from sympy.core import S, sympify, diff
from sympy.core.function import Function, ArgumentIndexError
from sympy.polys.polyerrors import PolynomialError
###############################################################################
################################ DELTA FUNCTION ###############################
###############################################################################
[docs]class DiracDelta(Function):
"""DiracDelta function, and the derivatives.
DiracDelta function has the following properties:
1) diff(Heaviside(x),x) = DiracDelta(x)
2) integrate(DiracDelta(x-a)*f(x),(x,-oo,oo)) = f(a)
integrate(DiracDelta(x-a)*f(x),(x,a-e,a+e)) = f(a)
3) DiracDelta(x) = 0, for all x != 0
4) DiracDelta(g(x)) = Sum_i(DiracDelta(x-xi)/abs(g'(xi)))
Where xis are the roots of g
Derivatives of k order of DiracDelta have the following property:
5) DiracDelta(x,k) = 0, for all x!=0
For more information, see:
http://mathworld.wolfram.com/DeltaFunction.html
"""
nargs = (1,2)
def fdiff(self, argindex = 1):
if argindex == 1:
#I didn't know if there is a better way to handle default arguments
k = 0
if len(self.args) > 1:
k = self.args[1]
return DiracDelta(self.args[0],k+1)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg, k=0):
k = sympify(k)
if not k.is_Integer or k.is_negative:
raise ValueError("Error: the second argument of DiracDelta must be \
a non-negative integer, %s given instead." %(k,))
arg = sympify(arg)
if arg is S.NaN:
return S.NaN
if arg.is_positive or arg.is_negative:
return S.Zero
elif arg.is_zero:
return S.Infinity
def simplify(self, x):
"""simplify(self, x)
Compute a simplified representation of the function using
property number 4.
x can be:
- a symbol
Examples
--------
>>> from sympy import DiracDelta
>>> from sympy.abc import x, y
>>> DiracDelta(x*y).simplify(x)
DiracDelta(x)/Abs(y)
>>> DiracDelta(x*y).simplify(y)
DiracDelta(y)/Abs(x)
>>> DiracDelta(x**2 + x - 2).simplify(x)
DiracDelta(x - 1)/3 + DiracDelta(x + 2)/3
"""
from sympy.polys.polyroots import roots
if not self.args[0].has(x) or (len(self.args)>1 and self.args[1] != 0 ):
return self
try:
argroots = roots(self.args[0],x, \
multiple=True)
result = 0
valid = True
darg = diff(self.args[0], x)
for r in argroots:
#should I care about multiplicities of roots?
if r.is_real and not darg.subs(x,r).is_zero:
result = result + DiracDelta(x - r)/abs(darg.subs(x,r))
else:
valid = False
break
if valid:
return result
except PolynomialError:
pass
return self
def is_simple(self,x):
"""is_simple(self, x)
Tells whether the argument(args[0]) of DiracDelta is a linear
expression in x.
x can be:
- a symbol
Examples
--------
>>> from sympy import DiracDelta, cos
>>> from sympy.abc import x, y
>>> DiracDelta(x*y).is_simple(x)
True
>>> DiracDelta(x*y).is_simple(y)
True
>>> DiracDelta(x**2+x-2).is_simple(x)
False
>>> DiracDelta(cos(x)).is_simple(x)
False
"""
p = self.args[0].as_poly(x)
if p:
return p.degree() == 1
return False
###############################################################################
############################## HEAVISIDE FUNCTION #############################
###############################################################################
[docs]class Heaviside(Function):
"""Heaviside Piecewise function.
Heaviside function has the following properties:
1) diff(Heaviside(x),x) = DiracDelta(x)
( 0, if x<0
2) Heaviside(x) = < [*] 1/2 if x==0
( 1, if x>0
[*]Regarding to the value at 0, Mathematica adopt the value H(0)=1,
and Maple H(0)=undefined
I think is better to have H(0)=1/2, due to the following:
integrate(DiracDelta(x),x) = Heaviside(x)
integrate(DiracDelta(x),(x,-oo,oo)) = 1
and since DiracDelta is a symmetric function,
integrate(DiracDelta(x),(x,0,oo)) should be 1/2
in fact, that is what maple returns.
If we take Heaviside(0)=1/2, we would have
integrate(DiracDelta(x),(x,0,oo)) = Heaviside(oo)-Heaviside(0)=1-1/2= 1/2
and
integrate(DiracDelta(x),(x,-oo,0)) = Heaviside(0)-Heaviside(-oo)=1/2-0= 1/2
If we consider, instead Heaviside(0)=1, we would have
integrate(DiracDelta(x),(x,0,oo)) = Heaviside(oo)-Heaviside(0) = 0
and
integrate(DiracDelta(x),(x,-oo,0)) = Heaviside(0)-Heaviside(-oo) = 1
For more information, see:
http://mathworld.wolfram.com/HeavisideStepFunction.html
"""
nargs = 1
def fdiff(self, argindex = 1):
if argindex == 1:
# property number 1
return DiracDelta(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
arg = sympify(arg)
if arg is S.NaN:
return S.NaN
elif arg.is_negative:
return S.Zero
elif arg.is_zero:
return S.Half
elif arg.is_positive:
return S.One