from math import log as _log
from sympify import _sympify
from cache import cacheit
from core import C
from singleton import S
from expr import Expr
import mpmath
from sympy.utilities.iterables import sift
[docs]def integer_nthroot(y, n):
"""
Return a tuple containing x = floor(y**(1/n))
and a boolean indicating whether the result is exact (that is,
whether x**n == y).
>>> from sympy import integer_nthroot
>>> integer_nthroot(16,2)
(4, True)
>>> integer_nthroot(26,2)
(5, False)
"""
y, n = int(y), int(n)
if y < 0: raise ValueError("y must be nonnegative")
if n < 1: raise ValueError("n must be positive")
if y in (0, 1): return y, True
if n == 1: return y, True
if n == 2:
x, rem = mpmath.libmp.sqrtrem(y)
return int(x), not rem
if n > y: return 1, False
# Get initial estimate for Newton's method. Care must be taken to
# avoid overflow
try:
guess = int(y**(1./n) + 0.5)
except OverflowError:
expt = _log(y, 2)/n
if expt > 53:
shift = int(expt - 53)
guess = int(2.0**(expt-shift) + 1) << shift
else:
guess = int(2.0**expt)
#print n
if guess > 2**50:
# Newton iteration
xprev, x = -1, guess
while 1:
t = x**(n-1)
#xprev, x = x, x - (t*x-y)//(n*t)
xprev, x = x, ((n-1)*x + y//t)//n
#print n, x-xprev, abs(x-xprev) < 2
if abs(x - xprev) < 2:
break
else:
x = guess
# Compensate
t = x**n
while t < y:
x += 1
t = x**n
while t > y:
x -= 1
t = x**n
return x, t == y
[docs]class Pow(Expr):
is_Pow = True
__slots__ = ['is_commutative']
@cacheit
def __new__(cls, b, e, evaluate=True):
b = _sympify(b)
e = _sympify(e)
if evaluate:
if e is S.Zero:
return S.One
elif e is S.One:
return b
else:
obj = b._eval_power(e)
if obj is not None:
return obj
obj = Expr.__new__(cls, b, e)
obj.is_commutative = (b.is_commutative and e.is_commutative)
return obj
@property
def base(self):
return self._args[0]
@property
def exp(self):
return self._args[1]
@classmethod
def class_key(cls):
return 3, 2, cls.__name__
def _eval_power(self, other):
b, e = self.as_base_exp()
if other.is_integer:
return Pow(b, e * other)
if b.is_nonnegative and (e.is_real or other.is_real):
return Pow(b, e * other)
if e.is_even and b.is_real: # hence b is pos and e is real
return Pow(abs(b), e * other)
if abs(e) < S.One and other.is_real:
return Pow(b, e * other)
def _eval_is_comparable(self):
c1 = self.base.is_comparable
if c1 is None: return
c2 = self.exp.is_comparable
if c2 is None: return
return c1 and c2
def _eval_is_even(self):
if self.exp.is_integer and self.exp.is_positive:
if self.base.is_even:
return True
if self.base.is_integer:
return False
def _eval_is_positive(self):
if self.base.is_positive:
if self.exp.is_real:
return True
elif self.base.is_negative:
if self.exp.is_even:
return True
if self.exp.is_odd:
return False
elif self.base.is_nonpositive:
if self.exp.is_odd:
return False
def _eval_is_negative(self):
if self.base.is_negative:
if self.exp.is_odd:
return True
if self.exp.is_even:
return False
elif self.base.is_positive:
if self.exp.is_real:
return False
elif self.base.is_nonnegative:
if self.exp.is_real:
return False
elif self.base.is_nonpositive:
if self.exp.is_even:
return False
elif self.base.is_real:
if self.exp.is_even:
return False
def _eval_is_integer(self):
c1 = self.base.is_integer
c2 = self.exp.is_integer
if c1 is None or c2 is None:
return None
if not c1:
if self.exp.is_nonnegative:
return False
if c1 and c2:
if self.exp.is_nonnegative or self.exp.is_positive:
return True
if self.exp.is_negative:
return False
def _eval_is_real(self):
real_b = self.base.is_real
if real_b is None: return
real_e = self.exp.is_real
if real_e is None: return
if real_b and real_e:
if self.base.is_positive:
return True
else: # negative or zero (or positive)
if self.exp.is_integer:
return True
elif self.base.is_negative:
if self.exp.is_Rational:
return False
im_b = self.base.is_imaginary
im_e = self.exp.is_imaginary
if im_b:
if self.exp.is_integer:
if self.exp.is_even:
return True
elif self.exp.is_odd:
return False
elif (self.exp in [S.ImaginaryUnit, -S.ImaginaryUnit] and
self.base in [S.ImaginaryUnit, -S.ImaginaryUnit]):
return True
if real_b and im_e:
c = self.exp.coeff(S.ImaginaryUnit)
if c:
ok = (c*C.log(self.base)/S.Pi).is_Integer
if ok is not None:
return ok
def _eval_is_odd(self):
if not (self.base.is_integer and self.exp.is_nonnegative): return
return self.base.is_odd
def _eval_is_bounded(self):
if self.exp.is_negative:
if self.base.is_infinitesimal:
return False
if self.base.is_unbounded:
return True
c1 = self.base.is_bounded
if c1 is None: return
c2 = self.exp.is_bounded
if c2 is None: return
if c1 and c2:
if self.exp.is_nonnegative or self.base.is_nonzero:
return True
def _eval_subs(self, old, new):
if self == old:
return new
if old.func is self.func and self.base == old.base:
coeff1, terms1 = self.exp.as_coeff_mul()
coeff2, terms2 = old.exp.as_coeff_mul()
if terms1 == terms2:
pow = coeff1/coeff2
if pow.is_Integer or self.base.is_commutative:
return Pow(new, pow) # (x**(2*y)).subs(x**(3*y),z) -> z**(2/3)
if old.func is C.exp:
coeff1, terms1 = old.args[0].as_coeff_mul()
coeff2, terms2 = (self.exp*C.log(self.base)).as_coeff_mul()
if terms1 == terms2:
pow = coeff1/coeff2
if pow.is_Integer or self.base.is_commutative:
return Pow(new, pow) # (x**(2*y)).subs(x**(3*y),z) -> z**(2/3)
return Pow(self.base._eval_subs(old, new), self.exp._eval_subs(old, new))
def as_base_exp(self):
if self.base.is_Rational and self.base.p==1 and self.base is not S.Infinity:
return 1/self.base, -self.exp
return self.base, self.exp
def _eval_conjugate(self):
from sympy.functions.elementary.complexes import conjugate as c
return c(self.base)**self.exp
def _eval_expand_basic(self, deep=True, **hints):
sargs, terms = self.args, []
for term in sargs:
if hasattr(term, '_eval_expand_basic'):
newterm = term._eval_expand_basic(deep=deep, **hints)
else:
newterm = term
terms.append(newterm)
return self.func(*terms)
def _eval_expand_power_exp(self, deep=True, *args, **hints):
"""a**(n+m) -> a**n*a**m"""
if deep:
b = self.base.expand(deep=deep, **hints)
e = self.exp.expand(deep=deep, **hints)
else:
b = self.base
e = self.exp
if e.is_Add and e.is_commutative:
expr = []
for x in e.args:
if deep:
x = x.expand(deep=deep, **hints)
expr.append(Pow(self.base, x))
return Mul(*expr)
return Pow(b, e)
def _eval_expand_power_base(self, deep=True, **hints):
"""(a*b)**n -> a**n * b**n"""
force = hints.get('force', False)
b, ewas = self.args
if deep:
e = self.exp.expand(deep=deep, **hints)
else:
e = self.exp
if b.is_Mul:
bargs = b.args
if force or e.is_integer:
nonneg = bargs
other = []
elif ewas.is_Rational or len(bargs) == 2 and bargs[0] is S.NegativeOne:
# the Rational exponent was already expanded automatically
# if there is a negative Number * foo, foo must be unknown
# or else it, too, would have automatically expanded;
# sqrt(-Number*foo) -> sqrt(Number)*sqrt(-foo); then
# sqrt(-foo) -> unchanged if foo is not positive else
# -> I*sqrt(foo)
# So...if we have a 2 arg Mul and the first is a Number
# that number is -1 and there is nothing more than can
# be done without the force=True hint
nonneg= []
else:
# this is just like what is happening automatically, except
# that now we are doing it for an arbitrary exponent for which
# no automatic expansion is done
sifted = sift(b.args, lambda x: x.is_nonnegative)
nonneg = sifted.get(True, [])
other = sifted.get(None, [])
neg = sifted.get(False, [])
# make sure the Number gets pulled out
if neg and neg[0].is_Number and neg[0] is not S.NegativeOne:
nonneg.append(-neg[0])
neg[0] = S.NegativeOne
# leave behind a negative sign
oddneg = len(neg) % 2
if oddneg:
other.append(S.NegativeOne)
# negate all negatives and append to nonneg
nonneg += [-n for n in neg]
if nonneg: # then there's a new expression to return
other = [Pow(Mul(*other), e)]
if deep:
return Mul(*([Pow(b.expand(deep=deep, **hints), e)\
for b in nonneg] + other))
else:
return Mul(*([Pow(b, e) for b in nonneg] + other))
return Pow(b, e)
def _eval_expand_mul(self, deep=True, **hints):
sargs, terms = self.args, []
for term in sargs:
if hasattr(term, '_eval_expand_mul'):
newterm = term._eval_expand_mul(deep=deep, **hints)
else:
newterm = term
terms.append(newterm)
return self.func(*terms)
def _eval_expand_multinomial(self, deep=True, **hints):
"""(a+b+..) ** n -> a**n + n*a**(n-1)*b + .., n is nonzero integer"""
if deep:
b = self.base.expand(deep=deep, **hints)
e = self.exp.expand(deep=deep, **hints)
else:
b = self.base
e = self.exp
if b is None:
base = self.base
else:
base = b
if e is None:
exp = self.exp
else:
exp = e
if e is not None or b is not None:
result = Pow(base, exp)
if result.is_Pow:
base, exp = result.base, result.exp
else:
return result
else:
result = None
if exp.is_Rational and exp.p > 0 and base.is_Add:
if not exp.is_Integer:
n = Integer(exp.p // exp.q)
if not n:
return Pow(base, exp)
else:
radical, result = Pow(base, exp - n), []
for term in Add.make_args(Pow(base, n)._eval_expand_multinomial(deep=False)):
result.append(term*radical)
return Add(*result)
n = int(exp)
if base.is_commutative:
order_terms, other_terms = [], []
for order in base.args:
if order.is_Order:
order_terms.append(order)
else:
other_terms.append(order)
if order_terms:
# (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n)
f = Add(*other_terms)
g = (f**(n-1)).expand()
return (f*g).expand() + n*g*Add(*order_terms)
if base.is_number:
# Efficiently expand expressions of the form (a + b*I)**n
# where 'a' and 'b' are real numbers and 'n' is integer.
a, b = base.as_real_imag()
if a.is_Rational and b.is_Rational:
if not a.is_Integer:
if not b.is_Integer:
k = Pow(a.q * b.q, n)
a, b = a.p*b.q, a.q*b.p
else:
k = Pow(a.q, n)
a, b = a.p, a.q*b
elif not b.is_Integer:
k = Pow(b.q, n)
a, b = a*b.q, b.p
else:
k = 1
a, b, c, d = int(a), int(b), 1, 0
while n:
if n & 1:
c, d = a*c-b*d, b*c+a*d
n -= 1
a, b = a*a-b*b, 2*a*b
n //= 2
I = S.ImaginaryUnit
if k == 1:
return c + I*d
else:
return Integer(c)/k + I*d/k
p = other_terms
# (x+y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3
# in this particular example:
# p = [x,y]; n = 3
# so now it's easy to get the correct result -- we get the
# coefficients first:
from sympy import multinomial_coefficients
expansion_dict = multinomial_coefficients(len(p), n)
# in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3}
# and now construct the expression.
# An elegant way would be to use Poly, but unfortunately it is
# slower than the direct method below, so it is commented out:
#b = {}
#for k in expansion_dict:
# b[k] = Integer(expansion_dict[k])
#return Poly(b, *p).as_expr()
from sympy.polys.polyutils import basic_from_dict
result = basic_from_dict(expansion_dict, *p)
return result
else:
if n == 2:
return Add(*[f*g for f in base.args for g in base.args])
else:
multi = (base**(n-1))._eval_expand_multinomial(deep=False)
if multi.is_Add:
return Add(*[f*g for f in base.args for g in multi.args])
else:
return Add(*[f*multi for f in base.args])
elif exp.is_Rational and exp.p < 0 and base.is_Add and abs(exp.p) > exp.q:
return 1 / Pow(base, -exp)._eval_expand_multinomial(deep=False)
elif exp.is_Add and base.is_Number:
# a + b a b
# n --> n n , where n, a, b are Numbers
coeff, tail = S.One, S.Zero
for term in exp.args:
if term.is_Number:
coeff *= Pow(base, term)
else:
tail += term
return coeff * Pow(base, tail)
else:
return result
def _eval_expand_log(self, deep=True, **hints):
sargs, terms = self.args, []
for term in sargs:
if hasattr(term, '_eval_expand_log'):
newterm = term._eval_expand_log(deep=deep, **hints)
else:
newterm = term
terms.append(newterm)
return self.func(*terms)
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*S.ImaginaryUnit
def as_real_imag(self, deep=True, **hints):
from sympy.core.symbol import symbols
from sympy.polys.polytools import poly
from sympy.core.function import expand_multinomial
if self.exp.is_Integer:
exp = self.exp
re, im = self.base.as_real_imag(deep=deep)
a, b = symbols('a b', cls=Dummy)
if exp >= 0:
if re.is_Number and im.is_Number:
# We can be more efficient in this case
expr = expand_multinomial(self.base**exp)
return expr.as_real_imag()
expr = poly((a + b)**exp) # a = re, b = im; expr = (a + b*I)**exp
else:
mag = re**2 + im**2
re, im = re/mag, -im/mag
if re.is_Number and im.is_Number:
# We can be more efficient in this case
expr = expand_multinomial((re + im*S.ImaginaryUnit)**-exp)
return expr.as_real_imag()
expr = poly((a + b)**-exp)
# Terms with even b powers will be real
r = [i for i in expr.terms() if not i[0][1] % 2]
re_part = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
# Terms with odd b powers will be imaginary
r = [i for i in expr.terms() if i[0][1] % 4 == 1]
im_part1 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
r = [i for i in expr.terms() if i[0][1] % 4 == 3]
im_part3 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
return (re_part.subs({a: re, b: S.ImaginaryUnit*im}),
im_part1.subs({a: re, b: im}) + im_part3.subs({a: re, b: -im}))
elif self.exp.is_Rational:
# NOTE: This is not totally correct since for x**(p/q) with
# x being imaginary there are actually q roots, but
# only a single one is returned from here.
re, im = self.base.as_real_imag(deep=deep)
r = Pow(Pow(re, 2) + Pow(im, 2), S.Half)
t = C.atan2(im, re)
rp, tp = Pow(r, self.exp), t*self.exp
return (rp*C.cos(tp), rp*C.sin(tp))
else:
if deep:
hints['complex'] = False
return (C.re(self.expand(deep, complex=False)),
C.im(self. expand(deep, **hints)))
else:
return (C.re(self), C.im(self))
def _eval_expand_trig(self, deep=True, **hints):
sargs, terms = self.args, []
for term in sargs:
if hasattr(term, '_eval_expand_trig'):
newterm = term._eval_expand_trig(deep=deep, **hints)
else:
newterm = term
terms.append(newterm)
return self.func(*terms)
def _eval_expand_func(self, deep=True, **hints):
sargs, terms = self.args, []
for term in sargs:
if hasattr(term, '_eval_expand_func'):
newterm = term._eval_expand_func(deep=deep, **hints)
else:
newterm = term
terms.append(newterm)
return self.func(*terms)
def _eval_derivative(self, s):
dbase = self.base.diff(s)
dexp = self.exp.diff(s)
return self * (dexp * C.log(self.base) + dbase * self.exp/self.base)
def _eval_evalf(self, prec):
base, exp = self.as_base_exp()
base = base._evalf(prec)
if not exp.is_Integer:
exp = exp._evalf(prec)
if exp < 0 and not base.is_real:
base = base.conjugate() / (base * base.conjugate())._evalf(prec)
exp = -exp
return Pow(base, exp).expand()
def _eval_is_polynomial(self, syms):
if self.exp.has(*syms):
return False
if self.base.has(*syms):
return self.base._eval_is_polynomial(syms) and \
self.exp.is_Integer and \
self.exp >= 0
else:
return True
def _eval_is_rational_function(self, syms):
if self.exp.has(*syms):
return False
if self.base.has(*syms):
return self.base._eval_is_rational_function(syms) and \
self.exp.is_Integer
else:
return True
def as_numer_denom(self):
base, exp = self.as_base_exp()
n, d = base.as_numer_denom()
if d.is_negative and n.is_negative:
n, d = -n, -d
if exp.is_Integer:
if exp.is_negative:
n, d = d, n
exp = -exp
return Pow(n, exp), Pow(d, exp)
elif exp.is_Rational or d.is_positive:
if d.is_negative is None:
# we won't split up the base
if exp.is_negative:
return S.One, Pow(base, -exp)
else:
return self, S.One
if d.is_negative:
n = -n
d = -d
c, t = exp.as_coeff_mul()
if c.is_negative:
n, d = d, n
exp = -exp
return Pow(n, exp), Pow(d, exp)
else:
c, t = exp.as_coeff_mul()
if c.is_negative:
return 1, base**-exp
# unprocessed Float and NumberSymbol
return self, S.One
def matches(self, expr, repl_dict={}, evaluate=False):
if evaluate:
return self.subs(repl_dict).matches(expr, repl_dict)
expr = _sympify(expr)
b, e = expr.as_base_exp()
# special case, pattern = 1 and expr.exp can match to 0
if expr is S.One:
d = repl_dict.copy()
d = self.exp.matches(S.Zero, d)
if d is not None:
return d
d = repl_dict.copy()
d = self.base.matches(b, d)
if d is None:
return None
d = self.exp.subs(d).matches(e, d)
if d is None:
return Expr.matches(self, expr, repl_dict, evaluate)
return d
def _eval_nseries(self, x, n, logx):
# NOTE! This function is an important part of the gruntz algorithm
# for computing limits. It has to return a generalised power series
# with coefficients in C(log, log(x)). In more detail:
# It has to return an expression
# c_0*x**e_0 + c_1*x**e_1 + ... (finitely many terms)
# where e_i are numbers (not necessarily integers) and c_i are expression
# involving only numbers, the log function, and log(x).
from sympy import powsimp, collect, exp, log, O, ceiling
b, e = self.args
if e.is_Integer:
if e > 0:
# positive integer powers are easy to expand, e.g.:
# sin(x)**4 = (x-x**3/3+...)**4 = ...
return Pow(b._eval_nseries(x, n=n, logx=logx), e
)._eval_expand_multinomial(deep = False)
elif e is S.NegativeOne:
# this is also easy to expand using the formula:
# 1/(1 + x) = 1 - x + x**2 - x**3 ...
# so we need to rewrite base to the form "1+x"
b = b._eval_nseries(x, n=n, logx=logx)
prefactor = b.as_leading_term(x)
# express "rest" as: rest = 1 + k*x**l + ... + O(x**n)
rest = ((b - prefactor)/prefactor)._eval_expand_mul()
if rest == 0:
# if prefactor == w**4 + x**2*w**4 + 2*x*w**4, we need to
# factor the w**4 out using collect:
return 1/collect(prefactor, x)
if rest.is_Order:
return 1/prefactor + rest/prefactor
n2 = rest.getn()
if n2 is not None:
n = n2
# remove the O - powering this is slow
if logx is not None:
rest = rest.removeO()
k, l = rest.leadterm(x)
if l.is_Rational and l > 0:
pass
elif l.is_number and l > 0:
l = l.evalf()
else:
raise NotImplementedError()
terms = [1/prefactor]
for m in xrange(1, ceiling(n/l)):
new_term = terms[-1]*(-rest)
if new_term.is_Pow:
new_term = new_term._eval_expand_multinomial(deep = False)
else:
new_term = new_term._eval_expand_mul(deep = False)
terms.append(new_term)
# Append O(...), we know the order.
if n2 is None or logx is not None:
terms.append(O(x**n))
return powsimp(Add(*terms), deep=True, combine='exp')
else:
# negative powers are rewritten to the cases above, for example:
# sin(x)**(-4) = 1/( sin(x)**4) = ...
# and expand the denominator:
denominator = (b**(-e))._eval_nseries(x, n=n, logx=logx)
if 1/denominator == self:
return self
# now we have a type 1/f(x), that we know how to expand
return (1/denominator)._eval_nseries(x, n=n, logx=logx)
if e.has(Symbol):
return exp(e*log(b))._eval_nseries(x, n=n, logx=logx)
if b == x:
return powsimp(self, deep=True, combine='exp')
# work for b(x)**e where e is not an Integer and does not contain x
# and hopefully has no other symbols
def e2int(e):
"""return the integer value (if possible) of e and a
flag indicating whether it is bounded or not."""
n = e.limit(x, 0)
unbounded = n.is_unbounded
if not unbounded:
# XXX was int or floor intended? int used to behave like floor
# so int(-Rational(1, 2)) returned -1 rather than int's 0
try:
n = int(n)
except TypeError:
#well, the n is something more complicated (like 1+log(2))
try:
n = int(n.evalf()) + 1 # XXX why is 1 being added?
except TypeError:
pass # hope that base allows this to be resolved
n = _sympify(n)
return n, unbounded
order = O(x**n, x)
ei, unbounded = e2int(e)
b0 = b.limit(x, 0)
if unbounded and (b0 is S.One or b0.has(Symbol)):
# XXX what order
if b0 is S.One:
resid = (b - 1)
if resid.is_positive:
return S.Infinity
elif resid.is_negative:
return S.Zero
raise ValueError('cannot determine sign of %s' % resid)
return b0**ei
if (b0 is S.Zero or b0.is_unbounded):
if unbounded is not False:
return b0**e # XXX what order
if not ei.is_number: # if not, how will we proceed?
raise ValueError('expecting numerical exponent but got %s' % ei)
nuse = n - ei
lt = b.compute_leading_term(x, logx=logx) # arg = sin(x); lt = x
# XXX o is not used -- was this to be used as o and o2 below to compute a new e?
o = order*lt**(1 - e)
bs = b._eval_nseries(x, n=nuse, logx=logx)
if bs.is_Add:
bs = bs.removeO()
if bs.is_Add:
# bs -> lt + rest -> lt*(1 + (bs/lt - 1))
return ((Pow(lt, e)*
Pow((bs/lt).expand(), e).
nseries(x, n=nuse, logx=logx)).expand() +
order)
return bs**e + order
# either b0 is bounded but neither 1 nor 0 or e is unbounded
# b -> b0 + (b-b0) -> b0 * (1 + (b/b0-1))
o2 = order*(b0**-e)
z = (b/b0 - 1)
o = O(z, x)
#r = self._compute_oseries3(z, o2, self.taylor_term)
if o is S.Zero or o2 is S.Zero:
unbounded = True
else:
if o.expr.is_number:
e2 = log(o2.expr*x)/log(x)
else:
e2 = log(o2.expr)/log(o.expr)
n, unbounded = e2int(e2)
if unbounded:
# requested accuracy gives infinite series,
# order is probably nonpolynomial e.g. O(exp(-1/x), x).
r = 1 + z
else:
l = []
g = None
for i in xrange(n + 2):
g = self.taylor_term(i, z, g)
g = g.nseries(x, n=n, logx=logx)
l.append(g)
r = Add(*l)
return r*b0**e + order
def _eval_as_leading_term(self, x):
if not self.exp.has(x):
return Pow(self.base.as_leading_term(x), self.exp)
return C.exp(self.exp * C.log(self.base)).as_leading_term(x)
@cacheit
def taylor_term(self, n, x, *previous_terms): # of (1+x)**e
if n<0: return S.Zero
x = _sympify(x)
return C.binomial(self.exp, n) * Pow(x, n)
def _sage_(self):
return self.args[0]._sage_()**self.args[1]._sage_()
from add import Add
from numbers import Integer
from mul import Mul
from symbol import Symbol, Dummy