partial specialization of p-adic based solver with block Wiedemann algorithm.
More...
#include <rational-solver.h>
Public Member Functions |
| RationalSolver (const Ring &r=Ring(), const RandomPrime &rp=RandomPrime(20), const BlockWiedemannTraits &traits=BlockWiedemannTraits()) |
| Constructor.
|
| RationalSolver (const Prime &p, const Ring &r=Ring(), const RandomPrime &rp=RandomPrime(20), const BlockWiedemannTraits &traits=BlockWiedemannTraits()) |
| Constructor with a prime.
|
Detailed Description
template<class Ring, class Field, class RandomPrime>
class LinBox::RationalSolver< Ring, Field, RandomPrime, BlockWiedemannTraits >
partial specialization of p-adic based solver with block Wiedemann algorithm.
See the following reference for details on this algorithm:
- Bibliography:
- Douglas H. Wiedemann Solving sparse linear equations over finite fields. IEEE Transaction on Information Theory, 32(1), pages 54-62, 1986.
- Don Coppersmith Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm. Mathematic of computation, 62(205), pages 335-350, 1994.
- Erich Kaltofen and B. David Saunders On Wiedemann's method of solving sparse linear systems. In Applied Algebra, Algebraic Algorithms and Error Correcting Codes, AAECC'91, volume 539 of Lecture Notes in Computer Sciences, pages 29-38, 1991.
Constructor & Destructor Documentation
RationalSolver |
( |
const Ring & |
r = Ring() , |
|
|
const RandomPrime & |
rp = RandomPrime( 20 ) , |
|
|
const BlockWiedemannTraits & |
traits = BlockWiedemannTraits() |
|
) |
| |
|
inline |
Constructor.
- Parameters
-
r | a Ring, set by default |
rp | a RandomPrime generator, set by default |
traits | |
RationalSolver |
( |
const Prime & |
p, |
|
|
const Ring & |
r = Ring() , |
|
|
const RandomPrime & |
rp = RandomPrime( 20 ) , |
|
|
const BlockWiedemannTraits & |
traits = BlockWiedemannTraits() |
|
) |
| |
|
inline |
Constructor with a prime.
- Parameters
-
p | a Prime |
r | a Ring, set by default |
rp | a RandomPrime generator, set by default |
traits | |
The documentation for this class was generated from the following files: