Using GNU Fortran

For Gccc version 4.2.1

The gfortran team

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright (©) 1999-2007 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the Free
Software Foundation; with the Invariant Sections being “GNU General Public License” and
“Funding Free Software”, the Front-Cover texts being (a) (see below), and with the Back-Cover
Texts being (b) (see below). A copy of the license is included in the section entitled “GNU Free
Documentation License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies published
by the Free Software Foundation raise funds for GNU development.

Short Contents

1T Introduction « v v v v v oo v e oot eeoooeeeeeessoossssssoseessssss 1
Part I: Invoking GNU Fortrancc00 i iiiieeenseeossoonees 5
2 GNU Fortran Command Options « v v v v o o v vt o oo v v evuuoossssssssssss 7
3 Runtime: Influencing runtime behavior with environment variables 17
Part II: Language Referencettt ittt it eeeeseennns 19
4 Fortran 2003 StatiS o o o e e o o oo 0o oo s oo oo eeosssssssssssseessssss 21
D EXLENSIONS o v v oo v v v oo o veosoessssessssoessssoessssosssssssssss 23
6 Intrinsic Procedures « o v v v v v oo oo oot o oot et eeeeeeesssooonnaansns 29
ContribUbIng v v v v oot vttt et et ee e s et seneeeesessoosonsenosnns 133
GNU GENERAL PUBLIC LICENSE . s vt v it i i it ittt e seeeennnosssens 137
GNU Free Documentation License . . o o v v v v oo v v v veeeeseessssseeenas 143
Funding Free Software . . v v v v oo i it ittt ettt it i i i 151
Option Index & v v v v vt ettt sttt ieeeosessseooeessssssssssses 153

Keyword INdeX o v v oo oo oot e i ittt ieeeeeeeeeeeeeosssosssooonness 155

11

The GNU Fortran Compiler

iii

Table of Contents

1 Introduction............ ... iiiinnnnnnnnnnn. 1
1.1 About GNU Fortran e 1
1.2 GNU Fortran and GCC e 2
1.3 GNU Fortran and GT7 e 2
1.4 Project Status 2
1.5 StandardsS. 3

Part I: Invoking GNU Fortran.............................. 5

2 GNU Fortran Command Options........................ 7
2.1 Option SUMIMATY . . oo\ttt e e e e e e e e e e e e et 7
2.2 Options Controlling Fortran Dialect......... 8
2.3 Options to Request or Suppress Errors and Warnings 9
2.4 Options for Debugging Your Program or GNU Fortran 11
2.5 Options for Directory Search 11
2.6 Influencing runtime behavior 12
2.7 Options for Code Generation Conventionsc.oouviiiinneiineeea... 12
2.8 Environment Variables Affecting gfortran................. 15

3 Runtime: Influencing runtime behavior with environment

variables. i e 17

3.1 GFORTRAN_STDIN_UNIT—Unit number for standard input........................ 17
3.2 GFORTRAN_STDOUT_UNIT—Unit number for standard output...................... 17
3.3 GFORTRAN_STDERR_UNIT—Unit number for standard error 17
3.4 GFORTRAN_USE_STDERR—Send library output to standard error................... 17
3.5 GFORTRAN_TMPDIR—Directory for scratch files............ 17
3.6 GFORTRAN_UNBUFFERED_ALL—Don’t buffer output............................... 17
3.7 GFORTRAN_SHOW_LOCUS—Show location for runtime errors........................ 17
3.8 GFORTRAN_OPTIONAL_PLUS—Print leading + where permitted 17
3.9 GFORTRAN_DEFAULT_RECL—Default record length for new files.................... 17
3.10 GFORTRAN_LIST_SEPARATOR—Separator for list output.......................... 18
3.11 GFORTRAN_CONVERT_UNIT—Set endianness for unformatted I/O 18
Part 1I: Language Reference 19
4 Fortran 2003 Statuscoviiiiiiiiiiinnnnn. 21
5 Extensions............ciiiuiiiiiiiiiiiiiiiiiiiiiiaa 23
5.1 Old-style kind specifications. 23
5.2 Old-style variable initialization 23
5.3 Extensions to namelist 23
5.4 X format descriptor without count field........... 24
5.5 Commas in FORMAT specificationsot 24
5.6 Missing period in FORMAT specifications.oo i, 24
5.7 T/O dtem LSS . ..o 24

iv

The GNU Fortran Compiler

5.8 BOZ literal constants 25
5.9 Real array indices 25
5.10 Unary Operators.ottt 25
5.11 Implicitly convert LOGICAL and INTEGER values............., 25
5.12 Hollerith constants support 25
513 Cray POINETS . oo oottt et et e 26
5.14 CONVERT specifiero e 27
5.15 OpenMP ..o 28

Intrinsic Procedures............, 29
6.1 Introduction to intrinsic procedures.o 29
6.2 ABORT — Abort the program 29
6.3 ABS — Absolute value 30
6.4 ACCESS — Checks file access modeso 30
6.5 ACHAR — Character in ASCII collating sequence.iiieeiina... 31
6.6 ACOS — Arccosine function. 31
6.7 ACOSH — Hyperbolic arccosine function 32
6.8 ADJUSTL — Left adjust a string. ... 32
6.9 ADJUSTR — Right adjust astring 33
6.10 AIMAG — Imaginary part of complex number 33
6.11 AINT — Truncate to a whole number 34
6.12 ALARM — Execute a routine after a given delay 34
6.13 ALL — All values in MASK along DIM are truecouveeeeiiein .. 35
6.14 ALLOCATED — Status of an allocatable entity 36
6.15 AND — Bitwise logical AND 36
6.16 ANINT — Nearest whole number, 37
6.17 ANY — Any value in MASK along DIM i trueooiiiieerinnan... 37
6.18 ASIN — Arcsine function. o 38
6.19 ASINH — Hyperbolic arcsine function 38
6.20 ASSOCIATED — Status of a pointer or pointer/target pair....................... 39
6.21 ATAN — Arctangent function 40
6.22 ATAN2 — Arctangent functiont 40
6.23 ATANH — Hyperbolic arctangent function................. 41
6.24 BESJO — Bessel function of the first kind of order O............................ 41
6.25 BESJ1 — Bessel function of the first kind of order 1............................ 42
6.26 BESJN — Bessel function of the first kind..............., 42
6.27 BESYO — Bessel function of the second kind of order O 43
6.28 BESY1 — Bessel function of the second kind of order 1 43
6.29 BESYN — Bessel function of the second kind 44
6.30 BIT_SIZE — Bit size inquiry function.......... 44
6.31 BTEST — Bit test function 44
6.32 CEILING — Integer ceiling function 45
6.33 CHAR — Character conversion function 45
6.34 CHDIR — Change working directory 46
6.35 CHMOD — Change access permissions of files........... 46
6.36 CMPLX — Complex conversion function............. 47
6.37 COMMAND_ARGUMENT_COUNT — Get number of command line arguments 48
6.38 CONJG — Complex conjugate function................. 48
6.39 COS — Cosine function. 49
6.40 COSH — Hyperbolic cosine function 49
6.41 COUNT — Count function 50
6.42 CPU_TIME — CPU elapsed time in secondscouiiiiieeiinna.... 50
6.43 CSHIFT — Circular shift elements of an array................... 51
6.44 CTIME — Convert a time into a string................. .. o1

6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57
6.58
6.59
6.60
6.61
6.62
6.63
6.64
6.65
6.66
6.67
6.68
6.69
6.70
6.71
6.72
6.73
6.74
6.75
6.76
6.77
6.78
6.79
6.80
6.81
6.82
6.83
6.84
6.85
6.86
6.87
6.88
6.89
6.90
6.91
6.92
6.93
6.94
6.95
6.96
6.97
6.98

DATE_AND_TIME — Date and time subroutine.................................. 52
DBLE — Double conversion function............. 53
DCMPLX — Double complex conversion function 53
DFLOAT — Double conversion function, 54
DIGITS — Significant digits function........... 54
DIM — Positive difference 55
DOT_PRODUCT — Dot product function 55
DPROD — Double product function 56
DREAL — Double real part function 56
DTIME — Execution time subroutine (or function).............................. 57
EOSHIFT — End-off shift elements of an array 58
EPSILON — Epsilon function 58
ERF — Error function. 59
ERFC — Error function............ . 59
ETIME — Execution time subroutine (or function).............................. 60
EXIT — Exit the program with status. 60
EXP — Exponential function........... 61
EXPONENT — Exponent function 61
FDATE — Get the current time as a string 62
FLOAT — Convert integer to default real........... 62
FGET — Read a single character in stream mode from stdin..................... 63
FGETC — Read a single character in stream mode 63
FLOOR — Integer floor function 64
FLUSH — Flush I/O unit(s) ... 65
FNUM — File number function 65
FPUT — Write a single character in stream mode to stdout 65
FPUTC — Write a single character in stream mode.............................. 66
FRACTION — Fractional part of the model representation 66
FREE — Frees mMemoryottt e e e e 67
FSEEK — Low level file positioning subroutine 67
FSTAT — Get file status. e 68
FTELL — Current stream positiono 68
GERROR — Get last system error messageoveee e, 69
GETARG — Get command line arguments 69
GET_COMMAND — Get the entire command line 70
GET_COMMAND_ARGUMENT — Get command line arguments....................... 70
GETCWD — Get current working directoryc i 71
GETENV — Get an environmental variable...................................... 71
GET_ENVIRONMENT_VARIABLE — Get an environmental variable.................. 72
GETGID — Group ID function e 72
GETLOG — Get login name 72
GETPID — Process ID function 73
GETUID — User ID function oo 73
GMTIME — Convert time to GMT info....... 74
HOSTNM — Get system host nameo e, 74
HUGE — Largest number of a kind 75
TACHAR — Code in ASCII collating sequenceooiiiiiinneen .. 75
TAND — Bitwise logical and 75
TARGC — Get the number of command line arguments.......................... 76
IBCLR — Clear Ditt e 76
IBITS — Bit extraction......... ... 77
IBSET — Set Dit ..ot 77
ICHAR — Character-to-integer conversion function 78
IDATE — Get current local time subroutine (day/month/year) 78

vi

The GNU Fortran Compiler

6.99 IEOR — Bitwise logical exclusive or.......... i 79
6.100 IERRNO — Get the last system error number. 79
6.101 INDEX — Position of a substring within a string 79
6.102 INT — Convert to integer tyPe oou et 80
6.103 INT2 — Convert to 16-bit integer typec.coo i, 80
6.104 INT8 — Convert to 64-bit integer typeovr e 81
6.105 IOR — Bitwise logical or...... 81
6.106 IRAND — Integer pseudo-random number.............. i, 82
6.107 ISATTY — Whether a unit is a terminal device.............. 82
6.108 TISHFT — Shift bits 82
6.109 ISHFTC — Shift bits circularly........... . 83
6.110 ITIME — Get current local time subroutine (hour/minutes/seconds)............ 83
6.111 KILL — Send a signal t0 & ProCesSttt 84
6.112 XIND — Kind of an entity 84
6.113 LBOUND — Lower dimension bounds of an array............................... 85
6.114 LEN — Length of a character entity i, 85
6.115 LEN_TRIM — Length of a character entity without trailing blank characters 85
6.116 LGE — Lexical greater than or equal 86
6.117 LGT — Lexical greater than 86
6.118 LINK — Create a hard link....... 87
6.119 LLE — Lexical less than orequal 87
6.120 LLT — Lexical less than 88
6.121 LNBLNK — Index of the last non-blank character in a string 88
6.122 LOC — Returns the address of a variable 88
6.123 LOG — Logarithm function........ 89
6.124 L0OG10 — Base 10 logarithm function.............. 89
6.125 LOGICAL — Convert to logical typeo 90
6.126 LONG — Convert to integer typet 90
6.127 LSHIFT — Left shift bits........... . 91
6.128 LSTAT — Get file status. 91
6.129 LTIME — Convert time to local time info............. 91
6.130 MALLOC — Allocate dynamic memoryooummiiineeineinna.. 92
6.131 MATMUL — matrix multiplication........ 93
6.132 MAX — Maximum value of an argument list.............. 93
6.133 MAXEXPONENT — Maximum exponent of areal kind............................ 94
6.134 MAXLOC — Location of the maximum value within an array 94
6.135 MAXVAL — Maximum value of an array i, 95
6.136 MCLOCK — Time function i 95
6.137 MCLOCK8 — Time function (64-bit)....... ..o, 96
6.138 MERGE — Merge variableso 96
6.139 MIN — Minimum value of an argument list 97
6.140 MINEXPONENT — Minimum exponent of areal kind 97
6.141 MINLOC — Location of the minimum value within an array 97
6.142 MINVAL — Minimum value of an array 98
6.143 MOD — Remainder function. e 99
6.144 MODULO — Modulo function 99
6.145 MOVE_ALLOC — Move allocation from one object to another................... 100
6.146 MVBITS — Move bits from one integer to another 101
6.147 NEAREST — Nearest representable number............ 101
6.148 NEW_LINE — New line character........ 102
6.149 NINT — Nearest whole number......... 102
6.150 NOT — Logical negation. 103
6.151 NULL — Function that returns an disassociated pointer....................... 103
6.152 OR — Bitwise logical OR.. 103

6.153
6.154
6.155
6.156
6.157
6.158
6.159
6.160
6.161
6.162
6.163
6.164
6.165
6.166
6.167
6.168
6.169
6.170
6.171
6.172
6.173
6.174
6.175
6.176
6.177
6.178
6.179
6.180
6.181
6.182
6.183
6.184
6.185
6.186
6.187
6.188
6.189
6.190
6.191
6.192
6.193
6.194
6.195
6.196
6.197
6.198
6.199
6.200
6.201
6.202
6.203
6.204
6.205
6.206

PACK — Pack an array into an array of rankone............................. 104
PERROR — Print system error messagec..oo ... 105
PRECISION — Decimal precision of areal kind............................... 105
PRESENT — Determine whether an optional dummy argument is specified. 105
PRODUCT — Product of array elements 106
RADIX — Base of a model number 106
RAN — Real pseudo-random number 107
RAND — Real pseudo-random number 107
RANDOM_NUMBER — Pseudo-random number............ 107
RANDOM_SEED — Initialize a pseudo-random number sequence................. 108
RANGE — Decimal exponent range of areal kind 109
REAL — Convert to real type 109
RENAME — Rename a file........ 110
REPEAT — Repeated string concatenation 110
RESHAPE — Function to reshape an arrayoiiiiii .. 110
RRSPACING — Reciprocal of the relative spacing 111
RSHIFT — Right shift bits ... 111
SCALE — Scale areal value....... 112
SCAN — Scan a string for the presence of a set of characters 112
SECNDS — Time function 113
SECOND — CPU time function........... ..., 113
SELECTED_INT_KIND — Choose integer kind 114
SELECTED_REAL_KIND — Choose real kind............... 114
SET_EXPONENT — Set the exponent of the model 115
SHAPE — Determine the shape of an array................... 115
SIGN — Sign copying function............. ..., 116
SIGNAL — Signal handling subroutine (or function) 116
SIN — Sine function.t e 117
SINH — Hyperbolic sine function i 117
SIZE — Determine the size of an array................. .. i 118
SLEEP — Sleep for the specified number of seconds........................... 118
SNGL — Convert double precision real to default real 119
SPACING — Smallest distance between two numbers of a given type 119
SPREAD — Add a dimension t0 am arTayoeeeruunnneeeeeeeennn. 119
SQRT — Square-root function. i 120
SRAND — Reinitialize the random number generator.......................... 120
STAT — Get file status. 121
SUM — Sum of array elements 122
SYMLNK — Create a symbolic link....... 122
SYSTEM — Execute a shell command 123
SYSTEM_CLOCK — Time function 123
TAN — Tangent function 124
TANH — Hyperbolic tangent function................ 124
TIME — Time function. e 125
TIME8 — Time function (64-bit).......... 125
TINY — Smallest positive number of areal kind 126
TRANSFER — Transfer bit patterns............ 126
TRANSPOSE — Transpose an array of rank two 127
TRIM — Remove trailing blank characters of a string......................... 127
TTYNAM — Get the name of a terminal device. 127
UBOUND — Upper dimension bounds of an array.............................. 128
UMASK — Set the file creation mask 128
UNLINK — Remove a file from the file system 129

UNPACK — Unpack an array of rank one into an array 129

viii The GNU Fortran Compiler

6.207 VERIFY — Scan a string for the absence of a set of characters................. 130
6.208 XOR — Bitwise logical exclusive OR....... 130
Contributingottt iiiiiiinnnnnn. 133
Contributors to GNU Fortran e 133
Projects . ..o 134
Proposed EXtensionsoo 134
Compiler exXtensions:t 134
Environment Options. 134
GNU GENERAL PUBLIC LICENSE 137
Preambleo o 137
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
.. 137
Appendix: How to Apply These Terms to Your New Programs 141
GNU Free Documentation License........................ 143
ADDENDUM: How to use this License for your documents.......................... 149
Funding Free Software................., 151
Option IndeX. ..ot ii it iienennn. 153

Keyword Index.........cooiiiiiiiiiiiiiiiiinnnnn. 155

Chapter 1: Introduction 1

1 Introduction

This manual documents the use of gfortran, the GNU Fortran compiler. You can find in this
manual how to invoke gfortran, as well as its features and incompatibilities.

The GNU Fortran compiler front end was designed initially as a free replacement for, or
alternative to, the unix £95 command; gfortran is the command you’ll use to invoke the
compiler.

1.1 About GNU Fortran

The GNU Fortran compiler is still in an early state of development. It can generate code for
most constructs and expressions, but much work remains to be done.

When the GNU Fortran compiler is finished, it will do everything you expect from any decent
compiler:

e Read a user’s program, stored in a file and containing instructions written in Fortran 77,
Fortran 90, Fortran 95 or Fortran 2003. This file contains source code.

e Translate the user’s program into instructions a computer can carry out more quickly than
it takes to translate the instructions in the first place. The result after compilation of a
program is machine code, code designed to be efficiently translated and processed by a
machine such as your computer. Humans usually aren’t as good writing machine code as
they are at writing Fortran (or C++, Ada, or Java), because is easy to make tiny mistakes
writing machine code.

e Provide the user with information about the reasons why the compiler is unable to create
a binary from the source code. Usually this will be the case if the source code is flawed.
When writing Fortran, it is easy to make big mistakes. The Fortran 90 requires that the
compiler can point out mistakes to the user. An incorrect usage of the language causes an
error message.

The compiler will also attempt to diagnose cases where the user’s program contains a correct
usage of the language, but instructs the computer to do something questionable. This kind
of diagnostics message is called a warning message.

e Provide optional information about the translation passes from the source code to machine
code. This can help a user of the compiler to find the cause of certain bugs which may
not be obvious in the source code, but may be more easily found at a lower level compiler
output. It also helps developers to find bugs in the compiler itself.

e Provide information in the generated machine code that can make it easier to find bugs in
the program (using a debugging tool, called a debugger, such as the GNU Debugger gdb).

e Locate and gather machine code already generated to perform actions requested by state-
ments in the user’s program. This machine code is organized into modules and is located
and linked to the user program.

The GNU Fortran compiler consists of several components:

e A version of the gcc command (which also might be installed as the system’s cc command)
that also understands and accepts Fortran source code. The gcc command is the driver
program for all the languages in the GNU Compiler Collection (GCC); With gcc, you can
compile the source code of any language for which a front end is available in GCC.

e The gfortran command itself, which also might be installed as the system’s £95 command.
gfortran is just another driver program, but specifically for the Fortran compiler only. The
difference with gcc is that gfortran will automatically link the correct libraries to your
program.

2 The GNU Fortran Compiler

e A collection of run-time libraries. These libraries contain the machine code needed to sup-
port capabilities of the Fortran language that are not directly provided by the machine code
generated by the gfortran compilation phase, such as intrinsic functions and subroutines,
and routines for interaction with files and the operating system.

e The Fortran compiler itself, (£951). This is the GNU Fortran parser and code generator,
linked to and interfaced with the GCC backend library. £951 “translates” the source code
to assembler code. You would typically not use this program directly; instead, the gcc or
gfortran driver programs will call it for you.

1.2 GNU Fortran and GCC

GNU Fortran is a part of GCC, the GNU Compiler Collection. GCC consists of a collection of
front ends for various languages, which translate the source code into a language-independent
form called GENERIC. This is then processed by a common middle end which provides opti-
mization, and then passed to one of a collection of back ends which generate code for different
computer architectures and operating systems.

Functionally, this is implemented with a driver program (gcc) which provides the command-
line interface for the compiler. It calls the relevant compiler front-end program (e.g., £951 for
Fortran) for each file in the source code, and then calls the assembler and linker as appropriate
to produce the compiled output. In a copy of GCC which has been compiled with Fortran
language support enabled, gcc will recognize files with ‘. £’, *.£90°, *.£95’, and ‘. £03’ extensions
as Fortran source code, and compile it accordingly. A gfortran driver program is also provided,
which is identical to gcc except that it automatically links the Fortran runtime libraries into
the compiled program.

This manual specifically documents the Fortran front end, which handles the programming
language’s syntax and semantics. The aspects of GCC which relate to the optimization passes
and the back-end code generation are documented in the GCC manual; see section “Intro-
duction” in Using the GNU Compiler Collection (GCC). The two manuals together provide a
complete reference for the GNU Fortran compiler.

1.3 GNU Fortran and G77

The GNU Fortran compiler is the successor to g77, the Fortran 77 front end included in GCC
prior to version 4. It is an entirely new program that has been designed to provide Fortran 95
support and extensibility for future Fortran language standards, as well as providing backwards
compatibility for Fortran 77 and nearly all of the GNU language extensions supported by g77.

1.4 Project Status

As soon as gfortran can parse all of the statements correctly, it will be in the
“larva” state. When we generate code, the “puppa” state. When gfortran is done,
we’ll see if it will be a beautiful butterfly, or just a big bug....

—Andy Vaught, April 2000

The start of the GNU Fortran 95 project was announced on the GCC homepage in March
18, 2000 (even though Andy had already been working on it for a while, of course).

The GNU Fortran compiler is able to compile nearly all standard-compliant Fortran 95,
Fortran 90, and Fortran 77 programs, including a number of standard and non-standard exten-
sions, and can be used on real-world programs. In particular, the supported extensions include
OpenMP, Cray-style pointers, and several Fortran 2003 features such as enumeration, stream
I/0O, and some of the enhancements to allocatable array support from TR 15581. However, it is
still under development and has a few remaining rough edges.

Chapter 1: Introduction 3

At present, the GNU Fortran compiler passes the NIST Fortran 77 Test Suite, and pro-
duces acceptable results on the LAPACK Test Suite. It also provides respectable perfor-
mance on the Polyhedron Fortran compiler benchmarks and the Livermore Fortran Ker-
nels test. It has been used to compile a number of large real-world programs, includ-
ing the HIRLAM weather-forecasting code and the Tonto quantum chemistry package; see
http://gcc.gnu.org/wiki/GfortranApps for an extended list.

Among other things, the GNU Fortran compiler is intended as a replacement for G77. At
this point, nearly all programs that could be compiled with G77 can be compiled with GNU
Fortran, although there are a few minor known regressions.

The primary work remaining to be done on GNU Fortran falls into three categories: bug
fixing (primarily regarding the treatment of invalid code and providing useful error messages),
improving the compiler optimizations and the performance of compiled code, and extending the
compiler to support future standards—in particular, Fortran 2003.

1.5 Standards

The GNU Fortran compiler implements ISO/IEC 1539:1997 (Fortran 95). As such, it can also
compile essentially all standard-compliant Fortran 90 and Fortran 77 programs. It also supports
the ISO/IEC TR-15581 enhancements to allocatable arrays, and the OpenMP Application Pro-
gram Interface v2.5 specification.

In the future, the GNU Fortran compiler may also support other standard variants of and
extensions to the Fortran language. These include ISO/IEC 1539-1:2004 (Fortran 2003).

http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html
http://www.netlib.org/lapack/faq.html#1.21
http://www.polyhedron.com/pb05.html
http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html
http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html
http://mysite.verizon.net/serveall/moene.pdf
http://www.theochem.uwa.edu.au/tonto/
http://gcc.gnu.org/wiki/GfortranApps
http://www.openmp.org/drupal/mp-documents/spec25.pdf
http://www.openmp.org/drupal/mp-documents/spec25.pdf

The GNU Fortran Compiler

Part I: Invoking GNU Fortran

The GNU Fortran Compiler

Chapter 2: GNU Fortran Command Options 7

2 GNU Fortran Command Options

The gfortran command supports all the options supported by the gcc command. Only options
specific to GNU Fortran are documented here.

See section “GCC Command Options” in Using the GNU Compiler Collection (GCC), for in-
formation on the non-Fortran-specific aspects of the gcc command (and, therefore, the gfortran
command).

All GCC and GNU Fortran options are accepted both by gfortran and by gcc (as well as
any other drivers built at the same time, such as g++), since adding GNU Fortran to the GCC
distribution enables acceptance of GNU Fortran options by all of the relevant drivers.

In some cases, options have positive and negative forms; the negative form of ‘~ffoo’” would
be ‘~fno-foo’. This manual documents only one of these two forms, whichever one is not the
default.

2.1 Option Summary

Here is a summary of all the options specific to GNU Fortran, grouped by type. Explanations
are in the following sections.

Fortran Language Options
See Section 2.2 [Options Controlling Fortran Dialect], page 8.

-fall-intrinsics -ffree-form -fno-fixed-form
-fdollar-ok -fimplicit-none -fmax-identifier-length
-std=std -fd-lines-as-code -fd-lines-as-comments
-ffixed-line-length-n -ffixed-line-length-none
-ffree-line-length-n -ffree-line-length-none
-fdefault-double-8 -fdefault-integer-8 -fdefault-real-8
-fcray-pointer -fopenmp -frange-check -fno-backslash

Error and Warning Options
See Section 2.3 [Options to Request or Suppress Errors and Warnings|, page 9.

-fmax-errors=n

-fsyntax-only -pedantic -pedantic-errors

-w -Wall -Waliasing -Wampersand -Wcharacter-truncation -Wconversion
-Wimplicit-interface -Wline-truncation -Wnonstd-intrinsics -Wsurprising
-Wno-tabs -Wunderflow -W

Debugging Options
See Section 2.4 [Options for Debugging Your Program or GCC], page 11.
-fdump-parse-tree -ffpe-trap=Ilist
Directory Options
See Section 2.5 [Options for Directory Search], page 11.
-Idir -Jdir -Mdir
Runtime Options
See Section 2.6 [Options for influencing runtime behavior], page 12.

-fconvert=conversion -frecord-marker=Iength
-fmax-subrecord-length=1ength

Code Generation Options
See Section 2.7 [Options for Code Generation Conventions|, page 12.

-fno-automatic -ff2c -fno-underscoring -fsecond-underscore
-fbounds-check -fmax-stack-var-size=n
-fpack-derived -frepack-arrays -fshort-enums

8 The GNU Fortran Compiler

2.2 Options Controlling Fortran Dialect
The following options control the details of the Fortran dialect accepted by the compiler:

—-ffree-form

-ffixed-form
Specify the layout used by the source file. The free form layout was introduced in
Fortran 90. Fixed form was traditionally used in older Fortran programs. When
neither option is specified, the source form is determined by the file extension.

-fall-intrinsics
Accept all of the intrinsic procedures provided in libgfortran without regard to the
setting of ‘-std’. In particular, this option can be quite useful with ‘-std=£95’.
Additionally, gfortran will ignore ‘-Wnonstd-intrinsics’.

-fd-lines-as-code

-fd-lines-as-comments
Enable special treatment for lines beginning with d or D in fixed form sources.
If the ‘-fd-lines-as-code’ option is given they are treated as if the first column
contained a blank. If the ‘~fd-1lines-as-comments’ option is given, they are treated
as comment lines.

-fdefault-double-8
Set the DOUBLE PRECISION type to an 8 byte wide type.

-fdefault-integer-8
Set the default integer and logical types to an 8 byte wide type. Do nothing if this
is already the default.

-fdefault-real-8
Set the default real type to an 8 byte wide type. Do nothing if this is already the
default.

-fdollar-ok
Allow ‘$’ as a valid character in a symbol name.

-fno-backslash
Change the interpretation of backslashes in string literals from “C-style” escape
characters to a single backslash character.

-ffixed-line-length-n
Set column after which characters are ignored in typical fixed-form lines in the source
file, and through which spaces are assumed (as if padded to that length) after the
ends of short fixed-form lines.

Popular values for n include 72 (the standard and the default), 80 (card image),
and 132 (corresponding to “extended-source” options in some popular compilers).
n may also be ‘none’, meaning that the entire line is meaningful and that continued
character constants never have implicit spaces appended to them to fill out the line.
‘~ffixed-line-length-0’ means the same thing as ‘~ffixed-line-length-none’.

-ffree-line-length-n
Set column after which characters are ignored in typical free-form lines in the
source file. The default value is 132. n may be ‘none’, meaning that the
entire line is meaningful. ‘-ffree-line-length-0’ means the same thing as
‘~ffree-line-length-none’.

-fmax-identifier-length=n

Specify the maximum allowed identifier length. Typical values are 31 (Fortran 95)
and 63 (Fortran 2003).

Chapter 2: GNU Fortran Command Options 9

-fimplicit-none
Specify that no implicit typing is allowed, unless overridden by explicit IMPLICIT
statements. This is the equivalent of adding implicit none to the start of every
procedure.

-fcray-pointer
Enable the Cray pointer extension, which provides C-like pointer functionality.

-fopenmp Enable the OpenMP extensions. This includes OpenMP !$omp directives in free
form and c$omp, *$omp and !'$omp directives in fixed form, '$ conditional compi-
lation sentinels in free form and c$, *$ and !$ sentinels in fixed form, and when
linking arranges for the OpenMP runtime library to be linked in.

-frange-check

Enable range checking on results of simplification of constant expressions during
compilation. For example, by default, GNU Fortran will give an overflow error at
compile time when simplifying a = EXP(1000). With ‘-fno-range-check’, no error
will be given and the variable a will be assigned the value +Infinity. Similarly,
DATA i/Z’FFFFFFFF’/ will result in an integer overflow on most systems, but with
‘-fno-range-check’ the value will “wrap around” and i will be initialized to —1
instead.

-std=std Specify the standard to which the program is expected to conform, which may be
one of ‘f95’, ‘£2003’, ‘gnu’, or ‘legacy’. The default value for std is ‘gnu’, which
specifies a superset of the Fortran 95 standard that includes all of the extensions
supported by GNU Fortran, although warnings will be given for obsolete extensions
not recommended for use in new code. The ‘legacy’ value is equivalent but without
the warnings for obsolete extensions, and may be useful for old non-standard pro-
grams. The ‘€95’ and ‘£2003’ values specify strict conformance to the Fortran 95
and Fortran 2003 standards, respectively; errors are given for all extensions beyond
the relevant language standard, and warnings are given for the Fortran 77 features
that are permitted but obsolescent in later standards.

2.3 Options to Request or Suppress Errors and Warnings

Errors are diagnostic messages that report that the GNU Fortran compiler cannot compile the
relevant piece of source code. The compiler will continue to process the program in an attempt
to report further errors to aid in debugging, but will not produce any compiled output.

Warnings are diagnostic messages that report constructions which are not inherently erro-
neous but which are risky or suggest there is likely to be a bug in the program. Unless ‘-Werror’
is specified, they do not prevent compilation of the program.

You can request many specific warnings with options beginning ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘~Wno-implicit’. This manual lists only one of the two forms, whichever is not the default.

These options control the amount and kinds of errors and warnings produced by GNU For-
tran:

-fmax-errors-n
Limits the maximum number of error messages to n, at which point GNU Fortran
bails out rather than attempting to continue processing the source code. If n is 0,
there is no limit on the number of error messages produced.

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

10

-pedantic

-pedantic-

The GNU Fortran Compiler

Issue warnings for uses of extensions to Fortran 95. ‘-pedantic’ also applies to
C-language constructs where they occur in GNU Fortran source files, such as use of
‘\e’ in a character constant within a directive like #include.

Valid Fortran 95 programs should compile properly with or without this option.
However, without this option, certain GNU extensions and traditional Fortran fea-
tures are supported as well. With this option, many of them are rejected.

Some users try to use ‘-pedantic’ to check programs for conformance. They soon
find that it does not do quite what they want—it finds some nonstandard practices,
but not all. However, improvements to GNU Fortran in this area are welcome.

This should be used in conjunction with ‘-std=£95’ or ‘-std=£2003’.

errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

-w Inhibit all warning messages.

-Wall Enables commonly used warning options pertaining to usage that we recommend
avoiding and that we believe are easy to avoid. This currently includes
‘-Waliasing’, ‘~Wampersand’, ‘~Wsurprising’, ‘~Wnonstd-intrinsics’,
‘~Wno-tabs’, and ‘-Wline-truncation’.

-Waliasing
Warn about possible aliasing of dummy arguments. Specifically, it warns if the
same actual argument is associated with a dummy argument with INTENT (IN) and
a dummy argument with INTENT (OUT) in a call with an explicit interface.

The following example will trigger the warning.
interface
subroutine bar(a,b)
integer, intent(in) :: a
integer, intent(out) :: b
end subroutine
end interface
integer :: a
call bar(a,a)
-Wampersand

Warn about missing ampersand in continued character constants. The warning is
given with ‘~Wampersand’, ‘-pedantic’, ‘-std=£f95’, and ‘-std=£2003". Note: With
no ampersand given in a continued character constant, GNU Fortran assumes con-
tinuation at the first non-comment, non-whitespace character after the ampersand
that initiated the continuation.

-Wcharacter-truncation

Warn when a character assignment will truncate the assigned string.

-Wconversion

Warn about implicit conversions between different types.

-Wimplicit-interface

Warn if a procedure is called without an explicit interface. Note this only checks
that an explicit interface is present. It does not check that the declared interfaces
are consistent across program units.

-Wnonstd-intrinsics

Warn if the user tries to use an intrinsic that does not belong to the standard the
user has chosen via the ‘-std’ option.

Chapter 2: GNU Fortran Command Options 11

-Wsurprising
Produce a warning when “suspicious” code constructs are encountered. While tech-
nically legal these usually indicate that an error has been made.

This currently produces a warning under the following circumstances:

e An INTEGER SELECT construct has a CASE that can never be matched as
its lower value is greater than its upper value.

e A LOGICAL SELECT construct has three CASE statements.

-Wtabs By default, tabs are accepted as whitespace, but tabs are not members of the Fortran
Character Set. ‘-Wno-tabs’ will cause a warning to be issued if a tab is encountered.
Note, ‘-Wno-tabs’ is active for ‘-pedantic’, ‘-std=£f95’, ‘-std=£2003’, and ‘-Wall’.

-Wunderflow
Produce a warning when numerical constant expressions are encountered, which
yield an UNDERFLOW during compilation.

-Werror Turns all warnings into errors.

-W Turns on “extra warnings” and, if optimization is specified via ‘-0’, the
‘~Wuninitialized’ option. (This might change in future versions of GNU Fortran.)

See section “Options to Request or Suppress Errors and Warnings” in Using the GNU Com-
piler Collection (GCC), for information on more options offered by the GBE shared by gfortran,
gcc and other GNU compilers.

Some of these have no effect when compiling programs written in Fortran.

2.4 Options for Debugging Your Program or GNU Fortran

GNU Fortran has various special options that are used for debugging either your program or
the GNU Fortran compiler.

-fdump-parse-tree
Output the internal parse tree before starting code generation. Only really useful
for debugging the GNU Fortran compiler itself.

-ffpe-trap=1list

Specify a list of IEEE exceptions when a Floating Point Exception (FPE) should be
raised. On most systems, this will result in a SIGFPE signal being sent and the pro-
gram being interrupted, producing a core file useful for debugging. list is a (possibly
empty) comma-separated list of the following IEEE exceptions: ‘invalid’ (invalid
floating point operation, such as SQRT(-1.0)), ‘zero’ (division by zero), ‘overflow’
(overflow in a floating point operation), ‘underflow’ (underflow in a floating point
operation), ‘precision’ (loss of precision during operation) and ‘denormal’ (oper-
ation produced a denormal value).

See section “Options for Debugging Your Program or GCC” in Using the GNU Compiler
Collection (GCC), for more information on debugging options.

2.5 Options for Directory Search
These options affect how GNU Fortran searches for files specified by the INCLUDE directive and

where it searches for previously compiled modules.
It also affects the search paths used by cpp when used to preprocess Fortran source.

-Idir These affect interpretation of the INCLUDE directive (as well as of the #include
directive of the cpp preprocessor).

12 The GNU Fortran Compiler

Also note that the general behavior of ‘=1’ and INCLUDE is pretty much the same as of
‘-1’ with #include in the cpp preprocessor, with regard to looking for ‘header.gcc’
files and other such things.

¢

This path is also used to search for
are required by a USE statement.

.mod’ files when previously compiled modules

See section “Options for Directory Search” in Using the GNU Compiler Collection
(GCC), for information on the ‘-I’ option.

-Mdir

-Jdir This option specifies where to put ‘.mod’ files for compiled modules. It is also added
to the list of directories to searched by an USE statement.

The default is the current directory.

‘~=J’ is an alias for ‘-M’ to avoid conflicts with existing GCC options.

2.6 Influencing runtime behavior
These options affect the runtime behavior of programs compiled with GNU Fortran.

-fconvert=conversion
Specify the representation of data for unformatted files. Valid values for con-
version are: ‘native’, the default; ‘swap’, swap between big- and little-endian;
‘big-endian’, use big-endian representation for unformatted files; ‘little-endian’,
use little-endian representation for unformatted files.

This option has an effect only when used in the main program. The CONVERT specifier
and the GFORTRAN_CONVERT_UNIT environment variable override the default
specified by ~fconvert’.

-frecord-marker=length
Specify the length of record markers for unformatted files. Valid values for length
are 4 and 8. Default is 4. This is different from previous versions of gfortran, which
specified a default record marker length of 8 on most systems. If you want to read
or write files compatible with earlier versions of gfortran, use ‘-frecord-marker=8’.

-fmax-subrecord-length=Iength
Specify the maximum length for a subrecord. The maximum permitted value for
length is 2147483639, which is also the default. Only really useful for use by the
gfortran testsuite.

2.7 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code generation.

Most of them have both positive and negative forms; the negative form of ‘~ffoo’ would be
‘~fno-foo’. In the table below, only one of the forms is listed—the one which is not the default.
You can figure out the other form by either removing ‘no-’ or adding it.

-fno-automatic
Treat each program unit as if the SAVE statement was specified for every local
variable and array referenced in it. Does not affect common blocks. (Some Fortran
compilers provide this option under the name ‘-static’.)

-ff2c Generate code designed to be compatible with code generated by g77 and f2c.

The calling conventions used by g77 (originally implemented in £2c) require func-
tions that return type default REAL to actually return the C type double, and
functions that return type COMPLEX to return the values via an extra argument in

Chapter 2: GNU Fortran Command Options 13

the calling sequence that points to where to store the return value. Under the de-
fault GNU calling conventions, such functions simply return their results as they
would in GNU C—default REAL functions return the C type float, and COMPLEX
functions return the GNU C type complex. Additionally, this option implies the
‘~fsecond-underscore’ option, unless ‘~fno-second-underscore’ is explicitly re-
quested.

This does not affect the generation of code that interfaces with the libgfortran
library.

Caution: It is not a good idea to mix Fortran code compiled with ‘-ff2¢’ with
code compiled with the default ‘-fno-f2c¢’ calling conventions as, calling COMPLEX
or default REAL functions between program parts which were compiled with different
calling conventions will break at execution time.

Caution: This will break code which passes intrinsic functions of type default REAL
or COMPLEX as actual arguments, as the library implementations use the ‘~fno-f2c’
calling conventions.

-fno-underscoring
Do not transform names of entities specified in the Fortran source file by appending
underscores to them.

With ‘~funderscoring’ in effect, GNU Fortran appends one underscore to external
names with no underscores. This is done to ensure compatibility with code produced
by many UNIX Fortran compilers.

Caution: The default behavior of GNU Fortran is incompatible with £2c and g77,
please use the ‘-ff2c’ option if you want object files compiled with GNU Fortran
to be compatible with object code created with these tools.

Use of ‘~fno-underscoring’ is not recommended unless you are experimenting with
issues such as integration of GNU Fortran into existing system environments (vis-
a-vis existing libraries, tools, and so on).

For example, with ‘-funderscoring’, and assuming other defaults like
‘~-fcase-lower’ and that j() and max_count() are external functions while
my_var and lvar are local variables, a statement like

I =J() + MAX_COUNT (MY_VAR, LVAR)
is implemented as something akin to:

i = j_(0O + max_count__(&my_var &lvar) ;

——>

With ‘-fno-underscoring’, the same statement is implemented as:

i = j() + max_count(&my_var, &lvar);
Use of ‘-fno-underscoring’ allows direct specification of user-defined names while
debugging and when interfacing GNU Fortran code with other languages.

Note that just because the names match does not mean that the interface imple-
mented by GNU Fortran for an external name matches the interface implemented by
some other language for that same name. That is, getting code produced by GNU
Fortran to link to code produced by some other compiler using this or any other
method can be only a small part of the overall solution—getting the code generated
by both compilers to agree on issues other than naming can require significant effort,
and, unlike naming disagreements, linkers normally cannot detect disagreements in
these other areas.

Also, note that with ‘~fno-underscoring’, the lack of appended underscores intro-
duces the very real possibility that a user-defined external name will conflict with a
name in a system library, which could make finding unresolved-reference bugs quite
difficult in some cases—they might occur at program run time, and show up only
as buggy behavior at run time.

14 The GNU Fortran Compiler

In future versions of GNU Fortran we hope to improve naming and linking issues so
that debugging always involves using the names as they appear in the source, even
if the names as seen by the linker are mangled to prevent accidental linking between
procedures with incompatible interfaces.

-fsecond-underscore
By default, GNU Fortran appends an underscore to external names. If this option
is used GNU Fortran appends two underscores to names with underscores and one
underscore to external names with no underscores. GNU Fortran also appends
two underscores to internal names with underscores to avoid naming collisions with
external names.

This option has no effect if ‘~fno-underscoring’ is in effect. It is implied by the
‘~ff2c’ option.

Otherwise, with this option, an external name such as MAX_COUNT is implemented as
a reference to the link-time external symbol max_count__, instead of max_count_.
This is required for compatibility with g77 and f2c, and is implied by use of the
‘~=ff2c¢’ option.

-fbounds-check
Enable generation of run-time checks for array subscripts and against the declared
minimum and maximum values. It also checks array indices for assumed and deferred
shape arrays against the actual allocated bounds.

In the future this may also include other forms of checking, e.g., checking substring
references.

-fmax-stack-var-size=n
This option specifies the size in bytes of the largest array that will be put on the
stack.

This option currently only affects local arrays declared with constant bounds, and
may not apply to all character variables. Future versions of GNU Fortran may
improve this behavior.

The default value for n is 32768.

-fpack-derived
This option tells GNU Fortran to pack derived type members as closely as possible.
Code compiled with this option is likely to be incompatible with code compiled
without this option, and may execute slower.

-frepack-arrays
In some circumstances GNU Fortran may pass assumed shape array sections via a
descriptor describing a noncontiguous area of memory. This option adds code to
the function prologue to repack the data into a contiguous block at runtime.

This should result in faster accesses to the array. However it can introduce significant
overhead to the function call, especially when the passed data is noncontiguous.

—-fshort-enums
This option is provided for interoperability with C code that was compiled with the
‘~fshort-enums’ option. It will make GNU Fortran choose the smallest INTEGER
kind a given enumerator set will fit in, and give all its enumerators this kind.

See section “Options for Code Generation Conventions” in Using the GNU Compiler Collec-
tion (GCC), for information on more options offered by the GBE shared by gfortran, gcc, and
other GNU compilers.

Chapter 2: GNU Fortran Command Options 15

2.8 Environment Variables Affecting gfortran
The gfortran compiler currently does not make use of any environment variables to control its
operation above and beyond those that affect the operation of gcc.

See section “Environment Variables Affecting GCC” in Using the GNU Compiler Collection
(GCC), for information on environment variables.

See Chapter 3 [Runtime], page 17, for environment variables that affect the run-time behavior
of programs compiled with GNU Fortran.

16

The GNU Fortran Compiler

Chapter 3: Runtime: Influencing runtime behavior with environment variables 17

3 Runtime: Influencing runtime behavior with
environment variables

The behavior of the gfortran can be influenced by environment variables.

Malformed environment variables are silently ignored.

3.1 GFORTRAN_STDIN_UNIT—Unit number for standard input

This environment variable can be used to select the unit number preconnected to standard input.
This must be a positive integer. The default value is 5.

3.2 GFORTRAN_STDOUT_UNIT—Unit number for standard output

This environment variable can be used to select the unit number preconnected to standard
output. This must be a positive integer. The default value is 6.

3.3 GFORTRAN_STDERR_UNIT—Unit number for standard error

This environment variable can be used to select the unit number preconnected to standard error.
This must be a positive integer. The default value is 0.

3.4 GFORTRAN_USE_STDERR—Send library output to standard error

This environment variable controls where library output is sent. If the first letter is ‘y’, ‘Y’ or
‘17, standard error is used. If the first letter is ‘n’, ‘N’ or ‘0’, standard output is used.

3.5 GFORTRAN_TMPDIR—Directory for scratch files

This environment variable controls where scratch files are created. If this environment variable
is missing, GNU Fortran searches for the environment variable TMP. If this is also missing, the
default is ‘/tmp’.

3.6 GFORTRAN_UNBUFFERED_ALL—Don’t buffer output

This environment variable controls whether all output is unbuffered. If the first letter is ‘y’, ‘Y’
or ‘1’; all output is unbuffered. This will slow down large writes. If the first letter is ‘n’, ‘N’ or
‘07, output is buffered. This is the default.

3.7 GFORTRAN_SHOW_LOCUS—Show location for runtime errors

If the first letter is ‘y’, ‘Y’ or ‘1’, filename and line numbers for runtime errors are printed. If
the first letter is ‘n’, ‘N’ or ‘0’, don’t print filename and line numbers for runtime errors. The
default is to print the location.

3.8 GFORTRAN_OPTIONAL_PLUS—Print leading + where permitted

If the first letter is ‘y’, ‘Y’ or ‘1’, a plus sign is printed where permitted by the Fortran standard.
If the first letter is ‘n’, ‘N’ or ‘0’, a plus sign is not printed in most cases. Default is not to print
plus signs.

3.9 GFORTRAN_DEFAULT_RECL—Default record length for new files

This environment variable specifies the default record length, in bytes, for files which are opened
without a RECL tag in the OPEN statement. This must be a positive integer. The default value
is 1073741824 bytes (1 GB).

18 The GNU Fortran Compiler

3.10 GFORTRAN_LIST_SEPARATOR—Separator for list output

This environment variable specifies the separator when writing list-directed output. It may
contain any number of spaces and at most one comma. If you specify this on the command line,
be sure to quote spaces, as in

$ GFORTRAN_LIST_SEPARATOR=’ , ’ ./a.out

when a.out is the compiled Fortran program that you want to run. Default is a single space.

3.11 GFORTRAN_CONVERT_UNIT—Set endianness for unformatted
I/0

By setting the GFORTRAN_CONVERT_UNIT variable, it is possible to change the representation of
data for unformatted files. The syntax for the GFORTRAN_CONVERT_UNIT variable is:

GFORTRAN_CONVERT_UNIT: mode | mode ’;’ exception | exception ;
mode: ’native’ | ’swap’ | ’big_endian’ | ’little_endian’ ;
exception: mode ’:’ unit_list | unit_list ;

unit_list: unit_spec | unit_list unit_spec ;

unit_spec: INTEGER | INTEGER ’-’ INTEGER ;

The variable consists of an optional default mode, followed by a list of optional exceptions,
which are separated by semicolons from the preceding default and each other. Each exception
consists of a format and a comma-separated list of units. Valid values for the modes are the
same as for the CONVERT specifier:

NATIVE Use the native format. This is the default.

SWAP Swap between little- and big-endian.

LITTLE_ENDIAN Use the little-endian format for unformatted files.
BIG_ENDIAN Use the big-endian format for unformatted files.

A missing mode for an exception is taken to mean BIG_ENDIAN. Examples of values for
GFORTRAN_CONVERT_UNIT are:

’big_endian’ Do all unformatted I/O in big_endian mode.

’little_endian;native:10-20,25’ Do all unformatted I/O in little_endian mode, except
for units 10 to 20 and 25, which are in native format.

710-20’ Units 10 to 20 are big-endian, the rest is native.

Setting the environment variables should be done on the command line or via the export
command for sh-compatible shells and via setenv for csh-compatible shells.
Example for sh:

$ gfortran foo.f90
$ GFORTRAN_CONVERT_UNIT=’big_endian;native:10-20’ ./a.out

Example code for csh:
% gfortran foo.f90
% setenv GFORTRAN_CONVERT_UNIT ’big_endian;native:10-20’
% ./a.out
Using anything but the native representation for unformatted data carries a significant speed
overhead. If speed in this area matters to you, it is best if you use this only for data that needs
to be portable.

See Section 5.14 [CONVERT specifier|, page 27, for an alternative way to specify the data
representation for unformatted files. See Section 2.6 [Runtime Options|, page 12, for setting a de-
fault data representation for the whole program. The CONVERT specifier overrides the ‘~fconvert’
compile options.

Note that the values specified via the GFORTRAN_CONVERT_UNIT environment variable
will override the CONVERT specifier in the open statement. This is to give control over data
formats to users who do not have the source code of their program available.

Part 1I: Language Reference

19

20

The GNU Fortran Compiler

Chapter 4: Fortran 2003 Status 21

4 Fortran 2003 Status

Although GNU Fortran focuses on implementing the Fortran 95 standard for the time being, a
few Fortran 2003 features are currently available.

e Intrinsics command_argument_count, get_command, get_command_argument,
get_environment_variable, and move_alloc.

e Array constructors using square brackets. That is, [...] rather than (/.../).
e FLUSH statement.
e I0OMSG= specifier for I/O statements.

e Support for the declaration of enumeration constants via the ENUM and ENUMERATOR state-
ments. Interoperability with gcc is guaranteed also for the case where the —fshort-enums
command line option is given.

e TR 15581:
e ALLOCATABLE dummy arguments.
e ALLOCATABLE function results
e ALLOCATABLE components of derived types

e The OPEN statement supports the ACCESS=’STREAM’ specifier, allowing I/O without any
record structure.

22

The GNU Fortran Compiler

Chapter 5: Extensions 23

5 Extensions

GNU Fortran implements a number of extensions over standard Fortran. This chapter contains
information on their syntax and meaning. There are currently two categories of GNU Fortran
extensions, those that provide functionality beyond that provided by any standard, and those
that are supported by GNU Fortran purely for backward compatibility with legacy compilers.
By default, ‘-std=gnu’ allows the compiler to accept both types of extensions, but to warn
about the use of the latter. Specifying either ‘~std=f95’ or ‘-std=£2003’ disables both types of
extensions, and ‘-std=legacy’ allows both without warning.

5.1 Old-style kind specifications

GNU Fortran allows old-style kind specifications in declarations. These look like:

TYPESPEC*size x,y,z
where TYPESPEC is a basic type (INTEGER, REAL, etc.), and where size is a byte count corre-
sponding to the storage size of a valid kind for that type. (For COMPLEX variables, size is the

total size of the real and imaginary parts.) The statement then declares x, y and z to be of type
TYPESPEC with the appropriate kind. This is equivalent to the standard-conforming declaration

TYPESPEC(k) x,y,z
where k is equal to size for most types, but is equal to size/2 for the COMPLEX type.

5.2 Old-style variable initialization

GNU Fortran allows old-style initialization of variables of the form:
INTEGER i/1/,j/2/
REAL x(2,2) /3%0.,1./

The syntax for the initializers is as for the DATA statement, but unlike in a DATA statement, an
initializer only applies to the variable immediately preceding the initialization. In other words,
something like INTEGER I,J/2,3/ is not valid. This style of initialization is only allowed in
declarations without double colons (: :); the double colons were introduced in Fortran 90, which
also introduced a standard syntax for initializing variables in type declarations.

Examples of standard-conforming code equivalent to the above example are:

! Fortran 90
INTEGER :: i =
REAL :: x(2,2)
! Fortran 77
INTEGER i, j
REAL x(2,2)
DATA i/1/, j/2/, x/3%0.,1./

Note that variables which are explicitly initialized in declarations or in DATA statements
automatically acquire the SAVE attribute.

1, j =2
= RESHAPE((/0.,0.,0.,1./),SHAPE(x))

5.3 Extensions to namelist

GNU Fortran fully supports the Fortran 95 standard for namelist I/O including array qualifiers,
substrings and fully qualified derived types. The output from a namelist write is compatible
with namelist read. The output has all names in upper case and indentation to column 1 after
the namelist name. Two extensions are permitted:

Old-style use of ‘¢’ instead of ‘&’

$MYNML

X(:)%Y(2) = 1.0 2.0 3.0
CH(1:4) = "abcd"

$END

It should be noted that the default terminator is ¢/’ rather than ‘&END’.

Querying of the namelist when inputting from stdin. After at least one space, entering ‘7’
sends to stdout the namelist name and the names of the variables in the namelist:

24 The GNU Fortran Compiler

?

&mynml
X
xhy
ch
&end

Entering ‘=7’ outputs the namelist to stdout, as if WRITE (* ,NML = mynml) had been called:

=7

&MYNML
X(1)%Y=0.000000 , 1.000000 , 0.000000 s
X(2)%Y= 0.000000 , 2.000000 , 0.000000 s
X(3)%Y= 0.000000 , 3.000000 , 0.000000 s
CH=abcd, /

To aid this dialog, when input is from stdin, errors send their messages to stderr and execution
continues, even if IOSTAT is set.
PRINT namelist is permitted. This causes an error if ‘-std=£95’ is used.

PROGRAM test_print
REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/)
NAMELIST /mynml/ x
PRINT mynml

END PROGRAM test_print

Expanded namelist reads are permitted. This causes an error if ‘-std=f95’ is used. In
the following example, the first element of the array will be given the value 0.00 and the two
succeeding elements will be given the values 1.00 and 2.00.

&MYNML
X(1,1) = 0.00 , 1.00 , 2.00
/

5.4 X format descriptor without count field

To support legacy codes, GNU Fortran permits the count field of the X edit descriptor in FORMAT
statements to be omitted. When omitted, the count is implicitly assumed to be one.

PRINT 10, 2, 3
10 FORMAT (I1, X, I1)

5.5 Commas in FORMAT specifications

To support legacy codes, GNU Fortran allows the comma separator to be omitted immediately
before and after character string edit descriptors in FORMAT statements.

PRINT 10, 2, 3
10 FORMAT (°F00="I1’ BAR=’I2)

5.6 Missing period in FORMAT specifications

To support legacy codes, GNU Fortran allows missing periods in format specifications if and
only if ‘-std=legacy’ is given on the command line. This is considered non-conforming code
and is discouraged.

REAL :: value
READ(*,10) value
10 FORMAT (°F4’)

5.7 I/0 item lists

To support legacy codes, GNU Fortran allows the input item list of the READ statement, and
the output item lists of the WRITE and PRINT statements, to start with a comma.

Chapter 5: Extensions 25

5.8 BOZ literal constants

As an extension, GNU Fortran allows hexadecimal BOZ literal constants to be specified using
the X prefix, in addition to the standard Z prefix. BOZ literal constants can also be specified
by adding a suffix to the string. For example, Z>ABC’> and ’ABC’Z are equivalent.

The Fortran standard restricts the appearance of a BOZ literal constant to the DATA state-
ment, and it is expected to be assigned to an INTEGER variable. GNU Fortran permits a BOZ
literal to appear in any initialization expression as well as assignment statements.

Attempts to use a BOZ literal constant to do a bitwise initialization of a variable can lead
to confusion. A BOZ literal constant is converted to an INTEGER value with the kind type with
the largest decimal representation, and this value is then converted numerically to the type and
kind of the variable in question. Thus, one should not expect a bitwise copy of the BOZ literal
constant to be assigned to a REAL variable.

Similarly, initializing an INTEGER variable with a statement such as DATA i/Z’FFFFFFFF’/
will produce an integer overflow rather than the desired result of —1 when i is a 32-bit integer
on a system that supports 64-bit integers. The ‘~fno-range-check’ option can be used as a
workaround for legacy code that initializes integers in this manner.

5.9 Real array indices

As an extension, GNU Fortran allows the use of REAL expressions or variables as array indices.

5.10 Unary operators

As an extension, GNU Fortran allows unary plus and unary minus operators to appear as the
second operand of binary arithmetic operators without the need for parenthesis.
X=Y* -Z

5.11 Implicitly convert LOGICAL and INTEGER values

As an extension for backwards compatibility with other compilers, GNU Fortran allows the
implicit conversion of LOGICAL values to INTEGER values and vice versa. When converting from
a LOGICAL to an INTEGER, .FALSE. is interpreted as zero, and .TRUE. is interpreted as one.
When converting from INTEGER to LOGICAL, the value zero is interpreted as .FALSE. and any
nonzero value is interpreted as .TRUE..

INTEGER :: i =1
IF (i) PRINT *, ’True’

5.12 Hollerith constants support

GNU Fortran supports Hollerith constants in assignments, function arguments, and DATA and
ASSIGN statements. A Hollerith constant is written as a string of characters preceded by an
integer constant indicating the character count, and the letter H or h, and stored in bytewise
fashion in a numeric (INTEGER, REAL, or complex) or LOGICAL variable. The constant will be
padded or truncated to fit the size of the variable in which it is stored.

Examples of valid uses of Hollerith constants:

complex*16 x(2)

data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
x(1) = 16HABCDEFGHIJKLMNOP

call foo (4h abc)

Invalid Hollerith constants examples:

integer*4 a
a 8H12345678 ! Valid, but the Hollerith constant will be truncated.
a OH ! At least one character is needed.

26 The GNU Fortran Compiler

In general, Hollerith constants were used to provide a rudimentary facility for handling char-
acter strings in early Fortran compilers, prior to the introduction of CHARACTER variables in
Fortran 77; in those cases, the standard-compliant equivalent is to convert the program to use
proper character strings. On occasion, there may be a case where the intent is specifically to
initialize a numeric variable with a given byte sequence. In these cases, the same result can be
obtained by using the TRANSFER statement, as in this example.

INTEGER(KIND=4) :: a
a = TRANSFER ("abcd", a) ! equivalent to: a = 4Habcd

5.13 Cray pointers

Cray pointers are part of a non-standard extension that provides a C-like pointer in Fortran.
This is accomplished through a pair of variables: an integer "pointer" that holds a memory
address, and a "pointee" that is used to dereference the pointer.
Pointer/pointee pairs are declared in statements of the form:
pointer (<pointer> , <pointee>)
or,
pointer (<pointerl> , <pointeel>), (<pointer2> , <pointee2>), ...

The pointer is an integer that is intended to hold a memory address. The pointee may be an
array or scalar. A pointee can be an assumed size array—that is, the last dimension may be left
unspecified by using a * in place of a value—but a pointee cannot be an assumed shape array.
No space is allocated for the pointee.

The pointee may have its type declared before or after the pointer statement, and its array
specification (if any) may be declared before, during, or after the pointer statement. The pointer
may be declared as an integer prior to the pointer statement. However, some machines have
default integer sizes that are different than the size of a pointer, and so the following code is not
portable:

integer ipt
pointer (ipt, iarr)

If a pointer is declared with a kind that is too small, the compiler will issue a warning; the
resulting binary will probably not work correctly, because the memory addresses stored in the
pointers may be truncated. It is safer to omit the first line of the above example; if explicit
declaration of ipt’s type is omitted, then the compiler will ensure that ipt is an integer variable
large enough to hold a pointer.

Pointer arithmetic is valid with Cray pointers, but it is not the same as C pointer arithmetic.
Cray pointers are just ordinary integers, so the user is responsible for determining how many
bytes to add to a pointer in order to increment it. Consider the following example:

real target(10)

real pointee(10)
pointer (ipt, pointee)
ipt = loc (target)

ipt = ipt + 1

The last statement does not set ipt to the address of target (1), as it would in C pointer
arithmetic. Adding 1 to ipt just adds one byte to the address stored in ipt.

Any expression involving the pointee will be translated to use the value stored in the pointer
as the base address.

To get the address of elements, this extension provides an intrinsic function LOC(). The
LOC() function is equivalent to the & operator in C, except the address is cast to an integer type:
real ar(10)
pointer(ipt, arpte(10))
real arpte
ipt = loc(ar) ! Makes arpte is an alias for ar
arpte(1) = 1.0 ! Sets ar(1) to 1.0

The pointer can also be set by a call to the MALLOC intrinsic (see Section 6.130 [MALLOC],
page 92).
Cray pointees often are used to alias an existing variable. For example:

Chapter 5: Extensions 27

integer target(10)
integer iarr(10)
pointer (ipt, iarr)
ipt = loc(target)

As long as ipt remains unchanged, iarr is now an alias for target. The optimizer, however,
will not detect this aliasing, so it is unsafe to use iarr and target simultaneously. Using a
pointee in any way that violates the Fortran aliasing rules or assumptions is illegal. It is the
user’s responsibility to avoid doing this; the compiler works under the assumption that no such
aliasing occurs.

Cray pointers will work correctly when there is no aliasing (i.e., when they are used to access
a dynamically allocated block of memory), and also in any routine where a pointee is used, but
any variable with which it shares storage is not used. Code that violates these rules may not run
as the user intends. This is not a bug in the optimizer; any code that violates the aliasing rules
is illegal. (Note that this is not unique to GNU Fortran; any Fortran compiler that supports
Cray pointers will “incorrectly” optimize code with illegal aliasing.)

There are a number of restrictions on the attributes that can be applied to Cray pointers
and pointees. Pointees may not have the ALLOCATABLE, INTENT, OPTIONAL, DUMMY, TARGET,
INTRINSIC, or POINTER attributes. Pointers may not have the DIMENSION, POINTER, TARGET,
ALLOCATABLE, EXTERNAL, or INTRINSIC attributes. Pointees may not occur in more than one
pointer statement. A pointee cannot be a pointer. Pointees cannot occur in equivalence, com-
mon, or data statements.

A Cray pointer may also point to a function or a subroutine. For example, the following
excerpt is valid:
implicit none
external sub
pointer (subptr,subpte)
external subpte
subptr = loc(sub)
call subpte()

[...]
subroutine sub
[...]

end subroutine sub

A pointer may be modified during the course of a program, and this will change the location
to which the pointee refers. However, when pointees are passed as arguments, they are treated
as ordinary variables in the invoked function. Subsequent changes to the pointer will not change
the base address of the array that was passed.

5.14 CONVERT specifier

GNU Fortran allows the conversion of unformatted data between little- and big-endian rep-
resentation to facilitate moving of data between different systems. The conversion can be
indicated with the CONVERT specifier on the OPEN statement. See Section 3.11 [GFOR-
TRAN_CONVERT_UNIT], page 18, for an alternative way of specifying the data format via an
environment variable.

Valid values for CONVERT are:
CONVERT=’NATIVE’ Use the native format. This is the default.
CONVERT=’SWAP’> Swap between little- and big-endian.
CONVERT=’LITTLE_ENDIAN’ Use the little-endian representation for unformatted files.
CONVERT=’BIG_ENDIAN’ Use the big-endian representation for unformatted files.
Using the option could look like this:

open(file=’big.dat’,form="unformatted’,access=’sequential’, &
convert=’big_endian’)

28 The GNU Fortran Compiler

The value of the conversion can be queried by using INQUIRE(CONVERT=ch). The values
returned are >BIG_ENDIAN’ and ’LITTLE_ENDIAN’.

CONVERT works between big- and little-endian for INTEGER values of all supported kinds and
for REAL on IEEE systems of kinds 4 and 8. Conversion between different “extended double”
types on different architectures such as m68k and x86_64, which GNU Fortran supports as
REAL (KIND=10) and REAL(KIND=16), will probably not work.

Note that the values specified via the GFORTRAN_CONVERT_UNIT environment variable
will override the CONVERT specifier in the open statement. This is to give control over data
formats to users who do not have the source code of their program available.

Using anything but the native representation for unformatted data carries a significant speed
overhead. If speed in this area matters to you, it is best if you use this only for data that needs
to be portable.

5.15 OpenMP

GNU Fortran attempts to be OpenMP Application Program Interface v2.5 compatible when
invoked with the ‘~fopenmp’ option. GNU Fortran then generates parallelized code according
to the OpenMP directives used in the source. The OpenMP Fortran runtime library routines
are provided both in a form of a Fortran 90 module named omp_lib and in a form of a Fortran
include file named ‘omp_lib.h’.

For details refer to the actual OpenMP Application Program Interface v2.5 specification.

http://www.openmp.org/drupal/mp-documents/spec25.pdf

Chapter 6: Intrinsic Procedures 29

6 Intrinsic Procedures

6.1 Introduction to intrinsic procedures

The intrinsic procedures provided by GNU Fortran include all of the intrinsic procedures required
by the Fortran 95 standard, a set of intrinsic procedures for backwards compatibility with G77,
and a small selection of intrinsic procedures from the Fortran 2003 standard. Any conflict
between a description here and a description in either the Fortran 95 standard or the Fortran
2003 standard is unintentional, and the standard(s) should be considered authoritative.

The enumeration of the KIND type parameter is processor defined in the Fortran 95 standard.
GNU Fortran defines the default integer type and default real type by INTEGER(KIND=4) and
REAL (KIND=4), respectively. The standard mandates that both data types shall have another
kind, which have more precision. On typical target architectures supported by gfortran, this
kind type parameter is KIND=8. Hence, REAL(KIND=8) and DOUBLE PRECISION are equivalent.
In the description of generic intrinsic procedures, the kind type parameter will be specified
by KIND=#, and in the description of specific names for an intrinsic procedure the kind type
parameter will be explicitly given (e.g., REAL(KIND=4) or REAL(KIND=8)). Finally, for brevity
the optional KIND= syntax will be omitted.

Many of the intrinsic procedures take one or more optional arguments. This document follows
the convention used in the Fortran 95 standard, and denotes such arguments by square brackets.

GNU Fortran offers the ‘-std=£95" and ‘-std=gnu’ options, which can be used to restrict
the set of intrinsic procedures to a given standard. By default, gfortran sets the ‘-std=gnu’
option, and so all intrinsic procedures described here are accepted. There is one caveat. For a
select group of intrinsic procedures, g77 implemented both a function and a subroutine. Both
classes have been implemented in gfortran for backwards compatibility with g77. It is noted
here that these functions and subroutines cannot be intermixed in a given subprogram. In the
descriptions that follow, the applicable standard for each intrinsic procedure is noted.

6.2 ABORT — Abort the program

Description:
ABORT causes immediate termination of the program. On operating systems that
support a core dump, ABORT will produce a core dump, which is suitable for debug-
ging purposes.

Standard: GNU extension
Class: Non-elemental subroutine
Syntax: CALL ABORT

Return value:
Does not return.

Ezxample:
program test_abort
integer :: i =1, j =2
if (i /= j) call abort
end program test_abort

See also: Section 6.60 [EXIT], page 60, Section 6.111 [KILL], page 84

30 The GNU Fortran Compiler

6.3 ABS — Absolute value

Description:
ABS (X) computes the absolute value of X.

Standard: F77 and later, has overloads that are GNU extensions
Class: Elemental function
Syntax: RESULT = ABS(X)

Arguments:
X The type of the argument shall be an INTEGER(*), REAL(*), or
COMPLEX ().

Return value:
The return value is of the same type and kind as the argument except the return
value is REAL(*) for a COMPLEX (*) argument.

Example:

program test_abs
integer :: i
real :: x = -
complex :: z
i abs (i)
x = abs(x)
x = abs(z)
end program test_abs

-1
.e0
(-1.e0,0.e0)

o=

Specific names:

Name Argument Return type Standard
CABS(Z) COMPLEX (4) Z REAL (4) F77 and later
DABS (X) REAL(8) X REAL(8) F77 and later
IABS(I) INTEGER(4) I INTEGER (4) F77 and later
ZABS(Z) COMPLEX(8) Z COMPLEX (8) GNU extension
CDABS(Z) COMPLEX(8) Z COMPLEX (8) GNU extension

6.4 ACCESS — Checks file access modes

Description:
ACCESS(NAME, MODE) checks whether the file NAME exists, is readable, writable or
executable. Except for the executable check, ACCESS can be replaced by Fortran
95’s INQUIRE.

Standard: GNU extension
Class: Inquiry function
Syntaz: RESULT = ACCESS(NAME, MODE)

Arguments:

NAME Scalar CHARACTER with the file name. Tailing blank are ignored
unless the character achar(0) is present, then all characters up
to and excluding achar (0) are used as file name.

MODE Scalar CHARACTER with the file access mode, may be any concate-
nation of "r" (readable), "w" (writable) and "x" (executable), or
" " to check for existence.

Return value:
Returns a scalar INTEGER, which is 0 if the file is accessible in the given mode;
otherwise or if an invalid argument has been given for MODE the value 1 is returned.

Chapter 6: Intrinsic Procedures 31

Ezample:

program access_test
implicit none

character(len=*), parameter :: file = ’test.dat’
character(len=+*), parameter :: file2 = ’test.dat ’//achar(0)
if (access(file,’ ’) == 0) print *, trim(file),’ is exists’

if (access(file,’r’) == 0) print *, trim(file),’ is readable’
if (access(file,’w’) == 0) print *, trim(file),’ is writable’
if (access(file,’x’) == 0) print *, trim(file),’ is executable’
if (access(file2,’rwx’) == 0) &
print *, trim(file2),’ is readable, writable and executable’
end program access_test

Specific names:
See also:

6.5 ACHAR — Character in ASCII collating sequence

Description:

ACHAR (I) returns the character located at position I in the ASCII collating sequence.
Standard: F77 and later
Class: Elemental function

Syntaz: RESULT = ACHAR(I)

Arguments:
I The type shall be INTEGER ().

Return value:
The return value is of type CHARACTER with a length of one. The kind type parameter
is the same as KIND(’A’).

Ezxample:
program test_achar
character c
¢ = achar(32)
end program test_achar
Note: See Section 6.97 [ICHAR], page 78 for a discussion of converting between numerical

values and formatted string representations.

See also: Section 6.33 [CHAR], page 45, Section 6.91 [TACHAR]|, page 75, Section 6.97
[ICHAR], page 78

6.6 ACOS — Arccosine function
Description:
ACOS(X) computes the arccosine of X (inverse of COS(X)).
Standard: F77 and later
Class: Elemental function
Syntaz: RESULT = ACOS (X)

Arguments:
X The type shall be REAL(*) with a magnitude that is less than
one.

Return value:
The return value is of type REAL(*) and it lies in the range 0 < acos(xz) < w. The
kind type parameter is the same as X.

32 The GNU Fortran Compiler

Ezample:

program test_acos
real(8) :: x = 0.866_8
x = acos(x)

end program test_acos

Specific names:
Name Argument Return type Standard
DACOS (X) REAL(8) X REAL(8) F77 and later

See also: Inverse function: Section 6.39 [COS], page 49

6.7 ACOSH — Hyperbolic arccosine function

Description:
ACOSH(X) computes the hyperbolic arccosine of X (inverse of COSH(X)).

Standard: GNU extension
Class: Elemental function
Syntaz: RESULT = ACOSH(X)

Arguments:
X The type shall be REAL(*) with a magnitude that is greater or
equal to one.

Return value:
The return value is of type REAL (*) and it lies in the range 0 < acosh(z) < oo.

Example:

PROGRAM test_acosh
REAL(8), DIMENSION(3) :: x = (/ 1.0, 2.0, 3.0 /)
WRITE (*,*) ACOSH(x)

END PROGRAM

Specific names:
Name Argument Return type Standard
DACOSH(X) REAL(8) X REAL(8) GNU extension

See also: Inverse function: Section 6.40 [COSH], page 49

6.8 ADJUSTL — Left adjust a string

Description:
ADJUSTL(STR) will left adjust a string by removing leading spaces. Spaces are
inserted at the end of the string as needed.

Standard: F95 and later
Class: Elemental function
Syntax: RESULT = ADJUSTL (STR)

Arguments:
STR The type shall be CHARACTER.

Return value:
The return value is of type CHARACTER where leading spaces are removed and the
same number of spaces are inserted on the end of STR.

Example:

Chapter 6: Intrinsic Procedures 33

program test_adjustl
character(len=20) :: str = > gfortran’
str = adjustl(str)
print *, str

end program test_adjustl

See also: Section 6.9 [ADJUSTR], page 33, Section 6.201 [TRIM], page 127

6.9 ADJUSTR — Right adjust a string

Description:
ADJUSTR(STR) will right adjust a string by removing trailing spaces. Spaces are
inserted at the start of the string as needed.

Standard: F95 and later
Class: Elemental function
Syntaz: RESULT = ADJUSTR(STR)

Arguments:
STR The type shall be CHARACTER.

Return value:
The return value is of type CHARACTER where trailing spaces are removed and the
same number of spaces are inserted at the start of STR.

Ezample:

program test_adjustr
character(len=20) :: str = ’gfortran’
str = adjustr(str)
print *, str

end program test_adjustr

See also: Section 6.8 [ADJUSTL], page 32, Section 6.201 [TRIM], page 127

6.10 AIMAG — Imaginary part of complex number

Description:
AIMAG(Z) yields the imaginary part of complex argument Z. The IMAG(Z) and
IMAGPART(Z) intrinsic functions are provided for compatibility with g77, and their
use in new code is strongly discouraged.

Standard: F77 and later, has overloads that are GNU extensions
Class: Elemental function
Syntaz: RESULT = AIMAG(Z)

Arguments:
Z The type of the argument shall be COMPLEX ().

Return value:
The return value is of type real with the kind type parameter of the argument.

Example:

program test_aimag
complex(4) z4
complex(8) z8
z4 = cmplx(1.e0_4, 0.e0_4)
z8 = cmplx(0.e0_8, 1.e0_8)
print *, aimag(z4), dimag(z8)
end program test_aimag

34 The GNU Fortran Compiler

Specific names:

Name Argument Return type Standard

DIMAG(Z) COMPLEX(8) Z REAL(8) GNU extension
IMAG(Z) COMPLEX () Z REAL (%) GNU extension
IMAGPART(Z) COMPLEX () Z REAL (%) GNU extension

6.11 AINT — Truncate to a whole number

Description:
AINT(X [, KIND]) truncates its argument to a whole number.

Standard: F77 and later
Class: Elemental function
Syntax: RESULT = AINT(X [, KIND])

Arguments:
X The type of the argument shall be REAL ().
KIND (Optional) An INTEGER(*) initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type real with the kind type parameter of the argument if
the optional KIND is absent; otherwise, the kind type parameter will be given by
KIND. If the magnitude of X is less than one, then AINT(X) returns zero. If the
magnitude is equal to or greater than one, then it returns the largest whole number
that does not exceed its magnitude. The sign is the same as the sign of X.

Example:

program test_aint
real(4) x4
real(8) x8
x4 = 1.234E0_4
x8 = 4.321_8
print *, aint(x4), dint(x8)
x8 = aint(x4,8)
end program test_aint

Specific names:
Name Argument Return type Standard
DINT(X) REAL(8) X REAL(8) F77 and later

6.12 ALARM — Execute a routine after a given delay

Description:
ALARM(SECONDS, HANDLER [, STATUS]) causes external subroutine HANDLER to
be executed after a delay of SECONDS by using alarm(2) to set up a signal and
signal(2) to catch it. If STATUS is supplied, it will be returned with the number
of seconds remaining until any previously scheduled alarm was due to be delivered,
or zero if there was no previously scheduled alarm.

Standard: GNU extension
Class: Subroutine
S@ntax: CALL ALARM(SECONDS, HANDLER [, STATUS])

Arguments:
SECONDS The type of the argument shall be a scalar INTEGER. It is
INTENT (IN).

Chapter 6:

Example:

Intrinsic Procedures 35

HANDLER Signal handler (INTEGER FUNCTION or SUBROUTINE) or
dummy/global INTEGER scalar. The scalar values may be either
SIG_IGN=1 to ignore the alarm generated or SIG_DFL=0 to set
the default action. It is INTENT (IN).

STATUS (Optional) STATUS shall be a scalar variable of the default
INTEGER kind. It is INTENT (QUT).

program test_alarm
external handler_print
integer i
call alarm (3, handler_print, i)
print *, i
call sleep(10)
end program test_alarm

This will cause the external routine handler_print to be called after 3 seconds.

6.13 ALL — All values in MASK along DIM are true

Description:

Standard:
Class:
Syntaz:

Arguments:

ALL(MASK [, DIM]) determines if all the values are true in MASK in the array along
dimension DIM.

F95 and later
transformational function

RESULT = ALL(MASK [, DIM])

MASK The type of the argument shall be LOGICAL (*) and it shall not
be scalar.
DIM (Optional) DIM shall be a scalar integer with a value that lies

between one and the rank of MASK.

Return value:

Ezample:

ALL(MASK) returns a scalar value of type LOGICAL (*) where the kind type parameter
is the same as the kind type parameter of MASK. If DIM is present, then ALL (MASK,
DIM) returns an array with the rank of MASK minus 1. The shape is determined
from the shape of MASK where the DIM dimension is elided.

(A) ALL(MASK) is true if all elements of MASK are true. It also is true if
MASK has zero size; otherwise, it is false.

(B) If the rank of MASK is one, then ALL(MASK,DIM) is equivalent to
ALL(MASK). If the rank is greater than one, then ALL(MASK,DIM) is
determined by applying ALL to the array sections.

program test_all
logical 1
1 = all((/.true., .true., .true./))
print *, 1
call section
contains
subroutine section
integer a(2,3), b(2,3)
a=1
b=1
b(2,2) =2

36 The GNU Fortran Compiler

print *, all(a .eq. b, 1)
print *, all(a .eq. b, 2)
end subroutine section
end program test_all

6.14 ALLOCATED — Status of an allocatable entity

Description:
ALLOCATED (X) checks the status of whether X is allocated.

Standard: F95 and later
Class: Inquiry function
Syntaz: RESULT = ALLOCATED (X)

Arguments:
X The argument shall be an ALLOCATABLE array.

Return value:
The return value is a scalar LOGICAL with the default logical kind type parameter.
If X is allocated, ALLOCATED (X) is .TRUE.; otherwise, it returns the .TRUE.

Ezample:

program test_allocated

integer :: i = 4

real(4), allocatable :: x(:)

if (allocated(x) .eqv. .false.) allocate(x(i))
end program test_allocated

6.15 AND — Bitwise logical AND

Description:
Bitwise logical AND.

This intrinsic routine is provided for backwards compatibility with GNU Fortran
77. For integer arguments, programmers should consider the use of the Section 6.92
[IAND], page 75 intrinsic defined by the Fortran standard.

Standard: GNU extension
Class: Non-elemental function
Syntaz: RESULT = AND(I, J)

Arguments:
1 The type shall be either INTEGER (*) or LOGICAL.
J The type shall be either INTEGER (*) or LOGICAL.

Return value:
The return type is either INTEGER (*) or LOGICAL after cross-promotion of the ar-
guments.

Example:

PROGRAM test_and
LOGICAL :: T = .TRUE., F = .FALSE.
INTEGER :: a, b
DATA a / Z°F’ /, b / 2°3> /

WRITE (*,*) AND(T, T), AND(T, F), AND(F, T), AND(F, F)
WRITE (*,*) AND(a, b)
END PROGRAM

See also: F95 elemental function: Section 6.92 [IAND], page 75

Chapter 6: Intrinsic Procedures 37

6.16 ANINT — Nearest whole number

Description:
ANINT(X [, KIND]) rounds its argument to the nearest whole number.

Standard: F77 and later
Class: Elemental function
S@ntax: RESULT = ANINT(X [, KIND])

Arguments:
X The type of the argument shall be REAL(*).
KIND (Optional) An INTEGER(*) initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type real with the kind type parameter of the argument if
the optional KIND is absent; otherwise, the kind type parameter will be given by
KIND. If X is greater than zero, then ANINT (X) returns AINT(X+0.5). If X is less
than or equal to zero, then it returns AINT(X-0.5).

Ezample:

program test_anint
real(4) x4
real(8) x8
x4 = 1.234E0_4
x8 = 4.321_8
print *, anint(x4), dnint(x8)
x8 = anint(x4,8)
end program test_anint

Specific names:
Name Argument Return type Standard
DNINT(X) REAL(8) X REAL(8) F77 and later

6.17 ANY — Any value in MASK along DIM is true

Description:
ANY (MASK [, DIM]) determines if any of the values in the logical array MASK along
dimension DIM are .TRUE..

Standard: F95 and later
Class: transformational function

Syntaz: RESULT = ANY(MASK [, DIM])

Arguments:
MASK The type of the argument shall be LOGICAL (*) and it shall not
be scalar.
DIM (Optional) DIM shall be a scalar integer with a value that lies

between one and the rank of MASK.

Return value:
ANY (MASK) returns a scalar value of type LOGICAL (*) where the kind type parameter
is the same as the kind type parameter of MASK. If DIM is present, then ANY (MASK,
DIM) returns an array with the rank of MASK minus 1. The shape is determined
from the shape of MASK where the DIM dimension is elided.

(A) ANY (MASK) is true if any element of MASK is true; otherwise, it is false.
It also is false if MASK has zero size.

38

Example:

6.18 ASI

Description:
ASIN(X) computes the arcsine of its X (inverse of SIN(X)).

The GNU Fortran Compiler

(B) If the rank of MASK is one, then ANY(MASK,DIM) is equivalent to
ANY (MASK). If the rank is greater than one, then ANY(MASK,DIM) is
determined by applying ANY to the array sections.

program test_any
logical 1
1 = any((/.true., .true., .true./))
print *, 1
call section
contains
subroutine section
integer a(2,3), b(2,3)

a=1
b=1
b(2,2) = 2

print *, any(a .eq. b, 1)
print *, any(a .eq. b, 2)
end subroutine section
end program test_any

N — Arcsine function

Standard: F77 and later

Class:
Syntaz:

Arguments:

Elemental function

RESULT = ASIN(X)

X The type shall be REAL(*), and a magnitude that is less than
one.

Return value:

Ezample:

The return value is of type REAL(*) and it lies in the range —7/2 < asin(x) < m/2.
The kind type parameter is the same as X.

program test_asin
real(8) :: x = 0.866_8
x = asin(x)

end program test_asin

Specific names:

See also:

6.19 ASI

Name Argument Return type Standard
DASIN(X) REAL(8) X REAL(8) F77 and later

Inverse function: Section 6.180 [SIN], page 117

NH — Hyperbolic arcsine function

Description:

Standard:
Class:
Syntaz:

ASINH(X) computes the hyperbolic arcsine of X (inverse of SINH(X)).
GNU extension
Elemental function

RESULT = ASINH(X)

Chapter 6: Intrinsic Procedures 39

Arguments:
X The type shall be REAL(*), with X a real number.

Return value:
The return value is of type REAL(*) and it lies in the range —oo < asinh(z) < oo.

Example:

PROGRAM test_asinh
REAL(8), DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
WRITE (*,*) ASINH(x)

END PROGRAM

Specific names:
Name Argument Return type Standard
DASINH(X) REAL(8) X REAL(8) GNU extension.

See also: Inverse function: Section 6.181 [SINH], page 117

6.20 ASSOCIATED — Status of a pointer or pointer/target pair

Description:
ASSOCIATED(PTR [, TGT]) determines the status of the pointer PTR or if PTR is
associated with the target TGT.

Standard: F95 and later
Class: Inquiry function
Syntaz: RESULT = ASSOCIATED(PTR [, TGT])

Arguments:
PTR PTR shall have the POINTER attribute and it can be of any type.
TGT (Optional) TGT shall be a POINTER or a TARGET. It must have
the same type, kind type parameter, and array rank as PTR.

The status of neither PTR nor T'GT can be undefined.

Return value:
ASSOCIATED(PTR) returns a scalar value of type LOGICAL(4). There are several
cases:

(A) If the optional T'GT is not present, then ASSOCIATED (PTR)
is true if PTR is associated with a target; otherwise, it returns false.

(B) If TGT is present and a scalar target, the result is true if
TGT is not a 0 sized storage sequence and the target associated with
PTR occupies the same storage units. If PTR is disassociated, then the
result is false.

(C) If TGT is present and an array target, the result is true if
TGT and PTR have the same shape, are not 0 sized arrays, are arrays
whose elements are not 0 sized storage sequences, and T'GT and PTR
occupy the same storage units in array element order. As in case(B),
the result is false, if PTR is disassociated.

(D) If TGT is present and an scalar pointer, the result is true if
target associated with PTR and the target associated with TGT are
not 0 sized storage sequences and occupy the same storage units. The
result is false, if either TGT or PTR is disassociated.

40

The GNU Fortran Compiler

(E) If TGT is present and an array pointer, the result is true if
target associated with PTR and the target associated with TGT have
the same shape, are not 0 sized arrays, are arrays whose elements are
not 0 sized storage sequences, and T'GT and PTR occupy the same
storage units in array element order. The result is false, if either TGT

or PTR is disassociated.
Example:

program test_associated
implicit nome

real, target :: tgt(2) = (/1., 2./)

real, pointer :: ptr(:)

ptr => tgt

if (associated(ptr) .equ. .false.) call abort

if (associated(ptr,tgt) .eqv. .false.) call abort

end program test_associated

See also: Section 6.151 [NULL], page 103

6.21 ATAN — Arctangent function

Description:
ATAN(X) computes the arctangent of X.

Standard: F77 and later
Class: Elemental function
Syntaz: RESULT = ATAN(X)

Arguments:
X The type shall be REAL(*).

Return value:

The return value is of type REAL(*) and it lies in the range —7/2 < atan(z) < /2.

Ezample:

program test_atan
real(8) :: x = 2.866_8
x = atan(x)

end program test_atan

Specific names:
Name Argument Return type
DATAN (X) REAL(8) X REAL(8)

See also: Inverse function: Section 6.194 [TAN], page 124

6.22 ATAN2 — Arctangent function

Description:

Standard
F77 and later

ATAN2(Y,X) computes the arctangent of the complex number X + Y.

Standard: F77 and later
Class: Elemental function
Syntaz: RESULT = ATAN2(Y,X)

Arguments:
The type shall be REAL (*).

Y
X The type and kind type parameter shall be the same as Y. If Y

is zero, then X must be nonzero.

Chapter 6: Intrinsic Procedures 41

Return value:

Ezample:

The return value has the same type and kind type parameter as Y. It is the principal
value of the complex number X + iY. If X is nonzero, then it lies in the range
—7m < atan(z) < m. The sign is positive if Y is positive. If Y is zero, then the
return value is zero if X is positive and 7 if X is negative. Finally, if X is zero, then
the magnitude of the result is /2.

program test_atan2
real(4) :: x = 1.e0_4, y = 0.5e0_4
x = atan2(y,x)

end program test_atan2

Specific names:

Name Argument Return type Standard
DATAN2 (X) REAL(8) X REAL(8) F77 and later

6.23 ATANH — Hyperbolic arctangent function

Description:

Standard:
Class:
Syntaz:

Arguments:

ATANH(X) computes the hyperbolic arctangent of X (inverse of TANH(X)).
GNU extension
Elemental function

RESULT = ATANH(X)

X The type shall be REAL (*) with a magnitude that is less than or
equal to one.

Return value:

Ezample:

The return value is of type REAL(*) and it lies in the range —oo < atanh(z) < occ.

PROGRAM test_atanh
REAL, DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
WRITE (*,*) ATANH(x)

END PROGRAM

Specific names:

See also:

Name Argument Return type Standard
DATANH (X) REAL(8) X REAL(8) GNU extension

Inverse function: Section 6.195 [TANH], page 124

6.24 BESJO — Bessel function of the first kind of order 0

Description:

Standard:
Class:
Syntaz:

Arguments:

BESJO(X) computes the Bessel function of the first kind of order 0 of X.
GNU extension
Elemental function

RESULT = BESJO(X)

X The type shall be REAL(*), and it shall be scalar.

42

Return value:

The GNU Fortran Compiler

The return value is of type REAL(*) and it lies in the range —0.4027... <

Bessel(0,z) < 1.

Example:
program test_besjoO
real(8) :: x = 0.0_8
x = besjo(x)

end program test_besjO

Specific names:
Name
DBESJO(X)

Argument
REAL(8) X

Return type
REAL(8)

Standard
GNU extension

6.25 BESJ1 — Bessel function of the first kind of order 1

Description:

BESJ1(X) computes the Bessel function of the first kind of order 1 of X.

Standard:
Class:

GNU extension
Elemental function
Syntaz: RESULT = BESJ1(X)

Arguments:

X The type shall be REAL(*), and it shall be scalar.

Return value:

The return value is of type REAL(*) and it lies in the range —0.5818... <

Bessel(0,z) < 0.5818.

Ezample:
program test_besjl
real(8) :: x = 1.0_8
x = besj1(x)

end program test_besjl

Specific names:
Name
DBESJ1(X)

Return type
REAL(8)

Argument
REAL(8) X

Standard
GNU extension

6.26 BESJN — Bessel function of the first kind

Description:
BESJN(N, X) computes the Bessel function of the first kind of order N of X.
Standard: GNU extension
Class: Elemental function
Syntax: RESULT = BESJN(N, X)
Arguments:
N The type shall be INTEGER (*), and it shall be scalar.
X The type shall be REAL(*), and it shall be scalar.

Return value:
The return value is a scalar of type REAL (*).

Example:

Chapter 6: Intrinsic Procedures

program test_besjn
real(8) :: x = 1.0_8
x = besjn(5,x)

end program test_besjn

Specific names:

Name Argument Return type Standard
DBESJN (X) INTEGER (*) N REAL(8) GNU extension
REAL(8) X

6.27 BESYO — Bessel function of the second kind of order 0

Description:
BESYO (X) computes the Bessel function of the second kind of order 0 of X.

Standard: GNU extension
Class: Elemental function
Syntaz: RESULT = BESYO(X)

Arguments:
X The type shall be REAL(*), and it shall be scalar.

Return value:
The return value is a scalar of type REAL(*).

Ezample:

program test_besy0
real(8) :: x = 0.0_8
x = besy0(x)

end program test_besyO

Specific names:
Name Argument Return type Standard
DBESYO (X) REAL(8) X REAL(8) GNU extension

6.28 BESY1 — Bessel function of the second kind of order 1

Description:
BESY1(X) computes the Bessel function of the second kind of order 1 of X.

Standard: GNU extension
Class: Elemental function
Syntaz: RESULT = BESY1(X)

Arguments:
X The type shall be REAL(*), and it shall be scalar.

Return value:
The return value is a scalar of type REAL(*).

Example:

program test_besyl
real(8) :: x = 1.0_8
x = besyl(x)

end program test_besyl

Specific names:
Name Argument Return type Standard
DBESY1 (X) REAL(8) X REAL(8) GNU extension

43

44 The GNU Fortran Compiler

6.29 BESYN — Bessel function of the second kind

Description:
BESYN(N, X) computes the Bessel function of the second kind of order N of X.

Standard: GNU extension
Class: Elemental function
Syntax: RESULT = BESYN(N, X)

Arguments:
N The type shall be INTEGER(*), and it shall be scalar.
X The type shall be REAL(*), and it shall be scalar.

Return value:
The return value is a scalar of type REAL (*).

Ezample:

program test_besyn
real(8) :: x = 1.0_8
x = besyn(5,x)

end program test_besyn

Specific names:

Name Argument Return type Standard
DBESYN(N,X) INTEGER(*) N REAL(8) GNU extension
REAL(8) X

6.30 BIT_SIZE — Bit size inquiry function

Description:
BIT_SIZE(I) returns the number of bits (integer precision plus sign bit) represented
by the type of L

Standard: F95 and later
Class: Inquiry function
Syntaz: RESULT = BIT_SIZE(I)

Arguments:
I The type shall be INTEGER ().

Return value:
The return value is of type INTEGER (*)

Ezample:

program test_bit_size
integer :: i = 123
integer :: size
size = bit_size(i)
print *, size

end program test_bit_size

6.31 BTEST — Bit test function

Description:
BTEST(I,P0S) returns logical .TRUE. if the bit at POS in [is set.

Standard: F95 and later

Class: Elemental function

Chapter 6: Intrinsic Procedures 45

Syntax: RESULT = BTEST(I, POS)

Arguments:
I The type shall be INTEGER (*).
POS The type shall be INTEGER (*).

Return value:
The return value is of type LOGICAL

Ezample:

program test_btest
integer :: i = 32768 + 1024 + 64

integer :: pos
logical :: bool
do pos=0,16

bool = btest(i, pos)
print *, pos, bool
end do
end program test_btest

6.32 CEILING — Integer ceiling function

Description:
CEILING(X) returns the least integer greater than or equal to X.

Standard: F95 and later
Class: Elemental function
Syntaz: RESULT = CEILING(X [, KIND])

Arguments:
X The type shall be REAL (*).
KIND (Optional) An INTEGER(*) initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type INTEGER (KIND)

Ezample:

program test_ceiling
real :: x = 63.29
real :: y = -63.59
print *, ceiling(x) ! returns 64
print *, ceiling(y) ! returns -63
end program test_ceiling

See also: Section 6.67 [FLOOR], page 64, Section 6.149 [NINT], page 102

6.33 CHAR — Character conversion function

Description:

CHAR(I [, KIND]) returns the character represented by the integer I
Standard: F77 and later
Class: Elemental function

Syntax: RESULT = CHAR(I [, KIND])

Arguments:
I The type shall be INTEGER ().
KIND (Optional) An INTEGER(*) initialization expression indicating
the kind parameter of the result.

46 The GNU Fortran Compiler

Return value:
The return value is of type CHARACTER (1)

Ezxample:
program test_char
integer :: i = 74
character(1) :: c
¢ = char(i)
print *, i, ¢ ! returns ’J’
end program test_char
Note: See Section 6.97 [ICHAR], page 78 for a discussion of converting between numerical

values and formatted string representations.

See also: Section 6.5 [ACHAR], page 31, Section 6.91 [TACHAR], page 75, Section 6.97
[ICHAR], page 78

6.34 CHDIR — Change working directory

Description:
Change current working directory to a specified path.

This intrinsic is provided in both subroutine and function forms; however, only one
form can be used in any given program unit.

Standard: GNU extension
Class: Subroutine, non-elemental function

Syntaz:

CALL CHDIR(NAME [, STATUS])
STATUS = CHDIR(NAME)

Arguments:
NAME The type shall be CHARACTER (%) and shall specify a valid path
within the file system.
STATUS (Optional) INTEGER status flag of the default kind. Returns 0 on
success, and a system specific and non-zero error code otherwise.
Example:

PROGRAM test_chdir
CHARACTER (len=255) :: path
CALL getcwd(path)
WRITE(*,*) TRIM(path)
CALL chdir("/tmp")
CALL getcwd(path)
WRITE(*,*) TRIM(path)

END PROGRAM

See also: Section 6.81 [GETCWD], page 71

6.35 CHMOD — Change access permissions of files

Description:
CHMOD changes the permissions of a file. This function invokes /bin/chmod and
might therefore not work on all platforms.

This intrinsic is provided in both subroutine and function forms; however, only one
form can be used in any given program unit.

Standard: GNU extension

Class: Subroutine, non-elemental function

Chapter 6: Intrinsic Procedures 47

Syntaz:

CALL CHMOD(NAME, MODE[, STATUS])
STATUS = CHMOD (NAME, MODE)

Arguments:
NAME Scalar CHARACTER with the file name. Trailing blanks are ignored
unless the character achar (0) is present, then all characters up
to and excluding achar (0) are used as the file name.

MODE Scalar CHARACTER giving the file permission. MODE uses the
same syntax as the MODE argument of /bin/chmod.

STATUS (optional) scalar INTEGER, which is 0 on success and non-zero
otherwise.

Return value:
In either syntax, STATUS is set to 0 on success and non-zero otherwise.

Ezxample: CHMOD as subroutine

program chmod_test
implicit none

integer :: status
call chmod(’test.dat’,’u+x’,status)
print *, ’Status: ’, status

end program chmod_test
CHMOD as non-elemental function:

program chmod_test
implicit none

integer :: status
status = chmod(’test.dat’,’u+x’)
print *, ’Status: ’, status

end program chmod_test

6.36 CMPLX — Complex conversion function

Description:
CMPLX(X [, Y [, KIND]]) returns a complex number where X is converted to the
real component. If Y is present it is converted to the imaginary component. If Y
is not present then the imaginary component is set to 0.0. If X is complex then Y
must not be present.

Standard: F77 and later
Class: Elemental function
Syntax: RESULT = CMPLX(X [, Y [, KIND]])

Arguments:
X The type may be INTEGER (*), REAL(*), or COMPLEX (*).
Y (Optional; only allowed if X is not COMPLEX(x*).) May be
INTEGER (*) or REAL(*).
KIND (Optional) An INTEGER(*) initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type COMPLEX (*)

Example:

48 The GNU Fortran Compiler

program test_cmplx

integer :: i = 42
real :: x = 3.14
complex :: z

z = cmplx(i, x)
print *, z, cmplx(x)
end program test_cmplx

6.37 COMMAND_ARGUMENT_COUNT — Get number of command line
arguments

Description:
COMMAND_ARGUMENT_COUNT () returns the number of arguments passed on the com-
mand line when the containing program was invoked.

Standard: F2003
Class: Inquiry function
Syntax: RESULT = COMMAND_ARGUMENT_COUNT ()

Arguments:
None

Return value:
The return value is of type INTEGER (4)

Ezample:

program test_command_argument_count
integer :: count
count = command_argument_count ()
print *, count

end program test_command_argument_count

See also: Section 6.79 [GET_COMMAND)], page 70, Section 6.80
[GET_.COMMAND_ARGUMENT], page 70

6.38 CONJG — Complex conjugate function

Description:
CONJG(Z) returns the conjugate of Z. If Z is (x, y) then the result is (x, -y)

Standard: F77 and later, has overloads that are GNU extensions
Class: Elemental function
Syntaz: Z = CONJG(Z)

Arguments:
Z The type shall be COMPLEX (*).

Return value:
The return value is of type COMPLEX (*).

Example:

program test_conjg
complex :: z = (2.0, 3.0)
complex(8) :: dz = (2.71_.8, -3.14_8)
z= conjg(z)
print *, z
dz = dconjg(dz)
print *, dz
end program test_conjg

Chapter 6: Intrinsic Procedures 49

Specific names:
Name Argument Return type Standard
DCONJG(Z) COMPLEX(8) Z COMPLEX (8) GNU extension

6.39 CO0S — Cosine function

Description:
COS (X) computes the cosine of X.

Standard: F77 and later, has overloads that are GNU extensions
Class: Elemental function
Syntaz: RESULT = C0OS (X)

Arguments:
X The type shall be REAL(*) or COMPLEX (*).

Return value:
The return value is of type REAL(*) and it lies in the range —1 < cos(z) < 1. The
kind type parameter is the same as X.

Example:

program test_cos
real :: x = 0.0
x = cos(x)

end program test_cos

Specific names:

Name Argument Return type Standard

DCOS (X) REAL(8) X REAL(8) F77 and later
CCOS(X) COMPLEX(4) X COMPLEX (4) F77 and later
ZC0S (X) COMPLEX(8) X COMPLEX(8) GNU extension
CDCOS (X) COMPLEX(8) X COMPLEX (8) GNU extension

See also: Inverse function: Section 6.6 [ACOS]|, page 31

6.40 COSH — Hyperbolic cosine function

Description:
COSH(X) computes the hyperbolic cosine of X.

Standard: F77 and later
Class: Elemental function
Syntaz: X = COSH(X)

Arguments:
X The type shall be REAL(*).

Return value:
The return value is of type REAL(*) and it is positive (cosh(z) > 0.
Example:
program test_cosh
real(8) :: x = 1.0_8
x = cosh(x)
end program test_cosh
Specific names:
Name Argument Return type Standard
DCOSH(X) REAL(8) X REAL(8) F77 and later

See also: Inverse function: Section 6.7 [ACOSH], page 32

50 The GNU Fortran Compiler

6.41 COUNT — Count function

Description:
COUNT(MASK [, DIM]) counts the number of .TRUE. elements of MASK along the
dimension of DIM. If DIM is omitted it is taken to be 1. DIM is a scaler of type
INTEGER in the range of 1/leqDIM /leqn) where n is the rank of MASK.

Standard: F95 and later
Class: transformational function
S@ntax: RESULT = COUNT(MASK [, DIM])

Arguments:
MASK The type shall be LOGICAL.
DIM The type shall be INTEGER.

Return value:
The return value is of type INTEGER with rank equal to that of MASK.

Example:
program test_count
integer, dimension(2,3) :: a, b
logical, dimension(2,3) :: mask
a = reshape((/ 1, 2, 3, 4, 5,6 /), (/ 2, 3/)
b = reshape((/ 0, 7, 3, 4, 5, 8 /), (/ 2, 3 /)
print ’(313)’, a(1,:)
print ’(3i3)’, a(2,:)
print *
print ’(3i3)’, b(1,:)
print ’(3i3)’, b(2,:)
print *
mask = a.ne.b
print ’(313)°, mask(1,:)
print ’(313)’, mask(2,:)
print *
print ’(3i3)’, count(mask)
print *
print ’(3i3)’, count(mask, 1)
print *

print ’(3i3)°’, count(mask, 2)
end program test_count

6.42 CPU_TIME — CPU elapsed time in seconds

Description:
Returns a REAL(*) value representing the elapsed CPU time in seconds. This is
useful for testing segments of code to determine execution time.

Standard: F95 and later
Class: Subroutine
Syntaz: CALL CPU_TIME(TIME)

Arguments:
TIME The type shall be REAL(*) with INTENT(OUT).

Return value:
None

Example:

Chapter 6: Intrinsic Procedures 51

program test_cpu_time
real :: start, finish
call cpu_time(start)
! put code to test here
call cpu_time(finish)
print ’("Time = ",f6.3," seconds.")’,finish-start
end program test_cpu_time

See also: Section 6.193 [SYSTEM_CLOCK], page 123, Section 6.45 [DATE_AND_TIME],
page 52

6.43 CSHIFT — Circular shift elements of an array

Description:

CSHIFT(ARRAY, SHIFT [, DIM]) performs a circular shift on elements of ARRAY
along the dimension of DIM. If DIM is omitted it is taken to be 1. DIM is a scaler
of type INTEGER in the range of 1/leqDIM /leqn) where n is the rank of ARRAY.
If the rank of ARRAY is one, then all elements of ARRAY are shifted by SHIFT
places. If rank is greater than one, then all complete rank one sections of ARRAY
along the given dimension are shifted. Elements shifted out one end of each rank
one section are shifted back in the other end.

Standard: F95 and later
Class: transformational function

Syntax: RESULT = CSHIFT(A, SHIFT [, DIM])

Arguments:
ARRAY May be any type, not scaler.
SHIF'T The type shall be INTEGER.
DIM The type shall be INTEGER.

Return value:
Returns an array of same type and rank as the ARRAY argument.

Example:

program test_cshift
integer, dimension(3,3) :: a
a = reshape((/ 1, 2, 3, 4, 5,6, 7,8,9/), (/3,3/))
print ’(3i3)’, a(1,:)
print ’(3i3)’, a(2,:)
print ’(3i3)’, a(3,:)
a = cshift(a, SHIFT=(/1, 2, -1/), DIM=2)
print *
print ’(3i3)’, a(1,:)
print ’(3i3)’, a(2,:)
print ’(3i3)°’, a(3,:)

end program test_cshift

6.44 CTIME — Convert a time into a string

Description:
CTIME converts a system time value, such as returned by TIMES(), to a string of the
form ‘Sat Aug 19 18:13:14 1995’

This intrinsic is provided in both subroutine and function forms; however, only one
form can be used in any given program unit.

Standard: GNU extension

Class: Subroutine

52 The GNU Fortran Compiler

Syntaz:
CALL CTIME(TIME, RESULT).
RESULT = CTIME(TIME), (not recommended).
Arguments:
TIME The type shall be of type INTEGER (KIND=8).
RESULT The type shall be of type CHARACTER.

Return value:
The converted date and time as a string.

Ezample:

program test_ctime
integer(8) :: i
character (len=30) :: date
i = time8()

! Do something, main part of the program

call ctime(i,date)
print *, ’Program was started on ’, date
end program test_ctime

See Also: Section 6.88 [GMTIME], page 74, Section 6.129 [LTIME], page 91, Section 6.196
[TIME], page 125, Section 6.197 [TIMES|, page 125

6.45 DATE_AND_TIME — Date and time subroutine

Description:
DATE_AND_TIME(DATE, TIME, ZONE, VALUES) gets the corresponding date and time
information from the real-time system clock. DATE is INTENT(OUT) and has
form ccyymmdd. TIME is INTENT(OUT) and has form hhmmss.sss. ZONE is
INTENT(OUT) and has form (+-)hhmm, representing the difference with respect to
Coordinated Universal Time (UTC). Unavailable time and date parameters return

blanks.

VALUES is INTENT(OUT) and provides the following:
VALUE(1): The year
VALUE(2): The month
VALUE(3): The day of the month
VALUE(4): Time difference with UTC in

minutes

VALUE(5): The hour of the day
VALUE(6): The minutes of the hour
VALUE(7): The seconds of the minute
VALUE(8): The milliseconds of the second

Standard: F95 and later
Class: Subroutine
Syniax: CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])

Arguments:
DATE (Optional) The type shall be CHARACTER(8) or larger.
TIME (Optional) The type shall be CHARACTER(10) or larger.
ZONE (Optional) The type shall be CHARACTER(5) or larger.
VALUES (Optional) The type shall be INTEGER(8).

Chapter 6: Intrinsic Procedures 53

Return value:
None

Ezample:

program test_time_and_date
character(8) :: date
character (10) :: time
character(5) :: zone
integer,dimension(8) :: values
! using keyword arguments
call date_and_time(date,time,zone,values)
call date_and_time(DATE=date,Z0NE=zone)
call date_and_time (TIME=time)
call date_and_time(VALUES=values)
print ’(a,2x,a,2x,a)’, date, time, zone
print ’(8i5))’, values

end program test_time_and_date

See also: Section 6.42 [CPU_TIME], page 50, Section 6.193 [SYSTEM_CLOCK], page 123

6.46 DBLE — Double conversion function

Description:
DBLE(X) Converts X to double precision real type.

Standard: F77 and later
Class: Elemental function
Syntax: RESULT = DBLE(X)

Arguments:
X The type shall be INTEGER (*), REAL (*), or COMPLEX (*).

Return value:
The return value is of type double precision real.

Ezample:
program test_dble
real ttox = 2.18
integer :: i =5
complex :: z = (2.3,1.14)

print *, dble(x), dble(i), dble(z)
end program test_dble

See also: Section 6.48 [DFLOAT], page 54, Section 6.64 [FLOAT], page 62, Section 6.164
[REAL], page 109

6.47 DCMPLX — Double complex conversion function

Description:
DCMPLX (X [,Y]) returns a double complex number where X is converted to the real
component. If Y is present it is converted to the imaginary component. If Y is not
present then the imaginary component is set to 0.0. If X is complex then Y must
not be present.

Standard: GNU extension
Class: Elemental function

Syntax: RESULT = DCMPLX(X [, Y1)

54 The GNU Fortran Compiler

Arguments:
X The type may be INTEGER(*), REAL(*), or COMPLEX (*).
Y (Optional if X is not COMPLEX(*).) May be INTEGER(*) or
REAL (%).

Return value:
The return value is of type COMPLEX (8)

Example:

program test_dcmplx
integer :: i = 42
real :: x = 3.14
complex :: z
z = cmplx(i, x)
print *, dcmplx(i)
print *, dcmplx(x)
print *, dcmplx(z)
print *, dcmplx(x,i)
end program test_dcmplx

6.48 DFLOAT — Double conversion function

Description:
DFLOAT(X) Converts X to double precision real type.

Standard: GNU extension
Class: Elemental function
Syntaz: RESULT = DFLOAT (X)

Arguments:
X The type shall be INTEGER (*).

Return value:
The return value is of type double precision real.

Ezample:

program test_dfloat
integer :: i =5
print *, dfloat(i)

end program test_dfloat

See also: Section 6.46 [DBLE], page 53, Section 6.64 [FLOAT], page 62, Section 6.164 [REAL],
page 109

6.49 DIGITS — Significant digits function

Description:
DIGITS(X) returns the number of significant digits of the internal model represen-
tation of X. For example, on a system using a 32-bit floating point representation,
a default real number would likely return 24.

Standard: F95 and later
Class: Inquiry function
Syntax: RESULT = DIGITS(X)

Arguments:
X The type may be INTEGER (*) or REAL (*).

Return value:
The return value is of type INTEGER.

Chapter 6: Intrinsic Procedures 55

Ezample:

program test_digits
integer :: i = 12345
real :: x = 3.143
real(8) :: y = 2.33
print *, digits(i)
print *, digits(x)
print *, digits(y)

end program test_digits

6.50 DIM — Positive difference

Description:
DIM(X,Y) returns the difference X-Y if the result is positive; otherwise returns zero.

Standard: F77 and later
Class: Elemental function
Syntaz: RESULT = DIM(X, Y)

Arguments:
X The type shall be INTEGER (*) or REAL (%)
Y The type shall be the same type and kind as X.

Return value:
The return value is of type INTEGER(*) or REAL ().

Example:

program test_dim
integer :: i
real(8) :: x
i = dim(4, 15)
x = dim(4.345_8, 2.111_8)
print *, i
print *, x
end program test_dim

Specific names:

Name Argument Return type Standard
IDIM(X,Y) INTEGER(4) X,Y INTEGER(4) F77 and later
DDIM(X,Y) REAL(8) X,Y REAL(8) F77 and later

6.51 DOT_PRODUCT — Dot product function

Description:
DOT_PRODUCT (X,Y) computes the dot product multiplication of two vectors X and
Y. The two vectors may be either numeric or logical and must be arrays of rank one
and of equal size. If the vectors are INTEGER (*) or REAL (), the result is SUM(X*Y).
If the vectors are COMPLEX (*), the result is SUM(CONJG(X)*Y). If the vectors are
LOGICAL, the result is ANY(X.AND.Y).

Standard: F95 and later
Class: transformational function
Syntax: RESULT = DOT_PRODUCT (X, Y)

Arguments:
X The type shall be numeric or LOGICAL, rank 1.
Y The type shall be numeric or LOGICAL, rank 1.

56 The GNU Fortran Compiler

Return value:
If the arguments are numeric, the return value is a scaler of numeric type,
INTEGER (*), REAL(*), or COMPLEX(*). If the arguments are LOGICAL, the return
value is .TRUE. or .FALSE..

Ezample:

program test_dot_prod
integer, dimension(3) :: a, b
a=(1,2,3/)
b=(/4,5,6/)
print ’(3i3)’, a
print *
print ’(3i3)’, b
print *
print *, dot_product(a,b)

end program test_dot_prod

6.52 DPROD — Double product function

Description:
DPROD (X, Y) returns the product X*Y.

Standard: F77 and later
Class: Elemental function
Syntaz: RESULT = DPROD(X, Y)

Arguments:
X The type shall be REAL.
Y The type shall be REAL.

Return value:
The return value is of type REAL(8).

Ezample:

program test_dprod
real :: x 5.2
real :: y = 2.3
real(8) :: d
d = dprod(x,y)
print *, d

end program test_dprod

6.53 DREAL — Double real part function

Description:
DREAL (Z) returns the real part of complex variable Z.

Standard: GNU extension
Class: Elemental function
Syntaz: RESULT = DREAL(Z)

Arguments:
Z The type shall be COMPLEX (8).

Return value:
The return value is of type REAL(8).

Example:

Chapter 6: Intrinsic Procedures 57

See also:

program test_dreal
complex(8) :: z = (1.3.8,7.2_.8)
print *, dreal(z)

end program test_dreal

Section 6.10 [AIMAG], page 33

6.54 DTIME — Execution time subroutine (or function)

Description:

Standard:
Class:
Syntaz:

Arguments:

DTIME(TARRAY, RESULT) initially returns the number of seconds of runtime since the
start of the process’s execution in RESULT. TARRAY returns the user and system
components of this time in TARRAY(1) and TARRAY(2) respectively. RESULT is
equal to TARRAY (1) + TARRAY(2).

Subsequent invocations of DTIME return values accumulated since the previous in-
vocation.

On some systems, the underlying timings are represented using types with suffi-
ciently small limits that overflows (wrap around) are possible, such as 32-bit types.
Therefore, the values returned by this intrinsic might be, or become, negative, or
numerically less than previous values, during a single run of the compiled program.

If DTIME is invoked as a function, it can not be invoked as a subroutine, and vice
versa.

TARRAY and RESULT are INTENT(OUT) and provide the following:

TARRAY (1): User time in seconds.
TARRAY (2): System time in seconds.
RESULT: Run time since start in seconds.

GNU extension

Subroutine

CALL DTIME(TARRAY, RESULT).
RESULT = DTIME(TARRAY), (not recommended).

TARRAY The type shall be REAL, DIMENSION(2).
RESULT The type shall be REAL.

Return value:

Example:

Elapsed time in seconds since the start of program execution.

program test_dtime
integer(8) :: i, j
real, dimension(2) :: tarray
real :: result
call dtime(tarray, result)
print *, result
print *, tarray(1l)
print *, tarray(2)
do i=1,100000000 ! Just a delay
j=dixi-i
end do
call dtime(tarray, result)
print *, result
print *, tarray(1l)
print *, tarray(2)
end program test_dtime

58 The GNU Fortran Compiler

6.55 EOSHIFT — End-off shift elements of an array

Description:

EOSHIFT(ARRAY, SHIFT[,BOUNDARY, DIM]) performs an end-off shift on elements of
ARRAY along the dimension of DIM. If DIM is omitted it is taken to be 1. DIM
is a scaler of type INTEGER in the range of 1/leqDIM /leqn) where n is the rank of
ARRAY. If the rank of ARRAY is one, then all elements of ARRAY are shifted by
SHIFT places. If rank is greater than one, then all complete rank one sections of
ARRAY along the given dimension are shifted. Elements shifted out one end of each
rank one section are dropped. If BOUNDARY is present then the corresponding
value of from BOUNDARY is copied back in the other end. If BOUNDARY is not
present then the following are copied in depending on the type of ARRAY.

Array Type Boundary Value

Numeric 0 of the type and kind of ARRAY.
Logical .FALSE..
Character(len) len blanks.

Standard: F95 and later
Class: transformational function

Syntaz: RESULT = EOSHIFT (A, SHIFT [, BOUNDARY, DIM])

Arguments:
ARRAY May be any type, not scaler.
SHIFT The type shall be INTEGER.
BOUNDARY Same type as ARRAY.
DIM The type shall be INTEGER.

Return value:
Returns an array of same type and rank as the ARRAY argument.

Ezample:

program test_eoshift
integer, dimension(3,3) :: a
a = reshape((/ 1, 2, 3, 4, 5,6, 7,8,9/), (/3,3/))
print ’(3i3)’, a(l,:)
print ’(3i3)’, a(2,:)
print ’(3i3)’, a(3,:)
a = EOSHIFT(a, SHIFT=(/1, 2, 1/), BOUNDARY=-5, DIM=2)
print *
print ’(3i3)’, a(1,:)
print ’(3i3)’, a(2,:)
print ’(3i3)’, a(3,:)

end program test_eoshift

6.56 EPSILON — Epsilon function

Description:
EPSILON(X) returns a nearly negligible number relative to 1.

Standard: F95 and later
Class: Inquiry function
Syntax: RESULT = EPSILON(X)

Arguments:
X The type shall be REAL(*).

Chapter 6: Intrinsic Procedures

Return value:
The return value is of same type as the argument.

Example:

program test_epsilon
real :: x = 3.143
real(8) :: y = 2.33
print *, EPSILON(x)
print *, EPSILON(y)

end program test_epsilon

6.57 ERF — Error function

Description:
ERF (X) computes the error function of X.

Standard: GNU Extension
Class: Elemental function
Syntaz: RESULT = ERF (X)

Arguments:
X The type shall be REAL(*), and it shall be scalar.

Return value:
The return value is a scalar of type REAL(*) and it is positive (=1 < erf(z) < 1.

Example:

program test_erf
real(8) :: x = 0.17_8
x = erf(x)

end program test_erf

Specific names:
Name Argument Return type Standard
DERF (X) REAL(8) X REAL(8) GNU extension

6.58 ERFC — Error function

Description:
ERFC(X) computes the complementary error function of X.

Standard: GNU extension
Class: Elemental function
Syntaz: RESULT = ERFC(X)

Arguments:
X The type shall be REAL(*), and it shall be scalar.

Return value:
The return value is a scalar of type REAL (%) and it is positive (0 < erfe(z) < 2.

Ezxample:

program test_erfc
real(8) :: x = 0.17_8
x = erfc(x)

end program test_erfc

Specific names:
Name Argument Return type Standard
DERFC(X) REAL(8) X REAL(8) GNU extension

60 The GNU Fortran Compiler

6.59 ETIME — Execution time subroutine (or function)

Description:
ETIME (TARRAY, RESULT) returns the number of seconds of runtime since the start
of the process’s execution in RESULT. TARRAY returns the user and system com-
ponents of this time in TARRAY (1) and TARRAY (2) respectively. RESULT is equal
to TARRAY (1) + TARRAY(2).

On some systems, the underlying timings are represented using types with suffi-
ciently small limits that overflows (wrap around) are possible, such as 32-bit types.
Therefore, the values returned by this intrinsic might be, or become, negative, or
numerically less than previous values, during a single run of the compiled program.

If ETIME is invoked as a function, it can not be invoked as a subroutine, and vice

versa.
TARRAY and RESULT are INTENT(OUT) and provide the following;:
TARRAY (1): User time in seconds.
TARRAY (2): System time in seconds.
RESULT: Run time since start in seconds.

Standard: GNU extension
Class: Subroutine

Syntaz:

CALL ETIME(TARRAY, RESULT).
RESULT = ETIME(TARRAY), (not recommended).

Arguments:
TARRAY The type shall be REAL, DIMENSION(2).
RESULT The type shall be REAL.

Return value:
Elapsed time in seconds since the start of program execution.

Ezample:

program test_etime
integer(8) :: i, j
real, dimension(2) :: tarray
real :: result
call ETIME(tarray, result)
print *, result
print *, tarray(1)
print *, tarray(2)
do i=1,100000000 ! Just a delay
j=i*i-i
end do
call ETIME(tarray, result)
print *, result
print *, tarray(1l)
print *, tarray(2)
end program test_etime

See also: Section 6.42 [CPU_TIME], page 50

6.60 EXIT — Exit the program with status.

Description:
EXIT causes immediate termination of the program with status. If status is omitted
it returns the canonical success for the system. All Fortran I/O units are closed.

Chapter 6: Intrinsic Procedures 61

Standard: GNU extension
Class: Subroutine
Syntax: CALL EXIT([STATUS])

Arguments:

STATUS Shall be an INTEGER of the default kind.

Return value:
STATUS is passed to the parent process on exit.
Example:

program test_exit
integer :: STATUS = 0
print *, ’This program is going to exit.’
call EXIT(STATUS)

end program test_exit

See also: Section 6.2 [ABORT], page 29, Section 6.111 [KILL], page 84

6.61 EXP — Exponential function

Description:
EXP(X) computes the base e exponential of X.

Standard: F77 and later, has overloads that are GNU extensions
Class: Elemental function
Syntaz: RESULT = EXP (X)

Arguments:
X The type shall be REAL(*) or COMPLEX (*).

Return value:
The return value has same type and kind as X.

Ezample:

program test_exp
real :: x = 1.0
x = exp(x)

end program test_exp

Specific names:

Name Argument Return type Standard

DEXP (X) REAL(8) X REAL(8) F77 and later
CEXP(X) COMPLEX(4) X COMPLEX (4) F77 and later
ZEXP (X) COMPLEX(8) X COMPLEX (8) GNU extension
CDEXP (X) COMPLEX(8) X COMPLEX (8) GNU extension

6.62 EXPONENT — Exponent function

Description:
EXPONENT (X) returns the value of the exponent part of X. If X is zero the value
returned is zero.

Standard: F95 and later
Class: Elemental function

Syntaz: RESULT = EXPONENT (X)

62 The GNU Fortran Compiler

Arguments:
X The type shall be REAL (*).

Return value:
The return value is of type default INTEGER.

Example:

program test_exponent
real :: x = 1.0
integer :: i
i = exponent (x)
print *, i
print *, exponent(0.0)
end program test_exponent

6.63 FDATE — Get the current time as a string

Description:
FDATE(DATE) returns the current date (using the same format as CTIME) in DATE.
It is equivalent to CALL CTIME(DATE, TIME()).

If FDATE is invoked as a function, it can not be invoked as a subroutine, and vice
versa.

DATE is an INTENT(OUT) CHARACTER variable.
Standard: GNU extension
Class: Subroutine

Syntaz:

CALL FDATE(DATE).
DATE = FDATE(), (not recommended).

Arguments:
DATE The type shall be of type CHARACTER.

Return value:
The current date as a string.

Ezxample:

program test_fdate
integer(8) :: i, j

character (len=30) :: date
call fdate(date)
print *, ’Program started on ’, date

do i = 1, 100000000 ! Just a delay
j=ixi-1

end do
call fdate(date)
print *, ’Program ended on ’, date

end program test_fdate

6.64 FLOAT — Convert integer to default real

Description:
FLOAT(I) converts the integer I to a default real value.

Standard: GNU extension
Class: Elemental function

Syntaz: RESULT = FLOAT(I)

Chapter 6: Intrinsic Procedures 63

Arguments:
I The type shall be INTEGER (*).

Return value:
The return value is of type default REAL.

Example:

program test_float

integer :: i =1

if (float(i) /= 1.) call abort
end program test_float

See also: Section 6.46 [DBLE]|, page 53, Section 6.48 [DFLOAT], page 54, Section 6.164
[REAL], page 109

6.65 FGET — Read a single character in stream mode from stdin

Description:
Read a single character in stream mode from stdin by bypassing normal formatted
output. Stream I/O should not be mixed with normal record-oriented (formatted
or unformatted) I/O on the same unit; the results are unpredictable.

This intrinsic routine is provided for backwards compatibility with g77. GNU For-
tran provides the Fortran 2003 Stream facility. Programmers should consider the
use of new stream 10 feature in new code for future portability. See also Chapter 4
[Fortran 2003 status|, page 21.

Standard: GNU extension
Class: Non-elemental subroutine

Syntaz: CALL FGET(C [, STATUS])

Arguments:
C The type shall be CHARACTER.
STATUS (Optional) status flag of type INTEGER. Returns 0 on success, -1
on end-of-file, and a system specific positive error code otherwise.
Example:

PROGRAM test_fget
INTEGER, PARAMETER :: strlen = 100
INTEGER :: status, i =1
CHARACTER(len=strlen) :: str = ""

WRITE (*,*) ’Enter text:’

DO
CALL fget(str(i:i), status)
if (status /= 0 .OR. i > strlen) exit
i=1i+1

END DO

WRITE (*,*) TRIM(str)
END PROGRAM

See also: Section 6.66 [FGETC], page 63, Section 6.70 [FPUT], page 65, Section 6.71
[FPUTC], page 66

6.66 FGETC — Read a single character in stream mode

Description:
Read a single character in stream mode by bypassing normal formatted output.
Stream I/O should not be mixed with normal record-oriented (formatted or unfor-
matted) I/O on the same unit; the results are unpredictable.

64 The GNU Fortran Compiler

This intrinsic routine is provided for backwards compatibility with g77. GNU For-
tran provides the Fortran 2003 Stream facility. Programmers should consider the
use of new stream 10 feature in new code for future portability. See also Chapter 4
[Fortran 2003 status|, page 21.

Standard: GNU extension
Class: Non-elemental subroutine

Syntax: CALL FGETC(UNIT, C [, STATUS])

Arguments:
UNIT The type shall be INTEGER.
C The type shall be CHARACTER.
STATUS (Optional) status flag of type INTEGER. Returns 0 on success, -1
on end-of-file and a system specific positive error code otherwise.
Ezample:

PROGRAM test_fgetc
INTEGER :: fd = 42, status
CHARACTER :: c

OPEN (UNIT=£d, FILE="/etc/passwd", ACTION="READ", STATUS = "OLD")
DO
CALL fgetc(fd, c, status)
IF (status /= 0) EXIT
call fput(c)
END DO
CLOSE(UNIT=£fd)
END PROGRAM

See also: Section 6.65 [FGET], page 63, Section 6.70 [FPUT], page 65, Section 6.71 [FPUTC],
page 66

6.67 FLOOR — Integer floor function

Description:
FLOOR(X) returns the greatest integer less than or equal to X.

Standard: F95 and later
Class: Elemental function
Syntax: RESULT = FLOOR(X [, KIND])

Arguments:
X The type shall be REAL (*).
KIND (Optional) An INTEGER(*) initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type INTEGER (KIND)

Ezample:

program test_floor
real :: x = 63.29
real :: y = -63.59
print *, floor(x) ! returns 63
print *, floor(y) ! returns -64
end program test_floor

See also: Section 6.32 [CEILING], page 45, Section 6.149 [NINT], page 102

Chapter 6: Intrinsic Procedures 65

6.68 FLUSH — Flush I/O unit(s)

Description:
Flushes Fortran unit(s) currently open for output. Without the optional argument,
all units are flushed, otherwise just the unit specified.

Standard: GNU extension
Class: Non-elemental subroutine
Syntaz: CALL FLUSH(UNIT)

Arguments:
UNIT (Optional) The type shall be INTEGER.

Note: Beginning with the Fortran 2003 standard, there is a FLUSH statement that should
be preferred over the FLUSH intrinsic.

6.69 FNUM — File number function

Description:
FNUM(UNIT) returns the POSIX file descriptor number corresponding to the open
Fortran I/O unit UNIT.

Standard: GNU extension
Class: Non-elemental function
Syntaz: RESULT = FNUM(UNIT)

Arguments:
UNIT The type shall be INTEGER.

Return value:
The return value is of type INTEGER

Example:

program test_fnum
integer :: i
open (unit=10, status = "scratch")
i = fnum(10)
print *, i
close (10)
end program test_fnum

6.70 FPUT — Write a single character in stream mode to stdout

Description:
Write a single character in stream mode to stdout by bypassing normal formatted
output. Stream I/O should not be mixed with normal record-oriented (formatted
or unformatted) I/O on the same unit; the results are unpredictable.

This intrinsic routine is provided for backwards compatibility with g77. GNU For-
tran provides the Fortran 2003 Stream facility. Programmers should consider the
use of new stream IO feature in new code for future portability. See also Chapter 4
[Fortran 2003 status|, page 21.

Standard: GNU extension
Class: Non-elemental subroutine

Syntax: CALL FPUT(C [, STATUS])

66

Arguments:

Ezample:

See also:

The GNU Fortran Compiler

C The type shall be CHARACTER.
STATUS (Optional) status flag of type INTEGER. Returns 0 on success, -1
on end-of-file and a system specific positive error code otherwise.

PROGRAM test_fput
CHARACTER(1len=10) :: str = "gfortran"
INTEGER :: i
DO i = 1, len_trim(str)
CALL fput(str(i:i))
END DO
END PROGRAM

Section 6.71 [FPUTC], page 66, Section 6.65 [FGET], page 63, Section 6.66
[FGETC], page 63

6.71 FPUTC — Write a single character in stream mode

Description:

Standard:
Class:
Syntaz:

Arguments:

Ezample:

See also:

Write a single character in stream mode by bypassing normal formatted output.
Stream I/O should not be mixed with normal record-oriented (formatted or unfor-
matted) I/O on the same unit; the results are unpredictable.

This intrinsic routine is provided for backwards compatibility with g77. GNU For-
tran provides the Fortran 2003 Stream facility. Programmers should consider the
use of new stream 10 feature in new code for future portability. See also Chapter 4
[Fortran 2003 status], page 21.

GNU extension
Non-elemental subroutine

CALL FPUTC(UNIT, C [, STATUS])

UNIT The type shall be INTEGER.
C The type shall be CHARACTER.
STATUS (Optional) status flag of type INTEGER. Returns 0 on success, -1

on end-of-file and a system specific positive error code otherwise.

PROGRAM test_fputc
CHARACTER(len=10) :: str = "gfortran"
INTEGER :: fd = 42, i

OPEN(UNIT = fd, FILE = "out", ACTION = "WRITE", STATUS="NEW")
DO i = 1, len_trim(str)
CALL fputc(fd, str(i:i))
END DO
CLOSE(fd)
END PROGRAM

Section 6.70 [FPUT], page 65, Section 6.65 [FGET], page 63, Section 6.66 [FGETC],
page 63

6.72 FRACTION — Fractional part of the model representation

Description:

FRACTION(X) returns the fractional part of the model representation of X.

Chapter 6: Intrinsic Procedures 67

Standard: F95 and later
Class: Elemental function
Syntaz: Y = FRACTION(X)

Arguments:
X The type of the argument shall be a REAL.

Return value:
The return value is of the same type and kind as the argument. The fractional part
of the model representation of X is returned; it is X * RADIX (X)** (-EXPONENT (X)).

Example:

program test_fraction

real :: x

x = 178.1387e-4

print *, fraction(x), x * radix(x)**(-exponent(x))
end program test_fraction

6.73 FREE — Frees memory

Description:
Frees memory previously allocated by MALLOC(). The FREE intrinsic is an extension
intended to be used with Cray pointers, and is provided in GNU Fortran to allow
user to compile legacy code. For new code using Fortran 95 pointers, the memory
de-allocation intrinsic is DEALLOCATE.

Standard: GNU extension
Class: Subroutine
Syntaz: CALL FREE(PTR)

Arguments:
PTR The type shall be INTEGER. It represents the location of the
memory that should be de-allocated.

Return value:
None

Ezxample: See MALLOC for an example.
See also: Section 6.130 [MALLOC], page 92

6.74 FSEEK — Low level file positioning subroutine
Not yet implemented in GNU Fortran.

Description:
Standard: GNU extension

Class: Subroutine
Syntax:

Arguments:
Return value:
Ezample:

Specific names:
See also: g77 features lacking in gfortran

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19292

68

The GNU Fortran Compiler

6.75 FSTAT — Get file status

Description:

Standard:
Class:
Syntaz:

Arguments:

Ezample:

See also:

FSTAT is identical to Section 6.189 [STAT], page 121, except that information about
an already opened file is obtained.

The elements in BUFF are the same as described by Section 6.189 [STAT], page 121.
GNU extension
Non-elemental subroutine

CALL FSTAT(UNIT, BUFF [, STATUS])

UNIT An open I/O unit number of type INTEGER.
BUFF The type shall be INTEGER(4) , DIMENSION(13).
STATUS (Optional) status flag of type INTEGER(4). Returns 0 on success

and a system specific error code otherwise.
See Section 6.189 [STAT], page 121 for an example.

To stat a link: Section 6.128 [LSTAT], page 91, to stat a file: Section 6.189 [STAT],
page 121

6.76 FTELL — Current stream position

Description:

Standard:
Class:

Syntax:

Arguments:

Retrieves the current position within an open file.

This intrinsic is provided in both subroutine and function forms; however, only one
form can be used in any given program unit.

GNU extension

Subroutine, function

CALL FTELL(UNIT, OFFSET)
OFFSET = FTELL (UNIT)

OFFSET Shall of type INTEGER.
UNIT Shall of type INTEGER.

Return value:

Ezample:

See also:

In either syntax, OFFSET is set to the current offset of unit number UNIT), or to
—1 if the unit is not currently open.

PROGRAM test_ftell
INTEGER :: i
OPEN(10, FILE="temp.dat")
CALL ftell(10,i)
WRITE(*,*) i

END PROGRAM

Section 6.74 [FSEEK], page 67

Chapter 6: Intrinsic Procedures 69

6.77 GERROR — Get last system error message

Description:
Returns the system error message corresponding to the last system error. This
resembles the functionality of strerror(3) in C.

Standard: GNU extension
Class: Subroutine
Syntax: CALL GERROR (RESULT)

Arguments:
RESULT Shall of type CHARACTER (*).

Ezample:

PROGRAM test_gerror
CHARACTER(1en=100) :: msg
CALL gerror (msg)
WRITE(*,*) msg

END PROGRAM

See also: Section 6.100 [IERRNO], page 79, Section 6.154 [PERROR], page 105

6.78 GETARG — Get command line arguments

Description:
Retrieve the Nth argument that was passed on the command line when the contain-
ing program was invoked.

This intrinsic routine is provided for backwards compatibility with GNU For-
tran 77. In new code, programmers should consider the use of the Section 6.80
[GET_-COMMAND_ARGUMENT], page 70 intrinsic defined by the Fortran 2003
standard.

Standard: GNU extension
Class: Subroutine
Syntax: CALL GETARG(N, ARG)

Arguments:
N Shall be of type INTEGER(4), N >0
ARG Shall be of type CHARACTER (*).

Return value:
After GETARG returns, the ARG argument holds the Nth command line argument.
If ARG can not hold the argument, it is truncated to fit the length of ARG. If there
are less than N arguments specified at the command line, ARG will be filled with
blanks. If N = 0, ARG is set to the name of the program (on systems that support
this feature).

Example:

PROGRAM test_getarg
INTEGER :: i
CHARACTER(len=32) :: arg

DO i =1, iargcQ)
CALL getarg(i, arg)
WRITE (*,*) arg

END DO

END PROGRAM

70 The GNU Fortran Compiler

See also: GNU Fortran 77 compatibility function: Section 6.93 [TARGC], page 76

F2003 functions and subroutines: Section 6.79 [GET_-COMMAND], page 70,
Section 6.80 [GET_-COMMAND_ARGUMENT], page 70, Section 6.37 [COM-
MAND_ARGUMENT_COUNT], page 48

6.79 GET_COMMAND — Get the entire command line

Description:
Retrieve the entire command line that was used to invoke the program.

Standard: F2003
Class: Subroutine
Syntaz: CALL GET_COMMAND (CMD)

Arguments:
CMD Shall be of type CHARACTER (*).

Return value:
Stores the entire command line that was used to invoke the program in ARG. If
ARG is not large enough, the command will be truncated.

Example:

PROGRAM test_get_command
CHARACTER (len=255) :: cmd
CALL get_command (cmd)
WRITE (*,*) TRIM(cmd)

END PROGRAM

See also: Section 6.80 [GET_-COMMAND_ARGUMENT], page 70, Section 6.37 [COM-
MAND_ARGUMENT_COUNT], page 48

6.80 GET_COMMAND_ARGUMENT — Get command line arguments

Description:
Retrieve the Nth argument that was passed on the command line when the contain-
ing program was invoked.

Standard: F2003
Class: Subroutine
Synth: CALL GET_COMMAND_ARGUMENT (N, ARG)

Arguments:
N Shall be of type INTEGER(4), N >0
ARG Shall be of type CHARACTER (*).

Return value:
After GET_COMMAND_ARGUMENT returns, the ARG argument holds the Nth command
line argument. If ARG can not hold the argument, it is truncated to fit the length
of ARG. If there are less than N arguments specified at the command line, ARG
will be filled with blanks. If N = 0, ARG is set to the name of the program (on
systems that support this feature).

Example:

PROGRAM test_get_command_argument
INTEGER :: i
CHARACTER(len=32) :: arg

Chapter 6: Intrinsic Procedures 71

i=0

DO
CALL get_command_argument (i, arg)
IF (LEN_TRIM(arg) == 0) EXIT

WRITE (*,*) TRIM(arg)
i =i+l
END DO
END PROGRAM

See also: Section 6.79 [GET_COMMAND], page 70, Section 6.37 [COM-
MAND_ARGUMENT_COUNT], page 48

6.81 GETCWD — Get current working directory

Description:
Get current working directory.

Standard: GNU extension
Class: Non-elemental subroutine.

Syntax: CALL GETCWD(CWD [, STATUS])

Arguments:
CWD The type shall be CHARACTER (*).
STATUS (Optional) status flag. Returns 0 on success, a system specific
and non-zero error code otherwise.
Example:

PROGRAM test_getcwd
CHARACTER (len=255) :: cwd
CALL getcwd(cwd)
WRITE(*,%*) TRIM(cwd)

END PROGRAM

See also: Section 6.34 [CHDIR], page 46

6.82 GETENV — Get an environmental variable

Description:
Get the VALUE of the environmental variable ENVVAR.

This intrinsic routine is provided for backwards compatibility with GNU For-
tran 77. In new code, programmers should consider the use of the Section 6.83
[GET_ENVIRONMENT_VARIABLE]|, page 72 intrinsic defined by the Fortran 2003
standard.

Standard: GNU extension
Class: Subroutine
Syntaz: CALL GETENV(ENVVAR, VALUE)

Arguments:
ENVVAR Shall be of type CHARACTER (*).
VALUE Shall be of type CHARACTER (*).

Return value:
Stores the value of ENVVAR in VALUE. If VALUE is not large enough to hold the
data, it is truncated. If ENVVAR is not set, VALUE will be filled with blanks.

Example:

72 The GNU Fortran Compiler

PROGRAM test_getenv
CHARACTER (1len=255) :: homedir
CALL getenv("HOME", homedir)
WRITE (*,*) TRIM(homedir)

END PROGRAM

See also: Section 6.83 [GET_ENVIRONMENT_VARIABLE], page 72

6.83 GET_ENVIRONMENT _VARIABLE — Get an environmental
variable

Description:

Get the VALUE of the environmental variable ENVVAR.
Standard: F2003
Class: Subroutine

Syntax: CALL GET_ENVIRONMENT_VARIABLE(ENVVAR, VALUE)

Arguments:
ENVVAR Shall be of type CHARACTER ().
VALUE Shall be of type CHARACTER (*).

Return value:
Stores the value of ENVVAR in VALUE. If VALUE is not large enough to hold the
data, it is truncated. If ENVVAR is not set, VALUE will be filled with blanks.

Ezample:

PROGRAM test_getenv
CHARACTER(len=255) :: homedir
CALL get_environment_variable("HOME", homedir)
WRITE (*,*) TRIM(homedir)

END PROGRAM

6.84 GETGID — Group ID function

Description:
Returns the numerical group ID of the current process.

Standard: GNU extension
Class: function
Syntax: RESULT = GETGID()

Return value:
The return value of GETGID is an INTEGER of the default kind.

Ezxample: See GETPID for an example.
See also: Section 6.86 [GETPID], page 73, Section 6.87 [GETUID], page 73

6.85 GETLOG — Get login name

Description:
Gets the username under which the program is running.

Standard: GNU extension
Class: Subroutine

Syntaz: CALL GETLOG (LOGIN)

Chapter 6: Intrinsic Procedures 73

Arguments:
LOGIN Shall be of type CHARACTER (*).

Return value:
Stores the current user name in LOGIN. (On systems where the getlogin(3) func-
tion is not implemented, this will return a blank string.)

Example:

PROGRAM TEST_GETLOG
CHARACTER(32) :: login
CALL GETLOG(login)
WRITE(*,*) login

END PROGRAM

See also: Section 6.87 [GETUID]|, page 73

6.86 GETPID — Process ID function

Description:
Returns the numerical process identifier of the current process.

Standard: GNU extension
Class: function
Syntaz: RESULT = GETPID()

Return value:
The return value of GETPID is an INTEGER of the default kind.

Ezample:
program info
print *, "The current process ID is ", getpid()
print *, "Your numerical user ID is ", getuid()
print *, "Your numerical group ID is ", getgid()

end program info

See also: Section 6.84 [GETGID], page 72, Section 6.87 [GETUID], page 73

6.87 GETUID — User ID function

Description:
Returns the numerical user ID of the current process.

Standard: GNU extension
Class: function
Syntax: RESULT = GETUID()

Return value:
The return value of GETUID is an INTEGER of the default kind.

Ezxample: See GETPID for an example.

See also: Section 6.86 [GETPID], page 73, Section 6.85 [GETLOG], page 72

74 The GNU Fortran Compiler

6.88 GMTIME — Convert time to GMT info

Description:
Given a system time value STIME (as provided by the TIME8() intrinsic), fills TAR-
RAY with values extracted from it appropriate to the UTC time zone (Universal
Coordinated Time, also known in some countries as GMT, Greenwich Mean Time),
using gmtime (3).

Standard: GNU extension
Class: Subroutine

Syntax: CALL GMTIME(STIME, TARRAY)

Arguments:
STIME An INTEGER(*) scalar expression corresponding to a system
time, with INTENT (IN).
TARRAY A default INTEGER array with 9 elements, with INTENT (OUT).

Return value:
The elements of TARRAY are assigned as follows:

1. Seconds after the minute, range 0-59 or 0-61 to allow for leap seconds
Minutes after the hour, range 0-59

Hours past midnight, range 0-23

Day of month, range 0-31

Number of months since January, range 0-12

Years since 1900

Number of days since Sunday, range 0-6

Days since January 1

© 00N e N

Daylight savings indicator: positive if daylight savings is in effect, zero if not,
and negative if the information is not available.

See also: Section 6.44 [CTIME], page 51, Section 6.129 [LTIME], page 91, Section 6.196
[TIME], page 125, Section 6.197 [TIMES], page 125

6.89 HOSTNM — Get system host name

Description:
Retrieves the host name of the system on which the program is running.
This intrinsic is provided in both subroutine and function forms; however, only one
form can be used in any given program unit.

Standard: GNU extension
Class: Subroutine, function

Syntaz:

CALL HOSTNM(NAME[, STATUS])
STATUS = HOSTNM (NAME)

Arguments:
NAME Shall of type CHARACTER (*).
STATUS (Optional) status flag of type INTEGER. Returns 0 on success, or
a system specific error code otherwise.

Return value:
In either syntax, NAME is set to the current hostname if it can be obtained, or to
a blank string otherwise.

Chapter 6: Intrinsic Procedures 75

6.90 HUGE — Largest number of a kind

Description:
HUGE (X) returns the largest number that is not an infinity in the model of the type
of X.

Standard: F95 and later
Class: Elemental function
Syntaz: RESULT = HUGE (X)

Arguments:
X Shall be of type REAL or INTEGER.

Return value:
The return value is of the same type and kind as X

Ezample:

program test_huge_tiny
print *, huge(0), huge(0.0), huge(0.0d0)
print *, tiny(0.0), tiny(0.0d0)

end program test_huge_tiny

6.91 IACHAR — Code in ASCII collating sequence

Description:
TACHAR(C) returns the code for the ASCII character in the first character position
of C.

Standard: F95 and later
Class: Elemental function
Syntaz: RESULT = IACHAR(C)

Arguments:
C Shall be a scalar CHARACTER, with INTENT (IN)

Return value:
The return value is of type INTEGER and of the default integer kind.

Ezample:
program test_iachar
integer i
i = jachar(’ ?)
end program test_iachar
Note: See Section 6.97 [ICHAR], page 78 for a discussion of converting between numerical

values and formatted string representations.
See also: Section 6.5 [ACHAR], page 31, Section 6.33 [CHAR], page 45, Section 6.97 [ICHAR],
page 78

6.92 IAND — Bitwise logical and

Description:
Bitwise logical AND.

Standard: F95 and later
Class: Elemental function

Syntaz: RESULT = IAND(I, J)

76 The GNU Fortran Compiler

Arguments:
I The type shall be INTEGER (*).
J The type shall be INTEGER (*), of the same kind as I. (As a GNU
extension, different kinds are also permitted.)

Return value:
The return type is INTEGER (%), of the same kind as the arguments. (If the argument
kinds differ, it is of the same kind as the larger argument.)

Example:

PROGRAM test_iand
INTEGER :: a, b
DATA a / Z°F’ /, b / 2°3* /
WRITE (*,*) IAND(a, b)

END PROGRAM

See also: Section 6.105 [IOR], page 81, Section 6.99 [IEOR], page 79, Section 6.95 [IBITS],
page 77, Section 6.96 [IBSET], page 77, Section 6.94 [IBCLR], page 76, Section 6.150
[NOT], page 103

6.93 IARGC — Get the number of command line arguments

Description:
IARGC() returns the number of arguments passed on the command line when the
containing program was invoked.

This intrinsic routine is provided for backwards compatibility with GNU Fortran
77. In new code, programmers should consider the use of the Section 6.37 [COM-
MAND_ARGUMENT_COUNT], page 48 intrinsic defined by the Fortran 2003 stan-
dard.

Standard: GNU extension
Class: Non-elemental Function
Syntaz: RESULT = IARGC()

Arguments:
None.

Return value:
The number of command line arguments, type INTEGER (4).

Ezample: See Section 6.78 [GETARG], page 69

See also: GNU Fortran 77 compatibility subroutine: Section 6.78 [GETARG], page 69

F2003 functions and subroutines: Section 6.79 [GET_-COMMAND], page 70,
Section 6.80 [GET_.COMMAND_ARGUMENT], page 70, Section 6.37 [COM-
MAND_ARGUMENT_COUNT], page 48

6.94 IBCLR — Clear bit

Description:
IBCLR returns the value of I with the bit at position POS set to zero.

Standard: F95 and later
Class: Elemental function

Syntaz: RESULT = IBCLR(I, POS)

Chapter 6: Intrinsic Procedures 7

Arguments:
I The type shall be INTEGER (*).
POS The type shall be INTEGER (*).

Return value:
The return value is of type INTEGER (*) and of the same kind as I.

See also: Section 6.95 [IBITS], page 77, Section 6.96 [IBSET], page 77, Section 6.92 [TAND],
page 75, Section 6.105 [IOR], page 81, Section 6.99 [IEOR], page 79, Section 6.146
[MVBITS], page 101

6.95 IBITS — Bit extraction

Description:
IBITS extracts a field of length LEN from I, starting from bit position POS and
extending left for LEN bits. The result is right-justified and the remaining bits are
zeroed. The value of POS+LEN must be less than or equal to the value BIT_SIZE(I).

Standard: F95 and later
Class: Elemental function

Syntaz: RESULT = IBITS(I, POS, LEN)

Arguments:
I The type shall be INTEGER (*).
POS The type shall be INTEGER (*).
LEN The type shall be INTEGER (*).

Return value:
The return value is of type INTEGER (*) and of the same kind as I.

See also: Section 6.30 [BIT_SIZE], page 44, Section 6.94 [IBCLR], page 76, Section 6.96
[IBSET], page 77, Section 6.92 [IAND], page 75, Section 6.105 [IOR], page 81,
Section 6.99 [IEOR], page 79

6.96 IBSET — Set bit

Description:
IBSET returns the value of I with the bit at position POS set to one.

Standard: F95 and later
Class: Elemental function
Syntaz: RESULT = IBSET(I, POS)

Arguments:
I The type shall be INTEGER (*).
POS The type shall be INTEGER (*).

Return value:
The return value is of type INTEGER (*) and of the same kind as I.

See also: Section 6.94 IBCLRJ, page 76, Section 6.95 [IBITS], page 77, Section 6.92 [TAND],
page 75, Section 6.105 [IOR], page 81, Section 6.99 [IEOR], page 79, Section 6.146
[MVBITS], page 101

78 The GNU Fortran Compiler

6.97 ICHAR — Character-to-integer conversion function

Description:
ICHAR(C) returns the code for the character in the first character position of C in
the system’s native character set. The correspondence between characters and their
codes is not necessarily the same across different GNU Fortran implementations.

Standard: F95 and later
Class: Elemental function
Syntax: RESULT = ICHAR(C)

Arguments:
C Shall be a scalar CHARACTER, with INTENT (IN)

Return value:
The return value is of type INTEGER and of the default integer kind.

Ezample:
program test_ichar
integer i
i = ichar(’)
end program test_ichar
Note: No intrinsic exists to convert between a numeric value and a formatted character

string representation — for instance, given the CHARACTER value ’>154°, obtaining an
INTEGER or REAL value with the value 154, or vice versa. Instead, this functionality
is provided by internal-file I/O, as in the following example:

program read_val
integer value
character(len=10) string, string2
string = 2154’

! Convert a string to a numeric value
read (string,’(I10)’) value
print *, value

! Convert a value to a formatted string
write (string2,’(I10)’) value
print *, string?2

end program read_val

See also: Section 6.5 [ACHAR], page 31, Section 6.33 [CHAR], page 45, Section 6.91
[IACHAR], page 75

6.98 IDATE — Get current local time subroutine
(day/month /year)
Description:

IDATE(TARRAY) Fills TARRAY with the numerical values at the current local time.
The day (in the range 1-31), month (in the range 1-12), and year appear in elements
1, 2, and 3 of TARRAY, respectively. The year has four significant digits.

Standard: GNU extension
Class: Subroutine
Syntaz: CALL IDATE(TARRAY)

Arguments:
TARRAY The type shall be INTEGER, DIMENSION(3) and the kind shall be
the default integer kind.

Chapter 6: Intrinsic Procedures 79

Return value:
Does not return.
Example:

program test_idate
integer, dimension(3) :: tarray
call idate(tarray)
print *, tarray(1l)
print *, tarray(2)
print *, tarray(3)
end program test_idate

6.99 IEOR — Bitwise logical exclusive or

Description:
IEOR returns the bitwise boolean exclusive-OR of I and J.

Standard: F95 and later
Class: Elemental function
Syntaz: RESULT = IEOR(I, J)

Arguments:
I The type shall be INTEGER (*).
J The type shall be INTEGER (*), of the same kind as I. (As a GNU
extension, different kinds are also permitted.)

Return value:
The return type is INTEGER (*), of the same kind as the arguments. (If the argument
kinds differ, it is of the same kind as the larger argument.)

See also: Section 6.105 [IOR], page 81, Section 6.92 [[AND], page 75, Section 6.95 [IBITS],
page 77, Section 6.96 [[BSET], page 77, Section 6.94 [IBCLR], page 76, Section 6.150
[NOT], page 103

6.100 IERRNO — Get the last system error number
Description:

Returns the last system error number, as given by the C errno() function.
Standard: GNU extension
Class: Non-elemental function
Syntax: RESULT = IERRNO()

Arguments:
None.

Return value:
The return value is of type INTEGER and of the default integer kind.

See also: Section 6.154 [PERROR], page 105

6.101 INDEX — Position of a substring within a string

Description:
Returns the position of the start of the first occurrence of string SUBSTRING
as a substring in STRING, counting from one. If SUBSTRING is not present in
STRING, zero is returned. If the BACK argument is present and true, the return
value is the start of the last occurrence rather than the first.

80 The GNU Fortran Compiler

Standard: F77 and later
Class: Elemental function

Syntax: RESULT = INDEX (STRING, SUBSTRING [, BACK])

Arguments:
STRING Shall be a scalar CHARACTER (%), with INTENT (IN)
SUBSTRING Shall be a scalar CHARACTER (*), with INTENT (IN)
BACK (Optional) Shall be a scalar LOGICAL (*), with INTENT (IN)

Return value:
The return value is of type INTEGER and of the default integer kind.

See also: Section 6.171 [SCAN], page 112, Section 6.207 [VERIFY], page 130

6.102 INT — Convert to integer type

Description:
Convert to integer type

Standard: F77 and later
Class: Elemental function
Syntax: RESULT = INT(A [, KIND))

Arguments:
A Shall be of type INTEGER (*), REAL (*), or COMPLEX (*).
KIND (Optional) An INTEGER(*) initialization expression indicating
the kind parameter of the result.

Return value:
These functions return a INTEGER (*) variable or array under the following rules:

(A) If A is of type INTEGER(x), INT(A) = A

(B) If A is of type REAL(*) and |A| < 1, INT(A) equals 0. If |A| > 1, then
INT(A) equals the largest integer that does not exceed the range of A
and whose sign is the same as the sign of A.

(©) If A is of type COMPLEX (%), rule B is applied to the real part of A.
Example:

program test_int
integer :: i = 42
complex :: z = (-3.7, 1.0)
print *, int(i)
print *, int(z), int(z,8)
end program

Specific names:

Name Argument Return type Standard
IFIX(A) REAL(4) A INTEGER F77 and later
IDINT(A) REAL(8) A INTEGER F77 and later

6.103 INT2 — Convert to 16-bit integer type

Description:
Convert to a KIND=2 integer type. This is equivalent to the standard INT intrinsic
with an optional argument of KIND=2, and is only included for backwards compati-
bility.
The SHORT intrinsic is equivalent to INT2.

Chapter 6: Intrinsic Procedures 81

Standard: GNU extension.
Class: Elemental function
Syntax: RESULT = INT2(A)

Arguments:
A Shall be of type INTEGER (*), REAL (%), or COMPLEX (*).

Return value:
The return value is a INTEGER(2) variable.

See also: Section 6.102 [INT], page 80, Section 6.104 [INTS8], page 81, Section 6.126 [LONG],
page 90

6.104 INT8 — Convert to 64-bit integer type

Description:
Convert to a KIND=8 integer type. This is equivalent to the standard INT intrinsic
with an optional argument of KIND=8, and is only included for backwards compati-
bility.

Standard: GNU extension.
Class: Elemental function
Syntaz: RESULT = INT8(A)

Arguments:
A Shall be of type INTEGER (%), REAL(*), or COMPLEX ().

Return value:
The return value is a INTEGER(8) variable.

See also: Section 6.102 [INT], page 80, Section 6.103 [INT2], page 80, Section 6.126 [LONG],
page 90

6.105 IOR — Bitwise logical or

Description:
IEOR returns the bitwise boolean OR of I and J.

Standard: F95 and later
Class: Elemental function
Syntaz: RESULT = IEOR(I, J)

Arguments:
I The type shall be INTEGER (*).
J The type shall be INTEGER (*), of the same kind as I. (As a GNU
extension, different kinds are also permitted.)

Return value:
The return type is INTEGER (*), of the same kind as the arguments. (If the argument
kinds differ, it is of the same kind as the larger argument.)

See also: Section 6.99 [IEOR], page 79, Section 6.92 [IAND], page 75, Section 6.95 [IBITS],
page 77, Section 6.96 [IBSET], page 77, Section 6.94 [IBCLR], page 76, Section 6.150
[NOT], page 103

82 The GNU Fortran Compiler

6.106 IRAND — Integer pseudo-random number

Description:
IRAND (FLAG) returns a pseudo-random number from a uniform distribution between
0 and a system-dependent limit (which is in most cases 2147483647). If FLAG is 0,
the next number in the current sequence is returned; if FLAG is 1, the generator is
restarted by CALL SRAND(0); if FLAG has any other value, it is used as a new seed
with SRAND.

Standard: GNU extension
Class: Non-elemental function
Syntaz: RESULT = IRAND(FLAG)

Arguments:
FLAG Shall be a scalar INTEGER of kind 4.

Return value:
The return value is of INTEGER (kind=4) type.

Example:

program test_irand
integer,parameter :: seed = 86456

call srand(seed)

print *, irand(), irand(), irand(), irand()

print *, irand(seed), irand(), irand(), irand()
end program test_irand

6.107 ISATTY — Whether a unit is a terminal device.

Description:
Determine whether a unit is connected to a terminal device.

Standard: GNU extension.
Class: Non-elemental function.
Syntaz: RESULT = ISATTY (UNIT)

Arguments:
UNIT Shall be a scalar INTEGER ().

Return value:
Returns .TRUE. if the UNIT is connected to a terminal device, .FALSE. otherwise.

Example:

PROGRAM test_isatty
INTEGER (kind=1) :: unit
DO unit = 1, 10
write(*,*) isatty(unit=unit)
END DO
END PROGRAM

See also: Section 6.202 [TTYNAM], page 127

6.108 ISHFT — Shift bits

Description:
ISHFT returns a value corresponding to I with all of the bits shifted SHIF'T places.
A value of SHIFT greater than zero corresponds to a left shift, a value of zero

Chapter 6: Intrinsic Procedures 83

corresponds to no shift, and a value less than zero corresponds to a right shift. If
the absolute value of SHIF'T is greater than BIT_SIZE(I), the value is undefined.
Bits shifted out from the left end or right end are lost; zeros are shifted in from the
opposite end.

Standard: F95 and later
Class: Elemental function
Syntaa:: RESULT = ISHFT(I, SHIFT)

Arguments:
I The type shall be INTEGER (*).
SHIFT The type shall be INTEGER (*).

Return value:
The return value is of type INTEGER (*) and of the same kind as I.

See also: Section 6.109 [ISHFTC], page 83

6.109 ISHFTC — Shift bits circularly

Description:
ISHFTC returns a value corresponding to I with the rightmost SIZE bits shifted
circularly SHIF'T places; that is, bits shifted out one end are shifted into the opposite
end. A value of SHIFT greater than zero corresponds to a left shift, a value of zero
corresponds to no shift, and a value less than zero corresponds to a right shift. The
absolute value of SHIF'T must be less than SIZE. If the SIZE argument is omitted,
it is taken to be equivalent to BIT_SIZE(I).

Standard: F95 and later
Class: Elemental function

Syntaz: RESULT = ISHFTC(I, SHIFT [, SIZE])

Arguments:
1 The type shall be INTEGER (*).
SHIFT The type shall be INTEGER (*).
SIZE (Optional) The type shall be INTEGER(*); the value must be

greater than zero and less than or equal to BIT_SIZE(I).

Return value:
The return value is of type INTEGER (*) and of the same kind as L.

See also: Section 6.108 [ISHFT], page 82

6.110 ITIME — Get current local time subroutine
(hour /minutes/seconds)

Description:
IDATE(TARRAY) Fills TARRAY with the numerical values at the current local time.
The hour (in the range 1-24), minute (in the range 1-60), and seconds (in the range
1-60) appear in elements 1, 2, and 3 of TARRAY, respectively.

Standard: GNU extension
Class: Subroutine

Syntaz: CALL ITIME(TARRAY)

84 The GNU Fortran Compiler

Arguments:
TARRAY The type shall be INTEGER, DIMENSION(3) and the kind shall be
the default integer kind.

Return value:
Does not return.

Example:

program test_itime
integer, dimension(3) :: tarray
call itime(tarray)
print *, tarray(1l)
print *, tarray(2)
print *, tarray(3)

end program test_itime

6.111 KILL — Send a signal to a process

Description:
Standard: Sends the signal specified by SIGNAL to the process PID. See kil1(2).

Class: Subroutine

Syntax: CALL KILL(PID, SIGNAL [, STATUS])

Arguments:
PID Shall be a scalar INTEGER, with INTENT (IN)
SIGNAL Shall be a scalar INTEGER, with INTENT (IN)
STATUS (Optional) status flag of type INTEGER(4) or INTEGER(8). Re-

turns 0 on success, or a system-specific error code otherwise.

See also: Section 6.2 [ABORT], page 29, Section 6.60 [EXIT], page 60

6.112 KIND — Kind of an entity

Description:
KIND(X) returns the kind value of the entity X.

Standard: F95 and later
Class: Inquiry function
Syntax: K = KIND(X)

Arguments:
X Shall be of type LOGICAL, INTEGER, REAL, COMPLEX or CHARACTER.

Return value:
The return value is a scalar of type INTEGER and of the default integer kind.

Example:
program test_kind
integer,parameter :: kc = kind(’ ’)
integer,parameter :: k1 = kind(.true.)

print *, "The default character kind is ", kc
print *, "The default logical kind is ", k1
end program test_kind

Chapter 6: Intrinsic Procedures 85

6.113 LBOUND — Lower dimension bounds of an array

Description:
Returns the lower bounds of an array, or a single lower bound along the DIM
dimension.

Standard: F95 and later
Class: Inquiry function
Syntax: RESULT = LBOUND (ARRAY [, DIM])

Arguments:
ARRAY Shall be an array, of any type.
DIM (Optional) Shall be a scalar INTEGER (*).

Return value:
If DIM is absent, the result is an array of the lower bounds of ARRAY. If DIM is
present, the result is a scalar corresponding to the lower bound of the array along
that dimension. If ARRAY is an expression rather than a whole array or array
structure component, or if it has a zero extent along the relevant dimension, the
lower bound is taken to be 1.

See also: Section 6.203 [UBOUND)], page 128

6.114 LEN — Length of a character entity

Description:
Returns the length of a character string. If STRING is an array, the length of an
element of STRING is returned. Note that STRING need not be defined when this
intrinsic is invoked, since only the length, not the content, of STRING is needed.

Standard: FT77 and later
Class: Inquiry function
Syntaz: L = LEN(STRING)

Arguments:
STRING Shall be a scalar or array of type CHARACTER(*), with
INTENT (IN)

Return value:
The return value is an INTEGER of the default kind.

See also: Section 6.115 [LEN_TRIM], page 85, Section 6.8 [ADJUSTL], page 32, Section 6.9
[ADJUSTR], page 33

6.115 LEN_TRIM — Length of a character entity without trailing
blank characters

Description:
Returns the length of a character string, ignoring any trailing blanks.

Standard: F95 and later
Class: Elemental function
Syntaz: ~ RESULT = LEN_TRIM(STRING)

Arguments:
STRING Shall be a scalar of type CHARACTER (*), with INTENT (IN)

86 The GNU Fortran Compiler

Return value:
The return value is an INTEGER of the default kind.

See also: Section 6.114 [LEN], page 85, Section 6.8 [ADJUSTL], page 32, Section 6.9 [AD-
JUSTR], page 33

6.116 LGE — Lexical greater than or equal

Description:
Determines whether one string is lexically greater than or equal to another string,
where the two strings are interpreted as containing ASCII character codes. If the
String A and String B are not the same length, the shorter is compared as if spaces
were appended to it to form a value that has the same length as the longer.

In general, the lexical comparison intrinsics LGE, LGT, LLE, and LLT differ from the
corresponding intrinsic operators .GE., .GT., .LE., and .LT., in that the latter use
the processor’s character ordering (which is not ASCII on some targets), whereas
the former always use the ASCII ordering.

Standard: F77 and later
Class: Elemental function
Syntax: RESULT = LGE(STRING_A, STRING_B)

Arguments:
STRING_A Shall be of default CHARACTER type.
STRING_B Shall be of default CHARACTER type.

Return value:
Returns .TRUE. if STRING_A >= STRING_B, and .FALSE. otherwise, based on the
ASCII ordering.

See also: Section 6.117 [LGT], page 86, Section 6.119 [LLE], page 87, Section 6.120 [LLT],
page 88

6.117 LGT — Lexical greater than

Description:

Determines whether one string is lexically greater than another string, where the
two strings are interpreted as containing ASCII character codes. If the String A
and String B are not the same length, the shorter is compared as if spaces were
appended to it to form a value that has the same length as the longer.

In general, the lexical comparison intrinsics LGE, LGT, LLE, and LLT differ from the
corresponding intrinsic operators .GE., .GT., .LE., and .LT., in that the latter use
the processor’s character ordering (which is not ASCII on some targets), whereas
the former always use the ASCII ordering.

Standard: F77 and later
Class: Elemental function
Synt(m:: RESULT = LGT(STRING_A, STRING_B)

Arguments:
STRING_A Shall be of default CHARACTER type.
STRING_B Shall be of default CHARACTER type.

Return value:
Returns .TRUE. if STRING_A > STRING_B, and .FALSE. otherwise, based on the
ASCII ordering.

Chapter 6: Intrinsic Procedures 87

See also:

Section 6.116 [LGE], page 86, Section 6.119 [LLE], page 87, Section 6.120 [LLT],
page 88

6.118 LINK — Create a hard link

Description:

Standard:
Class:
Syntaz:

Arguments:

See also:

Makes a (hard) link from file PATHI to PATH2. A null character (CHAR(0)) can be
used to mark the end of the names in PATHI and PATH2; otherwise, trailing blanks
in the file names are ignored. If the STATUS argument is supplied, it contains 0 on
success or a nonzero error code upon return; see 1ink(2).

This intrinsic is provided in both subroutine and function forms; however, only one
form can be used in any given program unit.

GNU extension

Subroutine, non-elemental function

CALL LINK(PATH1, PATH2 [, STATUS])
STATUS = LINK(PATH1, PATH2)

PATHI1 Shall be of default CHARACTER type.
PATH?2 Shall be of default CHARACTER type.
STATUS (Optional) Shall be of default INTEGER type.

Section 6.191 [SYMLNK], page 122, Section 6.205 [UNLINK], page 129

6.119 LLE — Lexical less than or equal

Description:

Standard:
Class:
Syntaz:

Arguments:

Determines whether one string is lexically less than or equal to another string, where
the two strings are interpreted as containing ASCII character codes. If the String
A and String B are not the same length, the shorter is compared as if spaces were
appended to it to form a value that has the same length as the longer.

In general, the lexical comparison intrinsics LGE, LGT, LLE, and LLT differ from the
corresponding intrinsic operators .GE., .GT., .LE., and .LT., in that the latter use
the processor’s character ordering (which is not ASCII on some targets), whereas
the former always use the ASCII ordering.

F77 and later
Elemental function

RESULT = LLE(STRING_A, STRING_B)

STRING_A Shall be of default CHARACTER type.
STRING_B Shall be of default CHARACTER type.

Return value:

See also:

Returns .TRUE. if STRING_A <= STRING_B, and .FALSE. otherwise, based on the
ASCII ordering.

Section 6.116 [LGE], page 86, Section 6.117 [LGT], page 86, Section 6.120 [LLT],
page 88

88 The GNU Fortran Compiler

6.120 LLT — Lexical less than

Description:
Determines whether one string is lexically less than another string, where the two
strings are interpreted as containing ASCII character codes. If the String A and
String B are not the same length, the shorter is compared as if spaces were appended
to it to form a value that has the same length as the longer.

In general, the lexical comparison intrinsics LGE, LGT, LLE, and LLT differ from the
corresponding intrinsic operators .GE., .GT., .LE., and .LT., in that the latter use
the processor’s character ordering (which is not ASCII on some targets), whereas
the former always use the ASCII ordering.

Standard: F77 and later
Class: Elemental function
Symfax: RESULT = LLT(STRING_A, STRING_B)

Arguments:
STRING_A Shall be of default CHARACTER type.
STRING_B Shall be of default CHARACTER type.

Return value:
Returns .TRUE. if STRING_A < STRING_B, and .FALSE. otherwise, based on the
ASCII ordering.

See also: Section 6.116 [LGE], page 86, Section 6.117 [LGT], page 86, Section 6.119 [LLE],
page 87

6.121 LNBLNK — Index of the last non-blank character in a
string

Description:
Returns the length of a character string, ignoring any trailing blanks. This is iden-
tical to the standard LEN_TRIM intrinsic, and is only included for backwards com-
patibility.

Standard: GNU extension
Class: Elemental function
Symfax: RESULT = LNBLNK (STRING)

Arguments:
STRING Shall be a scalar of type CHARACTER (*), with INTENT (IN)

Return value:
The return value is of INTEGER (kind=4) type.

See also: Section 6.101 [INDEX], page 79, Section 6.115 [LEN_TRIM], page 85

6.122 LOC — Returns the address of a variable

Description:
LOC(X) returns the address of X as an integer.

Standard: GNU extension
Class: Inquiry function

Syntaz: RESULT = LOC(X)

Chapter 6: Intrinsic Procedures 89

Arguments:
X Variable of any type.

Return value:
The return value is of type INTEGER, with a KIND corresponding to the size (in bytes)
of a memory address on the target machine.

Example:

program test_loc
integer :: i
real :: r
i = loc(r)
print *, i
end program test_loc

6.123 LOG — Logarithm function

Description:
LOG(X) computes the logarithm of X.

Standard: F77 and later
Class: Elemental function
Syntaz: RESULT = LOG(X)

Arguments:
X The type shall be REAL(*) or COMPLEX (*).

Return value:
The return value is of type REAL(*) or COMPLEX (*). The kind type parameter is
the same as X.

Example:
program test_log
real(8) :: x = 1.0_8
complex :: z = (1.0, 2.0)
x = log(x)
z = log(z)

end program test_log

Specific names:

Name Argument Return type Standard
ALOG (X) REAL(4) X REAL(4) f95, gnu
DLOG (X) REAL(8) X REAL(8) 95, gnu
CLOG(X) COMPLEX (4) X COMPLEX (4) 95, gnu
ZLOG(X) COMPLEX(8) X COMPLEX (8) 95, gnu
CDLOG(X) COMPLEX(8) X COMPLEX (8) 95, gnu

6.124 L0OG10 — Base 10 logarithm function

Description:
LOG10(X) computes the base 10 logarithm of X.

Standard: F77 and later
Class: Elemental function
Syntaz: RESULT = L0OG10(X)

Arguments:
X The type shall be REAL(*).

90 The GNU Fortran Compiler

Return value:
The return value is of type REAL(*) or COMPLEX (*). The kind type parameter is
the same as X.

Ezample:

program test_loglO
real(8) :: x = 10.0_8
x = logl0(x)

end program test_loglO

Specific names:

Name Argument Return type Standard
ALOG10(X) REAL(4) X REAL (4) F95 and later
DLOG10(X) REAL(8) X REAL(8) F95 and later

6.125 LOGICAL — Convert to logical type

Description:
Converts one kind of LOGICAL variable to another.

Standard: F95 and later
Class: Elemental function
Syntaa:: RESULT = LOGICAL(L [, KIND])

Arguments:
L The type shall be LOGICAL (*).
KIND (Optional) An INTEGER(*) initialization expression indicating
the kind parameter of the result.

Return value:
The return value is a LOGICAL value equal to L, with a kind corresponding to KIND,
or of the default logical kind if KIND is not given.

See also: Section 6.102 [INT], page 80, Section 6.164 [REAL], page 109, Section 6.36 [CM-
PLX], page 47

6.126 LONG — Convert to integer type

Description:
Convert to a KIND=4 integer type, which is the same size as a C long integer. This
is equivalent to the standard INT intrinsic with an optional argument of KIND=4,
and is only included for backwards compatibility.

Standard: GNU extension.
Class: Elemental function
Syntaz: RESULT = LONG(A)

Arguments:
A Shall be of type INTEGER (%), REAL(*), or COMPLEX ().

Return value:
The return value is a INTEGER(4) variable.

See also: Section 6.102 [INT], page 80, Section 6.103 [INT2], page 80, Section 6.104 [INTS],
page 81

Chapter 6: Intrinsic Procedures 91

6.127 LSHIFT — Left shift bits

Description:
LSHIFT returns a value corresponding to I with all of the bits shifted left by SHIFT
places. If the absolute value of SHIFT is greater than BIT_SIZE(I), the value is
undefined. Bits shifted out from the left end are lost; zeros are shifted in from the
opposite end.

This function has been superseded by the ISHFT intrinsic, which is standard in
Fortran 95 and later.

Standard: GNU extension
Class: Elemental function
Syntaz: RESULT = LSHIFT(I, SHIFT)

Arguments:
I The type shall be INTEGER (*).
SHIFT The type shall be INTEGER ().

Return value:
The return value is of type INTEGER(*) and of the same kind as I.

See also: Section 6.108 [ISHFT], page 82, Section 6.109 [ISHFTC], page 83, Section 6.169
[RSHIFT], page 111

6.128 LSTAT — Get file status

Description:
LSTAT is identical to Section 6.189 [STAT], page 121, except that if path is a symbolic
link, then the link itself is statted, not the file that it refers to.

The elements in BUFF are the same as described by Section 6.189 [STAT], page 121.
Standard: GNU extension
Class: Non-elemental subroutine

Syntaz: CALL LSTAT(FILE, BUFF [, STATUS])

Arguments:
FILE The type shall be CHARACTER(*), a valid path within the file
system.
BUFF The type shall be INTEGER(4) , DIMENSION(13).
STATUS (Optional) status flag of type INTEGER (4). Returns 0 on success

and a system specific error code otherwise.
Ezample: See Section 6.189 [STAT], page 121 for an example.

See also: To stat an open file: Section 6.75 [FSTAT], page 68, to stat a file: Section 6.189
[STAT], page 121

6.129 LTIME — Convert time to local time info

Description:
Given a system time value STIME (as provided by the TIME8() intrinsic), fills
TARRAY with values extracted from it appropriate to the local time zone using
localtime(3).

Standard: GNU extension

92 The GNU Fortran Compiler

Class: Subroutine

Syntaz: CALL LTIME(STIME, TARRAY)

Arguments:
STIME An INTEGER(*) scalar expression corresponding to a system
time, with INTENT (IN).
TARRAY A default INTEGER array with 9 elements, with INTENT (OUT).

Return value:
The elements of TARRAY are assigned as follows:

1. Seconds after the minute, range 0-59 or 0-61 to allow for leap seconds
Minutes after the hour, range 0-59

Hours past midnight, range 0-23

Day of month, range 0-31

Number of months since January, range 0—12

Years since 1900

Number of days since Sunday, range 0-6

Days since January 1

© XN N

Daylight savings indicator: positive if daylight savings is in effect, zero if not,
and negative if the information is not available.

See also: Section 6.44 [CTIME], page 51, Section 6.88 [GMTIME], page 74, Section 6.196
[TIME], page 125, Section 6.197 [TIMES], page 125

6.130 MALLOC — Allocate dynamic memory

Description:
MALLOC(SIZE) allocates SIZE bytes of dynamic memory and returns the address of
the allocated memory. The MALLOC intrinsic is an extension intended to be used with
Cray pointers, and is provided in GNU Fortran to allow the user to compile legacy
code. For new code using Fortran 95 pointers, the memory allocation intrinsic is
ALLOCATE.

Standard: GNU extension
Class: Non-elemental function
Syntaz: PTR = MALLOC(SIZE)

Arguments:
SIZE The type shall be INTEGER (*).

Return value:
The return value is of type INTEGER(K), with K such that variables of type
INTEGER(K) have the same size as C pointers (sizeof (void *)).

Ezample: The following example demonstrates the use of MALLOC and FREE with Cray pointers.
This example is intended to run on 32-bit systems, where the default integer kind
is suitable to store pointers; on 64-bit systems, ptr_x would need to be declared as
integer (kind=8).

program test_malloc
integer i
integer ptr_x
real*8 x(*), z
pointer (ptr_x,x)

Chapter 6: Intrinsic Procedures

ptr_x = malloc(20%8)
do i=1, 20
x(i) = sqrt(1.040 / i)
end do
z =0
doi=1, 20
z =z + x(i)
print *, z
end do
call free(ptr_x)

end program test_malloc

See also: Section 6.73 [FREE], page 67

6.131 MATMUL — matrix multiplication

Description:

Performs a matrix multiplication on numeric or logical arguments.

Standard: F95 and later

Class: Transformational function

Syntaz: RESULT = MATMUL (MATRIX_A, MATRIX_B)

Arguments:

MATRIX_A

MATRIX_B

Return value:

of MATRIX_A.

An array of INTEGER(*), REAL(*), COMPLEX (%), or LOGICAL (%)
type, with a rank of one or two.

An array of INTEGER(*), REAL(*), or COMPLEX (*) type if MA-
TRIX_A is of a numeric type; otherwise, an array of LOGICAL (*)
type. The rank shall be one or two, and the first (or only) dimen-
sion of MATRIX_B shall be equal to the last (or only) dimension

93

The matrix product of MATRIX_A and MATRIX_B. The type and kind of the result

follow the usual type and kind promotion rules, as for the * or .AND. operators.

See also:

6.132 MAX — Maximum value of an argument list

Description:

Returns the argument with the largest (most positive) value.

Standard: F77 and later

Class: Elemental function

Syntax: RESULT = MAX(A1, A2 [, A3 [, ...1D)

Arguments:
Al

A2, A3, ...

Return value:

The type shall be INTEGER (*) or REAL ().
An expression of the same type and kind as Al. (As a GNU
extension, arguments of different kinds are permitted.)

The return value corresponds to the maximum value among the arguments, and has

the same type and kind as the first argument.

94 The GNU Fortran Compiler

Specific names:

Name Argument Return type Standard

MAXO(I) INTEGER(4) I INTEGER (4) F77 and later
AMAXO(I) INTEGER(4) I REAL (MAX (X)) F77 and later

MAX1(X) REAL(*) X INT (MAX (X)) F77 and later

AMAX1 (X) REAL(4) X REAL (4) F77 and later

DMAX1 (X) REAL(8) X REAL(8) F77 and later

See also: Section 6.134 [MAXLOC], page 94 Section 6.135 [MAXVALJ, page 95, Section 6.139

[MIN], page 97

6.133 MAXEXPONENT — Maximum exponent of a real kind

Description:
MAXEXPONENT (X) returns the maximum exponent in the model of the type of X.

Standard: F95 and later
Class: Inquiry function
Syntaz: RESULT = MAXEXPONENT (X)

Arguments:
X Shall be of type REAL.

Return value:
The return value is of type INTEGER and of the default integer kind.

Example:

program exponents
real(kind=4) :: x
real(kind=8) :: y

print *, minexponent(x), maxexponent(x)
print *, minexponent(y), maxexponent (y)
end program exponents

6.134 MAXLOC — Location of the maximum value within an
array

Description:

Determines the location of the element in the array with the maximum value, or, if
the DIM argument is supplied, determines the locations of the maximum element
along each row of the array in the DIM direction. If MASK is present, only the
elements for which MASK is .TRUE. are considered. If more than one element in
the array has the maximum value, the location returned is that of the first such
element in array element order. If the array has zero size, or all of the elements
of MASK are .FALSE., then the result is an array of zeroes. Similarly, if DIM is
supplied and all of the elements of MASK along a given row are zero, the result
value for that row is zero.

Standard: F95 and later
Class: Transformational function

Syntaz:

RESULT = MAXLOC (ARRAY, DIM [, MASK])
RESULT = MAXLOC (ARRAY [, MASK])

Chapter 6: Intrinsic Procedures 95

Arguments:

ARRAY Shall be an array of type INTEGER(*), REAL(%*), or
CHARACTER ().

DIM (Optional) Shall be a scalar of type INTEGER(*), with a value
between one and the rank of ARRAY, inclusive. It may not be
an optional dummy argument.

MASK Shall be an array of type LOGICAL(*), and conformable with

ARRAY.

Return value:

See also:

If DIM is absent, the result is a rank-one array with a length equal to the rank of
ARRAY. If DIM is present, the result is an array with a rank one less than the
rank of ARRAY, and a size corresponding to the size of ARRAY with the DIM
dimension removed. If DIM is present and ARRAY has a rank of one, the result is
a scalar. In all cases, the result is of default INTEGER type.

Section 6.132 [MAX], page 93, Section 6.135 [MAXVALJ, page 95

6.135 MAXVAL — Maximum value of an array

Description:

Standard:
Class:
Syntaz:

Arguments:

Determines the maximum value of the elements in an array value, or, if the DIM
argument is supplied, determines the maximum value along each row of the array
in the DIM direction. If MASK is present, only the elements for which MASK is
.TRUE. are considered. If the array has zero size, or all of the elements of MASK
are .FALSE., then the result is the most negative number of the type and kind of
ARRAY if ARRAY is numeric, or a string of nulls if ARRAY is of character type.

F95 and later

Transformational function

RESULT = MAXVAL (ARRAY, DIM [, MASK])
RESULT = MAXVAL (ARRAY [, MASK])

ARRAY Shall be an array of type INTEGER(*), REAL(*), or
CHARACTER (%).
DIM (Optional) Shall be a scalar of type INTEGER(*), with a value

between one and the rank of ARRAY, inclusive. It may not be
an optional dummy argument.

MASK Shall be an array of type LOGICAL(*), and conformable with
ARRAY.

Return value:

See also:

If DIM is absent, or if ARRAY has a rank of one, the result is a scalar. If DIM is
present, the result is an array with a rank one less than the rank of ARRAY, and a
size corresponding to the size of ARRAY with the DIM dimension removed. In all
cases, the result is of the same type and kind as ARRAY.

Section 6.132 [MAX], page 93, Section 6.134 [MAXLOC], page 94

6.136 MCLOCK — Time function

Description:

Returns the number of clock ticks since the start of the process, based on the UNIX
function clock(3).

96 The GNU Fortran Compiler

This intrinsic is not fully portable, such as to systems with 32-bit INTEGER types but
supporting times wider than 32 bits. Therefore, the values returned by this intrinsic
might be, or become, negative, or numerically less than previous values, during a
single run of the compiled program.

Standard: GNU extension
Class: Non-elemental function
Syntaz: RESULT = MCLOCK ()

Return value:
The return value is a scalar of type INTEGER(4), equal to the number of clock ticks
since the start of the process, or -1 if the system does not support clock(3).

See also: Section 6.44 [CTIME], page 51, Section 6.88 [GMTIME], page 74, Section 6.129
[LTIME], page 91, Section 6.136 [MCLOCK], page 95, Section 6.196 [TIME],
page 125

6.137 MCLOCK8 — Time function (64-bit)

Description:

Returns the number of clock ticks since the start of the process, based on the UNIX
function clock(3).

Warning: this intrinsic does not increase the range of the timing values over that
returned by clock(3). On a system with a 32-bit clock(3), MCLOCK8() will return
a 32-bit value, even though it is converted to a 64-bit INTEGER(8) value. That
means overflows of the 32-bit value can still occur. Therefore, the values returned
by this intrinsic might be or become negative or numerically less than previous
values during a single run of the compiled program.

Standard: GNU extension
Class: Non-elemental function
Syntax: RESULT = MCLOCK8()

Return value:
The return value is a scalar of type INTEGER(8), equal to the number of clock ticks
since the start of the process, or -1 if the system does not support clock(3).

See also: Section 6.44 [CTIME], page 51, Section 6.88 [GMTIME], page 74, Section 6.129
[LTIME], page 91, Section 6.136 [MCLOCK], page 95, Section 6.197 [TIMES],
page 125

6.138 MERGE — Merge variables

Description:
Select values from two arrays according to a logical mask. The result is equal to
TSOURCE if MASK is .TRUE., or equal to FSOURCE if it is .FALSE..

Standard: F95 and later
Class: Elemental function
Symfax: RESULT = MERGE (TSOURCE, FSOURCE, MASK)

Arguments:
TSOURCE May be of any type.
FSOURCE Shall be of the same type and type parameters as TSOURCE.
MASK Shall be of type LOGICAL (*).

Chapter 6: Intrinsic Procedures 97

Return value:
The result is of the same type and type parameters as TSOURCE.

6.139 MIN — Minimum value of an argument list
Description:

Returns the argument with the smallest (most negative) value.
Standard: FT77 and later
Class: Elemental function
Syntaz: RESULT = MIN(A1, A2 [, A3, ...]1)

Arguments:
Al The type shall be INTEGER (*) or REAL(*).
A2 A3, ... An expression of the same type and kind as Al. (As a GNU
extension, arguments of different kinds are permitted.)

Return value:
The return value corresponds to the maximum value among the arguments, and has
the same type and kind as the first argument.

Specific names:

Name Argument Return type Standard

MINO(I) INTEGER(4) I INTEGER(4) F77 and later
AMINO(I) INTEGER(4) I REAL (MIN(X)) F77 and later
MIN1(X) REAL (%) X INT(MIN(X)) F77 and later
AMIN1 (X) REAL(4) X REAL(4) F77 and later
DMIN1(X) REAL(8) X REAL(8) F77 and later

See also: Section 6.132 [MAX], page 93, Section 6.141 [MINLOC], page 97, Section 6.142
[MINVAL], page 98

6.140 MINEXPONENT — Minimum exponent of a real kind

Description:
MINEXPONENT (X) returns the minimum exponent in the model of the type of X.

Standard: F95 and later
Class: Inquiry function
Syntaz: RESULT = MINEXPONENT (X)

Arguments:
X Shall be of type REAL.

Return value:
The return value is of type INTEGER and of the default integer kind.

Ezxample: See MAXEXPONENT for an example.

6.141 MINLOC — Location of the minimum value within an array

Description:
Determines the location of the element in the array with the minimum value, or, if
the DIM argument is supplied, determines the locations of the minimum element
along each row of the array in the DIM direction. If MASK is present, only the
elements for which MASK is .TRUE. are considered. If more than one element in the

98

Standard:
Class:
Syntaz:

Arguments:

The GNU Fortran Compiler

array has the minimum value, the location returned is that of the first such element
in array element order. If the array has zero size, or all of the elements of MASK
are .FALSE., then the result is an array of zeroes. Similarly, if DIM is supplied and
all of the elements of MASK along a given row are zero, the result value for that
row is zero.

F95 and later

Transformational function

RESULT = MINLOC(ARRAY, DIM [, MASK])
RESULT = MINLOC(ARRAY [, MASK])

ARRAY Shall be an array of type INTEGER(*), REAL(*), or
CHARACTER (*).
DIM (Optional) Shall be a scalar of type INTEGER(*), with a value

between one and the rank of ARRAY, inclusive. It may not be
an optional dummy argument.

MASK Shall be an array of type LOGICAL(*), and conformable with
ARRAY.

Return value:

See also:

If DIM is absent, the result is a rank-one array with a length equal to the rank of
ARRAY. If DIM is present, the result is an array with a rank one less than the
rank of ARRAY, and a size corresponding to the size of ARRAY with the DIM
dimension removed. If DIM is present and ARRAY has a rank of one, the result is
a scalar. In all cases, the result is of default INTEGER type.

Section 6.139 [MIN], page 97, Section 6.142 [MINVALJ, page 98

6.142 MINVAL — Minimum value of an array

Description:

Standard:
Class:
Syntaz:

Arguments:

Determines the minimum value of the elements in an array value, or, if the DIM
argument is supplied, determines the minimum value along each row of the array
in the DIM direction. If MASK is present, only the elements for which MASK is
.TRUE. are considered. If the array has zero size, or all of the elements of MASK
are .FALSE., then the result is HUGE (ARRAY) if ARRAY is numeric, or a string of
CHAR(255) characters if ARRAY is of character type.

F95 and later

Transformational function

RESULT = MINVAL (ARRAY, DIM [, MASKI)
RESULT = MINVAL (ARRAY [, MASK])

ARRAY Shall be an array of type INTEGER(*), REAL(*), or
CHARACTER (%).
DIM (Optional) Shall be a scalar of type INTEGER(*), with a value

between one and the rank of ARRAY, inclusive. It may not be
an optional dummy argument.

MASK Shall be an array of type LOGICAL(*), and conformable with
ARRAY.

Chapter 6: Intrinsic Procedures

Return value:

If DIM is absent, or if ARRAY has a rank of one, the result is a scalar. If DIM is
present, the result is an array with a rank one less than the rank of ARRAY, and a
size corresponding to the size of ARRAY with the DIM dimension removed. In all
cases, the result is of the same type and kind as ARRAY.

See also: Section 6.139 [MIN], page 97, Section 6.141 [MINLOC], page 97

6.143 MOD — Remainder function

Description:

MOD(A,P) computes the remainder of the division of A by P. It is calculated as A -
(INT(A/P) = P).

Standard: F77 and later

Class: Elemental function

Syntaz: RESULT = MOD(A, P)

Arguments:

A
P

Return value:

The kind of the return value is the result of cross-promoting the kinds of the argu-

ments.

Example:

program

print
print
print
print

print
print
print
print

print
print
print
print

Shall be a scalar of type INTEGER or REAL
Shall be a scalar of the same type as A and not equal to zero

test_mod

mod (17,3)
mod(17.5,5.5)
mod (17.5d0,5.5)
mod(17.5,5.5d0)

mod (-17,3)
mod(-17.5,5.5)
mod (-17.5d0,5.5)
mod(-17.5,5.5d0)

mod (17,-3)
mod(17.5,-5.5)
mod(17.5d0,-5.5)
mod(17.5,-5.5d0)

end program test_mod

Specific names:
Name
AMOD (A, P)
DMOD (A, P)

6.144 MODULO — Modulo function

Description:

MODULO(A,P) computes the A modulo P.
Standard: F95 and later

Arguments
REAL (4)
REAL(8)

Class: Elemental function

Syntaz: RESULT = MODULO(A, P)

Return type
F95 and later
F95 and later

100 The GNU Fortran Compiler

Arguments:
A Shall be a scalar of type INTEGER or REAL
P Shall be a scalar of the same type and kind as A

Return value:
The type and kind of the result are those of the arguments.

If A and P are of type INTEGER:
MODULO(A,P) has the value R such that A=Q*P+R, where @ is an integer
and R is between 0 (inclusive) and P (exclusive).

If A and P are of type REAL:
MODULO(A,P) has the value of A - FLOOR (A / P) * P.

In all cases, if P is zero the result is processor-dependent.

Ezample:

program test_modulo
print *, modulo(17,3)
print *, modulo(17.5,5.5)

print *, modulo(-17,3)
print *, modulo(-17.5,5.5)

print *, modulo(17,-3)

print *, modulo(17.5,-5.5)
end program

6.145 MOVE_ALLOC — Move allocation from one object to
another

Description:
MOVE_ALLOC(SRC, DEST) moves the allocation from SRC to DEST. SRC will become
deallocated in the process.

Standard: F2003 and later
Class: Subroutine

Syntax: CALL MOVE_ALLOC(SRC, DEST)

Arguments:
SRC ALLOCATABLE, INTENT (INOUT), may be of any type and kind.
DEST ALLOCATABLE, INTENT (OUT), shall be of the same type, kind and
rank as SRC

Return value:
None

Example:

program test_move_alloc
integer, allocatable :: a(:), b(:)

allocate(a(3))
a=1[1,2, 3]
call move_alloc(a, b)
print *, allocated(a), allocated(b)
print *, b
end program test_move_alloc

Chapter 6: Intrinsic Procedures 101

6.146 MVBITS — Move bits from one integer to another

Description:
Moves LEN bits from positions FROMPOS through FROMPOS+LEN-1 of FROM to
positions TOPOS through TOPOS+LEN-1 of T'O. The portion of argument T'O not
affected by the movement of bits is unchanged. The values of FROMPOS+LEN-1 and
TOPOS+LEN-1 must be less than BIT_SIZE(FROM).

Standard: F95 and later
Class: Elemental function

Syntaz: RESULT = MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)

Arguments:
FROM The type shall be INTEGER (*).
FROMPOS The type shall be INTEGER (*).
LEN The type shall be INTEGER ().
TO The type shall be INTEGER (%), of the same kind as FROM.
TOPOS The type shall be INTEGER (*).

Return value:
The return value is of type INTEGER(*) and of the same kind as FROM.

See also: Section 6.94 [IBCLR], page 76, Section 6.96 [IBSET], page 77, Section 6.95 [IBITS],
page 77, Section 6.92 [IAND], page 75, Section 6.105 [IOR], page 81, Section 6.99
[IEOR], page 79

6.147 NEAREST — Nearest representable number

Description:
NEAREST (X, S) returns the processor-representable number nearest to X in the di-
rection indicated by the sign of S.

Standard: F95 and later
Class: Elemental function
Syntaz: RESULT = NEAREST (X, S)

Arguments:
X Shall be of type REAL.
S (Optional) shall be of type REAL and not equal to zero.

Return value:
The return value is of the same type as X. If S is positive, NEAREST returns the
processor-representable number greater than X and nearest to it. If S is negative,
NEAREST returns the processor-representable number smaller than X and nearest to
it.
Example:
program test_nearest
real :: x, y
x = nearest(42.0, 1.0)
y = nearest(42.0, -1.0)

write (*,"(3(G20.15))") x, y, x -y
end program test_nearest

102 The GNU Fortran Compiler

6.148 NEW_LINE — New line character

Description:
NEW_LINE(C) returns the new-line character.

Standard: F2003 and later
Class: Inquiry function
Syntax: RESULT = NEW_LINE(C)

Arguments:
C The argument shall be a scalar or array of the type CHARACTER.

Return value:
Returns a CHARACTER scalar of length one with the new-line character of the
same kind as parameter C.

Ezample:
program newline
implicit none
write(*,’(A)’) ’This is record 1.’//NEW_LINE(’A’)//’This is record 2.’
end program newline

6.149 NINT — Nearest whole number

Description:
NINT(X) rounds its argument to the nearest whole number.

Standard: F77 and later
Class: Elemental function
Syntaz: RESULT = NINT(X)

Arguments:
X The type of the argument shall be REAL.

Return value:
Returns A with the fractional portion of its magnitude eliminated by rounding to
the nearest whole number and with its sign preserved, converted to an INTEGER of
the default kind.

Ezample:

program test_nint

real(4) x4

real(8) x8

x4 = 1.234E0_4

x8 = 4.321_8

print *, nint(x4), idnint(x8)
end program test_nint

Specific names:
Name Argument Standard
IDNINT(X) REAL (8) F95 and later

See also: Section 6.32 [CEILING], page 45, Section 6.67 [FLOOR], page 64

Chapter 6: Intrinsic Procedures 103

6.150 NOT — Logical negation

Description:
NOT returns the bitwise boolean inverse of I.

Standard: F95 and later
Class: Elemental function
Syntax: RESULT = NOT(I)

Arguments:
I The type shall be INTEGER (*).

Return value:
The return type is INTEGER (%), of the same kind as the argument.

See also: Section 6.92 [IAND], page 75, Section 6.99 [IEOR], page 79, Section 6.105 [IOR],
page 81, Section 6.95 [IBITS], page 77, Section 6.96 [IBSET], page 77, Section 6.94
[IBCLR], page 76

6.151 NULL — Function that returns an disassociated pointer

Description:
Returns a disassociated pointer.

If MOLD is present, a dissassociated pointer of the same type is returned, otherwise
the type is determined by context.

In Fortran 95, MOLD is optional. Please note that F2003 includes cases where it is
required.

Standard: F95 and later

Class: Transformational function

Syntaz: PTR => NULL ([MOLD])

Arguments:
MOLD (Optional) shall be a pointer of any association status and of any

type.

Return value:
A disassociated pointer.

Example:
REAL, POINTER, DIMENSION(:) :: VEC => NULL ()

See also: Section 6.20 [ASSOCIATED], page 39

6.152 OR — Bitwise logical OR

Description:
Bitwise logical OR.

This intrinsic routine is provided for backwards compatibility with GNU Fortran 77.
For integer arguments, programmers should consider the use of the Section 6.105
[IOR], page 81 intrinsic defined by the Fortran standard.

Standard: GNU extension
Class: Non-elemental function

Syntaz: RESULT = OR(X, Y)

104 The GNU Fortran Compiler

Arguments:
X The type shall be either INTEGER (*) or LOGICAL.
Y The type shall be either INTEGER (*) or LOGICAL.

Return value:
The return type is either INTEGER (*) or LOGICAL after cross-promotion of the ar-
guments.

Ezample:

PROGRAM test_or
LOGICAL :: T = .TRUE., F = .FALSE.
INTEGER :: a, b
DATA a / Z°F’ /, b / 2°3> /

WRITE (*,*) OR(T, T), OR(T, F), OR(F, T), OR(F, F)
WRITE (*,*) OR(a, b)
END PROGRAM

See also: F95 elemental function: Section 6.105 [IOR], page 81

6.153 PACK — Pack an array into an array of rank one

Description:
Stores the elements of ARRAY in an array of rank one.

The beginning of the resulting array is made up of elements whose MASK equals
TRUE. Afterwards, positions are filled with elements taken from VECTOR.

Standard: F95 and later
Class: Transformational function

Syntax: RESULT = PACK (ARRAY, MASK[,VECTOR]

Arguments:
ARRAY Shall be an array of any type.
MASK Shall be an array of type LOGICAL and of the same size as AR-
RAY. Alternatively, it may be a LOGICAL scalar.
VECTOR (Optional) shall be an array of the same type as ARRAY and of

rank one. If present, the number of elements in VECTOR shall
be equal to or greater than the number of true elements in MASK.
If MASK is scalar, the number of elements in VECTOR shall be
equal to or greater than the number of elements in ARRAY.

Return value:
The result is an array of rank one and the same type as that of ARRAY. If VECTOR
is present, the result size is that of VECTOR, the number of TRUE values in MASK
otherwise.

Example: Gathering non-zero elements from an array:

PROGRAM test_pack_1
INTEGER :: m(6)
m=(1, 0,0, 0,5, 0/)
WRITE(*, FMT="(6(I0O, ’ ’))") pack(m, m /= 0) ! "1 5"
END PROGRAM
Gathering non-zero elements from an array and appending elements from VECTOR:

PROGRAM test_pack_2

INTEGER :: m(4)

m=(/1, 0, 0, 2 /)

WRITE(*, FMT="(4(I0, ’> ’))") pack(m, m /=0, (/ 0, 0, 3, 4 /)) ! "1 234"
END PROGRAM

See also: Section 6.206 [UNPACK], page 129

Chapter 6: Intrinsic Procedures 105

6.154 PERROR — Print system error message

Description:

Standard:
Class:
Syntaz:

Arguments:

See also:

Prints (on the C stderr stream) a newline-terminated error message corresponding
to the last system error. This is prefixed by STRING, a colon and a space. See
perror(3).

GNU extension
Subroutine

CALL PERROR(STRING)

STRING A scalar of default CHARACTER type.
Section 6.100 [[ERRNO], page 79

6.155 PRECISION — Decimal precision of a real kind

Description:

Standard:
Class:
Syntaz:

Arguments:

PRECISION (X) returns the decimal precision in the model of the type of X.
F95 and later
Inquiry function

RESULT = PRECISION(X)

X Shall be of type REAL or COMPLEX.

Return value:

Example:

The return value is of type INTEGER and of the default integer kind.

program prec_and_range
real(kind=4) :: x(2)
complex(kind=8) :: y

print *, precision(x), range(x)
print *, precision(y), range(y)
end program prec_and_range

6.156 PRESENT — Determine whether an optional dummy
argument is specified

Description:

Standard:
Class:
Syntaz:

Arguments:

Determines whether an optional dummy argument is present.
F95 and later
Inquiry function

RESULT = PRESENT (A)

A May be of any type and may be a pointer, scalar or array value, or
a dummy procedure. It shall be the name of an optional dummy
argument accessible within the current subroutine or function.

Return value:

Returns either TRUE if the optional argument A is present, or FALSE otherwise.

106 The GNU Fortran Compiler

Ezample:

PROGRAM test_present
WRITE(*,*) £(), £(42) | "F T"
CONTAINS
LOGICAL FUNCTION f(x)
INTEGER, INTENT(IN), OPTIONAL :: x
f = PRESENT (x)
END FUNCTION
END PROGRAM

6.157 PRODUCT — Product of array elements

Description:
Multiplies the elements of ARRAY along dimension DIM if the corresponding ele-
ment in MASK is TRUE.

Standard: F95 and later
Class: Transformational function

Syntax: RESULT = PRODUCT (ARRAY [, MASK]) RESULT = PRODUCT (ARRAY, DIM[, MASK])

Arguments:
ARRAY Shall be an array of type INTEGER (%), REAL(*) or COMPLEX (*).
DIM (Optional) shall be a scalar of type INTEGER with a value in the
range from 1 to n, where n equals the rank of ARRAY.
MASK (Optional) shall be of type LOGICAL and either be a scalar or an

array of the same shape as ARRAY.

Return value:
The result is of the same type as ARRAY.

If DIM is absent, a scalar with the product of all elements in ARRAY is returned.
Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a shape
similar to that of ARRAY with dimension DIM dropped is returned.

Ezample:

PROGRAM test_product
INTEGER :: x(6) = (/ 1, 2, 3, 4 ,56 /)
print *, PRODUCT(x) ! all elements, product
print *, PRODUCT(x, MASK=MOD(x, 2)==1) ! odd elements, product
END PROGRAM

See also: Section 6.190 [SUM], page 122

120
15

6.158 RADIX — Base of a model number

Description:
RADIX(X) returns the base of the model representing the entity X.

Standard: F95 and later
Class: Inquiry function
Syntaz: RESULT = RADIX(X)

Arguments:
X Shall be of type INTEGER or REAL

Return value:
The return value is a scalar of type INTEGER and of the default integer kind.

Example:

Chapter 6: Intrinsic Procedures 107

program test_radix
print *, "The radix for the default integer kind is", radix(0)
print *, "The radix for the default real kind is", radix(0.0)
end program test_radix

6.159 RAN — Real pseudo-random number

Description:
For compatibility with HP FORTRAN 77/iX, the RAN intrinsic is provided as an
alias for RAND. See Section 6.160 [RAND], page 107 for complete documentation.

Standard: GNU extension
Class: Non-elemental function

See also: Section 6.160 [RAND], page 107, Section 6.161 [RANDOM_NUMBER], page 107

6.160 RAND — Real pseudo-random number

Description:
RAND (FLAG) returns a pseudo-random number from a uniform distribution between
0 and 1. If FLAG is 0, the next number in the current sequence is returned; if FLAG
is 1, the generator is restarted by CALL SRAND(0); if FLAG has any other value, it
is used as a new seed with SRAND.

Standard: GNU extension
Class: Non-elemental function
Syntaz: RESULT = RAND (FLAG)

Arguments:
FLAG Shall be a scalar INTEGER of kind 4.

Return value:
The return value is of REAL type and the default kind.

Example:

program test_rand
integer,parameter :: seed = 86456

call srand(seed)

print *, rand(), rand(), rand(), rand()

print *, rand(seed), rand(), rand(), rand()
end program test_rand

See also: Section 6.188 [SRAND], page 120, Section 6.161 [RANDOM_NUMBER], page 107

6.161 RANDOM_NUMBER — Pseudo-random number

Description:
Returns a single pseudorandom number or an array of pseudorandom numbers from
the uniform distribution over the range 0 < z < 1.

Standard: F95 and later
Class: Elemental subroutine
Syntaz: RANDOM_NUMBER (HARVEST)

Arguments:
HARVEST Shall be a scalar or an array of type REAL (x).

108 The GNU Fortran Compiler

Ezample:

program test_random_number
REAL :: r(5,5)
CALL init_random_seed() ! see example of RANDOM_SEED
CALL RANDOM_NUMBER (r)

end program

Note: The implemented random number generator is thread safe if used within OpenMP
directives, i. e. its state will be consistent while called from multiple threads.
Please note that the currently implemented KISS generator does not create random
numbers in parallel from multiple sources, but in sequence from a single source. If
your OpenMP-enabled application heavily relies on random numbers, you should
consider employing a dedicated parallel random number generator instead.

See also: Section 6.162 [RANDOM_SEED], page 108

6.162 RANDOM_SEED — Initialize a pseudo-random number
sequence

Description:
Restarts or queries the state of the pseudorandom number generator used by
RANDOM_NUMBER.
If RANDOM_SEED is called without arguments, it is initialized to a default state. The
example below shows how to initialize the random seed based on the system’s time.

Standard: F95 and later
Class: Subroutine
Syniax: CALL RANDOM_SEED(SIZE, PUT, GET)

Arguments:

SIZE (Optional) Shall be a scalar and of type default INTEGER, with
INTENT(QUT). It specifies the minimum size of the arrays used
with the PUT and GET arguments.

PUT (Optional) Shall be an array of type default INTEGER and rank
one. It is INTENT(IN) and the size of the array must be larger
than or equal to the number returned by the SIZE argument.

GET (Optional) Shall be an array of type default INTEGER and rank
one. It is INTENT(OUT) and the size of the array must be larger
than or equal to the number returned by the SIZE argument.

Ezample:

SUBROUTINE init_random_seed()
INTEGER :: i, n, clock
INTEGER, DIMENSIONC(:), ALLOCATABLE :: seed

CALL RANDOM_SEED(size = n)
ALLOCATE(seed(n))

CALL SYSTEM_CLOCK(COUNT=clock)

seed = clock + 37 * (/ (i -1, i =1, n) /)
CALL RANDOM_SEED(PUT = seed)

DEALLOCATE (seed)
END SUBROUTINE

See also: Section 6.161 [RANDOM_NUMBER], page 107

Chapter 6: Intrinsic Procedures 109

6.163 RANGE — Decimal exponent range of a real kind

Description:
RANGE (X) returns the decimal exponent range in the model of the type of X.

Standard: F95 and later
Class: Inquiry function
Syntaz: RESULT = RANGE (X)

Arguments:
X Shall be of type REAL or COMPLEX.

Return value:
The return value is of type INTEGER and of the default integer kind.

Ezxample: See PRECISION for an example.

6.164 REAL — Convert to real type

Description:
REAL(X [, KIND]) converts its argument X to a real type. The REALPART (X) func-
tion is provided for compatibility with g77, and its use is strongly discouraged.

Standard: F77 and later
Class: Elemental function

Syntax:

RESULT = REAL(X [, KIND])
RESULT = REALPART(Z)

Arguments:
X Shall be INTEGER (*), REAL(*), or COMPLEX (*).
KIND (Optional) An INTEGER(*) initialization expression indicating
the kind parameter of the result.

Return value:
These functions return a REAL (*) variable or array under the following rules:

(A) REAL (X) is converted to a default real type if X is an integer or real
variable.
(B) REAL (X) is converted to a real type with the kind type parameter of X

if X is a complex variable.

(©) REAL (X, KIND) is converted to a real type with kind type parameter
KIND if X is a complex, integer, or real variable.

Example:

program test_real

complex :: x = (1.0, 2.0)

print *, real(x), real(x,8), realpart(x)
end program test_real

See also: Section 6.46 [DBLE], page 53, Section 6.48 [DFLOAT], page 54, Section 6.64
[FLOAT], page 62

110 The GNU Fortran Compiler

6.165 RENAME — Rename a file

Description:
Renames a file from file PATHI to PATH2. A null character (CHAR(0)) can be used
to mark the end of the names in PATHI and PATH2; otherwise, trailing blanks in
the file names are ignored. If the STATUS argument is supplied, it contains 0 on
success or a nonzero error code upon return; see rename (2).

This intrinsic is provided in both subroutine and function forms; however, only one
form can be used in any given program unit.

Standard: GNU extension
Class: Subroutine, non-elemental function

Syntaz:

CALL RENAME (PATH1, PATH2 [, STATUS])
STATUS = RENAME (PATH1, PATH2)

Arguments:
PATHI1 Shall be of default CHARACTER type.
PATH?2 Shall be of default CHARACTER type.
STATUS (Optional) Shall be of default INTEGER type.

See also: Section 6.118 [LINK], page 87

6.166 REPEAT — Repeated string concatenation

Description:
Concatenates NCOPIES copies of a string.

Standard: F95 and later
Class: Transformational function
Syntaz: RESULT = REPEAT(STRING, NCOPIES)

Arguments:
STRING Shall be scalar and of type CHARACTER (*).
NCOPIES Shall be scalar and of type INTEGER (*).

Return value:
A new scalar of type CHARACTER built up from NCOPIES copies of STRING.

Example:

program test_repeat
write(*,*) repeat("x", 5) Io"xxxxx"
end program

6.167 RESHAPE — Function to reshape an array

Description:
Reshapes SOURCE to correspond to SHAPE. If necessary, the new array may be
padded with elements from PAD or permuted as defined by ORDER.

Standard: F95 and later
Class: Transformational function

Syntax: RESULT = RESHAPE (SOURCE, SHAPE[, PAD, ORDER])

Chapter 6: Intrinsic Procedures 111

Arguments:
SOURCE Shall be an array of any type.
SHAPE Shall be of type INTEGER and an array of rank one. Its values
must be positive or zero.
PAD (Optional) shall be an array of the same type as SOURCE.
ORDER (Optional) shall be of type INTEGER and an array of the same

shape as SHAPE. Its values shall be a permutation of the num-
bers from 1 to n, where n is the size of SHAPE. If ORDER is
absent, the natural ordering shall be assumed.

Return value:
The result is an array of shape SHAPE with the same type as SOURCE.

Ezample:

PROGRAM test_reshape
INTEGER, DIMENSION(4) :: x
WRITE(*,*) SHAPE(x) ! prints "4"
WRITE(*,*) SHAPE(RESHAPE(x, (/2, 2/))) ! prints "2 2"
END PROGRAM

See also: Section 6.177 [SHAPE], page 115

6.168 RRSPACING — Reciprocal of the relative spacing

Description:
RRSPACING (X) returns the reciprocal of the relative spacing of model numbers near
X.

Standard: F95 and later
Class: Elemental function
Syntaz: RESULT = RRSPACING (X)

Arguments:
X Shall be of type REAL.

Return value:
The return value is of the same type and kind as X. The value returned is equal to
ABS (FRACTION(X)) * FLOAT(RADIX(X))**DIGITS(X).

See also: Section 6.185 [SPACING], page 119

6.169 RSHIFT — Right shift bits

Description:
RSHIFT returns a value corresponding to I with all of the bits shifted right by SHIF'T
places. If the absolute value of SHIFT is greater than BIT_SIZE(I), the value is
undefined. Bits shifted out from the left end are lost; zeros are shifted in from the
opposite end.

This function has been superseded by the ISHFT intrinsic, which is standard in
Fortran 95 and later.

Standard: GNU extension
Class: Elemental function

Syntaz: RESULT = RSHIFT(I, SHIFT)

112 The GNU Fortran Compiler

Arguments:
I The type shall be INTEGER (*).
SHIFT The type shall be INTEGER ().

Return value:
The return value is of type INTEGER (*) and of the same kind as L.

See also: Section 6.108 [ISHFT]|, page 82, Section 6.109 [ISHFTC], page 83, Section 6.127
[LSHIFT], page 91

6.170 SCALE — Scale a real value

Description:
SCALE(X,I) returns X * RADIX(X) **TI.

Standard: F95 and later
Class: Elemental function
Syntaz: RESULT = SCALE(X, I)

Arguments:
X The type of the argument shall be a REAL.
1 The type of the argument shall be a INTEGER.

Return value:
The return value is of the same type and kind as X. Its value is X * RADIX (X)**I.
Example:

program test_scale

real :: x = 178.1387e-4

integer :: i =5

print *, scale(x,i), x*radix(x)**i
end program test_scale

6.171 SCAN — Scan a string for the presence of a set of
characters

Description:
Scans a STRING for any of the characters in a SE'T of characters.

If BACK is either absent or equals FALSE, this function returns the position of the
leftmost character of STRING that is in SET. If BACK equals TRUE, the rightmost
position is returned. If no character of SET is found in STRING, the result is zero.

Standard: F95 and later
Class: Elemental function

Syntaz: RESULT = SCAN(STRING, SET[, BACK])

Arguments:
STRING Shall be of type CHARACTER (*).
SET Shall be of type CHARACTER (*).
BACK (Optional) shall be of type LOGICAL.

Return value:
The return value is of type INTEGER and of the default integer kind.

Example:

Chapter 6: Intrinsic Procedures 113

PROGRAM test_scan

WRITE(*,*) SCAN("FORTRAN", "AO") ! 2, found ’0’
WRITE(*,*) SCAN("FORTRAN", "AO", .TRUE.) ! 6, found ’A’
WRITE(*,*) SCAN("FORTRAN", "C++") ! 0, found none

END PROGRAM
See also: Section 6.101 [INDEX], page 79, Section 6.207 [VERIFY], page 130

6.172 SECNDS — Time function

Description:
SECNDS (X) gets the time in seconds from the real-time system clock. X is a reference
time, also in seconds. If this is zero, the time in seconds from midnight is returned.
This function is non-standard and its use is discouraged.

Standard: GNU extension
Class: Non-elemental function

Syntaz: RESULT = SECNDS (X)

Arguments:
T Shall be of type REAL(4).
X Shall be of type REAL(4).
Return value:
None
Ezample:
program test_secnds
integer :: i
real(4) :: t1, t2
print *, secnds (0.0) ! seconds since midnight
t1 = secnds (0.0) ! reference time
do i =1, 10000000 ! do something
end do
t2 = secnds (t1) ! elapsed time
print *, "Something took ", t2, " seconds."

end program test_secnds

6.173 SECOND — CPU time function

Description:
Returns a REAL(4) value representing the elapsed CPU time in seconds. This pro-
vides the same functionality as the standard CPU_TIME intrinsic, and is only included
for backwards compatibility.
This intrinsic is provided in both subroutine and function forms; however, only one
form can be used in any given program unit.

Standard: GNU extension

Class: Subroutine, non-elemental function

Syntaz:
CALL SECOND(TIME)
TIME = SECOND()

Arguments:
TIME Shall be of type REAL(4).

Return value:
In either syntax, TIME is set to the process’s current runtime in seconds.

See also: Section 6.42 [CPU_TIME], page 50

114 The GNU Fortran Compiler

6.174 SELECTED_INT_KIND — Choose integer kind

Description:
SELECTED_INT_KIND(I) return the kind value of the smallest integer type that can
represent all values ranging from —107 (exclusive) to 10! (exclusive). If there is no
integer kind that accommodates this range, SELECTED_INT_KIND returns —1.

Standard: F95 and later
Class: Transformational function
Syniax: RESULT = SELECTED_INT_KIND(I)

Arguments:
I Shall be a scalar and of type INTEGER.

Ezample:

program large_integers
integer,parameter :: kb = selected_int_kind(5)
integer,parameter :: k15 = selected_int_kind(15)
integer (kind=k5) :: ib
integer(kind=k15) :: il5

print *, huge(i5), huge(ilb)

! The following inequalities are always true
print *, huge(ib) >= 10_kb5*x5-1
print *, huge(il5) >= 10_k15**15-1

end program large_integers

6.175 SELECTED_REAL_KIND — Choose real kind

Description:
SELECTED_REAL_KIND(P,R) return the kind value of a real data type with decimal
precision greater of at least P digits and exponent range greater at least R.

Standard: F95 and later
Class: Transformational function
Syntaz: RESULT = SELECTED_REAL_KIND(P, R)

Arguments:
P (Optional) shall be a scalar and of type INTEGER.
R (Optional) shall be a scalar and of type INTEGER.

At least one argument shall be present.

Return value:
SELECTED_REAL_KIND returns the value of the kind type parameter of a real data
type with decimal precision of at least P digits and a decimal exponent range of at
least R. If more than one real data type meet the criteria, the kind of the data type
with the smallest decimal precision is returned. If no real data type matches the
criteria, the result is

-1 if the processor does not support a real data type with a
precision greater than or equal to P

-2 if the processor does not support a real type with an exponent
range greater than or equal to R

-3 if neither is supported.
Example:

Chapter 6: Intrinsic Procedures 115

program real_kinds
integer,parameter :: p6 = selected_real_kind(6)
integer,parameter :: pl0r100 = selected_real_kind(10,100)
integer,parameter :: r400 = selected_real_kind(r=400)
real(kind=p6) :: x
real (kind=p10r100) :: y
real (kind=r400) :: z

print *, precision(x), range(x)

print *, precision(y), range(y)

print *, precision(z), range(z)
end program real_kinds

6.176 SET_EXPONENT — Set the exponent of the model

Description:
SET_EXPONENT (X, I) returns the real number whose fractional part is that that of
X and whose exponent part is L.

Standard: F95 and later
Class: Elemental function
Syniax: RESULT = SET_EXPONENT (X, I)

Arguments:
X Shall be of type REAL.
I Shall be of type INTEGER.

Return value:
The return value is of the same type and kind as X. The real number whose fractional
part is that that of X and whose exponent part if I is returned; it is FRACTION (X)
* RADIX (X) **I

Example:

PROGRAM test_setexp

REAL :: x = 178.1387e-4

INTEGER :: i = 17

PRINT *, SET_EXPONENT(x, i), FRACTION(x) * RADIX(x)**i
END PROGRAM

6.177 SHAPE — Determine the shape of an array

Description:
Determines the shape of an array.

Standard: F95 and later
Class: Inquiry function
Syntax: RESULT = SHAPE (SOURCE)

Arguments:
SOURCE Shall be an array or scalar of any type. If SOURCE is a pointer
it must be associated and allocatable arrays must be allocated.

Return value:
An INTEGER array of rank one with as many elements as SOURCE has dimensions.
The elements of the resulting array correspond to the extend of SOURCE along the
respective dimensions. If SOURCE is a scalar, the result is the rank one array of
size zero.

Example:

116 The GNU Fortran Compiler

PROGRAM test_shape
INTEGER, DIMENSION(-1:1, -1:2) :: A
WRITE(*,*) SHAPE(A) v (/3,47
WRITE(*,*) SIZE(SHAPE(42)) N OAV))

END PROGRAM

See also: Section 6.167 [RESHAPE], page 110, Section 6.182 [SIZE], page 118

6.178 SIGN — Sign copying function

Description:
SIGN(A,B) returns the value of A with the sign of B.

Standard: F77 and later
Class: Elemental function
Syntax: RESULT = SIGN(A, B)

Arguments:
A Shall be of type INTEGER or REAL
B Shall be of the same type and kind as A

Return value:
The kind of the return value is that of A and B. If B > 0 then the result is ABS(A),
else it is ~ABS(A).

Example:

program test_sign
print *, sign(-12,1)
print *, sign(-12,0)
print *, sign(-12,-1)

print *, sign(-12.,1.)

print *, sign(-12.,0.)

print *, sign(-12.,-1.)
end program test_sign

Specific names:

Name Arguments Return type Standard
ISIGN(A,P) INTEGER (4) INTEGER(4) 95, gnu
DSIGN(A,P) REAL(8) REAL(8) f95, gnu

6.179 SIGNAL — Signal handling subroutine (or function)

Description:
SIGNAL (NUMBER, HANDLER [, STATUS]) causes external subroutine HANDLER to
be executed with a single integer argument when signal NUMBER occurs. If HAN-
DLER is an integer, it can be used to turn off handling of signal NUMBER or revert
to its default action. See signal(2).

If SIGNAL is called as a subroutine and the STATUS argument is supplied, it is set
to the value returned by signal(2).
Standard: GNU extension

Class: Subroutine, non-elemental function

Syntaz:

CALL SIGNAL(NUMBER, HANDLER [, STATUS])
STATUS = SIGNAL (NUMBER, HANDLER)

Chapter 6: Intrinsic Procedures 117

Arguments:
NUMBER Shall be a scalar integer, with INTENT (IN)
HANDLER Signal handler (INTEGER.FUNCTION or SUBROUTINE) or
dummy /global INTEGER scalar. INTEGER. It is INTENT (IN).
STATUS (Optional) STATUS shall be a scalar integer. It has
INTENT(OUT).

Return value:
The SIGNAL function returns the value returned by signal(2).

Ezample:

program test_signal
intrinsic signal
external handler_print

call signal (12, handler_print)
call signal (10, 1)

call sleep (30)
end program test_signal

6.180 SIN — Sine function

Description:
SIN(X) computes the sine of X.

Standard: F77 and later
Class: Elemental function
Syntaz: RESULT = SIN(X)

Arguments:
X The type shall be REAL(*) or COMPLEX (*).

Return value:
The return value has same type and kind as X.

Example:

program test_sin
real :: x = 0.0
x = sin(x)

end program test_sin

Specific names:

Name Argument Return type Standard
DSIN(X) REAL(8) X REAL(8) 95, gnu
CSIN(X) COMPLEX(4) X COMPLEX(4) £95, gnu
ZSIN(X) COMPLEX(8) X COMPLEX (8) 95, gnu
CDSIN(X) COMPLEX(8) X COMPLEX (8) 95, gnu

See also: Section 6.18 [ASIN], page 38

6.181 SINH — Hyperbolic sine function

Description:
SINH(X) computes the hyperbolic sine of X.

Standard: F95 and later

Class: Elemental function

118

Syntaz:

Arguments:

The GNU Fortran Compiler

RESULT = SINH(X)

X The type shall be REAL (*).

Return value:

Ezample:

The return value is of type REAL (*).

program test_sinh
real(8) :: x =-1.0_8
x = sinh(x)

end program test_sinh

Specific names:

See also:

Name Argument Return type Standard
DSINH(X) REAL(8) X REAL(8) F95 and later

Section 6.19 [ASINH], page 38

6.182 SIZE — Determine the size of an array

Description:

Standard:
Class:
Syntax:

Arguments:

Determine the extent of ARRAY along a specified dimension DIM, or the total
number of elements in ARRAY if DIM is absent.

F95 and later
Inquiry function

RESULT = SIZE(ARRAY[, DIM])

ARRAY Shall be an array of any type. If ARRAY is a pointer it must be
associated and allocatable arrays must be allocated.
DIM (Optional) shall be a scalar of type INTEGER and its value shall

be in the range from 1 to n, where n equals the rank of ARRAY.

Return value:

Ezample:

See also:

The return value is of type INTEGER and of the default integer kind.

PROGRAM test_size
WRITE(*,*) SIZE((/ 1, 2 /)) 12
END PROGRAM

Section 6.177 [SHAPE], page 115, Section 6.167 [RESHAPE], page 110

6.183 SLEEP — Sleep for the specified number of seconds

Description:

Standard:
Class:
Syntaz:

Arguments:

Example:

Calling this subroutine causes the process to pause for SECONDS seconds.
GNU extension
Subroutine

CALL SLEEP (SECONDS)

SECONDS The type shall be of default INTEGER.

program test_sleep
call sleep(5)
end

Chapter 6: Intrinsic Procedures 119

6.184 SNGL — Convert double precision real to default real

Description:
SNGL(A) converts the double precision real A to a default real value. This is an
archaic form of REAL that is specific to one type for A.

Standard: GNU extension
Class: Elemental function
Syntaz: RESULT = SNGL(A)

Arguments:
A The type shall be a double precision REAL.

Return value:
The return value is of type default REAL.

See also: Section 6.46 [DBLE], page 53

6.185 SPACING — Smallest distance between two numbers of a
given type
Description:

Determines the distance between the argument X and the nearest adjacent number
of the same type.

Standard: F95 and later
Class: Elemental function
Syntaz: RESULT = SPACING (X)

Arguments:
X Shall be of type REAL (*).

Return value:
The result is of the same type as the input argument X.

Ezample:

PROGRAM test_spacing
INTEGER, PARAMETER :: SGL
INTEGER, PARAMETER :: DBL

SELECTED_REAL_KIND(p=6, r=37)
SELECTED_REAL_KIND (p=13, r=200)

WRITE(*,*) spacing(1.0_SGL) ! "1.1920929E-07" on i686
WRITE(*,*) spacing(1.0_DBL) ! 1"2.220446049250313E-016" on 1686
END PROGRAM

See also: Section 6.168 [RRSPACING], page 111

6.186 SPREAD — Add a dimension to an array

Description:
Replicates a SOURCE array NCOPIES times along a specified dimension DIM.

Standard: F95 and later
Class: Transformational function
Syntaz: RESULT = SPREAD (SOURCE, DIM, NCOPIES)

Arguments:
SOURCE Shall be a scalar or an array of any type and a rank less than
seven.

120 The GNU Fortran Compiler

DIM Shall be a scalar of type INTEGER with a value in the range from
1 to n+1, where n equals the rank of SOURCE.
NCOPIES Shall be a scalar of type INTEGER.

Return value:
The result is an array of the same type as SOURCE and has rank n+1 where n
equals the rank of SOURCE.

Example:

PROGRAM test_spread
INTEGER :: a =1, b(2) = (/ 1, 2 /)
WRITE(*,*) SPREAD(A, 1, 2) (ISR
WRITE(*,*) SPREAD(B, 1, 2) 1112 2"
END PROGRAM

See also: Section 6.206 [UNPACK], page 129

6.187 SQRT — Square-root function

Description:
SQRT(X) computes the square root of X.

Standard: F77 and later
Class: Elemental function
Syntazx: RESULT = SQRT (X)

Arguments:
X The type shall be REAL(*) or COMPLEX (*).

Return value:
The return value is of type REAL(*) or COMPLEX (*). The kind type parameter is
the same as X.

Example:

program test_sqrt
real(8) :: x
complex :: z
x = sqrt(x)
z = sqrt(z)

end program test_sqrt

0_8

2.
(1.0, 2.0)

Specific names:

Name Argument Return type Standard

DSQRT (X) REAL(8) X REAL(8) F95 and later

CSQRT(X) COMPLEX (4) X COMPLEX (4) F95 and later

ZSQRT (X) COMPLEX(8) X COMPLEX (8) GNU extension

CDSQRT (X) COMPLEX(8) X COMPLEX (8) GNU extension
6.188 SRAND — Reinitialize the random number generator
Description:

SRAND reinitializes the pseudo-random number generator called by RAND and IRAND.
The new seed used by the generator is specified by the required argument SEED.

Standard: GNU extension
Class: Non-elemental subroutine

Syntax: CALL SRAND (SEED)

Chapter 6: Intrinsic Procedures 121

Arguments:

SEED Shall be a scalar INTEGER (kind=4).

Return value:

Ezample:
Notes:

See also:

Does not return.
See RAND and IRAND for examples.

The Fortran 2003 standard specifies the intrinsic RANDOM_SEED to initialize the
pseudo-random numbers generator and RANDOM_NUMBER to generate pseudo-random
numbers. Please note that in GNU Fortran, these two sets of intrinsics (RAND, IRAND
and SRAND on the one hand, RANDOM_NUMBER and RANDOM_SEED on the other hand)
access two independent pseudo-random number generators.

Section 6.160 [RAND], page 107, Section 6.162 [RANDOM_SEED], page 108, Sec-
tion 6.161 [RANDOM_NUMBER], page 107

6.189 STAT — Get file status

Description:

Standard:
Class:
Syntaz:

Arguments:

Example:

This function returns information about a file. No permissions are required on the
file itself, but execute (search) permission is required on all of the directories in path
that lead to the file.

The elements that are obtained and stored in the array BUFF:

buff (1) Device 1D

buff (2) Inode number

buff (3) File mode

buff (4) Number of links

buff (5) Owner’s uid

buff (6) Owner’s gid

buff (7) ID of device containing directory entry for file (0 if not available)
buff (8) File size (bytes)

buff (9) Last access time

buff (10) Last modification time

buff (11) Last file status change time

buff (12) Preferred I/0 block size (-1 if not available)
buff (13) Number of blocks allocated (-1 if not available)

Not all these elements are relevant on all systems. If an element is not relevant, it
is returned as 0.

GNU extension
Non-elemental subroutine

CALL STAT(FILE,BUFF[,STATUS])

FILE The type shall be CHARACTER(*), a valid path within the file
system.

BUFF The type shall be INTEGER(4) , DIMENSION (13).

STATUS (Optional) status flag of type INTEGER(4). Returns 0 on success

and a system specific error code otherwise.

PROGRAM test_stat
INTEGER, DIMENSION(13) :: buff
INTEGER :: status

122

See also:

The GNU Fortran Compiler

CALL STAT("/etc/passwd", buff, status)

IF (status == 0) THEN

WRITE (%, FMT="(’Device ID:’, T30, I19)") buff (1)
WRITE (%, FMT="(’Inode number:’, T30, I19)") buff(2)
WRITE (%, FMT="(’File mode (octal):’, T30, 019)") buff(3)
WRITE (%, FMT="(’Number of links:’, T30, I19)") buff(4)
WRITE (%, FMT="(’Owner’’s uid:’, T30, I19)") buff(5)
WRITE (*, FMT="(’Owner’’s gid:’, T30, I19)") buff(6)
WRITE (%, FMT="(’Device where located:’, T30, I19)") buff(7)
WRITE (%, FMT="(’File size:’, T30, I19)") buff(8)
WRITE (%, FMT="(’Last access time:’, T30, A19)") CTIME(buff(9))
WRITE (%, FMT="(’Last modification time’, T30, A19)") CTIME(buff(10))
WRITE (*, FMT="(’Last status change time:’, T30, A19)") CTIME(buff(11))
WRITE (%, FMT="(’Preferred block size:’, T30, I19)") buff(12)
WRITE (%, FMT="(’No. of blocks allocated:’, T30, I19)") buff(13)
END IF

END PROGRAM

To stat an open file: Section 6.75 [FSTAT], page 68, to stat a link: Section 6.128
[LSTAT], page 91

6.190 SUM — Sum of array elements

Description:

Standard:
Class:
Syntaz:

Arguments:

Adds the elements of ARRAY along dimension DIM if the corresponding element
in MASK is TRUE.

F95 and later
Transformational function

RESULT = SUM(ARRAY[, MASK]) RESULT = SUM(ARRAY, DIM[, MASK])

ARRAY Shall be an array of type INTEGER (*), REAL(*) or COMPLEX (*).

DIM (Optional) shall be a scalar of type INTEGER with a value in the
range from 1 to n, where n equals the rank of ARRAY.

MASK (Optional) shall be of type LOGICAL and either be a scalar or an

array of the same shape as ARRAY.

Return value:

Example:

See also:

The result is of the same type as ARRAY.

If DIM is absent, a scalar with the sum of all elements in ARRAY is returned.
Otherwise, an array of rank n-1, where n equals the rank of ARRAY,and a shape
similar to that of ARRAY with dimension DIM dropped is returned.

PROGRAM test_sum
INTEGER :: x(6) = (/ 1, 2, 3, 4 ,56 /)
print *, SUM(x) ! all elements, sum
print *, SUM(x, MASK=MOD(x, 2)==1) ! odd elements, sum
END PROGRAM

Section 6.157 [PRODUCT], page 106

6.191 SYMLNK — Create a symbolic link

Description:

Makes a symbolic link from file PATHI to PATH2. A null character (CHAR(0)) can
be used to mark the end of the names in PATHI and PATH?2; otherwise, trailing

Chapter 6: Intrinsic Procedures 123

Standard:
Class:
Syntaz:

Arguments:

See also:

blanks in the file names are ignored. If the STATUS argument is supplied, it contains
0 on success or a nonzero error code upon return; see symlink(2). If the system
does not supply symlink(2), ENOSYS is returned.

This intrinsic is provided in both subroutine and function forms; however, only one
form can be used in any given program unit.

GNU extension

Subroutine, non-elemental function

CALL SYMLNK(PATH1, PATH2 [, STATUS])
STATUS = SYMLNK (PATH1, PATH2)

PATHI1 Shall be of default CHARACTER type.
PATH?2 Shall be of default CHARACTER type.
STATUS (Optional) Shall be of default INTEGER type.

Section 6.118 [LINK], page 87, Section 6.205 [UNLINK], page 129

6.192 SYSTEM — Execute a shell command

Description:

Standard:
Class:
Syntaz:

Arguments:

See also:

Passes the command COMMAND to a shell (see system(3)). If argument STATUS
is present, it contains the value returned by system(3), which is presumably 0 if
the shell command succeeded. Note that which shell is used to invoke the command
is system-dependent and environment-dependent.

This intrinsic is provided in both subroutine and function forms; however, only one
form can be used in any given program unit.

GNU extension

Subroutine, non-elemental function

CALL SYSTEM(COMMAND [, STATUS])
STATUS = SYSTEM(COMMAND)

COMMAND Shall be of default CHARACTER type.
STATUS (Optional) Shall be of default INTEGER type.

6.193 SYSTEM_CLOCK — Time function

Description:

Standard:
Class:

Determines the COUNT of milliseconds of wall clock time since the Epoch (00:00:00
UTC, January 1, 1970) modulo COUNT_-MAX, COUNT-RATE determines the
number of clock ticks per second. COUNT_RATE and COUNT_MAX are constant
and specific to gfortran.

If there is no clock, COUNT is set to -HUGE(COUNT), and COUNT_RATE and
COUNT_MAX are set to zero

F95 and later

Subroutine

124 The GNU Fortran Compiler

Syntaz: CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])

Arguments:
Arguments:
COUNT (Optional) shall be a scalar of type default INTEGER with
INTENT (QUT).
COUNT_RATE (Optional) shall be a scalar of type default INTEGER with
INTENT(OUT).
COUNT_-MAX (Optional) shall be a scalar of type default INTEGER with
INTENT (OUT).
Example:

PROGRAM test_system_clock
INTEGER :: count, count_rate, count_max
CALL SYSTEM_CLOCK(count, count_rate, count_max)
WRITE(*,*) count, count_rate, count_max

END PROGRAM

See also: Section 6.45 [DATE_AND_TIME], page 52, Section 6.42 [CPU_TIME], page 50

6.194 TAN — Tangent function

Description:
TAN(X) computes the tangent of X.

Standard: F77 and later
Class: Elemental function
Syntaz: RESULT = TAN(X)

Arguments:
X The type shall be REAL (*).

Return value:
The return value is of type REAL (*). The kind type parameter is the same as X.

Ezample:

program test_tan
real(8) :: x = 0.165_8
x = tan(x)

end program test_tan

Specific names:
Name Argument Return type Standard
DTAN (X) REAL(8) X REAL(8) F95 and later

See also: Section 6.21 [ATAN], page 40

6.195 TANH — Hyperbolic tangent function

Description:
TANH(X) computes the hyperbolic tangent of X.

Standard: F77 and later
Class: Elemental function
Syntaz: X = TANH(X)

Arguments:
X The type shall be REAL(*).

Chapter 6: Intrinsic Procedures 125

Return value:

Example:

The return value is of type REAL(x) and lies in the range —1 < tanh(z) < 1.

program test_tanh
real(8) :: x =2.1_8
x = tanh(x)

end program test_tanh

Specific names:

See also:

Name Argument Return type Standard
DTANH (X) REAL(8) X REAL(8) F95 and later

Section 6.23 [ATANH], page 41

6.196 TIME — Time function

Description:

Standard:
Class:
Syntazx:

Returns the current time encoded as an integer (in the manner of the UNIX function
time(3)). This value is suitable for passing to CTIME(), GMTIME(), and LTIMEQ).

This intrinsic is not fully portable, such as to systems with 32-bit INTEGER types but
supporting times wider than 32 bits. Therefore, the values returned by this intrinsic
might be, or become, negative, or numerically less than previous values, during a
single run of the compiled program.

See Section 6.197 [TIMES], page 125, for information on a similar intrinsic that
might be portable to more GNU Fortran implementations, though to fewer Fortran
compilers.

GNU extension
Non-elemental function

RESULT = TIMEQ)

Return value:

See also:

The return value is a scalar of type INTEGER (4).

Section 6.44 [CTIME], page 51, Section 6.88 [GMTIME], page 74, Section 6.129
[LTIME], page 91, Section 6.136 [MCLOCK], page 95, Section 6.197 [TIMES],
page 125

6.197 TIME8 — Time function (64-bit)

Description:

Standard:
Class:
Syntaz:

Returns the current time encoded as an integer (in the manner of the UNIX function
time(3)). This value is suitable for passing to CTIME(), GMTIME(), and LTIME().

Warning: this intrinsic does not increase the range of the timing values over that
returned by time(3). On a system with a 32-bit time(3), TIME8() will return a
32-bit value, even though it is converted to a 64-bit INTEGER(8) value. That means
overflows of the 32-bit value can still occur. Therefore, the values returned by this
intrinsic might be or become negative or numerically less than previous values during
a single run of the compiled program.

GNU extension
Non-elemental function

RESULT = TIME8()

126 The GNU Fortran Compiler

Return value:
The return value is a scalar of type INTEGER(8).

See also: Section 6.44 [CTIME], page 51, Section 6.88 [GMTIME], page 74, Section 6.129
[LTIME], page 91, Section 6.137 [MCLOCKS], page 96, Section 6.196 [TIME],
page 125

6.198 TINY — Smallest positive number of a real kind

Description:
TINY(X) returns the smallest positive (non zero) number in the model of the type
of X.

Standard: F95 and later

Class: Elemental function

Syntax: RESULT = TINY(X)

Arguments:
X Shall be of type REAL.

Return value:
The return value is of the same type and kind as X

Ezxample: See HUGE for an example.

6.199 TRANSFER — Transfer bit patterns

Description:
Interprets the bitwise representation of SOURCE in memory as if it is the represen-
tation of a variable or array of the same type and type parameters as MOLD.

This is approximately equivalent to the C concept of casting one type to another.
Standard: F95 and later
Class: Transformational function

Syntaz: RESULT = TRANSFER (SOURCE, MOLD[, SIZE])

Arguments:
SOURCE Shall be a scalar or an array of any type.
MOLD Shall be a scalar or an array of any type.
SIZE (Optional) shall be a scalar of type INTEGER.

Return value:
The result has the same type as MOLD, with the bit level representation of
SOURCE. If SIZE is present, the result is a one-dimensional array of length SIZE.
If SIZE is absent but MOLD is an array (of any size or shape), the result is a one-
dimensional array of the minimum length needed to contain the entirety of the bit-
wise representation of SOURCE. If SIZE is absent and MOLD is a scalar, the result
is a scalar.

If the bitwise representation of the result is longer than that of SOURCE, then the
leading bits of the result correspond to those of SOURCE and any trailing bits are
filled arbitrarily.

When the resulting bit representation does not correspond to a valid representation
of a variable of the same type as MOLD, the results are undefined, and subsequent
operations on the result cannot be guaranteed to produce sensible behavior. For
example, it is possible to create LOGICAL variables for which VAR and .NOT. VAR
both appear to be true.

Chapter 6: Intrinsic Procedures 127

Ezample:

PROGRAM test_transfer

integer :: x = 2143289344

print *, transfer(x, 1.0) ! prints "NaN" on i686
END PROGRAM

6.200 TRANSPOSE — Transpose an array of rank two

Description:
Transpose an array of rank two. Element (i, j) of the result has the value MATRIX(j,
i), for all i, j.

Standard: F95 and later
Class: Transformational function
Syntaa:: RESULT = TRANSPOSE (MATRIX)

Arguments:
MATRIX Shall be an array of any type and have a rank of two.

Return value:
The result has the the same type as MATRIX, and has shape (/ m, n /) if MATRIX
has shape (/ n, m /).

6.201 TRIM — Remove trailing blank characters of a string

Description:
Removes trailing blank characters of a string.

Standard: F95 and later
Class: Transformational function
Synt(m:: RESULT = TRIM(STRING)

Arguments:
STRING Shall be a scalar of type CHARACTER (*).

Return value:
A scalar of type CHARACTER (*) which length is that of STRING less the number of
trailing blanks.

Example:

PROGRAM test_trim

CHARACTER(len=10), PARAMETER :: s = "GFORTRAN "

WRITE(*,*) LEN(s), LEN(TRIM(s)) ! "10 8", with/without trailing blanks
END PROGRAM

See also: Section 6.8 [ADJUSTL], page 32, Section 6.9 [ADJUSTR], page 33

6.202 TTYNAM — Get the name of a terminal device.

Description:
Get the name of a terminal device. For more information, see ttyname (3).

This intrinsic is provided in both subroutine and function forms; however, only one
form can be used in any given program unit.

Standard: GNU extension

Class: Subroutine, non-elemental function

128 The GNU Fortran Compiler

Syntaz:
CALL TTYNAM(UNIT, NAME)
NAME = TTYNAM(UNIT)
Arguments:
UNIT Shall be a scalar INTEGER (*).
NAME Shall be of type CHARACTER (*).
Example:

PROGRAM test_ttynam
INTEGER :: unit
DO unit = 1, 10
IF (isatty(unit=unit)) write(*,*) ttynam(unit)
END DO
END PROGRAM

See also: Section 6.107 [ISATTY], page 82

6.203 UBOUND — Upper dimension bounds of an array

Description:
Returns the upper bounds of an array, or a single upper bound along the DIM
dimension.

Standard: F95 and later
Class: Inquiry function
Syntaz: RESULT = UBOUND(ARRAY [, DIM])

Arguments:
ARRAY Shall be an array, of any type.
DIM (Optional) Shall be a scalar INTEGER (*).

Return value:
If DIM is absent, the result is an array of the upper bounds of ARRAY. If DIM is
present, the result is a scalar corresponding to the upper bound of the array along
that dimension. If ARRAY is an expression rather than a whole array or array
structure component, or if it has a zero extent along the relevant dimension, the
upper bound is taken to be the number of elements along the relevant dimension.

See also: Section 6.113 [LBOUND], page 85

6.204 UMASK — Set the file creation mask

Description:
Sets the file creation mask to MASK and returns the old value in argument OLD if
it is supplied. See umask(2).

Standard: GNU extension
Class: Subroutine
Syntaz: CALL UMASK (MASK [, OLD])

Arguments:
MASK Shall be a scalar of type INTEGER (*).
MASK (Optional) Shall be a scalar of type INTEGER (*).

Chapter 6: Intrinsic Procedures 129

6.205 UNLINK — Remove a file from the file system

Description:
Unlinks the file PATH. A null character (CHAR(0)) can be used to mark the end
of the name in PATH; otherwise, trailing blanks in the file name are ignored. If
the STATUS argument is supplied, it contains 0 on success or a nonzero error code
upon return; see unlink(2).

This intrinsic is provided in both subroutine and function forms; however, only one
form can be used in any given program unit.

Standard: GNU extension
Class: Subroutine, non-elemental function

Syntaz:

CALL UNLINK(PATH [, STATUS])
STATUS = UNLINK(PATH)

Arguments:
PATH Shall be of default CHARACTER type.
STATUS (Optional) Shall be of default INTEGER type.

See also: Section 6.118 [LINK], page 87, Section 6.191 [SYMLNK], page 122

6.206 UNPACK — Unpack an array of rank one into an array

Description:
Store the elements of VECTOR in an array of higher rank.

Standard: F95 and later
Class: Transformational function

Syntaz: RESULT = UNPACK (VECTOR, MASK, FIELD)

Arguments:
VECTOR Shall be an array of any type and rank one. It shall have at least
as many elements as MASK has TRUE values.
MASK Shall be an array of type LOGICAL.
FIELD Shall be of the sam type as VECTOR and have the same shape
as MASK.

Return value:
The resulting array corresponds to FIELD with TRUE elements of MASK replaced
by values from VECTOR in array element order.

Ezample:

PROGRAM test_unpack
integer :: vector(2)
logical :: mask(4) =
integer :: field(2,2)

= (/1,1/)
(/ .TRUE., .FALSE., .FALSE., .TRUE. /)
= 0, unity(2,2)

! result: unity matrix

unity = unpack(vector, reshape(mask, (/2,2/)), field)
END PROGRAM

See also: Section 6.153 [PACK], page 104, Section 6.186 [SPREAD], page 119

130 The GNU Fortran Compiler

6.207 VERIFY — Scan a string for the absence of a set of
characters

Description:
Verifies that all the characters in a SET are present in a STRING.

If BACK is either absent or equals FALSE, this function returns the position of
the leftmost character of STRING that is not in SET. If BACK equals TRUE, the
rightmost position is returned. If all characters of SET are found in STRING, the
result is zero.

Standard: F95 and later
Class: Elemental function

Syntaz: RESULT = VERFIY(STRING, SET[, BACK])

Arguments:
STRING Shall be of type CHARACTER (*).
SET Shall be of type CHARACTER (*).
BACK (Optional) shall be of type LOGICAL.

Return value:
The return value is of type INTEGER and of the default integer kind.

Example:
PROGRAM test_verify

WRITE(*,*) VERIFY("FORTRAN", "AQ") ' 1, found ’F’
WRITE(*,*) VERIFY("FORTRAN", "F00") ! 3, found ’R’
WRITE(*,*) VERIFY("FORTRAN", "C++") ' 1, found ’F’
WRITE(*,*) VERIFY("FORTRAN", "C++", .TRUE.) ! 7, found ’N’
WRITE(*,*) VERIFY("FORTRAN", "FORTRAN") ! 0’ found none

END PROGRAM
See also: Section 6.171 [SCAN], page 112, Section 6.101 [INDEX], page 79

6.208 XOR — Bitwise logical exclusive OR

Description:
Bitwise logical exclusive or.

This intrinsic routine is provided for backwards compatibility with GNU Fortran
77. For integer arguments, programmers should consider the use of the Section 6.99
[IEOR], page 79 intrinsic defined by the Fortran standard.

Standard: GNU extension
Class: Non-elemental function
Syntazx: RESULT = XOR(X, Y)

Arguments:
X The type shall be either INTEGER (*) or LOGICAL.
Y The type shall be either INTEGER (*) or LOGICAL.

Return value:
The return type is either INTEGER(*) or LOGICAL after cross-promotion of the ar-
guments.

Ezample:

PROGRAM test_xor
LOGICAL :: T = .TRUE., F = .FALSE.
INTEGER :: a, b
DATA a / Z°F’ /, b / 2’3 /

Chapter 6: Intrinsic Procedures 131

WRITE (*,*) XOR(T, T), XOR(T, F), XOR(F, T), XOR(F, F)
WRITE (*,%*) XOR(a, b)
END PROGRAM

See also: F95 elemental function: Section 6.99 [IEOR], page 79

132 The GNU Fortran Compiler

Contributing 133

Contributing

Free software is only possible if people contribute to efforts to create it. We're always in need
of more people helping out with ideas and comments, writing documentation and contributing
code.

If you want to contribute to GNU Fortran, have a look at the long lists of projects you
can take on. Some of these projects are small, some of them are large; some are completely
orthogonal to the rest of what is happening on GNU Fortran, but others are “mainstream”
projects in need of enthusiastic hackers. All of these projects are important! We’ll eventually
get around to the things here, but they are also things doable by someone who is willing and
able.

Contributors to GNU Fortran
Most of the parser was hand-crafted by Andy Vaught, who is also the initiator of the whole
project. Thanks Andy! Most of the interface with GCC was written by Paul Brook.

The following individuals have contributed code and/or ideas and significant help to the GNU
Fortran project (in no particular order):

— Andy Vaught

— Katherine Holcomb
— Tobias Schliiter

— Steven Bosscher

— Toon Moene

— Tim Prince

— Niels Kristian Bech Jensen
— Steven Johnson

— Paul Brook

— Feng Wang

— Bud Davis

— Paul Thomas

— Francois-Xavier Coudert
— Steven G. Kargl

— Jerry Delisle

— Janne Blomqvist
— FErik Edelmann

— Thomas Koenig

— Asher Langton

— Jakub Jelinek

— Roger Sayle

— H.J. Lu

— Richard Henderson
— Richard Sandiford
— Richard Guenther
— Bernhard Fischer

The following people have contributed bug reports, smaller or larger patches, and much
needed feedback and encouragement for the GNU Fortran project:

134 The GNU Fortran Compiler

— Erik Schnetter
— Bill Clodius
— Kate Hedstrom
Many other individuals have helped debug, test and improve the GNU Fortran compiler over

the past few years, and we welcome you to do the same! If you already have done so, and you
would like to see your name listed in the list above, please contact us.

Projects

Help build the test suite
Solicit more code for donation to the test suite. We can keep code private on request.
Bug hunting/squishing
Find bugs and write more test cases! Test cases are especially very welcome, because
it allows us to concentrate on fixing bugs instead of isolating them.
Smaller projects (“bug” fizes):
— Allow init exprs to be numbers raised to integer powers.
— Implement correct rounding.
— Implement F restrictions on Fortran 95 syntax.

— See about making Emacs-parsable error messages.

If you wish to work on the runtime libraries, please contact a project maintainer.

Proposed Extensions

Here’s a list of proposed extensions for the GNU Fortran compiler, in no particular order. Most
of these are necessary to be fully compatible with existing Fortran compilers, but they are not
part of the official J3 Fortran 95 standard.

Compiler extensions:

e User-specified alignment rules for structures.
e Flag to generate Makefile info.
e Automatically extend single precision constants to double.

e Compile code that conserves memory by dynamically allocating common and module stor-
age either on stack or heap.

e Compile flag to generate code for array conformance checking (suggest -CC).

e User control of symbol names (underscores, etc).

e Compile setting for maximum size of stack frame size before spilling parts to static or heap.
e Flag to force local variables into static space.

e Flag to force local variables onto stack.

e Flag for maximum errors before ending compile.

e Option to initialize otherwise uninitialized integer and floating point variables.

Environment Options

e Pluggable library modules for random numbers, linear algebra. LA should use BLAS calling
conventions.

e Environment variables controlling actions on arithmetic exceptions like overflow, underflow,
precision loss—Generate NaN, abort, default. action.

e Set precision for fp units that support it (i387).

Contributing 135

e Variable for setting fp rounding mode.

e Variable to fill uninitialized variables with a user-defined bit pattern.

e Environment variable controlling filename that is opened for that unit number.
e Environment variable to clear/trash memory being freed.

e Environment variable to control tracing of allocations and frees.

e Environment variable to display allocated memory at normal program end.

e Environment variable for filename for * IO-unit.

e Environment variable for temporary file directory.

e Environment variable forcing standard output to be line buffered (unix).

136 The GNU Fortran Compiler

GNU GENERAL PUBLIC LICENSE 137

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (©) 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The “Program”, below, refers to any such program or work, and a “work based
on the Program” means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term “modification”.) Each licensee is addressed as “you”.

138

The GNU Fortran Compiler

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and that
users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the Program is not
required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following;:

a. Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution,

GNU GENERAL PUBLIC LICENSE 139

a complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

¢. Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribution
and only if you received the program in object code or executable form with such an
offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by modi-
fying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by all those who receive
copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by

140 The GNU Fortran Compiler

public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 141

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively convey the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.
The hypothetical commands ‘show w’” and ‘show ¢’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than
‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits your

program.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

142 The GNU Fortran Compiler

GNU Free Documentation License 143

GNU Free Documentation License

Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

144

The GNU Fortran Compiler

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain Ascil without markup,
Texinfo input format, LaTgX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.

GNU Free Documentation License 145

You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

o

Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

146

The GNU Fortran Compiler

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled

GNU Free Documentation License 147

10.

“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified

http://www.gnu.org/copyleft/

148 The GNU Fortran Compiler

version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

GNU Free Documentation License 149

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled °‘GNU
Free Documentation License’’.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with... Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

150 The GNU Fortran Compiler

Funding Free Software 151

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to help
encourage people to contribute funds for its development. The most effective approach known
is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-fee
distributors to donate part of their selling price to free software developers—the Free Software
Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied with
a vague promise, such as “A portion of the profits are donated,” since it doesn’t give a basis for
comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since creative
accounting and unrelated business decisions can greatly alter what fraction of the sales price
counts as profit. If the price you pay is $50, ten percent of the profit is probably less than a
dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep everyone
honest, you need to inquire how much they do, and what kind. Some kinds of development make
much more long-term difference than others. For example, maintaining a separate version of a
program contributes very little; maintaining the standard version of a program for the whole
community contributes much. Easy new ports contribute little, since someone else would surely
do them; difficult ports such as adding a new CPU to the GNU Compiler Collection contribute
more; major new features or packages contribute the most.

By establishing the idea that supporting further development is “the proper thing to do”
when distributing free software for a fee, we can assure a steady flow of resources into making
more free software.

Copyright (©) 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

152 The GNU Fortran Compiler

Option Index

Option Index

gfortran’s command line options are indexed here without any initial ‘=’ or ‘-=-’".

153

) 4 Y

Where an

option has both positive and negative forms (such as -foption and -fno-option), relevant entries
in the manual are indexed under the most appropriate form; it may sometimes be useful to look

up both forms.

F

fall-intrinsics 8
fbounds-check............. 14
fconvert=conversion 12
fcray-pointer.......... 9
fd-lines-as-code 8
fd-lines-as-comments.......................... 8
fdefault-double-8 8
fdefault-integer-8......... 8
fdefault-real-8, 8
fdollar-ok.......... ... 8
fdump-parse-tree 11
ff2c . 12
ffixed-line-length-n.......................... 8
ffpe-trap=listcoiiiiiiii 11
ffree-form..... 8
ffree-line-length-n........................... 8
fimplicit-none 9
fmax-errors-m 9
fmax-identifier-length=n 8
fmax-stack-var-size.......................... 14
fmax-subrecord-length=length 12
fno-automatic.......... L il 12
fno-backslash................ 8
fno-fixed-form 8
fno-underscoring 13
fopenmp 9
fpack-derived............... 14
frange-check..............l 9
frecord-marker=length........................ 12
frepack—arraysc.oiiiiiiii . 14
fsecond-underscore 14
fshort-enums, 14, 21
fsyntax-only.............. 9

pedantic............ 10
pedantic-errors 10

S

std=std option................ 9

W ottt e e e e e e 10
W 11
Waliasing.................oiiiiiinnin.. 10
Wall .. 10
Wampersand.................ouiiiiiiiiia... 10
Wcharacter-truncation........................ 10
WCONVErSiOon . . oottt et et e et 10
WETTOT ettt e 11
Wimplicit-interface.............. 10
Wnonstd-intrinsics......................... .. 10
Wsurprising..............., 11
WEADS .ot 11

Wunderflow. . ..ot 11

154 The GNU Fortran Compiler

Keyword Index

Keyword Index

B 8
&

B 10
S I 21

ABORT . .o 29
ABS 30
absolute value oL 30
ACCESS ..o 30
ACCESS=’STREAM’ I/O 21
ACHAR . ..o 31
ACOS . .o 31
ACOSH . ..o 32
adjust stringl 32, 33
ADJUSTL . . .ot 32
ADJUSTR . . oot 33
AIMAG 33
AINT . 34
ALARM . .. 34
aliasing. ... 10
ALL oo 35
all warnings L 10
ALLOCATABLE components of derived types........ 21
ALLOCATABLE dummy arguments................. 21
ALLOCATABLE function results.................... 21
ALLOCATED . . . oottt e e e e e e e 36
allocation, moving............................. 100
allocation, status............. 36
ALOG . .o 89
ALOGLO ..ot 89
AMAXO . oo 93
AMAXL 93
AMINO . .ot 97
AMINT .. 97
AMOD . ..o 99
AND . . 36
ANINT .. 37
ANY . 37
area hyperbolic cosine, 32
area hyperbolic sine....................... 38
area hyperbolic tangent......................... 41
arguments, to program 48, 69, 70, 76
array, add elementso L. 122
array, apply condition....................... 35, 37
array, bounds checking 14
array, change dimensions 110
array, combine arrays................... 96
array, condition testing............ 35, 37
array, conditionally add elements............... 122
array, conditionally count elements 50
array, conditionally multiply elements........... 106

array, constructors L 21

155
array, count elements.......................... 118
array, duplicate dimensions 119
array, duplicate elementes...................... 119
array, element counting................... 50
array, gather elements......................... 104
array, increase dimension.................. 119, 129
array, indices of typereal 25
array, location of maximum element 94
array, location of minimum element.............. 97
array, lower bound oo oo oL 85
array, maximum value.......................... 95
arTay, METZE AITAYS . o oo v e et e eeaeen. 96
array, minmum value............ L 98
array, multiply elements 106
array, number of elements 50, 118
array, packing. 104
array, permutation 51
array, product i 106
array, reduce dimension. 104
array, rotate 51
array, scatter elements......................... 129
array, shape 115
array, shift.. 58
array, shift circularly 51
AITAY, SIZE . oottt 118
ATTAY, SUINL .+« o oetoetetee e e e et e e e e e 122
array, transmogrify 110
array, transpose. ... 127
array, unpackingo o ool 129
array, upper bound............ 128
ASCII collating sequence 31, 75
ASIN . 38
ASINH. ..ot 38, 41
ASSOCTIATED . . oottt e e e e e 39
association status L. 39
ATAN . 40
ATAN2 . o 40
Authors.........oo i 133
B
backslash....... 8
BESJO ..o 41
BESJTL . 42
BESIN ..o 42
Bessel function, first kind.................... 41, 42
Bessel function, second kind 43, 44
BESYO . ..o 43
BESY L . 43
BESYN ..o 44
BIT_SIZE.ot 44
bits, clear 76
bits, extract i 77
bits, get T
bits, move........ 101, 126
bits, negate........ i 103
bits, number of 44
bits, S€t ..o 77
bits, shift....... ... 82
bits, shift circular oo 83
bits, shift left 91

156

bits, shift right................................ 111
bits, testing. 44
bits, unset 76
bitwise logical and 36, 75
bitwise logical exclusive or.................. 79, 130
bitwise logical not.............. 103
bitwise logical or........................... 81, 103
bounds checking oo i 14
BOZ literal constants........................... 25
BTEST ..o 44
C

CABS . 30
calling convention.................... 12
CCOS . .t 49
CDABS . 30
CDCOS . .ot 49
CDEXP . ..o 61
CDLOG - . vttt e e e e 89
CDSIN .ottt e 117
CDSQRT - .o ettt e e e e e 120
ceiling 37, 45
CEILING . ..ottt et 45
CEXP .o 61
CHAR . .o 45
character set......... i 8
CHDIR ..ot e 46
checking subscripts.............. 14
CHMOD . ..o e 46
clock ticks il 95, 96, 123
CLOG .« .ttt e e 89
CMPLX . .ot 47
code generation, conventions 12
collating sequence, ASCIT.................... 31,75
command options 7
command-line arguments 48, 69, 70, 76
command-line arguments, number of 48, 76
COMMAND_ARGUMENT_COUNTooo.n.. 48
complex conjugate 48
complex numbers, conversion to.............. 47, 53
complex numbers, imaginary part 33
complex numbers, real part................. 56, 109
CONJG . .ot e 48
Contributing. L 133
Contributors. 133
CONVETSION & o vttt ettt et ettt e e e e 10
conversion, to character......................... 45
conversion, to complex 47, 53
conversion, to integer.......... 25, 75, 78, 80, 81, 90
conversion, to logical 25, 90
conversion, toreal 53, 54, 62, 109, 119
conversion, to string............. oL 51
CONVERT specifier.............. ... 27
core, dUMD .« oo vt 29
COS .t 49
COSH . ..o 49
COSINE . .ottt 49
cosine, hyperbolic.............................. 49
cosine, hyperbolic, inverse 32
COSINE, INVETSE . ..\ttt 31
COUNT . .o e 50
CPU_TIME 50
Credits. ... 133
CSHIFET . .o e 51

The GNU Fortran Compiler

CSIN ettt e e e 117
CSQRT . .. 120
CTIME ... e 51
current date 52, 62, 78
current time........................ 52, 62, 83, 125
D

DABS . . 30
DACOS . .o 31
DACOSHo 32
DASIN . .t 38
DASINH. ...t 38, 41
DATAN . .o 40
DATAN2 . ..o 40
date, current 52, 62, 78
DATE_AND_TIME........ ... i, 52
DBESJO ..ottt 41
DBESJIL ... 42
DBESIN . .ot 42
DBESYO . .ot 43
DBESY L ..o 43
DBESYN . ..o 44
DBLE . .. 53
DCMPLX . .ot 53
DCONJG . ..ot e 48
DCOS . .ot 49
DCOSH . .ottt 49
DDIM .. 55
debugging information options 11
delayed execution................ 34, 118
DEXP . .o 61
DFLOAT . .o 54
dialect options 8
DIGITS ... e 54
DIM .. 55
DIMAG . .ot e 33
DINT .. 34
directive, INCLUDE............................ 11
directory, options 11
directory, search paths for inclusion.............. 11
division, modulo 99
division, remainder............ 99
DLOG . .ottt e e 89
DLOG1O . .o 89
DMAXL . 93
DMINT . 97
DMOD . .ottt 99
DNINT ..o 37
dot product........ ... 55
DOT_PRODUCTot 55
DPROD . .ottt e 56
DREAL . .o 56
DSIGN . .ottt e e e 116
DSIN ..ttt 117
DSINH . ..ot 117
DSQRT . .ot 120
DTAN . .o 124
DTANH . ..o 124
DTIME ... 57
E

Keyword Index

ENUM statement 21
ENUMERATOR statement 21
environment variable................. 15, 17, 71, 72
EOSHIFTo 58
EPSILON . ..o e 58
ERF . 59
ERFC ... 59
error function.......... L 59
error function, complementary 59
errors, limiting 9
escape characters................. 8
ETIME . ..o 60
EXIT .. 60
EXP . 61
EXPONENTo 61
exponential function............................ 61
exponential function, inverse.................... 89
Extension 23
extra warningsiiiiiii... 11
F

f2c calling convention....................... 12, 14
FDATE . . oo 62
FDL, GNU Free Documentation License 143
FGET . ..o 63
FGETC . ..o e 63
file format, fixed L. 8
file format, free 8
file operation, file number....................... 65
file operation, flush.......... 65
file operation, position 67, 68
file operation, read character.................... 63
file operation, seek L.l 67
file operation, write character................ 65, 66
file system, access mode 30
file system, change access mode 46
file system, create link 87, 122
file system, file creation mask 128
file system, file status................... 68, 91, 121
file system, hard link 87
file system, remove file........ 129
file system, rename file 110
file system, soft link 122
FLOAT . .o 62
floating point, exponent 61
floating point, fraction................... 66
floating point, nearest different................. 101
floating point, relative spacing............. 111, 119
floating point, scale 112
floating point, set exponent 115
floor. ... 34, 64
FLOOR . . oot e e 64
FLUSH . ..o e 65
FLUSH statement 21
FNUM . .o 65
Fortran 77.... 2
FPUT . .o 65
FPUTC . . oo e e 66
FRACTIONt e 66
FREE . ..o 67
FSEEK . ..o 67
FSTAT . . 68
FTELL . ..o e e 68

157
G
BTT 2
g77 calling convention....................... 12, 14
GO 2
GERROR 69
GET_COMMAND 70
GET_COMMAND_ARGUMENT, 70
GET_ENVIRONMENT_VARIABLE..................... 72
GETARG 69
GETCWDo 71
GETENV . ..o 71
GETGID . ..ot 72
GETLOG . . . oot 72
GETPIDt 73
GETUID e 73
GMTIME 74
GNU Compiler Collection........................ 2
GNU Fortran command options 7
H
Hollerith constants 25
HOSTNMo e 74
HUGE 75
hyperbolic arccosine............................ 32
hyperbolic arcsine.............................. 38
hyperbolic arctangent 41
hyperbolic cosine........... o 49
hyperbolic function, cosine...................... 49
hyperbolic function, cosine, inverse 32
hyperbolic function, sine....................... 117
hyperbolic function, sine, inverse 38
hyperbolic function, tangent 124
hyperbolic function, tangent, inverse............. 41
hyperbolic sine............. 117
hyperbolic tangent 124
I
I/Oitem lists. i 24
IABS 30
TACHAR . . .o 75
IAND .o 75
TARGC . e 76
IBCLR . ottt e e 76
IBITS et e s
IBSET . .t e 7
ICHAR . . o 78
IDATE . . o 78
IDIM .o 55
IDINT .« e e 80
IDNINT . ..o e e 102
TEOR . .t 79
IERRNOo e 79
TEIX 80
IMAG . oottt e 33
IMAGPART . . . 33
INCLUDE directiveccoviiiin.... 11
inclusion, directory search paths for 11
INDEX . .t 79
INT o 80
INT2 . 80
INT8 e 81

158

intrinsic procedures 29
TIOMSG=specifieroovneiiniinen.. 21
I0R .o 81
IRAND . . oot 82
ISATTY e 82
ISHET . e 82
ISHETC . et e 83
ISIGN .ottt e e e 116
ITIME . . .o e 83

KILL . 84
kind 84
KIND ..ottt e 84
kind, integer......... 114
kind, old-style L. 23
kind, real........ 114

L

language, dialect options......................... 8
LBOUND .. oet et e e e e e 85
LEN . 85
LEN_TRIM.o e 85
lexical comparison of strings 86, 87, 88
LGE . . 86
LGT . 86
libf2¢ calling convention..................... 12, 14
limits, largest number 75
limits, smallest number........................ 126
LINK ..o 87
LLE . 87
LT .t 88
LNBLNK . .ot e 88
LOC . e 88
location of a variable in memory 88
LOG ottt e e e e 89
LOGLO ..o 89
logarithmic function............................ 89
logarithmic function, inverse 61
LOGICAL . .ot e e 90
logical and, bitwise 36, 75
logical exclusive or, bitwise 79, 130
logical not, bitwise, 103
logical or, bitwise.......................... 81, 103
login name il 72
LONG . . oe e 90
LSHIFET . .o e e 91
LT AT .. 91
LTIME . ..o 91

MALLOC . . .o 92
MATMUL . ..o e e 93
matrix multiplication........................... 93
matrix, transpose L ool 127
MAX o 93
MAXO . oot 93
MAXL oo 93
MAXEXPONENTot e 94
maximum value..............., 93, 95
MAXLOC . .o 94

The GNU Fortran Compiler

MAXVAL . .o 95
MCLOCK . .ottt e e 95
MCLOCKS . . .ot 96
MERGE 96
JORTCTSRTVoXCTIC) 5 0) 9
messages, Warlingouuueeuuneennn ... 9
MIN . 97
MINO ..ot 97
MINL o 97
MINEXPONENT 97
minimum value................ 97, 98
MINLOC . .ot e e e 97
MINVAL . .o e 98
MOD ..t 99
model representation, base..................... 106
model representation, epsilon 58
model representation, largest number............ 75
model representation, maximum exponent. 94
model representation, minimum exponent 97
model representation, precision................. 105
model representation, radix 106
model representation, range.................... 109
model representation, significant digits........... 54
model representation, smallest number.......... 126
module search path 11, 12
modulo......... ... 99
MODULD . . oottt e e e e e e 99
MOVE_ALLOC . . . oot 100
moving allocation 100
multiply array elements........................ 106
MVBITS ..o 101

N

Namelist 23
NEAREST e 101
NEW_LINE e 102
newline. 102
NINT . 102
NOT oot e e 103
NULL ... e e 103

OpenMP o 9, 28
Operators, UNATYuueumrnenenenennen.. 25
options, code generation........................ 12
options, debugging 11
options, dialect L 8
options, directory search........................ 11
OPtIONS, €ITOTS . ..ottt 9
options, fortran dialect 8
options, gfortran command 7
options, negative forms 7
options, run-time. 12
options, runtime 12
options, warnings 9
OR .ot 103
output, newline 102

Keyword Index

PERROR o 105
pointer, cray oL 26, 67, 92
pointer, disassociated.......................... 103
pointer, status............. L. 39, 103
positive difference L 55
PRECISIONottt 105
PRESENT e 105
process id 73
PRODUCT . . .ot e 106
product, double-precision 56
product, matrix......... i 93
product, vector 55
program termination 60
program termination, with core dump 29

RADIX .. 106
RAN . 107
RAND . ..o 107
random number generation................. 82, 107
random number generation, seeding. 108, 120
RANDOM_NUMBERt 107
RANDOM_SEED.ottt 108
RANGE 109
range checking 14
read character, stream mode 63
REAL ..o 109
real kind oL 114
real number, exponent................. 61
real number, fraction 66
real number, nearest different 101
real number, relative spacing 111, 119
real number, scale............ 112
real number, set exponent 115
REALPART o 109
remainder 99
RENAME 110
repacking arrays 14
REPEAT . .. 110
RESHAPE 110
TOOb . oot 120
rounding, ceiling............ 37, 45
rounding, floor L 34, 64
rounding, nearest whole number................ 102
RRSPACING . ..ottt e e 111
RSHIFET ..o e 111

S

SAVE statement L. 12
SCALE . . . 112
SCAN . o 112
search path......., 11
search paths, for included files................... 11
SECNDS . . . 113
SECONDot e 113
seeding a random number generator. 108, 120
SELECTED_INT_KINDot 114
SELECTED_REAL_KINDoiinin... 114
SET_EXPONENT. 115
SHAPE . . o 115
SHORT . .. 80

159
SIEN COPYING . o v v ettt et e et 116
SIGNAL . . 116
SIN et 117
SINE . ot 117
sine, hyperbolic............ 117
sine, hyperbolic, inverse 38
SINE, INVETSE . .o vov et 38
SINH ... 117
SIZE .o 118
size of a variable, in bits........................ 44
SLEEP . . o 118
SNGL . oo 119
SPACING . ..ottt 119
SPREAD 119
SQRT .o 120
SQUATE-TOOY .+« v o vttt 120
SRAND . . . 120
Standardsc 3
STAT .o 121
statement, ENUM. 21
statement, ENUMERATOR 21
statement, FLUSH. 21
statement, SAVE 12
STREAM I/O ..o 21
stream mode, read character.................... 63
stream mode, write character................ 65, 66
string, adjust left...... 32
string, adjust right 33
string, comparison....................... 86, 87, 88
string, concatenate 110
string, find missing set......................... 130
string, find non-blank character 88
string, find subset 112
string, find substringol 79
string, length L. 85
string, length, without trailing whitespace........ 85
string, remove trailing whitespace 127
string, repeat 110
structure packing oo 14
subscript checking.............. 14
substring position oL 79
SUM et 122
sum array elements.............. 122
SUppressing warnings 9
symbol names. 8
symbol names, transforming 13, 14
symbol names, underscores 13, 14
SYMLNK . . 122
syntax checking o L 9
SYSTEM . ..o 123
system, error handling.................. 69, 79, 105
system, group id 72
system, host name 4
system, login name............... 72
system, process id 73
system, signal handling........................ 116
system, system call.............. 123
system, terminal 82, 127
system, user id......... i 73
system, working directory 46, 71
SYSTEM_CLOCK.ot 123
T
tabulators 11

160

TAN .« 124
tangent......... il 124
tangent, hyperbolic............................ 124
tangent, hyperbolic, inverse 41
tangent, inverse................ ... 40
TANH . ..o 124
terminate program 60
terminate program, with core dump 29
TIME .. 125
time, clock ticks........... 95, 96, 123
time, conversion to GMT info................... 74
time, conversion to string 51
time, converstion to local time info.............. 91
time, current 52, 62, 83, 125
time, elapsed 50, 57, 60, 113
TIMES ... 125
TINY . 126
TR 1G58 oo 21
TRANSFER 126
transforming symbol names.................. 13, 14
transpose. 127
TRANSPOSE 127
trigonometric function, cosine 49
trigonometric function, cosine, inverse 31
trigonometric function, sine.................... 117
trigonometric function, sine, inverse 38
trigonometric function, tangent 124
trigonometric function, tangent, inverse.......... 40
TRIM .ot e 127
TTYNAM . . e 127
typecast ... 126

UBOUNDot e 128
UMASK .« . 128
underflow. 11
UNderscoret 13, 14
UNLINK . .o e 129

The GNU Fortran Compiler

vector product 55
VERIFY ... e 130

A%

warnings, aliasing o oL 10
warnings, all L o 10
warnings, ampersand 10
warnings, character truncation 10
warnings, cConversion 10
Warnings, extrao i 11
warnings, implicit interface 10
warnings, non-stdandard intrinsics............... 10
Warnings, NONE.ouuniiiuneennnaeoo... 10
Warnings, SUPPressing.veeenenenennenen.. 9
warnings, suspicious code, 11
warnings, tabs 11
warnings, to errors oo 11
warnings, underflow 11
write character, stream mode 65, 66

ZABS . . 30
ZCOS . . 49
ZEXP . 61
ZLOG . .o 89
ZSIN .o 117

	Introduction
	About GNU Fortran
	GNU Fortran and GCC
	GNU Fortran and G77
	Project Status
	Standards

	Part I: Invoking GNU Fortran
	GNU Fortran Command Options
	Option Summary
	Options Controlling Fortran Dialect
	Options to Request or Suppress Errors and Warnings
	Options for Debugging Your Program or GNU Fortran
	Options for Directory Search
	Influencing runtime behavior
	Options for Code Generation Conventions
	Environment Variables Affecting gfortran

	Runtime: Influencing runtime behavior with environment variables
	GFORTRAN_STDIN_UNIT---Unit number for standard input
	GFORTRAN_STDOUT_UNIT---Unit number for standard output
	GFORTRAN_STDERR_UNIT---Unit number for standard error
	GFORTRAN_USE_STDERR---Send library output to standard error
	GFORTRAN_TMPDIR---Directory for scratch files
	GFORTRAN_UNBUFFERED_ALL---Don't buffer output
	GFORTRAN_SHOW_LOCUS---Show location for runtime errors
	GFORTRAN_OPTIONAL_PLUS---Print leading + where permitted
	GFORTRAN_DEFAULT_RECL---Default record length for new files
	GFORTRAN_LIST_SEPARATOR---Separator for list output
	GFORTRAN_CONVERT_UNIT---Set endianness for unformatted I/O

	Part II: Language Reference
	Fortran 2003 Status
	Extensions
	Old-style kind specifications
	Old-style variable initialization
	Extensions to namelist
	X format descriptor without count field
	Commas in FORMAT specifications
	Missing period in FORMAT specifications
	I/O item lists
	BOZ literal constants
	Real array indices
	Unary operators
	Implicitly convert LOGICAL and INTEGER values
	Hollerith constants support
	Cray pointers
	CONVERT specifier
	OpenMP

	Intrinsic Procedures
	Introduction to intrinsic procedures
	ABORT --- Abort the program
	ABS --- Absolute value
	ACCESS --- Checks file access modes
	ACHAR --- Character in ASCII collating sequence
	ACOS --- Arccosine function
	ACOSH --- Hyperbolic arccosine function
	ADJUSTL --- Left adjust a string
	ADJUSTR --- Right adjust a string
	AIMAG --- Imaginary part of complex number
	AINT --- Truncate to a whole number
	ALARM --- Execute a routine after a given delay
	ALL --- All values in MASK along DIM are true
	ALLOCATED --- Status of an allocatable entity
	AND --- Bitwise logical AND
	ANINT --- Nearest whole number
	ANY --- Any value in MASK along DIM is true
	ASIN --- Arcsine function
	ASINH --- Hyperbolic arcsine function
	ASSOCIATED --- Status of a pointer or pointer/target pair
	ATAN --- Arctangent function
	ATAN2 --- Arctangent function
	ATANH --- Hyperbolic arctangent function
	BESJ0 --- Bessel function of the first kind of order 0
	BESJ1 --- Bessel function of the first kind of order 1
	BESJN --- Bessel function of the first kind
	BESY0 --- Bessel function of the second kind of order 0
	BESY1 --- Bessel function of the second kind of order 1
	BESYN --- Bessel function of the second kind
	BIT_SIZE --- Bit size inquiry function
	BTEST --- Bit test function
	CEILING --- Integer ceiling function
	CHAR --- Character conversion function
	CHDIR --- Change working directory
	CHMOD --- Change access permissions of files
	CMPLX --- Complex conversion function
	COMMAND_ARGUMENT_COUNT --- Get number of command line arguments
	CONJG --- Complex conjugate function
	COS --- Cosine function
	COSH --- Hyperbolic cosine function
	COUNT --- Count function
	CPU_TIME --- CPU elapsed time in seconds
	CSHIFT --- Circular shift elements of an array
	CTIME --- Convert a time into a string
	DATE_AND_TIME --- Date and time subroutine
	DBLE --- Double conversion function
	DCMPLX --- Double complex conversion function
	DFLOAT --- Double conversion function
	DIGITS --- Significant digits function
	DIM --- Positive difference
	DOT_PRODUCT --- Dot product function
	DPROD --- Double product function
	DREAL --- Double real part function
	DTIME --- Execution time subroutine (or function)
	EOSHIFT --- End-off shift elements of an array
	EPSILON --- Epsilon function
	ERF --- Error function
	ERFC --- Error function
	ETIME --- Execution time subroutine (or function)
	EXIT --- Exit the program with status.
	EXP --- Exponential function
	EXPONENT --- Exponent function
	FDATE --- Get the current time as a string
	FLOAT --- Convert integer to default real
	FGET --- Read a single character in stream mode from stdin
	FGETC --- Read a single character in stream mode
	FLOOR --- Integer floor function
	FLUSH --- Flush I/O unit(s)
	FNUM --- File number function
	FPUT --- Write a single character in stream mode to stdout
	FPUTC --- Write a single character in stream mode
	FRACTION --- Fractional part of the model representation
	FREE --- Frees memory
	FSEEK --- Low level file positioning subroutine
	FSTAT --- Get file status
	FTELL --- Current stream position
	GERROR --- Get last system error message
	GETARG --- Get command line arguments
	GET_COMMAND --- Get the entire command line
	GET_COMMAND_ARGUMENT --- Get command line arguments
	GETCWD --- Get current working directory
	GETENV --- Get an environmental variable
	GET_ENVIRONMENT_VARIABLE --- Get an environmental variable
	GETGID --- Group ID function
	GETLOG --- Get login name
	GETPID --- Process ID function
	GETUID --- User ID function
	GMTIME --- Convert time to GMT info
	HOSTNM --- Get system host name
	HUGE --- Largest number of a kind
	IACHAR --- Code in ASCII collating sequence
	IAND --- Bitwise logical and
	IARGC --- Get the number of command line arguments
	IBCLR --- Clear bit
	IBITS --- Bit extraction
	IBSET --- Set bit
	ICHAR --- Character-to-integer conversion function
	IDATE --- Get current local time subroutine (day/month/year)
	IEOR --- Bitwise logical exclusive or
	IERRNO --- Get the last system error number
	INDEX --- Position of a substring within a string
	INT --- Convert to integer type
	INT2 --- Convert to 16-bit integer type
	INT8 --- Convert to 64-bit integer type
	IOR --- Bitwise logical or
	IRAND --- Integer pseudo-random number
	ISATTY --- Whether a unit is a terminal device.
	ISHFT --- Shift bits
	ISHFTC --- Shift bits circularly
	ITIME --- Get current local time subroutine (hour/minutes/seconds)
	KILL --- Send a signal to a process
	KIND --- Kind of an entity
	LBOUND --- Lower dimension bounds of an array
	LEN --- Length of a character entity
	LEN_TRIM --- Length of a character entity without trailing blank characters
	LGE --- Lexical greater than or equal
	LGT --- Lexical greater than
	LINK --- Create a hard link
	LLE --- Lexical less than or equal
	LLT --- Lexical less than
	LNBLNK --- Index of the last non-blank character in a string
	LOC --- Returns the address of a variable
	LOG --- Logarithm function
	LOG10 --- Base 10 logarithm function
	LOGICAL --- Convert to logical type
	LONG --- Convert to integer type
	LSHIFT --- Left shift bits
	LSTAT --- Get file status
	LTIME --- Convert time to local time info
	MALLOC --- Allocate dynamic memory
	MATMUL --- matrix multiplication
	MAX --- Maximum value of an argument list
	MAXEXPONENT --- Maximum exponent of a real kind
	MAXLOC --- Location of the maximum value within an array
	MAXVAL --- Maximum value of an array
	MCLOCK --- Time function
	MCLOCK8 --- Time function (64-bit)
	MERGE --- Merge variables
	MIN --- Minimum value of an argument list
	MINEXPONENT --- Minimum exponent of a real kind
	MINLOC --- Location of the minimum value within an array
	MINVAL --- Minimum value of an array
	MOD --- Remainder function
	MODULO --- Modulo function
	MOVE_ALLOC --- Move allocation from one object to another
	MVBITS --- Move bits from one integer to another
	NEAREST --- Nearest representable number
	NEW_LINE --- New line character
	NINT --- Nearest whole number
	NOT --- Logical negation
	NULL --- Function that returns an disassociated pointer
	OR --- Bitwise logical OR
	PACK --- Pack an array into an array of rank one
	PERROR --- Print system error message
	PRECISION --- Decimal precision of a real kind
	PRESENT --- Determine whether an optional dummy argument is specified
	PRODUCT --- Product of array elements
	RADIX --- Base of a model number
	RAN --- Real pseudo-random number
	RAND --- Real pseudo-random number
	RANDOM_NUMBER --- Pseudo-random number
	RANDOM_SEED --- Initialize a pseudo-random number sequence
	RANGE --- Decimal exponent range of a real kind
	REAL --- Convert to real type
	RENAME --- Rename a file
	REPEAT --- Repeated string concatenation
	RESHAPE --- Function to reshape an array
	RRSPACING --- Reciprocal of the relative spacing
	RSHIFT --- Right shift bits
	SCALE --- Scale a real value
	SCAN --- Scan a string for the presence of a set of characters
	SECNDS --- Time function
	SECOND --- CPU time function
	SELECTED_INT_KIND --- Choose integer kind
	SELECTED_REAL_KIND --- Choose real kind
	SET_EXPONENT --- Set the exponent of the model
	SHAPE --- Determine the shape of an array
	SIGN --- Sign copying function
	SIGNAL --- Signal handling subroutine (or function)
	SIN --- Sine function
	SINH --- Hyperbolic sine function
	SIZE --- Determine the size of an array
	SLEEP --- Sleep for the specified number of seconds
	SNGL --- Convert double precision real to default real
	SPACING --- Smallest distance between two numbers of a given type
	SPREAD --- Add a dimension to an array
	SQRT --- Square-root function
	SRAND --- Reinitialize the random number generator
	STAT --- Get file status
	SUM --- Sum of array elements
	SYMLNK --- Create a symbolic link
	SYSTEM --- Execute a shell command
	SYSTEM_CLOCK --- Time function
	TAN --- Tangent function
	TANH --- Hyperbolic tangent function
	TIME --- Time function
	TIME8 --- Time function (64-bit)
	TINY --- Smallest positive number of a real kind
	TRANSFER --- Transfer bit patterns
	TRANSPOSE --- Transpose an array of rank two
	TRIM --- Remove trailing blank characters of a string
	TTYNAM --- Get the name of a terminal device.
	UBOUND --- Upper dimension bounds of an array
	UMASK --- Set the file creation mask
	UNLINK --- Remove a file from the file system
	UNPACK --- Unpack an array of rank one into an array
	VERIFY --- Scan a string for the absence of a set of characters
	XOR --- Bitwise logical exclusive OR

	Contributing
	Contributors to GNU Fortran
	Projects
	Proposed Extensions
	Compiler extensions:
	Environment Options

	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	Appendix: How to Apply These Terms to Your New Programs

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Funding Free Software
	Option Index
	Keyword Index

