-vector (p, n− p, p∗), the last being the number of
non-aliased coefficients.

fstatistic (for models including non-intercept terms) a 3-vector with the value of
the F-statistic with its numerator and denominator degrees of freedom.

r.squared R2, the “fraction of variance explained by the model”,

R2 = 1−
∑

iR
2
i∑

i(yi − y∗)2
,

where y∗ is the mean of yi if there is an intercept and zero otherwise.

adj.r.squared the above R2 statistic “adjusted”, penalizing for higher p.

cov.unscaled a p× p matrix of (unscaled) covariances of the β̂j , j = 1, . . . , p.

correlation the correlation matrix corresponding to the above cov.unscaled, if
correlation = TRUE is specified.

symbolic.cor (only if correlation is true.) The value of the argument symbolic.cor.

See Also

The model fitting function lm, summary.

Function coef will extract the matrix of coefficients with standard errors, t-statistics and
p-values.

Examples

##-- Continuing the lm(.) example:

coef(lm.D90)# the bare coefficients

sld90 <- summary(lm.D90 <- lm(weight ~ group -1))# omitting intercept

sld90

coef(sld90)# much more



706 summary.manova

summary.manova Summary Method for Multivariate Analysis of Variance

Description

A summary method for class "manova".

Usage

## S3 method for class 'manova':
summary(object,

test = c("Pillai", "Wilks", "Hotelling-Lawley", "Roy"),
intercept = FALSE, ...)

Arguments

object An object of class "manova" or an aov object with multiple responses.

test The name of the test statistic to be used. Partial matching is used so the
name can be abbreviated.

intercept logical. If TRUE, the intercept term is included in the table.

... further arguments passed to or from other methods.

Details

The summary.manova method uses a multivariate test statistic for the summary table.
Wilks’ statistic is most popular in the literature, but the default Pillai-Bartlett statistic is
recommended by Hand and Taylor (1987).

Value

A list with components

SS A named list of sums of squares and product matrices.

Eigenvalues A matrix of eigenvalues.

stats A matrix of the statistics, approximate F value, degrees of freedom and
P value.

References

Krzanowski, W. J. (1988) Principles of Multivariate Analysis. A User’s Perspective. Ox-
ford.

Hand, D. J. and Taylor, C. C. (1987) Multivariate Analysis of Variance and Repeated
Measures. Chapman and Hall.

See Also

manova, aov



summaryRprof 707

Examples

## Example on producing plastic film from Krzanowski (1998, p. 381)

tear <- c(6.5, 6.2, 5.8, 6.5, 6.5, 6.9, 7.2, 6.9, 6.1, 6.3,

6.7, 6.6, 7.2, 7.1, 6.8, 7.1, 7.0, 7.2, 7.5, 7.6)

gloss <- c(9.5, 9.9, 9.6, 9.6, 9.2, 9.1, 10.0, 9.9, 9.5, 9.4,

9.1, 9.3, 8.3, 8.4, 8.5, 9.2, 8.8, 9.7, 10.1, 9.2)

opacity <- c(4.4, 6.4, 3.0, 4.1, 0.8, 5.7, 2.0, 3.9, 1.9, 5.7,

2.8, 4.1, 3.8, 1.6, 3.4, 8.4, 5.2, 6.9, 2.7, 1.9)

Y <- cbind(tear, gloss, opacity)

rate <- factor(gl(2,10), labels=c("Low", "High"))

additive <- factor(gl(2, 5, len=20), labels=c("Low", "High"))

fit <- manova(Y ~ rate * additive)

summary.aov(fit) # univariate ANOVA tables

summary(fit, test="Wilks") # ANOVA table of Wilks' lambda

summaryRprof Summarise Output of R Profiler

Description

Summarise the output of the Rprof function to show the amount of time used by different
R functions.

Usage

summaryRprof(filename = "Rprof.out", chunksize = 5000)

Arguments

filename Name of a file produced by Rprof()

chunksize Number of lines to read at a time

Details

This function is an alternative to R CMD Rprof. It provides the convenience of an all-R
implementation but will be slower for large files.

As the profiling output file could be larger than available memory, it is read in blocks
of chunksize lines. Increasing chunksize will make the function run faster if sufficient
memory is available.

Value

A list with components

by.self Timings sorted by ‘self’ time

by.total Timings sorted by ‘total’ time

sampling.time Total length of profiling run



708 sunflowerplot

See Also

The chapter on “Tidying and profiling R code” in “Writing R Extensions” (see the
‘doc/manual’ subdirectory of the R source tree).

Rprof

Examples

## Not run:

## Rprof() is not available on all platforms

Rprof(tmp <- tempfile())

example(glm)

Rprof()

summaryRprof(tmp)

unlink(tmp)

## End(Not run)

sunflowerplot Produce a Sunflower Scatter Plot

Description

Multiple points are plotted as “sunflowers” with multiple leaves (“petals”) such that over-
plotting is visualized instead of accidental and invisible.

Usage

sunflowerplot(x, y = NULL, number, log = "", digits = 6,
xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
add = FALSE, rotate = FALSE,
pch = 16, cex = 0.8, cex.fact = 1.5,
size = 1/8, seg.col = 2, seg.lwd = 1.5, ...)

Arguments

x numeric vector of x-coordinates of length n, say, or another valid plotting
structure, as for plot.default, see also xy.coords.

y numeric vector of y-coordinates of length n.

number integer vector of length n. number[i] = number of replicates for
(x[i],y[i]), may be 0.
Default: compute the exact multiplicity of the points x[],y[].

log character indicating log coordinate scale, see plot.default.

digits when number is computed (i.e., not specified), x and y are rounded to
digits significant digits before multiplicities are computes.

xlab,ylab character label for x-, or y-axis, respectively.

xlim,ylim numeric(2) limiting the extents of the x-, or y-axis.

add logical; should the plot be added on a previous one ? Default is FALSE.

rotate logical; if TRUE, randomly rotate the sunflowers (preventing artefacts).

pch plotting character to be used for points (number[i]==1) and center of
sunflowers.



sunflowerplot 709

cex numeric; character size expansion of center points (s. pch).

cex.fact numeric shrinking factor to be used for the center points when there are
flower leaves, i.e., cex / cex.fact is used for these.

size of sunflower leaves in inches, 1[in] := 2.54[cm]. Default: 1/8̈, approxi-
mately 3.2mm.

seg.col color to be used for the segments which make the sunflowers leaves, see
par(col=); col = "gold" reminds of real sunflowers.

seg.lwd numeric; the line width for the leaves’ segments.

... further arguments to plot [if add=FALSE].

Details

For number[i]==1, a (slightly enlarged) usual plotting symbol (pch) is drawn. For
number[i] > 1, a small plotting symbol is drawn and number[i] equi-angular “rays” em-
anate from it.

If rotate=TRUE and number[i] >= 2, a random direction is chosen (instead of the y-axis)
for the first ray. The goal is to jitter the orientations of the sunflowers in order to prevent
artefactual visual impressions.

Value

A list with three components of same length,

x x coordinates

y y coordinates

number number

Side Effects

A scatter plot is drawn with “sunflowers” as symbols.

Author(s)

Andreas Ruckstuhl, Werner Stahel, Martin Maechler, Tim Hesterberg, 1989–1993. Port to
R by Martin Maechler 〈maechler@stat.math.ethz.ch〉.

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods
for Data Analysis. Wadsworth.

Schilling, M. F. and Watkins, A. E. (1994) A suggestion for sunflower plots. The American
Statistician, 48, 303–305.

See Also

density



710 sunspots

Examples

data(iris)

## 'number' is computed automatically:

sunflowerplot(iris[, 3:4])

## Imitating Chambers et al., p.109, closely:

sunflowerplot(iris[, 3:4],cex=.2, cex.f=1, size=.035, seg.lwd=.8)

sunflowerplot(x=sort(2*round(rnorm(100))), y= round(rnorm(100),0),

main = "Sunflower Plot of Rounded N(0,1)")

## A 'point process' {explicit 'number' argument}:

sunflowerplot(rnorm(100),rnorm(100), number=rpois(n=100,lambda=2),

rotate=TRUE, main="Sunflower plot")

sunspots Monthly Sunspot Numbers, 1749–1983

Description

Monthly mean relative sunspot numbers from 1749 to 1983. Collected at Swiss Federal
Observatory, Zurich until 1960, then Tokyo Astronomical Observatory.

Usage

data(sunspots)

Format

A time series of monthly data from 1749 to 1983.

Source

Andrews, D. F. and Herzberg, A. M. (1985) Data: A Collection of Problems from Many
Fields for the Student and Research Worker. New York: Springer-Verlag.

See Also

sunspot.month (package ts) has a longer (and a bit different) series.

Examples

data(sunspots)

plot(sunspots, main = "sunspots data", xlab = "Year",

ylab = "Monthly sunspot numbers")



svd 711

svd Singular Value Decomposition of a Matrix

Description

Compute the singular-value decomposition of a rectangular matrix.

Usage

svd(x, nu = min(n, p), nv = min(n, p), LINPACK = FALSE)
La.svd(x, nu = min(n, p), nv = min(n, p), method = c("dgesdd", "dgesvd"))

Arguments

x a matrix whose SVD decomposition is to be computed.
nu the number of left singular vectors to be computed. This must be one of

0, nrow(x) and ncol(x), except for method = "dgesdd".
nv the number of right singular vectors to be computed. This must be one

of 0 and ncol(x).
LINPACK logical. Should LINPACK be used (for compatibility with R < 1.7.0)?
method The LAPACK routine to use in the real case.

Details

The singular value decomposition plays an important role in many statistical techniques.
svd and La.svd provide two slightly different interfaces. The main functions used are the
LAPACK routines DGESDD and ZGESVD; svd(LINPACK=TRUE) provides an interface to
the LINPACK routine DSVDC, purely for backwards compatibility.

La.svd provides an interface to both the LAPACK routines DGESVD and DGESDD.
The latter is usually substantially faster if singular vectors are required: see http:
//www.cs.berkeley.edu/~demmel/DOE2000/Report0100.html. Most benefit is seen with
an optimized BLAS system. Using method="dgesdd" requires IEEE 754 arithmetic. Should
this not be supported on your platform, method="dgesvd" is used, with a warning.

Computing the singular vectors is the slow part for large matrices.

Value

The SVD decomposition of the matrix as computed by LINPACK,

X = UDV ′,

where U and V are orthogonal, V ′ means V transposed, and D is a diagonal matrix with
the singular values Dii. Equivalently, D = U ′XV , which is verified in the examples, below.

The returned value is a list with components

d a vector containing the singular values of x.
u a matrix whose columns contain the left singular vectors of x, present if

nu > 0

v a matrix whose columns contain the right singular vectors of x, present if
nv > 0.

For La.svd the return value replaces v by vt, the (conjugated if complex) transpose of v.

http://www.cs.berkeley.edu/~demmel/DOE2000/Report0100.html
http://www.cs.berkeley.edu/~demmel/DOE2000/Report0100.html


712 sweep

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

eigen, qr.

capabilities to test for IEEE 754 arithmetic.

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }

str(X <- hilbert(9)[,1:6])

str(s <- svd(X))

D <- diag(s$d)

s$u %*% D %*% t(s$v) # X = U D V'

t(s$u) %*% X %*% s$v # D = U' X V

sweep Sweep out Array Summaries

Description

Return an array obtained from an input array by sweeping out a summary statistic.

Usage

sweep(x, MARGIN, STATS, FUN="-", ...)

Arguments

x an array.

MARGIN a vector of indices giving the extents of x which correspond to STATS.

STATS the summary statistic which is to be swept out.

FUN the function to be used to carry out the sweep. In the case of binary
operators such as "/" etc., the function name must be quoted.

... optional arguments to FUN.

Value

An array with the same shape as x, but with the summary statistics swept out.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

http://www.netlib.org/lapack/lug/lapack_lug.html


swiss 713

See Also

apply on which sweep used to be based; scale for centering and scaling.

Examples

data(attitude)

med.att <- apply(attitude, 2, median)

sweep(data.matrix(attitude), 2, med.att)# subtract the column medians

swiss Swiss Fertility and Socioeconomic Indicators (1888) Data

Description

Standardized fertility measure and socio-economic indicators for each of 47 French-speaking
provinces of Switzerland at about 1888.

Usage

data(swiss)

Format

A data frame with 47 observations on 6 variables, each of which is in percent, i.e., in [0, 100].

[,1] Fertility Ig, “common standardized fertility measure”
[,2] Agriculture % of males involved in agriculture as occupation
[,3] Examination % “draftees” receiving highest mark on army examination
[,4] Education % education beyond primary school for “draftees”.
[,5] Catholic % catholic (as opposed to “protestant”).
[,6] Infant.Mortality live births who live less than 1 year.

All variables but ‘Fertility’ give proportions of the population.

Details

(paraphrasing Mosteller and Tukey):

Switzerland, in 1888, was entering a period known as the “demographic transition”; i.e., its
fertility was beginning to fall from the high level typical of underdeveloped countries.

The data collected are for 47 French-speaking “provinces” at about 1888.

Here, all variables are scaled to [0, 100], where in the original, all but "Catholic" were
scaled to [0, 1].

Note

Files for all 182 districts in 1888 and other years are available at http://opr.princeton.
edu/archive/eufert/switz.html.

They state that variables Examination and Education are averages for 1887, 1888 and
1889.

http://opr.princeton.edu/archive/eufert/switz.html
http://opr.princeton.edu/archive/eufert/switz.html


714 switch

Source

Project “16P5”, pages 549–551 in

Mosteller, F. and Tukey, J. W. (1977) Data Analysis and Regression: A Second Course in
Statistics. Addison-Wesley, Reading Mass.

indicating their source as “Data used by permission of Franice van de Walle. Office of Pop-
ulation Research, Princeton University, 1976. Unpublished data assembled under NICHD
contract number No 1-HD-O-2077.”

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

data(swiss)

pairs(swiss, panel = panel.smooth, main = "swiss data",

col = 3 + (swiss$Catholic > 50))

summary(lm(Fertility ~ . , data = swiss))

switch Select One of a List of Alternatives

Description

switch evaluates EXPR and accordingly chooses one of the further arguments (in ...).

Usage

switch(EXPR, ...)

Arguments

EXPR an expression evaluating to a number or a character string.

... the list of alternatives, given explicitly.

Details

If the value of EXPR is an integer between 1 and nargs()-1 then the corresponding element
of ... is evaluated and the result returned.

If EXPR returns a character string then that string is used to match the names of the elements
in .... If there is an exact match then that element is evaluated and returned if there is
one, otherwise the next element is chosen, e.g., switch("cc", a=1, cc=, d=2) evaluates
to 2.

In the case of no match, if there’s a further argument in switch that one is returned,
otherwise NULL.

Warning

Beware of partial matching: an alternative E = foo will match the first argument EXPR
unless that is named. See the examples for good practice in naming the first argument.



symbols 715

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

centre <- function(x, type) {

switch(type,

mean = mean(x),

median = median(x),

trimmed = mean(x, trim = .1))

}

x <- rcauchy(10)

centre(x, "mean")

centre(x, "median")

centre(x, "trimmed")

ccc <- c("b","QQ","a","A","bb")

for(ch in ccc) cat(ch,":",switch(EXPR = ch, a=1, b=2:3), "\n")

for(ch in ccc) cat(ch,":",switch(EXPR = ch, a=,A=1, b=2:3, "Otherwise: last"),"\n")

## Numeric EXPR don't allow an 'otherwise':

for(i in c(-1:3,9)) print(switch(i, 1,2,3,4))

symbols Draw symbols on a plot

Description

This function draws symbols on a plot. One of six symbols; circles, squares, rectangles, stars,
thermometers, and boxplots, can be plotted at a specified set of x and y coordinates. Specific
aspects of the symbols, such as relative size, can be customized by additional parameters.

Usage

symbols(x, y = NULL, circles, squares, rectangles, stars,
thermometers, boxplots, inches = TRUE, add = FALSE,
fg = 1, bg = NA, xlab = NULL, ylab = NULL, main = NULL,
xlim = NULL, ylim = NULL, ...)

Arguments

x, y the x and y co-ordinates for the symbols. They can be specified in any
way which is accepted by xy.coords.

circles a vector giving the radii of the circles.

squares a vector giving the length of the sides of the squares.

rectangles a matrix with two columns. The first column gives widths and the second
the heights of rectangle symbols.

stars a matrix with three or more columns giving the lengths of the rays from
the center of the stars. NA values are replaced by zeroes.



716 symbols

thermometers a matrix with three or four columns. The first two columns give the width
and height of the thermometer symbols. If there are three columns, the
third is taken as a proportion. The thermometers are filled from their
base to this proportion of their height. If there are four columns, the
third and fourth columns are taken as proportions. The thermometers
are filled between these two proportions of their heights.

boxplots a matrix with five columns. The first two columns give the width and
height of the boxes, the next two columns give the lengths of the lower
and upper whiskers and the fifth the proportion (with a warning if not in
[0,1]) of the way up the box that the median line is drawn.

inches If inches is FALSE, the units are taken to be those of the x axis. If inches
is TRUE, the symbols are scaled so that the largest symbol is one inch in
height. If a number is given the symbols are scaled to make largest symbol
this height in inches.

add if add is TRUE, the symbols are added to an existing plot, otherwise a new
plot is created.

fg colors the symbols are to be drawn in (the default is the value of the col
graphics parameter).

bg if specified, the symbols are filled with this color. The default is to leave
the symbols unfilled.

xlab the x label of the plot if add is not true; this applies to the following
arguments as well. Defaults to the deparsed expression used for x.

ylab the y label of the plot.

main a main title for the plot.

xlim numeric of length 2 giving the x limits for the plot.

ylim numeric of length 2 giving the y limits for the plot.

... graphics parameters can also be passed to this function.

Details

Observations which have missing coordinates or missing size parameters are not plotted.
The exception to this is stars. In that case, the length of any rays which are NA is reset to
zero.

Circles of radius zero are plotted at radius one pixel (which is device-dependent).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

W. S. Cleveland (1985) The Elements of Graphing Data. Monterey, California: Wadsworth.

See Also

stars for drawing stars with a bit more flexibility; sunflowerplot.



symnum 717

Examples

x <- 1:10

y <- sort(10*runif(10))

z <- runif(10)

z3 <- cbind(z, 2*runif(10), runif(10))

symbols(x, y, thermometers=cbind(.5, 1, z), inches=.5, fg = 1:10)

symbols(x, y, thermometers = z3, inches=FALSE)

text(x,y, apply(format(round(z3, dig=2)), 1, paste, collapse = ","),

adj = c(-.2,0), cex = .75, col = "purple", xpd=NA)

data(trees)

## Note that example(trees) shows more sensible plots!

N <- nrow(trees)

attach(trees)

## Girth is diameter in inches

symbols(Height, Volume, circles=Girth/24, inches=FALSE,

main="Trees' Girth")# xlab and ylab automatically

## Colors too:

palette(rainbow(N, end = 0.9))

symbols(Height, Volume, circles=Girth/16, inches=FALSE, bg = 1:N,

fg="gray30", main="symbols(*, circles=Girth/16, bg = 1:N)")

palette("default"); detach()

symnum Symbolic Number Coding

Description

Symbolically encode a given numeric or logical vector or array.

Usage

symnum(x, cutpoints=c(0.3, 0.6, 0.8, 0.9, 0.95),
symbols=c(" ", ".", ",", "+", "*", "B"),
legend = length(symbols) >= 3,
na = "?", eps = 1e-5, corr = missing(cutpoints),
show.max = if(corr) "1", show.min = NULL,
abbr.colnames = has.colnames,
lower.triangular = corr && is.numeric(x) && is.matrix(x),
diag.lower.tri = corr && !is.null(show.max))

Arguments

x numeric or logical vector or array.

cutpoints numeric vector whose values cutpoints[j] = cj (after augmentation, see
corr below) are used for intervals.

symbols character vector, one shorter than (the augmented, see corr below)
cutpoints. symbols[j]= sj are used as “code” for the (half open) inter-
val (cj , cj+1].
For logical argument x, the default is c(".","|") (graphical 0 / 1 s).

legend logical indicating if a "legend" attribute is desired.



718 symnum

na character or logical. How NAs are coded. If na == FALSE, NAs are coded
invisibly, including the "legend" attribute below, which otherwise men-
tions NA coding.

eps absolute precision to be used at left and right boundary.

corr logical. If TRUE, x contains correlations. The cutpoints are augmented by
0 and 1 and abs(x) is coded.

show.max if TRUE, or of mode character, the maximal cutpoint is coded especially.

show.min if TRUE, or of mode character, the minmal cutpoint is coded especially.

abbr.colnames logical, integer or NULL indicating how column names should be abbrevi-
ated (if there are); if NULL (or FALSE and x has no column names), the
column names will all be empty, i.e., ""; otherwise if abbr.colnames is
false, they are left unchanged. If TRUE or integer, existing column names
will be abbreviated to abbreviate(*, minlength = abbr.colnames).

lower.triangular

logical. If TRUE and x is a matrix, only the lower triangular part of the
matrix is coded as non-blank.

diag.lower.tri

logical. If lower.triangular and this are TRUE, the diagonal part of the
matrix is shown.

Value

An atomic character object of class noquote and the same dimensions as x.

If legend (TRUE by default when there more than 2 classes), it has an attribute "legend"
containing a legend of the returned character codes, in the form

c1s1c2s2 . . . sncn+1

where cj = cutpoints[j] and sj = symbols[j].

Author(s)

Martin Maechler 〈maechler@stat.math.ethz.ch〉

See Also

as.character

Examples

ii <- 0:8; names(ii) <- ii

symnum(ii, cut= 2*(0:4), sym = c(".", "-", "+", "$"))

symnum(ii, cut= 2*(0:4), sym = c(".", "-", "+", "$"), show.max=TRUE)

symnum(1:12 %% 3 == 0)# use for logical

##-- Symbolic correlation matrices:

data(attitude)

symnum(cor(attitude), diag = FALSE)

symnum(cor(attitude), abbr.= NULL)

symnum(cor(attitude), abbr.= FALSE)

symnum(cor(attitude), abbr.= 2)



Syntax 719

symnum(cor(rbind(1, rnorm(25), rnorm(25)^2)))

symnum(cor(matrix(rexp(30, 1), 5, 18))) # <<-- PATTERN ! --

symnum(cm1 <- cor(matrix(rnorm(90) , 5, 18))) # < White Noise SMALL n

symnum(cm1, diag=FALSE)

symnum(cm2 <- cor(matrix(rnorm(900), 50, 18))) # < White Noise "BIG" n

symnum(cm2, lower=FALSE)

## NA's:

Cm <- cor(matrix(rnorm(60), 10, 6)); Cm[c(3,6), 2] <- NA

symnum(Cm, show.max=NULL)

## Graphical P-values (aka "significance stars"):

pval <- rev(sort(c(outer(1:6, 10^-(1:3)))))

symp <- symnum(pval, corr=FALSE,

cutpoints = c(0, .001,.01,.05, .1, 1),

symbols = c("***","**","*","."," "))

noquote(cbind(P.val = format(pval), Signif= symp))

Syntax Operator Syntax

Description

Outlines R syntax and gives the precedence of operators

Details

The following unary and binary operators are defined. They are listed in precedence groups,
from highest to lowest.

[ [[ indexing
:: name space/variable name separator
$ @ component / slot extraction
^ exponentiation (right to left)
- + unary minus and plus
: sequence operator
%any% special operators
* / multiply, divide
+ - (binary) add, subtract
< > <= >= == != ordering and comparison
! negation
& && and
| || or
~ as in formulae
-> ->> rightwards assignment
= assignment (right to left)
<- <<- assignment (right to left)
? help (unary and binary)

Within an expression operators of equal precedence are evaluated from left to right except
where indicated.

The links in the See Also section covers most other aspects of the basic syntax.



720 Sys.getenv

Note

There are substantial precedence differences between R and S. In particular, in S ? has the
same precedence as + - and & && | || have equal precedence.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

Arithmetic, Comparison, Control, Extract, Logic, Paren

The R Language Definition manual.

Sys.getenv Get Environment Variables

Description

Sys.getenv obtains the values of the environment variables named by x.

Usage

Sys.getenv(x)

Arguments

x a character vector, or missing

Value

A vector of the same length as x, with the variable names as its names attribute. Each
element holds the value of the environment variable named by the corresponding component
of x (or "" if no environment variable with that name was found).

On most platforms Sys.getenv() will return a named vector giving the values of all the
environment variables.

See Also

Sys.putenv, getwd for the working directory.

Examples

Sys.getenv(c("R_HOME", "R_PAPERSIZE", "R_PRINTCMD", "HOST"))



Sys.info 721

Sys.info Extract System and User Information

Description

Reports system and user information.

Usage

Sys.info()

Details

This function is not implemented on all R platforms, and returns NULL when not available.
Where possible it is based on POSIX system calls.

Sys.info() returns details of the platform R is running on, whereas R.version gives details
of the platform R was built on: they may well be different.

Value

A character vector with fields

sysname The operating system.

release The OS release.

version The OS version.

nodename A name by which the machine is known on the network (if any).

machine A concise description of the hardware.

login The user’s login name, or "unknown" if it cannot be ascertained.

user The name of the real user ID, or "unknown" if it cannot be ascertained.

The first five fields come from the uname(2) system call. The login name comes from
getlogin(2), and the user name from getpwuid(getuid())

Note

The meaning of OS “release” and “version” is highly system-dependent and there is no
guarantee that the node or login or user names will be what you might reasonably expect.
(In particular on some Linux distributions the login name is unknown from sessions with
re-directed inputs.)

See Also

.Platform, and R.version.

Examples

Sys.info()

## An alternative (and probably better) way to get the login name on Unix

Sys.getenv("LOGNAME")



722 sys.parent

sys.parent Functions to Access the Function Call Stack

Description

These functions provide access to environments (“frames” in S terminology) associated with
functions further up the calling stack.

Usage

sys.call(which = 0)
sys.frame(which = 0)
sys.nframe()
sys.function(n = 0)
sys.parent(n = 1)

sys.calls()
sys.frames()
sys.parents()
sys.on.exit()
sys.status()
parent.frame(n = 1)

Arguments

which the frame number if non-negative, the number of generations to go back
if negative. (See the Details section.)

n the number of frame generations to go back.

Details

.GlobalEnv is given number 0 in the list of frames. Each subsequent function evaluation
increases the frame stack by 1 and the environment for evaluation of that function is returned
by sys.frame with the appropriate index.

The parent of a function evaluation is the environment in which the function was called.
It is not necessarily numbered one less than the frame number of the current evaluation,
nor is it the environment within which the function was defined. sys.parent returns the
number of the parent frame if n is 1 (the default), the grandparent if n is 2, and so on.
sys.frame returns the environment associated with a given frame number.

sys.call and sys.frame both accept integer values for the argument which. Non-negative
values of which are normal frame numbers whereas negative values are counted back from
the frame number of the current evaluation.

sys.nframe returns the number of the current frame in that list. sys.function gives the
definition of the function curently being evaluated in the frame n generations back.

sys.frames gives a list of all the active frames and sys.parents gives the indices of the
parent frames of each of the frames.

Notice that even though the sys.xxx functions (except sys.status) are interpreted, their
contexts are not counted nor are they reported. There is no access to them.

sys.status() returns a list with components sys.calls, sys.parents and sys.frames.



sys.parent 723

sys.on.exit() retrieves the expression stored for use by on.exit in the function currently
being evaluated. (Note that this differs from S, which returns a list of expressions for the
current frame and its parents.)

parent.frame(n) is a convenient shorthand for sys.frame(sys.parent(n)) (implemented
slightly more efficiently).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (not parent.frame.)

See Also

eval for the usage of sys.frame and parent.frame.

Examples

ff <- function(x) gg(x)

gg <- function(y) sys.status()

str(ff(1))

gg <- function(y) {

ggg <- function() {

cat("current frame is", sys.nframe(), "\n")

cat("parents are", sys.parents(), "\n")

print(sys.function(0)) # ggg

print(sys.function(2)) # gg

}

if(y > 0) gg(y-1) else ggg()

}

gg(3)

t1 <- function() {

aa <- "here"

t2 <- function() {

## in frame 2 here

cat("current frame is", sys.nframe(), "\n")

str(sys.calls()) ## list with two components t1() and t2()

cat("parents are frame nos", sys.parents(), "\n") ## 0 1

print(ls(envir=sys.frame(-1))) ## [1] "aa" "t2"

invisible()

}

t2()

}

t1()

test.sys.on.exit <- function() {

on.exit(print(1))

ex <- sys.on.exit()

str(ex)

cat("exiting...\n")

}

test.sys.on.exit()

## gives 'language print(1)', prints 1 on exit



724 Sys.sleep

Sys.putenv Set Environment Variables

Description

putenv sets environment variables (for other processes called from within R or future calls
to Sys.getenv from this R process).

Usage

Sys.putenv(...)

Arguments

... arguments in name=value form, with value coercible to a character string.

Details

Non-standard R names must be quoted: see the Examples section.

Value

A logical vector of the same length as x, with elements being true if setting the corresponding
variable succeeded.

Note

Not all systems need support Sys.putenv.

See Also

Sys.getenv, setwd for the working directory.

Examples

print(Sys.putenv("R_TEST"="testit", ABC=123))

Sys.getenv("R_TEST")

Sys.sleep Suspend Execution for a Time Interval

Description

Suspend execution of R expressions for a given number of seconds

Usage

Sys.sleep(time)

Arguments

time The time interval to suspend execution for, in seconds.



sys.source 725

Details

Using this function allows R to be given very low priority and hence not to interfere with
more important foreground tasks. A typical use is to allow a process lauched from R to set
itself up and read its input files before R execution is resumed.

The intention is that this function suspends execution of R expressions but wakes the process
up often enough to respond to GUI events, typically every 0.5 seconds.

There is no guarantee that the process will sleep for the whole of the specified interval, and
it may well take slightly longer in real time to resume execution. The resolution of the time
interval is system-dependent, but will normally be down to 0.02 secs or better.

Value

Invisible NULL.

Note

This function may not be implemented on all systems.

Examples

testit <- function(x)

{

p1 <- proc.time()

Sys.sleep(x)

proc.time() - p1 # The cpu usage should be negligible

}

testit(3.7)

sys.source Parse and Evaluate Expressions from a File

Description

Parses expressions in the given file, and then successively evaluates them in the specified
environment.

Usage

sys.source(file, envir = NULL, chdir = FALSE,
keep.source = getOption("keep.source.pkgs"))

Arguments

file a character string naming the file to be read from
envir an R object specifying the environment in which the expressions are to

be evaluated. May also be a list or an integer. The default value NULL
corresponds to evaluation in the base environment. This is probably not
what you want; you should typically supply an explicit envir argument.

chdir logical; if TRUE, the R working directory is changed to the directory con-
taining file for evaluating.

keep.source logical. If TRUE, functions “keep their source” including comments, see
options(keep.source = *) for more details.



726 Sys.time

Details

For large files, keep.source = FALSE may save quite a bit of memory. In order for the
code being evaluated to use the correct environment (for example, in global assignments),
source code in packages should call topenv(), which will return the namespace, if any, the
environment set up by sys.source, or the global environment if a saved image is being
used.

See Also

source, and library which uses sys.source.

Sys.time Get Current Time and Timezone

Description

Sys.time returns the system’s idea of the current time and Sys.timezone returns the
current time zone.

Usage

Sys.time()
Sys.timezone()

Value

Sys.time returns an object of class "POSIXct" (see DateTimeClasses).

Sys.timezone returns an OS-specific character string, possibly an empty string.

See Also

date for the system time in a fixed-format character string.

Examples

Sys.time()

## locale-specific version of date()

format(Sys.time(), "%a %b %d %X %Y")

Sys.timezone()



system 727

system Invoke a System Command

Description

system invokes the OS command specified by command.

Usage

system(command, intern = FALSE, ignore.stderr = FALSE)

Arguments

command the system command to be invoked, as a string.

intern a logical, indicates whether to make the output of the command an R
object.

ignore.stderr a logical indicating whether error messages (written to ‘stderr’) should be
ignored.

Details

If intern is TRUE then popen is used to invoke the command and the output collected, line
by line, into an R character vector which is returned as the value of system. Output lines
of more that 8096 characters will be split.

If intern is FALSE then the C function system is used to invoke the command and the
value returned by system is the exit status of this function.

unix is a deprecated alternative, available for backwards compatibility.

Value

If intern=TRUE, a character vector giving the output of the command, one line per character
string. If the command could not be run or gives an error a R error is generated.

If intern=FALSE, the return value is an error code.

See Also

.Platform for platform specific variables.

Examples

# list all files in the current directory using the -F flag

## Not run: system("ls -F")

# t1 is a character vector, each one

# representing a separate line of output from who

t1 <- system("who", TRUE)

system("ls fizzlipuzzli", TRUE, TRUE)# empty since file doesn't exist



728 system.time

system.file Find Names of R System Files

Description

Finds the full file names of files in packages etc.

Usage

system.file(..., package = "base", lib.loc = NULL)

Arguments

... character strings, specifying subdirectory and file(s) within some package.
The default, none, returns the root of the package. Wildcards are not
supported.

package a character string with the name of a single package. An error occurs if
more than one package name is given.

lib.loc a character vector with path names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. If the default
is used, the loaded packages are searched before the libraries.

Value

A character vector of positive length, containing the file names that matched ..., or the
empty string, "", if none matched. If matching the root of a package, there is no trailing
separator.

As a special case, system.file() gives the root of the base package only.

See Also

list.files

Examples

system.file() # The root of the 'base' package

system.file(package = "lqs") # The root of package 'lqs'

system.file("INDEX")

system.file("help", "AnIndex", package = "stepfun")

system.time CPU Time Used

Description

Return CPU (and other) times that expr used.

Usage

system.time(expr)
unix.time(expr)



t 729

Arguments

expr Valid R expression to be “timed”

Details

system.time calls the builtin proc.time, evaluates expr, and then calls proc.time once
more, returning the difference between the two proc.time calls.

The values returned by the proc.time are (on Unix) those returned by the C library
function times(3v), if available.

unix.time is an alias of system.time, for compatibility reasons.

Value

A numeric vector of length 5 containing the user cpu, system cpu, elapsed, subproc1, sub-
proc2 times. The subproc times are the user and system cpu time used by child processes
(and so are usually zero).

The resolution of the times will be system-specific; it is common for them to be recorded
to of the order of 1/100 second, and elapsed time is rounded to the nearest 1/100.

Note

It is possible to compile R without support for system.time, when all the values will be
NA.

See Also

proc.time, time which is for time series.

Examples

system.time(for(i in 1:100) mad(runif(1000)))

## Not run:

exT <- function(n = 1000) {

# Purpose: Test if system.time works ok; n: loop size

system.time(for(i in 1:n) x <- mean(rt(1000, df=4)))

}

#-- Try to interrupt one of the following (using Ctrl-C / Escape):

exT() #- about 3 secs on a 1GHz PIII

system.time(exT()) #~ +/- same

## End(Not run)

t Matrix Transpose

Description

Given a matrix or data.frame x, t returns the transpose of x.

Usage

t(x)



730 table

Arguments

x a matrix or data frame, typically.

Details

A data frame is first coerced to a matrix: see as.matrix. When x is a vector, it is treated
as “column”, i.e., the result is a 1-row matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

aperm for permuting the dimensions of arrays.

Examples

a <- matrix(1:30, 5,6)

ta <- t(a) ##-- i.e., a[i, j] == ta[j, i] for all i,j :

for(j in seq(ncol(a)))

if(! all(a[, j] == ta[j, ])) stop("wrong transpose")

table Cross Tabulation and Table Creation

Description

table uses the cross-classifying factors to build a contingency table of the counts at each
combination of factor levels.

Usage

table(..., exclude = c(NA, NaN), dnn = list.names(...), deparse.level = 1)
as.table(x, ...)
is.table(x)

## S3 method for class 'table':
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

Arguments

... objects which can be interpreted as factors (including character strings),
or a list (or data frame) whose components can be so interpreted

exclude values to use in the exclude argument of factor when interpreting non-
factor objects; if specified, levels to remove from all factors in . . . .

dnn the names to be given to the dimensions in the result (the dimnames
names).

deparse.level controls how the default dnn is constructed. See details.

x an arbitrary R object, or an object inheriting from class "table" for the
as.data.frame method.



table 731

row.names a character vector giving the row names for the data frame.

optional a logical controlling whether row names are set. Currently not used.

Details

If the argument dnn is not supplied, the internal function list.names is called to compute
the ‘dimname names’. If the arguments in ... are named, those names are used. For the
remaining arguments, deparse.level = 0 gives an empty name, deparse.level = 1 uses
the supplied argument if it is a symbol, and deparse.level = 2 will deparse the argument.

Only when exclude is specified (i.e., not by default), will table drop levels of factor argu-
ments potentially.

Value

table() returns a contingency table, an object of class "table"; see the print method’s
separate documentation.

There is a summary method for objects created by table or xtabs, which gives basic infor-
mation and performs a chi-squared test for independence of factors (note that the function
chisq.test in package ctest currently only handles 2-d tables).

as.table and is.table coerce to and test for contingency table, respectively.

The as.data.frame method for objects inheriting from class "table" can be used to con-
vert the array-based representation of a contingency table to a data frame containing the
classifying factors and the corresponding counts (the latter as component Freq). This is
the inverse of xtabs.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

Use ftable for printing (and more) of multidimensional tables.

Examples

## Simple frequency distribution

table(rpois(100,5))

data(warpbreaks)

attach(warpbreaks)

## Check the design:

table(wool, tension)

data(state)

table(state.division, state.region)

detach()

data(airquality)

# simple two-way contingency table

with(airquality, table(cut(Temp, quantile(Temp)), Month))

a <- letters[1:3]

table(a, sample(a)) # dnn is c("a", "")

table(a, sample(a), deparse.level = 0) # dnn is c("", "")

table(a, sample(a), deparse.level = 2) # dnn is c("a", "sample(a)")



732 tabulate

## xtabs() <-> as.data.frame.table() :

data(UCBAdmissions) ## already a contingency table

DF <- as.data.frame(UCBAdmissions)

class(tab <- xtabs(Freq ~ ., DF))# xtabs & table

## tab *is* "the same" as the original table:

all(tab == UCBAdmissions)

all.equal(dimnames(tab), dimnames(UCBAdmissions))

a <- rep(c(NA, 1/0:3), 10)

table(a)

table(a, exclude=NULL)

b <- factor(rep(c("A","B","C"), 10))

table(b)

table(b, exclude="B")

d <- factor(rep(c("A","B","C"), 10), levels=c("A","B","C","D","E"))

table(d, exclude="B")

## NA counting:

is.na(d) <- 3:4

d <- factor(d, exclude=NULL)

d[1:7]

table(d, exclude = NULL)

tabulate Tabulation for Vectors

Description

tabulate takes the integer valued vector bin and counts the number of times each integer
occurs in it. tabulate is used as the basis of the table function.

Usage

tabulate(bin, nbins = max(1, bin))

Arguments

bin a vector of integers, or a factor.

nbins the number of bins to be used.

Details

If bin is a factor, its internal integer representation is tabulated. If the elements of bin are
not integers, they are rounded to the nearest integer. Elements outside the range 1,...,
nbin are (silently) ignored in the tabulation.

See Also

factor, table.



tapply 733

Examples

tabulate(c(2,3,5))

tabulate(c(2,3,3,5), nb = 10)

tabulate(c(-2,0,2,3,3,5), nb = 3)

tabulate(factor(letters[1:10]))

tapply Apply a Function Over a “Ragged” Array

Description

Apply a function to each cell of a ragged array, that is to each (non-empty) group of values
given by a unique combination of the levels of certain factors.

Usage

tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)

Arguments

X an atomic object, typically a vector.

INDEX list of factors, each of same length as X.

FUN the function to be applied. In the case of functions like +, %*%, etc., the
function name must be quoted. If FUN is NULL, tapply returns a vector
which can be used to subscript the multi-way array tapply normally
produces.

... optional arguments to FUN.

simplify If FALSE, tapply always returns an array of mode "list". If TRUE (the
default), then if FUN always returns a scalar, tapply returns an array with
the mode of the scalar.

Value

When FUN is present, tapply calls FUN for each cell that has any data in it. If FUN returns a
single atomic value for each cell (e.g., functions mean or var) and when simplify is TRUE,
tapply returns a multi-way array containing the values. The array has the same number
of dimensions as INDEX has components; the number of levels in a dimension is the number
of levels (nlevels()) in the corresponding component of INDEX.

Note that contrary to S, simplify = TRUE always returns an array, possibly 1-dimensional.

If FUN does not return a single atomic value, tapply returns an array of mode list whose
components are the values of the individual calls to FUN, i.e., the result is a list with a dim
attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.



734 taskCallback

See Also

the convenience functions by and aggregate (using tapply); apply, lapply with its ver-
sions sapply and mapply.

Examples

groups <- as.factor(rbinom(32, n = 5, p = .4))

tapply(groups, groups, length) #- is almost the same as

table(groups)

data(warpbreaks)

## contingency table from data.frame : array with named dimnames

tapply(warpbreaks$breaks, warpbreaks[,-1], sum)

tapply(warpbreaks$breaks, warpbreaks[, 3, drop = FALSE], sum)

n <- 17; fac <- factor(rep(1:3, len = n), levels = 1:5)

table(fac)

tapply(1:n, fac, sum)

tapply(1:n, fac, sum, simplify = FALSE)

tapply(1:n, fac, range)

tapply(1:n, fac, quantile)

## example of ... argument: find quarterly means

data(presidents)

tapply(presidents, cycle(presidents), mean, na.rm = TRUE)

ind <- list(c(1, 2, 2), c("A", "A", "B"))

table(ind)

tapply(1:3, ind) #-> the split vector

tapply(1:3, ind, sum)

taskCallback Add or remove a top-level task callback

Description

addTaskCallback registers an R function that is to be called each time a top-level task is
completed.

removeTaskCallback un-registers a function that was registered earlier via
addTaskCallback.

These provide low-level access to the internal/native mechanism for managing task-
completion actions. One can use taskCallbackManager at the S-language level to manage
S functions that are called at the completion of each task. This is easier and more direct.

Usage

addTaskCallback(f, data = NULL, name = character(0))
removeTaskCallback(id)



taskCallback 735

Arguments

f the function that is to be invoked each time a top-level task is successfully
completed. This is called with 5 or 4 arguments depending on whether
data is specified or not, respectively. The return value should be a logical
value indicating whether to keep the callback in the list of active callbacks
or discard it.

data if specified, this is the 5-th argument in the call to the callback function
f.

id a string or an integer identifying the element in the internal call-
back list to be removed. Integer indices are 1-based, i.e the first
element is 1. The names of currently registered handlers is avail-
able using getTaskCallbackNames and is also returned in a call to
addTaskCallback.

name character: names to be used.

Details

Top-level tasks are individual expressions rather than entire lines of input. Thus an input
line of the form expression1 ; expression2 will give rise to 2 top-level tasks.

A top-level task callback is called with the expression for the top-level task, the result of
the top-level task, a logical value indicating whether it was successfully completed or not
(always TRUE at present), and a logical value indicating whether the result was printed
or not. If the data argument was specified in the call to addTaskCallback, that value is
given as the fifth argument.

The callback function should return a logical value. If the value is FALSE, the callback is
removed from the task list and will not be called again by this mechanism. If the function
returns TRUE, it is kept in the list and will be called on the completion of the next top-level
task.

Value

addTaskCallback returns an integer value giving the position in the list of task callbacks
that this new callback occupies. This is only the current position of the callback. It can be
used to remove the entry as long as no other values are removed from earlier positions in
the list first.

removeTaskCallback returns a logical value indicating whether the specified element was
removed. This can fail (i.e., return FALSE) if an incorrect name or index is given that does
not correspond to the name or position of an element in the list.

Note

This is an experimental feature and the interface may be changed in the future.

There is also C-level access to top-level task callbacks to allow C routines rather than R
functions be used.

See Also

getTaskCallbackNames taskCallbackManager http://developer.r-project.org/
TaskHandlers.pdf

http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf


736 taskCallbackManager

Examples

times <- function(total = 3, str="Task a") {

ctr <- 0

function(expr, value, ok, visible) {

ctr <<- ctr + 1

cat(str, ctr, "\n")

if(ctr == total) {

cat("handler removing itself\n")

}

return(ctr < total)

}

}

# add the callback that will work for

# 4 top-level tasks and then remove itself.

n <- addTaskCallback(times(4))

# now remove it, assuming it is still first in the list.

removeTaskCallback(n)

## Not run:

# There is no point in running this

# as

addTaskCallback(times(4))

sum(1:10)

sum(1:10)

sum(1:10)

sum(1:10)

sum(1:10)

## End(Not run)

taskCallbackManager Create an R-level task callback manager

Description

This provides an entirely S-language mechanism for managing callbacks or actions that
are invoked at the conclusion of each top-level task. Essentially, we register a single R
function from this manager with the underlying, native task-callback mechanism and this
function handles invoking the other R callbacks under the control of the manager. The
manager consists of a collection of functions that access shared variables to manage the list
of user-level callbacks.

Usage

taskCallbackManager(handlers = list(), registered = FALSE, verbose = FALSE)

Arguments

handlers this can be a list of callbacks in which each element is a list with an
element named "f" which is a callback function, and an optional element



taskCallbackManager 737

named "data" which is the 5-th argument to be supplied to the callback
when it is invoked. Typically this argument is not specified, and one uses
add to register callbacks after the manager is created.

registered a logical value indicating whether the evaluate function has already been
registered with the internal task callback mechanism. This is usually
FALSE and the first time a callback is added via the add function, the
evaluate function is automatically registered. One can control when the
function is registered by specifying TRUE for this argument and calling
addTaskCallback manually.

verbose a logical value, which if TRUE, causes information to be printed to the
console about certain activities this dispatch manager performs. This is
useful for debugging callbacks and the handler itself.

Value

A list containing 6 functions:

add register a callback with this manager, giving the function, an optional 5-th
argument, an optional name by which the the callback is stored in the list,
and a register argument which controls whether the evaluate function
is registered with the internal C-level dispatch mechanism if necessary.

remove remove an element from the manager’s collection of callbacks, either by
name or position/index.

evaluate the ‘real’ callback function that is registered with the C-level dispatch
mechanism and which invokes each of the R-leve callbacks within this
manager’s control.

suspend a function to set the suspend state of the manager. If it is suspended,
none of the callbacks will be invoked when a task is completed. One sets
the state by specifying a logical value for the status argument.

register a function to register the evaluate function with the internal C-level
dispatch mechanism. This is done automatically by the add function, but
can be called manually.

callbacks returns the list of callbacks being maintained by this manager.

Note

This is an experimental feature and the interface may be changed in the future.

See Also

addTaskCallback removeTaskCallback getTaskCallbackNames http://developer.
r-project.org/TaskHandlers.pdf

Examples

# create the manager

h <- taskCallbackManager()

# add a callback

h$add(function(expr, value, ok, visible) {

cat("In handler\n")

return(TRUE)

http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf


738 taskCallbackNames

}, name = "simpleHandler")

# look at the internal callbacks.

getTaskCallbackNames()

# look at the R-level callbacks

names(h$callback())

#

getTaskCallbackNames()

removeTaskCallback("R-taskCallbackManager")

taskCallbackNames Query the names of the current internal top-level task callbacks

Description

This provides a way to get the names (or identifiers) for the currently registered task
callbacks that are invoked at the conclusion of each top-level task. These identifies can be
used to remove a callback.

Usage

getTaskCallbackNames()

Arguments

Value

A character vector giving the name for each of the registered callbacks which are invoked
when a top-level task is completed successfully. Each name is the one used when registering
the callbacks and returned as the in the call to addTaskCallback.

Note

One can use taskCallbackManager to manage user-level task callbacks, i.e., S-language
functions, entirely within the S language and access the names more directly.

See Also

addTaskCallback removeTaskCallback taskCallbackManager http://developer.
r-project.org/TaskHandlers.pdf

Examples

n <- addTaskCallback(function(expr, value, ok, visible) {

cat("In handler\n")

return(TRUE)

}, name = "simpleHandler")

getTaskCallbackNames()

http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf


TDist 739

# now remove it by name

removeTaskCallback("simpleHandler")

h <- taskCallbackManager()

h$add(function(expr, value, ok, visible) {

cat("In handler\n")

return(TRUE)

}, name = "simpleHandler")

getTaskCallbackNames()

removeTaskCallback("R-taskCallbackManager")

TDist The Student t Distribution

Description

Density, distribution function, quantile function and random generation for the t distribu-
tion with df degrees of freedom (and optional noncentrality parameter ncp).

Usage

dt(x, df, ncp=0, log = FALSE)
pt(q, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
qt(p, df, lower.tail = TRUE, log.p = FALSE)
rt(n, df)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

df degrees of freedom (> 0, maybe non-integer).

ncp non-centrality parameter δ; currently for pt() and dt(), only for ncp <=
37.62.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The t distribution with df = ν degrees of freedom has density

f(x) =
Γ((ν + 1)/2)√
πνΓ(ν/2)

(1 + x2/ν)−(ν+1)/2

for all real x. It has mean 0 (for ν > 1) and variance ν
ν−2 (for ν > 2).

The general non-central t with parameters (ν, δ) = (df, ncp) is defined as a the distribution
of Tν(δ) := U+δ

χν/
√

ν
where U and χν are independent random variables, U ∼ N (0, 1), and χ2

ν

is chi-squared, see pchisq.



740 tempfile

The most used applications are power calculations for t-tests:
Let T = X̄−µ0

S/
√

n
where X̄ is the mean and S the sample standard deviation (sd) of

X1, X2, . . . , Xn which are i.i.d. N(µ, σ2). Then T is distributed as non-centrally t with
df= n− 1 degrees of freedom and non-centrality parameter ncp= (µ− µ0)

√
n/σ.

Value

dt gives the density, pt gives the distribution function, qt gives the quantile function, and
rt generates random deviates.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole. (except non-central versions.)

Lenth, R. V. (1989). Algorithm AS 243 — Cumulative distribution function of the non-
central t distribution, Appl. Statist. 38, 185–189.

See Also

df for the F distribution.

Examples

1 - pt(1:5, df = 1)

qt(.975, df = c(1:10,20,50,100,1000))

tt <- seq(0,10, len=21)

ncp <- seq(0,6, len=31)

ptn <- outer(tt,ncp, function(t,d) pt(t, df = 3, ncp=d))

image(tt,ncp,ptn, zlim=c(0,1),main=t.tit <- "Non-central t - Probabilities")

persp(tt,ncp,ptn, zlim=0:1, r=2, phi=20, theta=200, main=t.tit,

xlab = "t", ylab = "noncentrality parameter", zlab = "Pr(T <= t)")

op <- par(yaxs="i")

plot(function(x) dt(x, df = 3, ncp = 2), -3, 11, ylim = c(0, 0.32),

main="Non-central t - Density")

par(op)

tempfile Create Names for Temporary Files

Description

tempfile returns a vector of character strings which can be used as names for temporary
files.

Usage

tempfile(pattern = "file", tmpdir = tempdir())
tempdir()



termplot 741

Arguments

pattern a non-empty character vector giving the initial part of the name.
tmpdir a non-empty character vector giving the directory name

Details

If pattern has length greater than one then the result is of the same length giving a
temporary file name for each component of pattern.
The names are very likely to be unique among calls to tempfile in an R session and across
simultaneous R sessions. The filenames are guaranteed not to be currently in use.
The file name is made of the pattern, the process number in hex and a random suffix in
hex. By default, the filenames will be in the directory given by tempdir(). This will be
a subdirectory of the directory given by the environment variable TMPDIR if set, otherwise
"/tmp".

Value

For tempfile a character vector giving the names of possible (temporary) files. Note that
no files are generated by tempfile.
For tempdir, the path of the per-session temporary directory.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

unlink for deleting files.

Examples

tempfile(c("ab", "a b c")) # give file name with spaces in!

termplot Plot regression terms

Description

Plots regression terms against their predictors, optionally with standard errors and partial
residuals added.

Usage

termplot(model, data=NULL, envir=environment(formula(model)),
partial.resid=FALSE, rug=FALSE,
terms=NULL, se=FALSE, xlabs=NULL, ylabs=NULL, main = NULL,
col.term = 2, lwd.term = 1.5,
col.se = "orange", lty.se = 2, lwd.se = 1,
col.res = "gray", cex = 1, pch = par("pch"),
ask = interactive() && nb.fig < n.tms && .Device !="postscript",
use.factor.levels=TRUE,
...)



742 termplot

Arguments

model fitted model object

data data frame in which variables in model can be found

envir environment in which variables in model can be found

partial.resid logical; should partial residuals be plotted?

rug add rugplots (jittered 1-d histograms) to the axes?

terms which terms to plot (default NULL means all terms)

se plot pointwise standard errors?

xlabs vector of labels for the x axes

ylabs vector of labels for the y axes

main logical, or vector of main titles; if TRUE, the model’s call is taken as main
title, NULL or FALSE mean no titles.

col.term, lwd.term

color and line width for the “term curve”, see lines.
col.se, lty.se, lwd.se

color, line type and line width for the “twice-standard-error curve” when
se = TRUE.

col.res, cex, pch

color, plotting character expansion and type for partial residuals, when
partial.resid = TRUE, see points.

ask logical; if TRUE, the user is asked before each plot, see par(ask=.).
use.factor.levels

Should x-axis ticks use factor levels or numbers for factor terms?

... other graphical parameters

Details

The model object must have a predict method that accepts type=terms, eg glm in thebase
package, coxph and survreg in the survival package.

For the partial.resid=TRUE option it must have a residuals method that accepts
type="partial", which lm and glm do.

The data argument should rarely be needed, but in some cases termplot may be unable
to reconstruct the original data frame.

Nothing sensible happens for interaction terms.

See Also

For (generalized) linear models, plot.lm and predict.glm.

Examples

had.splines <- "package:splines" %in% search()

if(!had.splines) rs <- require(splines)

x <- 1:100

z <- factor(rep(LETTERS[1:4],25))

y <- rnorm(100,sin(x/10)+as.numeric(z))

model <- glm(y ~ ns(x,6) + z)

par(mfrow=c(2,2)) ## 2 x 2 plots for same model :



terms 743

termplot(model, main = paste("termplot( ", deparse(model$call)," ...)"))

termplot(model, rug=TRUE)

termplot(model, partial=TRUE, rug= TRUE,

main="termplot(..., partial = TRUE, rug = TRUE)")

termplot(model, partial=TRUE, se = TRUE, main = TRUE)

if(!had.splines && rs) detach("package:splines")

terms Model Terms

Description

The function terms is a generic function which can be used to extract terms objects from
various kinds of R data objects.

Usage

terms(x, ...)

Arguments

x object used to select a method to dispatch.

... further arguments passed to or from other methods.

Details

There are methods for classes "aovlist", and "terms" "formula" (see terms.formula):
the default method just extracts the terms component of the object (if any).

Value

An object of class c("terms", "formula") which contains the terms representation of a
symbolic model. See terms.object for its structure.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models
in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

terms.object, terms.formula, lm, glm, formula.



744 terms.formula

terms.formula Construct a terms Object from a Formula

Description

This function takes a formula and some optional arguments and constructs a terms object.
The terms object can then be used to construct a model.matrix.

Usage

## S3 method for class 'formula':
terms(x, specials = NULL, abb = NULL, data = NULL, neg.out = TRUE,

keep.order = FALSE, simplify = FALSE, ...)

Arguments

x a formula.

specials which functions in the formula should be marked as special in the terms
object.

abb Not implemented in R.

data a data frame from which the meaning of the special symbol . can be
inferred. It is unused if there is no . in the formula.

neg.out Not implemented in R.

keep.order a logical value indicating whether the terms should keep their positions.
If FALSE the terms are reordered so that main effects come first, followed
by the interactions, all second-order, all third-order and so on. Effects of
a given order are kept in the order specified.

simplify should the formula be expanded and simplified, the pre-1.7.0 behaviour?

... further arguments passed to or from other methods.

Details

Not all of the options work in the same way that they do in S and not all are implemented.

Value

A terms.object object is returned. The object itself is the re-ordered (unless keep.order
= TRUE) formula. In all cases variables within an interaction term in the formula are re-
ordered by the ordering of the "variables" attribute, which is the order in which the
variables occur in the formula.

See Also

terms, terms.object



terms.object 745

terms.object Description of Terms Objects

Description

An object of class terms holds information about a model. Usually the model was specified
in terms of a formula and that formula was used to determine the terms object.

Value

The object itself is simply the formula supplied to the call of terms.formula. The object
has a number of attributes and they are used to construct the model frame:

factors A matrix of variables by terms showing which variables appear in which
terms. The entries are 0 if the variable does not occur in the term, 1 if
it does occur and should be coded by contrasts, and 2 if it occurs and
should be coded via dummy variables for all levels (as when an intercept
or lower-order term is missing).

term.labels A character vector containing the labels for each of the terms in the model.
Non-syntactic names will be quoted by backticks.

variables A call to list of the variables in the model.

intercept Either 0, indicating no intercept is to be fit, or 1 indicating that an inter-
cept is to be fit.

order A vector of the same length as term.labels indicating the order of in-
teraction for each term

response The index of the variable (in variables) of the response (the left hand side
of the formula).

offset If the model contains offset terms there is an offset attribute indicating
which variables are offsets

specials If the specials argument was given to terms.formula there is a
specials attribute, a list of vectors indicating the terms that contain
these special functions.

The object has class c("terms", "formula").

Note

These objects are different from those found in S. In particular there is no formula attribute,
instead the object is itself a formula. Thus, the mode of a terms object is different as well.

Examples of the specials argument can be seen in the aov and coxph functions.

See Also

terms, formula.



746 text

text Add Text to a Plot

Description

text draws the strings given in the vector labels at the coordinates given by x and y. y
may be missing since xy.coords(x,y) is used for construction of the coordinates.

Usage

text(x, ...)

## Default S3 method:
text (x, y = NULL, labels = seq(along = x), adj = NULL,

pos = NULL, offset = 0.5, vfont = NULL,
cex = 1, col = NULL, font = NULL, xpd = NULL, ...)

Arguments

x, y numeric vectors of coordinates where the text labels should be written.
If the length of x and y differs, the shorter one is recycled.

labels one or more character strings or expressions specifying the text to be
written. An attempt is made to coerce other vectors to character, and
other language objects to expressions.

adj one or two values in [0, 1] which specify the x (and optionally y) adjust-
ment of the labels. On most devices values outside that interval will also
work.

pos a position specifier for the text. If specified this overrides any adj value
given. Values of 1, 2, 3 and 4, respectively indicate positions below, to
the left of, above and to the right of the specified coordinates.

offset when pos is specified, this value gives the offset of the label from the
specified coordinate in fractions of a character width.

vfont if a character vector of length 2 is specified, then Hershey vector fonts are
used. The first element of the vector selects a typeface and the second
element selects a style.

cex numeric character expansion factor; multiplied by par("cex") yields the
final character size.

col, font the color and font to be used; these default to the values of the global
graphical parameters in par().

xpd (where) should clipping take place? Defaults to par("xpd").

... further graphical parameters (from par).

Details

labels must be of type character or expression (or be coercible to such a type). In the
latter case, quite a bit of mathematical notation is available such as sub- and superscripts,
greek letters, fractions, etc.

adj allows adjustment of the text with respect to (x,y). Values of 0, 0.5, and 1 specify
left/bottom, middle and right/top, respectively. The default is for centered text, i.e., adj =



textConnection 747

c(0.5, 0.5). Accurate vertical centering needs character metric information on individual
characters, which is only available on some devices.

The pos and offset arguments can be used in conjunction with values returned by
identify to recreate an interactively labelled plot.

Text can be rotated by using graphical parameters srt (see par); this rotates about the
centre set by adj.

Graphical parameters col, cex and font can be vectors and will then be applied cyclically
to the labels (and extra values will be ignored).

Labels whose x, y, labels, cex or col value is NA are omitted from the plot.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

mtext, title, Hershey for details on Hershey vector fonts, plotmath for details and more
examples on mathematical annotation.

Examples

plot(-1:1,-1:1, type = "n", xlab = "Re", ylab = "Im")

K <- 16; text(exp(1i * 2 * pi * (1:K) / K), col = 2)

## The following two examples use latin1 characters: these may not

## appear correctly (or be omitted entirely).

plot(1:10, 1:10, main = "text(...) examples\n~~~~~~~~~~~~~~",

sub = "R is GNU l’, but not o ...")

mtext("ńISO-accentsz: ś éè øØ å<Å æ<Æ", side=3)

points(c(6,2), c(2,1), pch = 3, cex = 4, col = "red")

text(6, 2, "the text is CENTERED around (x,y) = (6,2) by default",

cex = .8)

text(2, 1, "or Left/Bottom - JUSTIFIED at (2,1) by 'adj = c(0,0)'",

adj = c(0,0))

text(4, 9, expression(hat(beta) == (X^t * X)^{-1} * X^t * y))

text(4, 8.4, "expression(hat(beta) == (X^t * X)^{-1} * X^t * y)", cex = .75)

text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n)))

## Two more latin1 examples

text(5,10.2,

"Le français, c'est façile: Règles, Liberté, Egalité, Fraternité...")

text(5,9.8, "Jetz no chli züritüütsch: (noch ein biSSchen Zürcher deutsch)")

textConnection Text Connections

Description

Input and output text connections.



748 textConnection

Usage

textConnection(object, open = "r", local = FALSE)

Arguments

object character. A description of the connection. For an input this is an R
character vector object, and for an output connection the name for the R
character vector to receive the output.

open character. Either "r" (or equivalently "") for an input connection or "w"
or "a" for an output connection.

local logical. Used only for output connections. If TRUE, output is assigned to
a variable in the calling environment. Otherwise the global environment
is used.

Details

An input text connection is opened and the character vector is copied at time the connection
object is created, and close destroys the copy.

An output text connection is opened and creates an R character vector of the given name
in the user’s workspace or in the calling environment, depending on the value of the local
argument. This object will at all times hold the completed lines of output to the connection,
and isIncomplete will indicate if there is an incomplete final line. Closing the connection
will output the final line, complete or not. (A line is complete once it has been terminated
by end-of-line, represented by "\n" in R.)

Opening a text connection with mode = "a" will attempt to append to an existing character
vector with the given name in the user’s workspace or the calling environment. If none is
found (even if an object exists of the right name but the wrong type) a new character vector
wil be created, with a warning.

You cannot seek on a text connection, and seek will always return zero as the position.

Value

A connection object of class "textConnection" which inherits from class "connection".

Note

As output text connections keep the character vector up to date line-by-line, they are
relatively expensive to use, and it is often better to use an anonymous file() connection
to collect output.

On platforms where vsnprintf does not return the needed length of output (e.g., Windows)
there is a 100,000 character limit on the length of line for output connections: longer lines
will be truncated with a warning.

See Also

connections, showConnections, pushBack, capture.output.



time 749

Examples

zz <- textConnection(LETTERS)

readLines(zz, 2)

scan(zz, "", 4)

pushBack(c("aa", "bb"), zz)

scan(zz, "", 4)

close(zz)

zz <- textConnection("foo", "w")

writeLines(c("testit1", "testit2"), zz)

cat("testit3 ", file=zz)

isIncomplete(zz)

cat("testit4\n", file=zz)

isIncomplete(zz)

close(zz)

foo

## Not run:

# capture R output: use part of example from help(lm)

zz <- textConnection("foo", "w")

ctl <- c(4.17, 5.58, 5.18, 6.11, 4.5, 4.61, 5.17, 4.53, 5.33, 5.14)

trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)

group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))

weight <- c(ctl, trt)

sink(zz)

anova(lm.D9 <- lm(weight ~ group))

cat("\nSummary of Residuals:\n\n")

summary(resid(lm.D9))

sink()

close(zz)

cat(foo, sep = "\n")

## End(Not run)

time Sampling Times of Time Series

Description

time creates the vector of times at which a time series was sampled.

cycle gives the positions in the cycle of each observation.

frequency returns the number of samples per unit time and deltat the time interval
between observations (see ts).

Usage

time(x, ...)
## Default S3 method:
time(x, offset=0, ...)

cycle(x, ...)
frequency(x, ...)
deltat(x, ...)



750 Titanic

Arguments

x a univariate or multivariate time-series, or a vector or matrix.

offset can be used to indicate when sampling took place in the time unit. 0 (the
default) indicates the start of the unit, 0.5 the middle and 1 the end of
the interval.

... extra arguments for future methods.

Details

These are all generic functions, which will use the tsp attribute of x if it exists. time and
cycle have methods for class ts that coerce the result to that class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

ts, start, tsp, window.

date for clock time, system.time for CPU usage.

Examples

data(presidents)

cycle(presidents)

# a simple series plot: c() makes the x and y arguments into vectors

plot(c(time(presidents)), c(presidents), type="l")

Titanic Survival of passengers on the Titanic

Description

This data set provides information on the fate of passengers on the fatal maiden voyage
of the ocean liner ‘Titanic’, summarized according to economic status (class), sex, age and
survival.

Usage

data(Titanic)

Format

A 4-dimensional array resulting from cross-tabulating 2201 observations on 4 variables. The
variables and their levels are as follows:

No Name Levels
1 Class 1st, 2nd, 3rd, Crew
2 Sex Male, Female
3 Age Child, Adult
4 Survived No, Yes



title 751

Details

The sinking of the Titanic is a famous event, and new books are still being published about
it. Many well-known facts—from the proportions of first-class passengers to the “women
and children first” policy, and the fact that that policy was not entirely successful in saving
the women and children in the third class—are reflected in the survival rates for various
classes of passenger.

These data were originally collected by the British Board of Trade in their investigation of
the sinking. Note that there is not complete agreement among primary sources as to the
exact numbers on board, rescued, or lost.

Due in particular to the very successful film ‘Titanic’, the last years saw a rise in public inter-
est in the Titanic. Very detailed data about the passengers is now available on the Internet,
at sites such as Encyclopedia Titanica (http://www.rmplc.co.uk/eduweb/sites/phind).

Source

Dawson, Robert J. MacG. (1995), The ‘Unusual Episode’ Data Revisited. Journal of Statis-
tics Education, 3. http://www.amstat.org/publications/jse/v3n3/datasets.dawson.
html

The source provides a data set recording class, sex, age, and survival status for each person
on board of the Titanic, and is based on data originally collected by the British Board of
Trade and reprinted in:

British Board of Trade (1990), Report on the Loss of the ‘Titanic’ (S.S.). British Board of
Trade Inquiry Report (reprint). Gloucester, UK: Allan Sutton Publishing.

Examples

data(Titanic)

mosaicplot(Titanic, main = "Survival on the Titanic")

## Higher survival rates in children?

apply(Titanic, c(3, 4), sum)

## Higher survival rates in females?

apply(Titanic, c(2, 4), sum)

## Use loglm() in package 'MASS' for further analysis ...

title Plot Annotation

Description

This function can be used to add labels to a plot. Its first four principal arguments can also
be used as arguments in most high-level plotting functions. They must be of type character
or expression. In the latter case, quite a bit of mathematical notation is available such as
sub- and superscripts, greek letters, fractions, etc.

Usage

title(main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
line = NA, outer = FALSE, ...)

http://www.rmplc.co.uk/eduweb/sites/phind
http://www.amstat.org/publications/jse/v3n3/datasets.dawson.html
http://www.amstat.org/publications/jse/v3n3/datasets.dawson.html


752 title

Arguments

main The main title (on top) using font and size (character expansion)
par("font.main") and color par("col.main").

sub Sub-title (at bottom) using font and size par("font.sub") and color
par("col.sub").

xlab X axis label using font and character expansion par("font.axis") and
color par("col.axis").

ylab Y axis label, same font attributes as xlab.

line specifying a value for line overrides the default placement of labels, and
places them this many lines from the plot.

outer a logical value. If TRUE, the titles are placed in the outer margins of the
plot.

... further graphical parameters from par. Use e.g., col.main or cex.sub
instead of just col or cex.

Details

The labels passed to title can be simple strings or expressions, or they can be a list containing
the string to be plotted, and a selection of the optional modifying graphical parameters cex=,
col=, font=.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

mtext, text; plotmath for details on mathematical annotation.

Examples

data(cars)

plot(cars, main = "") # here, could use main directly

title(main = "Stopping Distance versus Speed")

plot(cars, main = "")

title(main = list("Stopping Distance versus Speed", cex=1.5,

col="red", font=3))

## Specifying "..." :

plot(1, col.axis = "sky blue", col.lab = "thistle")

title("Main Title", sub = "sub title",

cex.main = 2, font.main= 4, col.main= "blue",

cex.sub = 0.75, font.sub = 3, col.sub = "red")

x <- seq(-4, 4, len = 101)

y <- cbind(sin(x), cos(x))

matplot(x, y, type = "l", xaxt = "n",

main = expression(paste(plain(sin) * phi, " and ",

plain(cos) * phi)),

ylab = expression("sin" * phi, "cos" * phi), # only 1st is taken

xlab = expression(paste("Phase Angle ", phi)),



toString 753

col.main = "blue")

axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),

lab = expression(-pi, -pi/2, 0, pi/2, pi))

abline(h = 0, v = pi/2 * c(-1,1), lty = 2, lwd = .1, col = "gray70")

ToothGrowth The Effect of Vitamin C on Tooth Growth in Guinea Pigs

Description

The response is the length of odontoblasts (teeth) in each of 10 guinea pigs at each of three
dose levels of Vitamin C (0.5, 1, and 2 mg) with each of two delivery methods (orange juice
or ascorbic acid).

Usage

data(ToothGrowth)

Format

A data frame with 60 observations on 3 variables.

[,1] len numeric Tooth length
[,2] supp factor Supplement type (VC or OJ).
[,3] dose numeric Dose in milligrams.

Source

C. I. Bliss (1952) The Statistics of Bioassay. Academic Press.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(ToothGrowth)

coplot(len ~ dose | supp, data = ToothGrowth, panel = panel.smooth,

xlab = "ToothGrowth data: length vs dose, given type of supplement")

toString toString Converts its Argument to a Character String

Description

This is a helper function for format. It converts its argument to a string. If the argument
is a vector then its elements are concatenated with a , as a separtor. Most methods should
honor the width argument. The minimum value for width is six.



754 trace

Usage

toString(x, ...)

## Default S3 method:
toString(x, width, ...)

Arguments

x The object to be converted.

width The returned value is at most the first width characters.

... Optional arguments for methods.

Value

A character vector of length 1 is returned.

Author(s)

Robert Gentleman

See Also

format

Examples

x <- c("a", "b", "aaaaaaaaaaa")

toString(x)

toString(x, width=8)

trace Interactive Tracing and Debugging of Calls to a Function or
Method

Description

A call to trace allows you to insert debugging code (e.g., a call to browser or recover) at
chosen places in any function. A call to untrace cancels the tracing. Specified methods can
be traced the same way, without tracing all calls to the function. Trace code can be any R
expression. Tracing can be temporarily turned on or off globally by calling tracingState.

Usage

trace(what, tracer, exit, at, print, signature, where = topenv(parent.frame()))
untrace(what, signature = NULL, where = topenv(parent.frame()))

tracingState(on = NULL)



trace 755

Arguments

what The name (quoted or not) of a function to be traced or untraced. More
than one name can be given in the quoted form, and the same action will
be applied to each one.

tracer Either a function or an unevaluated expression. The function will be
called or the expression will be evaluated either at the beginning of the
call, or before those steps in the call specified by the argument at. See
the details section.

exit Either a function or an unevaluated expression. The function will be
called or the expression will be evaluated on exiting the function. See the
details section.

at optional numeric vector. If supplied, tracer will be called just before the
corresponding step in the body of the function. See the details section.

print If TRUE (as per default), a descriptive line is printed before any trace
expression is evaluated.

signature If this argument is supplied, it should be a signature for a method for
function what. In this case, the method, and not the function itself, is
traced.

where the environment from which to look for the function to be traced; by
default, the top-level environment of the call to trace. If you put a call to
trace into code in a package, you may need to specify where=.GlobalEnv
if the package containing the call has a namespace, but the function you
want to trace is somewhere on the search list.

on logical; a call to tracingState returns TRUE if tracing is globally turned
on, FALSE otherwise. An argument of one or the other of those values
sets the state. If the tracing state is FALSE, none of the trace actions
will actually occur (used, for example, by debugging functions to shut off
tracing during debugging).

Details

The trace function operates by constructing a revised version of the function (or of the
method, if signature is supplied), and assigning the new object back where the original
was found. If only the what argument is given, a line of trace printing is produced for each
call to the function (back compatible with the earlier version of trace).

The object constructed by trace is from a class that extends "function" and which con-
tains the original, untraced version. A call to untrace re-assigns this version.

If the argument tracer or exit is the name of a function, the tracing expression will be
a call to that function, with no arguments. This is the easiest and most common case,
with the functions browser and recover the likeliest candidates; the former browses in the
frame of the function being traced, and the latter allows browsing in any of the currently
active calls.

The tracer or exit argument can also be an unevaluated expression (such as returned by
a call to quote or substitute). This expression itself is inserted in the traced function, so
it will typically involve arguments or local objects in the traced function. An expression of
this form is useful if you only want to interact when certain conditions apply (and in this
case you probably want to supply print=FALSE in the call to trace also).

When the at argument is supplied, it should be a vector of integers referring to the substeps
of the body of the function (this only works if the body of the function is enclosed in {



756 trace

...}. In this case tracer is not called on entry, but instead just before evaluating each of
the steps listed in at. (Hint: you don’t want to try to count the steps in the printed version
of a function; instead, look at as.list(body(f)) to get the numbers associated with the
steps in function f.)

An intrinsic limitation in the exit argument is that it won’t work if the function itself uses
on.exit, since the existing calls will override the one supplied by trace.

Tracing does not nest. Any call to trace replaces previously traced versions of that function
or method, and untrace always restores an untraced version. (Allowing nested tracing has
too many potentials for confusion and for accidentally leaving traced versions behind.)

Tracing primitive functions (builtins and specials) from the base package works, but only by
a special mechanism and not very informatively. Tracing a primitive causes the primitive
to be replaced by a function with argument . . . (only). You can get a bit of information out,
but not much. A warning message is issued when trace is used on a primitive.

The practice of saving the traced version of the function back where the function came from
means that tracing carries over from one session to another, if the traced function is saved
in the session image. (In the next session, untrace will remove the tracing.) On the other
hand, functions that were in a package, not in the global environment, are not saved in the
image, so tracing expires with the session for such functions.

Tracing a method is basically just like tracing a function, with the exception that the traced
version is stored by a call to setMethod rather than by direct assignment, and so is the
untraced version after a call to untrace.

The version of trace described here is largely compatible with the version in S-Plus, al-
though the two work by entirely different mechanisms. The S-Plus trace uses the session
frame, with the result that tracing never carries over from one session to another (R does
not have a session frame). Another relevant distinction has nothing directly to do with
trace: The browser in S-Plus allows changes to be made to the frame being browsed, and
the changes will persist after exiting the browser. The R browser allows changes, but they
disappear when the browser exits. This may be relevant in that the S-Plus version allows
you to experiment with code changes interactively, but the R version does not. (A future
revision may include a “destructive” browser for R.)

Value

The traced function(s) name(s). The relevant consequence is the assignment that takes
place.

Note

The version of function tracing that includes any of the arguments except for the function
name requires the methods package (because it uses special classes of objects to store and
restore versions of the traced functions).

If methods dispatch is not currently on, trace will load the methods namespace, but will
not put the methods package on the search list.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.



traceback 757

See Also

browser and recover, the likeliest tracing functions; also, quote and substitute for con-
structing general expressions.

Examples

f <- function(x, y) {

y <- pmax(y, .001)

x ^ y

}

## arrange to call the browser on entering and exiting

## function f

trace("f", browser, exit = browser)

## instead, conditionally assign some data, and then browse

## on exit, but only then. Don't bother me otherwise

trace("f", quote(if(any(y < 0)) yOrig <- y),

exit = quote(if(exists("yOrig")) browser()),

print = FALSE)

## trace a utility function, with recover so we

## can browse in the calling functions as well.

trace("as.matrix", recover)

## turn off the tracing

untrace(c("f", "as.matrix"))

if(!hasMethods) detach("package:methods")

traceback Print Call Stack of Last Error

Description

traceback() prints the call stack of the last error, i.e., the sequence of calls that lead to
the error. This is useful when an error occurs with an unidentifiable error message. This
stack is stored as a list in .Traceback, which traceback prints in a user-friendly format.

Usage

traceback()

Value

traceback() returns nothing, but prints the deparsed call stack deepest call first. The calls
may print on more that one line, and the first line is labelled by the frame number.



758 transform

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

Examples

foo <- function(x) { print(1); bar(2) }

bar <- function(x) { x + a.variable.which.does.not.exist }

## Not run:

foo(2) # gives a strange error

traceback()

## End(Not run)

## 2: bar(2)

## 1: foo(2)

bar

## Ah, this is the culprit ...

transform Transform an Object, for Example a Data Frame

Description

transform is a generic function, which—at least currently—only does anything useful with
data frames. transform.default converts its first argument to a data frame if possible
and calls transform.data.frame.

Usage

transform(x, ...)

Arguments

x The object to be transformed

... Further arguments of the form tag=value

Details

The ... arguments to transform.data.frame are tagged vector expressions, which are
evaluated in the data frame x. The tags are matched against names(x), and for those that
match, the value replace the corresponding variable in x, and the others are appended to x.

Value

The modified value of x.

Note

If some of the values are not vectors of the appropriate length, you deserve whatever you
get!

Author(s)

Peter Dalgaard



trees 759

See Also

subset, list, data.frame

Examples

data(airquality)

transform(airquality, Ozone = -Ozone)

transform(airquality, new = -Ozone, Temp = (Temp-32)/1.8)

attach(airquality)

transform(Ozone, logOzone = log(Ozone)) # marginally interesting ...

detach(airquality)

trees Girth, Height and Volume for Black Cherry Trees

Description

This data set provides measurements of the girth, height and volume of timber in 31 felled
black cherry trees. Note that girth is the diameter of the tree (in inches) measured at 4 ft
6 in above the ground.

Usage

data(trees)

Format

A data frame with 31 observations on 3 variables.

[,1] Girth numeric Tree diameter in inches
[,2] Height numeric Height in ft
[,3] Volume numeric Volume of timber in cubic ft

Source

Ryan, T. A., Joiner, B. L. and Ryan, B. F. (1976) The Minitab Student Handbook. Duxbury
Press.

References

Atkinson, A. C. (1985) Plots, Transformations and Regression. Oxford University Press.

Examples

data(trees)

pairs(trees, panel = panel.smooth, main = "trees data")

plot(Volume ~ Girth, data = trees, log = "xy")

coplot(log(Volume) ~ log(Girth) | Height, data = trees,

panel = panel.smooth)

summary(fm1 <- lm(log(Volume) ~ log(Girth), data = trees))

summary(fm2 <- update(fm1, ~ . + log(Height), data = trees))

step(fm2)



760 try

## i.e., Volume ~= c * Height * Girth^2 seems reasonable

Trig Trigonometric Functions

Description

These functions give the obvious trigonometric functions. They respectively compute the
cosine, sine, tangent, arc-cosine, arc-sine, arc-tangent, and the two-argument arc-tangent.

Usage

cos(x)
sin(x)
tan(x)
acos(x)
asin(x)
atan(x)
atan2(y, x)

Arguments

x, y numeric vector

Details

The arc-tangent of two arguments atan2(y,x) returns the angle between the x-axis and
the vector from the origin to (x, y), i.e., for positive arguments atan2(y,x) == atan(y/x).

Angles are in radians, not degrees (i.e., a right angle is π/2).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

try Try an Expression Allowing Error Recovery

Description

try is a wrapper to run an expression that might fail and allow the user’s code to handle
error-recovery.

Usage

try(expr, silent = FALSE)

Arguments

expr an R expression to try.

silent logical: should the report of error messages be suppressed?



ts 761

Details

try evaluates an expression and traps any errors that occur during the evaluation. try
establishes a handler for errors that uses the default error handling protocol. It also estab-
lishes a tryRestart restart that can be used by invokeRestart.

Value

The value of the expression if expr is evaluated without error, but an invisible object of class
"try-error" containing the error message if it fails. The normal error handling will print
the same message unless options("show.error.messages") is false or the call includes
silent = TRUE.

See Also

options for setting error handlers and suppressing the printing of error messages;
geterrmessage for retrieving the last error message. tryCatch provides another means
of catching and handling errors.

Examples

## this example will not work correctly in example(try), but

## it does work correctly if pasted in

options(show.error.messages = FALSE)

try(log("a"))

print(.Last.value)

options(show.error.messages = TRUE)

## alternatively,

print(try(log("a"), TRUE))

## run a simulation, keep only the results that worked.

set.seed(123)

x <- rnorm(50)

doit <- function(x)

{

x <- sample(x, replace=TRUE)

if(length(unique(x)) > 30) mean(x)

else stop("too few unique points")

}

## alternative 1

res <- lapply(1:100, function(i) try(doit(x), TRUE))

## alternative 2

## Not run:

res <- vector("list", 100)

for(i in 1:100) res[[i]] <- try(doit(x), TRUE)

## End(Not run)

unlist(res[sapply(res, function(x) !inherits(x, "try-error"))])

ts Time-Series Objects



762 ts

Description

The function ts is used to create time-series objects.

as.ts and is.ts coerce an object to a time-series and test whether an object is a time
series.

Usage

ts(data = NA, start = 1, end = numeric(0), frequency = 1,
deltat = 1, ts.eps = getOption("ts.eps"), class = , names = )

as.ts(x)
is.ts(x)

Arguments

data a numeric vector or matrix of the observed time-series values. A data
frame will be coerced to a numeric matrix via data.matrix.

start the time of the first observation. Either a single number or a vector of
two integers, which specify a natural time unit and a (1-based) number
of samples into the time unit. See the examples for the use of the second
form.

end the time of the last observation, specified in the same way as start.

frequency the number of observations per unit of time.

deltat the fraction of the sampling period between successive observations; e.g.,
1/12 for monthly data. Only one of frequency or deltat should be
provided.

ts.eps time series comparison tolerance. Frequencies are considered equal if their
absolute difference is less than ts.eps.

class class to be given to the result, or none if NULL or "none". The default is
"ts" for a single series, c("mts", "ts") for multiple series.

names a character vector of names for the series in a multiple series: defaults to
the colnames of data, or Series 1, Series 2, . . . .

x an arbitrary R object.

Details

The function ts is used to create time-series objects. These are vector or matrices with
class of "ts" (and additional attributes) which represent data which has been sampled at
equispaced points in time. In the matrix case, each column of the matrix data is assumed
to contain a single (univariate) time series. Time series must have an least one observation,
and although they need not be no numeric there is very limited support for non-numeric
series.

Class "ts" has a number of methods. In particular arithmetic will attempt to align time
axes, and subsetting to extract subsets of series can be used (e.g., EuStockMarkets[,
"DAX"]). However, subsetting the first (or only) dimension will return a matrix or vector,
as will matrix subsetting.

The value of argument frequency is used when the series is sampled an integral number
of times in each unit time interval. For example, one could use a value of 7 for frequency
when the data are sampled daily, and the natural time period is a week, or 12 when the
data are sampled monthly and the natural time period is a year. Values of 4 and 12 are
assumed in (e.g.) print methods to imply a quarterly and monthly series respectively.



ts-methods 763

as.ts will use the tsp attribute of the object if it has one to set the start and end times
and frequency.

is.ts tests if an object is a time series. It is generic: you can write methods to handle of
specific classes of objects, see InternalMethods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

tsp, frequency, start, end, time, window; print.ts, the print method for time series
objects; plot.ts, the plot method for time series objects. Standard package ts for many
additional time-series functions.

Examples

ts(1:10, frequency = 4, start = c(1959, 2)) # 2nd Quarter of 1959

print( ts(1:10, freq = 7, start = c(12, 2)), calendar = TRUE) # print.ts(.)

## Using July 1954 as start date:

gnp <- ts(cumsum(1 + round(rnorm(100), 2)),

start = c(1954, 7), frequency = 12)

plot(gnp) # using 'plot.ts' for time-series plot

## Multivariate

z <- ts(matrix(rnorm(300), 100, 3), start=c(1961, 1), frequency=12)

class(z)

plot(z)

plot(z, plot.type="single", lty=1:3)

## A phase plot:

data(nhtemp)

plot(nhtemp, c(nhtemp[-1], NA), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")

## a clearer way to do this would be

## Not run:

library(ts)

plot(nhtemp, lag(nhtemp, 1), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")

## End(Not run)

ts-methods Methods for Time Series Objects

Description

Methods for objects of class "ts", typically the result of ts.



764 tsp

Usage

## S3 method for class 'ts':
diff(x, lag=1, differences=1, ...)

## S3 method for class 'ts':
na.omit(object, ...)

Arguments

x an object of class "ts" containing the values to be differenced.

lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

object a univariate or multivariate time series.

... further arguments to be passed to or from methods.

Details

The na.omit method omits initial and final segments with missing values in one or more
of the series. ‘Internal’ missing values will lead to failure.

Value

For the na.omit method, a time series without missing values. The class of object will be
preserved.

See Also

diff; na.omit, na.fail, na.contiguous.

tsp Tsp Attribute of Time-Series-like Objects

Description

tsp returns the tsp attribute (or NULL). It is included for compatibility with S version 2.
tsp<- sets the tsp attribute. hasTsp ensures x has a tsp attribute, by adding one if needed.

Usage

tsp(x)
tsp(x) <- value
hasTsp(x)

Arguments

x a vector or matrix or univariate or multivariate time-series.

value a numeric vector of length 3 or NULL.



Tukey 765

Details

The tsp attribute was previously described here as c(start(x), end(x), frequency(x)),
but this is incorrect. It gives the start time in time units, the end time and the frequency.

Assignments are checked for consistency.

Assigning NULL which removes the tsp attribute and any "ts" class of x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

ts, time, start.

Tukey The Studentized Range Distribution

Description

Functions on the distribution of the studentized range, R/s, where R is the range of a
standard normal sample of size n and s2 is independently distributed as chi-squared with
df degrees of freedom, see pchisq.

Usage

ptukey(q, nmeans, df, nranges = 1, lower.tail = TRUE, log.p = FALSE)
qtukey(p, nmeans, df, nranges = 1, lower.tail = TRUE, log.p = FALSE)

Arguments

q vector of quantiles.

p vector of probabilities.

nmeans sample size for range (same for each group).

df degrees of freedom for s (see below).

nranges number of groups whose maximum range is considered.

log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

If ng =nranges is greater than one, R is the maximum of ng groups of nmeans observations
each.

Value

ptukey gives the distribution function and qtukey its inverse, the quantile function.



766 TukeyHSD

Note

A Legendre 16-point formula is used for the integral of ptukey. The computations are
relatively expensive, especially for qtukey which uses a simple secant method for finding
the inverse of ptukey. qtukey will be accurate to the 4th decimal place.

References

Copenhaver, Margaret Diponzio and Holland, Burt S. (1988) Multiple comparisons of sim-
ple effects in the two-way analysis of variance with fixed effects. Journal of Statistical
Computation and Simulation, 30, 1–15.

See Also

pnorm and qnorm for the corresponding functions for the normal distribution.

Examples

if(interactive())

curve(ptukey(x, nm=6, df=5), from=-1, to=8, n=101)

(ptt <- ptukey(0:10, 2, df= 5))

(qtt <- qtukey(.95, 2, df= 2:11))

## The precision may be not much more than about 8 digits:

summary(abs(.95 - ptukey(qtt,2, df = 2:11)))

TukeyHSD Compute Tukey Honest Significant Differences

Description

Create a set of confidence intervals on the differences between the means of the levels of
a factor with the specified family-wise probability of coverage. The intervals are based on
the Studentized range statistic, Tukey’s ‘Honest Significant Difference’ method. There is a
plot method.

Usage

TukeyHSD(x, which, ordered = FALSE, conf.level = 0.95, ...)

Arguments

x A fitted model object, usually an aov fit.

which A list of terms in the fitted model for which the intervals should be cal-
culated. Defaults to all the terms.

ordered A logical value indicating if the levels of the factor should be ordered
according to increasing average in the sample before taking differences.
If ordered is true then the calculated differences in the means will all be
positive. The significant differences will be those for which the lwr end
point is positive.

conf.level A numeric value between zero and one giving the family-wise confidence
level to use.

... Optional additional arguments. None are used at present.



type.convert 767

Details

When comparing the means for the levels of a factor in an analysis of variance, a simple
comparison using t-tests will inflate the probability of declaring a significant difference when
it is not in fact present. This because the intervals are calculated with a given coverage
probability for each interval but the interpretation of the coverage is usually with respect
to the entire family of intervals.

John Tukey introduced intervals based on the range of the sample means rather than the
individual differences. The intervals returned by this function are based on this Studentized
range statistics.

Technically the intervals constructed in this way would only apply to balanced designs
where there are the same number of observations made at each level of the factor. This
function incorporates an adjustment for sample size that produces sensible intervals for
mildly unbalanced designs.

Value

A list with one component for each term requested in which. Each component is a matrix
with columns diff giving the difference in the observed means, lwr giving the lower end
point of the interval, and upr giving the upper end point.

Author(s)

Douglas Bates

References

Miller, R. G. (1981) Simultaneous Statistical Inference. Springer.

Yandell, B. S. (1997) Practical Data Analysis for Designed Experiments. Chapman & Hall.

See Also

aov, qtukey, model.tables

Examples

data(warpbreaks)

summary(fm1 <- aov(breaks ~ wool + tension, data = warpbreaks))

TukeyHSD(fm1, "tension", ordered = TRUE)

plot(TukeyHSD(fm1, "tension"))

type.convert Type Conversion on Character Variables

Description

Convert a character vector to logical, integer, numeric, complex or factor as appropriate.

Usage

type.convert(x, na.strings = "NA", as.is = FALSE, dec = ".")



768 typeof

Arguments

x a character vector.

na.strings a vector of strings which are to be interpreted as NA values. Blank fields
are also considered to be missing values.

as.is logical. See Details.

dec the character to be assumed for decimal points.

Details

This is principally a helper function for read.table. Given a character vector, it attempts
to convert it to logical, integer, numeric or complex, and failing that converts it to factor
unless as.is = TRUE. The first type that can accept all the non-missing values is chosen.

Vectors which are entirely missing values are converted to logical, since NA is primarily
logical.

Value

A vector of the selected class, or a factor.

See Also

read.table

typeof The Type of an Object

Description

typeof determines the (R internal) type or storage mode of any object

Usage

typeof(x)

Arguments

x any R object.

Value

A character string.

See Also

mode, storage.mode.

Examples

typeof(2)

mode(2)



UCBAdmissions 769

UCBAdmissions Student Admissions at UC Berkeley

Description

Aggregate data on applicants to graduate school at Berkeley for the six largest departments
in 1973 classified by admission and sex.

Usage

data(UCBAdmissions)

Format

A 3-dimensional array resulting from cross-tabulating 4526 observations on 3 variables. The
variables and their levels are as follows:

No Name Levels
1 Admit Admitted, Rejected
2 Gender Male, Female
3 Dept A, B, C, D, E, F

Details

This data set is frequently used for illustrating Simpson’s paradox, see Bickel et al. (1975).
At issue is whether the data show evidence of sex bias in admission practices. There were
2691 male applicants, of whom 1198 (44.5%) were admitted, compared with 1835 female
applicants of whom 557 (30.4%) were admitted. This gives a sample odds ratio of 1.83,
indicating that males were almost twice as likely to be admitted. In fact, graphical meth-
ods (as in the example below) or log-linear modelling show that the apparent association
between admission and sex stems from differences in the tendency of males and females to
apply to the individual departments (females used to apply “more” to departments with
higher rejection rates).

This data set can also be used for illustrating methods for graphical display of categorical
data, such as the general-purpose mosaic plot or the“fourfold display”for 2-by-2-by-k tables.
See the home page of Michael Friendly (http://www.math.yorku.ca/SCS/friendly.html)
for further information.

References

Bickel, P. J., Hammel, E. A., and O’Connell, J. W. (1975) Sex bias in graduate admissions:
Data from Berkeley. Science, 187, 398–403.

Examples

data(UCBAdmissions)

## Data aggregated over departments

apply(UCBAdmissions, c(1, 2), sum)

mosaicplot(apply(UCBAdmissions, c(1, 2), sum),

main = "Student admissions at UC Berkeley")

## Data for individual departments

opar <- par(mfrow = c(2, 3), oma = c(0, 0, 2, 0))

http://www.math.yorku.ca/SCS/friendly.html


770 Uniform

for(i in 1:6)

mosaicplot(UCBAdmissions[,,i],

xlab = "Admit", ylab = "Sex",

main = paste("Department", LETTERS[i]))

mtext(expression(bold("Student admissions at UC Berkeley")),

outer = TRUE, cex = 1.5)

par(opar)

Uniform The Uniform Distribution

Description

These functions provide information about the uniform distribution on the interval from
min to max. dunif gives the density, punif gives the distribution function qunif gives the
quantile function and runif generates random deviates.

Usage

dunif(x, min=0, max=1, log = FALSE)
punif(q, min=0, max=1, lower.tail = TRUE, log.p = FALSE)
qunif(p, min=0, max=1, lower.tail = TRUE, log.p = FALSE)
runif(n, min=0, max=1)

Arguments

x,q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

min,max lower and upper limits of the distribution.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

If min or max are not specified they assume the default values of 0 and 1 respectively.

The uniform distribution has density

f(x) =
1

max−min

for min ≤ x ≤ max.

For the case of u := min == max, the limit case of X ≡ u is assumed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.



unique 771

See Also

.Random.seed about random number generation, rnorm, etc for other distributions.

Examples

u <- runif(20)

## The following relations always hold :

punif(u) == u

dunif(u) == 1

var(runif(10000))#- ~ = 1/12 = .08333

unique Extract Unique Elements

Description

unique returns a vector, data frame or array like x but with duplicate elements removed.

Usage

unique(x, incomparables = FALSE, ...)

## S3 method for class 'array':
unique(x, incomparables = FALSE, MARGIN = 1, ...)

Arguments

x an atomic vector or a data frame or an array.

incomparables a vector of values that cannot be compared. Currently, FALSE is the only
possible value, meaning that all values can be compared.

... arguments for particular methods.

MARGIN the array margin to be held fixed: a single integer.

Details

This is a generic function with methods for vectors, data frames and arrays (including
matrices).

The array method calculates for each element of the dimension specified by MARGIN if the
remaining dimensions are identical to those for an earlier element (in row-major order).
This would most commonly be used to find unique rows (the default) or columns (with
MARGIN = 2).

Value

An object of the same type of x. but if an element is equal to one with a smaller index, it
is removed. Dimensions of arrays are not dropped.



772 uniroot

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

duplicated which gives the indices of duplicated elements.

Examples

unique(c(3:5, 11:8, 8 + 0:5))

length(unique(sample(100, 100, replace=TRUE)))

## approximately 100(1 - 1/e) = 63.21

data(iris)

unique(iris)

uniroot One Dimensional Root (Zero) Finding

Description

The function uniroot searches the interval from lower to upper for a root (i.e., zero) of
the function f with respect to its first argument.

Usage

uniroot(f, interval, lower = min(interval), upper = max(interval),
tol = .Machine$double.eps^0.25, maxiter = 1000, ...)

Arguments

f the function for which the root is sought.

interval a vector containing the end-points of the interval to be searched for the
root.

lower the lower end point of the interval to be searched.

upper the upper end point of the interval to be searched.

tol the desired accuracy (convergence tolerance).

maxiter the maximum number of iterations.

... additional arguments to f.

Details

Either interval or both lower and upper must be specified. The function uses Fortran
subroutine ‘”zeroin”’ (from Netlib) based on algorithms given in the reference below.

If the algorithm does not converge in maxiter steps, a warning is printed and the current
approximation is returned.



units 773

Value

A list with four components: root and f.root give the location of the root and the value
of the function evaluated at that point. iter and estim.prec give the number of iterations
used and an approximate estimated precision for root.

References

Brent, R. (1973) Algorithms for Minimization without Derivatives. Englewood Cliffs, NJ:
Prentice-Hall.

See Also

polyroot for all complex roots of a polynomial; optimize, nlm.

Examples

f <- function (x,a) x - a

str(xmin <- uniroot(f, c(0, 1), tol = 0.0001, a = 1/3))

str(uniroot(function(x) x*(x^2-1) + .5, low = -2, up = 2, tol = 0.0001),

dig = 10)

str(uniroot(function(x) x*(x^2-1) + .5, low = -2, up =2 , tol = 1e-10 ),

dig = 10)

## Find the smallest value x for which exp(x) > 0 (numerically):

r <- uniroot(function(x) 1e80*exp(x) -1e-300,,-1000,0, tol=1e-20)

str(r, digits= 15)##> around -745.1332191

exp(r$r) # = 0, but not for r$r * 0.999...

minexp <- r$r * (1 - .Machine$double.eps)

exp(minexp) # typically denormalized

units Graphical Units

Description

xinch and yinch convert the specified number of inches given as their arguments into the
correct units for plotting with graphics functions. Usually, this only makes sense when
normal coordinates are used, i.e., no log scale (see the log argument to par).

xyinch does the same for a pair of numbers xy, simultaneously.

cm translates inches in to cm (centimeters).

Usage

xinch(x = 1, warn.log = TRUE)
yinch(y = 1, warn.log = TRUE)
xyinch(xy = 1, warn.log = TRUE)
cm(x)



774 unlink

Arguments

x,y numeric vector

xy numeric of length 1 or 2.

warn.log logical; if TRUE, a warning is printed in case of active log scale.

Examples

all(c(xinch(),yinch()) == xyinch()) # TRUE

xyinch()

xyinch #- to see that is really delta{"usr"} / "pin"

cm(1)# = 2.54

## plot labels offset 0.12 inches to the right

## of plotted symbols in a plot

data(mtcars)

with(mtcars, {

plot(mpg, disp, pch=19, main= "Motor Trend Cars")

text(mpg + xinch(0.12), disp, row.names(mtcars),

adj = 0, cex = .7, col = 'blue')

})

unlink Delete Files and Directories

Description

unlink deletes the file(s) or directories specified by x.

Usage

unlink(x, recursive = FALSE)

Arguments

x a character vector with the names of the file(s) or directories to be deleted.
Wildcards (normally ‘*’ and ‘?’) are allowed.

recursive logical. Should directories be deleted recusively?

Details

If recusive = FALSE directories are not deleted, not even empty ones.

file.remove can only remove files, but gives more detailed error information.

Value

The return value of the corresponding system command, rm -f, normally 0 for success, 1
for failure. Not deleting a non-existent file is not a failure.

Note

Prior to R version 1.2.0 the default on Unix was recursive = TRUE, and on Windows empty
directories could be deleted.



unlist 775

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

file.remove.

unlist Flatten Lists

Description

Given a list structure x, unlist simplifies it to produce a vector which contains all the
atomic components which occur in x.

Usage

unlist(x, recursive = TRUE, use.names = TRUE)

Arguments

x A list or vector.

recursive logical. Should unlisting be applied to list components of x?

use.names logical. Should names be preserved?

Details

unlist is generic: you can write methods to handle of specific classes of objects, see Inter-
nalMethods.

If recursive = FALSE, the function will not recurse beyond the first level items in x.

x can be a vector, but then unlist does nothing useful, not even drop names.

By default, unlist tries to retain the naming information present in x. If use.names =
FALSE all naming information is dropped.

Where possible the list elements are coerced to a common mode during the unlisting, and
so the result often ends up as a character vector.

A list is a (generic) vector, and the simplified vector might still be a list (and might be
unchanged). Non-vector elements of the list (for example language elements such as names,
formulas and calls) are not coerced, and so a list containing one or more of these remains a
list. (The effect of unlisting an lm fit is a list which has individual residuals as components,)

Value

A vector of an appropriate mode to hold the list components.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.



776 unname

See Also

c, as.list.

Examples

unlist(options())

unlist(options(), use.names=FALSE)

l.ex <- list(a = list(1:5, LETTERS[1:5]), b = "Z", c = NA)

unlist(l.ex, recursive = FALSE)

unlist(l.ex, recursive = TRUE)

l1 <- list(a="a", b=2, c=pi+2i)

unlist(l1) # a character vector

l2 <- list(a="a", b=as.name("b"), c=pi+2i)

unlist(l2) # remains a list

unname Remove ‘names’ or ‘dimnames’

Description

Remove the names or dimnames attribute of an R object.

Usage

unname(obj, force = FALSE)

Arguments

obj the R object which is wanted “nameless”.

force logical; if true, the dimnames are even removed from data.frames. This
argument is currently experimental and hence might change!

Value

Object as obj but without names or dimnames.

Examples

## Answering a question on R-help (14 Oct 1999):

col3 <- 750+ 100* rt(1500, df = 3)

breaks <- factor(cut(col3,breaks=360+5*(0:155)))

str(table(breaks)) # The names are quite larger than the data ...

barplot(unname(table(breaks)), axes= FALSE)



update 777

update Update and Re-fit a Model Call

Description

update will update and (by default) re-fit a model. It does this by extracting the call stored
in the object, updating the call and (by default) evaluating that call. Sometimes it is useful
to call update with only one argument, for example if the data frame has been corrected.

Usage

update(object, ...)

## Default S3 method:
update(object, formula., ..., evaluate = TRUE)

Arguments

object An existing fit from a model function such as lm, glm and many others.

formula. Changes to the formula – see update.formula for details.

... Additional arguments to the call, or arguments with changed values. Use
name=NULL to remove the argument name.

evaluate If true evaluate the new call else return the call.

Value

If evaluate = TRUE the fitted object, otherwise the updated call.

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

update.formula

Examples

oldcon <- options(contrasts = c("contr.treatment", "contr.poly"))

## Annette Dobson (1990) "An Introduction to Generalized Linear Models".

## Page 9: Plant Weight Data.

ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)

trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))

weight <- c(ctl, trt)

lm.D9 <- lm(weight ~ group)

lm.D9

summary(lm.D90 <- update(lm.D9, . ~ . - 1))

options(contrasts = c("contr.helmert", "contr.poly"))

update(lm.D9)

options(oldcon)



778 update.packages

update.formula Model Updating

Description

update.formula is used to update model formulae. This typically involves adding or drop-
ping terms, but updates can be more general.

Usage

## S3 method for class 'formula':
update(old, new, ...)

Arguments

old a model formula to be updated.

new a formula giving a template which specifies how to update.

... further arguments passed to or from other methods.

Details

The function works by first identifying the left-hand side and right-hand side of the old
formula. It then examines the new formula and substitutes the lhs of the old formula for
any occurence of ”.” on the left of new, and substitutes the rhs of the old formula for any
occurence of ”.” on the right of new.

Value

The updated formula is returned.

See Also

terms, model.matrix.

Examples

update(y ~ x, ~ . + x2) #> y ~ x + x2

update(y ~ x, log(.) ~ . ) #> log(y) ~ x

update.packages Download Packages from CRAN

Description

These functions can be used to automatically compare the version numbers of installed
packages with the newest available version on CRAN and update outdated packages on the
fly.



update.packages 779

Usage

update.packages(lib.loc = NULL, CRAN = getOption("CRAN"),
contriburl = contrib.url(CRAN),
method, instlib = NULL,
ask=TRUE, available=NULL, destdir=NULL,
installWithVers=FALSE)

installed.packages(lib.loc = NULL, priority = NULL)
CRAN.packages(CRAN = getOption("CRAN"), method,

contriburl = contrib.url(CRAN))
old.packages(lib.loc = NULL, CRAN = getOption("CRAN"),

contriburl = contrib.url(CRAN),
method, available = NULL)

download.packages(pkgs, destdir, available = NULL,
CRAN = getOption("CRAN"),
contriburl = contrib.url(CRAN), method)

install.packages(pkgs, lib, CRAN = getOption("CRAN"),
contriburl = contrib.url(CRAN),
method, available = NULL, destdir = NULL,
installWithVers = FALSE)

Arguments

lib.loc character vector describing the location of R library trees to search
through (and update packages therein).

CRAN character, the base URL of the CRAN mirror to use, i.e., the URL of a
CRAN root such as "http://cran.r-project.org" (the default) or its
Statlib mirror, "http://lib.stat.cmu.edu/R/CRAN".

contriburl URL of the contrib section of CRAN. Use this argument only if your
CRAN mirror is incomplete, e.g., because you burned only the contrib
section on a CD. Overrides argument CRAN.

method Download method, see download.file.

pkgs character vector of the short names of packages whose current versions
should be downloaded from CRAN.

destdir directory where downloaded packages are stored.

priority character vector or NULL (default). If non-null, used to select packages;
"high" is equivalent to c("base","recommended").

available list of packages available at CRAN as returned by CRAN.packages.

lib,instlib character string giving the library directory where to install the packages.

ask logical indicating to ask before packages are actually downloaded and
installed.

installWithVers

If TRUE, will invoke the install the package such that it can be referenced
by package version

Details

installed.packages scans the ‘DESCRIPTION’ files of each package found along lib.loc
and returns a list of package names, library paths and version numbers. CRAN.packages



780 url.show

returns a similar list, but corresponding to packages currently available in the contrib section
of CRAN, the comprehensive R archive network. The current list of packages is downloaded
over the internet (or copied from a local CRAN mirror). Both functions use read.dcf for
parsing the description files. old.packages compares the two lists and reports installed
packages that have newer versions on CRAN.

download.packages takes a list of package names and a destination directory, downloads
the newest versions of the package sources and saves them in destdir. If the list of available
packages is not given as argument, it is also directly obtained from CRAN. If CRAN is local,
i.e., the URL starts with "file:", then the packages are not downloaded but used directly.

The main function of the bundle is update.packages. First a list of all packages found in
lib.loc is created and compared with the packages available on CRAN. Outdated packages
are reported and for each outdated package the user can specify if it should be automatically
updated. If so, the package sources are downloaded from CRAN and installed in the
respective library path (or instlib if specified) using the R INSTALL mechanism.

install.packages can be used to install new packages, it takes a vector of package names
and a destination library, downloads the packages from CRAN and installs them. If the
library is omitted it defaults to the first directory in .libPaths(), with a warning if there
is more than one.

For install.packages and update.packages, destdir is the directory to which packages
will be downloaded. If it is NULL (the default) a temporary directory is used, and the user
will be given the option of deleting the temporary files once the packages are installed.
(They will always be deleted at the end of the R session.)

See Also

See download.file for how to handle proxies and other options to monitor file transfers.

INSTALL, REMOVE, library, .packages, read.dcf

Examples

str(ip <- installed.packages(priority = "high"))

ip[, c(1,3:5)]

url.show Display a text URL

Description

Extension of file.show to display text files on a remote server.

Usage

url.show(url, title = url, file = tempfile(),
delete.file = TRUE, method, ...)



USArrests 781

Arguments

url The URL to read from.

title Title for the browser.

file File to copy to.

delete.file Delete the file afterwards?

method File transfer method: see download.file

... Arguments to pass to file.show.

See Also

url, file.show,download.file

Examples

## Not run: url.show("http://lib.stat.cmu.edu/datasets/csb/ch3a.txt")

USArrests Violent Crime Rates by US State

Description

This data set contains statistics, in arrests per 100,000 residents for assault, murder, and
rape in each of the 50 US states in 1973. Also given is the percent of the population living
in urban areas.

Usage

data(USArrests)

Format

A data frame with 50 observations on 4 variables.

[,1] Murder numeric Murder arrests (per 100,000)
[,2] Assault numeric Assault arrests (per 100,000)
[,3] UrbanPop numeric Percent urban population
[,4] Rape numeric Rape arrests (per 100,000)

Source

World Almanac and Book of facts 1975. (Crime rates).

Statistical Abstracts of the United States 1975. (Urban rates).

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

See Also

The state data sets.



782 UseMethod

Examples

data(USArrests)

pairs(USArrests, panel = panel.smooth, main = "USArrests data")

UseMethod Class Methods

Description

R possesses a simple generic function mechanism which can be used for an object-oriented
style of programming. Method despatch takes place based on the class of the first argu-
ment to the generic function or on the object supplied as an argument to UseMethod or
NextMethod.

Usage

UseMethod(generic, object)
NextMethod(generic = NULL, object = NULL, ...)

Arguments

generic a character string naming a function.

object an object whose class will determine the method to be dispatched. De-
faults to the first argument of the enclosing function.

... further arguments to be passed to the method.

Details

An R “object” is a data object which has a class attribute. A class attribute is a character
vector giving the names of the classes which the object “inherits” from. If the object does
not have a class attribute, it has an implicit class, "matrix", "array" or the result of
mode(x).

When a generic function fun is applied to an object with class attribute c("first",
"second"), the system searches for a function called fun.first and, if it finds it, ap-
plied it to the object. If no such function is found a function called fun.second is tried. If
no class name produces a suitable function, the function fun.default is used.

Function methods can be used to find out about the methods for a particular generic
function or class.

Now for some obscure details that need to appear somewhere. These comments will be
slightly different than those in Appendix A of the White S Book. UseMethod creates a
“new” function call with arguments matched as they came in to the generic. Any local
variables defined before the call to UseMethod are retained (unlike S). Any statements after
the call to UseMethod will not be evaluated as UseMethod does not return. UseMethod can
be called with more than two arguments: a warning will be given and additional arguments
ignored. (They are not completely ignored in S.) If it is called with just one argument, the
class of the first argument of the enclosing function is used as object: unlike S this is the
actual argument passed and not the current value of the object of that name.

NextMethod invokes the next method (determined by the class). It does this by creating
a special call frame for that method. The arguments will be the same in number, order
and name as those to the current method but their values will be promises to evaluate



USJudgeRatings 783

their name in the current method and environment. Any arguments matched to ... are
handled specially. They are passed on as the promise that was supplied as an argument
to the current environment. (S does this differently!) If they have been evaluated in the
current (or a previous environment) they remain evaluated.

NextMethod should not be called except in methods called by UseMethod. In particular it
will not work inside anonymous calling functions (eg get("print.ts")(AirPassengers)).

Name spaces can register methods for generic functions. To support this, UseMethod and
NextMethod search for methods in two places: first in the environment in which the generic
function is called, and then in the registration data base for the environment in which the
generic is defined (typically a name space). So methods for a generic function need to either
be available in the environment of the call to the generic, or they must be registered. It
does not matter whether they are visible in the environment in which the generic is defined.

Note

This scheme is called S3 (S version 3). For new projects, it is recommended to use the more
flexible and robust S4 scheme provided in the methods package.

The function .isMethodsDispatchOn() returns TRUE if the S4 method dispatch has been
turned on in the evaluator. It is meant for R internal use only.

References

Chambers, J. M. (1992) Classes and methods: object-oriented programming in S. Ap-
pendix A of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth
& Brooks/Cole.

See Also

methods, class, getS3method

USJudgeRatings Lawyers’ Ratings of State Judges in the US Superior Court

Description

Lawyers’ ratings of state judges in the US Superior Court.

Usage

data(USJudgeRatings)

Format

A data frame containing 43 observations on 12 numeric variables.

[,1] CONT Number of contacts of lawyer with judge.
[,2] INTG Judicial integrity.
[,3] DMNR Demeanor.
[,4] DILG Diligence.
[,5] CFMG Case flow managing.
[,6] DECI Prompt decisions.



784 USPersonalExpenditure

[,7] PREP Preparation for trial.
[,8] FAMI Familiarity with law.
[,9] ORAL Sound oral rulings.

[,10] WRIT Sound written rulings.
[,11] PHYS Physical ability.
[,12] RTEN Worthy of retention.

Source

New Haven Register, 14 January, 1977 (from John Hartigan).

Examples

data(USJudgeRatings)

pairs(USJudgeRatings, main = "USJudgeRatings data")

USPersonalExpenditure

Personal Expenditure Data

Description

This data set consists of United States personal expenditures (in billions of dollars) in the
categories; food and tobacco, household operation, medical and health, personal care, and
private education for the years 1940, 1945, 1950, and 1960.

Usage

data(USPersonalExpenditure)

Format

A matrix with 5 rows and 5 columns.

Source

The World Almanac and Book of Facts, 1962, page 756.

References

Tukey, J. W. (1977) Exploratory Data Analysis. Addison-Wesley.

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(USPersonalExpenditure)

USPersonalExpenditure

eda::medpolish(log10(USPersonalExpenditure))



uspop 785

uspop Populations Recorded by the US Census

Description

This data set gives the population of the United States (in millions) as recorded by the
decennial census for the period 1790–1970.

Usage

data(uspop)

Format

A time series of 19 values.

Source

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(uspop)

plot(uspop, log = "y", main = "uspop data", xlab = "Year",

ylab = "U.S. Population (millions)")

VADeaths Death Rates in Virginia (1940)

Description

Death rates per 100 in Virginia in 1940.

Usage

data(VADeaths)

Format

A matrix with 5 rows and 5 columns.

Details

The death rates are cross-classified by age group (rows) and population group (columns).
The age groups are: 50–54, 55–59, 60–64, 65–69, 70–74 and the population groups are
Rural/Male, Rural/Female, Urban/Male and Urban/Female.

This provides a rather nice 3-way analysis of variance example.

Source

Moyneau, L., Gilliam, S. K., and Florant, L. C.(1947) Differences in Virginia death rates by
color, sex, age, and rural or urban residence. American Sociological Review, 12, 525–535.



786 vcov

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(VADeaths)

n <- length(dr <- c(VADeaths))

nam <- names(VADeaths)

d.VAD <- data.frame(

Drate = dr,

age = rep(ordered(rownames(VADeaths)),length=n),

gender= gl(2,5,n, labels= c("M", "F")),

site = gl(2,10, labels= c("rural", "urban")))

coplot(Drate ~ as.numeric(age) | gender * site, data = d.VAD,

panel = panel.smooth, xlab = "VADeaths data - Given: gender")

summary(aov.VAD <- aov(Drate ~ .^2, data = d.VAD))

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))

plot(aov.VAD)

par(opar)

vcov Calculate Variance-Covariance Matrix for a Fitted Model Object

Description

Returns the variance-covariance matrix of the main parameters of a fitted model object.

Usage

vcov(object, ...)

Arguments

object a fitted model object.

... additional arguments for method functions. For the glm method this can
be used to pass a dispersion parameter.

Details

This is a generic function. Functions with names beginning in vcov. will be methods for
this function. Classes with methods for this function include: lm, glm, nls, lme, gls, coxph
and survreg

Value

A matrix of the estimated covariances between the parameter estimates in the linear or
non-linear predictor of the model.



vector 787

vector Vectors

Description

vector produces a vector of the given length and mode.

as.vector, a generic, attempts to coerce its argument into a vector of mode mode (the
default is to coerce to whichever mode is most convenient). The attributes of x are removed.

is.vector returns TRUE if x is a vector (of mode logical, integer, real, complex, character
or list if not specified) and FALSE otherwise.

Usage

vector(mode = "logical", length = 0)
as.vector(x, mode = "any")
is.vector(x, mode = "any")

Arguments

mode A character string giving an atomic mode, or "any".

length A non-negative integer specifying the desired length.

x An object.

Details

is.vector returns FALSE if x has any attributes except names. (This is incompatible with
S.) On the other hand, as.vector removes all attributes including names.

Note that factors are not vectors; is.vector returns FALSE and as.vector converts to
character mode.

Value

For vector, a vector of the given length and mode. Logical vector elements are initialized
to FALSE, numeric vector elements to 0 and character vector elements to "".

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

c, is.numeric, is.list, etc.



788 vignette

Examples

df <- data.frame(x=1:3, y=5:7)

## Not run:

## Error:

as.vector(data.frame(x=1:3, y=5:7), mode="numeric")

## End(Not run)

x <- c(a = 1, b = 2)

is.vector(x)

as.vector(x)

all.equal(x, as.vector(x)) ## FALSE

###-- All the following are TRUE:

is.list(df)

! is.vector(df)

! is.vector(df, mode="list")

is.vector(list(), mode="list")

is.vector(NULL, mode="NULL")

vignette View or List Vignettes

Description

View a specified vignette, or list the available ones.

Usage

vignette(topic, package = NULL, lib.loc = NULL)

Arguments

topic a character string giving the (base) name of the vignette to view.
package a character vector with the names of packages to search through, or

NULL in which case all available packages in the library trees specified
by lib.loc are searched.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known.

Details

Currently, only PDF versions of vignettes can be viewed. The program specified by the
pdfviewer option is used for this. If several vignettes have PDF versions with base name
identical to topic, the first one found is used for viewing.
If no topics are given, the available vignettes are listed. The corresponding information is
returned in an object of class "packageIQR". The structure of this class is experimental.

Examples

## List vignettes in all attached packages

vignette()

## List vignettes in all available packages

vignette(package = .packages(all.available = TRUE))



volcano 789

volcano Topographic Information on Auckland’s Maunga Whau Volcano

Description

Maunga Whau (Mt Eden) is one of about 50 volcanos in the Auckland volcanic field. This
data set gives topographic information for Maunga Whau on a 10m by 10m grid.

Usage

data(volcano)

Format

A matrix with 87 rows and 61 columns, rows corresponding to grid lines running east to
west and columns to grid lines running south to north.

Source

Digitized from a topographic map by Ross Ihaka. These data should not be regarded as
accurate.

See Also

filled.contour for a nice plot.

Examples

data(volcano)

filled.contour(volcano, color = terrain.colors, asp = 1)

title(main = "volcano data: filled contour map")

warning Warning Messages

Description

Generates a warning message that corresponds to its argument(s) and (optionally) the
expression or function from which it was called.

Usage

warning(..., call. = TRUE)
suppressWarnings(expr)

Arguments

... character vectors (which are pasted together with no separator), a condi-
tion object, or NULL.

call. logical, indicating if the call should become part of the warning message.

expr expression to evaluate.



790 warnings

Details

The result depends on the value of options("warn") and on handlers established in the
executing code.

warning signals a warning condition by (effectively) calling signalCondition. If there
are no handlers or if all handlers return, then the value of warn is used to determine the
appropriate action. If warn is negative warnings are ignored; if it is zero they are stored
and printed after the top–level function has completed; if it is one they are printed as they
occur and if it is 2 (or larger) warnings are turned into errors.

If warn is zero (the default), a top-level variable last.warning is created. It contains the
warnings which can be printed via a call to warnings.

Warnings will be truncated to getOption("warning.length") characters, default 1000.

While the warning is being processed, a muffleWarning restart is available. If this restart
is invoked with invokeRestart, then warning returns immediately.

suppressWarnings evaluates its expression in a context that ignores all warnings.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

stop for fatal errors, warnings, and options with argument warn=.

Examples

testit <- function() warning("testit")

testit() ## shows call

testit <- function() warning("problem in testit", call. = FALSE)

testit() ## no call

suppressWarnings(warning("testit"))

warnings Print Warning Messages

Description

warnings prints the top-level variable last.warning in a pleasing form.

Usage

warnings(...)

Arguments

... arguments to be passed to cat.



warpbreaks 791

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

warning.

Examples

ow <- options("warn")

for(w in -1:1) {

options(warn = w); cat("\n warn =",w,"\n")

for(i in 1:3) { cat(i,"..\n"); m <- matrix(1:7, 3,4) }

}

warnings()

options(ow) # reset

warpbreaks The Number of Breaks in Yarn during Weaving

Description

This data set gives the number of warp breaks per loom, where a loom corresponds to a
fixed length of yarn.

Usage

data(warpbreaks)

Format

A data frame with 54 observations on 3 variables.

[,1] breaks numeric The number of breaks
[,2] wool factor The type of wool (A or B)
[,3] tension factor The level of tension (L, M, H)

There are measurements on 9 looms for each of the six types of warp (AL, AM, AH, BL,
BM, BH).

Source

Tippett, L. H. C. (1950) Technological Applications of Statistics. Wiley. Page 106.

References

Tukey, J. W. (1977) Exploratory Data Analysis. Addison-Wesley.
McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

See Also

xtabs for ways to display these data as a table.



792 weekdays

Examples

data(warpbreaks)

summary(warpbreaks)

opar <- par(mfrow = c(1,2), oma = c(0, 0, 1.1, 0))

plot(breaks ~ tension, data = warpbreaks, col = "lightgray",

varwidth = TRUE, subset = wool == "A", main = "Wool A")

plot(breaks ~ tension, data = warpbreaks, col = "lightgray",

varwidth = TRUE, subset = wool == "B", main = "Wool B")

mtext("warpbreaks data", side = 3, outer = TRUE)

par(opar)

summary(fm1 <- lm(breaks ~ wool*tension, data = warpbreaks))

anova(fm1)

weekdays Extract Parts of a POSIXt Object

Description

Extract the weekday, month or quarter, or the Julian time (days since some origin). These
are generic functions: the methods for the internal date-time classes are documented here.

Usage

weekdays(x, abbreviate)
## S3 method for class 'POSIXt':
weekdays(x, abbreviate = FALSE)

months(x, abbreviate)
## S3 method for class 'POSIXt':
months(x, abbreviate = FALSE)

quarters(x, abbreviate)
## S3 method for class 'POSIXt':
quarters(x, ...)

julian(x, ...)
## S3 method for class 'POSIXt':
julian(x, origin = as.POSIXct("1970-01-01", tz="GMT"), ...)

Arguments

x an object inheriting from class "POSIXt".
abbreviate logical. Should the names be abbreviated?
origin an length-one object inheriting from class "POSIXt".
... arguments for other methods.

Value

weekdays and months return a character vector of names in the locale in use.

quarters returns a character vector of "Q1" to "Q4".

julian returns the number of days (possibly fractional) since the origin, with the origin as
a "origin" attribute.



Weibull 793

Note

Other components such as the day of the month or the year are very easy to compute: just
use as.POSIXlt and extract the relevant component.

See Also

DateTimeClasses

Examples

weekdays(.leap.seconds)

months(.leap.seconds)

quarters(.leap.seconds)

Weibull The Weibull Distribution

Description

Density, distribution function, quantile function and random generation for the Weibull
distribution with parameters shape and scale.

Usage

dweibull(x, shape, scale = 1, log = FALSE)
pweibull(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
qweibull(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
rweibull(n, shape, scale = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

shape, scale shape and scale parameters, the latter defaulting to 1.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The Weibull distribution with shape parameter a and scale parameter σ has density given
by

f(x) = (a/σ)(x/σ)a−1 exp(−(x/σ)a)

for x > 0. The cumulative is F (x) = 1− exp(−(x/σ)a), the mean is E(X) = σΓ(1 + 1/a),
and the V ar(X) = σ2(Γ(1 + 2/a)− (Γ(1 + 1/a))2).



794 weighted.mean

Value

dweibull gives the density, pweibull gives the distribution function, qweibull gives the
quantile function, and rweibull generates random deviates.

Note

The cumulative hazard H(t) = − log(1 − F (t)) is -pweibull(t, a, b, lower = FALSE,
log = TRUE) which is just H(t) = (t/b)a.

See Also

dexp for the Exponential which is a special case of a Weibull distribution.

Examples

x <- c(0,rlnorm(50))

all.equal(dweibull(x, shape = 1), dexp(x))

all.equal(pweibull(x, shape = 1, scale = pi), pexp(x, rate = 1/pi))

## Cumulative hazard H():

all.equal(pweibull(x, 2.5, pi, lower=FALSE, log=TRUE), -(x/pi)^2.5, tol=1e-15)

all.equal(qweibull(x/11, shape = 1, scale = pi), qexp(x/11, rate = 1/pi))

weighted.mean Weighted Arithmetic Mean

Description

Compute a weighted mean of a numeric vector.

Usage

weighted.mean(x, w, na.rm=FALSE)

Arguments

x a numeric vector containing the values whose mean is to be computed.

w a vector of weights the same length as x giving the weights to use for each
element of x.

na.rm a logical value indicating whether NA values in x should be stripped before
the computation proceeds.

Details

If w is missing then all elements of x are given the same weight.

Missing values in w are not handled.

See Also

mean



weighted.residuals 795

Examples

## GPA from Siegel 1994

wt <- c(5, 5, 4, 1)/15

x <- c(3.7,3.3,3.5,2.8)

xm <- weighted.mean(x,wt)

weighted.residuals Compute Weighted Residuals

Description

Computed weighted residuals from a linear model fit.

Usage

weighted.residuals(obj, drop0 = TRUE)

Arguments

obj R object, typically of class lm or glm.

drop0 logical. If TRUE, drop all cases with weights == 0.

Details

Weighted residuals are the usual residuals Ri, multiplied by
√
wi, where wi are the weights

as specified in lm’s call.

Dropping cases with weights zero is compatible with influence and related functions.

Value

Numeric vector of length n′, where n′ is the number of of non-0 weights (drop0 = TRUE)
or the number of observations, otherwise.

See Also

residuals, lm.influence, etc.

Examples

example("lm")

all.equal(weighted.residuals(lm.D9),

residuals(lm.D9))

x <- 1:10

w <- 0:9

y <- rnorm(x)

weighted.residuals(lmxy <- lm(y ~ x, weights = w))

weighted.residuals(lmxy, drop0 = FALSE)



796 which

which Which indices are TRUE?

Description

Give the TRUE indices of a logical object, allowing for array indices.

Usage

which(x, arr.ind = FALSE)

Arguments

x a logical vector or array. NAs are allowed and omitted (treated as if
FALSE).

arr.ind logical; should array indices be returned when x is an array?

Value

If arr.ind == FALSE (the default), an integer vector with length equal to sum(x), i.e., to
the number of TRUEs in x; Basically, the result is (1:length(x))[x].

If arr.ind == TRUE and x is an array (has a dim attribute), the result is a matrix who’s
rows each are the indices of one element of x; see Examples below.

Author(s)

Werner Stahel and Peter Holzer 〈holzer@stat.math.ethz.ch〉, for the array case.

See Also

Logic, which.min for the index of the minimum or maximum, and match for the first index
of an element in a vector, i.e., for a scalar a, match(a,x) is equivalent to min(which(x ==
a)) but much more efficient.

Examples

which(LETTERS == "R")

which(ll <- c(TRUE,FALSE,TRUE,NA,FALSE,FALSE,TRUE))#> 1 3 7

names(ll) <- letters[seq(ll)]

which(ll)

which((1:12)%%2 == 0) # which are even?

str(which(1:10 > 3, arr.ind=TRUE))

( m <- matrix(1:12,3,4) )

which(m %% 3 == 0)

which(m %% 3 == 0, arr.ind=TRUE)

rownames(m) <- paste("Case",1:3, sep="_")

which(m %% 5 == 0, arr.ind=TRUE)

dim(m) <- c(2,2,3); m

which(m %% 3 == 0, arr.ind=FALSE)

which(m %% 3 == 0, arr.ind=TRUE)



which.min 797

vm <- c(m)

dim(vm) <- length(vm) #-- funny thing with length(dim(...)) == 1

which(vm %% 3 == 0, arr.ind=TRUE)

which.min Where is the Min() or Max() ?

Description

Determines the location, i.e., index of the (first) minimum or maximum of a numeric vector.

Usage

which.min(x)
which.max(x)

Arguments

x numeric vector, whose min or max is searched (NAs are allowed).

Value

an integer of length 1 or 0 (iff x has no non-NAs) , giving the index of the first minimum
or maximum respectively of x.

If this extremum is unique (or empty), the result is the same (but more efficient) as which(x
== min(x)) or which(x == max(x)) respectively.

Author(s)

Martin Maechler

See Also

which, max.col, max, etc.

which.is.max in package nnet differs in breaking ties at random (and having a “fuzz” in
the definition of ties).

Examples

x <- c(1:4,0:5,11)

which.min(x)

which.max(x)

## it *does* work with NA's present:

data(presidents)

presidents[1:30]

range(presidents, na.rm = TRUE)

which.min(presidents)# 28

which.max(presidents)# 2



798 Wilcoxon

Wilcoxon Distribution of the Wilcoxon Rank Sum Statistic

Description

Density, distribution function, quantile function and random generation for the distribution
of the Wilcoxon rank sum statistic obtained from samples with size m and n, respectively.

Usage

dwilcox(x, m, n, log = FALSE)
pwilcox(q, m, n, lower.tail = TRUE, log.p = FALSE)
qwilcox(p, m, n, lower.tail = TRUE, log.p = FALSE)
rwilcox(nn, m, n)

Arguments

x, q vector of quantiles.

p vector of probabilities.

nn number of observations. If length(nn) > 1, the length is taken to be the
number required.

m, n numbers of observations in the first and second sample, respectively.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

This distribution is obtained as follows. Let x and y be two random, independent samples of
size m and n. Then the Wilcoxon rank sum statistic is the number of all pairs (x[i], y[j])
for which y[j] is not greater than x[i]. This statistic takes values between 0 and m * n,
and its mean and variance are m * n / 2 and m * n * (m + n + 1) / 12, respectively.

Value

dwilcox gives the density, pwilcox gives the distribution function, qwilcox gives the quan-
tile function, and rwilcox generates random deviates.

Note

S-PLUS uses a different (but equivalent) definition of the Wilcoxon statistic.

Author(s)

Kurt Hornik 〈hornik@ci.tuwien.ac.at〉

See Also

dsignrank etc, for the one-sample Wilcoxon rank statistic.



window 799

Examples

x <- -1:(4*6 + 1)

fx <- dwilcox(x, 4, 6)

Fx <- pwilcox(x, 4, 6)

layout(rbind(1,2),width=1,heights=c(3,2))

plot(x, fx,type='h', col="violet",

main= "Probabilities (density) of Wilcoxon-Statist.(n=6,m=4)")

plot(x, Fx,type="s", col="blue",

main= "Distribution of Wilcoxon-Statist.(n=6,m=4)")

abline(h=0:1, col="gray20",lty=2)

layout(1)# set back

N <- 200

hist(U <- rwilcox(N, m=4,n=6), breaks=0:25 - 1/2, border="red", col="pink",

sub = paste("N =",N))

mtext("N * f(x), f() = true \"density\"", side=3, col="blue")

lines(x, N*fx, type='h', col='blue', lwd=2)

points(x, N*fx, cex=2)

## Better is a Quantile-Quantile Plot

qqplot(U, qw <- qwilcox((1:N - 1/2)/N, m=4,n=6),

main = paste("Q-Q-Plot of empirical and theoretical quantiles",

"Wilcoxon Statistic, (m=4, n=6)",sep="\n"))

n <- as.numeric(names(print(tU <- table(U))))

text(n+.2, n+.5, labels=tU, col="red")

window Time Windows

Description

window is a generic function which extracts the subset of the object x observed between the
times start and end. If a frequency is specified, the series is then re-sampled at the new
frequency.

Usage

window(x, ...)

## S3 method for class 'ts':
window(x, ...)

## Default S3 method:
window(x, start = NULL, end = NULL,

frequency = NULL, deltat = NULL, extend = FALSE, ...)

Arguments

x a time-series or other object.

start the start time of the period of interest.

end the end time of the period of interest.



800 with

frequency, deltat

the new frequency can be specified by either (or both if they are consis-
tent).

extend logical. If true, the start and end values are allowed to extend the series.
If false, attempts to extend the series give a warning and are ignored.

... further arguments passed to or from other methods.

Details

The start and end times can be specified as for ts. If there is no observation at the new
start or end, the immediately following (start) or preceding (end) observation time is
used.

Value

The value depends on the method. window.default will return a vector or matrix with an
appropriate tsp attribute.

window.ts differs from window.default only in ensuring the result is a ts object.

If extend = TRUE the series will be padded with NA if needed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

time, ts.

Examples

data(presidents)

window(presidents, 1960, c(1969,4)) # values in the 1960's

window(presidents, deltat=1) # All Qtr1s

window(presidents, start=c(1945,3), deltat=1) # All Qtr3s

window(presidents, 1944, c(1979,2), extend=TRUE)

with Evaluate an Expression in a Data Environment

Description

Evaluate an R expression in an environment constructed from data.

Usage

with(data, expr, ...)



with 801

Arguments

data data to use for constructing an environment. For the default method this
may be an environment, a list, a data frame, or an integer as in sys.call.

expr expression to evaluate.

... arguments to be passed to future methods.

Details

with is a generic function that evaluates expr in a local environment constructed from data.
The environment has the caller’s environment as its parent. This is useful for simplifying
calls to modeling functions.

Note that assignments within expr take place in the constructed environment and not in
the user’s workspace.

See Also

evalq, attach.

Examples

#examples from glm:

## Not run:

library(MASS)

data(anorexia)

with(anorexia, {

anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),

family = gaussian)

summary(anorex.1)

})

## End(Not run)

with(data.frame(u = c(5,10,15,20,30,40,60,80,100),

lot1 = c(118,58,42,35,27,25,21,19,18),

lot2 = c(69,35,26,21,18,16,13,12,12)),

list(summary(glm(lot1 ~ log(u), family=Gamma)),

summary(glm(lot2 ~ log(u), family=Gamma))))

# example from boxplot:

data(ToothGrowth)

with(ToothGrowth, {

boxplot(len ~ dose, boxwex = 0.25, at = 1:3 - 0.2,

subset= supp == "VC", col="yellow",

main="Guinea Pigs' Tooth Growth",

xlab="Vitamin C dose mg",

ylab="tooth length", ylim=c(0,35))

boxplot(len ~ dose, add = TRUE, boxwex = 0.25, at = 1:3 + 0.2,

subset= supp == "OJ", col="orange")

legend(2, 9, c("Ascorbic acid", "Orange juice"),

fill = c("yellow", "orange"))

})

# alternate form that avoids subset argument:

with(subset(ToothGrowth, supp == "VC"),

boxplot(len ~ dose, boxwex = 0.25, at = 1:3 - 0.2,

col="yellow", main="Guinea Pigs' Tooth Growth",



802 women

xlab="Vitamin C dose mg",

ylab="tooth length", ylim=c(0,35)))

with(subset(ToothGrowth, supp == "OJ"),

boxplot(len ~ dose, add = TRUE, boxwex = 0.25, at = 1:3 + 0.2,

col="orange"))

legend(2, 9, c("Ascorbic acid", "Orange juice"),

fill = c("yellow", "orange"))

women Average Heights and Weights for American Women

Description

This data set gives the average heights and weights for American women aged 30–39.

Usage

data(women)

Format

A data frame with 15 observations on 2 variables.

[,1] height numeric Height (in)
[,2] weight numeric Weight (lbs)

Details

The data set appears to have been taken from the American Society of Actuaries Build and
Blood Pressure Study for some (unknown to us) earlier year.

The World Almanac notes: “The figures represent weights in ordinary indoor clothing and
shoes, and heights with shoes”.

Source

The World Almanac and Book of Facts, 1975.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(women)

plot(women, xlab = "Height (in)", ylab = "Weight (lb)",

main = "women data: American women aged 30-39")



write 803

write Write Data to a File

Description

The data (usually a matrix) x are written to file file. If x is a two-dimensional matrix
you need to transpose it to get the columns in file the same as those in the internal
representation.

Usage

write(x, file = "data",
ncolumns = if(is.character(x)) 1 else 5,
append = FALSE)

Arguments

x the data to be written out.

file A connection, or a character string naming the file to write to. If "",
print to the standard output connection. If it is "|cmd", the output is
piped to the command given by ‘cmd’.

ncolumns the number of columns to write the data in.

append if TRUE the data x is appended to file file.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth
& Brooks/Cole.

See Also

save for writing any R objects, write.table for data frames, and scan for reading data.

Examples

# create a 2 by 5 matrix

x <- matrix(1:10,ncol=5)

# the file data contains x, two rows, five cols

# 1 3 5 6 9 will form the first row

write(t(x))

# the file data now contains the data in x,

# two rows, five cols but the first row is 1 2 3 4 5

write(x)

unlink("data") # tidy up



804 write.table

write.table Data Output

Description

write.table prints its required argument x (after converting it to a data frame if it is not
one already) to file. The entries in each line (row) are separated by the value of sep.

Usage

write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ",
eol = "\n", na = "NA", dec = ".", row.names = TRUE,
col.names = TRUE, qmethod = c("escape", "double"))

Arguments

x the object to be written, typically a data frame. If not, it is attempted to
coerce x to a data frame.

file either a character string naming a file or a connection. "" indicates output
to the console.

append logical. If TRUE, the output is appended to the file. If FALSE, any existing
file of the name is destroyed.

quote a logical value or a numeric vector. If TRUE, any character or factor
columns will be surrounded by double quotes. If a numeric vector, its
elements are taken as the indices of the columns to quote. In both cases,
row and column names are quoted if they are written. If FALSE, nothing
is quoted.

sep the field separator string. Values within each row of x are separated by
this string.

eol the character(s) to print at the end of each line (row).
na the string to use for missing values in the data.
dec the string to use for decimal points.
row.names either a logical value indicating whether the row names of x are to be

written along with x, or a character vector of row names to be written.
col.names either a logical value indicating whether the column names of x are to be

written along with x, or a character vector of column names to be written.
qmethod a character string specifying how to deal with embedded double quote

characters when quoting strings. Must be one of "escape" (default), in
which case the quote character is escaped in C style by a backslash, or
"double", in which case it is doubled. You can specify just the initial
letter.

Details

Normally there is no column name for a column of row names. If col.names=NA a blank
column name is added. This can be used to write CSV files for input to spreadsheets.
write.table can be slow for data frames with large numbers (hundreds or more) of columns:
this is inevitable as each column could be of a different class and so must be handled
separately. Function write.matrix in package MASS may be much more efficient if x is a
matrix or can be represented in a numeric matrix.



writeLines 805

See Also

The “R Data Import/Export” manual.

read.table, write.

write.matrix.

Examples

## Not run:

## To write a CSV file for input to Excel one might use

write.table(x, file = "foo.csv", sep = ",", col.names = NA)

## and to read this file back into R one needs

read.table("file.csv", header = TRUE, sep = ",", row.names=1)

## End(Not run)

writeLines Write Lines to a Connection

Description

Write text lines to a connection.

Usage

writeLines(text, con = stdout(), sep = "\n")

Arguments

text A character vector

con A connection object or a character string.

sep character. A string to be written to the connection after each line of text.

Details

If the con is a character string, the functions call file to obtain an file connection which
is opened for the duration of the function call.

If the connection is open it is written from its current position. If it is not open, it is opened
for the duration of the call and then closed again.

Normally writeLines is used with a text connection, and the default separator is converted
to the normal separator for that platform (LF on Unix/Linux, CRLF on Windows, CR on
Classic MacOS). For more control, open a binary connection and specify the precise value
you want written to the file in sep. For even more control, use writeChar on a binary
connection.

See Also

connections, writeChar, writeBin, readLines, cat



806 x11

x11 X Window System Graphics

Description

X11 starts a graphics device driver for the X Window System (version 11). This can only
be done on machines that run X. x11 is recognized as a synonym for X11.

Usage

X11(display = "", width = 7, height = 7, pointsize = 12,
gamma = 1, colortype = getOption("X11colortype"),
maxcubesize = 256, canvas = "white")

Arguments

display the display on which the graphics window will appear. The default is to
use the value in the user’s environment variable DISPLAY.

width the width of the plotting window in inches.

height the height of the plotting window in inches.

pointsize the default pointsize to be used.

gamma the gamma correction factor. This value is used to ensure that the colors
displayed are linearly related to RGB values. A value of around 0.5 is
appropriate for many PC displays. A value of 1.0 (no correction) is usually
appropriate for high-end displays or Macintoshs.

colortype the kind of color model to be used. The possibilities are "mono", "gray",
"pseudo", "pseudo.cube" and "true". Ignored if an X11 is already open.

maxcubesize can be used to limit the size of color cube allocated for pseudocolor de-
vices.

canvas color. The color of the canvas, which is visible only when the background
color is transparent.

Details

By default, an X11 device will use the best color rendering strategy that it can. The choice
can be overriden with the colortype parameter. A value of "mono" results in black and
white graphics, "gray" in grayscale and "true" in truecolor graphics (if this is possible).
The values "pseudo" and "pseudo.cube" provide color strategies for pseudocolor displays.
The first strategy provides on-demand color allocation which produces exact colors until
the color resources of the display are exhausted. The second causes a standard color cube
to be set up, and requested colors are approximated by the closest value in the cube. The
default strategy for pseudocolor displays is "pseudo".

Note: All X11 devices share a colortype which is set by the first device to be opened.
To change the colortype you need to close all open X11 devices then open one with the
desired colortype.

With colortype equal to "pseudo.cube" or "gray" successively smaller palettes are tried
until one is completely allocated. If allocation of the smallest attempt fails the device will
revert to "mono".



xfig 807

See Also

Devices.

xfig XFig Graphics Device

Description

xfig starts the graphics device driver for producing XFig (version 3.2) graphics.

The auxiliary function ps.options can be used to set and view (if called without arguments)
default values for the arguments to xfig and postscript.

Usage

xfig(file = ifelse(onefile, "Rplots.fig", "Rplot%03d.fig"),
onefile = FALSE, ...)

Arguments

file a character string giving the name of the file. If it is "", the output
is piped to the command given by the argument command. For use with
onefile=FALSE give a printf format such as "Rplot%d.fig" (the default
in that case).

onefile logical: if true allow multiple figures in one file. If false, assume only one
page per file and generate a file number containing the page number.

... further arguments to ps.options accepted by xfig():

paper the size of paper in the printer. The choices are "A4", "Letter"
and "Legal" (and these can be lowercase). A further choice is
"default", which is the default. If this is selected, the papersize
is taken from the option "papersize" if that is set and to "A4" if it
is unset or empty.

horizontal the orientation of the printed image, a logical. Defaults to
true, that is landscape orientation.

width, height the width and height of the graphics region in inches. The
default is to use the entire page less a 0.25 inch border.

family the font family to be used. This must be one of "AvantGarde",
"Bookman", "Courier", "Helvetica", "Helvetica-Narrow",
"NewCenturySchoolbook", "Palatino" or "Times".

pointsize the default point size to be used.
bg the default background color to be used.
fg the default foreground color to be used.
pagecentre logical: should the device region be centred on the page:

defaults to TRUE.

Details

Although xfig can produce multiple plots in one file, the XFig format does not say how to
separate or view them. So onefile=FALSE is the default.



808 xtabs

Note

On some line textures (0 <= lty > 4) are used. Eventually this will be partially remedied,
but the XFig file format does not allow as general line textures as the R model. Unimple-
mented line textures are displayed as dash-double-dotted.

There is a limit of 512 colours (plus white and black) per file.

See Also

Devices, postscript, ps.options.

xtabs Cross Tabulation

Description

Create a contingency table from cross-classifying factors, usually contained in a data frame,
using a formula interface.

Usage

xtabs(formula = ~., data = parent.frame(), subset, na.action,
exclude = c(NA, NaN), drop.unused.levels = FALSE)

Arguments

formula a formula object with the cross-classifying variables, separated by +, on
the right hand side. Interactions are not allowed. On the left hand side,
one may optionally give a vector or a matrix of counts; in the latter case,
the columns are interpreted as corresponding to the levels of a variable.
This is useful if the data has already been tabulated, see the examples
below.

data a data frame, list or environment containing the variables to be cross-
tabulated.

subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain

NAs.
exclude a vector of values to be excluded when forming the set of levels of the

classifying factors.
drop.unused.levels

a logical indicating whether to drop unused levels in the classifying fac-
tors. If this is FALSE and there are unused levels, the table will contain
zero marginals, and a subsequent chi-squared test for independence of the
factors will not work.

Details

There is a summary method for contingency table objects created by table or xtabs, which
gives basic information and performs a chi-squared test for independence of factors (note
that the function chisq.test in package ctest currently only handles 2-d tables).

If a left hand side is given in formula, its entries are simply summed over the cells corre-
sponding to the right hand side; this also works if the lhs does not give counts.



xy.coords 809

Value

A contingency table in array representation of class c("xtabs", "table"), with a "call"
attribute storing the matched call.

See Also

table for “traditional” cross-tabulation, and as.data.frame.table which is the inverse
operation of xtabs (see the DF example below).

Examples

data(esoph)

## 'esoph' has the frequencies of cases and controls for all levels of

## the variables 'agegp', 'alcgp', and 'tobgp'.

xtabs(cbind(ncases, ncontrols) ~ ., data = esoph)

## Output is not really helpful ... flat tables are better:

ftable(xtabs(cbind(ncases, ncontrols) ~ ., data = esoph))

## In particular if we have fewer factors ...

ftable(xtabs(cbind(ncases, ncontrols) ~ agegp, data = esoph))

data(UCBAdmissions)

## This is already a contingency table in array form.

DF <- as.data.frame(UCBAdmissions)

## Now 'DF' is a data frame with a grid of the factors and the counts

## in variable 'Freq'.

DF

## Nice for taking margins ...

xtabs(Freq ~ Gender + Admit, DF)

## And for testing independece ...

summary(xtabs(Freq ~ ., DF))

data(warpbreaks)

## Create a nice display for the warp break data.

warpbreaks$replicate <- rep(1:9, len = 54)

ftable(xtabs(breaks ~ wool + tension + replicate, data = warpbreaks))

xy.coords Extracting Plotting Structures

Description

xy.coords is used by many functions to obtain x and y coordinates for plotting. The use
of this common mechanism across all R functions produces a measure of consistency.

Usage

xy.coords(x, y, xlab = NULL, ylab = NULL, log = NULL, recycle = FALSE)

Arguments

x, y the x and y coordinates of a set of points. Alternatively, a single argument
x can be provided.

xlab,ylab names for the x and y variables to be extracted.



810 xy.coords

log character, "x", "y" or both, as for plot. Sets negative values to NA and
gives a warning.

recycle logical; if TRUE, recycle (rep) the shorter of x or y if their lengths differ.

Details

An attempt is made to interpret the arguments x and y in a way suitable for plotting.

If y is missing and x is a

formula: of the form yvar ~ xvar. xvar and yvar are used as x and y variables.

list: containing components x and y, these are used are assumed to define plotting coordi-
nates.

time series: the x values are taken to be time(x) and the y values to be the time series.

matrix with two columns: the first is assumed to contain the x values and the second
the y values.

In any other case, the x argument is coerced to a vector and returned as y component where
the resulting x is just the index vector 1:n. In this case, the resulting xlab component is
set to "Index".

If x (after transformation as above) inherits from class "POSIXt" it is coerced to class
"POSIXct".

Value

A list with the components

x numeric (i.e., "double") vector of abscissa values.

y numeric vector of the same length as x.

xlab character(1) or NULL, the ‘label’ of x.

ylab character(1) or NULL, the ‘label’ of y.

See Also

plot.default, lines, points and lowess are examples of functions which use this mech-
anism.

Examples

xy.coords(fft(c(1:10)), NULL)

data(cars) ; attach(cars)

xy.coords(dist ~ speed, NULL)$xlab # = "speed"

str(xy.coords(1:3, 1:2, recycle=TRUE))

str(xy.coords(-2:10,NULL, log="y"))

##> warning: 3 y values <=0 omitted ..

detach()



xyz.coords 811

xyz.coords Extracting Plotting Structures

Description

Utility for obtaining consistent x, y and z coordinates and labels for three dimensional (3D)
plots.

Usage

xyz.coords(x, y, z, xlab=NULL, ylab=NULL, zlab=NULL, log=NULL,
recycle=FALSE)

Arguments

x, y, z the x, y and z coordinates of a set of points. Alternatively, a single
argument x can be be provided. In this case, an attempt is made to
interpret the argument in a way suitable for plotting.
If the argument is a formula zvar ~ xvar + yvar, xvar, yvar and zvar
are used as x, y and z variables; if the argument is a list containing
components x, y and z, these are assumed to define plotting coordinates;
if the argument is a matrix with three columns, the first is assumed to
contain the x values, etc.
Alternatively, two arguments x and y can be be provided. One may be
real, the other complex; in any other case, the arguments are coerced to
vectors and the values plotted against their indices.

xlab, ylab, zlab

names for the x, y and z variables to be extracted.

log character, "x", "y", "z" or combinations. Sets negative values to NA and
gives a warning.

recycle logical; if TRUE, recycle (rep) the shorter ones of x, y or z if their lengths
differ.

Value

A list with the components

x numeric (i.e., double) vector of abscissa values.

y numeric vector of the same length as x.

z numeric vector of the same length as x.

xlab character(1) or NULL, the axis label of x.

ylab character(1) or NULL, the axis label of y.

zlab character(1) or NULL, the axis label of z.

Author(s)

Uwe Ligges and Martin Maechler



812 zcbind

See Also

xy.coords for 2D.

Examples

str(xyz.coords(data.frame(10*1:9, -4),y=NULL,z=NULL))

str(xyz.coords(1:6, fft(1:6),z=NULL,xlab="X", ylab="Y"))

y <- 2 * (x2 <- 10 + (x1 <- 1:10))

str(xyz.coords(y ~ x1 + x2,y=NULL,z=NULL))

str(xyz.coords(data.frame(x=-1:9,y=2:12,z=3:13),y=NULL,z=NULL,

log="xy"))

##> Warning message: 2 x values <= 0 omitted ...

zcbind Bind Two or More Time Series

Description

Bind Two or More Time Series which have common frequency.

Usage

.cbind.ts(sers, nmsers, dframe = FALSE, union = TRUE)

Arguments

sers a list of two or more univariate or multivariate time series, or objects
which can coerced to time series.

nmsers a character vector of the same length as sers with the names for the time
series.

dframe logical; if TRUE return the result as a data frame.

union logical; if TRUE, act as ts.union or ts.intersect.

Details

This is an internal function which is not to be called by the user.



zip.file.extract 813

zip.file.extract Extract File from a Zip Archive

Description

This will extract the file named file from the zip archive, if possible, and write it in a
temporary location.

Usage

zip.file.extract(file, zipname = "R.zip")

Arguments

file A file name.

zipname The file name of a zip archive, including the ".zip" extension if required.

Details

The method used is selected by options(unzip=). All platforms support an "internal"
unzip: this is the default under Windows and the fall-back under Unix if no unzip program
was found during configuration and R_UNZIPCMD is not set.

The file will be extracted if it is in the archive and any required unzip utility is available.
It will probably be extracted to the directory given by tempdir, overwriting an existing file
of that name.

Value

The name of the original or extracted file. Success is indicated by returning a different
name.

Note

The "internal" method is very simple, and will not set file dates.



814 zip.file.extract



Chapter 2

The grid package

absolute.size Absolute Size of a Grob

Description

This function converts a unit object into absolute units. Absolute units are unaffected, but
non-absolute units are converted into "null" units.

Usage

absolute.size(unit)

Arguments

unit An object of class "unit".

Details

Absolute units are things like "inches", "cm", and "lines". Non-absolute units are "npc"
and "native".

This function is designed to be used in width.details and height.details methods.

Value

An object of class "unit".

Author(s)

Paul Murrell

See Also

The code for width.details and height.details methods.

The file ‘grid/doc/notes/parentchild.ps’.

815



816 convertNative

convertNative Convert a Unit Object to Native units

Description

This function is deprecated in grid version 0.8 and will be made defunct in grid
version 0.9

You should use the grid.convert() function or one of its close allies instead.

This function returns a numeric vector containing the specified x or y locations or dimen-
sions, converted to ”user” or ”data” units, relative to the current viewport.

Usage

convertNative(unit, dimension="x", type="location")

Arguments

unit A unit object.

dimension Either ”x” or ”y”.

type Either ”location” or ”dimension”.

Value

A numeric vector.

WARNING

If you draw objects based on output from these conversion functions, then resize your
device, the objects will be drawn incorrectly – the base R display list will not recalculate
these conversions. This means that you can only rely on the results of these calculations if
the size of your device is fixed.

Author(s)

Paul Murrell

See Also

grid.convert, unit

Examples

grid.newpage()

push.viewport(viewport(width=unit(.5, "npc"),

height=unit(.5, "npc")))

grid.rect()

w <- convertNative(unit(1, "inches"))

h <- convertNative(unit(1, "inches"), "y")

# This rectangle starts off life as 1in square, but if you

# resize the device it will no longer be 1in square

grid.rect(width=unit(w, "native"), height=unit(h, "native"),

gp=gpar(col="red"))



current.viewport 817

pop.viewport(1)

# How to use grid.convert(), etc instead

convertNative(unit(1, "inches")) ==

grid.convertX(unit(1, "inches"), "native", valueOnly=TRUE)

convertNative(unit(1, "inches"), "y", "dimension") ==

grid.convertHeight(unit(1, "inches"), "native", valueOnly=TRUE)

current.viewport Get the Default Grid Viewport

Description

Returns the viewport that Grid is going to draw into.

Usage

current.viewport(vp=NULL)

Arguments

vp A Grid viewport object.

Details

This function should only be used without the vp argument (i.e., only to return the current
viewport).

The vp argument only exists for historical reasons. It will be removed in future versions.

Value

A Grid viewport object.

Author(s)

Paul Murrell

See Also

viewport



818 dataViewport

dataViewport Create a Viewport with Scales based on Data

Description

This is a convenience function for producing a viewport with x- and/or y-scales based on
numeric values passed to the function.

Usage

dataViewport(xData = NULL, yData = NULL, xscale = NULL, yscale = NULL,
extension = 0.05, ...)

Arguments

xData A numeric vector of data.

yData A numeric vector of data.

xscale A numeric vector (length 2).

yscale A numeric vector (length 2).

extension A numeric.

... All other arguments will be passed to a call to the viewport() function.

Details

If xscale is not specified then the values in x are used to generate an x-scale based on the
range of x, extended by the proportion specified in extension. Similarly for the y-scale.

Value

A grid viewport object.

Author(s)

Paul Murrell

See Also

viewport and plotViewport.



gpar 819

gpar Function to produce a Graphical Parameter Object

Description

This function returns an object of class "gpar". This is basically a list of name-value pairs.

Usage

gpar(...)

Arguments

... Any number of named arguments.

Details

All grid viewports and (predefined) graphical objects have a slot called gp, which contains
a "gpar" object. When a viewport is pushed onto the viewport stack and when a graphical
object is drawn, the settings in the "gpar" object are enforced. In this way, the graphical
output is modified by the gp settings until the graphical object has finished drawing, or until
the viewport is popped off the viewport stack, or until some other viewport or graphical
object is pushed or begins drawing.

Valid parameter names are:

col Colour for lines and borders.
fill Colour for filling rectangles, polygons, ...
lty Line type
lwd Line width
fontsize The size of text (in points)
cex Multiplier applied to fontsize
fontfamily The font family
fontface The font face (bold, italic, ...)
lineheight The height of a line as a multiple of the size of text
font Font face (alias for fontface; for backward compatibility)

The size of text is fontsize*cex. The size of a line is fontsize*cex*lineheight.

For most devices, the fontfamily is specified when the device is first opened and may not be
changed thereafter – i.e., specifying a different font family via fontfamily will be ignored.
This will hopefully change in future versions of R. Also, there is an important exception:
fontfamily may be used to specify one of the Hershey Font families (e.g., HersheySerif)
and this specification will be honoured on all devices.

The specification of fontface follows the R base graphics standard: 1 = plain, 2 = bold,
3 = italic, 4 = bold italic.

Specifying the value NULL for a parameter is the same as not specifying any value for that
parameter, except for col and fill, where NULL indicates not to draw a border or not to
fill an area (respectively).

All parameter values can be vectors of multiple values. (This will not always make sense –
for example, viewports will only take notice of the first parameter value.)



820 Grid

Value

An object of class "gpar".

Author(s)

Paul Murrell

See Also

Hershey.

Examples

gpar(col = "red")

gpar(col = "blue", lty = "solid", lwd = 3, fontsize = 16)

grid.newpage()

vp <- viewport(w = .8, h = .8, gp = gpar(col="blue"))

grid.collection(grid.rect(gp = gpar(col="red"), draw = FALSE),

grid.text(paste("The rect is its own colour (red)",

"but this text is the colour",

"set by the collection (green)", sep = "\n"),

draw = FALSE),

gp = gpar(col="green"), vp = vp)

grid.text("This text is the colour set by the viewport (blue)",

y = 1, just = c("center", "bottom"),

gp = gpar(fontsize=20), vp = vp)

grid.newpage()

## example with multiple values for a parameter

push.viewport(viewport())

grid.points(1:10/11, 1:10/11, gp = gpar(col=1:10))

pop.viewport()

Grid Grid Graphics

Description

General information about the grid graphics package.

Details

Grid graphics provides an alternative to the standard R graphics. The user is able to define
arbitrary rectangular regions (called viewports) on the graphics device and define a number
of coordinate systems for each region. Drawing can be specified to occur in any viewport
using any of the available coordinate systems.

Grid graphics and standard R graphics do not mix!

Type library(help = grid) to see a list of (public) Grid graphics functions.

Author(s)

Paul Murrell



grid-internal 821

See Also

viewport, grid.layout, and unit.

Examples

## Diagram of a simple layout

grid.show.layout(grid.layout(4,2,

heights=unit(rep(1, 4),

c("lines", "lines", "lines", "null")),

widths=unit(c(1, 1), "inches")))

## Diagram of a sample viewport

grid.show.viewport(viewport(x=0.6, y=0.6,

w=unit(1, "inches"), h=unit(1, "inches")))

## A flash plotting example

grid.multipanel(vp=viewport(0.5, 0.5, 0.8, 0.8))

grid-internal Internal Grid Functions

Description

Internal Grid functions

Details

These are not to be called by the user (or in some cases are just waiting for proper docu-
mentation to be written :).

grid.arrows Draw Arrows

Description

This will draw arrows at either end of a line or an existing line.to, lines, or segments grob.

Usage

grid.arrows(x = c(0.25, 0.75), y = 0.5, default.units = "npc",
grob = NULL,
angle = 30, length = unit(0.25, "inches"),
ends = "last", type = "open",
gp = gpar(), draw = TRUE, vp = NULL)



822 grid.arrows

Arguments

x A numeric vector or unit object specifying x-values.

y A numeric vector or unit object specifying y-values.

default.units A string indicating the default units to use if x or y are only given as
numeric vectors.

grob A grob to add arrows to; currently can only be a line.to, lines, or segments
grob.

angle A numeric specifying (half) the width of the arrow head (in degrees).

length A unit object specifying the length of the arrow head.

ends One of "first", "last", or "both", indicating which end of the line to
add arrow heads.

type Either "open" or "closed" to indicate the type of arrow head.

gp An object of class gpar, typically the output from a call to the function
gpar. This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

If the grob argument is specified, this overrides any x and/or y arguments.

Value

An object of class "grob".

Author(s)

Paul Murrell

See Also

Grid, viewport, grid.line.to, grid.lines, grid.segments

Examples

push.viewport(viewport(layout=grid.layout(2, 4)))

push.viewport(viewport(layout.pos.col=1,

layout.pos.row=1))

grid.rect(gp=gpar(col="grey"))

grid.arrows()

pop.viewport()

push.viewport(viewport(layout.pos.col=2,

layout.pos.row=1))

grid.rect(gp=gpar(col="grey"))

grid.arrows(angle=15, type="closed")

pop.viewport()

push.viewport(viewport(layout.pos.col=3,

layout.pos.row=1))

grid.rect(gp=gpar(col="grey"))

grid.arrows(angle=5, length=unit(0.1, "npc"),

type="closed", gp=gpar(fill="white"))

pop.viewport()



grid.circle 823

push.viewport(viewport(layout.pos.col=4,

layout.pos.row=1))

grid.rect(gp=gpar(col="grey"))

grid.arrows(x=unit(0:80/100, "npc"),

y=unit(1 - (0:80/100)^2, "npc"))

pop.viewport()

push.viewport(viewport(layout.pos.col=1,

layout.pos.row=2))

grid.rect(gp=gpar(col="grey"))

grid.arrows(ends="both")

pop.viewport()

push.viewport(viewport(layout.pos.col=2,

layout.pos.row=2))

grid.rect(gp=gpar(col="grey"))

# Recycling arguments

grid.arrows(x=unit(1:10/11, "npc"), y=unit(1:3/4, "npc"))

pop.viewport()

push.viewport(viewport(layout.pos.col=3,

layout.pos.row=2))

grid.rect(gp=gpar(col="grey"))

gs <- grid.segments(x0=unit(1:4/5, "npc"),

x1=unit(1:4/5, "npc"))

grid.arrows(grob=gs, length=unit(0.1, "npc"),

type="closed", gp=gpar(fill="white"))

pop.viewport()

push.viewport(viewport(layout.pos.col=4,

layout.pos.row=2))

grid.rect(gp=gpar(col="grey"))

gl <- grid.lines(x=unit(0:80/100, "npc"),

y=unit((0:80/100)^2, "npc"))

grid.arrows(grob=gl, angle=15, type="closed", gp=gpar(fill="black"))

pop.viewport()

push.viewport(viewport(layout.pos.col=1,

layout.pos.row=2))

grid.move.to(x=0.5, y=0.8)

pop.viewport()

push.viewport(viewport(layout.pos.col=4,

layout.pos.row=1))

glt <- grid.line.to(x=0.5, y=0.2, gp=gpar(lwd=3))

grid.arrows(grob=glt, ends="first", gp=gpar(lwd=3))

pop.viewport(2)

grid.edit(gl, y=unit((0:80/100)^3, "npc"))

grid.circle Draw a Circle

Description

This function draws a circle.

Usage

grid.circle(x=0.5, y=0.5, r=0.5, default.units="npc",
gp=gpar(), draw=TRUE, vp=NULL)



824 grid.collection

Arguments

x A numeric vector or unit object specifying x-locations.
y A numeric vector or unit object specifying y-locations.
r A numeric vector or unit object specifying radii.
default.units A string indicating the default units to use if x, y, width, or height are

only given as numeric vectors.
gp An object of class gpar, typically the output from a call to the function

gpar. This is basically a list of graphical parameter settings.
draw A logical value indicating whether graphics output should be produced.
vp A Grid viewport object (or NULL).

Details

The radius may be given in any units; if the units are relative (e.g., "npc" or "native")
then the radius will be different depending on whether it is interpreted as a width or as a
height. In such cases, the smaller of these two values will be the result. To see the effect,
type grid.circle() and adjust the size of the window.

The "grob" object contains an object of class "circle".

Value

An object of class "grob".

Author(s)

Paul Murrell

See Also

Grid, viewport

grid.collection Create a Coherent Group of Grid Graphical Objects

Description

This function creates a graphical object which contains several other graphical objects.
When it is drawn, it draws all of its children.

It may be convenient to name the elements of the collection.

Usage

grid.collection(..., gp=gpar(), draw=TRUE, vp=NULL)

Arguments

... Zero or more objects of class "grob".
gp An object of class gpar, typically the output from a call to the function

gpar. This is basically a list of graphical parameter settings.
draw A logical value to indicate whether to produce graphical output.
vp A Grid viewport object (or NULL).



grid.convert 825

Value

An object of class "grob" containing a list structure of class "collection".

Author(s)

Paul Murrell

See Also

grid.grob.

Examples

grid.newpage()

lc <- grid.collection(l1=grid.lines(draw=FALSE),

l2=grid.lines(c(.5, .5), draw=FALSE))

grid.edit(lc, gp=gpar(col="blue"))

grid.edit(lc, "children", "l2", gp=gpar(col="red"))

grid.convert Convert Between Different grid Coordinate Systems

Description

These functions take a unit object and convert it to an equivalent unit object in a different
coordinate system.

Usage

grid.convertX(x, unitTo, valueOnly = FALSE)
grid.convertY(x, unitTo, valueOnly = FALSE)
grid.convertWidth(x, unitTo, valueOnly = FALSE)
grid.convertHeight(x, unitTo, valueOnly = FALSE)
grid.convert(x, unitTo,

axisFrom = "x", typeFrom = "location",
axisTo = axisFrom, typeTo = typeFrom,
valueOnly = FALSE)

Arguments

x A unit object.

unitTo The coordinate system to convert the unit to. See the unit function for
valid coordinate systems.

axisFrom Either "x" or "y" to indicate whether the unit object represents a value
in the x- or y-direction.

typeFrom Either "location" or "dimension" to indicate whether the unit object
represents a location or a length.

axisTo Same as axisFrom, but applies to the unit object that is to be created.

typeTo Same as typeFrom, but applies to the unit object that is to be created.

valueOnly A logical indicating. If TRUE then the function does not return a unit
object, but rather only the converted numeric values.



826 grid.convert

Details

The grid.convert() function allows for general-purpose conversions. The other four func-
tions are just more convenient front-ends to it for the most common conversions.

The conversions occur within the current viewport.

It is not currently possible to convert to all valid coordinate systems (e.g., ”strwidth” or
”grobwidth”). I’m not sure if all of these are impossible, they just seem implausible at this
stage.

In normal usage of grid, this function should not be necessary. If you want to express a
location or dimension in inches rather than user coordinates then you should simply do
something like unit(1, "inches") rather than something like unit(0.134, "native").

In some cases, however, it is necessary for the user to perform calculations on a unit value
and this function becomes necessary. In such cases, please take note of the warning below.

Value

A unit object in the specified coordinate system (unless valueOnly is TRUE in which case
the returned value is a numeric.

Warning

The conversion is only valid for the current device size. If the device is resized then at least
some conversions will become invalid. For example, suppose that I create a unit object as
follows: oneinch <- grid.convert(unit(1, "inches"), "native". Now if I resize the
device, the unit object in oneinch no longer corresponds to a physical length of 1 inch.

Author(s)

Paul Murrell

See Also

unit

Examples

## A tautology

grid.convertX(unit(1, "inches"), "inches")

## The physical units

grid.convertX(unit(2.54, "cm"), "inches")

grid.convertX(unit(25.4, "mm"), "inches")

grid.convertX(unit(72.27, "points"), "inches")

grid.convertX(unit(1/12*72.27, "picas"), "inches")

grid.convertX(unit(72, "bigpts"), "inches")

grid.convertX(unit(1157/1238*72.27, "dida"), "inches")

grid.convertX(unit(1/12*1157/1238*72.27, "cicero"), "inches")

grid.convertX(unit(65536*72.27, "scaledpts"), "inches")

push.viewport(viewport(width=unit(1, "inches"),

height=unit(2, "inches"),

xscale=c(0, 1),

yscale=c(1, 3)))

## Location versus dimension

grid.convertY(unit(2, "native"), "inches")

grid.convertHeight(unit(2, "native"), "inches")

## From "x" to "y" (the conversion is via "inches")



grid.copy 827

grid.convert(unit(1, "native"), "native",

axisFrom="x", axisTo="y")

## Convert several values at once

grid.convertX(unit(c(0.5, 2.54), c("npc", "cm")),

c("inches", "native"))

pop.viewport()

## Convert a complex unit

grid.convertX(unit(1, "strwidth", "Hello"), "native")

grid.copy Make a Copy of a Grid Graphical Object

Description

Grid graphical objects are references to list structures, which means that copies of graphical
objects “point” to the same list structure.

This function copies graphical objects by value, which means that the copy “points” to a
separate list structure.

Usage

grid.copy(grob)

Arguments

grob An object of class "grob".

Value

An object of class "grob".

Author(s)

Paul Murrell

See Also

grid.grob.

Examples

## Create a graphical object

l <- grid.lines(draw=FALSE)

## View the list.struct

grid.get(l)

## Copy by reference

l2 <- l

## Edit the common list.struct

grid.edit(l2, gp=gpar(col="green"))

## We have modified "l"

grid.get(l)

## Copy by value

l3 <- grid.copy(l)



828 grid.draw

grid.display.list Control the Grid Display List

Description

Turn the Grid display list on or off.

Usage

grid.display.list(on=TRUE)

Arguments

on A logical value to indicate whether the display list should be on or off.

Details

All drawing and viewport-setting operations are (by default) recorded in the Grid display
list. This allows redrawing to occur following an editing operation.

This display list could get very large so it may be useful to turn it off in some cases; this
will of course disable redrawing.

Value

None.

WARNING

Turning the display list on causes the display list to be erased!

Author(s)

Paul Murrell

grid.draw Draw a Grid Graphical Object

Description

Produces graphical output from a graphical object.

Usage

grid.draw(x, recording=TRUE)

Arguments

x An object of class "grob" or NULL.

recording A logical value to indicate whether the drawing operation should be
recorded on the Grid display list.



grid.edit 829

Details

This function doesn’t do much itself beyond some system bookkeeping.

It calls the generic function draw.details, dispatching on the class of the list.struct
within the graphical object, and the actual drawing occurs in the appropriate method.

Value

None.

Author(s)

Paul Murrell

See Also

grid.grob.

Examples

grid.newpage()

## Create a graphical object, but don't draw it

l <- grid.lines(draw=FALSE)

## Draw it

grid.draw(l)

grid.edit Edit the Description of a Grid Graphical Object

Description

Changes the value of one or more elements of the list structure within a graphical object
and redraws the graphical object.

Usage

grid.edit(grob, ..., redraw=TRUE)

Arguments

grob An object of class "grob".
... Zero or more element-specifiers, plus a single new value or a list of new

values. The new value is required. Each specifier may be a single character
or numeric value.

redraw A logical value to indicate whether to redraw the graphical object.

Details

This function acts on the graphical object specified by grob and the element-specifiers. It
sets the values in the list structure of that graphical object which correspond to the new
values. If redraw is TRUE it then redraws everything to reflect the change.

Before redrawing, it calls the generic function edit.details, dispatching on the class of
the list structure within the graphical object, so that further consequences of the editing
(such as editing children of the graphical object) can occur.



830 grid.frame

Value

None.

Author(s)

Paul Murrell

See Also

grid.grob

Examples

grid.newpage()

xa <- grid.xaxis(vp=viewport(width=.5, height=.5))

grid.edit(xa, gp=gpar(col="red"))

grid.edit(xa, "ticks", gp=gpar(col="green"))

grid.frame Create a Frame for Packing Objects

Description

This function, together with grid.pack is part of a GUI-builder-like interface to construct-
ing graphical images. The idea is that you create a frame with this function then use
grid.pack to pack objects into the frame.

Usage

grid.frame(layout=NULL, vp=NULL, gp=gpar(), draw=FALSE)

Arguments

layout A Grid layout, or NULL. This can be used to initialise the frame with a
number of rows and columns, with initial widths and heights, etc.

vp An object of class viewport, or NULL.

gp An object of class gpar; typically the output from a call to the function
gpar.

draw Should the frame be drawn. Nothing will actually be drawn, but it will
put the frame on the display list, which means that the output will be
dynamically updated as objects are packed into the frame. Possibly useful
for debugging.

Value

An object of class "grob".

Author(s)

Paul Murrell



grid.get 831

See Also

grid.pack

Examples

grid.newpage()

gf <- grid.frame(draw=TRUE)

grid.pack(gf, grid.rect(draw=FALSE, gp=gpar(fill="grey")))

grid.pack(gf, grid.text("hi there", draw=FALSE), side="right")

grid.get Get the Contents of a Grid Graphical Object

Description

A Grid graphical object contains a list structure; this function returns that list structure.

Usage

grid.get(grob, ...)

Arguments

grob An object of class "grob".

... Zero or more element-specifiers. Each specifier may be a single character
or numeric value.

Details

If there are no specifiers then the value returned is just the list structure of the grob. If
there is a specifier and the list structure of the grob has a corresponding element, and that
element is an object of class "grob", then the return value is the list structure within that
element. And so on ...

Typically, users will not need to call this function, even when writing their own graphical
objects. Most graphical object methods will work only with the list structure.

Value

A list structure.

Author(s)

Paul Murrell

See Also

grid.grob.



832 grid.grill

Examples

xa <- grid.xaxis(draw=FALSE)

grid.get(xa)

grid.get(xa, "ticks")

temp <- grid.collection(axis=grid.xaxis(draw=FALSE), draw=FALSE)

grid.get(temp, "children", "axis", "ticks")

grid.grill Draw a Grill

Description

This function draws a grill within a Grid viewport.

Usage

grid.grill(h = unit(seq(0.25, 0.75, 0.25), "npc"),
v = unit(seq(0.25, 0.75, 0.25), "npc"),
default.units = "npc", gp=gpar(col = "grey"), vp = NULL)

Arguments

h A numeric vector or unit object indicating the horizontal location of the
vertical grill lines.

v A numeric vector or unit object indicating the vertical location of the
horizontal grill lines.

default.units A string indicating the default units to use if h or v are only given as
numeric vectors.

gp An object of class gpar, typically the output from a call to the function
gpar. This is basically a list of graphical parameter settings.

vp A Grid viewport object.

Value

None.

Author(s)

Paul Murrell

See Also

Grid, viewport.



grid.grob 833

grid.grob Create a Grid Graphical Object

Description

Creates a Grid graphical object.

Usage

grid.grob(list.struct, cl = NULL, draw = TRUE)

Arguments

list.struct A list (preferably with each element named).

cl A string giving the class attribute for the list.struct

draw A logical value to indicate whether to produce graphical output.

Details

A Grid graphical object provides a pointer to the list.struct. This has the important
consequence that copies of the graphical object refer to the same list.struct.

All Grid primitives (grid.lines, grid.rect, ...) and some higher-level Grid functions
(e.g., grid.xaxis and grid.yaxis) return graphical objects.

Grid provides several useful functions for graphical objects (e.g., grid.draw and grid.edit)
which are designed to make it easier to produce new graphical objects.

Value

An object of class "grob".

Author(s)

Paul Murrell

See Also

grid.draw, grid.edit, grid.get, grid.copy.

Examples

## Create a graphical object

l <- grid.lines(draw=FALSE)

## View the list.struct

grid.get(l)

## Copy by reference

l2 <- l

## Edit the common list.struct

grid.edit(l2, gp=gpar(col="green"))

## Copy by value

l3 <- grid.copy(l)



834 grid.layout

grid.layout Create a Grid Layout

Description

This function returns a Grid layout, which describes a subdivision of a rectangular region.

Usage

grid.layout(nrow = 1, ncol = 1,
widths = unit(rep(1, ncol), "null"),
heights = unit(rep(1, nrow), "null"),
default.units = "null", respect = FALSE)

Arguments

nrow An integer describing the number of rows in the layout.

ncol An integer describing the number of columns in the layout.

widths A numeric vector or unit object describing the widths of the columns in
the layout.

heights A numeric vector or unit object describing the heights of the rows in the
layout.

default.units A string indicating the default units to use if widths or heights are only
given as numeric vectors.

respect A logical value indicating whether row heights and column widths should
respect each other.

Details

The unit objects given for the widths and heights of a layout may use a special units
that only has meaning for layouts. This is the "null" unit, which indicates what relative
fraction of the available width/height the column/row occupies. See the reference for a
better description of relative widths and heights in layouts.

Value

A Grid layout object.

WARNING

This function must NOT be confused with the base R graphics function layout. In partic-
ular, do not use layout in combination with Grid graphics. The documentation for layout
may provide some useful information and this function should behave identically in compa-
rable situations. The grid.layout function has added the ability to specify a broader range
of units for row heights and column widths, and allows for nested layouts (see viewport).

Author(s)

Paul Murrell



grid.lines 835

References

Murrell, P. R. (1999), Layouts: A Mechanism for Arranging Plots on a Page, Journal of
Computational and Graphical Statistics, 8, 121–134.

See Also

Grid, grid.show.layout, viewport, layout

Examples

## A variety of layouts (some a bit mid-bending ...)

layout.torture()

grid.lines Draw Lines in a Grid Viewport

Description

This function draws a series of lines within a Grid viewport.

Usage

grid.lines(x = unit(c(0, 1), "npc", units.per.obs),
y = unit(c(0, 1), "npc", units.per.obs),
default.units = "npc", units.per.obs = FALSE,
gp=gpar(), draw = TRUE, vp = NULL)

Arguments

x A numeric vector or unit object specifying x-values.

y A numeric vector or unit object specifying y-values.

default.units A string indicating the default units to use if x or y are only given as
numeric vectors.

units.per.obs A logical value to indicate whether each individual (x, y) location has its
own unit(s) specified.

gp An object of class gpar, typically the output from a call to the function
gpar. This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

The "grob" object contains an object of class "lines".

Value

An object of class "grob".

Author(s)

Paul Murrell



836 grid.locator

See Also

Grid, viewport

grid.locator Capture a Mouse Click

Description

Allows the user to click the mouse once within the current graphics device and returns the
location of the mouse click within the current viewport, in the specified coordinate system.

Usage

grid.locator(unit = "native")

Arguments

unit The coordinate system in which to return the location of the mouse click.
See the unit function for valid coordinate systems.

Details

This function is modal (like the base function locator) so the command line and graphics
drawing is blocked until the use has clicked the mouse in the current device.

Value

A unit object representing the location of the mouse click within the current viewport, in
the specified coordinate system.

Author(s)

Paul Murrell

See Also

viewport, unit, locator

Examples

if (interactive()) {

## Need to write a more sophisticated unit as.character method

unittrim <- function(unit) {

sub("^([0-9]+|[0-9]+[.][0-9])[0-9]*", "\\1", as.character(unit))

}

do.click <- function(unit) {

click.locn <- grid.locator(unit)

grid.segments(unit.c(click.locn$x, unit(0, "npc")),

unit.c(unit(0, "npc"), click.locn$y),

click.locn$x, click.locn$y,

gp=gpar(lty="dashed", col="grey"))

grid.points(click.locn$x, click.locn$y, pch=16, size=unit(1, "mm"))

clickx <- unittrim(click.locn$x)



grid.move.to 837

clicky <- unittrim(click.locn$y)

grid.text(paste("(", clickx, ", ", clicky, ")", sep=""),

click.locn$x + unit(2, "mm"), click.locn$y,

just="left")

}

do.click("inches")

push.viewport(viewport(width=0.5, height=0.5,

xscale=c(0, 100), yscale=c(0, 10)))

grid.rect()

grid.xaxis()

grid.yaxis()

do.click("native")

pop.viewport()

}

grid.move.to Move to a Specified Position

Description

Grid has the notion of a current location. This function sets that location.

Usage

grid.move.to(x=0, y=0, default.units="npc", draw=TRUE, vp=NULL)
grid.line.to(x=1, y=1, default.units="npc", draw=TRUE, gp=gpar(), vp=NULL)

Arguments

x A numeric value or a unit object specifying an x-value.

y A numeric value or a unit object specifying a y-value.

default.units A string indicating the default units to use if x or y are only given as
numeric values.

draw A logical value indicating whether graphics output should be produced.

gp An object of class gpar, typically the output from a call to the function
gpar. This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

Author(s)

Paul Murrell

See Also

Grid, viewport



838 grid.pack

Examples

grid.newpage()

grid.move.to(0.5, 0.5)

grid.line.to(1, 1)

grid.line.to(0.5, 0)

push.viewport(viewport(x=0, y=0, w=0.25, h=0.25, just=c("left", "bottom")))

grid.rect()

grid.grill()

grid.line.to(0.5, 0.5)

pop.viewport()

grid.newpage Move to a New Page on a Grid Device

Description

This function erases the current device or moves to a new page.

Usage

grid.newpage(recording = TRUE)

Arguments

recording A logical value to indicate whether the new-page operation should be
saved onto the Grid display list.

Value

None.

Author(s)

Paul Murrell

See Also

Grid

grid.pack Pack an Object within a Frame

Description

This function, together with grid.frame is part of a GUI-builder-like interface to construct-
ing graphical images. The idea is that you create a frame with grid.frame then use this
function to pack objects into the frame.



grid.pack 839

Usage

grid.pack(frame, grob, grob.name="", draw=TRUE, side=NULL,
row=NULL, row.before=NULL, row.after=NULL,
col=NULL, col.before=NULL, col.after=NULL,
width=NULL, height=NULL,
force.width=FALSE, force.height=FALSE, border=NULL)

Arguments

frame An object of class frame, typically the output from a call to grid.frame.
grob An object of class grob. The object to be packed.
grob.name The name of the grob within the frame. This is crucial if you intend to

access the object again, for example, to edit it.
draw A boolean indicating whether the output should be updated.
side One of "left", "top", "right", "bottom" to indicate which side to pack

the object on.
row Which row to add the object to. Must be between 1 and the-number-of-

rows-currently-in-the-frame + 1, or NULL in which case the object occupies
all rows.

row.before Add the object to a new row just before this row.
row.after Add the object to a new row just after this row.
col Which col to add the object to. Must be between 1 and the-number-of-

cols-currently-in-the-frame + 1, or NULL in which case the object occupies
all cols.

col.before Add the object to a new col just before this col.
col.after Add the object to a new col just after this col.
width Specifies the width of the column that the object is added to (rather than

allowing the width to be taken from the object).
height Specifies the height of the row that the object is added to (rather than

allowing the height to be taken from the object).
force.width A logical value indicating whether the width of the column that the grob

is being packed into should be EITHER the width specified in the call to
grid.pack OR the maximum of that width and the pre-existing width.

force.height A logical value indicating whether the height of the column that the grob
is being packed into should be EITHER the height specified in the call to
grid.pack OR the maximum of that height and the pre-existing height.

border A unit object of length 4 indicating the borders around the object.

Details

This is (meant to be) a very flexible function. There are many different ways to specify
where the new object is to be added relative to the objects already in the frame. The
function checks that the specification is not self-contradictory.

NOTE that the width/height of the row/col that the object is added to is taken from the
object itself unless the width/height is specified.

Value

None.



840 grid.place

Author(s)

Paul Murrell

See Also

grid.frame

grid.place Place an Object within a Frame

Description

This function provides a simpler interface to the grid.pack() function. This can be used
to place objects within the existing rows and columns of a frame layout. You lose the ability
to add new rows and columns and you lose the ability to affect the heights and widths of the
rows and columns, but you avoid some of the speed penalty of dealing with frames without
having to specify a complicated combination of arguments to grid.pack.

Usage

grid.place(frame, grob, grob.name="", draw=TRUE, row=1, col=1)

Arguments

frame An object of class frame, typically the output from a call to grid.frame.

grob An object of class grob. The object to be packed.

grob.name The name of the grob within the frame. This is crucial if you intend to
access the object again, for example, to edit it.

draw A boolean indicating whether the output should be updated.

row Which row to add the object to. Must be between 1 and the-number-of-
rows-currently-in-the-frame.

col Which col to add the object to. Must be between 1 and the-number-of-
cols-currently-in-the-frame.

Author(s)

Paul Murrell

See Also

grid.frame and grid.pack



grid.plot.and.legend 841

grid.plot.and.legend A Simple Plot and Legend Demo

Description

This function is just a wrapper for a simple demonstration of how a basic plot and legend
can be drawn from scratch using grid.

Usage

grid.plot.and.legend()

Author(s)

Paul Murrell

Examples

grid.plot.and.legend()

grid.points Draw Data Symbols in a Grid Viewport

Description

This function draws data symbols.

Usage

grid.points(x = runif(10),
y = runif(10)),
pch = 1, size = unit(1, "char"),
default.units = "native",
gp=gpar(), draw = TRUE, vp = NULL)

Arguments

x A numeric vector or unit object specifying x-values.

y A numeric vector or unit object specifying y-values.

pch A numeric or character vector indicating what sort of plotting symbol to
use.

size A unit object specifying the size of the plotting symbols.

default.units A string indicating the default units to use if x or y are only given as
numeric vectors.

gp An object of class gpar, typically the output from a call to the function
gpar. This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).



842 grid.polygon

Details

The "grob" object contains an object of class "points".

Value

An object of class "grob".

Author(s)

Paul Murrell

See Also

Grid, viewport

grid.polygon Draw a Polygon

Description

This function draws a polygon. The final point will automatically be connected to the
initial point.

Usage

grid.polygon(x=c(0, 0.5, 1, 0.5), y=c(0.5, 1, 0.5, 0),
id=NULL, id.lengths=NULL,
default.units="npc",
gp=gpar(), draw=TRUE, vp=NULL)

Arguments

x A numeric vector or unit object specifying x-locations.

y A numeric vector or unit object specifying y-locations.

id A numeric vector used to separate locations in x and y into multiple
polygons. All locations with the same id belong to the same polygon.

id.lengths A numeric vector used to separate locations in x and y into multiple poly-
gons. Specifies consecutive blocks of locations which make up separate
polygons.

default.units A string indicating the default units to use if x, y, width, or height are
only given as numeric vectors.

gp An object of class gpar, typically the output from a call to the function
gpar. This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

The "grob" object contains an object of class "polygon".



grid.pretty 843

Value

An object of class "grob".

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

grid.polygon()

# Using id (NOTE: locations are not in consecutive blocks)

grid.newpage()

grid.polygon(x=c((0:4)/10, rep(.5, 5), (10:6)/10, rep(.5, 5)),

y=c(rep(.5, 5), (10:6/10), rep(.5, 5), (0:4)/10),

id=rep(1:5, 4),

gp=gpar(fill=1:5))

# Using id.lengths

grid.newpage()

grid.polygon(x=outer(c(0, .5, 1, .5), 5:1/5),

y=outer(c(.5, 1, .5, 0), 5:1/5),

id.lengths=rep(4, 5),

gp=gpar(fill=1:5))

grid.pretty Generate a Sensible Set of Breakpoints

Description

Produces a pretty set of breakpoints within the range given.

Usage

grid.pretty(range)

Arguments

range A numeric vector

Value

A numeric vector of breakpoints.

Author(s)

Paul Murrell



844 grid.rect

grid.rect Draw a rectangle in a Grid Viewport

Description

This function draws a rectangle.

Usage

grid.rect(x = unit(0.5, "npc"), y = unit(0.5, "npc"),
width = unit(1, "npc"), height = unit(1, "npc"),
just = "centre", default.units = "npc",
gp=gpar(), draw = TRUE, vp = NULL)

Arguments

x A numeric vector or unit object specifying x-location.

y A numeric vector or unit object specifying y-location.

width A numeric vector or unit object specifying width.

height A numeric vector or unit object specifying height.

just The justification of the rectangle about its (x, y) location. If two values
are given, the first specifies horizontal justification and the second specifies
vertical justification.

default.units A string indicating the default units to use if x, y, width, or height are
only given as numeric vectors.

gp An object of class gpar, typically the output from a call to the function
gpar. This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

The "grob" object contains an object of class "rect".

Value

An object of class "grob".

Author(s)

Paul Murrell

See Also

Grid, viewport



grid.segments 845

grid.segments Draw Line Segments in a Grid Viewport

Description

This function draws line segments.

Usage

grid.segments(x0 = unit(0, "npc"), y0 = unit(0, "npc"),
x1 = unit(1, "npc"), y1 = unit(1, "npc"),
default.units = "npc", units.per.obs = FALSE,
gp = gpar(), draw = TRUE, vp = NULL)

Arguments

x0 Numeric indicating the starting x-values of the line segments.

y0 Numeric indicating the starting y-values of the line segments.

x1 Numeric indicating the stopping x-values of the line segments.

y1 Numeric indicating the stopping y-values of the line segments.

gp An object of class gpar.

default.units A string.

units.per.obs A boolean indicating whether distinct units are given for each x/y-value.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL)

Value

An object of class "grob".

Author(s)

Paul Murrell

See Also

Grid, viewport



846 grid.set

grid.set Set the Contents of a Grid Graphical Object

Description

A Grid graphical object contains a list structure; this function sets the value of that list
structure.

Usage

grid.set(grob, ...)

Arguments

grob An object of class "grob".

... Zero or more element-specifiers, plus a list structure. The list structure
is required. Each specifier may be a single character or numeric value.

Details

If there are no specifiers then the contents of the grob are set to be the list structure. If
there is a specifier and the list structure of the grob has a corresponding element, and that
element is an object of class "grob", then the contents of that element are set to be the list
structure. And so on . . .

This is ONLY for setting the list structure contents of a graphical object. See grid.edit
for setting the values of the elements of the list structure.

This function should not normally be called by the user.

Value

None.

Author(s)

Paul Murrell

See Also

grid.grob.



grid.show.layout 847

grid.show.layout Draw a Diagram of a Grid Layout

Description

This function uses Grid graphics to draw a diagram of a Grid layout.

Usage

grid.show.layout(l, newpage=TRUE,
cell.border = "blue", cell.fill = "light blue",
cell.label = TRUE, vp = NULL)

Arguments

l A Grid layout object.

newpage A logical value indicating whether to move on to a new page before draw-
ing the diagram.

cell.border The colour used to draw the borders of the cells in the layout.

cell.fill The colour used to fill the cells in the layout.

cell.label A logical indicating whether the layout cells should be labelled.

vp A Grid viewport object (or NULL).

Details

A viewport is created within vp to provide a margin for annotation, and the layout is drawn
within that new viewport. The margin is filled with light grey, the new viewport is filled
with white and framed with a black border, and the layout regions are filled with light blue
and framed with a blue border. The diagram is annotated with the widths and heights
(including units) of the columns and rows of the layout using red text.

Value

None.

Author(s)

Paul Murrell

See Also

Grid, viewport, grid.layout

Examples

## Diagram of a simple layout

grid.show.layout(grid.layout(4,2,

heights=unit(rep(1, 4),

c("lines", "lines", "lines", "null")),

widths=unit(c(1, 1), "inches")))



848 grid.show.viewport

grid.show.viewport Draw a Diagram of a Grid Viewport

Description

This function uses Grid graphics to draw a diagram of a Grid viewport.

Usage

grid.show.viewport(v, parent.layout = NULL, newpage = TRUE, vp = NULL)

Arguments

v A Grid viewport object.

parent.layout A grid layout object. If this is not NULL and the viewport given in v has
its location specified relative to the layout, then the diagram shows the
layout and which cells v occupies within the layout.

newpage A logical value to indicate whether to move to a new page before drawing
the diagram.

vp A Grid viewport object (or NULL).

Details

A viewport is created within vp to provide a margin for annotation, and the diagram is
drawn within that new viewport. The margin is filled with light grey, the new viewport
is filled with white and framed with a black border, and the viewport region is filled with
light blue and framed with a blue border. The diagram is annotated with the width and
height (including units) of the viewport, the (x, y) location of the viewport, and the x- and
y-scales of the viewport, using red lines and text.

Value

None.

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

## Diagram of a sample viewport

grid.show.viewport(viewport(x=0.6, y=0.6,

w=unit(1, "inches"), h=unit(1, "inches")))

grid.show.viewport(viewport(layout.pos.row=2, layout.pos.col=2:3),

grid.layout(3, 4))



grid.text 849

grid.text Draw Text in a Grid Viewport

Description

This function draws a piece of text.

Usage

grid.text(label, x = unit(0.5, "npc"), y = unit(0.5, "npc"),
just = "centre", rot = 0,
check.overlap = FALSE, default.units = "npc",
gp=gpar(), draw = TRUE, vp = NULL)

Arguments

label A vector of strings or expressions to draw.

x A numeric vector or unit object specifying x-values.

y A numeric vector or unit object specifying y-values.

just The justification of the text about its (x, y) location. If two values are
given, the first specifies horizontal justification and the second specifies
vertical justification.

rot The angle to rotate the text.

check.overlap A logical value to indicate whether to check for and omit overlapping text.

default.units A string indicating the default units to use if x or y are only given as
numeric vectors.

gp An object of class gpar, typically the output from a call to the function
gpar. This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

If the label argument is an expression, the output is formatted as a mathematical anno-
tation, as for base graphics text.

The "grob" object contains an object of class "text".

Value

An object of class "grob".

Author(s)

Paul Murrell

See Also

Grid, viewport



850 grid.xaxis

Examples

# Clipping of overlapping text

grid.newpage()

x <- runif(20)

y <- runif(20)

rot <- runif(20, 0, 360)

grid.text("SOMETHING NICE AND BIG", x=x, y=y, rot=rot,

gp=gpar(fontsize=20, col="grey"))

grid.text("SOMETHING NICE AND BIG", x=x, y=y, rot=rot,

gp=gpar(fontsize=20), check=TRUE)

# Specifying the justification of text

grid.newpage()

draw.text <- function(just, i, j) {

grid.text("ABCD", x=x[j], y=y[i], just=just)

grid.text(deparse(substitute(just)), x=x[j], y=y[i] + unit(2, "lines"),

gp=gpar(col="grey", fontsize=8))

}

x <- unit(1:4/5, "npc")

y <- unit(1:4/5, "npc")

grid.grill(h=y, v=x, gp=gpar(col="grey"))

draw.text(c("bottom"), 1, 1)

draw.text(c("left", "bottom"), 2, 1)

draw.text(c("right", "bottom"), 3, 1)

draw.text(c("centre", "bottom"), 4, 1)

draw.text(c("centre"), 1, 2)

draw.text(c("left", "centre"), 2, 2)

draw.text(c("right", "centre"), 3, 2)

draw.text(c("centre", "centre"), 4, 2)

draw.text(c("top"), 1, 3)

draw.text(c("left", "top"), 2, 3)

draw.text(c("right", "top"), 3, 3)

draw.text(c("centre", "top"), 4, 3)

draw.text(c(), 1, 4)

draw.text(c("left"), 2, 4)

draw.text(c("right"), 3, 4)

draw.text(c("centre"), 4, 4)

# A simple mathematical annotation example

grid.newpage()

grid.text(expression(z[i] == sqrt(x[i]^2 + y[i]^2)),

gp=gpar(cex=2))

grid.xaxis Draw an X-Axis on a Grid Viewport

Description

This function draws an x-axis.

Usage

grid.xaxis(at = NULL, label = TRUE, main = TRUE, gp = gpar(),
draw = TRUE, vp = NULL)



grid.yaxis 851

Arguments

at A numeric vector of x-value locations for the tick marks.

label A logical value indicating whether to draw the labels on the tick marks.

main A logical value indicating whether to draw the axis at the bottom (TRUE)
or at the top (FALSE) of the viewport.

gp An object of class gpar, typically the output from a call to the function
gpar. This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport obect (or NULL).

Details

The "grob" object contains an object of class "xaxis".

Value

An object of class "grob".

Author(s)

Paul Murrell

See Also

Grid, viewport, grid.yaxis

grid.yaxis Draw a Y-Axis on a Grid Viewport

Description

This function draws a y-axis.

Usage

grid.yaxis(at = NULL, label = TRUE, main = TRUE, gp =gpar(),
draw = TRUE, vp = NULL)

Arguments

at A numeric vector of y-value locations for the tick marks.

label A logical value indicating whether to draw the labels on the tick marks.

main A logical value indicating whether to draw the axis at the left (TRUE) or
at the right (FALSE) of the viewport.

gp An object of class gpar, typically the output from a call to the function
gpar. This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport obect (or NULL).



852 height.details

Details

The "grob" object contains an object of class "yaxis".

Value

An object of class "grob".

Author(s)

Paul Murrell

See Also

Grid, viewport, grid.xaxis

height.details Height of a Grob

Description

This generic function is called during the evaluation of "grobheight" units. It should
return an object of class "unit".

Usage

height.details(x)

Arguments

x A graphical object list structure.

Value

An object of class "unit".

Author(s)

Paul Murrell

See Also

The code for some methods, such as height.details.rect and height.details.text.
The function absolute.size.



plotViewport 853

plotViewport Create a Viewport with a Standard Plot Layout

Description

This is a convenience function for producing a viewport with the common S-style plot layout
– i.e., a central plot region surrounded by margins given in terms of a number of lines of
text.

Usage

plotViewport(margins, ...)

Arguments

margins A numeric vector interpreted in the same way as par(mar) in base graph-
ics.

... All other arguments will be passed to a call to the viewport() function.

Value

A grid viewport object.

Author(s)

Paul Murrell

See Also

viewport and dataViewport.

pop.viewport Pop a Viewport off the Grid Viewport Stack

Description

Grid maintains a viewport stack — a list of nested drawing contexts.

This function makes the parent of the specified viewport the new default viewport.

Usage

pop.viewport(n=1, recording=TRUE)

Arguments

n An integer giving the number of viewports to pop. Defaults to 1.

recording A logical value to indicate whether the set-viewport operation should be
recorded on the Grid display list.



854 push.viewport

Value

None.

Author(s)

Paul Murrell

See Also

push.viewport.

push.viewport Push a Viewport onto the Grid Viewport Stack

Description

Grid maintains a viewport stack — a list of nested drawing contexts.

This function makes the specified viewport the default viewport and makes its parent the
previous default viewport (i.e., nests the specified context within the previous default con-
text).

Usage

push.viewport(..., recording=TRUE)

Arguments

... One or more objects of class "viewport", or NULL.

recording A logical value to indicate whether the set-viewport operation should be
recorded on the Grid display list.

Value

None.

Author(s)

Paul Murrell

See Also

pop.viewport.



unit 855

unit Function to Create a Unit Object

Description

This function creates a unit object — a vector of unit values. A unit value is typically just
a single numeric value with an associated unit.

Usage

unit(x, units, data=NULL)
is.unit(unit)

Arguments

x A numeric vector.

units A character vector specifying the units for the corresponding numeric
values.

data This argument is used to supply extra information for special unit types.

unit Any object.

Details

Unit objects allow the user to specify locations and dimensions in a large number of different
coordinate systems. All drawing occurs relative to a viewport and the units specifies what
coordinate system to use within that viewport.

Possible units (coordinate systems) are:

"npc" Normalised Parent Coordinates (the default). The origin of the viewport is (0, 0)
and the viewport has a width and height of 1 unit. For example, (0.5, 0.5) is the centre
of the viewport.

"cm" Centimetres.

"inches" Inches. 1 in = 2.54 cm.

"mm" Millimetres. 10 mm = 1 cm.

"points" Points. 72.27 pt = 1 in.

"picas" Picas. 1 pc = 12 pt.

"bigpts" Big Points. 72 bp = 1 in.

"dida" Dida. 1157 dd = 1238 pt.

"cicero" Cicero. 1 cc = 12 dd.

"scaledpts" Scaled Points. 65536 sp = 1 pt.

"lines" Lines of text. Locations and dimensions are in terms of multiples of the default
text size of the viewport (as specified by the viewport’s fontsize and lineheight).

"char" Multiples of nominal font height of the viewport (as specified by the viewport’s
fontsize).

"native" Locations and dimensions are relative to the viewport’s xscale and yscale.



856 unit

"snpc" Square Normalised Parent Coordinates. Same as Normalised Parent Coordinates,
except gives the same answer for horizontal and vertical locations/dimensions. It uses
the lesser of npc-width and npc-height. This is useful for making things which are a
proportion of the viewport, but have to be square (or have a fixed aspect ratio).

"strwidth" Multiples of the width of the string specified in the data argument. The font
size is determined by the pointsize of the viewport.

"strheight" Multiples of the height of the string specified in the data argument. The font
size is determined by the pointsize of the viewport.

"grobwidth" Multiples of the width of the grob specified in the data argument.

"grobheight" Multiples of the height of the grob specified in the data argument.

The data argument must be a list when the unit.length() is greater than 1. For
example, unit(rep(1, 3), c("npc", "strwidth", "inches"), data=list(NULL, "my
string", NULL)).

It is possible to subset unit objects in the normal way (e.g., unit(1:5, "npc")[2:4]), but
a special function unit.c is provided for combining unit objects.

Certain arithmetic and summary operations are defined for unit objects. In particular, it is
possible to add and subtract unit objects (e.g., unit(1, "npc") - unit(1, "inches")),
and to specify the minimum or maximum of a list of unit objects (e.g., min(unit(0.5,
"npc"), unit(1, "inches"))).

The is.unit() function returns a boolean value indicating whether the supplied argument
is of class "unit".

Value

An object of class "unit".

WARNING

A special function unit.length is provided for determining the number of unit values in a
unit object.

The length function will work in some cases, but in general will not give the right answer.

There is also a special function unit.c for concatenating several unit objects.

The c function will not give the right answer.

There used to be "mylines", "mychar", "mystrwidth", "mystrheight" units. These
will still be accepted, but work exactly the same as "lines", "char", "strwidth",
"strheight".

Author(s)

Paul Murrell

See Also

unit.c, unit.rep, unit.pmin, unit.pmax, and unit.length



unit.c 857

Examples

unit(1, "npc")

unit(1:3/4, "npc")

unit(1:3/4, "npc") + unit(1, "inches")

min(unit(0.5, "npc"), unit(1, "inches"))

unit.c(unit(0.5, "npc"), unit(2, "inches") + unit(1:3/4, "npc"),

unit(1, "strwidth", "hi there"))

unit.c Combine Unit Objects

Description

This function produces a new unit object by combining the unit objects specified as argu-
ments.

Usage

unit.c(...)

Arguments

... An arbitrary number of unit objects.

Value

An object of class unit.

Author(s)

Paul Murrell

See Also

unit.

unit.length Length of a Unit Object

Description

The length of a unit object is defined as the number of unit values in the unit object.

Usage

unit.length(unit)

Arguments

unit A unit object.



858 unit.pmin

Value

An object of class unit.

Author(s)

Paul Murrell

See Also

unit

unit.pmin Parallel Unit Minima and Maxima

Description

Returns a unit object whose i’th value is the minimum (or maximum) of the i’th values of
the arguments.

Usage

unit.pmin(...)
unit.pmax(...)

Arguments

... One or more unit objects.

Details

The length of the result is the maximum of the lengths of the arguments; shorter arguments
are recycled in the usual manner.

Value

A unit object.

Author(s)

Paul Murrell

Examples

max(unit(1:3, "cm"), unit(0.5, "npc"))

unit.pmax(unit(1:3, "cm"), unit(0.5, "npc"))



unit.rep 859

unit.rep Replicate Elements of Unit Objects

Description

Replicates the units according to the values given in times and length.out.

Usage

unit.rep(x, times, length.out)

Arguments

x An object of class "unit".

times integer. A vector giving the number of times to repeat each element.
Either of length 1 or length(x).

length.out integer. (Optional.) The desired length of the output vector.

Value

An object of class "unit".

Author(s)

Paul Murrell

See Also

rep

Examples

unit.rep(unit(1:3, "npc"), 3)

unit.rep(unit(1:3, "npc"), 1:3)

unit.rep(unit(1:3, "npc") + unit(1, "inches"), 3)

unit.rep(max(unit(1:3, "npc") + unit(1, "inches")), 3)

unit.rep(max(unit(1:3, "npc") + unit(1, "strwidth", "a"))*4, 3)

unit.rep(unit(1:3, "npc") + unit(1, "strwidth", "a")*4, 3)

viewport Create a Grid Viewport

Description

This function creates a viewport, which describes a rectangular region on a graphics device
and defines a number of coordinate systems within that region.



860 viewport

Usage

viewport(x = unit(0.5, "npc"), y = unit(0.5, "npc"),
width = unit(1, "npc"), height = unit(1, "npc"),
default.units = "npc", just = "centre",
gp = gpar(), clip = FALSE,
xscale = c(0, 1), yscale = c(0, 1),
angle = 0,
layout = NULL, layout.pos.row = NULL, layout.pos.col = NULL)

Arguments

x A numeric vector or unit object specifying x-location.

y A numeric vector or unit object specifying y-location.

width A numeric vector or unit object specifying width.

height A numeric vector or unit object specifying height.

default.units A string indicating the default units to use if x, y, width, or height are
only given as numeric vectors.

just A string vector specifying the justification of the viewport relative to its
(x, y) location. If there are two values, the first value specifes horizontal
justification and the second value specifies vertical justification. Possible
values are: "left", "right", "centre", "center", "bottom", and "top".

gp An object of class gpar, typically the output from a call to the function
gpar. This is basically a list of graphical parameter settings.

clip A logical flag indicating whether to clip to the extent of the viewport.

xscale A numeric vector of length two indicating the minimum and maximum
on the x-scale.

yscale A numeric vector of length two indicating the minimum and maximum
on the y-scale.

angle A numeric value indicating the angle of rotation of the viewport. Positive
values indicate the amount of rotation, in degrees, anitclockwise from the
positive x-axis.

layout A Grid layout object which splits the viewport into subregions.
layout.pos.row

A numeric vector giving the rows occupied by this viewport in its parent’s
layout.

layout.pos.col

A numeric vector giving the columns occupied by this viewport in its
parent’s layout.

Details

The location and size of a viewport are relative to the coordinate systems defined by the
viewport’s parent (either a graphical device or another viewport). The location and size
can be specified in a very flexible way by specifying them with unit objects. When speci-
fying the location of a viewport, specifying both layout.pos.row and layout.pos.col as
NULL indicates that the viewport ignores its parent’s layout and specifies its own location
and size (via its locn). If only one of layout.pos.row and layout.pos.col is NULL, this
means occupy ALL of the appropriate row(s)/column(s). For example, layout.pos.row



viewport 861

= 1 and layout.pos.col = NULL means occupy all of row 1. Specifying non-NULL val-
ues for both layout.pos.row and layout.pos.col means occupy the intersection of the
appropriate rows and columns. If a vector of length two is specified for layout.pos.row
or layout.pos.col, this indicates a range of rows or columns to occupy. For example,
layout.pos.row = c(1, 3) and layout.pos.col = c(2, 4) means occupy cells in the
intersection of rows 1, 2, and 3, and columns, 2, 3, and 4.

Clipping obeys only the most recent viewport clip setting. For example, if you clip to
viewport1, then clip to viewport2, the clipping region is determined wholly by viewport2,
the size and shape of viewport1 is irrelevant (until viewport2 is popped of course).

If a viewport is rotated (because of its own angle setting or because it is within another
viewport which is rotated) then the clip flag is ignored.

Value

An R object of class viewport.

Author(s)

Paul Murrell

See Also

Grid, unit, grid.layout, grid.show.layout.

Examples

# Diagram of a sample viewport

grid.show.viewport(viewport(x=0.6, y=0.6,

w=unit(1, "inches"), h=unit(1, "inches")))

# Demonstrate viewport clipping

clip.demo <- function(i, j, clip1, clip2, title) {

push.viewport(viewport(layout.pos.col=i,

layout.pos.row=j))

push.viewport(viewport(width=0.6, height=0.6, clip=clip1))

grid.rect(gp=gpar(fill="white"))

grid.circle(r=0.55, gp=gpar(col="red", fill="pink"))

pop.viewport()

push.viewport(viewport(width=0.6, height=0.6, clip=clip2))

grid.polygon(x=c(0.5, 1.1, 0.6, 1.1, 0.5, -0.1, 0.4, -0.1),

y=c(0.6, 1.1, 0.5, -0.1, 0.4, -0.1, 0.5, 1.1),

gp=gpar(col="blue", fill="light blue"))

pop.viewport(2)

}

grid.newpage()

grid.rect(gp=gpar(fill="grey"))

push.viewport(viewport(layout=grid.layout(2, 2)))

clip.demo(1, 1, FALSE, FALSE)

clip.demo(1, 2, TRUE, FALSE)

clip.demo(2, 1, FALSE, TRUE)

clip.demo(2, 2, TRUE, TRUE)

pop.viewport()



862 width.details

width.details Width of a Grob

Description

This generic function is called during the evaluation of "grobwidth" units. It should return
an object of class "unit".

Usage

width.details(x)

Arguments

x A graphical object list structure.

Value

An object of class "unit".

Author(s)

Paul Murrell

See Also

The code for some methods, such as width.details.rect and width.details.text. The
function absolute.size.



Chapter 3

The methods package

.BasicFunsList List of Builtin and Special Functions

Description

A named list providing instructions for turning builtin and special functions into generic
functions.

Functions in R that are defined as .Primitive(<name>) are not suitable for formal methods,
because they lack the basic reflectance property. You can’t find the argument list for these
functions by examining the function object itself.

Future versions of R may fix this by attaching a formal argument list to the corresponding
function. While generally the names of arguments are not checked by the internal code
implementing the function, the number of arguments frequently is.

In any case, some definition of a formal argument list is needed if users are to define methods
for these functions. In particular, if methods are to be merged from multiple packages, the
different sets of methods need to agree on the formal arguments.

In the absence of reflectance, this list provides the relevant information via a dummy func-
tion associated with each of the known specials for which methods are allowed.

At the same, the list flags those specials for which methods are meaningless (e.g., for) or
just a very bad idea (e.g., .Primitive).

A generic function created via setMethod, for example, for one of these special functions
will have the argument list from .BasicFunsList. If no entry exists, the argument list (x,
...) is assumed.

as Force an Object to Belong to a Class

Description

These functions manage the relations that allow coercing an object to a given class.

863



864 as

Usage

as(object, Class, strict=TRUE)

as(object, Class) <- value

setAs(from, to, def, replace, where = topenv(parent.frame()))

Arguments

object Any object.

Class The name of the class to which object should be coerced.

strict A logical flag. If TRUE, the returned object must be strictly from the
target class (unless that class is a virtual class, in which case the object
will be from the closest actual class (often the original object, if that class
extends the virtual class directly).
If strict = FALSE, any simple extension of the target class will be re-
turned, without further change. A simple extension is, roughly, one that
just adds slots to an existing class.

value The value to use to modify object (see the discussion below). You should
supply an object with class Class; some coercion is done, but you’re
unwise to rely on it.

from, to The classes between which def performs coercion.
(In the case of the coerce function these are objects from the classes, not
the names of the classes, but you’re not expected to call coerce directly.)

def A function of one argument. It will get an object from class from and
had better return an object of class to. (If you want to save setAs a little
work, make the name of the argument from, but don’t worry about it,
setAs will do the conversion.)

replace If supplied, the function to use as a replacement method.

where the position or environment in which to store the resulting method for
coerce.

Summary of Functions

as: Returns the version of this object coerced to be the given Class.
If the corresponding is relation is true, it will be used. In particular, if the relation
has a coerce method, the method will be invoked on object.
If the is relation is FALSE, and coerceFlag is TRUE, the coerce function will be called
(which will throw an error if there is no valid way to coerce the two objects). Otherwise,
NULL is returned.
Coerce methods are pre-defined for basic classes (including all the types of vectors,
functions and a few others). The object asFunctions contains the list of such pre-
defined relations: names(asFunctions) gives the names of all the classes.
Beyond these two sources of methods, further methods are defined by calls to the
setAs function.

coerce: Coerce from to be of the same class as to.
Not a function you should usually call explicitly. The function setAs creates methods
for coerce for the as function to use.



as 865

setAs: The function supplied as the third argument is to be called to implement as(x,
to) when x has class from. Need we add that the function should return a suitable
object with class to.

How Functions ‘as’ and ‘setAs’ Work

The function as contrives to turn object into an object with class Class. In doing so, it
uses information about classes and methods, but in a somewhat special way. Keep in mind
that objects from one class can turn into objects from another class either automatically
or by an explicit call to the as function. Automatic conversion is special, and comes from
the designer of one class of objects asserting that this class extends a another class (see
setClass and setIs).

Because inheritance is a powerful assertion, it should be used sparingly (otherwise your
computations may produce unexpected, and perhaps incorrect, results). But objects can
also be converted explicitly, by calling as, and that conversion is designed to use any
inheritance information, as well as explicit methods.

As a first step in conversion, the as function determines whether is(object, Class) is
TRUE. This can be the case either because the class definition of object includes Class as a
“super class” (directly or indirectly), or because a call to setIs established the relationship.

Either way, the inheritance relation defines a method to coerce object to Class. In the
most common case, the method is just to extract from object the slots needed for Class,
but it’s also possible to specify a method explicitly in a setIs call.

So, if inheritance applies, the as function calls the appropriate method. If inheritance does
not apply, and coerceFlag is FALSE, NULL is returned.

By default, coerceFlag is TRUE. In this case the as function goes on to look for a method
for the function coerce for the signature c(from = class(object), to = Class).

Method selection is used in the as function in two special ways. First, inheritance is
applied for the argument from but not for the argument to (if you think about it, you’ll
probably agree that you wouldn’t want the result to be from some class other than the
Class specified). Second, the function tries to use inheritance information to convert the
object indirectly, by first converting it to an inherited class. It does this by examining the
classes that the from class extends, to see if any of them has an explicit conversion method.
Suppose class "by" does: Then the as function implicitly computes as(as(object, "by"),
Class).

With this explanation as background, the function setAs does a fairly obvious computation:
It constructs and sets a method for the function coerce with signature c(from, to), using
the def argument to define the body of the method. The function supplied as def can
have one argument (interpreted as an object to be coerced) or two arguments (the from
object and the to class). Either way, setAs constructs a function of two arguments, with
the second defaulting to the name of the to class. The method will be called from as with
the object as the only argument: The default for the second argument is provided so the
method can know the intended to class.

The function coerce exists almost entirely as a repository for such methods, to be selected
as desribed above by the as function. In fact, it would usually be a bad idea to call coerce
directly, since then you would get inheritance on the to argument; as mentioned, this is not
likely to be what you want.

The Function ‘as’ Used in Replacements

When as appears on the left of an assignment, the intuitive meaning is “Replace the part
of object that was inherited from Class by the value on the right of the assignment.”



866 as

This usually has a straightforward interpretation, but you can control explicitly what hap-
pens, and sometimes you should to avoid possible corruption of objects.

When object inherits from Class in the usual way, by including the slots of Class, the
default as method is to set the corresponding slots in object to those in value.

The default computation may be reasonable, but usually only if all other slots in object
are unrelated to the slots being changed. Often, however, this is not the case. The class
of object may have extended Class with a new slot whose value depends on the inherited
slots. In this case, you may want to define a method for replacing the inherited information
that recomputes all the dependent information. Or, you may just want to prohibit replacing
the inherited information directly .

The way to control such replacements is through the replace argument to function setIs.
This argument is a method that function as calls when used for replacement. It can do
whatever you like, including calling stop if you want to prohibit replacements. It should
return a modified object with the same class as the object argument to as.

In R, you can also explicitly supply a replacement method, even in the case that inheritance
does not apply, through the replace argument to setAs. It works essentially the same way,
but in this case by constructing a method for "coerce<-". (Replace methods for coercion
without inheritance are not in the original description and so may not be compatible with
S-Plus, at least not yet.)

When inheritance does apply, coerce and replace methods can be specified through either
setIs or setAs; the effect is essentially the same.

Basic Coercion Methods

Methods are pre-defined for coercing any object to one of the basic datatypes. For example,
as(x, "numeric") uses the existing as.numeric function. These built-in methods can be
listed by showMethods("coerce").

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

Examples

## using the definition of class "track" from Classes

setAs("track", "numeric", function(from)from@y)

t1 <- new("track", x=1:20, y=(1:20)^2)

as(t1, "numeric")

http://developer.r-project.org/methodsPackage.html


BasicClasses 867

## The next example shows:

## 1. A virtual class to define setAs for several classes at once.

## 2. as() using inherited information

setClass("ca", representation(a = "character", id = "numeric"))

setClass("cb", representation(b = "character", id = "numeric"))

setClass("id")

setIs("ca", "id")

setIs("cb", "id")

setAs("id", "numeric", function(from) from@id)

CA <- new("ca", a ="A", id = 1)

CB <- new("cb", b = "B", id = 2)

setAs("cb", "ca", function(from, to )new(to, a=from@b, id = from@id))

as(CB, "numeric")

BasicClasses Classes Corresponding to Basic Data Types

Description

Formal classes exist corresponding to the basic R data types, allowing these types to be
used in method signatures, as slots in class definitions, and to be extended by new classes.

Usage

### The following are all basic vector classes.
### They can appear as class names in method signatures,
### in calls to as(), is(), and new().
"character"
"complex"
"double"
"expression"
"integer"
"list"
"logical"
"numeric"
"single"

### the class
"vector"
### is a virtual class, extended by all the above

### The following are additional basic classes



868 callNextMethod

"NULL" # NULL objects
"function" # function objects, including primitives
"externalptr" # raw external pointers for use in C code

"ANY" # virtual classes used by the methods package itself
"VIRTUAL"
"missing"

Objects from the Classes

Objects can be created by calls of the form new(Class, ...), where Class is the quoted
class name, and the remaining arguments if any are objects to be interpreted as vectors of
this class. Multiple arguments will be concatenated.

The class "expression" is slightly odd, in that the . . . arguments will not be evaluated;
therefore, don’t enclose them in a call to quote().

Extends

Class "vector", directly.

Methods

coerce Methods are defined to coerce arbitrary objects to these classes, by calling the
corresponding basic function, for example, as(x, "numeric") calls as.numeric(x).

callNextMethod Call an Inherited Method

Description

A call to callNextMethod can only appear inside a method definition. It then results in
a call to the first inherited method after the current method, with the arguments to the
current method passed down to the next method. The value of that method call is the
value of callNextMethod.

Usage

callNextMethod(...)

Arguments

... Optionally, the arguments to the function in its next call (but note that
the dispatch is as in the detailed description below; the arguments have
no effect on selecting the next method.)
If no arguments are included in the call to callNextMethod, the effect is to
call the method with the current arguments. See the detailed description
for what this really means.
Calling with no arguments is often the natural way to use
callNextMethod; see the examples.



callNextMethod 869

Details

The “next” method (i.e., the first inherited method) is defined to be that method which
would have been called if the current method did not exist. This is more-or-less literally
what happens: The current method is deleted from a copy of the methods for the current
generic, and selectMethod is called to find the next method (the result is cached in a
special object, so the search only typically happens once per session per combination of
argument classes).

It is also legal, and often useful, for the method called by callNextMethod to itself have a
call to callNextMethod. This generally works as you would expect, but for completeness
be aware that it is possible to have ambiguous inheritance in the S structure, in the sense
that the same two classes can appear as superclasses in the opposite order in two other
class definitions. In this case the effect of a nested instance of callNextMethod is not well
defined. Such inconsistent class hierarchies are both rare and nearly always the result of
bad design, but they are possible, and currently undetected.

The statement that the method is called with the current arguments is more precisely as
follows. Arguments that were missing in the current call are still missing (remember that
"missing" is a valid class in a method signature). For a formal argument, say x, that
appears in the original call, there is a corresponding argument in the next method call
equivalent to “x = x”. In effect, this means that the next method sees the same actual
arguments, but arguments are evaluated only once.

Value

The value returned by the selected method.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

Methods for the general behavior of method dispatch

Examples

## some class definitions with simple inheritance

setClass("B0" , representation(b0 = "numeric"))

setClass("B1", representation(b1 = "character"), contains = "B0")

setClass("B2", representation(b2 = "logical"), contains = "B1")

## and a rather silly function to illustrate callNextMethod

http://developer.r-project.org/methodsPackage.html


870 Classes

f <- function(x) class(x)

setMethod("f", "B0", function(x) c(x@b0^2, callNextMethod()))

setMethod("f", "B1", function(x) c(paste(x@b1,":"), callNextMethod()))

setMethod("f", "B2", function(x) c(x@b2, callNextMethod()))

b1 <- new("B1", b0 = 2, b1 = "Testing")

b2 <- new("B2", b2 = FALSE, b1 = "More testing", b0 = 10)

f(b2)

f(b1)

Classes Class Definitions

Description

Class definitions are objects that contain the formal definition of a class of R objects.

Details

When a class is defined, an object is stored that contains the information about that class,
including:

slots Each slot is a component object. Like elements of a list these may be extracted (by
name) and set. However, they differ from list components in important ways.
All the objects from a particular class have the same set of slot names; specifically, the
slot names that are contained in the class definition. Each slot in each object always
has the same class; again, this is defined by the overall class definition.
Classes don’t need to have any slots, and many useful classes do not. These objects
usually extend other, simple objects, such as numeric or character vectors. Finally,
classes can have no data at all—these are known as virtual classes and are in fact very
important programming tools. They are used to group together ordinary classes that
want to share some programming behavior, without necessarily restricting how the
behavior is implemented.

extends The names of the classes that this class extends. A class Fancy, say, extends a
class Simple if an object from the Fancy class has all the capabilities of the Simple
class (and probably some more as well). In particular, and very usefully, any method
defined to work for a Simple object can be applied to a Fancy object as well.
In other programming languages, this relationship is sometimes expressed by saying
that Simple is a superclass of Fancy, or that Fancy is a subclass of Simple.
The actual class definition object contains the names of all the classes this class extends.
But those classes can themselves extend other classes also, so the complete extension
can only be known by obtaining all those class definitions.
Class extension is usually defined when the class itself is defined, by including
the names of superclasses as unnamed elements in the representation argument to
setClass.



classRepresentation-class 871

An object from a given class will then have all the slots defined for its own class and
all the slots defined for its superclasses as well.
Note that extends relations can be defined in other ways as well, by using the setIs
function.

prototype Each class definition contains a prototype object from the class. This must
have all the slots, if any, defined by the class definition.
The prototype most commonly just consists of the prototypes of all its slots. But that
need not be the case: the definition of the class can specify any valid object for any of
the slots.
There are a number of “basic” classes, corresponding to the ordinary kinds of data
occurring in R. For example, "numeric" is a class corresponding to numeric vectors.
These classes are predefined and can then be used as slots or as superclasses for any
other class definitions. The prototypes for the vector classes are vectors of length 0 of
the corresponding type.
There are also a few basic virtual classes, the most important being "vector", grouping
together all the vector classes; and "language", grouping together all the types of
objects making up the R language.

Author(s)

John Chambers

References

The web page http://www.omegahat.org/RSMethods/index.html is the primary docu-
mentation.

The functions in this package emulate the facility for classes and methods described in
Programming with Data (John M. Chambers, Springer, 1998). See this book for further
details and examples.

See Also

Methods, setClass, is, as, new, slot

classRepresentation-class

Class Objects

Description

These are the objects that hold the definition of classes of objects. They are constructed
and stored as meta-data by calls to the function setClass. Don’t manipulate them directly,
except perhaps to look at individual slots.

Details

Class definitions are stored as metadata in various packages. Additional metadata supplies
information on inheritance (the result of calls to setIs). Inheritance information implied
by the class definition itself (because the class contains one or more other classes) is also
constructed automatically.

http://www.omegahat.org/RSMethods/index.html


872 Documentation

When a class is to be used in an R session, this information is assembled to complete
the class definition. The completion is a second object of class "classRepresentation",
cached for the session or until something happens to change the information. A call to
getClass returns the completed definition of a class; a call to getClassDef returns the
stored definition (uncompleted).

In particular, completion fills in the upward- and downward-pointing inheritance informa-
tion for the class, in slots contains and subclasses respectively. It’s in principle important
to note that this information can depend on which packages are installed, since these may
define additional subclasses or superclasses.

Slots

slots: A named list of the slots in this class; the elements of the list are the classes to which
the slots must belong (or extend), and the names of the list gives the corresponding
slot names.

contains: A named list of the classes this class “contains”; the elements of the list are
objects of SClassExtension-class. The list may be only the direct extensions or all
the currently known extensions (see the details).

virtual: Logical flag, set to TRUE if this is a virtual class.
prototype: The object that represents the standard prototype for this class; i.e., the data

and slots returned by a call to new for this class with no special arguments. Don’t
mess with the prototype object directly.

validity: Optionally, a function to be used to test the validity of objects from this class.
See validObject.

access: Access control information. Not currently used.
className: The character string name of the class.
package: The character string name of the package to which the class belongs. Nearly

always the package on which the metadata for the class is stored, but in operations
such as constructing inheritance information, the internal package name rules.

subclasses: A named list of the classes known to extend this class’; the elements of the
list are objects of SClassExtension-class. The list is currently only filled in when
completing the class definition (see the details).

versionKey: Object of class "externalptr"; eventually will perhaps hold some versioning
information, but not currently used.

sealed: Object of class "logical"; is this class sealed? If so, no modifications are allowed.

See Also

See function setClass to supply the information in the class definition. See Classes for a
more basic discussion of class information.

Documentation Using and Creating On-line Documentation for Classes and
Methods

Description

Special documentation can be supplied to describe the classes and methods that are created
by the software in the methods package. Techniques to access this documentation and to
create it in R help files are described here.



Documentation 873

Getting documentation on classes and methods

You can ask for on-line help for class definitions, for specific methods for a generic function,
and for general discussion of methods for a generic function. These requests use the ?
operator (see help for a general description of the operator). Of course, you are at the
mercy of the implementer as to whether there is any documentation on the corresponding
topics.

Documentation on a class uses the argument class on the left of the ?, and the name of
the class on the right; for example,

class ? genericFunction

to ask for documentation on the class "genericFunction".

When you want documentation for the methods defined for a particular function, you
can ask either for a general discussion of the methods or for documentation of a particular
method (that is, the method that would be selected for a particular set of actual arguments).

Overall methods documentation is requested by calling the ? operator with methods as the
left-side argument and the name of the function as the right-side argument. For example,

methods ? initialize

asks for documentation on the methods for the initialize function.

Asking for documentation on a particular method is done by giving a function call expression
as the right-hand argument to the "?" operator. There are two forms, depending on whether
you prefer to give the class names for the arguments or expressions that you intend to use
in the actual call.

If you planned to evaluate a function call, say myFun(x, sqrt(wt)) and wanted to find out
something about the method that would be used for this call, put the call on the right of
the "?" operator:

?myFun(x, sqrt(wt))

A method will be selected, as it would be for the call itself, and documentation for that
method will be requested. If myFun is not a generic function, ordinary documentation for
the function will be requested.

If you know the actual classes for which you would like method documentation, you can
supply these explicitly in place of the argument expressions. In the example above, if you
want method documentation for the first argument having class "maybeNumber" and the
second "logical", call the "?" operator, this time with a left-side argument method, and
with a function call on the right using the class names as arguments:

method ? myFun("maybeNumber", "logical")

Once again, a method will be selected, this time corresponding to the specified classes, and
method documentation will be requested. This version only works with generic functions.

The two forms each have advantages. The version with actual arguments doesn’t require
you to figure out (or guess at) the classes of the arguments. On the other hand, evaluating
the arguments may take some time, depending on the example. The version with class
names does require you to pick classes, but it’s otherwise unambiguous. It has a subtler
advantage, in that the classes supplied may be virtual classes, in which case no actual
argument will have specifically this class. The class "maybeNumber", for example, might be
a class union (see the example for setClassUnion).

In either form, methods will be selected as they would be in actual computation, including
use of inheritance and group generic functions. See selectMethod for the details, since it
is the function used to find the appropriate method.



874 EmptyMethodsList-class

Writing Documentation for Methods

The on-line documentation for methods and classes uses some extensions to the R docu-
mentation format to implement the requests for class and method documentation described
above. See the document Writing R Extensions for the available markup commands (you
should have consulted this document already if you are at the stage of documenting your
software).

In addition to the specific markup commands to be described, you can create an initial,
overall file with a skeleton of documentation for the methods defined for a particular generic
function:

promptMethods("myFun")

will create a file, ‘myFun-methods.Rd’ with a skeleton of documentation for the methods
defined for function myFun. The output from promptMethods is suitable if you want to
describe all or most of the methods for the function in one file, separate from the documen-
tation of the generic function itself. Once the file has been filled in and moved to the ‘man’
subdirectory of your source package, requests for methods documentation will use that file,
both for specific methods documentation as described above, and for overall documentation
requested by

methods ? myFun

You are not required to use promptMethods, and if you do, you may not want to use the
entire file created:

� If you want to document the methods in the file containing the documentation for
the generic function itself, you can cut-and-paste to move the \alias lines and the
Methods section from the file created by promptMethods to the existing file.

� On the other hand, if these are auxiliary methods, and you only want to document
the added or modified software, you should strip out all but the relevant \alias lines
for the methods of interest, and remove all but the corresponding \item entries in the
Methods section. Note that in this case you will usually remove the first \alias line
as well, since that is the marker for general methods documentation on this function
(in the example, \alias{myfun-methods}).

If you simply want to direct documentation for one or more methods to a particular R
documentation file, insert the appropriate alias.

EmptyMethodsList-class

Internal Class representing Empty Methods List

Description

Objects from class "EmptyMethodsList" are generated during method selection to indicate
failed search (forcing backtracking). Other classes described here are used internally in
method dispatch. All these are for internal use.



environment-class 875

Usage

## class described below
"EmptyMethodsList"

### Other, virtual classes used in method dispatch
"OptionalMethods"
"PossibleMethod"

Slots

argument: Object of class "name" the argument names being selected on.

sublist: Object of class "list" (unused, and perhaps to be dropped in a later version.)

Methods

No methods defined with class "EmptyMethodsList" in the signature.

See Also

Function MethodsListSelect uses the objects; see MethodsList-class for the non-empty
methods list objects.

environment-class Class ”environment”

Description

A formal class for R environments.

Objects from the Class

Objects can be created by calls of the form new("environment", ...). The arguments in
. . . , if any, should be named and will be assigned to the newly created environment.

Methods

coerce signature(from = "ANY", to = "environment"): calls as.environment.

initialize signature(object = "environment"): Implements the assignments in the new
environment. Note that the object argument is ignored; a new environment is always
created, since environments are not protected by copying.

See Also

new.env



876 fixPre1.8

fixPre1.8 Fix Objects Saved from R Versions Previous to 1.8

Description

Beginning with R version 1.8.0, the class of an object contains the identification of the
package in which the class is defined. The function fixPre1.8 fixes and re-assigns ob-
jects missing that information (typically because they were loaded from a file saved with a
previous version of R.)

Usage

fixPre1.8(names, where)

Arguments

names Character vector of the names of all the objects to be fixed and re-
assigned.

where The environment from which to look for the objects, and for class def-
initions. Defaults to the top environment of the call to fixPre1.8, the
global environment if the function is used interactively.

Details

The named object will be saved where it was found. Its class attribute will be changed to
the full form required by R 1.8; otherwise, the contents of the object should be unchanged.

Objects will be fixed and re-assigned only if all the following conditions hold:

1. The named object exists.

2. It is from a defined class (not a basic datatype which has no actual class attribute).

3. The object appears to be from an earlier version of R.

4. The class is currently defined.

5. The object is consistent with the current class definition.

If any condition except the second fails, a warning message is generated.

Note that fixPre1.8 currently fixes only the change in class attributes. In particular,
it will not fix binary versions of packages installed with earlier versions of R if these use
incompatible features. Such packages must be re-installed from source, which is the wise
approach always when major version changes occur in R.

Value

The names of all the objects that were in fact re-assigned.



genericFunction-class 877

genericFunction-class

Generic Function Objects

Description

Generic functions (objects from or extending class genericFunction) are extended function
objects, containing information used in creating and dispatching methods for this function.
They also identify the package associated with the function and its methods.

Objects from the Class

Generic functions are created and assigned by setGeneric or setGroupGeneric and, indi-
rectly, by setMethod.

As you might expect setGeneric and setGroupGeneric create objects of class
"genericFunction" and "groupGenericFunction" respectively.

Slots

.Data: Object of class "function", the function definition of the generic, usually created
automatically as a call to standardGeneric.

generic: Object of class "character", the name of the generic function.

package: Object of class "character", the name of the package to which the function
definition belongs (and not necessarily where the generic function is stored). If the
package is not specified explicitly in the call to setGeneric, it is usually the package
on which the corresponding non-generic function exists.

group: Object of class "list", the group or groups to which this generic function belongs.
Empty by default.

valueClass: Object of class "character"; if not an empty character vector, identifies one
or more classes. It is asserted that all methods for this function return objects from
these class (or from classes that extend them).

signature: Object of class "character", the vector of formal argument names that can
appear in the signature of methods for this generic function. By default, it is all the
formal arguments, except for . . . . Order matters for efficiency: the most commonly
used arguments in specifying methods should come first.

default: Object of class "OptionalMethods", the default method for this function. Gen-
erated automatically and used to initialize method dispatch.

skeleton: Object of class "call", a slot used internally in method dispatch. Don’t expect
to use it directly.

Extends

Class "function", from data part.
Class "OptionalMethods", by class "function".
Class "PossibleMethod", by class "function".



878 GenericFunctions

Methods

Generic function objects are used in the creation and dispatch of formal methods; infor-
mation from the object is used to create methods list objects and to merge or update the
existing methods for this generic.

GenericFunctions Tools for Managing Generic Functions

Description

The functions documented here manage collections of methods associated with a generic
function, as well as providing information about the generic functions themselves.

Usage

isGeneric(f, where, fdef, getName = FALSE)

isGroup(f, where, fdef)

removeGeneric(f, where)

standardGeneric(f)

dumpMethod(f, signature, file, where, def)

findFunction(f, generic=TRUE)

dumpMethods(f, file, signature, methods, where)

signature(...)

removeMethods(f, where)

setReplaceMethod(f, ...)

getGenerics(where, searchForm = FALSE)

allGenerics(where, searchForm = FALSE)

callGeneric(...)

Arguments

f The character string naming the function.

where The environment, namespace, or search-list position from which to search
for objects. By default, start at the top-level environment of the calling
function, typically the global environment (i.e., use the search list), or
the namespace of a package from which the call came. It is important to
supply this argument when calling any of these functions indirectly. With
package namespaces, the default is likely to be wrong in such calls.



GenericFunctions 879

signature The class signature of the relevant method. A signature is a named or
unnamed vector of character strings. If named, the names must be formal
argument names for the generic function. If signature is unnamed, the
default is to use the first length(signature) formal arguments of the
function.

file The file on which to dump method definitions.

def The function object defining the method; if omitted, the current method
definition corresponding to the signature.

... Named or unnamed arguments to form a signature.

generic In testing or finding functions, should generic functions be included. Sup-
ply as FALSE to get only non-generic functions.

fdef Optional, the generic function definition.
Usually omitted in calls to isGeneric

getName If TRUE, isGeneric returns the name of the generic. By default, it returns
TRUE.

methods The methods object containing the methods to be dumped. By default,
the methods defined for this generic (optionally on the specified where
location).

searchForm In getGenerics, if TRUE, the package slot of the returned result is in
the form used by search(), otherwise as the simple package name (e.g,
"package:base" vs "base").

Summary of Functions

isGeneric: Is there a function named f, and if so, is it a generic?
The getName argument allows a function to find the name from a function definition.
If it is TRUE then the name of the generic is returned, or FALSE if this is not a generic
function definition.
The behavior of isGeneric and getGeneric for primitive functions is slightly differ-
ent. These functions don’t exist as formal function objects (for efficiency and histor-
ical reasons), regardless of whether methods have been defined for them. A call to
isGeneric tells you whether methods have been defined for this primitive function,
anywhere in the current search list, or in the specified position where. In contrast, a
call to getGeneric will return what the generic for that function would be, even if no
methods have been currently defined for it.

removeGeneric, removeMethods: Remove the all the methods for the generic function of
this name. In addition, removeGeneric removes the function itself; removeMethods
restores the non-generic function which was the default method. If there was no default
method, removeMethods leaves a generic function with no methods.

standardGeneric: Dispatches a method from the current function call for the generic func-
tion f. It is an error to call standardGeneric anywhere except in the body of the
corresponding generic function.

getMethods: The list of methods for the specified generic.

dumpMethod: Dump the method for this generic function and signature.

findFunction: return a list of either the positions on the search list, or the current top-
level environment, on which a function object for name exists. The returned value is
always a list, use the first element to access the first visible version of the function.
See the example.



880 GenericFunctions

NOTE: Use this rather than find with mode="function", which is not as meaningful,
and has a few subtle bugs from its use of regular expressions. Also, findFunction
works correctly in the code for a package when attaching the package via a call to
library.

selectMethod: Returns the method (a function) that R would use to evaluate a call to this
generic, with arguments corresponding to the specified signature.
f = the name of the generic function, signature is the signature of classes to match
to the arguments of f.

dumpMethods: Dump all the methods for this generic.

signature: Returns a named list of classes to be matched to arguments of a generic func-
tion.

getGenerics: Returns the names of the generic functions that have methods defined on
where; this argument can be an environment or an index into the search list. By
default, the whole search list is used.
The methods definitions are stored with package qualifiers; for example, methods for
function "initialize" might refer to two different functions of that name, on different
packages. The package names corresponding to the method list object are contained in
the slot package of the returned object. The form of the returned name can be plain
(e.g., "base"), or in the form used in the search list ("package:base") according to
the value of searchForm

callGeneric: In the body of a method, this function will make a call to the current generic
function. If no arguments are passed to callGeneric, the arguments to the current
call are passed down; otherwise, the arguments are interpreted as in a call to the
generic function.

Details

setGeneric: If there is already a non-generic function of this name, it will be used to define
the generic unless def is supplied, and the current function will become the default
method for the generic.
If def is supplied, this defines the generic function, and no default method will exist
(often a good feature, if the function should only be available for a meaningful subset
of all objects).
Arguments group and valueClass are retained for consistency with S-Plus, but are
currently not used.

isGeneric: If the fdef argument is supplied, take this as the definition of the generic, and
test whether it is really a generic, with f as the name of the generic. (This argument
is not available in S-Plus.)

removeGeneric: If where supplied, just remove the version on this element of the search
list; otherwise, removes the first version encountered.

standardGeneric: Generic functions should usually have a call to standardGeneric as
their entire body. They can, however, do any other computations as well.
The usual setGeneric (directly or through calling setMethod) creates a function with
a call to standardGeneric.

getMethods: If the function is not a generic function, returns NULL. The f argument can
be either the character string name of the generic or the object itself.
The where argument optionally says where to look for the function, if f is given as
the name.

dumpMethod: The resulting source file will recreate the method.



GenericFunctions 881

findFunction: If generic is FALSE, ignore generic functions.

selectMethod: The vector of strings for the classes can be named or not. If named, the
names must match formal argument names of f. If not named, the signature is assumed
to apply to the arguments of f in order.
If mustFind is TRUE, an error results if there is no method (or no unique method)
corresponding to this signature. Otherwise may return NULL or a MethodsList object.

dumpMethods: If signature is supplied only the methods matching this initial signature are
dumped. (This feature is not found in S-Plus: don’t use it if you want compatibility.)

signature: The advantage of using signature is to provide a check on which arguments
you meant, as well as clearer documentation in your method specification. In addition,
signature checks that each of the elements is a single character string.

removeMethods: Returns TRUE if f was a generic function, FALSE (silently) otherwise.
If there is a default method, the function will be re-assigned as a simple function with
this definition. Otherwise, the generic function remains but with no methods (so any
call to it will generate an error). In either case, a following call to setMethod will
consistently re-establish the same generic function as before.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

setGeneric, setClass, showMethods

Examples

## Not run:

## get the function "myFun" -- throw an error if 0 or > 1 versions visible

allF <- findFunction("myFun")

if(length(allF) == 0)

stop("No versions of myFun visible")

else if(length(allF) > 1)

stop("myFun is ambiguous: ", length(allF), " versions")

else

fdef <- get("myFun", allF[[1]])

## End(Not run)

http://developer.r-project.org/methodsPackage.html


882 getClass

getClass Get Class Definition

Description

Get the definition of a class.

Usage

getClass(Class, .Force = FALSE, where)
getClassDef(Class, where, package)

Arguments

Class the character-string name of the class.

.Force if TRUE, return NULL if the class is undefined; otherwise, an undefined class
results in an error.

where environment from which to begin the search for the definition; by default,
start at the top-level (global) environment and proceed through the search
list.

package the name of the package asserted to hold the definition. Supplied instead
of where, with the distinction that the package need not be currently
attached.

Details

A call to getClass returns the complete definition of the class supplied as a string, including
all slots, etc. in classes that this class extends. A call to getClassDef returns the definition
of the class from the environment where, unadorned. It’s usually getClass you want.

If you really want to know whether a class is formally defined, call isClass.

Value

The object defining the class. This is an object of class "classRepEnvironment". However,
do not deal with the contents of the object directly unless you are very sure you know what
you’re doing. Even then, it is nearly always better practice to use functions such as setClass
and setIs. Messing up a class object will cause great confusion.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

http://developer.r-project.org/methodsPackage.html


getMethod 883

See Also

Classes, setClass, isClass.

Examples

getClass("numeric") ## a built in class

getMethod Get or Test for the Definition of a Method

Description

The functions getMethod and selectMethod get the definition of a particular method; the
functions existsMethod and hasMethod test for the existence of a method. In both cases
the first function only gets direct definitions and the second uses inheritance. The function
findMethod returns the package(s) in the search list (or in the packages specified by the
where argument) that contain a method for this function and signature.

The other functions are support functions: see the details below.

Usage

getMethod(f, signature=character(), where, optional=FALSE, mlist)

findMethod(f, signature, where)

getMethods(f, where)

existsMethod(f, signature = character(), where)

hasMethod(f, signature=character(), where)

selectMethod(f, signature, optional = FALSE, useInherited = TRUE,
mlist = (if (is.null(fdef)) NULL else getMethods(fdef)),
fdef = getGeneric(f, !optional))

MethodsListSelect(f, env, mlist, fEnv, finalDefault, evalArgs,
useInherited, fdef, resetAllowed)

Arguments

f The character-string name of the generic function.

signature The signature of classes to match to the arguments of f. See the details
below.
For selectMethod, the signature can optionally be an environment with
classes assigned to the names of the corresponding arguments. Note: the
names correspond to the names of the classes, not to the objects supplied
in a call to the generic function. (You are not likely to find this approach
convenient, but it is used internally and is marginally more efficient.)



884 getMethod

where The position or environment in which to look for the method(s): by de-
fault, anywhere in the current search list.

optional If the selection does not produce a unique result, an error is generated,
unless this argument is TRUE. In that case, the value returned is either a
MethodsList object, if more than one method matches this signature, or
NULL if no method matches.

mlist Optionally, the list of methods in which to search. By default, the func-
tion finds the methods for the corresponding generic function. To restrict
the search to a particular package or environment, e.g., supply this ar-
gument as getMethodsMetaData(f,where). For selectMethod, see the
discussion of argument fdef.

fdef In selectMethod, the MethodsList object and/or the generic function
object can be explicitly supplied. (Unlikely to be used, except in the
recursive call that finds matches to more than one argument.)

env The environment in which argument evaluations are done in
MethodsListSelect. Currently must be supplied, but should usually
be sys.frame(sys.parent()) when calling the function explicitly for
debugging purposes.

fEnv, finalDefault, evalArgs, useInherited, resetAllowed

Internal-use arguments for the function’s environment, the method to use
as the overall default, whether to evaluate arguments, which arguments
should use inheritance, and whether the cached methods are allowed to
be reset.

Details

The signature argument specifies classes, in an extended sense, corresponding to formal
arguments of the generic function. As supplied, the argument may be a vector of strings
identifying classes, and may be named or not. Names, if supplied, match the names of those
formal arguments included in the signature of the generic. That signature is normally all
the arguments except . . . . However, generic functions can be specified with only a subset of
the arguments permitted, or with the signature taking the arguments in a different order.

It’s a good idea to name the arguments in the signature to avoid confusion, if you’re dealing
with a generic that does something special with its signature. In any case, the elements
of the signature are matched to the formal signature by the same rules used in matching
arguments in function calls (see match.call).

The strings in the signature may be class names, "missing" or "ANY". See Methods for the
meaning of these in method selection. Arguments not supplied in the signature implicitly
correspond to class "ANY"; in particular, giving an empty signature means to look for the
default method.

A call to getMethod returns the method for a particular function and signature. As with
other get functions, argument where controls where the function looks (by default anywhere
in the search list) and argument optional controls whether the function returns NULL or
generates an error if the method is not found. The search for the method makes no use of
inheritance.

The function selectMethod also looks for a method given the function and signature, but
makes full use of the method dispatch mechanism; i.e., inherited methods and group generics
are taken into account just as they would be in dispatching a method for the corresponding
signature, with the one exception that conditional inheritance is not used. Like getMethod,
selectMethod returns NULL or generates an error if the method is not found, depending on
the argument optional.



getMethod 885

The functions existsMethod and hasMethod return TRUE or FALSE according to whether a
method is found, the first corresponding to getMethod (no inheritance) and the second to
selectMethod.

The function getMethods returns all the methods for a particular generic (in the form
of a generic function with the methods information in its environment). The function is
called from the evaluator to merge method information, and is not intended to be called
directly. Note that it gets all the visible methods for the specified functions. If you
want only the methods defined explicitly in a particular environment, use the function
getMethodsMetaData instead.

The function MethodsListSelect performs a full search (including all inheritance and group
generic information: see the Methods documentation page for details on how this works).
The call returns a possibly revised methods list object, incorporating any method found as
part of the allMethods slot.

Normally you won’t call MethodsListSelect directly, but it is possible to use it for debug-
ging purposes (only for distinctly advanced users!).

Note that the statement that MethodsListSelect corresponds to the selection done by the
evaluator is a fact, not an assertion, in the sense that the evaluator code constructs and
executes a call to MethodsListSelect when it does not already have a cached method for
this generic function and signature. (The value returned is stored by the evaluator so that
the search is not required next time.)

Value

The call to selectMethod or getMethod returns a MethodDefinition-class object, the
selected method, if a unique selection exists. (This class extends function, so you can use
the result directly as a function if that is what you want.) Otherwise an error is thrown if
optional is FALSE. If optional is TRUE, the value returned is NULL if no method matched,
or a MethodsList object if multiple methods matched.

The call to getMethods returns the MethodsList object containing all the methods re-
quested. If there are none, NULL is returned: getMethods does not generate an error in this
case.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

Examples

setGeneric("testFun", function(x)standardGeneric("testFun"))

setMethod("testFun", "numeric", function(x)x+1)

hasMethod("testFun", "numeric")

## Not run: [1] TRUE

hasMethod("testFun", "integer") #inherited

## Not run: [1] TRUE

http://developer.r-project.org/methodsPackage.html


886 getPackageName

existsMethod("testFun", "integer")

## Not run: [1] FALSE

hasMethod("testFun") # default method

## Not run: [1] FALSE

hasMethod("testFun", "ANY")

## Not run: [1] FALSE

getPackageName The name associated with a given package

Description

The functions below produce the package associated with a particular environment or posi-
tion on the search list, or of the package containing a particular function. They are primarily
used to support computations that need to differentiate objects on multiple packages.

Usage

getPackageName(where)

packageSlot(object)
packageSlot(object) <- value

Arguments

where The environment or position on the search list associated with the desired
package.

object An object providing a character string name, plus the package in which
this object is to be found.

value the name of the package.

Details

Package names are normally installed during loading of the package, by the INSTALL script
or by the library function. (Currently, the name is stored as the object .packageName
but don’t trust this for the future.)

Value

packageName return the character-string name of the package (without the extraneous
"package:" found in the search list).
packageSlot returns or sets the package name slot (currently an attribute, not a formal
slot, but this will likely change).

See Also

search

Examples

## both the following usually return "base"

getPackageName(length(search()))



hasArg 887

hasArg Look for an Argument in the Call

Description

Returns TRUE is name corresponds to an argument in the call, either a formal argument to
the function, or a component of ..., and FALSE otherwise.

Usage

hasArg(name)

Arguments

name The unquoted name of a potential argument.

Details

The expression hasArg(x), for example, is similar to !missing(x), with two exceptions.
First, hasArg will look for an argument named x in the call if x is not a formal argument to
the calling function, but ... is. Second, hasArg never generates an error if given a name
as an argument, whereas missing(x) generates an error if x is not a formal argument.

Value

Always TRUE or FALSE as described above.

See Also

missing

Examples

ftest <- function(x1, ...) c(hasArg(x1), hasArg(y2))

ftest(1) ## c(TRUE, FALSE)

ftest(1, 2) ## c(TRUE, FALSE)

ftest(y2=2) ## c(FALSE, TRUE)

ftest(y=2) ## c(FALSE, FALSE) (no partial matching)

ftest(y2 = 2, x=1) ## c(TRUE, TRUE) partial match x1



888 initialize-methods

initialize-methods Methods to Initialize New Objects from a Class

Description

The arguments to function new to create an object from a particular class can be interpreted
specially for that class, by the definition of a method for function initialize for the class.
This documentation describes some existing methods, and also outlines how to write new
ones.

Methods

.Object = ”ANY” The default method for initialize takes either named or unnamed
arguments. Argument names must be the names of slots in this class definition, and
the corresponding arguments must be valid objects for the slot (that is, have the same
class as specified for the slot, or some superclass of that class). If the object comes
from a superclass, it is not coerced strictly, so normally it will retain its current class
(specifically, as(object, Class, strict = FALSE)).
Unnamed arguments must be objects of this class, of one of its superclasses, or one
of its subclasses (from the class, from a class this class extends, or from a class that
extends this class). If the object is from a superclass, this normally defines some of the
slots in the object. If the object is from a subclass, the new object is that argument,
coerced to the current class.
Unnamed arguments are processed first, in the order they appear. Then named ar-
guments are processed. Therefore, explicit values for slots always override any values
inferred from superclass or subclass arguments.

.Object = ”traceable” Objects of a class that extends traceable are used to implement
debug tracing (see traceable-class and trace).
The initialize method for these classes takes special arguments def, tracer,
exit, at, print. The first of these is the object to use as the original definition
(e.g., a function). The others correspond to the arguments to trace.

.Object = ”environment” The initialize method for environments takes a named list
of objects to be used to initialize the environment.

.Object = ”signature” This is a method for internal use only. It takes an optional
functionDef argument to provide a generic function with a signature slot to de-
fine the argument names. See Methods for details.

Writing Initialization Methods

Initialization methods provide a general mechanism corresponding to generator functions
in other languages.

The arguments to initialize are .Object and . . . . Nearly always, initialize is called
from new, not directly. The .Object argument is then the prototype object from the class.

Two techniques are often appropriate for initialize methods: special argument names
and callNextMethod.

You may want argument names that are more natural to your users than the (default)
slot names. These will be the formal arguments to your method definition, in addition
to .Object (always) and . . . (optionally). For example, the method for class "traceable"
documented above would be created by a call to setMethod of the form:



is 889

setMethod("initialize", "traceable",
function(.Object, def, tracer, exit, at, print) ...

)

In this example, no other arguments are meaningful, and the resulting method will throw
an error if other names are supplied.

When your new class extends another class, you may want to call the initialize method for
this superclass (either a special method or the default). For example, suppose you want
to define a method for your class, with special argument x, but you also want users to be
able to set slots specifically. If you want x to override the slot information, the beginning
of your method definition might look something like this:

function(.Object, x, ...) \{
Object <- callNextMethod(.Object, ...)
if(!missing(x)) \{ \# do something with x

You could also choose to have the inherited method override, by first interpreting x, and
then calling the next method.

is Is an Object from a Class

Description

is: With two arguments, tests whether object can be treated as from class2.

With one argument, returns all the super-classes of this object’s class.

extends: Does the first class extend the second class? Returns maybe if the extension
includes a test.

setIs: Defines class1 to be an extension of class2.

Usage

is(object, class2)

extends(class1, class2, maybe=TRUE, fullInfo = FALSE)

setIs(class1, class2, test=NULL, coerce=NULL, replace=NULL,
by = character(), where = topenv(parent.frame()), classDef =,
extensionObject = NULL, doComplete = TRUE)

Arguments

object any R object.
class1, class2

the names of the classes between which is relations are to be defined.
maybe, fullInfo

In a call to extends, maybe is a flag to include/exclude conditional re-
lations, and fullInfo is a flag, which if TRUE causes object(s) of class
classExtension to be returned, rather than just the names of the classes
or a logical value. See the details below.



890 is

extensionObject

alternative to the test, coerce, replace, by arguments; an object
from class SClassExtension describing the relation. (Used in internal
calls.)

doComplete when TRUE, the class definitions will be augmented with indirect relations
as well. (Used in internal calls.)

test, coerce, replace

In a call to setIs, functions optionally supplied to test whether the rela-
tion is defined, to coerce the object to class2, and to alter the object so
that is(object, class2) is identical to value.

by In a call to setIs, the name of an intermediary class. Coercion will
proceed by first coercing to this class and from there to the target class.
(The intermediate coercions have to be valid.)

where In a call to setIs, where to store the metadata defining the relationship.
Default is the global environment.

classDef Optional class definition for class , required internally when setIs is
called during the initial definition of the class by a call to setClass.
Don’t use this argument, unless you really know why you’re doing so.

Details

extends: Given two class names, extends by default says whether the first class extends
the second; that is, it does for class names what is does for an object and a class.
Given one class name, it returns all the classes that class extends (the “superclasses”
of that class), including the class itself. If the flag fullInfo is TRUE, the result is a
list, each element of which is an object describing the relationship; otherwise, and by
default, the value returned is only the names of the classes.

setIs: This function establishes an inheritance relation between two classes, by some
means other than having one class contain the other. It should not be used for ordinary
relationships: either include the second class in the contains= argument to setClass
if the class is contained in the usual way, or consider setClassUnion to define a virtual
class that is extended by several ordinary classes. A call to setIs makes sense, for
example, if one class ought to be automatically convertible into a second class, but
they have different representations, so that the conversion must be done by an explicit
computation, not just be inheriting slots, for example. In this case, you will typically
need to provide both a coerce= and replace= argument to setIs.
The coerce, replace, and by arguments behave as described for the setAs function.
It’s unlikely you would use the by argument directly, but it is used in defining cached
information about classes. The value returned (invisibly) by setIs is the extension
information, as a list.
The coerce argument is a function that turns a class1 object into a class2 object.
The replace argument is a function of two arguments that modifies a class1 object
(the first argument) to replace the part of it that corresponds to class2 (supplied as
value, the second argument). It then returns the modified object as the value of the
call. In other words, it acts as a replacement method to implement the expression
as(object, class2) <- value.
The easiest way to think of the coerce and replace functions is by thinking of the
case that class1 contains class2 in the usual sense, by including the slots of the
second class. (To repeat, in this situation you would not call setIs, but the analogy
shows what happens when you do.)



is 891

The coerce function in this case would just make a class2 object by extracting the
corresponding slots from the class1 object. The replace function would replace in
the class1 object the slots corresponding to class2, and return the modified object
as its value.
The relationship can also be conditional, if a function is supplied as the test argument.
This should be a function of one argument that returns TRUE or FALSE according
to whether the object supplied satisfies the relation is(object, class2). If you
worry about such things, conditional relations between classes are slightly deprecated
because they cannot be implemented as efficiently as ordinary relations and because
they sometimes can lead to confusion (in thinking about what methods are dispatched
for a particular function, for example). But they can correspond to useful distinctions,
such as when two classes have the same representation, but only one of them obeys
certain additional constraints.
Because only global environment information is saved, it rarely makes sense to give a
value other than the default for argument where. One exception is where=0, which
modifies the cached (i.e., session-scope) information about the class. Class completion
computations use this version, but don’t use it yourself unless you are quite sure you
know what you’re doing.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

Examples

## a class definition (see setClass for the example)

setClass("trackCurve",

representation("track", smooth = "numeric"))

## A class similar to "trackCurve", but with different structure

## allowing matrices for the "y" and "smooth" slots

setClass("trackMultiCurve",

representation(x="numeric", y="matrix", smooth="matrix"),

prototype = structure(list(), x=numeric(), y=matrix(0,0,0),

smooth= matrix(0,0,0)))

## Automatically convert an object from class "trackCurve" into

## "trackMultiCurve", by making the y, smooth slots into 1-column matrices

setIs("trackCurve",

"trackMultiCurve",

coerce = function(obj) {

new("trackMultiCurve",

x = obj@x,

y = as.matrix(obj@y),

curve = as.matrix(obj@smooth))

},

http://developer.r-project.org/methodsPackage.html


892 isSealedMethod

replace = function(obj, value) {

obj@y <- as.matrix(value@y)

obj@x <- value@x

obj@smooth <- as.matrix(value@smooth)

obj})

## Automatically convert the other way, but ONLY

## if the y data is one variable.

setIs("trackMultiCurve",

"trackCurve",

test = function(obj) {ncol(obj@y) == 1},

coerce = function(obj) {

new("trackCurve",

x = slot(obj, "x"),

y = as.numeric(obj@y),

smooth = as.numeric(obj@smooth))

},

replace = function(obj, value) {

obj@y <- matrix(value@y, ncol=1)

obj@x <- value@x

obj@smooth <- value@smooth

obj})

isSealedMethod Check for a Sealed Method or Class

Description

These functions check for either a method or a class that has been “sealed” when it was
defined, and which therefore cannot be re-defined.

Usage

isSealedMethod(f, signature, fdef, where)
isSealedClass(Class, where)

Arguments

f The quoted name of the generic function.

signature The class names in the method’s signature, as they would be supplied to
setMethod.

fdef Optional, and usually omitted: the generic function definition for f.

Class The quoted name of the class.

where where to search for the method or class definition. By default,
searches from the top environment of the call to isSealedMethod or
isSealedClass, typically the global environment or the namespace of
a package containing a call to one of the functions.



language-class 893

Details

In the R implementation of classes and methods, it is possible to seal the definition of
either a class or a method. The basic classes (numeric and other types of vectors, matrix
and array data) are sealed. So also are the methods for the primitive functions on those
data types. The effect is that programmers cannot re-define the meaning of these basic
data types and computations. More precisely, for primitive functions that depend on only
one data argument, methods cannot be specified for basic classes. For functions (such as
the arithmetic operators) that depend on two arguments, methods can be specified if one
of those arguments is a basic class, but not if both are.

Programmers can seal other class and method definitions by using the sealed argument to
setClass or setMethod.

Value

The functions return FALSE if the method or class is not sealed (including the case that it
is not defined); TRUE if it is.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

Examples

## these are both TRUE

isSealedMethod("+", c("numeric", "character"))

isSealedClass("matrix")

setClass("track",

representation(x="numeric", y="numeric"))

## but this is FALSE

isSealedClass("track")

## and so is this

isSealedClass("A Name for an undefined Class")

## and so are these, because only one of the two arguments is basic

isSealedMethod("+", c("track", "numeric"))

isSealedMethod("+", c("numeric", "track"))

language-class Classes to Represent Unevaluated Language Objects

http://developer.r-project.org/methodsPackage.html


894 languageEl

Description

The virtual class "language" and the specific classes that extend it represent unevaluated
objects, as produced for example by the parser or by functions such as quote.

Usage

### each of these classes corresponds to an unevaluated object
### in the S language. The class name can appear in method signatures,
### and in a few other contexts (such as some calls to as()).

"("
"<-"
"call"
"for"
"if"
"repeat"
"while"
"name"
"{"

### Each of the classes above extends the virtual class

"language"

Objects from the Class

"language" is a virtual class; no objects may be created from it.

Objects from the other classes can be generated by a call to new(Class, ...), where Class
is the quoted class name, and the . . . arguments are either empty or a single object that is
from this class (or an extension).

Methods

coerce signature(from = "ANY", to = "call"). A method exists for as(object,
"call"), calling as.call().

languageEl Elements of Language Objects

Description

Internal routines to support some operations on language objects.

Usage

languageEl(object, which)

isGrammarSymbol(symbol)



LinearMethodsList-class 895

Summary of Functions

languageEl: extract an element of a language object, consistently for different kinds of
objects.
The 1st., etc. elements of a function are the corresponding formal arguments, with
the default expression if any as value.
The first element of a call is the name or the function object being called.
The 2nd, 3rd, etc. elements are the 1st, 2nd, etc. arguments expressions. Note that
the form of the extracted name is different for R and S-Plus. When the name (the first
element) of a call is replaced, the languageEl replacement function coerces a character
string to the internal form for each system.
The 1st, 2nd, 3rd elements of an if expression are the test, first, and second branch.
The 1st element of a for object is the name (symbol) being used in the loop, the
second is the expression for the range of the loop, the third is the body of the loop.
The first element of a while object is the loop test, and the second the body of the
loop.

isGrammarSymbol: Checks whether the symbol is part of the grammar. Don’t use this
function directly.

LinearMethodsList-class

Class ”LinearMethodsList”

Description

A version of methods lists that has been “linearized” for producing summary information.
The actual objects from class "MethodsList" used for method dispatch are defined recur-
sively over the arguments involved.

Objects from the Class

The function linearizeMlist converts an ordinary methods list object into the linearized
form.

Slots

methods: Object of class "list", the method definitions.

arguments: Object of class "list", the corresponding formal arguments.

classes: Object of class "list", the corresponding classes in the signatures.

fromClasses: Object of class "list"

Future Note

The current version of linearizeMlist does not take advantage of the MethodDefinition
class, and therefore does more work for less effect than it could. In particular, we may move
to redefine both the function and the class to take advantage of the stored signatures. Don’t
write code depending precisely on the present form, although all the current information
will be obtainable in the future.



896 makeClassRepresentation

See Also

Function linearizeMlist for the computation, and MethodsList-class for the original,
recursive form.

makeClassRepresentation

Create a Class Definition

Description

Constructs a classRepresentation-class object to describe a particular class. Mostly
a utility function, but you can call it to create a class definition without assigning it, as
setClass would do.

Usage

makeClassRepresentation(name, slots=list(), superClasses=character(),
prototype=NULL, package, validity, access,
version, sealed, virtual=NA, where)

Arguments

name character string name for the class

slots named list of slot classes as would be supplied to setClass, but without
the unnamed arguments for superClasses if any.

superClasses what classes does this class extend

prototype an object providing the default data for the class, e.g, the result of a call
to prototype.

package The character string name for the package in which the class will be stored;
see getPackageName.

validity Optional validity method. See validObject, and the discussion of validity
methods in the reference.

access Access information. Not currently used.

version Optional version key for version control. Currently generated, but not
used.

sealed Is the class sealed? See setClass.

virtual Is this known to be a virtual class?

where The environment from which to look for class definitions needed (e.g., for
slots or superclasses). See the discussion of this argument under Gener-
icFunctions.



MethodDefinition-class 897

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

setClass

MethodDefinition-class

Classes to Represent Method Definitions

Description

These classes extend the basic class "function" when functions are to be stored and used
as method definitions.

Details

Method definition objects are functions with additional information defining how the func-
tion is being used as a method. The target slot is the class signature for which the method
will be dispatched, and the defined slot the signature for which the method was orignally
specified (that is, the one that appeared in some call to setMethod).

Objects from the Class

The action of setting a method by a call to setMethod creates an object of this class. It’s
unwise to create them directly.

The class "SealedMethodDefinition" is created by a call to setMethod with argument
sealed = TRUE. It has the same representation as "MethodDefinition".

Slots

.Data: Object of class "function"; the data part of the definition.

target: Object of class "signature"; the signature for which the method was wanted.

defined: Object of class "signature"; the signature for which a method was found. If the
method was inherited, this will not be identical to target.

Extends

Class "function", from data part.
Class "PossibleMethod", directly.
Class "OptionalMethods", by class "function".

http://developer.r-project.org/methodsPackage.html


898 Methods

See Also

class MethodsList-class for the objects defining sets of methods associated with a partic-
ular generic function. The individual method definitions stored in these objects are from
class MethodDefinition, or an extension. MethodWithNext-class for an extension used
by callNextMethod.

Methods General Information on Methods

Description

This documentation section covers some general topics on how methods work and how the
methods package interacts with the rest of R. The information is usually not needed to get
started with methods and classes, but may be helpful for moderately ambitious projects,
or when something doesn’t work as expected.

The section How Methods Work describes the underlying mechanism; Class Inheri-
tance and Method Selection provides more details on how class definitions determine
which methods are used.

The section Changes with the Methods Package outlines possible effects on other
computations when running with package methods.

How Methods Work

A generic function is a function that has associated with it a collection of other functions
(the methods), all of which agree in formal arguments with the generic. In R, the“collection”
is an object of class "MethodsList", which contains a named list of methods (the methods
slot), and the name of one of the formal arguments to the function (the argument slot). The
names of the methods are the names of classes, and the corresponding element defines the
method or methods to be used if the corresponding argument has that class. For example,
suppose a function f has formal arguments x and y. The methods list object for that
function has the object as.name("x") as its argument slot. An element of the methods
named "track" is selected if the actual argument corresponding to x is an object of class
"track". If there is such an element, it can generally be either a function or another
methods list object.

In the first case, the function defines the method to use for any call in which x is of class
"track". In the second case, the new methods list object defines the selection of methods
depending on the remaining formal arguments, in this example, y. The same selection
process takes place, recursively, using the new methods list. Eventually, the selection returns
either a function or NULL, meaning that no method matched the actual arguments.

Each method selected corresponds conceptually to a signature; that is a named list of
classes, with names corresponding to some or all of the formal arguments. In the previous
example, if selecting class "track" for x, finding that the selection was another methods
list and then selecting class "numeric" for y would produce a method associated with the
signature x = "track", y = "numeric".

The actual selection is done recursively, but you can see the methods arranged by signature
by calling the function showMethods, and objects with the methods arranged this way (in
two different forms) are returned by the functions listFromMlist and linearizeMlist.

In an R session, each generic function has a single methods list object defining all the
currently available methods. The session methods list object is created the first time the



Methods 899

function is called by merging all the relevant method definitions currently visible. Whenever
something happens that might change the definitions (such as attaching or detaching a
package with methods for this function, or explicitly defining or removing methods), the
merged methods list object is removed. The next call to the function will recompute the
merged definitions.

When methods list are merged, they can come from two sources:

1. Methods list objects for the same function anywhere on the current search list. These
are merged so that methods in an environment earlier in the search list override meth-
ods for the same function later in the search list. A method overrides only another
method for the same signature. See the comments on class "ANY" in the section on
Inheritance.

2. Methods list objects corresponding the group generic functions, if any, for this function.
Any generic function can be defined to belong to a group generic. The methods for the
group generic are available as methods for this function. The group generic can itself
be defined as belong to a group; as a result there is a list of group generic functions.
A method defined for a function and a particular signature overrides a method for the
same signature for that function’s group generic.

Merging is done first on all methods for a particular function, and then over the generic
and its group generics.

The result is a single methods list object that contains all the methods directly defined for
this function. As calls to the function occur, this information may be supplemented by
inherited methods, which we consider next.

Class Inheritance and Method Selection

If no method is found directly for the actual arguments in a call to a generic function, an
attempt is made to match the available methods to the arguments by using inheritance.

Each class definition potentially includes the names of one or more classes that the new
class contains. (These are sometimes called the superclasses of the new class.) These classes
themselves may extend other classes. Putting all this information together produces the
full list of superclasses for this class. (You can see this list for any class "A" from the
expression extends("A").) In addition, any class implicitly extends class "ANY". When all
the superclasses are needed, as they are for dispatching methods, they are ordered by how
direct they are: first, the direct classes contained directly in the definition of this class, then
the superclasses of these classes, etc.

The S language has an additional, explicit mechanism for defining superclasses, the setIs
mechanism. This mechanism allows a class to extend another even though they do not have
the same representation. The extension is made possible by defining explicit methods to
coerce an object to its superclass and to replace the data in the object corresponding
to the superclass. The setIs mechanism will be used less often and only when directly
including the superclass does not make sense, but once defined, the superclass acts just as
directly contained classes as far as method selection is concerned.

A method will be selected by inheritance if we can find a method in the methods list
for a signature corresponding to any combination of superclasses for each of the relevant
arguments. The search for such a method is performed by the function MethodsListSelect,
working as follows.

The generic, f say, has a signature, which by default is all its formal arguments, except
. . . (see setGeneric). For each of the formal arguments in that signature, in order, the
class of the actual argument is matched against available methods. A missing argument



900 Methods

corresponds to class "missing". If no method corresponds to the class of the argument,
the evaluator looks for a method corresponding to the the superclasses (the other classes
that the actual class extends, always including "ANY"). If no match is found, the dispatch
fails, with an error. (But if there is a default method, that will always match.)

If the match succeeds, it can find either a single method, or a methods list. In the first
case, the search is over, and returns the method. In the second case, the search proceeds,
with the next argument in the signature of the generic. That search may succeed or fail.
If it fails, the dispatch will try again with the next best match for the current argument, if
there is one. The last match always corresponds to class "ANY".

The effect of this definition of the selection process is to order all possible inherited methods,
first by the superclasses for the first argument, then within this by the superclasses for the
second argument, and so on.

Changes with the Methods Package

The methods package is designed to leave other computations in R unchanged. There
are, however, a few areas where the default functions and behavior are overridden when
running with the methods package attached. This section outlines those known to have
some possible effect.

class: The methods package enforces the notion that every object has a class; in particular,
class(x) is never NULL, as it would be for basic vectors, for example, when not using
methods.
In addition, when assigning a class, the value is required to be a single string. (How-
ever, objects can have multiple class names if these were generated by old-style class
computations. The methods package does not hide the “extra” class names.)
Computations using the notion of NULL class attributes or of class attributes with
multiple class names are not really compatible with the ideas in the methods package.
Formal classes and class inheritance are designed to give more flexible and reliable
implementations of similar ideas.
If you do have to mix the two approaches, any operations that use class attributes
in the old sense should be written in terms of attr(x, "class"), not class(x). In
particular, test for no class having been assigned with is.null(attr(x, "class")).

Printing: To provide appropriate printing automatically for objects with formal class def-
initions, the methods package overrides print.default, to look for methods for the
generic function show, and to use a default method for objects with formal class defi-
nitions.
The revised version of print.default is intended to produce identical printing to the
original version for any object that does not have a formally defined class, including
honoring old-style print methods. So far, no exceptions are known.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

http://developer.r-project.org/methodsPackage.html


MethodsList 901

See Also

setGeneric, setClass

MethodsList MethodsList Objects

Description

These functions create and manipulate MethodsList objects, the objects used in R to store
methods for dispatch. You should not call any of these functions from code that you want
to port to S-Plus. Instead, use the functions described in the references.

Usage

MethodsList(.ArgName, ...)

makeMethodsList(object, level=1)

SignatureMethod(names, signature, definition)

insertMethod(mlist, signature, args, def, cacheOnly)

inheritedSubMethodLists(object, thisClass, mlist, ev)

showMlist(mlist, includeDefs = TRUE, inherited = TRUE,
classes, useArgNames, printTo = stdout() )

## S3 method for class 'MethodsList':
print(x, ...)

listFromMlist(mlist, prefix = list())

linearizeMlist(mlist, inherited = TRUE)

finalDefaultMethod(mlist, fname = "NULL")

mergeMethods(m1, m2, genericLabel)

loadMethod(method, fname, envir)

Details

Note that MethodsList objects represent methods only in the R implementation. You can
use them to find or manipulate information about methods, but avoid doing so if you want
your code to port to S-Plus.



902 MethodsList

Details

MethodsList: Create a MethodsList object out of the arguments.
Conceptually, this object is a named collection of methods to be dispatched when the
(first) argument in a function call matches the class corresponding to one of the names.
A final, unnamed element (i.e., with name "") corresponds to the default method.
The elements can be either a function, or another MethodsList. In the second case,
this list implies dispatching on the second argument to the function using that list,
given a selection of this element on the first argument. Thus, method dispatching on
an arbitrary number of arguments is defined.
MethodsList objects are used primarily to dispatch OOP-style methods and, in R, to
emulate S4-style methods.

SignatureMethod: construct a MethodsList object containing (only) this method, corre-
sponding to the signature; i.e., such that signature[[1]] is the match for the first
argument, signature[[2]] for the second argument, and so on. The string "missing"
means a match for a missing argument, and "ANY" means use this as the default setting
at this level.
The first argument is the argument names to be used for dispatch corresponding to
the signatures.

insertMethod: insert the definition def into the MethodsList object, mlist, corresponding
to the signature. By default, insert it in the slot "methods", but cacheOnly=TRUE
inserts it into the "allMethods" slot (used for dispatch but not saved).

inheritedSubMethodLists: Utility function to match the object or the class (if the object
is NULL) to the elements of a methods list. Used in finding inherited methods, and not
meant to be called directly.

showMlist: Prints the contents of the MethodsList. If includeDefs the signatures and
the corresonding definitions will be printed; otherwise, only the signatures.
The function calls itself recursively: prev is the previously selected classes.

listFromMlistForPrint: Undo the recursive nature of the methods list, making a list
of function defintions, with the names of the list being the corresponding signatures
(designed for printing; for looping over the methods, use listFromMlist instead).
The function calls itself recursively: prev is the previously selected classes.

finalDefaultMethod: The true default method for the methods list object mlist (the
method that matches class "ANY" for as many arguments as are used in methods
matching for this generic function). If mlist is null, returns the function called fname,
or NULL if there is no such function.

mergeMethods: Merges the methods in the second MethodsList object into the first, and
returns the merged result. Called from getAllMethods. For a primitive function,
genericLabel is supplied as the name of the generic.

loadMethod: Called, if necessary, just before a call to method is dispatched in the frame
envir. The function exists so that methods can be defined for special classes of
objects. Usually the point is to assign or modify information in the frame environ-
ment to be used evaluation. For example, the standard class MethodDefinition has
a method that stores the target and defined signatures in the environment. Class
MethodWithNext has a method taking account of the mechanism for storing the method
to be used in a call to callNextMethod.
Any methods defined for loadMethod must return the function definition to be used
for this call; typically, this is just the method argument.



MethodsList-class 903

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

MethodsList-class Class MethodsList, Representation of Methods for a Generic
Function

Description

Objects from this class are generated and revised by the definition of methods for a generic
function.

Slots

argument: Object of class "name". The name of the argument being used for dispatch at
this level.

methods: A named list of the methods (and method lists) defined explicitly for this argu-
ment, with the names being the classes for which the methods have been defined.

allMethods: A named list, which may be empty if this object has not been used in dispatch
yet. Otherwise, it contains all the directly defined methods from the methods slot, plus
any inherited methods.

Extends

Class "OptionalMethods", directly.

MethodSupport Additional (Support) Functions for Methods

Description

These are support routines for computations on formal methods.

Usage

getMethodsForDispatch(f, fdef)

cacheMethod(f, sig, def, args, fdef)

resetGeneric(f, fdef, mlist, where, deflt)

http://developer.r-project.org/methodsPackage.html


904 methodUtilities

Summary of Functions

resetGeneric: reset the currently defined methods for this generic to the currently visi-
ble methods, looking from environment where. Returns TRUE or FALSE according to
whether information for the function was found in the metadata.
Normally not called directly, since changes to methods, attaching and detaching pack-
ages all generate a call automatically.

cacheMethod: Store the definition for this function and signature in the method metadata
for the function. Used to store extensions of coerce methods found through inheritance.
No persistent effect, since the method metadata is session-scope only.

getMethodsForDispatch: Get the current methods list object representing the methods
for function f, merged from the various packages and with any additional caching
information stored in the allMethods slot.
If methods have not yet been merged, calling getMethodsForDispatch will cause the
merge to take place.

methodUtilities Utility Functions for Methods and S-Plus Compatibility

Description

These are utilities, currently in the methods package, that either provide some functionality
needed by the package (e.g., element matching by name), or add compatibility with S-Plus,
or both.

Usage

functionBody(fun=sys.function(sys.parent()))

allNames(x)

getFunction(name, generic=TRUE, mustFind=TRUE, where)

el(object, where)

elNamed(x, name, mustFind=FALSE)

formalArgs(def)

Quote()

message(...)

showDefault(object, oldMethods = TRUE)

initMethodDispatch()



MethodWithNext-class 905

Summary of Functions

allNames: the character vector of names (unlike names(), never returns NULL).

getFunction: find the object as a function.

elNamed: get the element of the vector corresponding to name. Unlike the [, [[, and $
operators, this function requires name to match the element name exactly (no partial
matching).

formalArgs: Returns the names of the formal arguments of this function.

existsFunction: Is there a function of this name? If generic is FALSE, generic functions
are not counted.

findFunction: return all the indices of the search list on which a function definition for
name exists.
If generic is FALSE, ignore generic functions.

message: Output all the arguments, pasted together with no intervening spaces.

showDefault: Utility, used to enable show methods to be called by the automatic printing
(via print.default).
Argument oldMethods controls whether old-style print methods are used for this ob-
ject. It is TRUE by default if called directly, but FALSE when called from the methods
package for automatic printing (to avoid potential recursion).

initMethodDispatch: Turn on the internal method dispatch code. Called on at-
taching the package. Also, if dispatch has been turned off (by calling
.isMethodsDispatchOn(FALSE)—a very gutsy thing to do), calling this function
should turn dispatch back on again.

MethodWithNext-class Class MethodWithNext

Description

Class of method definitions set up for callNextMethod

Objects from the Class

Objects from this class are generated as a side-effect of calls to callNextMethod.

Slots

.Data: Object of class "function"; the actual function definition.

nextMethod: Object of class "PossibleMethod" the method to use in response to a
callNextMethod() call.

excluded: Object of class "list"; one or more signatures excluded in finding the next
method.

target: Object of class "signature", from class "MethodDefinition"

defined: Object of class "signature", from class "MethodDefinition"



906 new

Extends

Class "MethodDefinition", directly.
Class "function", from data part.
Class "PossibleMethod", by class "MethodDefinition".
Class "OptionalMethods", by class "MethodDefinition".

Methods

findNextMethod signature(method = "MethodWithNext"): used internally by method
dispatch.

loadMethod signature(method = "MethodWithNext"): used internally by method dis-
patch.

show signature(object = "MethodWithNext")

See Also

callNextMethod, and MethodDefinition-class.

new Generate an Object from a Class

Description

Given the the name or the definition of a class, plus optionally data to be included in the
object, new returns an object from that class.

Usage

new(Class, ...)

initialize(.Object, ...)

Arguments

Class Either the name of a class (the usual case) or the object describing the
class (e.g., the value returned by getClass).

... Data to include in the new object. Named arguments correspond to slots
in the class definition. Unnamed arguments must be objects from classes
that this class extends.

.Object An object: see the Details section.

Details

The function new begins by copying the prototype object from the class definition. Then
information is inserted according to the ... arguments, if any.

The interpretation of the ... arguments can be specialized to particular classes, if an
appropriate method has been defined for the generic function "initialize". The new
function calls initialize with the object generated from the prototype as the .Object
argument to initialize.



new 907

By default, unnamed arguments in the ... are interpreted as objects from a superclass,
and named arguments are interpreted as objects to be assigned into the correspondingly
named slots. Thus, explicit slots override inherited information for the same slot, regardless
of the order in which the arguments appear.

The initialize methods do not have to have ... as their second argument (see the
examples), and generally it is better design not to have ... as a formal argument, if only
a fixed set of arguments make sense.

For examples of initialize methods, see initialize-methods for existing methods for
classes "traceable" and "environment", among others.

Note that the basic vector classes, "numeric", etc. are implicitly defined, so one can use
new for these classes.

References

The web page http://www.omegahat.org/RSMethods/index.html is the primary docu-
mentation.

The functions in this package emulate the facility for classes and methods described in
Programming with Data (John M. Chambers, Springer, 1998). See this book for further
details and examples.

See Also

Classes

Examples

## using the definition of class "track" from Classes

## a new object with two slots specified

t1 <- new("track", x = seq(along=ydata), y = ydata)

# a new object including an object from a superclass, plus a slot

t2 <- new("trackCurve", t1, smooth = ysmooth)

### define a method for initialize, to ensure that new objects have

### equal-length x and y slots.

setMethod("initialize",

"track",

function(.Object, x = numeric(0), y = numeric(0)) {

if(nargs() > 1) {

if(length(x) != length(y))

stop("specified x and y of different lengths")

.Object@x <- x

.Object@y <- y

}

.Object

})

### the next example will cause an error (x will be numeric(0)),

### because we didn't build in defaults for x,

### although we could with a more elaborate method for initialize

http://www.omegahat.org/RSMethods/index.html


908 ObjectsWithPackage-class

try(new("track", y = sort(rnorm(10))))

## a better way to implement the previous initialize method.

## Why? By using callNextMethod to call the default initialize method

## we don't inhibit classes that extend "track" from using the general

## form of the new() function. In the previous version, they could only

## use x and y as arguments to new, unless they wrote their own

## intialize method.

setMethod("initialize", "track", function(.Object, ...) {

.Object <- callNextMethod()

if(length(.Object@x) != length(.Object@y))

stop("specified x and y of different lengths")

.Object

})

ObjectsWithPackage-class

A Vector of Object Names, with associated Package Names

Description

This class of objects is used to represent ordinary character string object names, extended
with a package slot naming the package associated with each object.

Objects from the Class

The function getGenerics returns an object of this class.

Slots

.Data: Object of class "character": the object names.

package: Object of class "character" the package names.

Extends

Class "character", from data part.
Class "vector", by class "character".

See Also

Methods for general background.



oldGet 909

oldGet Old functions to access slots in a class definition

Description

Expect these functions to become deprecated in the near future.

They do nothing but access a slot in a class definition, and don’t even do this consistently
with the right name (they date back to the early implementation of the methods package).
Higher-level functions for the useful operations (e.g., extends for getExtends) should be
used instead.

Usage

getAccess(ClassDef)

getClassName(ClassDef)

getClassPackage(ClassDef)

getExtends(ClassDef)

getProperties(ClassDef)

getPrototype(ClassDef)

getSubclasses(ClassDef)

getValidity(ClassDef)

getVirtual(ClassDef)

Arguments

ClassDef the class definition object

Details

The functions should be replaced by direct access to the slots, or by use of higher-level
alternatives.

The functions and corresponding slots are:

getAccess "access"
getClassName "className"
getClassPackage "package"
getExtends "contains"
getProperties "slots"
getPrototype "prototype"
getSubclasses "subclasses"
getValidity "validity"
getVirtual "virtual"



910 promptClass

See Also

classRepresentation-class

promptClass Generate a Shell for Documentation of a Formal Class

Description

Assembles all relevant slot and method information for a class, with minimal markup for
Rd processing; no QC facilities at present.

Usage

promptClass(clName, filename = NULL, type = "class",
keywords = "classes", where = topenv(parent.frame()))

Arguments

clName a character string naming the class to be documented.

filename usually, a connection or a character string giving the name of the file
to which the documentation shell should be written. The default corre-
sponds to a file whose name is the topic name for the class documentation,
followed by ".Rd". Can also be NA (see below).

type the documentation type to be declared in the output file.

keywords the keywords to include in the shell of the documentation. The keyword
"classes" should be one of them.

where where to look for the definition of the class and of methods that use it.

Details

The class definition is found on the search list. Using that definition, information about
classes extended and slots is determined.

In addition, the currently available generics with methods for this class are found (using
getGenerics). Note that these methods need not be in the same environment as the class
definition; in particular, this part of the output may depend on which packages are currently
in the search list.

As with other prompt-style functions, unless filename is NA, the documentation shell is
written to a file, and a message about this is given. The file will need editing to give
information about the meaning of the class. The output of promptClass can only contain
information from the metadata about the formal definition and how it is used.

If filename is NA, a list-style representation of the documentation shell is created and
returned. Writing the shell to a file amounts to cat(unlist(x), file = filename, sep
= "\n"), where x is the list-style representation.

Value

If filename is NA, a list-style representation of the documentation shell. Otherwise, the
name of the file written to is returned invisibly.



promptMethods 911

Author(s)

VJ Carey 〈stvjc@channing.harvard.edu〉 and John Chambers

References

The web page http://www.omegahat.org/RSMethods/index.html is the primary docu-
mentation.

The functions in this package emulate the facility for classes and methods described in
Programming with Data (John M. Chambers, Springer, 1998). See this book for further
details and examples.

See Also

prompt for documentation of functions, promptMethods for documentation of method def-
initions.

For processing of the edited documentation, either use R CMD Rdconv, or include the edited
file in the ‘man’ subdirectory of a package.

Examples

## Not run:

> promptClass("track")

A shell of class documentation has been written to the

file "track-class.Rd".

## End(Not run)

promptMethods Generate a Shell for Documentation of Formal Methods

Description

Generates a shell of documentation for the methods of a generic function.

Usage

promptMethods(f, filename = NULL, methods)

Arguments

f a character string naming the generic function whose methods are to be
documented.

filename usually, a connection or a character string giving the name of the file to
which the documentation shell should be written. The default corresponds
to the coded topic name for these methods (currently, f followed by "-
methods.Rd"). Can also be FALSE or NA (see below).

methods Optional methods list object giving the methods to be documented. By
default, the first methods object for this generic is used (for example, if
the current global environment has some methods for f, these would be
documented).
If this argument is supplied, it is likely to be getMethods(f, where),
with where some package containing methods for f.

http://www.omegahat.org/RSMethods/index.html


912 RClassUtils

Details

If filename is FALSE, the text created is returned, presumably to be inserted some other
documentation file, such as the documentation of the generic function itself (see prompt).

If filename is NA, a list-style representation of the documentation shell is created and
returned. Writing the shell to a file amounts to cat(unlist(x), file = filename, sep
= "\n"), where x is the list-style representation.

Otherwise, the documentation shell is written to the file specified by filename.

Value

If filename is FALSE, the text generated; if filename is NA, a list-style representation of
the documentation shell. Otherwise, the name of the file written to is returned invisibly.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

prompt and promptClass

RClassUtils Utilities for Managing Class Definitions

Description

These are various functions to support the definition and use of formal classes. Most of
them are rarely suitable to be called directly.

Usage

testVirtual(properties, extends, prototype)

makePrototypeFromClassDef(slots, ClassDef, extends)

newEmptyObject()

completeClassDefinition(Class, ClassDef, where, doExtends)

getSlots(x, complete = TRUE)

getAllSuperClasses(ClassDef, simpleOnly = TRUE)

http://developer.r-project.org/methodsPackage.html


RClassUtils 913

superClassDepth(ClassDef, soFar, simpleOnly = TRUE)

isVirtualClass(Class, where)

newBasic(Class, ...)

makeExtends(Class, to, coerce, test, replace, by, package, slots,
classDef1, classDef2)

reconcilePropertiesAndPrototype(name, properties, prototype,
superClasses, where)

tryNew(Class)

trySilent(expr)

empty.dump()

showClass(Class, complete=TRUE, propertiesAreCalled="Slots")

showExtends(ext, printTo = stdout())

possibleExtends(class1, class2)

completeExtends(ClassDef, class2, extensionDef, where)

classMetaName(name)

methodsPackageMetaName(prefix, name)

metaNameUndo(strings, prefix = "M", searchForm = FALSE)

requireMethods(functions, signature, message)

checkSlotAssignment(obj, name, value)

defaultPrototype()

isClassDef(object)

validSlotNames(names)

getDataPart(object)
setDataPart(object, value)

Summary of Functions

testVirtual: Test for a Virtual Class. Figures out, as well as possible, whether the class
with these properties, extension, and prototype is a virtual class. Can be forced to be
virtual by extending ”VIRTUAL”.
Otherwise, a class is virtual only if it has no slots, extends no non-virtual classes, and



914 RClassUtils

has a NULL Prototype.

makePrototypeFromClassDef: Makes the prototype implied by the class definition.
The following three rules are applied in this order.
If the class has slots, then the prototype for each slot is used by default, but a corre-
sponding element in the explicitly supplied prototype in ClassDef, if there is one, is
used instead (but it must be coercible to the class of the slot). This includes the data
part (".Data" slot) if there is one.
If there are no slots but a non-null prototype was specified, this is returned.
If there is a non-virtual superclass (a class in the extends list), then its prototype is
used. The data part is extracted if needed (it is allowed to have two superclasses with
a data part; the first is used and a warning issued on any others).
If all three of the above fail, the prototype is NULL.

newEmptyObject: Utility function to create an empty object into which slots can be set.
Currently just creates an empty list with class "NULL".
Later version should create a special object reference that marks an object currently
with no slots and no data.

completeClassDefinition: Completes the definition of Class, relative to the class defini-
tions visible from environment where. If doExtends is TRUE, complete the super- and
sub-class information.
This function is called when a class is defined or re-defined.

getFromClassDef: Extracts one of the intrinsically defined class definition properties
(”.Properties”, etc.) Strictly a utility function.

getSlots: Returns a named character vector. The names are the names of the slots, the
values are the classes of the corresponding slots. If complete is TRUE, all slots from
all superclasses will be included. The argument x can either be the name of a class or
an object having that class.

getAllSuperClasses, superClassDepth: Get the names of all the classes that this class
definition extends.
getAllSuperClasses is a utility function used to complete a class definition. It returns
all the superclasses reachable from this class, in breadth-first order (which is the order
used for matching methods); that is, the first direct superclass followed by all its
superclasses, then the next, etc. (The order is relevant only in the case that some of
the superclasses have multiple inheritance.)
superClassDepth, which is called from getAllSuperClasses, returns the same infor-
mation, but as a list with components label and depth, the latter for the number of
generations back each class is in the inheritance tree. The argument soFar is used to
avoid loops in the network of class relationships.

isVirtualClass: Is the named class a virtual class?
A class is virtual if explicitly declared to be, and also if the class is not formally defined.

assignClassDef: assign the definition of the class to the specially named object

newBasic: the implementation of the function new for basic classes that don’t have a formal
definition.
Any of these could have a formal definition, except for Class="NULL" (disallowed
because NULL can’t have attributes). For all cases except "NULL", the class of the
result will be set to Class.
See new for the interpretation of the arguments.

makeExtends: convert the argument to a list defining the extension mechanism.



RClassUtils 915

reconcilePropertiesAndPrototype: makes a list or a structure look like a prototype for
the given class.
Specifically, returns a structure with attributes corresponding to the slot names in
properties and values taken from prototype if they exist there, from new(classi) for
the class, classi of the slot if that succeeds, and NULL otherwise.
The prototype may imply slots not in the properties list, since properties does not
include inherited slots (these are left unresolved until the class is used in a session).

tryNew: Tries to generate a new element from this class, but if the attempt fails (as, e.g.,
when the class is undefined or virtual) just returns NULL.
This is inefficient and also not a good idea when actually generating objects, but is
useful in the initial definition of classes.

showClass: Print the information about a class definition.
If complete is TRUE, include the indirect information about extensions.

showExtends: Print the elements of the list of extensions.
(Used also by promptClass to get the list of what and how for the extensions.)

possibleExtends: Find the information that says whether class1 extends class2, directly
or indirectly.
This can be either a logical value or an object of class SClassExtension-class con-
taining various functions to test and/or coerce the relationship.

completeExtends: complete the extends information in the class definition, by following
transitive chains.
If class2 and extensionDef are included, this class relation is to be added. Otherwise
just use the current ClassDef.
Both the contains and subclasses slots are completed with any indirect relations
visible.

classMetaName: a name for the object storing this class’s definition

methodsPackageMetaName: a name mangling device to hide metadata defining method and
class information.

metaNameUndo As its name implies, this function undoes the name-mangling
used to produce meta-data object names, and returns a object of class
ObjectsWithPackage-class.

requireMethods: Require a subclass to implement methods for the generic functions, for
this signature.
For each generic, setMethod will be called to define a method that throws an error,
with the supplied message.
The requireMethods function allows virtual classes to require actual classes that ex-
tend them to implement methods for certain functions, in effect creating an API for
the virtual class.
Otherwise, default methods for the corresponding function would be called, resulting
in less helpful error messages or (worse still) silently incorrect results.

checkSlotAssignment: Check that the value provided is allowed for this slot, by consulting
the definition of the class. Called from the C code that assigns slots.
For privileged slots (those that can only be set by accesor functions defined along
with the class itself), the class designer may choose to improve efficiency by validating
the value to be assigned in the accessor function and then calling slot<- with the
argument check=FALSE, to prevent the call to checkSlotAssignment.



916 representation

defaultPrototype: The prototype for a class which will have slots, is not a virtual class,
and does not extend one of the basic classes. In future releases, this will likely be a
non-vector R object type, but none of the current types (as of release 1.4) is suitable.

.InitBasicClasses, .InitMethodsListClass, .setCoerceGeneric: These functions
perform part of the initialization of classes and methods, and are called (only!) from
.First.lib.

isClassDef: Is object a representation of a class?

validSlotNames: Returns names unless one of the names is reserved, in which case there
is an error. (As of writing, "class" is the only reserved slot name.)

getDataPart, setDataPart: Utilities called from the base C code to implement
object@.Data.

representation Construct a Representation or a Prototype for a Class Definition

Description

In calls to setClass, these two functions construct, respectively, the representation and
prototype arguments. They do various checks and handle special cases. You’re encouraged
to use them when defining classes that, for example, extend other classes as a data part or
have multiple superclasses, or that combine extending a class and slots.

Usage

representation(...)
prototype(...)

Arguments

... The call to representation takes arguments that are single character
strings. Unnamed arguments are classes that a newly defined class ex-
tends; named arguments name the explicit slots in the new class, and
specify what class each slot should have.
In the call to prototype, if an unnamed argument is supplied, it uncon-
ditionally forms the basis for the prototype object. Remaining arguments
are taken to correspond to slots of this object. It is an error to supply
more than one unnamed argument.

Details

The representation function applies tests for the validity of the arguments. Each must
specify the name of a class.

The classes named don’t have to exist when representation is called, but if they do, then
the function will check for any duplicate slot names introduced by each of the inherited
classes.

The arguments to prototype are usually named initial values for slots, plus an optional
first argument that gives the object itself. The unnamed argument is typically useful if
there is a data part to the definition (see the examples below).



RMethodUtils 917

Value

The value pf representation is just the list of arguments, after these have been checked
for validity.

The value of prototype is the object to be used as the prototype. Slots will have been set
consistently with the arguments, but the construction does not use the class definition to
test validity of the contents (it hardly can, since the prototype object is usually supplied to
create the definition).

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

setClass

Examples

## representation for a new class with a directly define slot "smooth"

## which should be a "numeric" object, and extending class "track"

representation("track", smooth ="numeric")

setClass("Character",representation("character"))

setClass("TypedCharacter",representation("Character",type="character"),

prototype(character(0),type="plain"))

ttt <- new("TypedCharacter", "foo", type = "character")

setClass("num1", representation(comment = "character"),

contains = "numeric",

prototype = prototype(pi, comment = "Start with pi"))

RMethodUtils RMethodUtils

Description

Utility functions to support the definition and use of formal methods. Most of these func-
tions will not normally be called directly by the user.

http://developer.r-project.org/methodsPackage.html


918 RMethodUtils

Usage

getGeneric(f, mustFind=FALSE, where)

getGroup(fdef, recursive, where)

getMethodsMetaData(f, where)
assignMethodsMetaData (f, value, fdef, where, deflt)
mlistMetaName (name, package)

makeGeneric(f, fdef, fdefault, group=list(), valueClass=character(),
package, signature = NULL, genericFunction = NULL)

makeStandardGeneric(f, fdef)

generic.skeleton(name, fdef, fdefault)

defaultDumpName(generic, signature)

getAllMethods(f, fdef, where)

doPrimitiveMethod(name, def, call= sys.call(-1), ev= sys.frame(sys.parent(2)))

conformMethod(signature, mnames, fnames, f)

matchSignature(signature, fun, where)

removeMethodsObject(f, where)

findUnique(what, message, where)

MethodAddCoerce(method, argName, thisClass, methodClass)

is.primitive(fdef)

cacheMetaData(where, attach = TRUE, searchWhere)

cacheGenericsMetaData(f, fdef, attach = TRUE, where, package, methods)

setPrimitiveMethods(f, fdef, code, generic, mlist)

missingArg(symbol, envir = parent.frame(), eval)

balanceMethodsList(mlist, args, check = TRUE)

sigToEnv(signature, genericSig)

rematchDefinition(definition, generic, mnames, fnames, signature)
unRematchDefinition(definition)

asMethodDefinition(def, signature, sealed = FALSE)

addNextMethod(method, f, mlist, optional, envir)



RMethodUtils 919

Summary of Functions

getGeneric: return the definition of the function named f as a generic.
If no definition is found, throws an error or returns NULL according to the value of
mustFind. By default, searches in the top-level environment (normally the global
environment, but adjusted to work correctly when package code is evaluated from the
function library.
Primitive functions are dealt with specially, since there is never a formal generic defini-
tion for them. The value returned is the formal definition used for assigning methods to
this primitive. Not all primitives can have methods; if this one can’t, then getGeneric
returns NULL or throws an error.

getGroup: return the groups to which this generic belongs, searching from environment
where (the global environment normally by default).
If recursive=TRUE, also all the group(s) of these groups.

getMethodsMetaData, assignMethodsMetaData, mlistMetaName: Utilities to get
(getMethodsMetaData) and assign (assignMethodsMetaData) the metadata ob-
ject recording the methods defined in a particular package, or to return the mangled
name for that object (mlistMetaName).
The assign function should not be used directly. The get function may be useful if you
want explicitly only the outcome of the methods assigned in this package. Otherwise,
use getMethods.

matchSignature: Matches the signature object (a partially or completely named subset of
the signature arguments of the generic function object fun), and return a vector of
all the classes in the order specified by fun@signature. The classes not specified by
signature will be "ANY" in the value, but extra trailing "ANY"’s are removed. When
the input signature is empty, the returned signature is a single "ANY" matching the
first formal argument (so the returned value is always non-empty).
Generates an error if any of the supplied signature names are not legal; that is, not in
the signature slot of the generic function.
If argument where is supplied, a warning will be issued if any of the classes does not
have a formal definition visible from where.

MethodAddCoerce: Possibly modify one or more methods to explicitly coerce this argument
to methodClass, the class for which the method is explicitly defined. Only modifies
the method if an explicit coerce is required to coerce from thisClass to methodClass.

is.primitive: Is this object a primitive function (either a builtin or special)?

removeMethodsObject: remove the metadata object containing methods for f.

findUnique: Return the list of environments (or equivalent) having an object named what,
using environment where and its parent environments. If more than one is found, a
warning message is generated, using message to identify what was being searched for,
unless message is the empty string.

cacheMetaData, cacheGenericsMetaData, setPrimitiveMethods: Utilities for ensuring
that the internal information about class and method definitions is up to date. Should
normally be called automatically whenever needed (for example, when a method or
class definition changes, or when a package is attached or detached). Required primar-
ily because primitive functions are dispatched in C code, rather than by the official
model.
The setPrimitiveMethods function resets the caching information for a particular
primitive function. Don’t call it directly.



920 RMethodUtils

missingArg: Returns TRUE if the symbol supplied is missing from the call corresponding
to the environment supplied (by default, environment of the call to missingArg). If
eval is true, the argument is evaluated to get the name of the symbol to test. Note
that missingArg is closer to the “blue-book” sense of the missing function, not that
of the current R base package implementation. But beware that it works reliably only
if no assignment has yet been made to the argument. (For method dispatch this is
fine, because computations are done at the begining of the call.)

balanceMethodsList: Called from setMethod to ensure that all nodes in the list have the
same depth (i.e., the same number of levels of arguments). Balance is needed to ensure
that all necessary arguments are examined when inherited methods are being found
and added to the allMethods slot. No actual recomputation is needed usually except
when a new method uses a longer signature than has appeared before.
Balance requires that all methods be added to the generic via setMethod (how else
could you do it?) or by the initial setGeneric call converting the ordinary function.

sigToEnv: Turn the signature (a named vector of classes) into an environment with
the classes assigned to the names. The environment is then suitable for calling
MethodsListSelect, with evalArgs=FALSE, to select a method corresponding to the
signature. Usually not called directly: see selectMethod.

.saveImage: Flag, used in dynamically initializing the methods package from .First.lib

rematchDefinition, unRematchDefinition: If the specified method in a call to
setMethod specializes the argument list (by replacing . . . ), then rematchDefinition
constructs the actual method stored. Using knowledge of how rematchDefinition
works, unRematchDefinition reverses the procedure; if given a function or method
definition that does not correspond to this form, it just returns its argument.

asMethodDefinition: Turn a function definition into a MethodDefinition-class object,
corresponding to the given signature (by default generates a default method with
empty signature). The definition is sealed according to the sealed argument.

addNextMethod: A generic function that finds the next method in mlist corresponding the
method definition method and adds the method to the methods list, which it then
returns. It uses methods defined suitably for ordinary methods and for methods with
calls to callNextMethod.

makeGeneric: Makes a generic function object corresponding to the given function name, optional
definition and optional default method. Other arguments supply optional elements for the
slots of genericFunction-class.

makeStandardGeneric: a utility function that makes a valid function calling standardGeneric
for name f. Works (more or less) even if the actual definition, fdef, is not a proper function,
that is, it’s a primitive or internal.

conformMethod: If the formal arguments, mnames, are not identical to the formal arguments to
the function, fnames, conformMethod determines whether the signature and the two sets
of arguments conform, and returns the signature, possibly extended. The function name, f
is supplied for error messages.

The method assignment conforms if either method and function have identical formal ar-
gument lists. It can also conform if the method omits some of the formal arguments of
the function but: (1) the non-omitted arguments are a subset of the function arguments,
appearing in the same order; (2) there are no arguments to the method that are not ar-
guments to the function; and (3) the omitted formal arguments do not appear as explicit
classes in the signature.

defaultDumpName: the default name to be used for dumping a method.



SClassExtension-class 921

getAllMethods: A generic function (with methods) representing the merge of all the methods
defined for this generic starting from environment where, including all parent environments.
By default, uses the global environment (and therefore all packages on the search list). This
function exists largely to re-compute the full set of methods when a change to the available
methods occurs. Since all such recomputations are supposed to be automatic, direct calls
to getAllMethods should not be needed.

If the generic f has a group generic, methods for this group generic (and further generations
of group generics, if any) are also merged.

The merging rule is as follows: each generic is merged across packages, and the group
generics are then merged, finally adding the directly defined methods of f.

The effect of the merging rule is that any method directly defined for f on any included
package overrides a method for the same signature defined for the group generic; similarly
for the group generic and its group, if any, etc.

For f or for a specific group generic, methods override in the order of the packages being
searched. A method for a particular signature on a particular package overrides any methods
for the same signature on packages later on in the list of packages being searched.

The slot "allMethods" of the merged methods list is set to a copy of the methods slot; this
is the slot where inherited methods are stored.

doPrimitiveMethod: do a primitive call to builtin function name the definition and call provided,
and carried out in the environment ev.

A call to doPrimitiveMethod is used when the actual method is a .Primitive. (Because
primitives don’t behave correctly as ordinary functions, not having either formal arguments
nor a function body).

SClassExtension-class

Class to Represent Inheritance (Extension) Relations

Description

An object from this class represents a single “is” relationship; lists of these objects are used
to represent all the extensions (superclasses) and subclasses for a given class. The object
contains information about how the relation is defined and methods to coerce, test, and
replace correspondingly.

Objects from the Class

Objects from this class are generated by setIs, both from direct calls .

Slots

subClass,superClass: The classes being extended: corresponding to the from, and to
arguments to setIs.

package: The package to which that class belongs.

coerce: A function to carry out the as() computation implied by the relation. Note that
these functions should not be used directly. They only deal with the strict=TRUE
calls to the as function, with the full method constructed from this mechanically.



922 Session

test: The function that would test whether the relation holds. Except for explicitly spec-
ified test arguments to setIs, this function is trivial.

replace: The method used to implement as(x, Class) <- value.

simple: A "logical" flag, TRUE if this is a simple relation, either because one class is
contained in the definition of another, or because a class has been explicitly stated
to extend a virtual class. For simple extensions, the three methods are generated
automatically.

by: If this relation has been constructed transitively, the first intermediate class from the
subclass.

dataPart: A "logical" flag, TRUE if the extended class is in fact the data part of the
subclass. In this case the extended class is a basic class (i.e., a type).

Methods

No methods defined with class "SClassExtension" in the signature.

See Also

is, as, and classRepresentation-class.

Session Deprecated: Session Data and Debugging Tools

Description

The functions traceOn and traceOff have been replaced by extended versions of the func-
tions trace and untrace, and should not be used.

Usage

sessionData()

traceOn(what, tracer=browseAll, exit=NULL)

traceOff(what)

browseAll()

Details

sessionData: return the index of the session data in the search list, attaching it if it is not
attached.

traceOn: initialize tracing on calls to function what. The function or expression tracer is
called on entry, and the function or expression exit on exit.

traceOff: turn off tracing of this function.

browseAll: browse the current stack of function calls.
Uses the function debugger to set up browser calls on the frames. On exit from that
function, computation continues after the call to browseAll. Computations done in
the frames will have no effect.



setClass 923

References

See Programming with Data (John M. Chambers, Springer, 1998) for the equivalent func-
tions.

setClass Create a Class Definition

Description

Functions to create (setClass) and manipulate class definitions.

Usage

setClass(Class, representation, prototype, contains=character(),
validity, access, where, version, sealed, package)

removeClass(Class, where)

isClass(Class, formal=TRUE, where)

getClasses(where, inherits = missing(where))

findClass(Class, where, unique = "")

resetClass(Class, classDef, where)

sealClass(Class, where)

Arguments

Class character string name for the class. Other than setClass, the functions
will usually take a class definition instead of the string (allowing the caller
to identify the class uniquely).

representation

the slots that the new class should have and/or other classes that this
class extends. Usually a call to the representation function.

prototype an object (usually a list) providing the default data for the slots specified
in the representation.

contains what classes does this class extend? (These are called superclasses in some
languages.) When these classes have slots, all their slots will be contained
in the new class as well.

where For setClass and removeClass, the environment in which to store or
remove the definition. Defaults to the top-level environment of the call-
ing function (the global environment for ordinary computations, but the
environment or namespace of a package when loading that package).
For other functions, where defines where to do the search for the class
definition, and the default is to search from the top-level environment or
namespace of the caller to this function.



924 setClass

unique if findClass expects a unique location for the class, unique is a char-
acter string explaining the purpose of the search (and is used in warning
and error messages). By default, multiple locations are possible and the
function always returns a list.

inherits in a call to getClasses, should the value returned include all parent
environments of where, or that environment only? Defaults to TRUE if
where is omitted, and to FALSE otherwise.

validity if supplied, should be a validity-checking method for objects from this
class (a function that returns TRUE if its argument is a valid object of
this class and one or more strings describing the failures otherwise). See
validObject for details.

access Access list for the class. Saved in the definition, but not currently used.

version A version indicator for this definition. Saved in the definition, but not
currently used.

sealed If TRUE, the class definition will be sealed, so that another call to setClass
will fail on this class name.

package An optional package name for the class. By default (and usually) the
package where the class definition is assigned will be used.

formal Should a formal definition be required?

classDef For removeClass, the optional class definition (but usually it’s better for
Class to be the class definition, and to omit classDef).

Details

These are the functions that create and manipulate formal class definitions. Brief docu-
mentation is provided below. See the references for an introduction and for more details.

setClass: Define Class to be an S-style class. The effect is to create an object, of class
"classRepEnvironment", and store this (hidden) in the specified environment or
database. Objects can be created from the class (e.g., by calling new), manipulated
(e.g., by accessing the object’s slots), and methods may be defined including the class
name in the signature (see setMethod).

removeClass: Remove the definition of this class, from the environment where if this ar-
gument is supplied; if not, removeClass will search for a definition, starting in the
top-level environment of the call to removeClass, and remove the (first) definition
found.

isClass: Is this a the name of a formally defined class? (Argument formal is for compat-
ibility and is ignored.)

getClasses: The names of all the classes formally defined on where. If called with no
argument, all the classes visible from the calling function (if called from the top-level,
all the classes in any of the environments on the search list). The inherits argument
can be used to search a particular environment and all its parents, but usually the
default setting is what you want.

findClass: The list of environments or positions on the search list in which a class defi-
nition of Class is found. If where is supplied, this is an environment (or namespace)
from which the search takes place; otherwise the top-level environment of the caller
is used. If unique is supplied as a character string, findClass returns a single envi-
ronment or position. By default, it always returns a list. The calling function should
select, say, the first element as a position or environment for functions such as get.



setClass 925

If unique is supplied as a character string, findClass will warn if there is more than
one definition visible (using the string to identify the purpose of the call), and will
generate an error if no definition can be found.

resetClass: Reset the internal definition of a class. Causes the complete definition of
the class to be re-computed, from the representation and superclasses specified in the
original call to setClass.
This function is called when aspects of the class definition are changed. You would
need to call it explicitly if you changed the definition of a class that this class extends
(but doing that in the middle of a session is living dangerously, since it may invalidate
existing objects).

sealClass Seal the current definition of the specified class, to prevent further changes. It is
possible to seal a class in the call to setClass, but sometimes further changes have to
be made (e.g., by calls to setIs). If so, call sealClass after all the relevant changes
have been made.

Inheritance and Prototypes

Defining new classes that inherit from (“extend”) other classes is a powerful technique, but
has to be used carefully and not over-used. Otherwise, you will often get unintended results
when you start to compute with objects from the new class.

As shown in the examples below, the simplest and safest form of inheritance is to start with
an explicit class, with some slots, that does not extend anything else. It only does what we
say it does.

Then extensions will add some new slots and new behavior.

Another variety of extension starts with one of the basic classes, perhaps with the intension
of modifying R’s standard behavior for that class. Perfectly legal and sometimes quite
helpful, but you may need to be more careful in this case: your new class will inherit much
of the behavior of the basic (informally defined) class, and the results can be surprising.
Just proceed with caution and plenty of testing.

As an example, the class "matrix" is included in the pre-defined classes, to behave essen-
tially as matrices do without formal class definitions. Suppose we don’t like all of this; in
particular, we want the default matrix to have 0 rows and columns (not 1 by 1 as it is now).

setClass("myMatrix", "matrix", prototype = matrix(0,0,0))

The arguments above illustrate two short-cuts relevant to such examples. We abbreviated
the representation argument to the single superclass, because the new class doesn’t add
anything to the representation of class "matrix". Also, we provided an object from the
superclass as the prototype, not a list of slots.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

http://developer.r-project.org/methodsPackage.html


926 setClassUnion

See Also

setClassUnion, Methods, makeClassRepresentation

Examples

## A simple class with two slots

setClass("track",

representation(x="numeric", y="numeric"))

## A class extending the previous, adding one more slot

setClass("trackCurve",

representation("track", smooth = "numeric"))

## A class similar to "trackCurve", but with different structure

## allowing matrices for the "y" and "smooth" slots

setClass("trackMultiCurve",

representation(x="numeric", y="matrix", smooth="matrix"),

prototype = list(x=numeric(), y=matrix(0,0,0),

smooth= matrix(0,0,0)))

##

## Suppose we want trackMultiCurve to be like trackCurve when there's

## only one column.

## First, the wrong way.

try(setIs("trackMultiCurve", "trackCurve",

test = function(obj) {ncol(slot(obj, "y")) == 1}))

## Why didn't that work? You can only override the slots "x", "y",

## and "smooth" if you provide an explicit coerce function to correct

## any inconsistencies:

setIs("trackMultiCurve", "trackCurve",

test = function(obj) {ncol(slot(obj, "y")) == 1},

coerce = function(obj) {

new("trackCurve",

x = slot(obj, "x"),

y = as.numeric(slot(obj,"y")),

smooth = as.numeric(slot(obj, "smooth")))

})

setClassUnion Classes Defined as the Union of Other Classes

Description

A class may be defined as the union of other classes; that is, as a virtual class defined as a
superclass of several other classes. Class unions are useful in method signatures or as slots
in other classes, when we want to allow one of several classes to be supplied.

Usage

setClassUnion(name, members, where)
isClassUnion(Class)



setClassUnion 927

Arguments

name the name for the new union class.

members the classes that should be members of this union.

where where to save the new class definition; by default, the environment of the
package in which the setClassUnion call appears, or the global environ-
ment if called outside of the source of a package.

Class the name or definition of a class.

Details

The classes in members must be defined before creating the union. However, members can
be added later on to an existing union, as shown in the example below. Class unions can
be members of other class unions.

Class unions are the only way to create a class that is extended by a class whose definition
is sealed (for example, the basic datatypes or other classes defined in the base or methods
package in R are sealed). You cannot say setIs("function", "other") unless "other"
is a class union. In general, a setIs call of this form changes the definition of the first
class mentioned (adding "other" to the list of superclasses contained in the definition of
"function").

Class unions get around this by not modifying the first class definition, relying instead on
storing information in the subclasses slot of the class union. In order for this technique to
work, the internal computations for expressions such as extends(class1, class2) work
differently for class unions than for regular classes; specifically, they test whether any class
is in common between the superclasses of class1 and the subclasses of class2.

The different behavior for class unions is made possible because the class definition object
for class unions has itself a special class, "ClassUnionRepresentation", an extension of
"classRepresentation" (see classRepresentation-class).

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

Examples

## a class for either numeric or logical data

setClassUnion("maybeNumber", c("numeric", "logical"))

## use the union as the data part of another class

setClass("withId", representation("maybeNumber", id = "character"))

w1 <- new("withId", 1:10, id = "test 1")

w2 <- new("withId", sqrt(w1)%%1 < .01, id = "Perfect squares")

http://developer.r-project.org/methodsPackage.html


928 setGeneric

## add class "complex" to the union "maybeNumber"

setIs("complex", "maybeNumber")

w3 <- new("withId", complex(real = 1:10, imaginary = sqrt(1:10)))

## a class union containing the existing class union "OptionalFunction"

setClassUnion("maybeCode",

c("expression", "language", "OptionalFunction"))

is(quote(sqrt(1:10)), "maybeCode") ## TRUE

setGeneric Define a New Generic Function

Description

Create a new generic function of the given name, for which formal methods can then be
defined. Typically, an existing non-generic function becomes the default method, but there
is much optional control. See the details section.

Usage

setGeneric(name, def= , group=list(), valueClass=character(), where= ,
package= , signature= , useAsDefault= , genericFunction= )

setGroupGeneric(name, def= , group=list(), valueClass=character(),
knownMembers=list(), package= , where= )

Arguments

name The character string name of the generic function. In the simplest and
most common case, a function of this name is already defined. The exist-
ing function may be non-generic or already a generic (see the details).

def An optional function object, defining the generic. This argument is usu-
ally only needed (and is then required) if there is no current function of
this name. In that case, the formal arguments and default values for the
generic are taken from def. You can also supply this argument if you want
the generic function to do something other than just dispatch methods
(an advanced topic best left alone unless you are sure you want it).
Note that def is not the default method; use argument useAsDefault if
you want to specify the default separately.

group Optionally, a character string giving the group of generic functions to
which this function belongs. Methods can be defined for the corresponding
group generic, and these will then define methods for this specific generic
function, if no method has been explicitly defined for the corresponding
signature. See the references for more discussion.



setGeneric 929

valueClass An optional character vector or unevaluated expression. The value re-
turned by the generic function must have (or extend) this class, or one of
the classes; otherwise, an error is generated. See the details section for
supplying an expression.

package The name of the package with which this function is associated. Usu-
ally determined automatically (as the package containing the non-generic
version if there is one, or else the package where this generic is to be
saved).

where Where to store the resulting initial methods definition, and possibly the
generic function; by default, stored into the top-level environment.

signature Optionally, the signature of arguments in the function that can be used
in methods for this generic. By default, all arguments other than ... can
be used. The signature argument can prohibit methods from using some
arguments. The argument, if provided, is a vector of formal argument
names.

genericFunction

The object to be used as a (nonstandard) generic function definition.
Supply this explicitly only if you know what you are doing!

useAsDefault Override the usual choice of default argument (an existing non-generic
function or no default if there is no such function). Argument
useAsDefault can be supplied, either as a function to use for the de-
fault, or as a logical value. FALSE says not to have a default method at
all, so that an error occurs if there is not an explicit or inherited method
for a call. TRUE says to use the existing function as default, uncondi-
tionally (hardly ever needed as an explicit argument). See the section on
details.

knownMembers (For setGroupGeneric only) The names of functions that are known to
be members of this group. This information is used to reset cached defi-
nitions of the member generics when information about the group generic
is changed.

Details

The setGeneric function is called to initialize a generic function in an environment (usually
the global environment), as preparation for defining some methods for that function.

The simplest and most common situation is that name is already an ordinary non-generic
function, and you now want to turn this function into a generic. In this case you will most
often supply only name. The existing function becomes the default method, and the special
group and valueClass properties remain unspecified.

A second situation is that you want to create a new, generic function, unrelated to any
existing function. In this case, you need to supply a skeleton of the function definition, to
define the arguments for the function. The body of a generic function is usually a standard
form, standardGeneric(name) where name is the quoted name of the generic function.

When calling setGeneric in this form, you would normally supply the def argument as
a function of this form. If not told otherwise, setGeneric will try to find a non-generic
version of the function to use as a default. If you don’t want this to happen, supply the
argument useAsDefault. That argument can be the function you want to be the default
method. You can supply the argument as FALSE to force no default (i.e., to cause an error
if there is not direct or inherited method on call to the function).



930 setGeneric

The same no-default situation occurs if there is no non-generic form of the function, and
useAsDefault=FALSE. Remember, though, you can also just assign the default you want
(even one that generates an error) rather than relying on the prior situation.

You cannot (and never need to) create an explicit generic for the primitive functions in the
base library. These are dispatched from C code for efficiency and are not to be redefined in
any case.

As mentioned, the body of a generic function usually does nothing except for dispatching
methods by a call to standardGeneric. Under some circumstances you might just want
to do some additional computation in the generic function itself. As long as your function
eventually calls standardGeneric that is permissible (though perhaps not a good idea,
in that it makes the behavior of your function different from the usual S model). If your
explicit definition of the generic function does not call standardGeneric you are in trouble,
because none of the methods for the function will ever be dispatched.

By default, the generic function can return any object. If valueClass is supplied, it should
be a vector of class names; the value returned by a method is then required to satisfy
is(object, Class) for one of the specified classes. An empty (i.e., zero length) vector of
classes means anything is allowed. Note that more complicated requirements on the result
can be specified explicitly, by defining a non-standard generic function.

The setGroupGeneric function behaves like setGeneric except that it constructs a group
generic function, differing in two ways from an ordinary generic function. First, this function
cannot be called directly, and the body of the function created will contain a stop call with
this information. Second, the group generic function contains information about the known
members of the group, used to keep the members up to date when the group definition
changes, through changes in the search list or direct specification of methods, etc.

Value

The setGeneric function exists for its side effect: saving the generic function to allow
methods to be specified later. It returns name.

Generic Functions and Primitive Functions

A number of the basic R functions are specially implemented as primitive functions, to
be evaluated directly in the underlying C code rather than by evaluating an S language
definition. Primitive functions are eligible to have methods, but are handled differently by
setGeneric and setGroupGeneric. A call to setGeneric for a primitive function does not
create a new definition of the function, and the call is allowed only to “turn on” methods
for that function.

A call to setGeneric for a primitive causes the evaluator to look for methods for that
generic; a call to setGroupGeneric for any of the groups that include primitives ("Arith",
"Logic", "Compare", "Ops", "Math", "Math2", "Summary", and "Complex") does the
same for each of the functions in that group.

You usually only need to use either function if the methods are being defined only for the
group generic. Defining a method for a primitive function, say "+", by a call to setMethod
turns on method dispatch for that function. But in R defining a method for the corre-
sponding group generic, "Arith", does not currently turn on method dispatch (for efficiency
reasons). If there are no non-group methods for the functions, you have two choices.

You can turn on method dispatch for all the functions in the group by calling
setGroupGeneric("Arith"), or you can turn on method dispatch for only some of the
functions by calling setGeneric("+"), etc. Note that in either case you should give the
name of the generic function as the only argument.



setGeneric 931

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

Methods for a discussion of other functions to specify and manipulate the methods of generic
functions.

Examples

### A non-standard generic function. It insists that the methods

### return a non-empty character vector (a stronger requirement than

### valueClass = "character" in the call to setGeneric)

setGeneric("authorNames",

function(text) {

value <- standardGeneric("authorNames")

if(!(is(value, "character") && any(nchar(value)>0)))

stop("authorNames methods must return non-empty strings")

value

})

## An example of group generic methods, using the class

## "track"; see the documentation of setClass for its definition

#define a method for the Arith group

setMethod("Arith", c("track", "numeric"),

function(e1, e2){

e1@y <- callGeneric(e1@y , e2)

e1

})

setMethod("Arith", c("numeric", "track"),

function(e1, e2){

e2@y <- callGeneric(e1, e2@y)

e2

})

# now arithmetic operators will dispatch methods:

t1 <- new("track", x=1:10, y=sort(rnorm(10)))

http://developer.r-project.org/methodsPackage.html


932 setMethod

t1 - 100

1/t1

setMethod Create and Save a Method

Description

Create and save a formal method for a given function and list of classes.

Usage

setMethod(f, signature=character(), definition, where= topenv(parent.frame()),
valueClass = NULL, sealed = FALSE)

removeMethod(f, signature, where)

Arguments

f The character-string name of the generic function.

signature A match of formal argument names for f with the character-string names
of corresponding classes. This argument can also just be the vector of
class names, in which case the first name corresponds to the first formal
argument, the next to the second formal argument, etc.

definition A function definition, which will become the method called when the ar-
guments in a call to f match the classes in signature, directly or through
inheritance.

where the database in which to store the definition of the method;
For removeMethod, the default is the location of the (first) instance of the
method for this signature.

valueClass If supplied, this argument asserts that the method will return a value of
this class. (At present this argument is stored but not explicitly used.)

sealed If TRUE, the method so defined cannot be redefined by another call to
setMethod (although it can be removed and then re-assigned). Note that
this argument is an extension to the definition of setMethod in the refer-
ence.

Details

R methods for a particular generic function are stored in an object of class MethodsList.
The effect of calling setMethod is to store definition in a MethodsList object on database
where. If f doesn’t exist as a generic function, but there is an ordinary function of the same
name and the same formal arguments, a new generic function is created, and the previous
non-generic version of f becomes the default method. This is equivalent to the programmer
calling setGeneric for the same function; it’s better practice to do the call explicitly, since
it shows that you intend to turn f into a generic function.

Methods are stored in a hierarchical structure: see Methods for how the objects are used
to select a method, and MethodsList for functions that manipulate the objects.



setMethod 933

The class names in the signature can be any formal class, plus predefined basic classes such
as "numeric", "character", and "matrix". Two additional special class names can appear:
"ANY", meaning that this argument can have any class at all; and "missing", meaning that
this argument must not appear in the call in order to match this signature. Don’t confuse
these two: if an argument isn’t mentioned in a signature, it corresponds implicitly to class
"ANY", not to "missing". See the example below. Old-style (“S3”) classes can also be
used, if you need compatibility with these, but you should definitely declare these classes
by calling setOldClass if you want S3-style inheritance to work.

While f can correspond to methods defined on several packages or environments, the un-
derlying model is that these together make up the definition for a single generic function.
When R proceeds to select and evaluate methods for f, the methods on the current search
list are merged to form a single methods list. When f is called and a method is“dispatched”,
the evaluator matches the classes of the actual arguments to the signatures of the available
methods. When a match is found, the body of the corresponding method is evaluated (in
R, the body is evaluated in the lexical context of the method), but without rematching the
arguments to f.

It is possible, however, to have some differences between the formal arguments to a method
supplied to setMethod and those of the generic. Roughly, if the generic has . . . as one of its
arguments, then the method may have extra formal arguments, which will be matched from
the arguments matching . . . in the call to f. (What actually happens is that a local function
is created inside the method, with its formal arguments, and the method is re-defined to
call that local function.)

Method dispatch tries to match the class of the actual arguments in a call to the available
methods collected for f. Roughly, for each formal argument in turn, we look for the best
match (the exact same class or the nearest element in the value of extends for that class)
for which there is any possible method matching the remaining arguments. See Methods
for more details.

Value

These functions exist for their side-effect, in setting or removing a method in the object
defining methods for the specified generic.

The value returned by removeMethod is TRUE if a method was found to be removed.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

Methods, MethodsList for details of the implementation

http://developer.r-project.org/methodsPackage.html


934 setMethod

Examples

## methods for plotting track objects (see the example for setClass)

##

## First, with only one object as argument:

setMethod("plot", signature(x="track", y="missing"),

function(x, y, ...) plot(slot(x, "x"), slot(x, "y"), ...)

)

## Second, plot the data from the track on the y-axis against anything

## as the x data.

setMethod("plot", signature(y = "track"),

function(x, y, ...) plot(x, slot(y, "y"), ...)

)

## and similarly with the track on the x-axis (using the short form of

## specification for signatures)

setMethod("plot", "track",

function(x, y, ...) plot(slot(x, "y"), y, ...)

)

t1 <- new("track", x=1:20, y=(1:20)^2)

tc1 <- new("trackCurve", t1)

slot(tc1, "smooth") <- smooth.spline(slot(tc1, "x"), slot(tc1, "y"))$y #$

plot(t1)

plot(qnorm(ppoints(20)), t1)

## An example of inherited methods, and of conforming method arguments

## (note the dotCurve argument in the method, which will be pulled out

## of ... in the generic.

setMethod("plot", c("trackCurve", "missing"),

function(x, y, dotCurve = FALSE, ...) {

plot(as(x, "track"))

if(length(slot(x, "smooth") > 0))

lines(slot(x, "x"), slot(x, "smooth"),

lty = if(dotCurve) 2 else 1)

}

)

## the plot of tc1 alone has an added curve; other uses of tc1

## are treated as if it were a "track" object.

plot(tc1, dotCurve = TRUE)

plot(qnorm(ppoints(20)), tc1)

## defining methods for a special function.

## Although "[" and "length" are not ordinary functions

## methods can be defined for them.

setMethod("[", "track",

function(x, i, j, ..., drop) {

x@x <- x@x[i]; x@y <- x@y[i]

x

})

plot(t1[1:15])

setMethod("length", "track", function(x)length(x@y))

length(t1)

## methods can be defined for missing arguments as well

setGeneric("summary") ## make the function into a generic



setOldClass 935

## A method for summary()

## The method definition can include the arguments, but

## if they're omitted, class "missing" is assumed.

setMethod("summary", "missing", function() "<No Object>")

setOldClass Specify Names for Old-Style Classes

Description

Register an old-style (a.k.a. ‘S3’) class as a formally defined class. The Classes argument
is the character vector used as the class attribute; in particular, if there is more than one
string, old-style class inheritance is mimiced. Registering via setOldClass allows S3 classes
to appear as slots or in method signatures.

Usage

setOldClass(Classes, where, test = FALSE)

Arguments

Classes A character vector, giving the names for old-style classes, as they would
appear on the right side of an assignment of the class attribute.

where Where to store the class definitions, the global or top-level environment
by default. (When either function is called in the source for a package, the
class definitions will be included in the package’s environment by default.)

test flag, if TRUE, inheritance must be tested explicitly for each object, needed
if the S3 class can have a different set of class strings, with the same first
string. See the details below.

Details

Each of the names will be defined as a virtual class, extending the remaining classes in
Classes, and the class oldClass, which is the “root” of all old-style classes. See Methods
for the details of method dispatch and inheritance. See the section Register or Convert?
for comments on the alternative of defining“real”S4 classes rather than using setOldClass.

S3 classes have no formal definition, and some of them cannot be represented as an ordinary
combination of S4 classes and superclasses. It is still possible to register the classes as S4
classes, but now the inheritance has to be verified for each object, and you must call
setOldClass with argument test=TRUE.

For example, ordered factors always have the S3 class c("ordered", "factor"). This is
proper behavior, and maps simply into two S4 classes, with "ordered" extending "factor".

But objects whose class attribute has "POSIXt" as the first string may have either (or
neither) of "POSIXct" or "POSIXlt" as the second string. This behavior can be mapped
into S4 classes but now to evaluate is(x, "POSIXlt"), for example, requires checking the
S3 class attribute on each object. Supplying the test=TRUE argument to setOldClass
causes an explicit test to be included in the class definitions. It’s never wrong to have this



936 setOldClass

test, but since it adds significant overhead to methods defined for the inherited classes, you
should only supply this argument if it’s known that object-specific tests are needed.

The list .OldClassesList contains the old-style classes that are defined by the methods
package. Each element of the list is an old-style list, with multiple character strings if
inheritance is included. Each element of the list was passed to setOldClass when creating
the methods package; therefore, these classes can be used in setMethod calls, with the
inheritance as implied by the list.

Register or Convert?

A call to

3.1 setOldClass

creates formal classes corresponding to S3 classes, allows these to be used as slots in other
classes or in a signature in setMethod, and mimics the S3 inheritance.

However, all such classes are created as virtual classes, meaning that you cannot generally
create new objects from the class by calling new, and that objects cannot be coerced auto-
matically from or to these classes. All these restrictions just reflect the fact that nothing
is inherently known about the “structure” of S3 classes, or whether in fact they define a
consistent set of attributes that can be mapped into slots in a formal class definition.

If your class does in fact have a consistent structure, so that every object from the class
has the same structure, you may prefer to take some extra time to write down a specific
definition in a call to setClass to convert the class to a fully functional formal class. On
the other hand, if the actual contents of the class vary from one object to another, you
may have to redesign most of the software using the class, in which case converting it may
not be worth the effort. You should still register the class via setOldClass, unless its class
attribute is hopelessly unpredictable.

An S3 class has consistent structure if each object has the same set of attributes, both the
names and the classes of the attributes being the same for every object in the class. In
practice, you can convert classes that are slightly less well behaved. If a few attributes
appear in some but not all objects, you can include these optional attributes as slots
that always appear in the objects, if you can supply a default value that is equivalent
to the attribute being missing. Sometimes NULL can be that value: A slot (but not an
attribute) can have the value NULL. If version, for example, was an optional attribute,
the old test is.null(attr(x,"version") for a missing version attribute could turn into
is.null(x@version) for the formal class.

The requirement that slots have a fixed class can be satisfied indirectly as well. Slots
can be specified with class "ANY", allowing an arbitrary object. However, this eliminates
an important benefit of formal class definitions; namely, automatic validation of objects
assigned to a slot. If just a few different classes are possible, consider using setClassUnion
to define valid objects for a slot.

setOldClass

See Also

setClass, setMethod



show 937

Examples

setOldClass(c("mlm", "lm"))

setGeneric("dfResidual", function(model)standardGeneric("dfResidual"))

setMethod("dfResidual", "lm", function(model)model$df.residual)

## dfResidual will work on mlm objects as well as lm objects

myData <- data.frame(time = 1:10, y = (1:10)^.5)

myLm <- lm(cbind(y, y^3) ~ time, myData)

rm(myData, myLm)

removeGeneric("dfResidual")

show Show an Object

Description

Display the object, by printing, plotting or whatever suits its class. This function exists to
be specialized by methods. The default method calls showDefault.

Formal methods for show will usually be invoked for automatic printing (see the details).

Usage

show(object)

Arguments

object Any R object

Details

The methods package overrides the base definition of print.default to arrange for au-
tomatic printing to honor methods for the function show. This does not quite manage to
override old-style printing methods, since the automatic printing in the evaluator will look
first for the old-style method.

If you have a class myClass and want to define a method for show, all will be well unless there
is already a function named print.myClass. In that case, to get your method dispatched
for automatic printing, it will have to be a method for print. A slight cheat is to override
the function print.myClass yourself, and then call that function also in the method for
show with signature "myClass".

Value

show returns an invisible NULL.

See Also

showMethods prints all the methods for one or more functions; showMlist prints individual
methods lists; showClass prints class definitions. Neither of the latter two normally needs
to be called directly.



938 showMethods

Examples

## following the example shown in the setMethod documentation ...

setClass("track",

representation(x="numeric", y="numeric"))

setClass("trackCurve",

representation("track", smooth = "numeric"))

t1 <- new("track", x=1:20, y=(1:20)^2)

tc1 <- new("trackCurve", t1)

setMethod("show", "track",

function(object)print(rbind(x = object@x, y=object@y))

)

## The method will now be used for automatic printing of t1

t1

## Not run:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

x 1 2 3 4 5 6 7 8 9 10 11 12

y 1 4 9 16 25 36 49 64 81 100 121 144

[,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]

x 13 14 15 16 17 18 19 20

y 169 196 225 256 289 324 361 400

## End(Not run)

## and also for tc1, an object of a class that extends "track"

tc1

## Not run:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

x 1 2 3 4 5 6 7 8 9 10 11 12

y 1 4 9 16 25 36 49 64 81 100 121 144

[,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]

x 13 14 15 16 17 18 19 20

y 169 196 225 256 289 324 361 400

## End(Not run)

showMethods Show all the methods for the specified function(s)

Description

Show a summary of the methods for one or more generic functions, possibly restricted to
those involving specified classes.

Usage

showMethods(f = character(), where = topenv(parent.frame()), classes = NULL,
includeDefs = FALSE, inherited = TRUE, printTo = stdout())



showMethods 939

Arguments

f one or more function names. If omitted, all functions will be examined.

where If where is supplied, the methods definition from that position will be
used; otherwise, the current definition is used (which will include inherited
methods that have arisen so far in the session). If f is omitted, where
controls where to look for generic functions.

classes If argument classes is supplied, it is a vector of class names that restricts
the displayed results to those methods whose signatures include one or
more of those classes.

includeDefs If includeDefs is TRUE, include the definitions of the individual methods
in the printout.

inherited If inherits is TRUE, then methods that have been found by inheritance,
so far in the session, will be included and marked as inherited. Note
that an inherited method will not usually appear until it has been used
in this session. See selectMethod if you want to know what method is
dispatched for particular classes of arguments.

printTo The connection on which the printed information will be written. If
printTo is FALSE, the output will be collected as a character vector and
returned as the value of the call to showMethod. See show.

Details

The output style is different from S-Plus in that it does not show the database from which
the definition comes, but can optionally include the method definitions.

Value

If printTo is FALSE, the character vector that would have been printed is returned; other-
wise the value is the connection or filename.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

setMethod, and GenericFunctions for other tools involving methods; selectMethod will
show you the method dispatched for a particular function and signature of classes for the
arguments.

http://developer.r-project.org/methodsPackage.html


940 signature-class

Examples

## assuming the methods for plot

## are set up as in the documentation for setMethod,

## print (without definitions) the methods that involve

## class "track"

showMethods("plot", classes = "track")

## Not run:

Function "plot":

x = ANY, y = track

x = track, y = missing

x = track, y = ANY

## End(Not run)

signature-class Class ”signature” For Method Definitions

Description

This class represents the mapping of some of the formal arguments of a function onto the
names of some classes. It is used as one of two slots in the MethodDefinition-class.

Objects from the Class

Objects can be created by calls of the form new("signature", functionDef, ...). The
functionDef argument, if it is supplied as a function object, defines the formal names. The
other arguments define the classes.

Slots

.Data: Object of class "character" the classes.

names: Object of class "character" the corresponding argument names.

Extends

Class "character", from data part. Class "vector", by class ”character”.

Methods

initialize signature(object = "signature"): see the discussion of objects from the
class, above.

See Also

MethodDefinition-class for the use of this class



slot 941

slot The Slots in an Object from a Formal Class

Description

These functions return or set information about the individual slots in an object.

Usage

object@name
object@name <- value

slot(object, name)
slot(object, name, check = TRUE) <- value

slotNames(x)

Arguments

object An object from a formally defined class.

name The character-string name of the slot. The name must be a valid slot
name: see Details below.

value A new value for the named slot. The value must be valid for this slot in
this object’s class.

x Either the name of a class or an object from that class. Print
getClass(class) to see the full description of the slots.

check If TRUE, check the assigned value for validity as the value of this slot. You
should never set this to FALSE in normal use, since the result can create
invalid objects.

Details

The "@" operator and the slot function extract or replace the formally defined slots for
the object. The operator takes a fixed name, which can be unquoted if it is syntactically
a name in the language. A slot name can be any non-empty string, but if the name is not
made up of letters, numbers, and ".", it needs to be quoted.

In the case of the slot function, the slot name can be any expression that evaluates to
a valid slot in the class definition. Generally, the only reason to use the functional form
rather than the simpler operator is because the slot name has to be computed.

The definition of the class contains the names of all slots diretly and indirectly defined.
Each slot has a name and an associated class. Extracting a slot returns an object from that
class. Setting a slot first coerces the value to the specified slot and then stores it.

Unlike attributes, slots are not partially matched, and asking for (or trying to set) a slot
with an invalid name for that class generates an error.



942 StructureClasses

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

@, Classes, Methods, getClass

Examples

## Not run:

slot(myTrack, "x")

slot(myTrack, "y") <- log(slot(myTrack, "x"))

slotNames("track")

## End(Not run)

StructureClasses Classes Corresponding to Basic Structures

Description

The virtual class structure and classes that extend it are formal classes analogous to S
language structures such as arrays and time-series

Usage

## The folowing class names can appear in method signatures,
## as the class in as() and is() expressions, and, except for
## the classes commented as VIRTUAL, in calls to new()

"matrix"
"array"
"ts"

"structure" ## VIRTUAL

Objects from the Classes

Objects can be created by calls of the form new(Class, ...), where Class is the quoted
name of the specific class (e.g., "matrix"), and the other arguments, if any, are interpreted
as arguments to the corresponding function, e.g., to function matrix(). There is no partic-
ular advantage over calling those functions directly, unless you are writing software designed
to work for multiple classes, perhaps with the class name and the arguments passed in.

http://developer.r-project.org/methodsPackage.html


substituteDirect 943

Extends

The specific classes all extend class "structure", directly, and class "vector", by class
"structure".

Methods

coerce Methods are defined to coerce arbitrary objects to these classes, by calling the
corresponding basic function, for example, as(x, "matrix") calls as.matrix(x).

substituteDirect SubstituteDirect

Description

Substitute for the variables named in the second argument the corresponding objects, sub-
stituting into object. The argument frame is a named list; if omitted, the environment of
the caller is used.

This function differs from the ordinary substitute in that it treats its first argument in
the standard S way, by evaluating it. In contrast, substitute does not evaluate its first
argument.

The goal is to replace this with an eval= argument to substitute.

Usage

substituteDirect(object, frame, cleanFunction=TRUE)

TraceClasses Classes Used Internally to Control Tracing

Description

The classes described here are used by the R function trace to create versions of functions
and methods including browser calls, etc., and also to untrace the same objects.

Usage

### Objects from the following classes are generated
### by calling trace() on an object from the corresponding
### class without the "WithTrace" in the name.

"functionWithTrace"
"MethodDefinitionWithTrace"
"MethodWithNextWithTrace"
"genericFunctionWithTrace"
"groupGenericFunctionWithTrace"

### the following is a virtual class extended by each of the
### classes above

"traceable"



944 validObject

Objects from the Class

Objects will be created from these classes by calls to trace. (There is an initialize
method for class "traceable", but you are unlikely to need it directly.)

Slots

.Data: The data part, which will be "function" for class "functionWithTrace", and
similarly for the other classes.

original: Object of the original class; e.g., "function" for class "functionWithTrace".

Extends

Each of the classes extends the corresponding untraced class, from the data part;
e.g., "functionWithTrace" extends "function". Each of the specific classes extends
"traceable", directly, and class "VIRTUAL", by class "traceable".

Methods

The point of the specific classes is that objects generated from them, by function trace(),
remain callable or dispatchable, in addition to their new trace information.

See Also

function trace

validObject Test the Validity of an Object

Description

The validity of object related to its class definition is tested. If the object is valid, TRUE is
returned; otherwise, either a vector of strings describing validity failures is returned, or an
error is generated (according to whether test is TRUE).

The function setValidity sets the validity method of a class (but more normally, this
method will be supplied as the validity argument to setClass). The method should be
a function of one object that returns TRUE or a description of the non-validity.

Usage

validObject(object, test)

setValidity(Class, method, where = topenv(parent.frame()) )

Arguments

object Any object, but not much will happen unless the object’s class has a
formal definition.

test If test is TRUE, and validity fails the function returns a vector of strings
describing the problems. If test is FALSE (the default) validity failure
generates an error.



validObject 945

Class the name or class definition of the class whose validity method is to be
set.

method a validity method; that is, either NULL or a function of one argument (the
object). Like validObject, the function should return TRUE if the object
is valid, and one or more descriptive strings if any problems are found.
Unlike validObject, it should never generate an error.

where the modified class definition will be stored in this environment.

Note that validity methods do not have to check validity of any slots or superclasses: the
logic of validObject ensures these tests are done once only. As a consequence, if one
validity method wants to use another, it should extract and call the method from the other
definition of the other class by calling getValidity: it should not call validObject.

Details

Validity testing takes place “bottom up”: first the validity of the object’s slots, if any, is
tested. Then for each of the classes that this class extends (the “superclasses”), the explicit
validity method of that class is called, if one exists. Finally, the validity method of object’s
class is called, if there is one.

Testing generally stops at the first stage of finding an error, except that all the slots will be
examined even if a slot has failed its validity test.

Value

validObject returns TRUE if the object is valid. Otherwise a vector of strings describing
problems found, except that if test is FALSE, validity failure generates an error, with the
corresponding strings in the error message.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

setClass.

Examples

setClass("track",

representation(x="numeric", y = "numeric"))

t1 <- new("track", x=1:10, y=sort(rnorm(10)))

## A valid "track" object has the same number of x, y values

validTrackObject <- function(x){

if(length(x@x) == length(x@y)) TRUE

else paste("Unequal x,y lengths: ", length(x@x), ", ", length(x@y),

sep="")

http://developer.r-project.org/methodsPackage.html


946 validObject

}

## assign the function as the validity method for the class

setValidity("track", validTrackObject)

## t1 should be a valid "track" object

validObject(t1)

## Now we do something bad

t1@x <- 1:20

## This should generate an error

## Not run: try(validObject(t1))



Chapter 4

The tools package

buildVignettes List and Build Package Vignettes

Description

Run Sweave and texi2dvi on all vignettes of a package.

Usage

buildVignettes(package, dir, lib.loc = NULL, quiet=TRUE)
pkgVignettes(package, dir, lib.loc = NULL)

Arguments

package a character string naming an installed package. If given, Sweave files are
searched in subdirectory doc.

dir a character string specifying the path to a package’s root source directory.
This subdirectory inst/doc is searched for Sweave files.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. The specified
library trees are used to to search for package.

quiet logical. Run Sweave and texi2dvi in quiet mode.

Value

buildVignettes is called for its side effect of creating the PDF versions of all vignettes.

pkgVignettes returns an object of class "pkgVignettes".

947



948 checkFF

checkFF Check Foreign Function Calls

Description

Performs checks on calls to compiled code from R code. Currently only whether the interface
functions such as .C and .Fortran are called with argument PACKAGE specified, which is
highly recommended to avoid name clashes in foreign function calls.

Usage

checkFF(package, dir, file, lib.loc = NULL,
verbose = getOption("verbose"))

Arguments

package a character string naming an installed package. If given, the installed R
code of the package is checked.

dir a character string specifying the path to a package’s root source directory.
This should contain the subdirectory R (for R code). Only used if package
is not given.

file the name of a file containing R code to be checked. Used if neither package
nor dir are given.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. The specified
library trees are used to to search for package.

verbose a logical. If TRUE, additional diagnostics are printed (and the result is
returned invisibly).

Value

An object of class "checkFF", which currently is a list of the (parsed) foreign function calls
with no PACKAGE argument.

There is a print method for nicely displaying the information contained in such objects.

Warning

This function is still experimental. Both name and interface might change in future versions.

See Also

.C, .Fortran; Foreign.

Examples

checkFF(package = "ts", verbose = TRUE)



checkMD5sums 949

checkMD5sums Check and Create MD5 Checksum Files

Description

checkMD5sums checks the files against a file MD5; .installMD5sums creates such a file.

Usage

checkMD5sums(pkg, dir)
.installMD5sums(pkgDir, outDir = pkgDir)

Arguments

pkg the name of an installed package

dir, pkgDir the path to the top-level directory of an installed package.

outDir the directory within which to create the MD5 file.

Details

The file ‘MD5’ which is created is in a format which can be checked by md5sum -c MD5 if
a suitable command-line version of md5sum is available.

If dir is missing, an installed package of name pkg is searched for.

Value

checkMD5sums returns a logical, NA if there is no MD5 file to be checked.

See Also

md5sum

checkTnF Check R Packages or Code for T/F

Description

Checks the specified R package or code file for occurrences of T or F, and gathers the
expression containing these. This is useful as in R T and F are just variables which are set
to the logicals TRUE and FALSE by default, but are not reserved words and hence can be
overwritten by the user. Hence, one should always use TRUE and FALSE for the logicals.

Usage

checkTnF(package, dir, file, lib.loc = NULL)



950 checkVignettes

Arguments

package a character string naming an installed package. If given, the installed
R code and the examples in the documentation files of the package are
checked. R code installed as an image file cannot be checked.

dir a character string specifying the path to a package’s root source directory.
This must contain the subdirectory ‘R’ (for R code), and should also
contain ‘man’ (for documentation). Only used if package is not given.
If used, the R code files and the examples in the documentation files are
checked.

file the name of a file containing R code to be checked. Used if neither package
nor dir are given.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. The specified
library trees are used to to search for package.

Value

An object of class "checkTnF" which is a list containing, for each file where occurences of
T or F were found, a list with the expressions containing these occurrences. The names of
the list are the corresponding file names.

There is a print method for nicely displaying the information contained in such objects.

Warning

This function is still experimental. Both name and interface might change in future versions.

checkVignettes Check Package Vignettes

Description

Check all Sweave files of a package by running Sweave and/or Stangle on them. All R
source code files found after the tangling step are sourceed to check whether all code can
be executed without errors.

Usage

checkVignettes(package, dir, lib.loc = NULL, tangle = TRUE,
weave = TRUE, workdir = c("tmp", "src", "cur"),
keepfiles = FALSE)

Arguments

package a character string naming an installed package. If given, Sweave files are
searched in subdirectory doc.

dir a character string specifying the path to a package’s root source directory.
This subdirectory inst/doc is searched for Sweave files.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. The specified
library trees are used to to search for package.



codoc 951

tangle Perform a tangle and source the extraced code?
weave Perform a weave?
workdir Directory used as working directory while checking the vignettes. If "tmp"

then a temporary directory is created, this is the default. If "src" then
the directory containing the vignettes itself is used, if "cur" then the
current working directory of R is used.

keepfiles Delete file in temporary directory? This option is ignored when
workdir!="tmp".

Value

An object of class "checkVignettes" which is a list with the error messages found during
the tangle and weave steps. There is a print method for nicely displaying the information
contained in such objects.

codoc Check Code/Documentation Consistency

Description

Find inconsistencies between actual and documented “structure” of R objects in a package.
codoc compares names and optionally also corresponding positions and default values of
the arguments of functions. codocClasses and codocData compare slot names of S4 classes
and variable names of data sets, respectively.

Usage

codoc(package, dir, lib.loc = NULL,
use.values = FALSE, use.positions = TRUE,
ignore.generic.functions = FALSE,
verbose = getOption("verbose"))

codocClasses(package, lib.loc = NULL)
codocData(package, lib.loc = NULL)

Arguments

package a character string naming an installed package.
dir a character string specifying the path to a package’s root source directory.

This must contain the subdirectories ‘man’ with R documentation sources
(in Rd format) and ‘R’ with R code. Only used if package is not given.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. The specified
library trees are used to to search for package.

use.positions a logical indicating whether to use the positions of function arguments
when comparing. Deprecated.

use.values if FALSE (current default), do not use function default values when com-
paring code and docs. Otherwise, compare all default values if TRUE, and
only the ones documented in the usage otherwise.

ignore.generic.functions

if TRUE, functions recognized as S3 generics are ignored. Deprecated.
verbose a logical. If TRUE, additional diagnostics are printed.



952 codoc

Details

The purpose of codoc is to check whether the documented usage of function objects agrees
with their formal arguments as defined in the R code. This is not always straightforward,
in particular as the usage information for methods to generic functions often employs the
name of the generic rather than the method.

The following algorithm is used. If an installed package is used, it is loaded (unless it
is the base package), after possibly detaching an already loaded version of the package.
Otherwise, if the sources are used, the R code files of the package are collected and sourced
in a new environment. Then, the usage sections of the Rd files are extracted and parsed
“as much as possible” to give the formals documented. For interpreted functions in the
code environment, the formals are compared between code and documentation according to
the values of the arguments use.positions and use.values. Synopsis sections are used if
present; their occurrence is reported if verbose is true.

Currently, the R documentation format has no high-level markup for the basic “structure”
of classes and data sets (similar to the usage sections for function synopses). Variable names
for data frames in documentation objects obtained by suitably editing “shells” created by
prompt are recognized by codocData and used provided that the documentation object is for
a single data frame (i.e., only has one alias). codocClasses analogously handles slot names
for classes in documentation objects obtained by editing shells created by promptClass.

Value

codoc returns an object of class "codoc". Currently, this is a list which, for each Rd object
in the package where an inconsistency was found, contains an element with a list of the
mismatches (which in turn are lists with elements code and docs, giving the corresponding
arguments obtained from the function’s code and documented usage).

codocClasses and codocData return objects of class "codocClasses" and "codocData",
respectively, with a structure similar to class "codoc".

There are print methods for nicely displaying the information contained in such objects.

Warning

Both codocClasses and codocData are still experimental. Names, interfaces and values
might change in future versions.

Note

The default for use.values is going to be changed from FALSE to NULL for R version 1.9.0
and later.

See Also

undoc



delimMatch 953

delimMatch Delimited Pattern Matching

Description

Match delimited substrings in a character vector, with proper nesting.

Usage

delimMatch(x, delim = c("{", "}"), syntax = "Rd")

Arguments

x a character vector.
delim a character vector of length 2 giving the start and end delimiters. Cur-

rently, both must be single characters. Future versions might allow for
arbitrary regular expressions.

syntax currently, always the string ‘"Rd"’ indicating Rd syntax (i.e., ‘%’ starts
a comment extending till the end of the line, and ‘\’ escapes). Future
versions might know about other syntaxes, perhaps via “syntax tables”
allowing to flexibly specify comment, escape, and quote characters.

Value

An integer vector of the same length as x giving the starting position of the first match, or
−1 if there is none, with attribute "match.length" giving the length of the matched text
(or −1 for no match).

See Also

regexpr for “simple” pattern matching.

Examples

x <- c("\value{foo}", "function(bar)")

delimMatch(x)

delimMatch(x, c("(", ")"))

fileutils File Utilities

Description

Utilities for testing and listing files, and manipulating file paths.

Usage

filePathAsAbsolute(x)
filePathSansExt(x)
fileTest(op, x, y)
listFilesWithExts(dir, exts, all.files = FALSE, full.names = TRUE)
listFilesWithType(dir, type, all.files = FALSE. full.names = TRUE)



954 fileutils

Arguments

x,y character vectors giving file paths.

op a character string specifying the test to be performed. Unary tests (only x
is used) are "-f" (existence and not being a directory) and "-d" (existence
and directory); binary tests are "-nt" (newer than, using the modification
dates) and "-ot".

dir a character string with the path name to a directory.

exts a character vector of possible file extensions.

all.files a logical. If FALSE (default), only visible files are considered; if TRUE, all
files are used.

full.names a logical indicating whether the full paths of the files found are returned
(default), or just the file names.

type a character string giving the “type” of the files to be listed, as character-
ized by their extensions. Currently, possible values are "code" (R code),
"data" (data sets), "demo" (demos), "docs" (R documentation), and
"vignette" (vignettes).

Details

filePathAsAbsolute turns a possibly relative file path absolute, performing tilde expansion
if necessary. Currently, only a single existing path can be given.

filePathSansExt returns the file paths without extensions. (Only purely alphanumeric
extensions are recognized.)

fileTest performs shell-style file tests. Note that file.exists only tests for existence
(test -e on some systems) but not for not being a directory.

listFilesWithExts returns the paths or names of the files in directory dir with extension
matching one of the elements of exts. Note that by default, full paths are returned, and
that only visible files are used.

listFilesWithType returns the paths of the files in dir of the given “type”, as determined
by the extensions recognized by R. When listing R code and documentation files, files in OS-
specific subdirectories are included if present. Note that by default, full paths are returned,
and that only visible files are used.

See Also

file.path, file.info, list.files

Examples

dir <- file.path(R.home(), "library", "eda")

fileTest("-d", dir)

fileTest("-nt", file.path(dir, "R"), file.path(dir, "demo"))

listFilesWithExts(file.path(dir, "demo"), "R")

listFilesWithType(file.path(dir, "demo"), "demo") # the same

filePathSansExt(list.files(file.path(R.home(), "modules")))



md5sum 955

md5sum Compute MD5 Checksums

Description

Compute the 32-byte MD5 checksums of one or more files.

Usage

md5sum(files)

Arguments

files character. The paths of file(s) to be check-summed.

Value

A character vector of the same length as files, with names equal to files. The elements
will be NA for non-existent or unreadable files, otherwise a 32-character string of hexadecimal
digits.

On Windows all files are read in binary mode (as the md5sum utilities there do): on other
OSes the files are read in the default way.

See Also

checkMD5sums

Examples

md5sum(dir(R.home(), pattern="^COPY", full.names=TRUE))

QC QC Checks for R Code and/or Documentation

Description

Functions for performing various quality checks.

Usage

checkDocFiles(package, dir, lib.loc = NULL)
checkDocStyle(package, dir, lib.loc = NULL)
checkReplaceFuns(package, dir, lib.loc = NULL)
checkS3methods(package, dir, lib.loc = NULL)



956 QC

Arguments

package a character string naming an installed package.

dir a character string specifying the path to a package’s root source directory.
This should contain the subdirectories R (for R code) and ‘man’ with R
documentation sources (in Rd format). Only used if package is not given.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. The specified
library trees are used to to search for package.

Details

checkDocFiles checks, for all Rd files in a package, whether all arguments shown in the
usage sections of the Rd file are documented in its arguments section. It also reports
duplicated entries in the arguments section, and “over-documented” arguments which are
given in the arguments section but not in the usage. Note that the match is for the usage
section and not a possibly existing synopsis section, as the usage is what gets displayed.

checkDocStyle investigates how (S3) methods are shown in the usages of the Rd files in a
package. It reports the methods shown by their full name rather than using the Rd \method
markup for indicating S3 methods. Earlier versions of R also reported about methods
shown along with their generic, which typically caused problems for the documentation of
the primary argument in the generic and its methods. With \method now being expanded
in a way that class information is preserved, “joint” documentation is no longer necessarily
a problem. (The corresponding information is still contained in the object returned by
checkDocStyle.)

checkReplaceFuns checks whether replacement functions or S3/S4 replacement methods
in the package R code have their final argument named value.

checkS3methods checks whether all S3 methods defined in the package R code have all
arguments of the corresponding generic, with positional arguments of the generics in the
same positions for the method. As an exception, the first argument of a formula method
may be called formula even if this is not the name used by the generic. The rules when ...
is involved are subtle: see the source code. Functions recognized as S3 generics are those
with a call to UseMethod in their body, internal S3 generics (see zMethods), and S3 group
generics (see Math). Possible dispatch under a different name is not taken into account. The
generics are sought first in the given package and then in the base package (but currently
not in other packages “used” by the given package).

If using an installed package, the checks needing access to all R objects of the package will
load the package (unless it is the base package), after possibly detaching an already loaded
version of the package.

Value

The functions return objects of class the same as the respective function names containing
the information about problems detected. There is a print method for nicely displaying
the information contained in such objects.

Warning

These functions are still experimental. Names, interfaces and values might change in future
versions.



Rdindex 957

Rdindex Generate Index from Rd Files

Description

Print a 2-column index table with names and titles from given R documentation files to
a given output file or connection. The titles are nicely formatted between two column
positions (typically 25 and 72, respectively).

Usage

Rdindex(RdFiles, outFile = "", type = NULL,
width = 0.9 * getOption("width"), indent = NULL)

Arguments

RdFiles a character vector specifying the Rd files to be used for creating the index,
either by giving the paths to the files, or the path to a single directory
with the sources of a package.

outFile a connection, or a character string naming the output file to print to. ""
(the default) indicates output is to the console.

type a character string giving the documentation type of the Rd files to be
included in the index, or NULL (the default). The type of an Rd file is
typically specified via the \docType tag; if type is "data", Rd files whose
only keyword is datasets are included as well.

width a positive integer giving the target column for wrapping lines in the out-
put.

indent a positive integer specifying the indentation of the second column. Must
not be greater than width/2, and defaults to width/3.

Rtangle R Driver for Stangle

Description

A driver for Stangle that extracts R code chunks.

Usage

Rtangle()
RtangleSetup(file, syntax, output=NULL, annotate=TRUE, split=FALSE,

prefix=TRUE, quiet=FALSE)



958 RweaveLatex

Arguments

file Name of Sweave source file.

syntax An object of class SweaveSyntax.

output Name of output file, default is to remove extension ‘.nw’, ‘.Rnw’ or ‘.Snw’
and to add extension ‘.R’. Any directory names in file are also removed
such that the output is created in the current working directory.

annotate By default, code chunks are seperated by comment lines specifying the
names and numbers of the code chunks. If FALSE, only the code chunks
without any decorating comments are extracted.

split Split output in single files per code chunk?

prefix If split=TRUE, prefix the chunk labels by the basename of the input file
to get output file names?

quiet If TRUE all progress messages are suppressed.

Author(s)

Friedrich Leisch

References

Friedrich Leisch: Sweave User Manual, 2002
http://www.ci.tuwien.ac.at/~leisch/Sweave

See Also

Sweave, RweaveLatex

RweaveLatex R/LaTeX Driver for Sweave

Description

A driver for Sweave that translates R code chunks in LaTeX files.

Usage

RweaveLatex()
RweaveLatexSetup(file, syntax, output=NULL, quiet=FALSE, debug=FALSE,

echo=TRUE, eval = TRUE, split=FALSE, stylepath=TRUE,
pdf=TRUE, eps=TRUE)

Arguments

file Name of Sweave source file.

syntax An object of class SweaveSyntax.

output Name of output file, default is to remove extension ‘.nw’, ‘.Rnw’ or ‘.Snw’
and to add extension ‘.tex’. Any directory names in file are also removed
such that the output is created in the current working directory.

quiet If TRUE all progress messages are suppressed.

http://www.ci.tuwien.ac.at/~leisch/Sweave


RweaveLatex 959

debug If TRUE, input and output of all code chunks is copied to the console.
stylepath If TRUE, a hard path to the file ‘Sweave.sty’ installed with this package

is set, if FALSE, only \usepackage{Sweave} is written. The hard path
makes the TeX file less portable, but avoids the problem of installing the
current version of ‘Sweave.sty’ to some place in your TeX input path. The
argument is ignored if a \usepackage{Sweave} is already present in the
Sweave source file.

echo set default for option echo, see details below.
eval set default for option eval, see details below.
split set default for option split, see details below.
pdf set default for option pdf, see details below.
eps set default for option eps, see details below.

Supported Options

RweaveLatex supports the following options for code chunks (the values in parentheses show
the default values):

echo: logical (TRUE). Include S code in the output file?
eval: logical (TRUE). If FALSE, the code chunk is not evaluated, and hence no text or

graphical output produced.
results: character string (verbatim). If verbatim, the output of S commands is included

in the verbatim-like Soutput environment. If tex, the output is taken to be already
proper latex markup and included as is. If hide then all output is completely sup-
pressed (but the code executed during the weave).

print: logical (FALSE) If TRUE, each expression in the code chunk is wrapped into a print()
statement before evaluation, such that the values of all expressions become visible.

term: logical (TRUE). If TRUE, visibility of values emulates an interactive R session: values
of assignments are not printed, values of single objects are printed. If FALSE, output
comes only from explicit print or cat statements.

split: logical (FALSE). If TRUE, text output is written to separate files for each code chunk.
strip.white: logical (TRUE). If TRUE, blank lines at the beginning and end of output are

removed.
prefix: logical (TRUE). If TRUE generated filenames of figures and output have a common

prefix.
prefix.string: a character string, default is the name of the ‘.Snw’ source file.
include: logical (TRUE), indicating whether input statements for text output and include-

graphics statements for figures should be auto-generated. Use include=FALSE if the
output should appear in a different place than the code chunk (by placing the input
line manually).

fig: logical (FALSE), indicating whether the code chunk produces graphical output. Note
that only one figure per code chunk can be processed this way.

eps: logical (TRUE), indicating whether EPS figures shall be generated. Ignored if
fig=FALSE.

pdf: logical (TRUE), indicating whether PDF figures shall be generated. Ignored if
fig=FALSE.

width: numeric (6), width of figures in inch.
height: numeric (6), height of figures in inch.



960 Sweave

Author(s)

Friedrich Leisch

References

Friedrich Leisch: Sweave User Manual, 2002
http://www.ci.tuwien.ac.at/~leisch/Sweave

See Also

Sweave, Rtangle

Sweave Automatic Generation of Reports

Description

Sweave provides a flexible framework for mixing text and S code for automatic report
generation. The basic idea is to replace the S code with its output, such that the final
document only contains the text and the output of the statistical anlysis.

Usage

Sweave(file, driver=RweaveLatex(), syntax=getOption("SweaveSyntax"), ...)
Stangle(file, driver=Rtangle(), syntax=getOption("SweaveSyntax"), ...)

Arguments

file Name of Sweave source file.

driver The actual workhorse, see details below.

syntax An object of class SweaveSyntax or a character string with its
name. The default installation provides SweaveSyntaxNoweb and
SweaveSyntaxLatex.

... Further arguments passed to the driver’s setup function.

Details

Automatic generation of reports by mixing word processing markup (like latex) and S code.
The S code gets replaced by its output (text or graphs) in the final markup file. This allows
to re-generate a report if the input data change and documents the code to reproduce the
analysis in the same file that also produces the report.

Sweave combines the documentation and code chunks together (or their output) into a
single document. Stangle extracts only the code from the Sweave file creating a valid S
source file (that can be run using source). Code inside \Sexpr{} statements is ignored by
Stangle.

Stangle is just a frontend to Sweave using a simple driver by default, which discards the
documentation and concatenates all code chunks the current S engine understands.

http://www.ci.tuwien.ac.at/~leisch/Sweave


Sweave 961

Hook Functions

Before each code chunk is evaluated, a number of hook functions can be executed. If
getOption("SweaveHooks") is set, it is taken to be a collection of hook functions. For
each logical option of a code chunk (echo, print, . . . ) a hook can be specified, which is
executed if and only if the respective option is TRUE. Hooks must be named elements of
the list returned by getOption("SweaveHooks") and be functions taking no arguments.
E.g., if option "SweaveHooks" is defined as list(fig = foo), and foo is a function, then
it would be executed before the code in each figure chunk. This is especially useful to set
defaults for the graphical parameters in a series of figure chunks.

Note that the user is free to define new Sweave options and associate arbitrary hooks with
them. E.g., one could define a hook function for option clean that removes all objects in
the global environment. Then all code chunks with clean=TRUE would start operating on
an empty workspace.

Syntax Definition

Sweave allows a very flexible syntax framework for marking documentation and text chunks.
The default is a noweb-style syntax, as alternative a latex-style syntax can be used. See
the user manual for details.

Author(s)

Friedrich Leisch

References

Friedrich Leisch: Sweave User Manual, 2002
http://www.ci.tuwien.ac.at/~leisch/Sweave

Friedrich Leisch: Dynamic generation of statistical reports using literate data analysis. In
W. Härdle and B. Rönz, editors, Compstat 2002 - Proceedings in Computational Statistics,
pages 575-580. Physika Verlag, Heidelberg, Germany, 2002. ISBN 3-7908-1517-9.

See Also

RweaveLatex, Rtangle

Examples

testfile <- system.file("Sweave", "Sweave-test-1.Rnw",

package = "tools")

## create a LaTeX file

Sweave(testfile)

## create an S source file from the code chunks

Stangle(testfile)

## which can be simply sourced

source("Sweave-test-1.R")

http://www.ci.tuwien.ac.at/~leisch/Sweave


962 SweaveSyntConv

SweaveSyntConv Convert Sweave Syntax

Description

This function converts the syntax of files in Sweave format to another Sweave syntax defi-
nition.

Usage

SweaveSyntConv(file, syntax, output=NULL)

Arguments

file Name of Sweave source file.

syntax An object of class SweaveSyntax or a character string with its name giving
the target syntax to which the file is converted.

output Name of output file, default is to remove the extension from the input
file and to add the default extension of the target syntax. Any directory
names in file are also removed such that the output is created in the
current working directory.

Author(s)

Friedrich Leisch

References

Friedrich Leisch: Sweave User Manual, 2002
http://www.ci.tuwien.ac.at/~leisch/Sweave

See Also

RweaveLatex, Rtangle

Examples

testfile <- system.file("Sweave", "Sweave-test-1.Rnw",

package = "tools")

## convert the file to latex syntax

SweaveSyntConv(testfile, SweaveSyntaxLatex)

## and run it through Sweave

Sweave("Sweave-test-1.Stex")

http://www.ci.tuwien.ac.at/~leisch/Sweave


texi2dvi 963

texi2dvi Compile LaTeX Files

Description

Run latex and bibtex until all cross-references are resolved and create either a dvi or PDF
file.

Usage

texi2dvi(file, pdf = FALSE, clean = TRUE, quiet = TRUE,
texi2dvi = getOption("texi2dvi"))

Arguments

file character. Name of TeX source file.

pdf logical. If TRUE, a PDF file is produced insted of the default dvi file
(texi2dvi command line option ‘--pdf’).

clean logical. If TRUE, all auxiliary files are removed (texi2dvi command line
option ‘--clean’).

quiet logical. No output unless an error occurs.

texi2dvi character (or NULL). Script or program used to compile a TeX file to dvi or
PDF, respectively. If set to NULL, the ‘texi2dvi’ script in R’s ‘bin’ directory
is used (if it exists), otherwise it is assumed that texi2dvi is in the search
path.

Details

Some TeX installations on Windows do not have ‘texi2dvi.exe’. If ‘texify.exe’ is present (e.g.,
part of MikTeX), then it can be used instead: set options(texi2dvi="texify.exe") or
to the full path of the program.

Author(s)

Achim Zeileis

tools-internal Internal tools Objects

Description

Internal tools functions.



964 undoc

Usage

RweaveLatexOptions(options)
RtangleWritedoc(object, chunk)

.installPackageCodeFiles(dir, outDir)

.installPackageDescription(dir, outDir)

.installPackageIndices(dir, outDir)

.checkDemoIndex(demoDir)

.checkVignetteIndex(vignetteDir)

Details

These are not to be called by the user.

undoc Find Undocumented Objects

Description

Finds the objects in a package which are undocumented, in the sense that they are visible
to the user (or data objects or S4 classes provided by the package), but no documentation
entry exists.

Usage

undoc(package, dir, lib.loc = NULL)

Arguments

package a character string naming an installed package.

dir a character string specifying the path to a package’s root source directory.
This must contain the subdirectory ‘man’ with R documentation sources
(in Rd format), and at least one of the ‘R’ or ‘data’ subdirectories with R
code or data objects, respectively.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. The specified
library trees are used to to search for package.

Details

This function is useful for package maintainers mostly. In principle, all user level R objects
should be documented; note however that the precise rules for documenting methods of
generic functions are still under discussion.

Value

An object of class "undoc" which is a list of character vectors containing the names of the
undocumented objects split according to documentation type. This representation is still
experimental, and might change in future versions.

There is a print method for nicely displaying the information contained in such objects.



undoc 965

Examples

undoc("tools") # Undocumented objects in 'tools'



966 undoc



Index

! (Logic), 380
!= (Comparison), 117
∗Topic NA

complete.cases, 119
factor, 230
NA, 438
na.action, 439
na.fail, 440
naprint, 443
naresid, 443

∗Topic algebra
backsolve, 57
chol, 103
chol2inv, 104
colSums, 115
crossprod, 147
eigen, 209
matrix, 414
qr, 570
QR.Auxiliaries, 572
solve, 657
svd, 711

∗Topic aplot
abline, 5
arrows, 36
axis, 53
box, 71
bxp, 83
contour, 133
coplot, 140
filled.contour, 245
frame, 265
grid, 293
Hershey, 305
image, 318
Japanese, 342
legend, 351
lines, 364
matplot, 412
mtext, 434
persp, 503
plot.window, 524
plot.xy, 525

plotmath, 526
points, 532
polygon, 536
rect, 604
rug, 629
screen, 637
segments, 643
symbols, 715
text, 746
title, 751

∗Topic arith
all.equal, 18
approxfun, 30
Arithmetic, 34
cumsum, 148
diff, 187
Extremes, 229
findInterval, 247
gl, 283
matmult, 411
ppoints, 544
prod, 561
range, 585
Round, 622
sign, 651
sort, 659
sum, 699
tabulate, 732

∗Topic array
aggregate, 9
aperm, 27
apply, 29
array, 35
backsolve, 57
cbind, 94
chol, 103
chol2inv, 104
col, 112
colSums, 115
contrast, 135
cor, 143
crossprod, 147
data.matrix, 156

967



968 INDEX

det, 177
diag, 186
dim, 190
dimnames, 191
drop, 198
eigen, 209
expand.grid, 219
Extract, 223
Extract.data.frame, 225
kronecker, 345
lm.fit, 370
lower.tri, 390
margin.table, 405
mat.or.vec, 406
matmult, 411
matplot, 412
matrix, 414
maxCol, 415
merge, 420
nrow, 456
outer, 480
prop.table, 567
qr, 570
QR.Auxiliaries, 572
row, 624
row/colnames, 626
scale, 634
slice.index, 655
svd, 711
sweep, 712
t, 729

∗Topic attribute
attr, 49
attributes, 50
call, 87
comment, 117
length, 354
mode, 424
name, 441
names, 442
NULL, 463
numeric, 464
structure, 692
typeof, 768
which, 796

∗Topic category
aggregate, 9
by, 84
codes-deprecated, 110
cut, 150
Extract.factor, 227
factor, 230

ftable, 266
ftable.formula, 268
gl, 283
interaction, 330
levels, 355
loglin, 386
nlevels, 450
plot.table, 522
read.ftable, 589
split, 665
table, 730
tapply, 733
xtabs, 808

∗Topic character
abbreviate, 4
agrep, 11
char.expand, 96
character, 96
charmatch, 97
chartr, 98
delimMatch, 953
format, 255
format.info, 257
formatC, 258
grep, 291
make.names, 398
make.unique, 401
nchar, 445
paste, 500
pmatch, 529
regex, 606
sprintf, 666
sQuote, 668
strsplit, 691
strwidth, 693
strwrap, 694
substr, 698
symnum, 717

∗Topic chron
as.POSIX*, 40
axis.POSIXct, 54
cut.POSIXt, 151
DateTimeClasses, 160
difftime, 188
hist.POSIXt, 311
rep, 612
round.POSIXt, 623
seq.POSIXt, 646
strptime, 688
Sys.time, 726
weekdays, 792

∗Topic classes



INDEX 969

as, 863
as.data.frame, 37
BasicClasses, 867
callNextMethod, 868
character, 96
class, 107
Classes, 870
classRepresentation-class, 871
codes-deprecated, 110
data.class, 154
data.frame, 155
Documentation, 872
double, 194
EmptyMethodsList-class, 874
environment-class, 875
fixPre1.8, 876
genericFunction-class, 877
GenericFunctions, 878
getClass, 882
getMethod, 883
integer, 327
is, 889
is.object, 339
is.recursive, 340
is.single, 341
isSealedMethod, 892
language-class, 893
LinearMethodsList-class, 895
logical, 381
makeClassRepresentation, 896
MethodDefinition-class, 897
Methods, 898
MethodsList-class, 903
MethodWithNext-class, 905
new, 906
numeric, 464
ObjectsWithPackage-class, 908
promptClass, 910
real, 600
representation, 916
row.names, 625
SClassExtension-class, 921
setClass, 923
setClassUnion, 926
setMethod, 932
signature-class, 940
slot, 941
StructureClasses, 942
TraceClasses, 943
validObject, 944
vector, 787

∗Topic color

col2rgb, 112
colors, 114
gray, 291
hsv, 312
palette, 489
Palettes, 490
rgb, 620

∗Topic complex
complex, 120

∗Topic connection
cat, 92
connections, 126
dput, 197
dump, 200
gzcon, 297
parse, 499
pushBack, 567
read.00Index, 588
read.fwf, 590
read.table, 593
readBin, 596
readLines, 599
scan, 635
seek, 642
showConnections, 650
sink, 653
socketSelect, 657
source, 661
textConnection, 747
write, 803
writeLines, 805

∗Topic datasets
airmiles, 14
airquality, 14
anscombe, 24
attenu, 47
attitude, 48
cars, 90
chickwts, 100
co2, 109
data, 152
discoveries, 192
esoph, 212
euro, 213
eurodist, 214
faithful, 234
Formaldehyde, 253
freeny, 265
HairEyeColor, 298
infert, 321
InsectSprays, 325
iris, 335



970 INDEX

islands, 342
LifeCycleSavings, 363
longley, 389
morley, 430
mtcars, 433
nhtemp, 449
OrchardSprays, 477
phones, 505
PlantGrowth, 510
precip, 545
presidents, 550
pressure, 551
quakes, 573
randu, 584
rivers, 621
sleep, 655
stackloss, 670
state, 679
sunspots, 710
swiss, 713
Titanic, 750
ToothGrowth, 753
trees, 759
UCBAdmissions, 769
USArrests, 781
USJudgeRatings, 783
USPersonalExpenditure, 784
uspop, 785
VADeaths, 785
volcano, 789
warpbreaks, 791
women, 802

∗Topic data
apropos, 32
as.environment, 38
assign, 42
assignOps, 43
attach, 46
autoload, 51
bquote, 76
delay, 167
deparse, 173
detach, 178
environment, 211
eval, 215
exists, 218
force, 250
get, 274
getAnywhere, 276
getFromNamespace, 277
getS3method, 281
library, 356

library.dynam, 361
search, 641
substitute, 696
sys.parent, 722
with, 800

∗Topic debugging
recover, 602
trace, 754

∗Topic design
contrast, 135
contrasts, 137
TukeyHSD, 766

∗Topic device
dev.xxx, 179
dev2, 181
Devices, 184
Gnome, 290
pdf, 501
pictex, 506
png, 530
postscript, 539
quartz, 575
screen, 637
x11, 806
xfig, 807

∗Topic distribution
bandwidth, 58
Beta, 65
Binomial, 68
birthday, 69
Cauchy, 93
Chisquare, 101
density, 170
Exponential, 221
FDist, 237
fivenum, 249
GammaDist, 270
Geometric, 273
hist, 308
Hypergeometric, 314
IQR, 334
Logistic, 382
Lognormal, 387
Multinomial, 436
NegBinomial, 447
Normal, 453
Poisson, 533
ppoints, 544
qqnorm, 568
r2dtable, 578
Random, 579
Random.user, 583



INDEX 971

sample, 630
SignRank, 652
stem, 680
TDist, 739
Tukey, 765
Uniform, 770
Weibull, 793
Wilcoxon, 798

∗Topic documentation
apropos, 32
args, 33
buildVignettes, 947
checkTnF, 949
checkVignettes, 950
codoc, 951
data, 152
Defunct, 165
demo, 169
Deprecated, 174
Documentation, 872
example, 216
help, 299
help.search, 302
help.start, 304
NotYet, 455
prompt, 564
promptData, 566
QC, 955
Rdindex, 957
str, 685
Syntax, 719
undoc, 964
vignette, 788

∗Topic dplot
absolute.size, 815
approxfun, 30
axTicks, 55
boxplot.stats, 75
col2rgb, 112
colors, 114
convertNative, 816
convolve, 139
current.viewport, 817
dataViewport, 818
expression, 222
fft, 238
gpar, 819
Grid, 820
grid.arrows, 821
grid.circle, 823
grid.collection, 824
grid.convert, 825

grid.copy, 827
grid.display.list, 828
grid.draw, 828
grid.edit, 829
grid.frame, 830
grid.get, 831
grid.grill, 832
grid.grob, 833
grid.layout, 834
grid.lines, 835
grid.locator, 836
grid.move.to, 837
grid.newpage, 838
grid.pack, 838
grid.place, 840
grid.plot.and.legend, 841
grid.points, 841
grid.polygon, 842
grid.pretty, 843
grid.rect, 844
grid.segments, 845
grid.set, 846
grid.show.layout, 847
grid.show.viewport, 848
grid.text, 849
grid.xaxis, 850
grid.yaxis, 851
height.details, 852
hist, 308
hist.POSIXt, 311
hsv, 312
jitter, 343
layout, 349
n2mfrow, 437
Palettes, 490
panel.smooth, 491
par, 492
plot.density, 514
plotViewport, 853
pop.viewport, 853
ppoints, 544
pretty, 551
push.viewport, 854
screen, 637
splinefun, 663
strwidth, 693
unit, 855
unit.c, 857
unit.length, 857
unit.pmin, 858
unit.rep, 859
units, 773



972 INDEX

viewport, 859
width.details, 862
xy.coords, 809
xyz.coords, 811

∗Topic environment
apropos, 32
as.environment, 38
browser, 78
commandArgs, 116
debug, 163
gc, 271
gctorture, 273
interactive, 332
is.R, 340
layout, 349
ls, 391
Memory, 417
options, 474
par, 492
quit, 576
R.Version, 577
remove, 611
Startup, 675
stop, 683
stopifnot, 684
Sys.getenv, 720
Sys.putenv, 724
taskCallback, 734
taskCallbackManager, 736
taskCallbackNames, 738

∗Topic error
bug.report, 80
conditions, 121
debugger, 164
options, 474
stop, 683
stopifnot, 684
warning, 789
warnings, 790

∗Topic file
.Platform, 3
basename, 62
browseURL, 79
cat, 92
connections, 126
count.fields, 145
dataentry, 157
dcf, 162
dput, 197
dump, 200
file.access, 239
file.choose, 240

file.info, 240
file.path, 242
file.show, 242
files, 243
fileutils, 953
gzcon, 297
list.files, 367
load, 375
package.skeleton, 484
parse, 499
path.expand, 501
read.00Index, 588
read.fwf, 590
read.table, 593
readBin, 596
readLines, 599
save, 631
scan, 635
seek, 642
serialize, 647
sink, 653
source, 661
sys.source, 725
system, 727
system.file, 728
tempfile, 740
textConnection, 747
unlink, 774
url.show, 780
write, 803
write.table, 804
writeLines, 805
zip.file.extract, 813

∗Topic hplot
assocplot, 45
barplot, 59
boxplot, 72
chull, 105
contour, 133
coplot, 140
curve, 148
dotchart, 193
filled.contour, 245
fourfoldplot, 263
hist, 308
hist.POSIXt, 311
image, 318
interaction.plot, 330
matplot, 412
mosaicplot, 431
pairs, 487
panel.smooth, 491



INDEX 973

persp, 503
pie, 508
plot, 510
plot.data.frame, 512
plot.default, 512
plot.design, 515
plot.factor, 517
plot.formula, 517
plot.histogram, 518
plot.lm, 520
plot.table, 522
plot.ts, 523
qqnorm, 568
stars, 672
stripchart, 687
sunflowerplot, 708
symbols, 715
termplot, 741

∗Topic htest
p.adjust, 481

∗Topic interface
.Script, 4
browseEnv, 77
dyn.load, 202
getNativeSymbolInfo, 278
getNumCConverters, 279
Internal, 333
Primitive, 553
system, 727

∗Topic internal
bindenv, 66
dataframeHelpers, 159
Defunct, 165
EmptyMethodsList-class, 874
grid-internal, 821
languageEl, 894
make.tables, 401
MethodsList, 901
MethodSupport, 903
methodUtilities, 904
ns-alt, 457
ns-internals, 459
ns-lowlev, 460
ns-reflect.Rd, 461
oldGet, 909
RClassUtils, 912
RMethodUtils, 917
se.aov, 640
serialize, 647
Session, 922
standardGeneric, 671
substituteDirect, 943

tools-internal, 963
zcbind, 812

∗Topic iplot
dev.xxx, 179
frame, 265
identify, 316
layout, 349
locator, 378
par, 492
plot.histogram, 518
recordPlot, 601

∗Topic iteration
apply, 29
by, 84
Control, 138
identical, 315
lapply, 347
sweep, 712
tapply, 733

∗Topic list
Extract, 223
lapply, 347
list, 365
NULL, 463
unlist, 775

∗Topic logic
all, 17
all.equal, 18
any, 25
Comparison, 117
complete.cases, 119
Control, 138
duplicated, 201
identical, 315
ifelse, 318
Logic, 380
logical, 381
match, 407
NA, 438
unique, 771
which, 796

∗Topic manip
append, 28
c, 86
cbind, 94
cut.POSIXt, 151
deparse, 173
dimnames, 191
duplicated, 201
expand.model.frame, 220
list, 365
mapply, 405



974 INDEX

match, 407
merge, 420
model.extract, 425
NA, 438
NULL, 463
order, 478
rep, 612
replace, 614
reshape, 616
rev, 619
rle, 621
row/colnames, 626
rowsum, 627
seq, 644
seq.POSIXt, 646
sequence, 647
slotOp, 656
sort, 659
stack, 669
structure, 692
subset, 695
transform, 758
type.convert, 767
unique, 771
unlist, 775

∗Topic math
.Machine, 1
abs, 7
Bessel, 63
convolve, 139
deriv, 175
fft, 238
Hyperbolic, 313
integrate, 328
is.finite, 337
kappa, 344
log, 379
nextn, 448
poly, 535
polyroot, 538
Special, 662
splinefun, 663
Trig, 760

∗Topic methods
.BasicFunsList, 863
as, 863
as.data.frame, 37
callNextMethod, 868
class, 107
Classes, 870
data.class, 154
data.frame, 155

Documentation, 872
GenericFunctions, 878
getMethod, 883
groupGeneric, 295
initialize-methods, 888
InternalMethods, 333
is, 889
is.object, 339
isSealedMethod, 892
Methods, 898
methods, 422
MethodsList-class, 903
na.action, 439
noquote, 452
plot.data.frame, 512
predict, 546
promptMethods, 911
row.names, 625
setClass, 923
setGeneric, 928
setMethod, 932
setOldClass, 935
showMethods, 938
summary, 700
UseMethod, 782

∗Topic misc
citation, 106
close.socket, 108
contributors, 138
copyright, 143
license, 362
make.socket, 400
read.socket, 592
sets, 648
url.show, 780

∗Topic models
add1, 7
AIC, 13
alias, 15
anova, 20
anova.glm, 21
anova.lm, 22
aov, 26
AsIs, 41
C, 85
case/variable.names, 91
coef, 111
confint, 124
deviance, 184
df.residual, 186
dummy.coef, 198
eff.aovlist, 207



INDEX 975

effects, 208
expand.grid, 219
extractAIC, 228
factor.scope, 233
family, 235
fitted, 248
formula, 261
glm, 283
glm.control, 287
glm.summaries, 289
is.empty.model, 336
labels, 346
lm.summaries, 373
logLik, 383
logLik.glm, 384
logLik.lm, 385
loglin, 386
make.link, 398
makepredictcall, 402
manova, 404
model.extract, 425
model.frame, 426
model.matrix, 427
model.tables, 429
naprint, 443
naresid, 443
offset, 466
power, 543
predict.glm, 546
preplot, 550
profile, 562
proj, 562
relevel, 609
replications, 615
residuals, 618
se.contrast, 640
stat.anova, 678
step, 680
summary.aov, 701
summary.glm, 702
summary.lm, 704
summary.manova, 706
terms, 743
terms.formula, 744
terms.object, 745
TukeyHSD, 766
update, 777
update.formula, 778
vcov, 786

∗Topic multivariate
cor, 143
cov.wt, 146

mahalanobis, 397
stars, 672
symbols, 715

∗Topic nonlinear
deriv, 175
nlm, 450
optim, 467
vcov, 786

∗Topic nonparametric
sunflowerplot, 708

∗Topic optimize
constrOptim, 131
glm.control, 287
nlm, 450
optim, 467
optimize, 472
uniroot, 772

∗Topic print
cat, 92
dcf, 162
format, 255
format.info, 257
formatC, 258
formatDL, 260
labels, 346
noquote, 452
octmode, 465
options, 474
print, 554
print.data.frame, 555
print.default, 556
printCoefmat, 558
prmatrix, 559
sprintf, 666
str, 685
write.table, 804

∗Topic programming
.BasicFunsList, 863
.Machine, 1
all.names, 19
as, 863
as.function, 39
autoload, 51
body, 70
bquote, 76
browser, 78
call, 87
callNextMethod, 868
check.options, 99
checkFF, 948
Classes, 870
commandArgs, 116



976 INDEX

conditions, 121
Control, 138
debug, 163
delay, 167
delete.response, 168
deparse, 173
do.call, 192
Documentation, 872
dput, 197
environment, 211
eval, 215
expression, 222
fixPre1.8, 876
force, 250
Foreign, 251
formals, 254
format.info, 257
function, 269
GenericFunctions, 878
getClass, 882
getMethod, 883
getNumCConverters, 279
getPackageName, 886
hasArg, 887
identical, 315
ifelse, 318
initialize-methods, 888
interactive, 332
invisible, 334
is, 889
is.finite, 337
is.function, 338
is.language, 338
is.recursive, 340
isSealedMethod, 892
Last.value, 348
makeClassRepresentation, 896
match.arg, 408
match.call, 409
match.fun, 410
menu, 419
Methods, 898
missing, 423
model.extract, 425
name, 441
nargs, 444
new, 906
ns-dblcolon, 458
ns-topenv, 462
on.exit, 467
Paren, 498
parse, 499

promptClass, 910
promptMethods, 911
R.Version, 577
Recall, 601
recover, 602
reg.finalizer, 605
representation, 916
setClass, 923
setClassUnion, 926
setGeneric, 928
setMethod, 932
setOldClass, 935
show, 937
slot, 941
source, 661
standardGeneric, 671
stop, 683
stopifnot, 684
substitute, 696
switch, 714
sys.parent, 722
trace, 754
traceback, 757
try, 760
validObject, 944
warning, 789
warnings, 790
with, 800

∗Topic regression
anova, 20
anova.glm, 21
anova.lm, 22
aov, 26
case/variable.names, 91
coef, 111
contrast, 135
contrasts, 137
df.residual, 186
effects, 208
expand.model.frame, 220
fitted, 248
glm, 283
glm.summaries, 289
influence.measures, 322
lm, 368
lm.fit, 370
lm.influence, 372
lm.summaries, 373
ls.diag, 393
ls.print, 394
lsfit, 394
plot.lm, 520



INDEX 977

predict.glm, 546
predict.lm, 548
qr, 570
residuals, 618
stat.anova, 678
summary.aov, 701
summary.glm, 702
summary.lm, 704
termplot, 741
weighted.residuals, 795

∗Topic robust
fivenum, 249
IQR, 334
mad, 396
median, 417

∗Topic smooth
bandwidth, 58
density, 170
lowess, 390
sunflowerplot, 708

∗Topic sysdata
.Machine, 1
colors, 114
commandArgs, 116
Constants, 130
NULL, 463
palette, 489
R.Version, 577
Random, 579
Random.user, 583

∗Topic ts
diff, 187
plot.ts, 523
print.ts, 557
start, 675
time, 749
ts, 761
ts-methods, 763
tsp, 764
window, 799

∗Topic univar
ave, 52
cor, 143
Extremes, 229
fivenum, 249
IQR, 334
mad, 396
mean, 416
median, 417
nclass, 446
order, 478
quantile, 574

range, 585
rank, 586
sd, 639
sort, 659
stem, 680
weighted.mean, 794

∗Topic utilities
.Platform, 3
all.equal, 18
as.POSIX*, 40
axis.POSIXct, 54
BATCH, 63
bug.report, 80
buildVignettes, 947
builtins, 82
capabilities, 88
capture.output, 89
check.options, 99
checkFF, 948
checkMD5sums, 949
checkTnF, 949
checkVignettes, 950
COMPILE, 118
conflicts, 125
dataentry, 157
date, 159
DateTimeClasses, 160
debugger, 164
Defunct, 165
demo, 169
Deprecated, 174
dev2bitmap, 182
difftime, 188
download.file, 195
edit, 204
edit.data.frame, 205
example, 216
findInterval, 247
fix, 249
gc.time, 272
getpid, 281
getwd, 282
grep, 291
index.search, 320
INSTALL, 325
integrate, 328
is.R, 340
jitter, 343
LINK, 365
localeconv, 376
locales, 377
make.packages.html, 399



978 INDEX

manglePackageName, 403
mapply, 405
maxCol, 415
md5sum, 955
memory.profile, 419
menu, 419
n2mfrow, 437
noquote, 452
NotYet, 455
nsl, 462
object.size, 465
package.contents, 483
package.dependencies, 484
package.skeleton, 484
packageStatus, 485
page, 486
PkgUtils, 509
pos.to.env, 539
proc.time, 560
QC, 955
R.home, 577
Rdindex, 957
RdUtils, 587
readline, 598
relevel, 609
REMOVE, 610
remove.packages, 612
RHOME, 620
Rprof, 628
Rtangle, 957
RweaveLatex, 958
savehistory, 633
SHLIB, 649
Signals, 652
str, 685
strptime, 688
summaryRprof, 707
Sweave, 960
SweaveSyntConv, 962
symnum, 717
Sys.getenv, 720
Sys.info, 721
Sys.putenv, 724
Sys.sleep, 724
sys.source, 725
Sys.time, 726
system, 727
system.file, 728
system.time, 728
texi2dvi, 963
toString, 753
unname, 776

update.packages, 778
which.min, 797

* (Arithmetic), 34
*.difftime (difftime), 188
+ (Arithmetic), 34
+.POSIXt (DateTimeClasses), 160
- (Arithmetic), 34
-.POSIXt (DateTimeClasses), 160
-> (assignOps), 43
->> (assignOps), 43
.Alias (Defunct), 165
.AutoloadEnv (autoload), 51
.Autoloaded (library), 356
.BaseNamespaceEnv (environment), 211
.BasicClasses (RClassUtils), 912
.BasicFunsList, 863
.BasicVectorClasses (RClassUtils), 912
.C, 195, 202, 204, 278–280, 333, 948
.C (Foreign), 251
.Call, 202, 204, 278, 279
.Call (Foreign), 251
.Class (groupGeneric), 295
.Defunct (Defunct), 165
.Deprecated (Deprecated), 174
.Device, 575
.Device (dev.xxx), 179
.Devices (dev.xxx), 179
.Dyn.libs (Defunct), 165
.EmptyPrimitiveSkeletons

(RMethodUtils), 917
.Export (ns-alt), 457
.External, 202, 204, 278, 279
.External (Foreign), 251
.First, 332, 576
.First (Startup), 675
.First.lib, 204, 361, 362
.First.lib (library), 356
.Fortran, 195, 202, 204, 278, 279, 333,

948
.Fortran (Foreign), 251
.Generic (groupGeneric), 295
.GlobalEnv, 642, 696, 722
.GlobalEnv (environment), 211
.Group (groupGeneric), 295
.Import (ns-alt), 457
.ImportFrom (ns-alt), 457
.InitBasicClasses (RClassUtils), 912
.InitMethodsListClass (RClassUtils),

912
.InitTraceFunctions (TraceClasses),

943
.Internal, 82, 553



INDEX 979

.Internal (Internal), 333

.Last, 633, 652, 676, 677

.Last (quit), 576

.Last.lib, 361

.Last.lib (library), 356

.Last.value (Last.value), 348

.Library (library), 356

.Machine, 1, 3, 167, 473, 597

.Method (groupGeneric), 295

.NotYetImplemented (NotYet), 455

.NotYetUsed (NotYet), 455

.OldClassesList (setOldClass), 935

.Options (options), 474

.Pars (par), 492

.Platform, 2, 3, 89, 167, 578, 721, 727

.PostScript.Options (postscript), 539

.Primitive, 333, 498

.Primitive (Primitive), 553

.Provided (Defunct), 165

.Random.seed, 454, 771

.Random.seed (Random), 579

.Renviron (Startup), 675

.Rprofile (Startup), 675

.S3method (ns-alt), 457

.Script, 4

.ShortPrimitiveSkeletons
(RMethodUtils), 917

.Traceback (traceback), 757

.__S3MethodsTable__. (ns-internals),
459

.cbind.ts (zcbind), 812

.checkDemoIndex (tools-internal), 963

.checkVignetteIndex (tools-internal),
963

.conflicts.OK (MethodSupport), 903

.doTracePrint (TraceClasses), 943

.dynLibs, 167

.dynLibs (library.dynam), 361

.find.package (library), 356

.handleSimpleError (conditions), 121

.helpForCall (help), 299

.installMD5sums (checkMD5sums), 949

.installPacakgeCodeFiles
(tools-internal), 963

.installPackageDescription
(tools-internal), 963

.installPackageIndices
(tools-internal), 963

.isMethodsDispatchOn (UseMethod), 782

.leap.seconds (DateTimeClasses), 160

.lib.loc (Defunct), 165

.libPaths, 167, 362

.libPaths (library), 356

.makeTracedFunction (TraceClasses),
943

.mergeExportMethods (ns-internals),
459

.noGenerics (library), 356

.onAttach (ns-lowlev), 460

.onLoad, 361

.onLoad (ns-lowlev), 460

.onUnload, 361

.onUnload (ns-lowlev), 460

.packages, 362, 780

.packages (library), 356

.path.package (library), 356

.primTrace (trace), 754

.primUntrace (trace), 754

.ps.prolog (postscript), 539

.readRDS (serialize), 647

.saveImage (RMethodUtils), 917

.saveRDS (serialize), 647

.setCoerceGeneric (RClassUtils), 912

.setOldIs (setOldClass), 935

.signalSimpleWarning (conditions), 121

.subset (Extract), 223

.subset2 (Extract), 223

.tryHelp (help), 299

.untracedFunction (TraceClasses), 943
/ (Arithmetic), 34
/.difftime (difftime), 188
:, 330
: (seq), 644
:: (ns-dblcolon), 458
::: (ns-dblcolon), 458
< (Comparison), 117
<-, 43
<- (assignOps), 43
<-class (language-class), 893
<= (Comparison), 117
<<- (assignOps), 43
= (assignOps), 43
==, 19
== (Comparison), 117
> (Comparison), 117
>= (Comparison), 117
? (help), 299
[, 40, 198, 333, 696
[ (Extract), 223
[.AsIs (AsIs), 41
[.POSIXct (DateTimeClasses), 160
[.POSIXlt (DateTimeClasses), 160
[.data.frame, 156, 159, 223, 224, 427
[.data.frame (Extract.data.frame), 225



980 INDEX

[.difftime (difftime), 188
[.factor, 223, 224, 232
[.factor (Extract.factor), 227
[.getAnywhere (getAnywhere), 276
[.noquote (noquote), 452
[.terms (delete.response), 168
[<-, 333
[<- (Extract), 223
[<-.POSIXct (DateTimeClasses), 160
[<-.POSIXlt (DateTimeClasses), 160
[<-.data.frame (Extract.data.frame),

225
[<-.factor (Extract.factor), 227
[[, 333
[[ (Extract), 223
[[.POSIXct (DateTimeClasses), 160
[[.data.frame (Extract.data.frame),

225
[[<-, 333
[[<- (Extract), 223
[[<-.data.frame (Extract.data.frame),

225
$, 333
$ (Extract), 223
$<-, 333
$<- (Extract), 223
$<-.data.frame (Extract.data.frame),

225
%*%, 147, 346, 481
%*% (matmult), 411
%/% (Arithmetic), 34
%% (Arithmetic), 34
%in%, 649
%in% (match), 407
%o%, 147
%o% (outer), 480
%x% (kronecker), 345
& (Logic), 380
&& (Logic), 380
__ClassMetaData (Classes), 870
^ (Arithmetic), 34
~ (formula), 261
| (Logic), 380

abbreviate, 4, 718
abline, 5, 294, 537
abs, 7, 651
absolute.size, 815, 852, 862
acos, 313
acos (Trig), 760
acosh (Hyperbolic), 313
adapt, 329
add.scope (factor.scope), 233

add1, 7, 20, 229, 233, 681, 682
addNextMethod (RMethodUtils), 917
addNextMethod,MethodDefinition-method

(RMethodUtils), 917
addNextMethod,MethodWithNext-method

(RMethodUtils), 917
addTaskCallback, 735, 737, 738
addTaskCallback (taskCallback), 734
aggregate, 9, 29, 627, 734
agrep, 11, 293, 303
AIC, 13, 228, 229
airmiles, 14
airquality, 14
alias, 15, 27
alist, 40, 71, 255
alist (list), 365
all, 17, 19, 25, 684
all.equal, 18, 118, 316
all.equal.POSIXct (DateTimeClasses),

160
all.names, 19
all.vars, 262
all.vars (all.names), 19
allGenerics (GenericFunctions), 878
allNames (methodUtilities), 904
anova, 9, 20, 22, 23, 285, 287, 369, 393,

678, 700
anova-class (setOldClass), 935
anova.glm, 21, 285, 287, 289, 678
anova.glm-class (setOldClass), 935
anova.glm.null-class (setOldClass),

935
anova.glmlist (anova.glm), 21
anova.lm, 22, 370, 374, 678
anova.lmlist, 175
anova.lmlist (anova.lm), 22
anova.mlm (anova.lm), 22
anovalist.lm (Deprecated), 174
anscombe, 24
any, 17, 25
ANY-class (BasicClasses), 867
aov, 8, 9, 26, 136, 137, 199, 207, 208, 228,

233, 368, 370, 374, 404, 430, 475,
515, 562, 563, 681, 701, 706, 745,
766, 767

aov-class (setOldClass), 935
aperm, 27, 36, 617, 730
append, 28
apply, 11, 29, 115, 201, 348, 410, 713, 734
approx, 248, 664
approx (approxfun), 30
approxfun, 30, 664



INDEX 981

apropos, 32, 293, 304, 392, 609
Arg (complex), 120
args, 33, 71, 255, 269, 444, 685, 686
Arith (groupGeneric), 295
Arithmetic, 7, 34, 337, 380, 411, 544, 663,

720
array, 35, 191, 198, 224, 456, 733, 796
array-class (StructureClasses), 942
arrows, 36, 644
as, 108, 863, 871, 888, 921, 922
as.array (array), 35
as.call (call), 87
as.character, 257, 333, 445, 500, 718
as.character (character), 96
as.character.condition (conditions),

121
as.character.error (conditions), 121
as.character.octmode (octmode), 465
as.character.POSIXt (strptime), 688
as.complex (complex), 120
as.data.frame, 37, 41, 155, 383
as.data.frame.logLik (logLik), 383
as.data.frame.POSIXct

(DateTimeClasses), 160
as.data.frame.POSIXlt

(DateTimeClasses), 160
as.data.frame.table, 809
as.data.frame.table (table), 730
as.difftime (difftime), 188
as.double (double), 194
as.environment, 38, 875
as.expression (expression), 222
as.factor (factor), 230
as.formula (formula), 261
as.function, 39
as.integer, 110, 223, 225, 623
as.integer (integer), 327
as.list, 776
as.list (list), 365
as.logical (logical), 381
as.matrix, 157, 730
as.matrix (matrix), 414
as.matrix.noquote (noquote), 452
as.matrix.POSIXlt (DateTimeClasses),

160
as.name (name), 441
as.null (NULL), 463
as.numeric, 110
as.numeric (numeric), 464
as.ordered (factor), 230
as.pairlist (list), 365
as.POSIX*, 40

as.POSIXct, 161, 689
as.POSIXct (as.POSIX*), 40
as.POSIXlt, 161, 377, 793
as.POSIXlt (as.POSIX*), 40
as.qr (qr), 570
as.real (real), 600
as.single, 252
as.single (double), 194
as.symbol (name), 441
as.table (table), 730
as.table.ftable (read.ftable), 589
as.ts (ts), 761
as.vector, 87, 97, 120, 194, 327, 333, 382
as.vector (vector), 787
as<- (as), 863
asin, 313
asin (Trig), 760
asinh (Hyperbolic), 313
AsIs, 41
asMethodDefinition (RMethodUtils), 917
asNamespace (ns-internals), 459
assign, 42, 44, 46, 99
assignClassDef (RClassUtils), 912
assignMethodsMetaData (RMethodUtils),

917
assignOps, 43
assocplot, 45, 433
atan, 313
atan (Trig), 760
atan2 (Trig), 760
atanh (Hyperbolic), 313
attach, 42, 46, 89, 178, 179, 360, 641,

642, 801
attachNamespace (ns-lowlev), 460
attenu, 47
attitude, 48
attr, 49, 50, 117, 475
attr.all.equal (all.equal), 18
attr<- (attr), 49
attributes, 18, 49, 50, 99, 117, 191, 230,

424
attributes<- (attributes), 50
autoload, 51, 360
autoloader (autoload), 51
ave, 52
axis, 53, 55, 56, 60, 84, 256, 305, 492,

526, 528, 629
axis.POSIXct, 54, 312
axTicks, 53, 54, 55, 294, 496

backsolve, 57, 104, 658
balanceMethodsList (RMethodUtils), 917
bandwidth, 58



982 INDEX

bandwidth.nrd, 59
barplot, 59, 352, 517, 604
basename, 62, 244, 501
BasicClasses, 867
BATCH, 63, 116
bcv, 59
Bessel, 63, 663
bessel (Bessel), 63
besselI (Bessel), 63
besselJ (Bessel), 63
besselK (Bessel), 63
besselY (Bessel), 63
Beta, 65
beta, 64, 66
beta (Special), 662
bindenv, 66
bindingIsActive (bindenv), 66
bindingIsLocked (bindenv), 66
Binomial, 68
binomial, 286
binomial (family), 235
birthday, 69
bitmap, 184, 531
bitmap (dev2bitmap), 182
body, 70, 255, 269
body<- (body), 70
body<-,MethodDefinition-method

(MethodsList-class), 903
box, 71, 83, 245, 522, 537, 604, 673
boxplot, 72, 75, 76, 83, 517, 518, 687
boxplot.formula, 73
boxplot.stats, 74, 75, 249, 575
bquote, 76, 528, 697
break (Control), 138
browseAll (Session), 922
browseEnv, 77, 609
browser, 78, 163, 602, 603, 754, 755, 757
browseURL, 79, 300, 305
bs, 403
bug.report, 80, 475
build (PkgUtils), 509
buildVignettes, 947
builtins, 82
bw.bcv (bandwidth), 58
bw.nrd, 171, 172
bw.nrd (bandwidth), 58
bw.nrd0 (bandwidth), 58
bw.SJ (bandwidth), 58
bw.ucv (bandwidth), 58
bxp, 73, 74, 76, 83
by, 84, 421, 734
bzfile, 89

bzfile (connections), 126

C, 85, 136, 137, 232
c, 86, 95, 161, 333, 366, 453, 776, 787
c.noquote (noquote), 452
c.POSIXct (DateTimeClasses), 160
c.POSIXlt (DateTimeClasses), 160
cacheGenericsMetaData (RMethodUtils),

917
cacheMetaData (RMethodUtils), 917
cacheMethod (MethodSupport), 903
call, 39, 87, 176, 193, 222, 222, 338, 351,

409, 424, 441, 601
call-class (language-class), 893
callGeneric (GenericFunctions), 878
callNextMethod, 868, 898, 902, 905, 906,

920
capabilities, 88, 129, 185, 210, 531, 712
capture.output, 89, 654, 748
cars, 90, 403
case.names, 626
case.names (case/variable.names), 91
case/variable.names, 91
casefold (chartr), 98
cat, 92, 288, 500, 555, 790, 805, 959
category (Defunct), 165
Cauchy, 93
cbind, 94, 421
cbind.ts (ts), 761
ceiling (Round), 622
char.expand, 96
character, 96, 232, 399, 453, 532, 556,

577, 685, 727, 746, 751
character-class (BasicClasses), 867
charmatch, 96, 97, 293, 408, 529
chartr, 97, 98, 293
check (PkgUtils), 509
check.options, 99, 541, 542
checkDocFiles (QC), 955
checkDocStyle (QC), 955
checkFF, 948
checkMD5sums, 949, 955
checkReplaceFuns (QC), 955
checkS3methods (QC), 955
checkSlotAssignment (RClassUtils), 912
checkTnF, 949
checkVignettes, 950
chickwts, 100
chisq.test, 45, 299, 731, 808
Chisquare, 101, 237
chol, 57, 103, 105, 210
chol2inv, 104, 104
choose (Special), 662



INDEX 983

chull, 105
citation, 106
class, 16, 107, 154, 308, 339, 369, 392,

422, 453, 518, 546, 554, 700, 731,
783

class<- (class), 107
Classes, 870, 872, 883, 907, 942
classMetaName (RClassUtils), 912
classPrototypeDef-class

(RClassUtils), 912
classRepresentation-class, 896, 910,

922
classRepresentation-class, 871, 927
ClassUnionRepresentation-class

(setClassUnion), 926
close (connections), 126
close.screen (screen), 637
close.socket, 108, 401, 592
closeAllConnections

(showConnections), 650
cm (units), 773
cm.colors (Palettes), 490
co.intervals (coplot), 140
co2, 109
codes, 232, 382
codes (Deprecated), 174
codes-deprecated, 110
codes<- (Deprecated), 174
codoc, 951
codocClasses (codoc), 951
codocData (codoc), 951
coef, 111, 208, 289, 370, 374, 705
coefficients, 20, 248, 285, 619
coefficients (coef), 111
coerce (as), 863
coerce,ANY,array-method (as), 863
coerce,ANY,call-method (as), 863
coerce,ANY,character-method (as), 863
coerce,ANY,complex-method (as), 863
coerce,ANY,environment-method (as),

863
coerce,ANY,expression-method (as), 863
coerce,ANY,function-method (as), 863
coerce,ANY,integer-method (as), 863
coerce,ANY,list-method (as), 863
coerce,ANY,logical-method (as), 863
coerce,ANY,matrix-method (as), 863
coerce,ANY,name-method (as), 863
coerce,ANY,NULL-method (as), 863
coerce,ANY,numeric-method (as), 863
coerce,ANY,single-method (as), 863
coerce,ANY,ts-method (as), 863

coerce,ANY,vector-method (as), 863
coerce-methods (as), 863
coerce<- (as), 863
col, 112, 624, 645, 656
col2rgb, 112, 114, 489, 490, 620
colMeans (colSums), 115
colnames, 191
colnames (row/colnames), 626
colnames<- (row/colnames), 626
colors, 113, 114, 489, 490, 496, 497, 525
colours (colors), 114
colSums, 115
commandArgs, 116
comment, 117
comment<- (comment), 117
Compare (groupGeneric), 295
compareVersion (packageStatus), 485
Comparison, 117, 316, 659, 720
COMPILE, 118, 650
complete.cases, 119, 439
completeClassDefinition

(RClassUtils), 912
completeExtends (RClassUtils), 912
completeSubclasses (RClassUtils), 912
Complex (groupGeneric), 295
complex, 120, 538
complex-class (BasicClasses), 867
computeRestarts (conditions), 121
conditionCall (conditions), 121
conditionMessage (conditions), 121
conditions, 121
confint, 124
confint.nls, 125
conflicts, 125, 357
conformMethod (RMethodUtils), 917
Conj (complex), 120
connection, 145, 588, 591, 593, 635
connection (connections), 126
connections, 126, 476, 568, 597, 600, 643,

651, 748, 805
Constants, 130
constrOptim, 131, 470
contour, 133, 246, 305, 308, 320, 343, 504
contr.helmert, 137
contr.helmert (contrast), 135
contr.poly, 137, 536
contr.poly (contrast), 135
contr.sum, 86, 137
contr.sum (contrast), 135
contr.treatment, 137, 610
contr.treatment (contrast), 135
contrast, 135



984 INDEX

contrasts, 86, 136, 137, 228, 428, 475,
641

contrasts<- (contrasts), 137
contrib.url (update.packages), 778
contributors, 138, 143
Control, 138, 720
convertNative, 816
convolve, 139, 239, 449
cooks.distance, 373, 521
cooks.distance (influence.measures),

322
coplot, 140, 262, 491
copyright, 143
copyrights (copyright), 143
cor, 143
cor.test, 144
cos, 313
cos (Trig), 760
cosh (Hyperbolic), 313
count.fields, 145, 595
cov, 147, 397
cov (cor), 143
cov.wt, 144, 146
cov2cor (cor), 143
covratio, 373
covratio (influence.measures), 322
coxph, 742, 745
CRAN.packages, 196, 484
CRAN.packages (update.packages), 778
crossprod, 147
cummax (cumsum), 148
cummin (cumsum), 148
cumprod, 561
cumprod (cumsum), 148
cumsum, 148, 561
current.viewport, 817
curve, 148
cut, 150, 151, 152, 319, 666
cut.POSIXt, 151, 161
cycle (time), 749

D (deriv), 175
data, 131, 152, 301, 360, 632
data.class, 154
data.entry, 205, 206
data.entry (dataentry), 157
data.frame, 38, 41, 42, 95, 117, 155, 157,

178, 179, 190, 191, 226, 295, 399,
414, 421, 426, 427, 511, 512, 556,
591, 595, 625, 641, 729, 759, 776

data.frame-class (setOldClass), 935
data.matrix, 156, 414
dataentry, 157, 476

dataframeHelpers, 159
dataViewport, 818, 853
date, 159, 377, 726, 750
DateTimeClasses, 41, 55, 160, 189, 241,

623, 646, 690, 726, 793
dbeta, 271
dbeta (Beta), 65
dbinom, 448, 534
dbinom (Binomial), 68
dcauchy (Cauchy), 93
dcf, 162
dchisq, 238, 271
dchisq (Chisquare), 101
de (dataentry), 157
debug, 79, 163, 269
debugger, 164
defaultDumpName (RMethodUtils), 917
defaultPrototype (RClassUtils), 912
Defunct, 165, 175, 455
delay, 51, 167, 696
delete.response, 168
delimMatch, 953
deltat (time), 749
demo, 169, 218, 662
dendrogram, 619
density, 58, 59, 170, 311, 511, 515, 519,

709
density-class (setOldClass), 935
deparse, 97, 173, 197, 445, 499, 696, 716
Deprecated, 110, 167, 174, 455
deriv, 175, 450, 452
deriv3 (deriv), 175
derivedDefaultMethod-class

(RMethodUtils), 917
det, 177, 210, 571
detach, 47, 178, 357, 359, 360, 461, 642
determinant (det), 177
dev.control (dev2), 181
dev.copy (dev2), 181
dev.copy2eps (dev2), 181
dev.cur, 182, 185
dev.cur (dev.xxx), 179
dev.interactive (Devices), 184
dev.list (dev.xxx), 179
dev.next (dev.xxx), 179
dev.off (dev.xxx), 179
dev.prev (dev.xxx), 179
dev.print, 185, 531
dev.print (dev2), 181
dev.set (dev.xxx), 179
dev.xxx, 179
dev2, 181



INDEX 985

dev2bitmap, 182, 185
deviance, 184, 186, 229, 289, 374
device (Devices), 184
Devices, 180, 184, 290, 502, 507, 531, 542,

575, 639, 807, 808
dexp, 794
dexp (Exponential), 221
df, 740
df (FDist), 237
df.residual, 184, 186, 289, 374
dfbeta (influence.measures), 322
dfbetas, 373
dfbetas (influence.measures), 322
dffits, 373
dffits (influence.measures), 322
dgamma, 66, 102, 222
dgamma (GammaDist), 270
dgeom, 448
dgeom (Geometric), 273
dget, 200
dget (dput), 197
dhyper (Hypergeometric), 314
diag, 186, 390, 411
diag<- (diag), 186
diff, 187, 764
diff.ts, 188
diff.ts (ts-methods), 763
diffinv, 188
difftime, 161, 188, 646
digamma (Special), 662
dim, 35, 36, 50, 190, 230, 333, 414, 456,

733, 796
dim<-, 333
dim<- (dim), 190
dimnames, 35, 36, 50, 190, 191, 333, 414,

522, 559, 626, 776
dimnames<-, 333
dimnames<- (dimnames), 191
dir (list.files), 367
dir.create (files), 243
dirname (basename), 62
discoveries, 192
dlnorm, 454
dlnorm (Lognormal), 387
dlogis (Logistic), 382
dmultinom (Multinomial), 436
dnbinom, 69, 274, 534
dnbinom (NegBinomial), 447
dnchisq (Defunct), 165
dnorm, 388
dnorm (Normal), 453
do.call, 88, 192, 601

Documentation, 872
Documentation-class (Documentation),

872
Documentation-methods

(Documentation), 872
doPrimitiveMethod (RMethodUtils), 917
dotchart, 61, 167, 193, 509
dotplot (Defunct), 165
double, 194, 230, 811
double-class (BasicClasses), 867
download.file, 88, 127, 167, 195, 375,

476, 779–781
download.packages, 196
download.packages (update.packages),

778
dpois, 69, 448
dpois (Poisson), 533
dput, 197, 200, 486, 632, 685
dQuote, 697
dQuote (sQuote), 668
draw.details (grid-internal), 821
drop, 198, 411
drop.scope (factor.scope), 233
drop.terms (delete.response), 168
drop1, 20, 22, 23, 198, 229, 233, 681, 682
drop1 (add1), 7
dsignrank, 798
dsignrank (SignRank), 652
dt, 94, 238
dt (TDist), 739
dummy.coef, 198
dump, 197, 200, 632
dump.frames, 475, 602, 603
dump.frames (debugger), 164
dump.frames-class (setOldClass), 935
dumpMethod (GenericFunctions), 878
dumpMethods (GenericFunctions), 878
dunif (Uniform), 770
duplicated, 201, 772
dweibull, 222
dweibull (Weibull), 793
dwilcox, 653
dwilcox (Wilcoxon), 798
dyn.load, 119, 202, 251, 253, 279, 361,

362, 650
dyn.unload (dyn.load), 202

ecdf, 248, 575
edit, 159, 204, 206, 249, 250, 277, 475,

486
edit.data.frame, 205, 205, 250
edit.matrix (edit.data.frame), 205
editDetails (grid-internal), 821



986 INDEX

eff.aovlist, 207
effects, 20, 208, 287, 289, 369, 370, 374
eigen, 209, 571, 712
el (methodUtilities), 904
el<- (methodUtilities), 904
elNamed (methodUtilities), 904
elNamed<- (methodUtilities), 904
else (Control), 138
emacs (edit), 204
empty.dump (RClassUtils), 912
emptyMethodsList (MethodsList), 901
EmptyMethodsList-class, 874
end, 763
end (start), 675
environment, 39, 42–44, 46, 47, 77, 99,

153, 164, 211, 215, 216, 218, 275,
392, 611, 722

environment-class, 875
environment<- (environment), 211
environmentIsLocked (bindenv), 66
erase.screen (screen), 637
Error (aov), 26
esoph, 212, 287
euro, 213
eurodist, 214
eval, 212, 215, 222, 348, 499, 662, 697,

723
evalq, 801
evalq (eval), 215
example, 216, 321
exists, 43, 218, 275, 686
existsFunction (methodUtilities), 904
existsMethod (getMethod), 883
exp, 222
exp (log), 379
expand.grid, 219
expand.model.frame, 220, 427
expm1 (log), 379
Exponential, 221
expression, 88, 174, 176, 215, 216, 222,

338, 351, 693, 697, 746, 751
expression-class (BasicClasses), 867
extends, 909, 927, 933
extends (is), 889
extendsMetaName (RClassUtils), 912
externalptr-class (BasicClasses), 867
Extract, 223, 226–228, 656, 720
Extract.data.frame, 225
Extract.factor, 227
extractAIC, 9, 13, 184, 228, 681
extractAIC.glm, 681
Extremes, 229

F (logical), 381
factor, 110, 141, 150, 151, 167, 224, 228,

230, 283, 285, 295, 330, 355, 382,
428, 450, 515, 517, 610, 644, 700,
732

factor-class (setOldClass), 935
factor.scope, 233
faithful, 234
FALSE (logical), 381
family, 235, 284, 285, 384, 398, 544
family.glm (glm.summaries), 289
family.lm (lm.summaries), 373
FDist, 237
fft, 139, 140, 171, 238, 449
fifo (connections), 126
file, 596, 600, 748, 805
file (connections), 126
file.access, 239, 241, 244, 367
file.append (files), 243
file.choose, 240
file.copy (files), 243
file.create (files), 243
file.exists, 954
file.exists (files), 243
file.info, 240, 240, 244, 367, 466, 954
file.path, 62, 242, 244, 954
file.remove, 774, 775
file.remove (files), 243
file.rename (files), 243
file.show, 242, 244, 300, 475, 486, 780,

781
file.symlink (files), 243
filePathAsAbsolute (fileutils), 953
filePathSansExt (fileutils), 953
files, 241, 243, 243, 367
fileTest (fileutils), 953
fileutils, 953
filled.contour, 134, 245, 320, 789
filter, 140
finalDefaultMethod (MethodsList), 901
find, 392, 880
find (apropos), 32
findClass (setClass), 923
findFunction (GenericFunctions), 878
findInterval, 150, 151, 247
findMethod (getMethod), 883
findRestart (conditions), 121
findUnique (RMethodUtils), 917
fitted, 248, 289, 370, 374
fitted.values, 20, 111, 287, 619
fivenum, 76, 249, 335, 575
fix, 205, 249, 277, 486



INDEX 987

fixInNamespace (getFromNamespace), 277
fixPre1.8, 876
floor (Round), 622
flush (connections), 126
for, 564
for (Control), 138
for-class (language-class), 893
force, 250
Foreign, 251, 948
formalArgs (methodUtilities), 904
Formaldehyde, 253
formals, 33, 34, 254, 366, 444
formals<- (formals), 254
format, 93, 255, 257–260, 414, 554–556,

559, 700, 753, 754
format.char (formatC), 258
format.info, 257, 257
format.octmode (octmode), 465
format.POSIXct, 41
format.POSIXct (strptime), 688
format.POSIXlt, 41
format.POSIXlt (strptime), 688
format.pval, 558, 559
formatC, 256, 257, 258, 258, 667
formatDL, 260, 588
formula, 41, 42, 176, 211, 261, 427, 515,

518, 743, 745
formula-class (setOldClass), 935
formula.lm (lm.summaries), 373
forwardsolve (backsolve), 57
fourfoldplot, 263
frame, 265, 486
freeny, 265
frequency, 763
frequency (time), 749
ftable, 266, 268, 590, 731
ftable.default, 268
ftable.formula, 267, 268
function, 40, 71, 88, 141, 211, 222, 255,

269, 334, 511
function-class (BasicClasses), 867
functionBody (methodUtilities), 904
functionBody<- (methodUtilities), 904
functionWithTrace-class

(TraceClasses), 943
fuzzy matching, 302
fuzzy matching (agrep), 11

Gamma, 384
Gamma (family), 235
gamma, 64, 271
gamma (Special), 662
gammaCody (Bessel), 63

GammaDist, 270
gaussian, 384
gaussian (family), 235
gc, 271, 272, 418, 419
gc.time, 272, 560
gcinfo, 418
gcinfo (gc), 271
gctorture, 272, 273
generic.skeleton (RMethodUtils), 917
genericFunction-class, 920
genericFunction-class, 877
GenericFunctions, 878, 896, 939
genericFunctionWithTrace-class

(TraceClasses), 943
Geometric, 273
get, 43, 99, 219, 274, 276, 277, 282, 411,

539, 686, 924
getAccess (oldGet), 909
getAllConnections (showConnections),

650
getAllMethods, 902
getAllMethods (RMethodUtils), 917
getAllSuperClasses (RClassUtils), 912
getAnywhere, 276, 422
getCConverterDescriptions

(getNumCConverters), 279
getCConverterStatus

(getNumCConverters), 279
getClass, 872, 882, 941, 942
getClassDef, 872
getClassDef (getClass), 882
getClasses (setClass), 923
getClassName (oldGet), 909
getClassPackage (oldGet), 909
getConnection (showConnections), 650
getDataPart (RClassUtils), 912
getenv (Defunct), 165
geterrmessage, 164, 761
geterrmessage (stop), 683
getExportedValue (ns-reflect.Rd), 461
getExtends (oldGet), 909
getFromNamespace, 276, 277
getFunction (methodUtilities), 904
getGeneric, 879
getGeneric (RMethodUtils), 917
getGenerics, 908, 910
getGenerics (GenericFunctions), 878
getGroup (RMethodUtils), 917
getMethod, 301, 883
getMethods, 919
getMethods (getMethod), 883



988 INDEX

getMethodsForDispatch
(MethodSupport), 903

getMethodsMetaData, 885
getMethodsMetaData (RMethodUtils), 917
getNamespace (ns-reflect.Rd), 461
getNamespaceExports (ns-reflect.Rd),

461
getNamespaceImports (ns-reflect.Rd),

461
getNamespaceInfo (ns-internals), 459
getNamespaceName (ns-reflect.Rd), 461
getNamespaceUsers (ns-reflect.Rd), 461
getNamespaceVersion (ns-reflect.Rd),

461
getNativeSymbolInfo, 278
getNumCConverters, 279
getOption (options), 474
getPackageName, 886, 896
getpid, 281
getProperties (oldGet), 909
getPrototype (oldGet), 909
getS3method, 277, 281, 422, 783
getSlots (RClassUtils), 912
getSubclasses (oldGet), 909
getTaskCallbackNames, 735, 737
getTaskCallbackNames

(taskCallbackNames), 738
getValidity, 945
getValidity (oldGet), 909
getVirtual (oldGet), 909
getwd, 282, 593, 635, 720
gl, 232, 283, 647
glm, 8, 21, 22, 111, 136, 137, 184, 186,

235, 236, 248, 262, 283, 287–289,
323, 336, 370, 374, 384, 398, 440,
466, 520, 547, 619, 681, 700, 703,
704, 742, 743, 786, 795

glm-class (setOldClass), 935
glm.control, 284, 287
glm.fit, 287, 288
glm.fit.null (Deprecated), 174
glm.null-class (setOldClass), 935
glm.summaries, 289
globalenv (environment), 211
GNOME, 185
GNOME (Gnome), 290
Gnome, 290
gnome (Gnome), 290
gpar, 819
graphics.off, 185
graphics.off (dev.xxx), 179
gray, 114, 291, 313, 489, 490, 497, 620

grep, 12, 89, 97, 98, 291, 303, 392, 529,
606, 609, 691

grey (gray), 291
Grid, 820, 822, 824, 832, 835–838,

842–845, 847–849, 851, 852, 861
grid, 293
grid-internal, 821
grid.arrows, 821
grid.circle, 823
grid.collection, 824
grid.convert, 816, 825
grid.convertHeight (grid.convert), 825
grid.convertWidth (grid.convert), 825
grid.convertX (grid.convert), 825
grid.convertY (grid.convert), 825
grid.copy, 827, 833
grid.display.list, 828
grid.draw, 828, 833
grid.edit, 829, 833
grid.frame, 830, 840
grid.get, 831, 833
grid.grill, 832
grid.grob, 825, 827, 829–831, 833, 846
grid.layout, 821, 834, 847, 861
grid.legend (grid-internal), 821
grid.line.to, 822
grid.line.to (grid.move.to), 837
grid.lines, 822, 835
grid.locator, 836
grid.move.to, 837
grid.multipanel (grid-internal), 821
grid.newpage, 838
grid.pack, 831, 838, 840
grid.panel (grid-internal), 821
grid.place, 840
grid.plot.and.legend, 841
grid.points, 841
grid.polygon, 842
grid.pretty, 843
grid.prop.list (grid-internal), 821
grid.rect, 844
grid.segments, 822, 845
grid.set, 846
grid.show.layout, 835, 847, 861
grid.show.viewport, 848
grid.strip (grid-internal), 821
grid.text, 849
grid.xaxis, 850, 852
grid.yaxis, 851, 851
groupGeneric, 295
groupGenericFunction-class

(genericFunction-class), 877



INDEX 989

groupGenericFunctionWithTrace-class
(TraceClasses), 943

gsub, 99
gsub (grep), 291
GTK, 185
gzcon, 297
gzfile, 88, 298
gzfile (connections), 126

HairEyeColor, 298
hasArg, 887
hasMethod (getMethod), 883
hasTsp (tsp), 764
hat, 373, 393, 521
hat (influence.measures), 322
hatvalues (influence.measures), 322
heat.colors, 114, 318–320
heat.colors (Palettes), 490
heatmap, 320
height.details, 852
height.post.details (grid-internal),

821
height.pre.details (grid-internal),

821
help, 34, 154, 217, 243, 299, 304, 305, 321,

475, 565, 873
help.search, 32, 301, 302, 609
help.start, 300, 301, 304, 304, 400, 475
Hershey, 134, 305, 342, 343, 747, 820
hist, 61, 172, 308, 311, 312, 446, 518,

519, 525, 604
hist.default, 311
hist.POSIXt, 311
history (savehistory), 633
hsearch-class (setOldClass), 935
hsv, 114, 291, 312, 320, 489, 490, 494, 620
httpclient (Defunct), 165
Hyperbolic, 313
Hypergeometric, 314

I, 38, 155, 156, 262
I (AsIs), 41
identical, 18, 118, 315, 337
identify, 316, 379
if, 318, 380, 498
if (Control), 138
if-class (language-class), 893
ifelse, 138, 318
Im (complex), 120
image, 134, 183, 185, 246, 318, 504, 525
importIntoEnv (ns-internals), 459
index.search, 320
Inf, 34, 249, 251

Inf (is.finite), 337
infert, 287, 321
influence, 323, 324, 374, 521, 795
influence (lm.influence), 372
influence.measures, 322, 372, 373
inheritedSubMethodLists

(MethodsList), 901
inherits (class), 107
initialize, 873, 888, 944
initialize (new), 906
initialize,ANY-method

(initialize-methods), 888
initialize,environment-method

(initialize-methods), 888
initialize,signature-method

(initialize-methods), 888
initialize,traceable-method

(initialize-methods), 888
initialize-methods, 907
initialize-methods, 888
initMethodDispatch (methodUtilities),

904
InsectSprays, 325
insertMethod (MethodsList), 901
insertMethodInEmptyList

(MethodsList), 901
INSTALL, 325, 359, 360, 510, 610, 780, 886
install.packages, 360, 485, 612
install.packages (update.packages),

778
installed.packages, 358, 360
installed.packages (update.packages),

778
Insurance, 466
integer, 154, 190, 195, 230, 258, 327, 355,

456, 581, 797
integer-class (BasicClasses), 867
integrate, 328
integrate-class (setOldClass), 935
interaction, 330, 645
interaction.plot, 330, 516
interactive, 332, 475
Internal, 333
InternalMethods, 36, 87, 97, 120, 194,

211, 223, 231, 327, 333, 337–339,
341, 355, 366, 381, 414, 441, 463,
464, 763, 775

interpSpline, 664
intersect (sets), 648
inverse.gaussian, 384
inverse.gaussian (family), 235
inverse.rle (rle), 621



990 INDEX

invisible, 269, 334, 362, 489, 554
invokeRestart (conditions), 121
invokeRestartInteractively

(conditions), 121
IQR, 249, 334, 396
iris, 335
iris3 (iris), 335
is, 871, 889, 922
is.array, 333
is.array (array), 35
is.atomic, 333
is.atomic (is.recursive), 340
is.call, 333
is.call (call), 87
is.character, 333
is.character (character), 96
is.complex, 333
is.complex (complex), 120
is.data.frame (as.data.frame), 37
is.double, 333
is.double (double), 194
is.element, 408
is.element (sets), 648
is.empty.model, 336
is.environment, 333
is.environment (environment), 211
is.expression (expression), 222
is.factor (factor), 230
is.finite, 337
is.function, 333, 338
is.infinite (is.finite), 337
is.integer, 333, 464
is.integer (integer), 327
is.language, 88, 333, 338, 341, 441
is.list, 333, 341, 787
is.list (list), 365
is.loaded, 278, 279
is.loaded (dyn.load), 202
is.logical, 333
is.logical (logical), 381
is.matrix, 333
is.matrix (matrix), 414
is.mts (ts), 761
is.na, 119, 231, 333
is.na (NA), 438
is.na.POSIXlt (DateTimeClasses), 160
is.na<- (NA), 438
is.na<-.factor (factor), 230
is.name (name), 441
is.nan, 333, 439
is.nan (is.finite), 337
is.null, 333

is.null (NULL), 463
is.numeric, 327, 333, 787
is.numeric (numeric), 464
is.object, 333, 339
is.ordered (factor), 230
is.pairlist, 333
is.pairlist (list), 365
is.primitive (RMethodUtils), 917
is.qr (qr), 570
is.R, 340
is.real (real), 600
is.recursive, 223, 333, 340
is.single, 333, 341
is.symbol, 333
is.symbol (name), 441
is.table (table), 730
is.ts (ts), 761
is.unit (unit), 855
is.unsorted (sort), 659
is.vector (vector), 787
isBaseNamespace (ns-internals), 459
isClass, 882, 883
isClass (setClass), 923
isClassDef (RClassUtils), 912
isClassUnion (setClassUnion), 926
isGeneric (GenericFunctions), 878
isGrammarSymbol (languageEl), 894
isGroup (GenericFunctions), 878
isIncomplete, 748
isIncomplete (connections), 126
islands, 342
isNamespace (ns-internals), 459
ISOdate (strptime), 688
ISOdatetime (strptime), 688
ISOLatin1 (connections), 126
isOpen (connections), 126
isRestart (conditions), 121
isSealedClass (isSealedMethod), 892
isSealedMethod, 892
isSeekable (seek), 642
isVirtualClass (RClassUtils), 912

Japanese, 308, 342
jitter, 343, 629, 709
jpeg, 63, 88, 183, 185
jpeg (png), 530
julian (weekdays), 792

kappa, 344
kronecker, 345, 481

La.chol (chol), 103
La.chol2inv (chol2inv), 104



INDEX 991

La.eigen (eigen), 209
La.svd (svd), 711
labels, 346
language-class, 893
languageEl, 894
languageEl<- (languageEl), 894
lapply, 11, 29, 347, 410, 734
Last.value, 348
layout, 180, 349, 437, 494, 497, 639, 835
layout.torture (grid-internal), 821
layoutRegion (grid-internal), 821
lbeta (Special), 662
lchoose (Special), 662
lcm (layout), 349
legend, 222, 331, 351, 604
length, 333, 354
length<- (length), 354
LETTERS (Constants), 130
letters (Constants), 130
levelplot, 246
levels, 110, 232, 355, 382, 450
levels<- (levels), 355
lgamma (Special), 662
library, 47, 51, 179, 301, 327, 356, 362,

475, 641, 726, 780, 880, 886, 919
library.dynam, 204, 358, 360, 361, 650
libraryIQR-class (setOldClass), 935
licence (license), 362
license, 143, 362
LifeCycleSavings, 363
limitedLabels (recover), 602
linearizeMlist, 895, 896, 898
linearizeMlist (MethodsList), 901
LinearMethodsList-class, 895
lines, 6, 149, 294, 364, 412, 413, 491,

492, 504, 511, 519, 523, 525, 526,
533, 537, 644, 742, 810

lines.formula (plot.formula), 517
lines.histogram (plot.histogram), 518
lines.ts (plot.ts), 523
LINK, 365
list, 179, 224, 365, 438, 476, 571, 577,

733, 759
list-class (BasicClasses), 867
list.files, 241, 243, 244, 367, 609, 728,

954
listFilesWithExts (fileutils), 953
listFilesWithType (fileutils), 953
listFromMlist, 898, 902
listFromMlist (MethodsList), 901
lm, 8, 9, 22, 23, 27, 91, 111, 136, 137, 184,

186, 208, 228, 233, 248, 262, 287,

323, 336, 368, 370–374, 385, 394,
395, 440, 475, 520, 546, 549, 563,
619, 670, 681, 700, 704, 705, 742,
743, 775, 795

lm-class (setOldClass), 935
lm.fit, 369, 370, 370
lm.fit.null (Deprecated), 174
lm.influence, 323, 324, 370, 372, 393,

394, 521, 795
lm.summaries, 373
lm.wfit, 370
lm.wfit (lm.fit), 370
lm.wfit.null (Deprecated), 174
load, 153, 375, 632
loadedNamespaces (ns-lowlev), 460
loadhistory (savehistory), 633
loadingNamespaceInfo (ns-lowlev), 460
loadMethod (MethodsList), 901
loadMethod,ANY-method (MethodsList),

901
loadMethod,MethodDefinition-method

(MethodsList), 901
loadMethod,MethodWithNext-method

(MethodsList), 901
loadMethod-methods (MethodsList), 901
loadNamespace (ns-lowlev), 460
loadURL (load), 375
local, 676
local (eval), 215
localeconv, 376
locales, 118, 377, 607, 690
locator, 317, 351, 378, 836
lockBinding (bindenv), 66
lockEnvironment (bindenv), 66
loess, 391
log, 7, 379
log10 (log), 379
log1p (log), 379
log2 (log), 379
logb (log), 379
Logic, 380, 720, 796
logical, 381, 381, 684, 796
logical-class (BasicClasses), 867
Logistic, 382
logLik, 13, 383
logLik-class (setOldClass), 935
logLik.glm, 384, 384
logLik.gls, 384
logLik.lm, 384, 385
logLik.lme, 384
loglin, 299, 386, 432, 433
Lognormal, 387



992 INDEX

longley, 389
lower.tri, 187, 390
lowess, 390, 491, 810
ls, 77, 78, 391, 539, 609, 611, 685, 686
ls.diag, 393, 394, 395
ls.print, 393, 394, 395
ls.str, 685
ls.str (str), 685
lsf.str, 685
lsf.str (str), 685
lsfit, 393, 394, 394, 571, 572

Machine (Defunct), 165
machine (Defunct), 165
MacRoman (connections), 126
mad, 335, 396, 640
mahalanobis, 397
make.link, 398, 544
make.names, 155, 156, 398, 402, 594
make.packages.html, 399
make.socket, 88, 109, 400, 592
make.tables, 401
make.unique, 225, 399, 401
makeActiveBinding (bindenv), 66
makeClassRepresentation, 896, 926
makeExtends (RClassUtils), 912
makeGeneric (RMethodUtils), 917
makeMethodsList (MethodsList), 901
makepredictcall, 402
makepredictcall.poly (poly), 535
makePrototypeFromClassDef

(RClassUtils), 912
makeStandardGeneric (RMethodUtils),

917
manglePackageName, 403
manova, 404, 706
maov-class (setOldClass), 935
mapply, 405, 734
margin.table, 405, 567
mat.or.vec, 406
match, 98, 293, 407, 529, 796
match.arg, 408, 408, 409, 411, 529
match.call, 408, 409, 529, 884
match.fun, 408, 409, 410, 529
matchSignature (RMethodUtils), 917
Math, 956
Math (groupGeneric), 295
Math.data.frame, 156
Math.difftime (difftime), 188
Math.POSIXlt (DateTimeClasses), 160
Math.POSIXt (DateTimeClasses), 160
Math2 (groupGeneric), 295
matlines (matplot), 412

matmult, 411
matplot, 336, 412
matpoints (matplot), 412
matrix, 36, 142, 157, 187, 191, 224, 390,

411, 413, 414, 456
matrix-class (StructureClasses), 942
max, 31, 586, 797
max (Extremes), 229
max.col, 797
max.col (maxCol), 415
maxCol, 415
md5sum, 949, 955
mean, 31, 52, 115, 416, 740, 794
mean.POSIXct, 416
mean.POSIXct (DateTimeClasses), 160
mean.POSIXlt (DateTimeClasses), 160
median, 52, 249, 396, 417
mem.limits (Memory), 417
Memory, 272, 417
memory.profile, 418, 419
menu, 419
merge, 420
mergeMethods (MethodsList), 901
message (methodUtilities), 904
metaNameUndo (RClassUtils), 912
MethodAddCoerce (RMethodUtils), 917
MethodDefinition-class, 885, 906, 940
MethodDefinition-class, 897, 920
MethodDefinitionWithTrace-class

(TraceClasses), 943
Methods, 585, 586, 869, 871, 884, 885, 888,

898, 926, 931, 932, 933, 935, 942
methods, 18, 282, 289, 297, 301, 333, 339,

373, 392, 422, 453, 554, 700, 702,
782, 783

MethodsList, 898, 901, 932, 933
MethodsList-class, 875, 896, 898
MethodsList-class, 903
MethodsListSelect, 875, 899, 920
MethodsListSelect (getMethod), 883
methodsPackageMetaName (RClassUtils),

912
MethodSupport, 903
methodUtilities, 904
MethodWithNext-class, 898
MethodWithNext-class, 905
MethodWithNextWithTrace-class

(TraceClasses), 943
min, 31, 585, 586, 797
min (Extremes), 229
missing, 423, 697, 887, 920
missing-class (BasicClasses), 867



INDEX 993

missingArg (RMethodUtils), 917
mlistMetaName (RMethodUtils), 917
mlm-class (setOldClass), 935
Mod, 18
Mod (complex), 120
mode, 18, 32, 107, 424, 649, 686, 697, 768,

782
mode<- (mode), 424
model.extract, 425, 428
model.frame, 220, 262, 403, 425, 426, 426,

428, 466
model.frame.default, 402
model.matrix, 38, 369, 427, 427, 744, 778
model.offset, 466
model.offset (model.extract), 425
model.response (model.extract), 425
model.tables, 26, 27, 199, 401, 429, 563,

615, 640, 641, 701, 767
model.tables.aovlist, 207
model.weights (model.extract), 425
month.abb (Constants), 130
month.name (Constants), 130
months (weekdays), 792
morley, 430
mosaicplot, 45, 264, 299, 431, 522
mosaicplot.default, 432
mosaicplot.formula, 432
mostattributes<- (attributes), 50
mtable-class (setOldClass), 935
mtcars, 433
mtext, 305, 434, 492, 526, 528, 747, 752
mts-class (setOldClass), 935
Multinomial, 436
mvfft (fft), 238

n2mfrow, 437
NA, 34, 72, 75, 113, 144, 188, 231, 249,

251, 294, 337, 355, 380, 423, 438,
439, 440, 475, 554, 556, 558, 569,
574, 585, 586, 594, 604, 636, 718,
768, 796, 810, 811

na.action, 372, 439, 439, 440, 443
na.contiguous, 764
na.exclude, 372, 373, 443
na.exclude (na.fail), 440
na.fail, 119, 220, 284, 368, 427, 439, 440,

764
na.omit, 119, 220, 284, 368, 427, 439, 443,

764
na.omit (na.fail), 440
na.omit.ts (ts-methods), 763
na.pass (na.fail), 440
name, 169, 338, 357, 441

name-class (language-class), 893
names, 35, 50, 187, 191, 230, 347, 399, 442,

574, 626, 776
names<- (names), 442
namespaceExport (ns-internals), 459
namespaceImport (ns-internals), 459
namespaceImportClasses

(ns-internals), 459
namespaceImportFrom (ns-internals),

459
namespaceImportMethods

(ns-internals), 459
NaN, 34, 75, 249, 251, 438, 439, 574
NaN (is.finite), 337
napredict, 248, 440
napredict (naresid), 443
naprint, 443
naresid, 440, 443, 618
nargs, 444
native.enc (connections), 126
nchar, 445, 500, 691, 693, 698
nclass, 446
nclass.FD, 310
nclass.scott, 310
nclass.Sturges, 310, 311
NCOL, 626
NCOL (nrow), 456
ncol, 190
ncol (nrow), 456
NegBinomial, 447
new, 871, 872, 888, 906, 924, 936
new.env, 875
new.env (environment), 211
newBasic (RClassUtils), 912
newClassRepresentation (RClassUtils),

912
newEmptyObject (RClassUtils), 912
newestVersion (packageStatus), 485
next (Control), 138
NextMethod, 108
NextMethod (UseMethod), 782
nextn, 140, 239, 448
nhtemp, 449
nlevels, 110, 232, 356, 450
nlm, 176, 450, 470, 473, 773
nls, 176, 279, 452
nonstandardGeneric-class

(RMethodUtils), 917
nonstandardGenericFunction-class

(RMethodUtils), 917
nonstandardGroupGenericFunction-class

(RMethodUtils), 917



994 INDEX

noquote, 452, 554, 555, 557, 718
Normal, 453
NotYet, 455
NotYetImplemented (NotYet), 455
NotYetUsed (NotYet), 455
NROW, 626
NROW (nrow), 456
nrow, 190, 456
ns, 403
ns-alt, 457
ns-dblcolon, 458
ns-internals, 459
ns-lowlev, 460
ns-reflect.Rd, 461
ns-topenv, 462
nsl, 462
NULL, 456, 463, 684
NULL-class (BasicClasses), 867
numeric, 179, 256, 464, 585
numeric-class (BasicClasses), 867

object.size, 465
objects, 32, 47, 179, 360, 611, 642
objects (ls), 391
ObjectsWithPackage-class, 908, 915
octmode, 465
offset, 368, 426, 466, 745
old.packages (update.packages), 778
oldClass (class), 107
oldClass-class (setOldClass), 935
oldClass<- (class), 107
OldEvalSelectedMethod

(MethodSupport), 903
oldGet, 909
on.exit, 400, 467, 652, 723
open (connections), 126
Ops, 189
Ops (groupGeneric), 295
Ops.difftime (difftime), 188
Ops.POSIXt (DateTimeClasses), 160
Ops.ts (ts), 761
optim, 131, 132, 176, 452, 467
optimise (optimize), 472
optimize, 452, 470, 472, 773
OptionalFunction-class

(RMethodUtils), 917
options, 80, 137, 165, 181, 185, 195, 196,

203, 256, 258, 284, 288, 317, 357,
368, 378, 427, 439, 440, 474, 497,
555, 557, 558, 603, 661, 662, 676,
683, 686, 725, 761, 790

OrchardSprays, 477
order, 478, 587, 660

ordered, 295, 554
ordered (factor), 230
ordered-class (setOldClass), 935
outer, 346, 410, 480

p.adjust, 481
package.contents, 483
package.dependencies, 484
package.description

(package.contents), 483
package.skeleton, 484
packageHasNamespace (ns-internals),

459
packageInfo-class (setOldClass), 935
packageIQR-class (setOldClass), 935
packageSlot (getPackageName), 886
packageSlot<- (getPackageName), 886
packageStatus, 485
page, 486
pairlist (list), 365
pairs, 142, 487, 491, 512
pairwise.t.test, 482
palette, 113, 114, 246, 489, 490, 496, 525
Palettes, 490
panel.smooth, 142, 491, 520
par, 6, 36, 53, 56, 60, 71, 134, 193, 291,

319, 320, 331, 350, 364, 378, 412,
413, 432, 435, 437, 491, 492, 504,
510, 511, 513, 515, 517, 518, 520,
523, 524, 532, 536, 537, 604, 620,
634, 639, 643, 673, 709, 742, 746,
747, 752, 773

Paren, 138, 498, 720
parent.env (environment), 211
parent.env<- (environment), 211
parent.frame, 216
parent.frame (sys.parent), 722
parse, 174, 499, 661, 662
parse.dcf (Defunct), 165
parseNamespaceFile (ns-internals), 459
paste, 93, 97, 257, 445, 500, 667, 691, 698
path.expand, 62, 244, 501
pbeta (Beta), 65
pbinom (Binomial), 68
pbirthday (birthday), 69
pcauchy (Cauchy), 93
pchisq, 739, 765
pchisq (Chisquare), 101
pdf, 183, 184, 501
pentagamma (Special), 662
periodicSpline, 664
persp, 503
pexp (Exponential), 221



INDEX 995

pf (FDist), 237
pgamma, 447
pgamma (GammaDist), 270
pgeom (Geometric), 273
phones, 505
phyper (Hypergeometric), 314
pi (Constants), 130
pico (edit), 204
pictex, 184, 506
pie, 508
piechart (Defunct), 165
pipe (connections), 126
PkgUtils, 509
pkgVignettes (buildVignettes), 947
PlantGrowth, 510
Platform (Defunct), 165
plnorm (Lognormal), 387
plogis (Logistic), 382
plot, 61, 294, 319, 352, 364, 412, 413,

435, 492, 510, 512–515, 517, 522,
523, 525, 526, 532, 533, 709, 810

plot.data.frame, 156, 512
plot.default, 55, 83, 84, 134, 246, 265,

412, 495–497, 511, 512, 512, 515,
517, 518, 522–526, 673, 708, 810

plot.density, 172, 514
plot.design, 515
plot.factor, 517, 518, 522
plot.formula, 511, 517, 517
plot.function (curve), 148
plot.histogram, 308, 310, 518
plot.lm, 520, 742
plot.mlm (plot.lm), 520
plot.mts (Defunct), 165
plot.new, 495, 524
plot.new (frame), 265
plot.POSIXct (axis.POSIXct), 54
plot.POSIXlt (axis.POSIXct), 54
plot.table, 522
plot.ts, 167, 523, 763
plot.TukeyHSD (TukeyHSD), 766
plot.window, 60, 193, 246, 265, 513, 514,

524
plot.xy, 364, 525, 525, 532, 533
plotmath, 305, 351, 435, 507, 526, 747,

752
plotViewport, 818, 853
pmatch, 96, 98, 293, 408, 409, 529
pmax (Extremes), 229
pmin (Extremes), 229
pnbinom (NegBinomial), 447
pnchisq (Defunct), 165

png, 63, 88, 183, 185, 530
pnorm, 766
pnorm (Normal), 453
points, 84, 142, 294, 351, 364, 412, 413,

491, 492, 504, 511, 513, 520, 526,
532, 742, 810

points.default, 525
points.formula (plot.formula), 517
Poisson, 533
poisson (family), 235
poly, 403, 535
polygon, 106, 508, 536, 604, 644
polym (poly), 535
polyroot, 538, 773
pop.viewport, 853, 854
pos.to.env, 539
POSIXct, 38
POSIXct (DateTimeClasses), 160
POSIXct-class (setOldClass), 935
POSIXlt, 38
POSIXlt (DateTimeClasses), 160
POSIXlt-class (setOldClass), 935
POSIXt, 188
POSIXt (DateTimeClasses), 160
POSIXt-class (setOldClass), 935
possibleExtends (RClassUtils), 912
PossibleMethod-class (RMethodUtils),

917
postscript, 180, 181, 183–185, 475, 497,

502, 507, 532, 539
power, 235, 236, 543
power.t.test, 544
ppoints, 544, 569
ppois (Poisson), 533
precip, 545
predict, 220, 370, 444, 546, 549
predict.glm, 287, 546, 742
predict.lm, 369, 370, 546, 548
predict.mlm (predict.lm), 548
predict.poly (poly), 535
preplot, 550
presidents, 550
pressure, 551
pretty, 54, 56, 551
prettyNum, 259
prettyNum (format), 255
Primitive, 553
print, 16, 26, 93, 117, 256, 453, 554,

556–558, 560, 685, 731, 959
print.anova, 558
print.anova (anova), 20
print.anova.glm (Defunct), 165



996 INDEX

print.anova.lm (Defunct), 165
print.aov (aov), 26
print.aovlist (aov), 26
print.AsIs (AsIs), 41
print.atomic (Deprecated), 174
print.by (by), 84
print.checkDemoIndex

(tools-internal), 963
print.checkDocFiles (QC), 955
print.checkDocStyle (QC), 955
print.checkFF (checkFF), 948
print.checkReplaceFuns (QC), 955
print.checkS3methods (QC), 955
print.checkTnF (checkTnF), 949
print.checkVignetteIndex

(tools-internal), 963
print.checkVignettes

(checkVignettes), 950
print.classRepresentation

(RClassUtils), 912
print.codoc (codoc), 951
print.codocClasses (codoc), 951
print.codocData (codoc), 951
print.coefmat, 475
print.coefmat (Deprecated), 174
print.condition (conditions), 121
print.connection (connections), 126
print.data.frame, 156, 555
print.default, 117, 474, 554, 555, 556,

560
print.density (density), 170
print.difftime (difftime), 188
print.dummy.coef (dummy.coef), 198
print.family (family), 235
print.formula (formula), 261
print.ftable (ftable), 266
print.getAnywhere (getAnywhere), 276
print.glm (glm), 283
print.hsearch (help.search), 302
print.infl (influence.measures), 322
print.integrate (integrate), 328
print.libraryIQR (library), 356
print.lm (lm), 368
print.logLik (logLik), 383
print.matrix (print.default), 556
print.MethodsFunction (methods), 422
print.MethodsList (MethodsList), 901
print.mtable (alias), 15
print.noquote (noquote), 452
print.octmode (octmode), 465
print.ordered (Defunct), 165
print.packageInfo (library), 356

print.packageIQR (data), 152
print.packageStatus (packageStatus),

485
print.plot (Defunct), 165
print.POSIXct (DateTimeClasses), 160
print.POSIXlt (DateTimeClasses), 160
print.recordedplot (recordPlot), 601
print.restart (conditions), 121
print.rle (rle), 621
print.simple.list (print), 554
print.socket (make.socket), 400
print.summary.aov (summary.aov), 701
print.summary.aovlist (summary.aov),

701
print.summary.glm, 558
print.summary.glm (summary.glm), 702
print.summary.lm, 256, 558, 559
print.summary.lm (summary.lm), 704
print.summary.manova

(summary.manova), 706
print.summary.table (table), 730
print.table (print), 554
print.tables.aov (model.tables), 429
print.tabular (Defunct), 165
print.terms (terms), 743
print.ts, 557, 763
print.TukeyHSD (TukeyHSD), 766
print.undoc (undoc), 964
print.xtabs (xtabs), 808
printCoefmat, 175, 558
printNoClass (Defunct), 165
prmatrix, 559
proc.time, 272, 560, 729
prod, 561
profile, 562
profile.glm, 562
profile.nls, 562
proj, 27, 430, 562
prompt, 301, 564, 566, 911, 912, 952
promptClass, 910, 912, 915, 952
promptData, 565, 566
promptMethods, 911, 911
prop.table, 567
prototype, 896
prototype (representation), 916
provide (Defunct), 165
ps.options, 100, 807, 808
ps.options (postscript), 539
psignrank (SignRank), 652
pt (TDist), 739
ptukey (Tukey), 765
punif (Uniform), 770



INDEX 997

push.viewport, 854, 854
pushBack, 127, 129, 567, 748
pushBackLength (pushBack), 567
pweibull (Weibull), 793
pwilcox (Wilcoxon), 798

q, 631, 683
q (quit), 576
qbeta (Beta), 65
qbinom (Binomial), 68
qbirthday (birthday), 69
QC, 955
qcauchy (Cauchy), 93
qchisq (Chisquare), 101
qexp (Exponential), 221
qf (FDist), 237
qgamma (GammaDist), 270
qgeom (Geometric), 273
qhyper (Hypergeometric), 314
qlnorm (Lognormal), 387
qlogis (Logistic), 382
qnbinom (NegBinomial), 447
qnchisq (Defunct), 165
qnorm, 580, 766
qnorm (Normal), 453
qpois (Poisson), 533
qqline (qqnorm), 568
qqnorm, 545, 568
qqplot, 545
qqplot (qqnorm), 568
qr, 57, 104, 210, 344, 345, 371, 570, 572,

573, 712
QR.Auxiliaries, 572
qr.Q, 571
qr.Q (QR.Auxiliaries), 572
qr.qy, 573
qr.R, 571
qr.R (QR.Auxiliaries), 572
qr.solve, 658
qr.X, 571
qr.X (QR.Auxiliaries), 572
qsignrank (SignRank), 652
qt (TDist), 739
qtukey, 767
qtukey (Tukey), 765
quakes, 573
quantile, 75, 249, 335, 417, 574
quarters (weekdays), 792
quartz, 575
quasi (family), 235
quasibinomial (family), 235
quasipoisson (family), 235
quit, 576

qunif (Uniform), 770
Quote (methodUtilities), 904
quote, 77, 528, 755, 757, 894
quote (substitute), 696
qweibull (Weibull), 793
qwilcox (Wilcoxon), 798

R CMD BATCH, 185
R.home, 577
R.Version, 577
R.version, 3, 340, 721
R.version (R.Version), 577
r2dtable, 578
R_HOME (RHOME), 620
R_LIBS (library), 356
rainbow, 114, 291, 313, 319, 320, 489, 497,

620
rainbow (Palettes), 490
Random, 579
Random.user, 580, 583
randu, 584
range, 142, 230, 249, 335, 585
range.default, 585
rank, 479, 586, 660
rbeta (Beta), 65
rbind (cbind), 94
rbinom, 437
rbinom (Binomial), 68
rcauchy (Cauchy), 93
rchisq (Chisquare), 101
RClassUtils, 912
Rd2dvi (RdUtils), 587
Rd2txt (RdUtils), 587
Rdconv, 911
Rdconv (RdUtils), 587
Rdindex, 957
RdUtils, 587
Re (complex), 120
read.00Index, 588
read.csv (read.table), 593
read.csv2 (read.table), 593
read.dcf, 483, 780
read.dcf (dcf), 162
read.delim (read.table), 593
read.delim2 (read.table), 593
read.ftable, 267, 589
read.fwf, 590, 595
read.socket, 109, 401, 592
read.table, 146, 153, 156, 418, 591, 593,

637, 768, 805
read.table.url (Defunct), 165
readBin, 129, 596, 600
readChar (readBin), 596



998 INDEX

readline, 565, 598
readLines, 128, 129, 568, 597, 599, 636,

637, 805
real, 600
Recall, 88, 601
reconcilePropertiesAndPrototype

(RClassUtils), 912
recordedplot-class (setOldClass), 935
recordPlot, 601
recover, 163, 165, 602, 754, 755, 757
rect, 72, 519, 537, 604
reformulate (delete.response), 168
reg.finalizer, 605
regex, 606
regexp (regex), 606
regexpr, 98, 953
regexpr (grep), 291
registerS3method (ns-internals), 459
regular expression, 32, 77, 292, 293,

302, 303, 367, 392, 686, 691
regular expression (regex), 606
relevel, 609
rematchDefinition (RMethodUtils), 917
REMOVE, 327, 360, 610, 612, 780
remove, 611
remove.packages, 612
removeCConverter (getNumCConverters),

279
removeClass (setClass), 923
removeGeneric (GenericFunctions), 878
removeMethod (setMethod), 932
removeMethods (GenericFunctions), 878
removeMethodsObject (RMethodUtils),

917
removeTaskCallback, 737, 738
removeTaskCallback (taskCallback), 734
Renviron.site (Startup), 675
rep, 226, 612, 645, 647, 810, 811, 859
repeat (Control), 138
repeat-class (language-class), 893
replace, 614
replayPlot (recordPlot), 601
replicate (lapply), 347
replications, 430, 615
representation, 916, 923
require, 475, 676
require (library), 356
requireMethods (RClassUtils), 912
resetClass (setClass), 923
resetGeneric (MethodSupport), 903
reshape, 167, 616, 670
reshapeLong (Defunct), 165

reshapeWide (Defunct), 165
resid, 444
resid (residuals), 618
residuals, 20, 111, 208, 248, 286, 287,

289, 370, 374, 618, 742, 795
residuals.glm, 374, 703
residuals.glm (glm.summaries), 289
residuals.lm (lm.summaries), 373
restart (Defunct), 165
restartDescription (conditions), 121
restartFormals (conditions), 121
return, 334, 498
return (function), 269
rev, 619
rexp (Exponential), 221
rf (FDist), 237
rgamma (GammaDist), 270
rgb, 113, 114, 291, 313, 490, 497, 620
rgeom (Geometric), 273
RHOME, 620
rhyper (Hypergeometric), 314
rivers, 621
rle, 621
rle-class (setOldClass), 935
rlnorm (Lognormal), 387
rlogis (Logistic), 382
rm (remove), 611
RMethodUtils, 917
rmultinom (Multinomial), 436
rnbinom (NegBinomial), 447
rnchisq (Defunct), 165
RNG (Random), 579
RNGkind, 583
RNGkind (Random), 579
RNGversion (Random), 579
rnorm, 582, 771
rnorm (Normal), 453
Round, 622
round, 189, 328
round (Round), 622
round.difftime (difftime), 188
round.POSIXt, 161, 623
row, 112, 624, 645, 656
row.names, 156, 625, 626
row.names<- (row.names), 625
row/colnames, 626
rowMeans (colSums), 115
rownames, 191, 625
rownames (row/colnames), 626
rownames<- (row/colnames), 626
rowsum, 115, 627
rowSums, 627



INDEX 999

rowSums (colSums), 115
rpois (Poisson), 533
Rprof, 562, 628, 677, 707, 708
Rprofile (Startup), 675
rsignrank (SignRank), 652
rstandard (influence.measures), 322
rstudent, 374
rstudent (influence.measures), 322
rt (TDist), 739
Rtangle, 957, 960–962
RtangleSetup (Rtangle), 957
RtangleWritedoc (tools-internal), 963
rug, 344, 629, 742
runif, 454, 582
runif (Uniform), 770
RweaveLatex, 958, 958, 961, 962
RweaveLatexOptions (tools-internal),

963
RweaveLatexSetup (RweaveLatex), 958
rweibull (Weibull), 793
rwilcox (Wilcoxon), 798

S3Methods, 422
S3Methods (UseMethod), 782
SafePrediction, 547, 549
SafePrediction (makepredictcall), 402
sample, 630
sapply, 405, 734
sapply (lapply), 347
save, 46, 154, 164, 200, 375, 631, 803
save.plot (Defunct), 165
savehistory, 633
saveNamespaceImage (ns-lowlev), 460
scale, 403, 634, 713
scan, 146, 418, 499, 568, 591, 593–595,

600, 635, 662, 803
scan.url (Defunct), 165
SClassExtension-class, 872, 915, 921
screen, 637
sd, 144, 639, 740
Sd2Rd (RdUtils), 587
se.aov, 640
se.aovlist (se.aov), 640
se.contrast, 430, 640
se.contrast.aovlist, 207
sealClass (setClass), 923
SealedMethodDefinition-class

(MethodDefinition-class), 897
search, 32, 39, 42, 46, 47, 99, 125, 178,

179, 218, 275, 357, 360, 392, 611,
641, 686, 886

searchpaths (search), 641
seek, 129, 642

segments, 6, 37, 537, 604, 643
selectMethod, 869, 873, 920, 939
selectMethod (getMethod), 883
seq, 613, 619, 644, 646, 647
seq.POSIXt, 152, 161, 312, 645, 646
sequence, 613, 645, 647
serialize, 647
Session, 922
sessionData (Session), 922
set.seed (Random), 579
setAs, 864, 890
setAs (as), 863
setCConverterStatus

(getNumCConverters), 279
setClass, 326, 865, 870–872, 881–883,

890, 893, 896, 897, 901, 916, 917,
923, 925, 936, 944, 945

setClassUnion, 873, 926, 926, 936
setDataPart (RClassUtils), 912
setdiff (sets), 648
setequal (sets), 648
setExtendsMetaData (RClassUtils), 912
setGeneric, 877, 881, 899, 901, 928, 932
setGroupGeneric, 877
setGroupGeneric (setGeneric), 928
setIs, 865, 871, 882, 899, 921, 922
setIs (is), 889
setMethod, 326, 756, 863, 877, 888, 892,

893, 897, 920, 924, 932, 936, 939
setNamespaceInfo (ns-internals), 459
setOldClass, 933, 935
setPackageName (getPackageName), 886
setPrimitiveMethods (RMethodUtils),

917
setReplaceMethod (GenericFunctions),

878
sets, 648
setSubclassMetaData (RClassUtils), 912
setValidity (validObject), 944
setwd, 724
setwd (getwd), 282
SHLIB, 119, 204, 362, 649
show, 557, 937, 939
show,ANY-method (show), 937
show,classRepresentation-method

(show), 937
show,genericFunction-method (show),

937
show,MethodDefinition-method (show),

937
show,MethodWithNext-method (show), 937



1000 INDEX

show,ObjectsWithPackage-method
(show), 937

show,traceable-method (show), 937
show-methods (show), 937
showClass, 937
showClass (RClassUtils), 912
showConnections, 129, 650, 748
showDefault, 937
showDefault (methodUtilities), 904
showExtends (RClassUtils), 912
showMethods, 422, 881, 898, 937, 938
showMlist, 937
showMlist (MethodsList), 901
sign, 651
signalCondition, 683
signalCondition (conditions), 121
Signals, 652
signature (GenericFunctions), 878
signature-class, 940
SignatureMethod (MethodsList), 901
signif, 259, 700
signif (Round), 622
SignRank, 652
sigToEnv (RMethodUtils), 917
simpleCondition (conditions), 121
simpleError (conditions), 121
simpleWarning (conditions), 121
sin, 7, 313
sin (Trig), 760
single, 252
single (double), 194
single-class (BasicClasses), 867
sinh (Hyperbolic), 313
sink, 89, 92, 650, 651, 653
sleep, 655
slice.index, 655
slot, 656, 871, 941
slot<- (slot), 941
slotNames (slot), 941
slotOp, 656
smooth.spline, 664
socket-class (setOldClass), 935
socketConnection (connections), 126
socketSelect, 657
solve, 57, 105, 397, 657
solve.qr, 571, 658
solve.qr (qr), 570
sort, 377, 479, 587, 619, 659
sort.list (order), 478
source, 153, 170, 200, 332, 499, 661, 726,

950, 951, 960
source.url (Defunct), 165

Special, 7, 35, 662
spline, 31
spline (splinefun), 663
splinefun, 31, 149, 663
split, 151, 665
split.screen, 494, 497
split.screen (screen), 637
split<- (split), 665
sprintf, 257, 260, 500, 666
sqrt, 35, 380, 663
sqrt (abs), 7
sQuote, 668, 697
stack, 617, 669
stack.loss (stackloss), 670
stack.x (stackloss), 670
stackloss, 670
standardGeneric, 671, 877
standardGeneric (GenericFunctions),

878
standardGeneric-class (RMethodUtils),

917
standardGenericWithTrace-class

(RMethodUtils), 917
Stangle, 950, 957
Stangle (Sweave), 960
stars, 672, 716
start, 675, 750, 763, 765
Startup, 475, 675
stat.anova, 21, 678
state, 679, 781
stderr (showConnections), 650
stdin, 568
stdin (showConnections), 650
stdout (showConnections), 650
stem, 311, 519, 680
step, 9, 228, 229, 680
stepAIC, 682
stop, 475, 683, 684, 790
stopifnot, 17, 683, 684
storage.mode, 768
storage.mode (mode), 424
storage.mode<- (mode), 424
str, 78, 685
str.logLik (logLik), 383
str.POSIXt (DateTimeClasses), 160
strftime (strptime), 688
strheight (strwidth), 693
stripchart, 74, 167, 512, 687
stripplot (Defunct), 165
strptime, 40, 41, 55, 161, 312, 377, 688
strsplit, 97, 445, 500, 606, 609, 691, 698
structure, 692



INDEX 1001

structure-class (StructureClasses),
942

StructureClasses, 942
strwidth, 352, 445, 493, 693
strwrap, 694
sub, 97, 99, 691
sub (grep), 291
subclassesMetaName (RClassUtils), 912
Subscript (Extract), 223
subset, 226, 695, 759
substitute, 77, 174, 351, 423, 528, 696,

755, 757, 943
substituteDirect, 943
substituteFunctionArgs

(RMethodUtils), 917
substr, 5, 97, 445, 500, 691, 698
substr<- (substr), 698
substring (substr), 698
substring<- (substr), 698
sum, 115, 561, 699
Summary (groupGeneric), 295
summary, 20, 26, 285, 287, 373, 685, 686,

700, 701, 704, 705
summary.aov, 27, 701
summary.aovlist (summary.aov), 701
summary.connection (connections), 126
Summary.difftime (difftime), 188
summary.glm, 285, 287, 289, 700, 702
summary.infl (influence.measures), 322
summary.lm, 370, 373, 374, 393, 700, 704
summary.manova, 404, 706
summary.mlm (summary.lm), 704
summary.packageStatus

(packageStatus), 485
Summary.POSIXct (DateTimeClasses), 160
summary.POSIXct (DateTimeClasses), 160
Summary.POSIXlt (DateTimeClasses), 160
summary.POSIXlt (DateTimeClasses), 160
summary.table (table), 730
summary.table-class (setOldClass), 935
summaryRprof, 628, 707
sunflowerplot, 708, 716
sunspot.month, 710
sunspots, 710
superClassDepth (RClassUtils), 912
suppressWarnings (warning), 789
survreg, 742
svd, 104, 210, 345, 571, 711
Sweave, 947, 950, 958, 960, 960, 962
SweaveSyntaxLatex (Sweave), 960
SweaveSyntaxNoweb (Sweave), 960
SweaveSyntConv, 962

sweep, 29, 144, 410, 634, 712
swiss, 713
switch, 138, 714
symbol.C (dyn.load), 202
symbol.For (dyn.load), 202
symbols, 715
symnum, 703, 704, 717
Syntax, 35, 118, 138, 224, 381, 498, 719
sys.call, 444
sys.call (sys.parent), 722
sys.calls (sys.parent), 722
sys.frame, 42, 215, 216, 218, 275, 392,

611
sys.frame (sys.parent), 722
sys.frames (sys.parent), 722
sys.function (sys.parent), 722
Sys.getenv, 167, 720, 724
Sys.getlocale (locales), 377
Sys.getpid (getpid), 281
Sys.info, 3, 721
sys.load.image (save), 631
Sys.localeconv, 377
Sys.localeconv (localeconv), 376
sys.nframe (sys.parent), 722
sys.on.exit, 467
sys.on.exit (sys.parent), 722
sys.parent, 164, 722
sys.parents (sys.parent), 722
Sys.putenv, 720, 724
sys.save.image (save), 631
Sys.setlocale, 376
Sys.setlocale (locales), 377
Sys.sleep, 724
sys.source, 462, 725
sys.status (sys.parent), 722
Sys.time, 161, 726
Sys.timezone (Sys.time), 726
system, 3, 4, 340, 727
system.file, 728
system.test (Defunct), 165
system.time, 560, 728, 750

T (logical), 381
t, 28, 729
table, 151, 267, 268, 387, 522, 554, 730,

732, 809
table-class (setOldClass), 935
tabulate, 151, 732
tan, 313
tan (Trig), 760
tanh (Hyperbolic), 313
tapply, 11, 29, 84, 85, 348, 627, 733
taskCallback, 734



1002 INDEX

taskCallbackManager, 734, 735, 736, 738
taskCallbackNames, 738
TDist, 739
tempdir, 399
tempdir (tempfile), 740
tempfile, 740
termplot, 521, 741
terms, 169, 262, 286, 369, 428, 515, 743,

744, 745, 778
terms.formula, 743, 744, 745
terms.object, 743, 744, 745
terrain.colors, 318–320, 489
terrain.colors (Palettes), 490
testVirtual (RClassUtils), 912
tetragamma (Special), 662
texi2dvi, 947, 963
text, 134, 222, 305, 308, 343, 352, 435,

492, 493, 523, 526, 528, 542, 693,
746, 752

textConnection, 89, 129, 747
time, 675, 729, 749, 763, 765, 800, 810
Titanic, 750
title, 60, 84, 134, 193, 246, 305, 412, 435,

492, 503, 511, 515, 520, 528, 747,
751

tkfilefind (Deprecated), 174
tolower, 293
tolower (chartr), 98
tools-internal, 963
ToothGrowth, 753
topenv, 726
topenv (ns-topenv), 462
topicName (help), 299
topo.colors, 114, 318–320
topo.colors (Palettes), 490
toString, 753
toupper, 293
toupper (chartr), 98
trace, 754, 888, 922, 943, 944
traceable-class, 888
traceable-class (TraceClasses), 943
traceback, 79, 163, 683, 757
TraceClasses, 943
traceOff (Session), 922
traceOn (Session), 922
tracingState (trace), 754
transform, 696, 758
trees, 759
Trig, 380, 760
trigamma (Special), 662
TRUE, 381, 523, 684
TRUE (logical), 381

truehist, 311
trunc, 327
trunc (Round), 622
trunc.POSIXt, 161
trunc.POSIXt (round.POSIXt), 623
truncate (seek), 642
try, 358, 475, 683, 760
tryCatch (conditions), 121
tryNew (RClassUtils), 912
trySilent (RClassUtils), 912
ts, 188, 475, 523, 557, 675, 749, 750, 761,

763, 765, 800
ts-class (StructureClasses), 942
ts-methods, 763
tsp, 675, 750, 763, 764, 800
tsp<- (tsp), 764
Tukey, 765
TukeyHSD, 27, 430, 701, 766
type.convert, 594, 595, 767
typeof, 34, 424, 441, 768

UCBAdmissions, 769
ucv, 59
unclass, 110
unclass (class), 107
undebug (debug), 163
undoc, 952, 964
Uniform, 770
union (sets), 648
unique, 201, 771
uniroot, 452, 473, 538, 772
unit, 816, 821, 825, 826, 836, 855, 857,

858, 861
unit.c, 856, 857
unit.length, 856, 857
unit.pmax, 856
unit.pmax (unit.pmin), 858
unit.pmin, 856, 858
unit.rep, 856, 859
units, 773
unix (system), 727
unix.time (system.time), 728
unlink, 244, 741, 774
unlist, 87, 333, 775
unloadNamespace (ns-lowlev), 460
unlockBinding (bindenv), 66
unname, 776
unRematchDefinition (RMethodUtils),

917
unserialize (serialize), 647
unsplit (split), 665
unstack (stack), 669
untrace, 922, 943



INDEX 1003

untrace (trace), 754
unz (connections), 126
update, 777
update.formula, 681, 777, 778
update.packages, 327, 476, 484, 485, 778
update.packageStatus (packageStatus),

485
upgrade (packageStatus), 485
upper.tri, 187
upper.tri (lower.tri), 390
url, 88, 167, 196, 781
url (connections), 126
url.show, 196, 780
USArrests, 781
UseMethod, 95, 108, 438, 782
USJudgeRatings, 783
USPersonalExpenditure, 784
uspop, 785

VADeaths, 785
validObject, 872, 896, 924, 944
validSlotNames (RClassUtils), 912
var, 147, 396, 397, 640
var (cor), 143
variable.names, 626
variable.names (case/variable.names),

91
vcov, 370, 786
vector, 258, 366, 787
vector-class (BasicClasses), 867
Version (Defunct), 165
version (R.Version), 577
vi, 159
vi (edit), 204
viewport, 817, 818, 821, 822, 824, 832,

835–837, 842–845, 847–849,
851–853, 859

viewport.layout (grid-internal), 821
viewport.transform (grid-internal),

821
vignette, 788
VIRTUAL-class (BasicClasses), 867
volcano, 789

warning, 34, 94, 476, 683, 684, 789, 791
warnings, 475, 790, 790
warpbreaks, 791
weekdays, 792
weekdays.POSIXt, 161
Weibull, 793
weighted.mean, 416, 794
weighted.residuals, 374, 795
weights, 795

weights (lm.summaries), 373
weights.glm (glm), 283
which, 796, 797
which.is.max, 797
which.max, 415
which.max (which.min), 797
which.min, 230, 796, 797
while (Control), 138
while-class (language-class), 893
width.details, 862
width.post.details (grid-internal),

821
width.pre.details (grid-internal), 821
width.SJ, 59
Wilcoxon, 798
WinAnsi (connections), 126
window, 750, 763, 799
with, 47, 89, 800
withCallingHandlers (conditions), 121
withRestarts (conditions), 121
women, 802
write, 197, 200, 555, 637, 803, 805
write.dcf (dcf), 162
write.ftable (read.ftable), 589
write.matrix, 804, 805
write.socket (read.socket), 592
write.table, 163, 595, 803, 804
writeBin, 129, 805
writeBin (readBin), 596
writeChar, 805
writeChar (readBin), 596
writeLines, 129, 597, 600, 805
wsbrowser (browseEnv), 77

X11, 185, 476, 530, 531
X11 (x11), 806
x11, 63, 290, 497, 806
xedit (edit), 204
xemacs (edit), 204
xfig, 184, 807
xinch (units), 773
xor (Logic), 380
xpdrows.data.frame

(dataframeHelpers), 159
xtabs, 267, 590, 731, 791, 808
xy.coords, 30, 105, 106, 351, 352, 364,

513, 514, 525, 533, 537, 664, 708,
715, 746, 809, 812

xyinch (units), 773
xyz.coords, 811

yinch (units), 773



1004 INDEX

zapsmall, 558
zapsmall (Round), 622
zcbind, 812
zip.file.extract, 813
zMethods, 956


	Contents
	The base package
	.Machine
	.Platform
	.Script
	abbreviate
	abline
	abs
	add1
	aggregate
	agrep
	AIC
	airmiles
	airquality
	alias
	all
	all.equal
	all.names
	anova
	anova.glm
	anova.lm
	anscombe
	any
	aov
	aperm
	append
	apply
	approxfun
	apropos
	args
	Arithmetic
	array
	arrows
	as.data.frame
	as.environment
	as.function
	as.POSIX*
	AsIs
	assign
	assignOps
	assocplot
	attach
	attenu
	attitude
	attr
	attributes
	autoload
	ave
	axis
	axis.POSIXct
	axTicks
	backsolve
	bandwidth
	barplot
	basename
	BATCH
	Bessel
	Beta
	bindenv
	Binomial
	birthday
	body
	box
	boxplot
	boxplot.stats
	bquote
	browseEnv
	browser
	browseURL
	bug.report
	builtins
	bxp
	by
	C
	c
	call
	capabilities
	capture.output
	cars
	case/variable.names
	cat
	Cauchy
	cbind
	char.expand
	character
	charmatch
	chartr
	check.options
	chickwts
	Chisquare
	chol
	chol2inv
	chull
	citation
	class
	close.socket
	co2
	codes-deprecated
	coef
	col
	col2rgb
	colors
	colSums
	commandArgs
	comment
	Comparison
	COMPILE
	complete.cases
	complex
	conditions
	confint
	conflicts
	connections
	Constants
	constrOptim
	contour
	contrast
	contrasts
	contributors
	Control
	convolve
	coplot
	copyright
	cor
	count.fields
	cov.wt
	crossprod
	cumsum
	curve
	cut
	cut.POSIXt
	data
	data.class
	data.frame
	data.matrix
	dataentry
	dataframeHelpers
	date
	DateTimeClasses
	dcf
	debug
	debugger
	Defunct
	delay
	delete.response
	demo
	density
	deparse
	Deprecated
	deriv
	det
	detach
	dev.xxx
	dev2
	dev2bitmap
	deviance
	Devices
	df.residual
	diag
	diff
	difftime
	dim
	dimnames
	discoveries
	do.call
	dotchart
	double
	download.file
	dput
	drop
	dummy.coef
	dump
	duplicated
	dyn.load
	edit
	edit.data.frame
	eff.aovlist
	effects
	eigen
	environment
	esoph
	euro
	eurodist
	eval
	example
	exists
	expand.grid
	expand.model.frame
	Exponential
	expression
	Extract
	Extract.data.frame
	Extract.factor
	extractAIC
	Extremes
	factor
	factor.scope
	faithful
	family
	FDist
	fft
	file.access
	file.choose
	file.info
	file.path
	file.show
	files
	filled.contour
	findInterval
	fitted
	fivenum
	fix
	force
	Foreign
	Formaldehyde
	formals
	format
	format.info
	formatC
	formatDL
	formula
	fourfoldplot
	frame
	freeny
	ftable
	ftable.formula
	function
	GammaDist
	gc
	gc.time
	gctorture
	Geometric
	get
	getAnywhere
	getFromNamespace
	getNativeSymbolInfo
	getNumCConverters
	getpid
	getS3method
	getwd
	gl
	glm
	glm.control
	glm.summaries
	Gnome
	gray
	grep
	grid
	groupGeneric
	gzcon
	HairEyeColor
	help
	help.search
	help.start
	Hershey
	hist
	hist.POSIXt
	hsv
	Hyperbolic
	Hypergeometric
	identical
	identify
	ifelse
	image
	index.search
	infert
	influence.measures
	InsectSprays
	INSTALL
	integer
	integrate
	interaction
	interaction.plot
	interactive
	Internal
	InternalMethods
	invisible
	IQR
	iris
	is.empty.model
	is.finite
	is.function
	is.language
	is.object
	is.R
	is.recursive
	is.single
	islands
	Japanese
	jitter
	kappa
	kronecker
	labels
	lapply
	Last.value
	layout
	legend
	length
	levels
	library
	library.dynam
	license
	LifeCycleSavings
	lines
	LINK
	list
	list.files
	lm
	lm.fit
	lm.influence
	lm.summaries
	load
	localeconv
	locales
	locator
	log
	Logic
	logical
	Logistic
	logLik
	logLik.glm
	logLik.lm
	loglin
	Lognormal
	longley
	lower.tri
	lowess
	ls
	ls.diag
	ls.print
	lsfit
	mad
	mahalanobis
	make.link
	make.names
	make.packages.html
	make.socket
	make.tables
	make.unique
	makepredictcall
	manglePackageName
	manova
	mapply
	margin.table
	mat.or.vec
	match
	match.arg
	match.call
	match.fun
	matmult
	matplot
	matrix
	maxCol
	mean
	median
	Memory
	memory.profile
	menu
	merge
	methods
	missing
	mode
	model.extract
	model.frame
	model.matrix
	model.tables
	morley
	mosaicplot
	mtcars
	mtext
	Multinomial
	n2mfrow
	NA
	na.action
	na.fail
	name
	names
	naprint
	naresid
	nargs
	nchar
	nclass
	NegBinomial
	nextn
	nhtemp
	nlevels
	nlm
	noquote
	Normal
	NotYet
	nrow
	ns-alt
	ns-dblcolon
	ns-internals
	ns-lowlev
	ns-reflect.Rd
	ns-topenv
	nsl
	NULL
	numeric
	object.size
	octmode
	offset
	on.exit
	optim
	optimize
	options
	OrchardSprays
	order
	outer
	p.adjust
	package.contents
	package.dependencies
	package.skeleton
	packageStatus
	page
	pairs
	palette
	Palettes
	panel.smooth
	par
	Paren
	parse
	paste
	path.expand
	pdf
	persp
	phones
	pictex
	pie
	PkgUtils
	PlantGrowth
	plot
	plot.data.frame
	plot.default
	plot.density
	plot.design
	plot.factor
	plot.formula
	plot.histogram
	plot.lm
	plot.table
	plot.ts
	plot.window
	plot.xy
	plotmath
	pmatch
	png
	points
	Poisson
	poly
	polygon
	polyroot
	pos.to.env
	postscript
	power
	ppoints
	precip
	predict
	predict.glm
	predict.lm
	preplot
	presidents
	pressure
	pretty
	Primitive
	print
	print.data.frame
	print.default
	print.ts
	printCoefmat
	prmatrix
	proc.time
	prod
	profile
	proj
	prompt
	promptData
	prop.table
	pushBack
	qqnorm
	qr
	QR.Auxiliaries
	quakes
	quantile
	quartz
	quit
	R.home
	R.Version
	r2dtable
	Random
	Random.user
	randu
	range
	rank
	RdUtils
	read.00Index
	read.ftable
	read.fwf
	read.socket
	read.table
	readBin
	readline
	readLines
	real
	Recall
	recordPlot
	recover
	rect
	reg.finalizer
	regex
	relevel
	REMOVE
	remove
	remove.packages
	rep
	replace
	replications
	reshape
	residuals
	rev
	rgb
	RHOME
	rivers
	rle
	Round
	round.POSIXt
	row
	row.names
	row/colnames
	rowsum
	Rprof
	rug
	sample
	save
	savehistory
	scale
	scan
	screen
	sd
	se.aov
	se.contrast
	search
	seek
	segments
	seq
	seq.POSIXt
	sequence
	serialize
	sets
	SHLIB
	showConnections
	sign
	Signals
	SignRank
	sink
	sleep
	slice.index
	slotOp
	socketSelect
	solve
	sort
	source
	Special
	splinefun
	split
	sprintf
	sQuote
	stack
	stackloss
	standardGeneric
	stars
	start
	Startup
	stat.anova
	state
	stem
	step
	stop
	stopifnot
	str
	stripchart
	strptime
	strsplit
	structure
	strwidth
	strwrap
	subset
	substitute
	substr
	sum
	summary
	summary.aov
	summary.glm
	summary.lm
	summary.manova
	summaryRprof
	sunflowerplot
	sunspots
	svd
	sweep
	swiss
	switch
	symbols
	symnum
	Syntax
	Sys.getenv
	Sys.info
	sys.parent
	Sys.putenv
	Sys.sleep
	sys.source
	Sys.time
	system
	system.file
	system.time
	t
	table
	tabulate
	tapply
	taskCallback
	taskCallbackManager
	taskCallbackNames
	TDist
	tempfile
	termplot
	terms
	terms.formula
	terms.object
	text
	textConnection
	time
	Titanic
	title
	ToothGrowth
	toString
	trace
	traceback
	transform
	trees
	Trig
	try
	ts
	ts-methods
	tsp
	Tukey
	TukeyHSD
	type.convert
	typeof
	UCBAdmissions
	Uniform
	unique
	uniroot
	units
	unlink
	unlist
	unname
	update
	update.formula
	update.packages
	url.show
	USArrests
	UseMethod
	USJudgeRatings
	USPersonalExpenditure
	uspop
	VADeaths
	vcov
	vector
	vignette
	volcano
	warning
	warnings
	warpbreaks
	weekdays
	Weibull
	weighted.mean
	weighted.residuals
	which
	which.min
	Wilcoxon
	window
	with
	women
	write
	write.table
	writeLines
	x11
	xfig
	xtabs
	xy.coords
	xyz.coords
	zcbind
	zip.file.extract

	The grid package
	absolute.size
	convertNative
	current.viewport
	dataViewport
	gpar
	Grid
	grid-internal
	grid.arrows
	grid.circle
	grid.collection
	grid.convert
	grid.copy
	grid.display.list
	grid.draw
	grid.edit
	grid.frame
	grid.get
	grid.grill
	grid.grob
	grid.layout
	grid.lines
	grid.locator
	grid.move.to
	grid.newpage
	grid.pack
	grid.place
	grid.plot.and.legend
	grid.points
	grid.polygon
	grid.pretty
	grid.rect
	grid.segments
	grid.set
	grid.show.layout
	grid.show.viewport
	grid.text
	grid.xaxis
	grid.yaxis
	height.details
	plotViewport
	pop.viewport
	push.viewport
	unit
	unit.c
	unit.length
	unit.pmin
	unit.rep
	viewport
	width.details

	The methods package
	.BasicFunsList
	as
	BasicClasses
	callNextMethod
	Classes
	classRepresentation-class
	Documentation
	EmptyMethodsList-class
	environment-class
	fixPre1.8
	genericFunction-class
	GenericFunctions
	getClass
	getMethod
	getPackageName
	hasArg
	initialize-methods
	is
	isSealedMethod
	language-class
	languageEl
	LinearMethodsList-class
	makeClassRepresentation
	MethodDefinition-class
	Methods
	MethodsList
	MethodsList-class
	MethodSupport
	methodUtilities
	MethodWithNext-class
	new
	ObjectsWithPackage-class
	oldGet
	promptClass
	promptMethods
	RClassUtils
	representation
	RMethodUtils
	SClassExtension-class
	Session
	setClass
	setClassUnion
	setGeneric
	setMethod
	setOldClass
	setOldClass
	show
	showMethods
	signature-class
	slot
	StructureClasses
	substituteDirect
	TraceClasses
	validObject

	The tools package
	buildVignettes
	checkFF
	checkMD5sums
	checkTnF
	checkVignettes
	codoc
	delimMatch
	fileutils
	md5sum
	QC
	Rdindex
	Rtangle
	RweaveLatex
	Sweave
	SweaveSyntConv
	texi2dvi
	tools-internal
	undoc

	Index

