Manual for Package PGFPLOTS
2D/3D Plots in BTEX, Version 1.16

http://sourceforge.net/projects/pgfplots

Dr. Christian Feuersanger

cfeuersaenger@users.sourceforge.net

Revision 1.16 (2018/03,/28)

Abstract

PGFPLOTS draws high-quality function plots in normal or logarithmic scaling with
a user-friendly interface directly in TEX. The user supplies axis labels, legend en-
tries and the plot coordinates for one or more plots and PGFPLOTS applies axis scal-
ing, computes any logarithms and axis ticks and draws the plots. It supports line
plots, scatter plots, piecewise constant plots, bar plots, area plots, mesh and surface
plots, patch plots, contour plots, quiver plots, histogram plots, box plots, polar axes,
ternary diagrams, smith charts and some more. It is based on Till Tantau’s package
paF/TikZ.

http://sourceforge.net/projects/pgfplots

Contents

1 Introduction

2 About PGFPlots: Preliminaries

2.1 Components e e e
2.2 Upgrade remarks L e
2.2.1 New Optional Features e
2.2.2 0Old Features Which May Need Attention
2.3 The Team e e e e
2.4 Acknowledgements
2.5 Installation and Prerequisites
2.5.1 Licensing
2.5.2 Prerequisites
2.5.3 Imstallation in Windows Lo L
2.5.4 Installation of Linux Packages
2.5.5 Installation in Any Directory — the TEXINPUTS Variable
2.5.6 Installation Into a Local TDS Compliant texmf-Directory
2.5.7 Installation If Everything Else Fails... 0 ...
2.6 Troubleshooting — Error Messages o
2.6.1 Problems with available Dimen registerso L.
2.6.2 Dimension Too Large Errors L
2.6.3 Restrictions for DVI Viewers and dvipdfm
2.6.4 Problems with TEX’s Memory Capacities
2.6.5 Problems with Language Settings and Active Characters.
2.6.6 Other Problems
3 Step-by-Step Tutorials
3.1 Imtroduction
3.2 Solving a Real Use Case: Function Visualization
3.2.1 Getting the Data Into TEX o e
3.2.2 Fine-Tuning of the First Picture
3.2.3 Adding the Second Picture with a Different Plot
3.2.4 Fixing the Vertical Alignment and Adjusting Tick Label Positions
3.2.5 Satisfying Different Tastes L
3.2.6 Finishing Touches: Automatic Generation of Individual Pdf Graphics
3.2.7 Summary e e
3.3 Solving a Real Use Case: Scientific Data Analysis
3.3.1 Getting the Data into TEX L
3.3.2 Adding the Remaining Data Files of Our Example.
333 AddaLegendanda Grid
3.3.4 Add a Selected Fit-line
3.3.5 Add an Annotation using TikZ: a Slope Triangle
3.3.6 Summaryo e
3.4 Use Cases involving Scatter Plots
3.4.1 Scatter Plot Use Case A e
3.4.2 Scatter Plot Use Case B
3.4.3 Scatter Plot Use Case C e
344 Summary ... oL e

co oo

oo

11
11
12
12
12
12
13
13
13
13
14
14
14
14
15
15
15

CONTENTS 3
3.5 Solving a Real Use Case: Functions of Two Variables 33
3.5.1 Surface Plot from Data File 34
3.5.2 Fine-Tuning L L e 35
3.5.3 Adding Scattered Data on Top of the Surface 35
3.5.4 Computing a Contour Plot of a Math Expression 36
350 Summaryo e 38

4 The Reference 39
4.1 TgX dialects: ITEX, ConTEXt, plain TEX o o000 o 39
4.2 The Axis Environments Lo 40
4.3 The \addplot Command: Coordinate Input 41
4.3.1 Coordinate Lists 46
4.3.2 Reading Coordinates From Tables 47
4.3.3 Computing Coordinates with Mathematical Expressions 53
4.3.4 Mathematical Expressions And File Data 57
4.3.5 Computing Coordinates with Mathematical Expressions (gnuplot) 59
4.3.6 Computing Coordinates with External Programs (shell) 61
4.3.7 Using External Graphics as Plot Sources 62
4.3.8 Keys To Configure Plot Graphics 65
4.3.9 Reading Coordinates From Files 0L 73

4.4 About Options: Preliminaries e 74
4.4.1 PGFPLoTSs and TikZ Optionso 0 7

4.5 Two Dimensional Plot Types 7
4.5.1 Linear Plots 77
4.5.2 Smooth Plots 78
4.5.3 Constant Plots L 78
4.5.4 BarPlots o . e 81
4.5.5 Histograms L e 89
4.5.6 Box Plots 89
4.5.7 Comb Plots 89
4.5.8 Quiver Plots (AIrows) 90
4.5.9 Stacked Plots L 94
4.5.10 Area Plots. e 99
4.5.11 Closing Plots (Filling the Area Under Plots) 105
4.5.12 Scatter Plots 107
4.5.13 1D Colored Mesh Plots 117
4.5.14 Interrupted Plots L 118
4.5.15 Patch Plots o 122
4.5.16 Image (Matrix) Plots. o 122
4.5.17 Polar Coordinates / Polar Axes L 122
4.5.18 Tieline Plots e 122
4.5.19 Smith Charts 122

4.6 Three Dimensional Plot Types 122
4.6.1 Before You Start With 3D 123
4.6.2 The \addplot3 Command: Three Dimensional Coordinate Input 123
4.6.3 Line Plots e 128
4.6.4 Scatter Plots 131
4.6.5 Mesh Plots e 133
4.6.6 Surface Plots 136
4.6.7 Surface Plots with Explicit Color 143
4.6.8 Contour Plots 150
4.6.9 Filled Contour Plots 161
4.6.10 Parameterized Plots oL 169
4.6.11 3D Quiver Plots (Arrows) 170
4.6.12 Tmage (Matrix) Plots. o o e 170
4.6.13 Patch Plots 175
4.6.14 About 3D Const Plots and 3D Bar Plots 182
4.6.15 Mesh/Surface Plots with Holes 182

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16
4.17

4.18

CONTENTS

Markers, Linestyles, (Background) Colors and Colormaps 182
4.7.1 Markers oL e 182
4.7.2 Line Styles e 187
4.7.3 Edges and Their Parameters 188
4.7.4 Font Size and Line Width 189
4.75 Colors 190
4.7.6 Color Maps o o 192
4.7.7 Cycle Lists — Options Controlling Line Styles 213
4.7.8 Axis Background 229
Providing Color Data — Point Meta 230
4.8.1 Point Meta Overview 230
4.8.2 User Input Format for Point Meta 231
4.8.3 Mapping Point Meta and Color Maps 234
Axis Descriptions e 239
4.9.1 Placement of Axis Descriptions 239
4.9.2 Alignment of Axis Descriptions 245
4.9.3 Labelso e 250
4.94 Legends oL e e 253
4.9.5 Legend Appearanceo e 256
4.9.6 Legends with \label and \ref 265
4.9.7 Legends Outside Of an Axis 266
4.9.8 Legends with Customized Texts or Multiple Lines 268
4.9.9 AxisTines 269
4.9.10 Moving Axis Lines 274
4.9.11 Two Ordinates e 276
4.9.12 Axis Discontinuities 277
4.9.13 Color Bars 279
4.9.14 Color Bars Outside Of an Axis i 290
Scaling Options 0 291
4.10.1 Common Scaling Options e 292
4.10.2 Scaling Descriptions: Predefined Styles. 303
4.10.3 Scaling Strategies e 306
3D Axis Configuration 308
4.11.1 View Configurationo 308
4.11.2 Styles Used Only For 3D Axes ittt 310
4.11.3 Appearance Of The 3D Box 311
4.11.4 Axis Line Variants 314
Error Bars L 314
4.12.1 Input Formats of Error Coordinates 318
Number Formatting Options 320
4.13.1 Frequently Used Number Printing Settings 320
4.13.2 PGFPlots-specific Number Formatting 321
Specifying the Plotted Range L 325
4.14.1 Configuration of Limits Ranges o 325
4.14.2 Accessing Computed Limit Ranges Lo oo 331
Tick Options o e 332
4.15.1 Tick Coordinates and Label Texts 332
4.15.2 Tick Alignment: Positions and Shifts 0 00 343
4.15.3 Tick Scaling — Common Factors In Ticks 345
4.15.4 Tick Fine-Tuning e 348
Grid Options o e 351
Custom Annotations e 351
4.17.1 Accessing Axis Coordinates in Graphical Elements 352
4.17.2 Placing Nodes on Coordinates of a Plot 356
4.17.3 Placing Decorations on Topofa Plot, 360
Style Options o e e e 361
4.18.1 All Supported Styles L 361

4.18.2 (Re)Defining Own Styles 369

CONTENTS 5

4.19 Alignment Options L e 369
4.19.1 Basic Alignment e 369
4.19.2 Vertical Alignment with baseline 372
4.19.3 Horizontal Alignment L 373
4.19.4 Alignment In Array Form (Subplots) Lo 374
4.19.5 Miscellaneous for Alignment L. 378

4.20 The Picture’s Size: Bounding Box and Clipping 378
4.20.1 Bounding Box Restrictions o 378
4.20.2 CHPPILE « « o o o oo e e e e e e e 381

4.21 Symbolic Coordinates and User Transformations 382
4.21.1 String Symbols as Input Coordinates Lo oL 383
4.21.2 Dates as Input Coordinates L e 385

4.22 Skipping Or Changing Coordinates — Filters 387

4.23 Transforming Coordinate Systems L 393
4.23.1 Imteraction of Transformations L. 396

4.24 Fitting Lines — Regression L L Lo 396

4.25 Miscellaneous Options o . oL L e 399

4.26 TikZ Interoperability oL 405

427 Layers o oo e e e 407
4271 SUMMATY .« . . o o o v e e e e e e e e 407
4.27.2 Using Predefined Layers L e 408
4.27.3 Changing the Layer of Graphical Elements 411

4.28 Technical Internals L 411

5 Related Libraries 413

5.1 Clickable Plots e 413
5. 1.1 OVerview oL e 413
5.1.2 Requirements for the Library 0 417
5.1.3 Customization e 417
5.1.4 Using the Clickable Library in Other Contexts 419

5.2 ColorBrewer e e 420
5.2.1 Usage . . . o o i e e e 420
5.2.2 Sequential Schemes 422
5.2.3 Diverging Schemes L 422
5.2.4 Qualitative Schemes L 423
5.2.5 Interaction with the ColorBrewer website 423
5.2.6 External Exampleso L 424

5.3 Colormaps e e e 424

5.4 Dates as Input Coordinates e e 429

5.5 Decoration: Soft Clipping 429

5.6 Image Externalization 430

5.7 Fill between L L e 430
571 Filling an Area 430
5.7.2 Filling Different Segments of the Area L. 433
5.7.3 Filling only Parts Under a Plot (Clipping) 435
5.7.4 Styles Around Fill Between oo 438
5.7.5 Key Reference 439
5.7.6 Intersection Segment Recombination L. 442
5.7.7 Basic Level Reference e 446
5.7.8 Pitfalls and Limitations 451

5.8 Grouping plots L e 451
5.8.1 Grouping options 454

5.9 Patchplots Library o 457
5.9.1 Additional Patch Types 458
5.9.2 Automatic Patch Refinement and Triangulation 469
5.9.3 Peculiarities of Flat Shading and High Order Patches 471
5.9.4 Drawing Grids e 472

5.10 Polar Axes e 474

6 CONTENTS

5.10.1 Polar Axes 474
5.10.2 Using Radians instead of Degrees o 476
5.10.3 Mixing With Cartesian Coordinates 476
5.10.4 Polar Descriptions 477
5.10.5 Special Polar Plot Types 478
5.10.6 Partial Polar Axes 479

5.11 Smith Charts e 480
5.11.1 Smith Chart Axes e 481
5.11.2 Size Control e 483
5.11.3 Working with Prepared Data oo 488
5.11.4 Appearance Control and Styles L 489
5.11.5 Controlling Arcs and Their Stop Points 491

5.12 Statistics L e e e e 493
5.12.1 Box Plots e 494
5.12.2 Histograms L 505

5.13 Ternary Diagrams L e 511
5.13.1 Ternary AXiS o o o e 512
5.13.2 Tieline Plots e 521

5.14 Units in Labels 0 o o e 523
5.14.1 Preset SI prefixes e 525

6 Memory and Speed considerations 527
6.1 Memory Limits of TEX« . . . o o e 527
6.2 Memory Limitations L 528
6.2.1 LualdTEX e 528
6.2.2 MIKTEX e 528
6.2.3 TgXLive or similar installations o o0 529

6.3 Reducing Typesetting Time 530
6.3.1 LUA . . . e e 530
6.3.2 Compiling Images Just Once L 532

7 Import/Export From Other Formats 533
7.1 Export to PDF/EPS 533
7.1.1 Using the Automatic Externalization Framework of TikZ 533
7.1.2 Using the Externalization Framework of PGF By Hand 538

7.2 Importing From Matlab oL 540
7.2.1 Importing Mesh Data From Matlab To PGFPlots 540
7.2.2 matlab2pgfplotsm 541
7.2.3 matlab2pgfplots.sho 541
7.2.4 Importing Colormaps From Matlab 541

7.3 SVG Output e 541
7.4 Generate PGFPLOTS Graphics Within Python 541
8 Utilities and Basic Level Commands 542
8.1 Utility Commands e e e 542
8.2 Commands Inside Of PGFPlots Axes 545
8.3 Path Operations e 546
8.4 Specifying Basic Coordinates 547
8.5 Accessing Axis Limitso e 550
8.6 Accessing Point Coordinate Values L 550
8.7 Layer Access o . e 553

Index 554

Chapter 1

Introduction

This package provides tools to generate plots and labeled axes easily. It draws normal plots, log plots and
semi-log plots, in two and three dimensions. Axis ticks, labels, legends (in case of multiple plots) can be
added with key—value options. It supports line plots, scatter plots, piecewise constant plots, bar plots, area
plots, mesh and surface plots, patch plots, contour plots, quiver plots, histogram plots, box plots, polar axes,
ternary diagrams, smith charts and some more. It can cycle through a set of predefined line/marker/color
specifications.

In summary, its purpose is to simplify the generation of high-quality function and/or data plots, and
solving the problems of

e consistency of document and font type and font size,

e direct use of TEX math mode in axis descriptions,

e consistency of data and figures (no third party tool necessary),

e inter-document consistency using preamble configurations and styles.

Although not necessary, separate .pdf or .eps graphics can be generated using the external library devel-
oped as part of TikZ.
You are invited to use PGFPLOTS for visualization of medium sized data sets in two and three dimensions.
It is based on Till Tantau’s package PGF/TikZ.

Chapter 2

About PGFPLOTS: Preliminaries

This section contains information about upgrades, the team, the installation (in case you need to do it
manually) and troubleshooting. You may skip it completely except for the upgrade remarks.

PGFPLOTS is built completely on TikZ/PGF. Knowledge of TikZ will simplify the work with PGFPLOTS,
although it is not required.

However, note that this library requires at least PGF version 2.10. At the time of this writing, many TEX
distributions still contain the older PGF version 1.18, so it may be necessary to install a recent PGF prior to
using PGFPLOTS.

2.1 Components

PGFPLOTS comes with two components:
1. the plotting component (which you are currently reading) and

2. the PGFPLOTSTABLE component which simplifies number formatting and postprocessing of numerical
tables. It comes as a separate package and has its own manual pgfplotstable.pdf.

2.2 Upgrade remarks

This release provides a lot of improvements which can be found in all detail in ChangelLog for interested
readers. However, some attention is useful with respect to the following changes.

One thing which is common to PGFPLOTS is the key compat: it is strongly suggested to always write it
into your .tex files. While this key imposes some work to end-users, it also solves a common requirement: it
ensures that your .tex files always result in the same output, even if you install a new version of PGFPLOTS.
On the other hand, it allows us as maintainers to solve software defects and introduce changes in behavior,
assuming that these changes only affect documents with a decent compatibility level. The precise impact of
the compat key, its choices and implications are described in the following sections.

2.2.1 New Optional Features

PGFPLOTS has been written with backwards compatibility in mind: old TEX files should compile without
modifications and without changes in the appearance. However, new features occasionally lead to a different
behavior. In such a case, PGFPLOTS will deactivate the new feature.!

Any new features or bugfixes which cause backwards compatibility problems need to be activated man-
ually and explicitly. In order to do so, you should use

\usepackage{pgfplots}
\pgfplotsset{compat=1.163}

in your preamble. This will configure the compatibility layer.
You should have at least compat=1.3. The suggested value is printed to the .1log file after running TEX.
Here is a list of changes which are inactive unless one uses a suitable compat level:

1n case of broken backwards compatibility, we apologize — and ask you to submit a bug report. We will take care of it.

2.2.

10.

11.

12.

13.

14.

15.

16.

17.

UPGRADE REMARKS 9

. PGFPLOTS 1.16 has no additional constraints and is the same as 1.15 with respect to compatibility

levels.

. PGFPLOTS 1.15 activates 3d log sampling and repairs issues with clip limits for bar plots.

. PGFPLOTS 1.14 changes the way nonuniform colormaps are handled by the system and activates ad-

vanced colormap operations (see of colormap).

. PGFPLOTS 1.13 repairs axis labels in polar axis and ensures that the color chosen by shader=flat is

independent of z buffer and mesh/ordering. Furthermore, it enables stack negative=separate
for all stacked bar plots. Older compatibility levels are present to keep workarounds by end-users.

. PGFPLOTS 1.12 activates lua backend and defines boxplot/estimator=Excel.

. PGFPLOTS 1.11 changes the axis cs: it is now the default coordinate system. If you write \draw (1,2)

-- (2,2); PGFPLOTS will automatically treat it as \draw (axis cs:1,2) -- (axis cs:2,2);.

. PGFPLOTS 1.10 has no differences to 1.9 with respect to compatibility.

. PGFPLOTS 1.9 comes with a preset to combine ybar stacked and nodes near coords. Furthermore,

it suppresses empty increments in stacked bar plots. In order to activate the new preset, you have to
use compat=1.9 or higher.

. PGFPLOTS 1.8 comes with a new revision for alignment of label and tick scale label alignment. Fur-

thermore, it improves the bounding box for hide axis. This revision is enabled with compat=1.8 or
higher.

The configuration compat=1.8 is necessary to repair axis lines=center in three-dimensional axes.

PGFPLOTS 1.7 added new options for bar widths defined in terms of axis units. These are enabled with
compat=1.7 or higher.

PGFPLOTS 1.6 added new options for more accurate scaling and more scaling options for \addplot3
graphics. These are enabled with compat=1.6 or higher.

PGFPLOTS 1.5.1 interprets circle and ellipse radii as PGFPLOTS coordinates (older versions used
PGF unit vectors which have no direct relation to PGFPLOTS). In other words: starting with
version 1.5.1, it is possible to write \draw circle[radius=5] inside of an axis. This requires
\pgfplotsset{compat=1.5.1} or higher.

Without this compatibility setting, circles and ellipses use low-level canvas units of PGF as in earlier
versions.

PGFPLOTS 1.5 uses log origin=0 as default (which influences logarithmic bar plots or stacked loga-
rithmic plots). Older versions keep log origin=infty. This requires \pgfplotsset{compat=1.5} or
higher.

PGFPLOTS 1.4 has fixed several smaller bugs which might produce differences of about 1-2pt compared
to earlier releases. This requires \pgfplotsset{compat=1.4} or higher.

PGFPLOTS 1.3 comes with user interface improvements. The technical distinction between “behavior
options” and “style options” of older versions is no longer necessary (although still fully supported).
This is always activated.

PGFPLOTS 1.3 has a new feature which allows to move azis labels tight to tick labels automatically.
This is strongly recommended. It requires \pgfplotsset{compat=1.3} or higher.

Since this affects the spacing, it is not enabled be default.

PGFPLOTS 1.3 supports reversed axes. It is no longer necessary to use workarounds with negative
units.

Take a look at the x dir=reverse key.

Existing workarounds will still function properly. Use \pgfplotsset{compat=1.3} or higher together
with x dir=reverse to switch to the new version.

10 CHAPTER 2. ABOUT PGFPLOTS: PRELIMINARIES

2.2.2 Old Features Which May Need Attention

1. The scatter/classes feature produces proper legends as of version 1.3. This may change the appear-
ance of existing legends of plots with scatter/classes.

2. Starting with PGFPLOTS 1.1, \tikzstyle should no longer be used to set PGFPLOTS options.

Although \tikzstyle is still supported for some older PGFPLOTS options, you should replace any occur-
rence of \tikzstyle with \pgfplotsset{(style name)/.style={(key-value-list)}} or the associated
/.append style variant. See Section 4.18 for more detail.

I apologize for any inconvenience caused by these changes.

/pefplots/compat=1.16[1.151.14|1.13]1.121.11|1.10[1.9]1.8|1.7|1.6[1.5.1]|1.5|1.4|1.3|pre 1.3|default
(initially default)

The preamble configuration

\usepackage{pgfplots}
\pgfplotsset{compat=1.16}

allows to choose between backwards compatibility and most recent features. This key is designed to be
the first encountered PGFPLOTS key in a document as it prepares global options.

Occasionally, you might want to use different versions in the same document. Then, provide

\begin{figure}
\pgfplotsset{compat=1.4}

\caption{...}
\end{figure}

in order to restrict the compatibility setting to the actual context (in this case, the figure environment).
See the output of your .log file to get a suggested value for compat.
Use \pgfplotsset{compat=default} to restore the factory settings.

Although typically unnecessary, it is also possible to activate only selected changes and keep compati-
bility to older versions in general:

/pgfplots/compat/path replacement=(version)
/pgfplots/compat/labels=(version)
/pgfplots/compat/scaling=(version)
/pgfplots/compat/scale mode=(version)
/pgfplots/compat/empty line=(version)
/pgfplots/compat/plot3graphics=({version)
/pgfplots/compat/bar nodes=(version)
/pgfplots/compat/BB=(version)
/pgfplots/compat/bar width by units=(version)
/pgfplots/compat/pgfpoint substitution=(version)
/pgfplots/compat/general={version)

Let us assume that we have a document with \pgfplotsset{compat=1.3} and you want to keep
it this way.

In addition, you realized that version 1.5.1 supports circles and ellipses. Then, use

2.3. THE TEAM 11

% Preamble: \pgfplotsset{width=7cm,compat=1.16}

5 * % preamble:
\pgfplotsset{
compat=1.3,
2 | compat/path replacement=1.5.1,
}
o | \begin{tikzpicture}
\begin{axis}[

extra x ticks={-2,2},

-2 N extra y ticks={-2,2},
extra tick style={grid=major}]
\addplot {x};

—5 - \draw (axis c¢s:0,0) circle[radius=2];

| | \ | | \end{axis}
—6 —4 —2 0 2 4 6 \end{tikzpicture}

All of these keys accept the possible values of the compat key.
The compat/path replacement key controls how radii of circles and ellipses are interpreted.

The compat/labels key controls how axis labels are aligned: either uses adjacent to ticks or with
an absolute offset. As of 1.8, it also enables an entirely new revision of the axis label styles. In
most cases, you will see no difference — but it repairs axis lines=center in three-dimensional
axes.

The compat/scaling key controls some bugfixes introduced in version 1.4 and 1.6: they might
introduce slight scaling differences in order to improve the accuracy.
The compat/plot3graphics controls new features for \addplot3 graphics.

The compat/scale mode allows to enable/disable the warning “The content of your 3d axis has
CHANGED compared to previous versions” because the axis equal and unit vector ratio
features where broken for all versions before 1.6 and have been fixed in 1.6.

The compat/empty line allows to write empty lines into input files in order to generate a jump.
This requires compat=1.4 or newer. See empty line for details.

The compat/BB changes to bounding box to be tight even in case of hide axis.

The compat/bar width by units allows to express bar width=1 (i.e. in terms of axis units).
The compat/bar nodes activates presets for ybar stacked and nodes near coords. In addition,
it enables stacked ignores zero for stacked bar plots.

The compat/general key controls log origin, lua backend, enable tick line clipping, and
boxplot/estimator.

The compat/pgfpoint substitution key determines if axis cs is the default coordinate system
(as of 1.11).

The detailed effects can be seen on the beginning of this section.

The value (version) can be default, a version number, and newest. The value default is the same
as pre 1.3 (up to insignificant changes). The use of newest is strongly discouraged: it might cause
changes in your document, depending on the current version of PGFPLOTS. Please inspect your .log
file to see suggestions for the best possible version.

2.3 The Team

PGFPLOTS has been written mainly by Christian Feuersinger with many improvements of Pascal Wolkotte
and Nick Papior Andersen as a spare time project. We hope it is useful and provides valuable plots.

If you are interested in writing something but don’t know how, consider reading the auxiliary manual
TeX-programming-notes.pdf which comes with PGFPLOTS. It is far from complete, but maybe it is a good
starting point (at least for more literature).

2.4 Acknowledgements

I thank God for all hours of enjoyed programming. I thank Pascal Wolkotte and Nick Papior Andersen for
their programming efforts and contributions as part of the development team. I thank Jiirnjakob Dugge

12 CHAPTER 2. ABOUT PGFPLOTS: PRELIMINARIES

for his contribution of hist/density, matlab scripts for \addplot3 graphics, excellent user forum help
and helpful bug reports. I thank Stefan Tibus, who contributed the \addplot shell feature. I thank Tom
Cashman for the contribution of the reverse legend feature. Special thanks go to Stefan Pinnow for his
continuous efforts to test PGFPLOTS, to discuss requirements, to request features and bug fixes which lead to
numerous quality improvements, and to adapt and integrate the colorbrewer library. Furthermore, I thank
Prof. Schweitzer for many fruitful discussions and his initial encouragement to start such a package. Thanks
to Dr. Meine for his ideas and suggestions. Special thanks go to Markus Bohning for proof-reading all the
manuals of PGF, PGFPLOTS, and PGFPLOTSTABLE. Thanks to Vincent A. Traag for bringing colorbrewer
colors to PGFPLOTS. Thanks as well to the many international contributors who provided feature requests
or identified bugs or simply improvements of the manual!

Last but not least, I thank Till Tantau and Mark Wibrow for their excellent graphics (and more) package
PGF and TikZ, which is the base of PGFPLOTS.

2.5 Installation and Prerequisites

2.5.1 Licensing

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; with-
out even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

A copy of the GNU General Public License can be found in the package file

doc/latex/pgfplots/gpl-3.0.txt

You may also visit http://www.gnu.org/licenses.

2.5.2 Prerequisites

PGFPLOTS requires PGF. You should generally use the most recent stable version of PGF. PGFPLOTS is used
with

\usepackage{pgfplots}
\pgfplotsset{compat=1.163}

in your preamble (see Section 4.1 for information about how to use it with ConTEXt and plain TEX).

The compat=(yourversion) entry should be added to activate new features, see the documentation of the
compat key for more details.

There are several ways how to teach TEX where to find the files. Choose the option which fits your needs
best.

2.5.3 Installation in Windows

Windows users often use MiKTEX which downloads the latest stable package versions automatically. You
do not need to install anything manually here.

If you want to install or more recent version of PGFPLOTS than the one shipped with MiKTEX, you can
proceed as follows. MiKTEX provides a feature to install packages locally in its own TEX Directory Structure
(TDS). The basic idea is to unzip PGFPLOTS in a directory of your choice and configure the MiKTEX Package
Manager to use this specific directory with higher priority than its default paths. If you want to do this, start
the MiKTEX Settings using “Start > Programs > MiKTEX > Settings”. There, use the “Roots” menu
section. It contains the MiKTEX Package directory as initial configuration. Use “Add” to select the directory
in which the unzipped PGFPLOTS tree resides. Then, move the newly added path to the list’s top using the
“Up” button. Then press “Ok”. For MiKTEX 2.8, you may need to uncheck the “Show MiKTEX-maintained
root directories” button to see the newly installed path.

MiKTEX complains if the provided directory is not TDS conform (see Section 2.5.6 for details), so you
can’t provide a wrong directory here. This method does also work for other packages, but some packages
may need some directory restructuring before MiKTEX accepts them.

http://www.gnu.org/licenses

2.5. INSTALLATION AND PREREQUISITES 13

2.5.4 Imstallation of Linux Packages

Typically, PGFPLOTS can be installed using the TEX package manager. A common distribution is TEXLive.
In this case you can write

sudo tlmgr install pgfplots

in order to install PGFPLOTS.

2.5.5 Installation in Any Directory — the TEXINPUTS Variable

You can simply install PGFPLOTS anywhere on your hard drive, for example into
/foo/bar/pgfplots.

Then, you set the TEXINPUTS variable to
TEXINPUTS=/foo/bar/pgfplots/tex//:

The trailing ‘:” tells TEX to check the default search paths after /foo/bar/pgfplots. The double slash ‘//’
tells TEX to search all subdirectories.

If the TEXINPUTS variable already contains something, you can append the line above to the existing
TEXINPUTS content.

Furthermore, you should set TEXDOCS as well,

TEXDOCS=/foo/bar/pgfplots/doc//:

so that the TEX documentation system finds the files pgfplots.pdf and pgfplotstable.pdf (on some
systems, it is then enough to use texdoc pgfplots).
Starting with PGFPLOTS 1.12, you may also need to adopt LUAINPUTS:

LUAINPUTS=/foo/bar/pgfplots//:

should usually do the job.
Please refer to your operating systems manual for how to set environment variables.

2.5.6 Installation Into a Local TDS Compliant texmf-Directory

PGFPLOTS comes in a “TEX Directory Structure” (TDS) conforming directory structure, so you can simply
unpack the files into a directory which is searched by TEX automatically. Such directories are ~/texmf on
Linux systems, for example.

Copy PGFPLOTS to a local texmf directory like ~/texmf. You need at least the PGFPLOTS directories
tex/generic/pgfplots and tex/latex/pgfplots. Then, run texhash (or some equivalent path-updating
command specific to your TEX distribution).

The TDS consists of several sub directories which are searched separately, depending on what has been
requested: the sub directories doc/latex/(package) are used for (BTEX) documentation, the sub-directories
doc/generic/(package) for documentation which apply to IMTEX and other TEX dialects (like plain TEX
and ConTEXt which have their own, respective sub-directories) as well.

Similarly, the tex/latex/(package) sub-directories are searched whenever ITEX packages are requested.
The tex/generic/(package) sub-directories are searched for packages which work for WTEX and other TEX
dialects.

Do not forget to run texhash.

2.5.7 Installation If Everything Else Fails...

If TEX still doesn’t find your files, you can copy all .sty and all .code.tex files (perhaps all .def
files as well) into your current project’s working directory. In fact, you need everything which is in the
tex/latex/pgfplots and tex/generic/pgfplots sub directories.

Please refer to http://www.ctan.org/installationadvice/ for more information about package in-
stallation.

http://www.ctan.org/installationadvice/

14 CHAPTER 2. ABOUT PGFPLOTS: PRELIMINARIES

2.6 Troubleshooting — Error Messages

This section discusses some problems which may occur when using PGFPLOTS. Some of the error messages
are shown in the index, take a look at the end of this manual (under “Errors”).

2.6.1 Problems with available Dimen registers

To avoid problems with the many required TEX registers for PGF and PGFPLOTS, you may want to include
\usepackage{etex}

as first package. This avoids problems with “no room for a new dimen” in most cases. It should work with
any modern installation of TEX (it activates the e-TEX extensions).

2.6.2 Dimension Too Large Errors

The core mathematical engine of PGF relies on TEX registers to perform fast arithmetics. To compute
50 + 299, it actually computes 50pt+299pt and strips the pt suffix of the result. Since TEX registers can
only contain numbers up to £16384, overflow error messages like “Dimension too large” occur if the result
leaves the allowed range. Normally, this should never happen — PGFPLOTS uses a floating point unit with
data range +10%24 and performs all mappings automatically. However, there are some cases where this fails.
Some of these cases are:

1. The axis range (for example, for) becomes relatively small. Tt’s no matter if you have absolutely small
ranges like [10717,10716]. But if you have an axis range like [1.99999999, 2], where a lot of significant
digits are necessary, this may be problematic.

I guess I can’t help here: you may need to prepare the data somehow before PGFPLOTS processes it.

2. This may happen as well if you only view a very small portion of the data range.
This happens, for example, if your input data ranges from x € [0, 10°], and you say xmax=10.

Consider using the restrict x to domain*=(min):(max) key in such a case, where the (min) and
(maz) should be (say) four times of your axis limits (see page 392 for details).

3. The axis equal key will be confused if x and y have a very different scale.

4. You may have found a bug — please contact the developers.

2.6.3 Restrictions for DVI Viewers and dvipdfm
PGF is compatible with

e latex/dvips,

e latex/dvipdfm,

e pdflatex,
.o :

However, there are some restrictions: I don’t know any DVI viewer which is capable of viewing the output
of PGF (and therefor PGFPLOTS as well). After all, DVI has never been designed to draw something different
than text and horizontal /vertical lines. You will need to view the postscript file or the PDF file.

Then, the DVI/PDF combination doesn’t support all types of shadings (for example, the shader=interp
is only available for dvips, pdftex, dvipdfmx, and xetex drivers).

Furthermore, PGF needs to know a driver so that the DVI file can be converted to the desired output.
Depending on your system, you need the following options:

e latex/dvips does not need anything special because dvips is the default driver if you invoke latex.
e pdflatex will also work directly because pdflatex will be detected automatically.

e lualatex will also be detected automatically.

2.6. TROUBLESHOOTING - ERROR MESSAGES 15

e latex/dvipdfm requires to use

\def\pgfsysdriver{pgfsys-dvipdfm.def}
%\def\pgfsysdriver{pgfsys-pdftex.def}
%\def\pgfsysdriver{pgfsys-dvips.def}
%\def\pgfsysdriver{pgfsys-dvipdfmx.def}
%\def\pgfsysdriver{pgfsys-xetex.def}
%\def\pgfsysdriver{pgfsys-luatex.def}
\usepackage{pgfplots}.

The uncommented commands could be used to set other drivers explicitly.

Please read the corresponding sections in [7, Sections 7.2.1 and 7.2.2] if you have further questions. These
sections also contain limitations of particular drivers.
The choice which won’t produce any problems at all is pdflatex.

2.6.4 Problems with TEX’s Memory Capacities

PGFPLOTS can handle small up to medium sized plots. However, TEX has never been designed for data plots
— you will eventually face the problem of small memory capacities. See Section 6.1 for how to enlarge them.

2.6.5 Problems with Language Settings and Active Characters

Both PGF and PGFPLOTS use a lot of active characters — which may lead to incompatibilities with other
packages which define active characters. Compatibility is better than in earlier versions, but may still be
an issue. The manual compiles with the babel package for English and French, the german package does
also work. If you experience any trouble, let me know. Sometimes it may work to disable active characters
temporarily (babel provides such a command).

2.6.6 Other Problems

Please read the mailing list at http://sourceforge.net/projects/pgfplots/support. Perhaps someone
has also encountered your problem before, and maybe he came up with a solution.

Please write a note on the mailing list if you have a different problem. In case it is necessary to contact
the authors directly, consider the addresses shown on the title page of this document.

http://sourceforge.net/projects/pgfplots/support

Chapter 3

Step-by-Step Tutorials

3.1 Introduction

Visualization of data is often necessary and convenient in order to analyze and communicate results of
research, theses, or perhaps just results.

PGFPLOTS is a visualization tool. The motivation for PGFPLOTS is that you as end-user provide the data
and the descriptions as input, and PGFPLOTS takes care of rest such as choosing suitable scaling factors,
scaling to a prescribed target dimension, choosing a good displayed range, assigning tick positions, drawing
an axis with descriptions placed at appropriate places.

PGFPLOTS is a solution for an old problem of visualization in IATEX: its descriptions use the same fonts as
the embedding text, with exactly the same font sizes. Its direct embedding in I#TEX makes the use of W TEX’s
powerful math mode as easy as possible: for any kind of axis descriptions up to user-defined annotations. It
features document-wide line-styles, color schemes, markers. .. all that makes up consistency.

PGFPLOTS offers high-quality. At the same time, it is an embedded solution: it is largely independent of
3rd party tools, although it features import functions to benefit from available tools.

Its main goal is: you provide your data and your descriptions — and PGFPLOTS runs without more input.
If you want, you can customize what you want.

3.2 Solving a Real Use Case: Function Visualization

In this section, we assume that you want to visualize two functions. The first function is given by means of
a data table. The second function is given by means of a math expression. We would like to place the two
results side by side, and we would like to have “proper” alignment (whatever that means).

As motivated, we have one data table. Let us assume that it is as shown below.

x_0 f(x)

some comment line
3.16693000e-05 -4.00001451e+00
1.00816962e-03 -3.08781504e+00
1.98466995e-03 -2.88058811e+00
2.96117027e-03 -2.75205040e+00
3.93767059e-03 -2.65736805e+00
4.91417091e-03 -2.58181091e+00
5.89067124e-03 -2.51862689e+00
9.89226496e-01 2.29825980e+00
9.90202997e-01 2.33403276e+00
9.91179497e-01 2.37306821e+00
9.92155997e-01 2.41609413e+00
9.93132498e-01 2.46412019e+00
9.94108998e-01 2.51860712e+00
9.95085498e-01 2.58178769e+00
9.96061999e-01 2.65733975e+00
9.97038499e-01 2.75201383e+00
9.98014999e-01 2.88053559e+00
9.98991500e-01 3.08771757e+00
9.99968000e-01 3.99755546e+00

Note that parts of the data file have been omitted here because it is a bit lengthy. The data file

16

3.2. SOLVING A REAL USE CASE: FUNCTION VISUALIZATION 17

(and all others referenced in this manual) are shipped with PGFPLOTS; you can find them in the subfolder
doc/latex/pgfplots/plotdata.

3.2.1 Getting the Data Into TpX

Our first step is to get the data table into PGFPLOTS. In addition, we want axis descriptions for the x and
y axes and a title on top of the plot.
Our first version looks like

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
%\documentclass{article}
‘ ‘ ‘ \ %\usepackage{pgfplots}

Inv. cum. normal

4 N %\pgfplotsset{compat=1.5}
9 %\begin{document}
\begin{tikzpicture}
= 0l N \begin{axis}[

title=Inv. cum. normal,
xlabel={x},

_9l | ylabel={y},
]
\addplot [blue] table {invcum.dat};
—4 - \end{axis}
\ | \ \ ‘ ‘ \end{tikzpicture}
0 0.2 0.4 0.6 0.8 1 %\end{document}
T

The code listing already shows a couple of important aspects:
1. As usual in BTEX, you include the package using \usepackage{pgfplots}.

2. Not so common is \pgfplotsset{compat=1.53} .

A statement like this should always be used in order to (a) benefit from a more or less recent feature
set and (b) avoid changes to your picture if you recompile it with a later version of PGFPLOTS.

Note that PGFPLOTS will generate some suggested value into your logfile (since 1.6.1). The minimum
suggested version is \pgfplotsset{compat=1.3} as this has great effect on the positioning of axis
labels.

3. PGFPLOTS relies on TikZ and PGF. You can say it is a “third party package” on top of TikZ/PGF.

Consequently, we have to write each PGFPLOTS graph into a TikZ picture, hence the picture environ-
ment given by \begin{tikzpicture} ... \end{tikzpicture}.

4. Each axis in PGFPLOTS is written into a separate environment. In our case, we chose \begin{axis}
\end{axis} as this is the environment for a normal axis.

There are more axis environments (like the \begin{loglogaxis} ... \end{loglogaxis} environ-
ment for logarithmic axes).

Although PGFPLOTS runs with default options, it accepts keys. Lots of keys. Typically, you provide
all keys which you “want to have” in square brackets “somewhere” and ignore all other keys.

Of course, the main difficulty is to get an overview over the available keys and to find out how to use
them. This reference manual and especially its Section 4 has been designed for online browsing: it
contains hundreds of cross-referenced examples. Opening the manual in a PDF viewer and searching
it for keywords will hopefully jump to a good match from which you can jump to the reference section
(for example about tick labels, tick positions, plot handlers etc.). It is (and will always be) the most
reliable source of detail information about all keys.

Speaking about the reference manual: note that most PDF viewers also have a function to “jump back
to the page before you clicked on a hyperlink” (for Acrobat Reader, open the menu View / Toolbars
/ More Tools and activate the “Previous View” and “Next View” buttons which are under “Page
Navigation Toolbar”).

Note that the code listing contains two sets of keys: the first is after \begin{axis}[... 1 and
the second right after \addplot[...]. Note furthermore that the option list after the axis has been

18 CHAPTER 3. STEP-BY-STEP TUTORIALS

indented: each option is on a separate line, and each line has a tab stop as first character. This is a
good practice. Another good practice is to place a comma after the last option (in our case, after the
value for ylabel). This allows to add more keys easily — and you won’t forget the comma. It does
not hurt at all. The second “set” of keys after \addplot shows that indentation and trailing comma
a really just a best practice: we simply said \addplot [blue], meaning that the plot will be placed in
blue color, without any plot mark. Of course, once another option would be added here, it would be
best to switch to indentation and trailing comma:

\addplot [
blue,
mark=x,
]
table {invcum.dat};

5. Inside of an axis, PGFPLOTS accepts an \addplot ... ; statement (note the final semicolon).
In our case, we use \addplot table: it loads a table from a file and plots the first two columns.

There are, however, more input methods. The most important available inputs methods are \addplot
expression (which samples from some mathematical expression) and \addplot table (loads data
from tables), and a combination of both which is also supported by \addplot table (loads data from
tables and applies mathematical expressions). Besides those tools which rely only on built-in methods,
there is also an option to calculated data using external tools: \addplot gnuplot which uses gnuplot
as “desktop calculator” and imports numerical data, \addplot shell (which can load table data from
any system call), and the special \addplot graphics tool which loads an image together with meta
data and draws only the associated axis.

In our axis, we find a couple of tokens: the first is the mandatory \addplot token. It “starts” a further
plot. The second is the option list for that plot, which is delimited by square brackets (see also the
notes about best practices above). The name “option list” indicates that this list can be empty. It
can also be omitted completely in which case PGFPLOTS will choose an option list from its current
cycle list (more about that in a different lecture). The next token is the keyword “table”. It tells
PGFPLOTS that table data follows. The keyword “table” also accepts an option list (for example, to
choose columns, to define a different col sep or row sep or to provide some math expression which
is applied to each row). More on that in a different lecture. The next token is {invcum.dat}: an
argument in curly braces which provides the table data. This argument is interpreted by “plot table”.
Other input types would expect different types of arguments. In our case, the curly braces contain a
file name. Plot table expects either a file name as in our case or a so-called “inline table”. An inline
table means that you would simply insert the contents of your file inside of the curly braces. In our
case, the table is too long to be inserted into the argument, so we place it into a separate file. Finally,
the last (mandatory!) token is a semicolon. It terminates the \addplot statement.

6. Axis descriptions can be added using the keys title, xlabel, ylabel as we have in our example
listing.
PGFPLOTS accepts lots of keys — and sometimes it is the art of finding just the one that you were looking
for. Hopefully, a search through the table of contents of the reference manual and/or a keyword search
through the entire reference manual will show a hit.

3.2.2 Fine-Tuning of the First Picture

While looking at the result of Section 3.2.1, we decide that we want to change something. First, we decide
that the open ends on the left and on the right are disturbing (perhaps we have a strange taste — or perhaps
we know in advance that the underlying function is not limited to any interval). Anyway, we would like to
show it only in the y interval from —3 to +3.

We can do so as follows:

3.2. SOLVING A REAL USE CASE: FUNCTION VISUALIZATION 19

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}

‘ ‘ \ \ \begin{axis}[

title=Inv. cum. normal,

B xlabel={x},
ylabel={y},

i ymin=-3, ymax=3,

minor y tick num=1,

Inv. cum. normal

]

\addplot [blue] table {invcum.dat};
\end{axis}
\end{tikzpicture}

\ \
0 02 04 06 08 1

T

We added three more options to the option list of the axis. The first pair is ymin=-3 and ymax=3. Note
that we have placed them on the same line although we said the each should be on a separate line. Line
breaks are really optional; and in this case, the two options appear to belong together. They define the
display limits. Display limits define the “window” of the axis. Note that any \addplot statements might
have more data (as in our case). They would still generate graphics for their complete set of data points!
The keys ymin, ymax,xmin,xmax control only the visible part, i.e. the axis range. Everything else is clipped
away (by default). The third new option is minor y tick num=1 which allows to customize minor ticks.
Note that minor ticks are only displayed if the major ticks have the same distance as in our example.

Note that we could also have modified the width and/or height of the figure (the keys have these
names). We could also have used one of the predefined styles like tiny or small in order to modify not
just the graphics, but also use different fonts for the descriptions. We could also have chosen to adjust the
unspecified limits: either by fixing them explicitly (as we did for y above) or by modifying the enlargelimits
key (for example using enlargelimits=false).

We are now satisfied with the first picture and we would like to add the second one.

3.2.3 Adding the Second Picture with a Different Plot

As motivated, our goal is to have two separate axes placed side by side. The second axis should show
a function given as math expression. More precisely, we want to show the density function of a normal
distribution here (which is just a special math expression).

We simply start a new tikzpicture and insert a new axis environment (perhaps by copy-pasting our
existing one). The \addplot command is different, though:

T T T % Preamble: \pgfplotsset{width=7cm,compat=1.16}

400 - N \begin{tikzpicture}

\begin{axis}[

]

300 - - % density of Normal distribution:

\addplot [
red,

200 B domain=-3e-3:3e-3,
samples=201,

]

100 B {exp(-x"2 / (2e-372)) / (1e-3 * sqrt(2*pi))};

\end{axis}

\end{tikzpicture}

1073

We see that it has an axis environment with an empty option list. This is quite acceptable: after all, it
is to be expected that we will add options eventually. Even if we don’t: it does not hurt. Then, we find the
expected \addplot statement. As already explained, \addplot statements initiate a new plot. It is followed
by an (optional) option list, then by some keyword which identifies the way input coordinates are provided,
then arguments, and finally a semicolon. In our case, we find an option list which results in a red plot.
The two keys domain and samples control how our math expression is to be evaluated: domain defines the
sampling interval in the form a:b and samples=N expects the number of samples inserted into the sampling

20 CHAPTER 3. STEP-BY-STEP TUTORIALS

interval. Note that domain merely controls which samples are taken; it is independent of the displayed axis
range (and both can differ significantly). If the keyword defining how coordinates are provided is missing,
PGFPLOTS assumes that the next argument is a math expression. Consequently, the first token after the
option list is a math expression in curly braces. We entered the density function of a normal distribution
here (compare Wikipedia).

Note that the axis has an axis multiplier: the x tick labels have been chosen to be —2, 0, and 2 and an
extra z tick scale label of the form -1073". These tick scale labels are quite convenient are are automatically
deduced from the input data. We will see an example with the effects of scaled x ticks=false at the end
of this tutorial.

Inside of the math expression, you can use a lot of math functions like exp, sin, cos, sqrt, you
can use exponents using the a”b syntax, and the sampling variable is x by default. Note, however,
that trigonometric functions operate on degrees by default! If you need to sample the sinus func-
tion, you can use \addplot[domain=0:360] {sin(x)};. This is quite uncommon. You can also use
\addplot[domain=0:2+pi] {sin(deg(x)};. This samples radians (which is more common). But since
the math parser expects degrees, we have to convert x to degrees first using the deg() function. See also
trig format plots=rad. The math parser is written in TEX (it does not need any third-party tool). It
supports the full range of a double precision number, even though the accuracy is about that of a single
precision number. This is typically more than sufficient to sample any function accurately. If you ever en-
counter difficulties with precision, you can still resort to \addplot gnuplot in order to invoke the external
tool gnuplot as “coordinate calculator”.

The experienced reader might wonder about constant math expressions domain=-3e-3:3e-3, 2e-3"2,
and le-3 rather than some variable name like ‘mu’ or ‘sigma’. This is actually a matter of taste: both is
supported and we will switch to variable names in the next listing.

The main part of our step here is still to be done: we wanted to place two figures side by side. This can
be done as follows:

Inv. cum. normal

T T T T 400 |- B
2+ N
= 0 — 200 - |
-2 N
UIE | | | |

T .10—3

http://en.wikipedia.org/wiki/Normal_distribution

3.2. SOLVING A REAL USE CASE: FUNCTION VISUALIZATION 21

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[
title=Inv. cum. normal,
xlabel={x},
ylabel={y},
ymin=-3, ymax=3,
minor y tick num=1,
]
\addplot [blue] table {invcum.dat};
\end{axis}
\end{tikzpicture}), -- avoid white space
%
\hskip 10pt % insert a non-breaking space of specified width.
%
\begin{tikzpicture}
\begin{axis}[
]
% density of Normal distribution:
\newcommand \MU{0}
\newcommand\SIGMA{1e-3}
\addplot [
red,
domain=-3*\SIGMA:3*\SIGMA,
samples=201,
]
{exp(-(x-\MU)"2 / 2 / \SIGMA~2) / (\SIGMA * sqrt(2%pi))};
\end{axis}
\end{tikzpicture}

The listing above shows the two separate picture environments: the first is simply taken as is from the
previous step and the second is new. Note that both are simply placed adjacent to each other: we only
inserted comment signs to separate them. This approach to place graphics side by side is common in TEX:
it works for \includegraphics in the same way. You could, for example, write

\includegraphics{image1}/

%

\hskip 10pt % insert a non-breaking space of specified width.
%

\includegraphics{image2}

to place two graphics next to each other. This here is just the same (except that our graphics occupy
more code in the .tex file).

Note that there is also a comment sign after \end{tikzpicture}. This is not just a best practice: it
is necessary to suppress spurious spaces! In TEX, every newline character is automatically converted to a
white space (unless you have an empty line, of course). In our case, we want no white spaces.

In our second picture, we see the effects of switch our math expression to constant definitions as promised
earlier. The interesting part starts with two constants which are defined by means of two \newcommands:
we define \MU to be 0 and \SIGMA to be le-3. This is one way to define constants (note that such a
definition of constants should probably introduce round braces if numbers are negative, i.e. something like
\newcommand\negative{(-4)}).

3.2.4 Fixing the Vertical Alignment and Adjusting Tick Label Positions

Note that even though our individual pictures look quite good, the combination of both is not properly
aligned. The experienced reader identifies the weak point immediately: the bounding box of the two images
differs, and they are aligned at their baseline (which is the bottom edge of the picture). In particular,
the x1abel=x of the left picture and the automatically inserted scaling label \cdot 10~{-3} of the right
picture cause an unwanted vertical shift. We want to fix that in the next step.

Besides the bad alignment, we find it a little bit misleading that the axis descriptions of the second
picture are between both pictures. We would like to move them to the right.

Let us present the result first:

22 CHAPTER 3. STEP-BY-STEP TUTORIALS

Inv. cum. normal

T T T T
- {400
2, .
> 0f 1T 1200
=9 |= |
| | | | | L | | | ic
0 02 04 06 08 1 -2 0 2
T

1073
% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture} [baseline]
\begin{axis}[
title=Inv. cum. normal,
xlabel={x},
ylabel={y},
ymin=-3, ymax=3,
minor y tick num=1,
]
\addplot [blue] table {invcum.dat};

\end{axis}
\end{tikzpicturel}y,
%
\hskip 10pt % insert a non-breaking space of specified width.
%
\begin{tikzpicture}[baseline]
\begin{axis}[
yticklabel pos=upper,
]
% density of Normal distribution:
\newcommand\MU{0}
\newcommand\SIGMA{1e-3}
\addplot [red,domain=-3*\SIGMA:3*\SIGMA,samples=201]
{exp(-(x-\MU)"2 / 2 / \SIGMA~2) / (\SIGMA * sqrt(2+*pi))};
\end{axis}
\end{tikzpicture}

This listing has a couple of modifications. The most important one is the we added an option list to the
tikzpicture environment: the baseline option. This option shifts the picture up or down such that the
canvas coordinate y = 0 is aligned at the baseline of the surrounding text. In PGFPLOTS, the y = 0 line is
the lower edge of the box. This simple feature allows both axes to be aligned vertically: now, their boxes
are aligned rather than the lower edges of their bounding boxes. The option baseline needs to be provided
to all pictures for which this shifting should be done — in our case, to all which are to be placed in one row.
Keep in mind that it is an option for \begin{tikzpicture}.

The second change is rather simple: we only added the option yticklabel pos=upper to the second
axis. This moves all tick labels to the right, without changing anything else.

Note that there is much more to say about alignment and bounding box control. After all, we did not
really change the bounding box — we simply moved the pictures up or down. There is also the use case where
we want horizontal alignment: for example if the two pictures should be centered horizontally or if they should
be aligned with the left- and right end of the margins. The associated keys \begin{tikzpicture} [trim axis
left, trim axis right] and \centering are beyond the scope of this tutorial, please refer to Section 4.19
for details.

3.2.5 Satisfying Different Tastes

We are now in a position where the figures as such are in a good shape.

However, an increase in knowledge will naturally lead to an increase in questions. Some of these questions
will be part of other how-to lectures. But the most commonly asked questions are addressed here (feel free
to email some more if you believe that I should include another hotspot):

3.2. SOLVING A REAL USE CASE: FUNCTION VISUALIZATION 23

1. How can I get rid of that 10~3 label?
2. How can I modify the number printing?
3. How can I have one single line per axis rather than a box?

This here gives brief hints where to look in this reference manual for more details. We modify the
appearance of the second picture according to the questions above:

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[
300 + axis lines=left,
scaled ticks=false,
xticklabel style={
rotate=90,
200 anchor=east,
/pgf/number format/precision=3,
/pgf/number format/fixed,
100 | /pgf/number format/fixed zerofill,
Fo

% density of Normal distribution:
\newcommand \MU{0}
\newcommand\SIGMA{1e-3}
\addplot [red,domain=-3*\SIGMA:3*\SIGMA,samples=201]
{exp(-(x-\MU)"2 / 2 / \SIGMA"2)
/ (\SIGMA * sqrt(2%pi))};

—0.002 |
0.000 +
0.002 +

\end{axis}
\end{tikzpicture}

The appearance of the axes as such can be controlled by means of the axis lines key. It accepts
the values left, right, box, center, none (and also top, bottom, middle which are aliases). The
xticklabel style key modifies a predefined style (note the use of indentation here!). A style is a collection
of keys which are applied in a specific context. Styles are very useful and are widely used by PGFPLOTS. In
our case, we adjust a couple of options like rotation, alignment (the anchor option), and number printing
options. The precise details of these individual options is beyond the scope of this tutorial. The keys actually
belong to TikZ — and the TikZ manual is the reference for these keys (although PGFPLOTS also covers most
of the topics). The complete set of number printing options is available in both the TikZ manual [7] and the
manual for PGFPLOTSTABLE which is shipped with PGFPLOTS. A brief extract can be found in Section 4.13.

3.2.6 Finishing Touches: Automatic Generation of Individual Pdf Graphics

As last step in this lecture, I would like to talk about one technical topic. Typically, a TEX document starts
quite simple: a little bit of text, perhaps one or two pictures. But they tend to grow. And eventually, you
will encounter one of the weak points of PGFPLOTS: the graphics are involved and TEX consumes a lot of
time to generate them. Especially if it keeps regenerating them even though they did not change at all. The
fact that we need to rerun the pdflatex processor all the time makes things worse.

Fortunately, there are solutions. A simple solution is: why can’t we write each individual graphics into
a separate .pdf file and use \includegraphics to include it!? The answer is: yes, we can. And it is
surprisingly simple to do so.

In order to convert every tikzpicture environment automatically to an external graphics without chang-
ing any line of code in the TEX file, we can simply write the following two lines into the document’s preamble:

\usepgfplotslibrary{external}
\tikzexternalize

igégin{document}
iéAd{document}

But now, we have to provide a command line switch to pdflatex:
pdflatex -shell-escape myfile.tex

This works out of the box with pdflatex. If you use latex/dvips, lualatex, dvipdfm or any other TEX
derivatives, you need to modify the option \tikzexternalize[system call=...] (which is, unfortunately,
system-dependent, especially for the postscript variants).

24 CHAPTER 3. STEP-BY-STEP TUTORIALS

It might be too much to discuss how to define individual file names or how to modify the file name
generation strategy. There is also the \tikzexternalize[mode=1ist and make] feature which generates
a GNU Make file to allow \label/\ref to things inside of the external graphics and which supports the
generation of all images in parallel (if you have a multi-core PC).

Details of the external library can be found in Section 7.1 (but only a brief survey) and, in all depth,
in the TikZ reference manual [7].

3.2.7 Summary

We learned how to create a standard axis, and how to assign basic axis descriptions. We also saw how to
plot functions from a data table (in our case a tab-separated file, but other delimiters as in CSV files are
also supported) and from math expressions. We saw that PGFPLOTS does a reasonable good job at creating
a fully-featured axis automatically (like scaling the units properly, choosing tick positions and labels). We
also learned how to improve vertical alignment and how to customize the appearance of an axis.

Next steps might be how to draw multiple plots into the same axis, how to employ scatter plots of
PGFPLOTS, how to generate logarithmic axes, or how to draw functions of two variables. Some of these
aspects will be part of further how-to lectures.

3.3 Solving a Real Use Case: Scientific Data Analysis

In this section, we assume that you did some scientific experiment. The scientific experiment yielded three
input data tables: one table for each involved parameter d = 2, d = 3, d = 4. The data tables contain “degrees
of freedom” and some accuracy measurement “12_err”. In addition, they might contain some meta-data
(in our case a column “level”). For example, the data table for d = 2 might be stored in data_d2.dat and
may contain

dof 12_err level
5 8.312e-02 2
17 2.547e-02 3
49 7.407e-03 4
129 2.102e-03 5
321 5.874e-04 6
769 1.623e-04 7
1793 4.442e-05 8
4097 1.207e-05 9
9217 3.261e-06 10

The other two tables are similar, we provide them here to simplify the reproduction of the examples.
The table for d = 3 is stored in data_d3.dat, it is

dof 12_err level
7 8.472e-02 2
31 3.044e-02 3
111 1.022e-02 4
351 3.303e-03 5
1023 1.039e-03 6
2815 3.196e-04 7
7423 9.658e-05 8
18943 2.873e-05 9
47103 8.437e-06 10

Finally, the last table is data_d4.dat

dof 12_err level
9 7.881e-02 2
49 3.243e-02 3
209 1.232e-02 4
769 4.454e-03 5
2561 1.551e-03 6
7937 5.236e-04 7
23297 1.723e-04 8
65537 5.545e-05 9
178177 1.751e-05 10

What we want is to produce three plots, each dof versus 12_err, in a loglog plot. We expect that
the result is a line in a log—log plot, and we are interested in its slope loge(N) = —alog(N) because that
characterizes our experiment.

3.3. SOLVING A REAL USE CASE: SCIENTIFIC DATA ANALYSIS 25

3.3.1 Getting the Data into TEX

Our first step is to get one of our data tables into PGFPLOTS. In addition, we want axis descriptions for the
z- and y-axes and a title on top of the plot.
Our first version looks like

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
%\documentclass{article}

TTTTTT T T T 1T T T T TTTITT T T T TTTTT %\usepackage{pgfplots}
%\pgfplotsset{compat=1.5}

Convergence Plot

%\begin{document}

\begin{tikzpicture}

\begin{loglogaxis}[
title=Convergence Plot,
xlabel={Degrees of freedom},
ylabel={L_2 Error},

]
\addplot table {data_d2.dat};

\end{loglogaxis}

Ll Ll Ll Ll \end{tikzpicture}

10* 102 103 10*
Degrees of freedom

—
I
w

LIS B AL LA L L AL WA A AL

%\end{document}

Our example is similar to that of the lecture in Section 3.2.1 in that it defines some basic axis descriptions
by means of title, xlabel, and ylabel and provides data using \addplot table. The only difference is
that we used \begin{loglogaxis} instead of \begin{axis} in order to configure logarithmic scales on both
axes. Note furthermore that we omitted any options after \addplot. As explained in Section 3.2.1, this tells
PGFPLOTS to consult its cycle list to determine a suitable option list.

3.3.2 Adding the Remaining Data Files of Our Example.

PCGFPLOTS accepts more than one \addplot ... ; command —so we can just add our remaining data files:
% Preamble: \pgfplotsset{width=7cm,compat=1.16}
Conyergence Rloy \begin{tikzpicture}
UL BLLLLLL L L L LLL L L AL L L LLLL LA \begin{loglogaxis}[
10—t E E title=Convergence Plot,
r B xlabel={Degrees of freedom},
102 L B ylabel={L_2 Error},
E 11
8 [i \addplot table {data_d2.dat};
8 1073k - \addplot table {data_d3.dat};
M & E \addplot table {data_d4.dat};
g? 104 B i \end{loglogaxis}
E 2 \end{tikzpicture}
1075 £ £
PRI R R UUTTT B S W TTT IR R RIS AR M

! 102 102 100 10°
Degrees of freedom

You might wonder how PGFPLOTS chose the different line styles. And you might wonder how to modify
them. Well, if you simply write \addplot without options in square brackets, PGFPLOTS will automatically
choose styles for that specific plot. Here “automatically” means that it will consult its current cycle list:
a list of predefined styles such that every \addplot statement receives one of these styles. This list is
customizable to a high degree.

Instead of the cycle list, you can easily provide style options manually. If you write

\addplot [(options)] ...,

PGFPLOTS will only use (options) and will ignore its cycle list. If you write a plus sign before the
square brackets as in

\addplot+[{options)] ...,

PGFPLOTS will append (options) to the automatically assigned cycle list.

26 CHAPTER 3. STEP-BY-STEP TUTORIALS

3.3.3 Add a Legend and a Grid

A legend is a text label explaining what the plots are. A legend can be provided for one or more \addplot
statements using the legend entries key:

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}

TTTI T T T T T T T T 17 \begin{loglogaxis}[

title=Convergence Plot,
xlabel={Degrees of freedom},
ylabel={L_2 Error},

grid=major,

legend entries={$d=2$,$d=3$,$d=4$},

Convergence Plot

107t

10—2

1073
\addplot table {data_d2.dat};
\addplot table {data_d3.dat};
\addplot table {data_d4.dat};

\end{loglogaxis}

\end{tikzpicture}

Lo Error

10~*

10—°

N A O T
10t 10> 10 10* 10°
Degrees of freedom

Here, we assigned a comma-separated list of text labels, one for each of our \addplot instruc-
tions. Note the use of math mode in the text labels. Note that if any of your labels contains a
comma, you have to surround the entry by curly braces. For example, we could have used legend
entries={{$d=2$3},{$d=3%},{$d=4$3}} — PGFPLOTS uses these braces to delimit arguments and strips them
afterwards (this holds for any option, by the way).

Our example also contains grid lines for which we used the grid=major key. It activates major grid lines
in all axes.

You might wonder how the text labels map to \addplot instructions. Well, they are mapped by index.
The first label is assigned to the first plot, the second label to the second plot and so on. You can exclude
plots from this counting if you add the forget plot option to the plot (using \addplot+[forget plot],
for example). Such plots are excluded from both cycle lists and legends.

3.3.4 Add a Selected Fit-line

Occasionally, one needs to compute linear regression lines through input samples. Let us assume that we
want to compute a fit line for the data in our fourth data table (data_d4.dat). However, we assume that
the interesting part of the plot happens if the number of degrees of freedom reaches some asymptotic limit
(i.e. is very large). Consequently, we want to assign a high uncertainty to the first points when computing
the fit line.

PGFPLOTS offers to combine table input and mathematical expressions (note that you can also type pure
mathematic expressions, although this is beyond the scope of this example). In our case, we employ this
feature to create a completely new column — the linear regression line:

3.3. SOLVING A REAL USE CASE: SCIENTIFIC DATA ANALYSIS 27

% Preamble: \pgfplotsset{width=7cm,compat=1.16}

%\usepackage{pgfplotstable}

T T 1T LA T T T 11T T 1 T THD T T TTTITT T °[)...

—eo—d=2]|| \begin{tikzpicture}
\begin{loglogaxis}[

title=Convergence Plot,

xlabel={Degrees of freedom},

ylabel={L_2 Error},

grid=major,

legend entries={$d=2$,$d=3$,$d=4$},

Convergence Plot

-—m—d=3
—eo—d=4

| \addplot table {data_d2.dat};
\addplot table {data_d3.dat};
\addplot table {data_d4.dat};
\addplot table [
10—6) 1 S V1 S O W W11 S x=dof,
10! 102 103 104 102 y={create col/linear regression={y=12_err,
variance 1ist={1000,800,600,500,400,200,100}}}]
Degrees of freedom {data_d4.dat};
\end{loglogaxis}
\end{tikzpicture}

Note that we added a further package: pgfplotstable. It allows to postprocess tables (among other
things. It also has a powerful table typesetting toolbox which rounds and formats numbers based on your
input CSV file).

Here, we added a fourth plot to our axis. The first plot is also an \addplot table statement as before
— and we see that it loads the data file data_d4.dat just like the plot before. However, it has special keys
which control the coordinate input: x=dof means to load x coordinates from the column named “dof”. This
is essentially the same as in all of our other plots (because the “dof” column is the first column). It also uses
y={create col/...}. This lengthy statement defines a completely new column. The create col/linear
regression prefix is a key which can be used whenever new table columns can be generated. As soon as
the table is queried for the first time, the statement is evaluated and then used for all subsequent rows.
The argument list for create col/linear regression contains the column name for the function values
y=12_err which are to be used for the regression line (the x arguments are deduced from x=dof as you
guessed correctly). The variance list option is optional. We use it to assign variances (uncertainties)
to the first input points. More precisely: the first encountered data point receives a variance of 1000, the
second 800, the third 600, and so on. The number of variances does not need to match up with the number
of points; PGFPLOTS simply matches them with the first encountered coordinates.

Note that since our legend entries key contains only three values, the regression line has no legend
entry. We could easily add one, if we wanted. We can also use \addplot+[forget plot] table[...] to
explicitly suppress the generation of a legend as mentioned above.

Whenever PGFPLOTS encounters mathematical expressions, it uses its built-in floating point unit. Con-
sequently, it has a very high data range — and a reasonable precision as well.

3.3.5 Add an Annotation using TikZ: a Slope Triangle

Often, data requires interpretation — and you may want to highlight particular items in your plots. This
“highlight particular items” requires to draw into an axis, and it requires a high degree of flexibility. Users
of TikZ would say that TikZ is a natural choice — and it is.

In our use case, we are interested in slopes. We may want to compare slopes of different experiments.
And we may want to show selected absolute values of slopes.

Here, we use TikZ to add custom annotations into a PGFPLOTS axis. We choose a particular type of a
custom annotation: we want to mark two points on a line plot. One way to do so would be to determine the
exact coordinates and to place a graphical element at this coordinate (which is possible using \draw ...
(led4,1e-5) ... ;). Another (probably simpler) way is to use the pos feature to identify a position “25%
after the line started”.

Based on the result of Section 3.3.4, we find

28 CHAPTER 3. STEP-BY-STEP TUTORIALS

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
%\usepackage{pgfplotstable}
T T 1T LA T T T 11T T T 1T T T TTTITT T %...
—eo—d=2]|| \begin{tikzpicture}

\begin{loglogaxis}[
title=Convergence Plot,
xlabel={Degrees of freedom},
ylabel={L_2 Error},
grid=major,
legend entries={$d=2$,$d=3$,$d=4$},

Convergence Plot

-—m—d=3
—eo—d=4

—1.15

\addplot table {data_d2.dat};
\addplot table {data_d3.dat};
\addplot table {data_d4.dat};
\addplot table [
10—6) 1 S V1 S O W W11 S x=dof,
10! 102 103 104 102 y={create col/linear regression={y=12_err,
variance 1list={1000,800,600,500,400,200,100}}}]
Degrees of freedom {data_d4.dat}
% save two points on the regression line
% for drawing the slope triangle
coordinate [pos=0.25] (A)
coordinate [pos=0.4] (B)

% save the slope parameter:
\xdef\slope{\pgfplotstableregressiona}

% draw the opposite and adjacent sides
% of the triangle
\draw (A) -| (B)
node [pos=0.75,anchor=west]
{\pgfmathprintnumber{\slope}};
\end{loglogaxis}
\end{tikzpicture}

The example is already quite involved since we added complexity in every step. Before we dive into the
details, let us take a look at a simpler example:

IR R LI B AL B IR R % Preamble: \pgfplotsset{width=7cm,compat=1.16}

T
10_1 E = \begi . .

E E gin{tikzpicture}

B 1 \begin{loglogaxis}
1072 | 4 \addplot table {data_d2.dat}

E e coordinate [pos=0.25] (A)
10-3 [1 coordinate [pos=0.4] (B)
104 1 ~ Spemal;z \draw [-stealth] (A) -| (B);

F g \node [pin=0:Special.] at (769,1.623e-04) {};
107° E E \end{loglogaxis}

F 5 \end{tikzpicture}

Ll Ll Ll Ll

10t 102 103 10?

Here, we see two annotation concepts offered by PGFPLOTS: the first is to insert drawing commands
right after an \addplot command (but before the closing semicolon). The second is to add standard TikZ
commands, but use designated PGFPLOTS coordinates. Both are TikZ concepts. The first is what we want
here: we want to identify two coordinates which are “somewhere” on the line. In our case, we define two
named coordinates: coordinate A at 25% of the line and coordinate B at 40% of the line. Then, we use
\draw (A) -| (B) to draw a triangle between these two points. The second is only useful if we know some
absolute coordinates in advance.

Coming back to our initial approach with the regression line, we see that it uses the first con-
cept: it introduces named coordinates after \addplot, but before the closing semicolon. The statement
\xdef\slope introduces a new macro. It contains the (expanded due to the “eXpanded DEFinition”) value
of \pgfplotstableregressiona which is the slope of the regression line. In addition to the slope triangle,
we also add a node in which we typeset that value using \pgfmathprintnumber.

Note that the example above is actual a “happy case”: it can happen easily that labels which are added
inside of the axis environment are clipped away:

3.4. USE CASES INVOLVING SCATTER PLOTS 29

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{loglogaxis}[

tiny,
]

\addplot table {data_d2.dat}
node [pos=1,pin=0:Special.] {}

\end{loglogaxis}
\end{tikzpicture}

The example above combines the pos label placement with the node’s label. Note that the small style
tiny installs a PGFPLOTS preset which is better suited for very small plots — it is one of the many supported
scaling parameters. The problem here is apparent: the text of our extra node is clipped away. Depending
on your data, you have a couple of solutions here:

e use clip=false to disable clipping of plot paths at all,
e use clip mode=individual to enable clipping only for plot paths,
e draw the node outside of the axis environment but inside of the picture environment.

The first attempt works quite well for most figures:

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{loglogaxis}[

tiny,

clip=false,

1 Special.]

\addplot table {data_d2.dat}
node [pos=1,pin=0:Special.] {}

\end{loglogaxis}
\end{tikzpicture}

Note that this approach in which the nodes are placed before the closing semicolon implies that nodes
inherit the axis line style and color.

3.3.6 Summary

We learned how to define a (logarithmic) axis, and how to assign basic axis descriptions. We also saw once
more how to use one or more \addplot table commands to load table data into PGFPLOTS. We took a
brief look into regression and TikZ drawing annotations.

We also encountered the tiny style which is one of the ways to customize the size of an axis. Others
are width, height, the other predefined size styles like normalsize, small, or footnotesize, and the two
different scaling modes /pgfplots/scale and /tikz/scale (the first scales only the axis, the second also
the labels).

Next steps might be how to visualize functions using line plots, how to align adjacent graphics properly
(even if the axis descriptions vary), how to employ scatter plots of PGFPLOTS, or how to draw functions of
two variables.

3.4 Use Cases involving Scatter Plots

Assuming that we are more or less familiar with the basics of the preceding tutorials, we would like to draw
a scatter plot. A scatter plot is one in which markers indicate the important information.
There are many different kinds of scatter plots and this section covers a couple of them.

3.4.1 Scatter Plot Use Case A

In this subsection, we address the following scatter plot use case: assume that we are given a couple of special
(z,y) coordinates along with color data at every vertex. We would like to draw markers at the positions and
choose individual colors depending on the color data.

30 CHAPTER 3. STEP-BY-STEP TUTORIALS

Importing the Data File

We assume that our input data is given as a table containing much more columns than we need. The first
couple of rows are as follows:

ordering=colwise, basis=BASIS_HAT_HIER, number points=1657,
(max)level(s): (7,8), domain=[0,1] x [0,6.2831853]

x_0 x_1 f(x) 1_0 i_0
0 0 0 0 0
0 0.024543693 -0.00054758064 0 0
0 0.049087385 -0.0021903226 O 0
0 0.073631078 -0.00054758064 O 0
0 0.09817477 -0.0095006552 O 0

What we need is the first and second column to get the x and y coordinate values, respectively, and the
third column £ (x) to choose color values. The color values are very small and have a high range: there are
values of order 10~% and there are values of order 1. Such ranges are best shown on a logarithmic scale, which
is why we will resort to some logarithmic scale on the absolute values of this column. Thus, a requirement
will be to accept a math expression (involving logs) on the color data column.

Note that the data file (and all others referenced in this manual) are shipped with PGFPLOTS; you can
find them in the subfolder doc/latex/pgfplots/plotdata.

We learned already how to read table data from a file, so our first step is relatively straightforward.

T T % Preamble: \pgfplotsset{width=7cm,compat=1.16}
61 =R | \begin{tikzpicture}
& : : 81 \begin{axis}
Y% n \addplot+ [only marks] table
= = {concat_VV_together_grid.dat};
4 @ :: E a N \end{axis}
R°R°2° \end{tikzpicture}
o
ofogelel a
[o |
2 ofof o |
= =
LR] u
L8 |
ol CECRCR® N
| | | | |

|
0 02 04 06 08 1

Here, the only non-trivial variation is the option only marks which is given after the plus sign. Keep in
mind that \addplot+[{options)] means that PGFPLOTS shall combine the set of options of its cycle list
with (options). In our case, only marks does what it says. The only marks plot handler is the most simple
scatter plot: it uses the same color for every marker.

Note that \addplot table takes the first column as x and the second as y (which matches our input file
perfectly).

Fine Tuning

We agree that our initial import has unsuitable displayed limits: there is too much white space around
the interesting plot area. In addition, the markers overlap because they are too large. We can modify the
appearance as follows:

3.4. USE CASES INVOLVING SCATTER PLOTS 31

6 R . f N . : T] % Preamble: \pgfplotsset{width=7cm,compat=1.16}
H JoH o 8 .. : \begin{tikzpicture}

ERatloBol| ¢ . \begin{axis}[

::: : slesee - . . enlargelimits=false,

SRR R o]
23 ey ol EEREEE © o 2] \addplot+ [only marks,mark size=0.6pt]

table {concat_VV_together_grid.dat};
\end{axis}

o \end{tikzpicture}
0 DI I ORI T | i..

0 0.2 04 06 0.8 1

As before, we assume that we add more options after \begin{axis}. Consequently, we introduced
suitable indentation and a trailing comma after the option. Note that enlargelimits is typically active;
it means that PGFPLOTS increases the displayed range by 10% by default. Deactivating it produces tight
limits according to the input data.

Our second option is mark size — using an absolute size (about the radius or half size of the marker).

Color Coding According To Input Data

We are quite close to our goal, except for the colors. As discussed, our input file contains three columns and
the third one should be used to provide color information. In our case, the data file has a column named
f(x).

o T e e e e e T 0

6r 15 2 S .]
2t ! : . —4

0 02 04 06 08 1

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[
enlargelimits=false,
colorbar,

\addplot+ [
only marks,
scatter,
point meta={

1n(le-6+abs(\thisrow{f(x)1}))/1n(10)

e
mark size=0.6pt,

1 table {concat_VV_together_grid.dat};

\end{axis}
\end{tikzpicture}

We added a couple of options to our example: the options scatter, and point meta, colorbar. The
option scatter has a slightly misleading name as we already had a scatter plot before we added that option.
It activates scatter plots with individual appearance: without further options, it chooses individual colors for
every marker. The “individual colors” are based on something which is called “point meta” in PGFPLOTS.
The point meta is typically a scalar value for every input coordinate. In the default configuration, it is
interpreted as “color data” for the coordinate in question. This also explains the other option: point
meta=... tells PGFPLOTS which values are to be used to determine colors. Note that the default value

32 CHAPTER 3. STEP-BY-STEP TUTORIALS

of point meta is to use the y coordinate. In our case, we have a complicated math expression which is
related to our input file: it contains small quantities in column f (x) which are based shown on a logarithmic
scale as their differ over a huge range. Since a logarithm must not have a non-positive argument, we have
1076 + abs(---) as expression which ensures that the argument is never smaller than 10°{-6} and that is
is positive. The divider /1n(10) means that we have logarithms base 10. But the key point of the whole
complicated expression can be summarized as follows:

1. We can use \thisrow{(column name)} to refer to table columns. Here, “this row” means to evaluate
the table for the “data point which is being read from the current row”.

2. We can combine \thisrow with any complicated math expression.

The third new option colorbar activates the color bar on the right hand side (as you guessed correctly).
We see that the smallest value is —6 which corresponds to our value 1e-6 in the math expression.

You might wonder how a scalar value (the number stored in the £ (x) column) results in a color. PGFPLOTS
computes the minimum and maximum value of all such numbers. Then, it maps every number into a
colormap. A colormap defines a couple of colors and interpolates linearly between such colors. That means
that the smallest value of point meta is mapped to the first color in a colormap whereas the largest value
of point meta is mapped to the last color in the colormap. All others are mapped to something in-between.

More information about colormap and point meta can be found in Section 4.7.6 and in Section 4.8.

3.4.2 Scatter Plot Use Case B

As already mentioned, there are various use cases for scatter plots. The default configuration of the scatter
key is to read numeric values of point meta and choose colors by mapping that value into the current
colormap.

A different application would be to expect symbolic input (some string) and choose different markers
depending on that input symbol.

Suppose that you are given a sequence of input coordinates of the form (z,y) (class label) and that you
want to choose marker options depending on the (class label). A PGFPLOTS solution could be

T T T T % Preamble: \pgfplotsset{width=7cm,compat=1.16}
A A \begin{tikzpicture}
\begin{axis}
\addplot [
0.4} N scatter,
only marks,
@) point meta=explicit symbolic,
o scatter/classes={
0.2 | a={mark=square*,blue},
u b={mark=triangle*,red},
c={mark=o0,draw=black}), <-- don’t add comma
— o
|] table [meta=label] {

label
0 02 04 06 08

"

1

.45
.02
.06
0®

.5

85
12
.73
.53
.76
.55

15
.27
.17
ol
.5
.3
52
05
.45
.25
.5
.32

(el elelNelNeNelNelNeNelNe NelNe]
(el elelNeNelNeoNeNoNoNeNo oA
0O T oo o0 o O

s
\end{axis}
\end{tikzpicture}

As in our previous use case in Section 3.4.1, we have the options scatter, only marks, and a configuration
how to retrieve the point meta values by means of the meta key. One new key is point meta=explicit
symbolic: it tells PGFPLOTS that any encountered values of point meta are to be interpreted as string
symbols. Furthermore, it tells PGFPLOTS that the every input coordinate comes with an explicit value (as
opposed to a common math expression, for example). The other different option is scatter/classes. As

3.5. SOLVING A REAL USE CASE: FUNCTIONS OF TWO VARIABLES 33

you guessed from the listing, it is a map from string symbol to marker option list. This allows to address
such use cases in a simple way.
This example has actually been replicated from the reference manual section for scatter/classes.

3.4.3 Scatter Plot Use Case C

Finally, this tutorial sketches a further use case for scatter plots: given a sequence of coordinates (z,y) with
individual string labels, we want to draw the string label at the designated positions.

This can be implemented by means of the nodes near coords feature of PGFPLOTS, which is actually
based on scatter:

% Preamble: \pgfplotsset{width=7cm,compat=1.16}

\begin{tikzpicture}

\begin{axis}[
enlargelimits=0.2,

[IOV}

0.6 |-

]

0.4 824 B \addplot+ [nodes near coords,only marks,
’ point meta=explicit symbolic]

table [meta=label] {

label

0.2 ° s
2

4

y

0.
0.
0.
0.
0.

([]

([]
O O O O O M
D W NN O
=D o RN
O < W=

5
5

0.2 0.4 0.6 0.8 3

\end{axis}
\end{tikzpicture}

In this case, we have point meta=explicit symbolic in order to express the fact that our labels are of
textual form (see the reference manual section for nodes near coords for applications of numeric labels).
The remaining stuff is done by the implementation of nodes near coords. Note that enlarged the axis
limits somewhat in order to include the text nodes in the visible area.

There is much more to say about scatter plots, and about nodes near coords. Please consider this
subsection as a brief pointer to Section 4.5.12 in the reference manual.

3.4.4 Summary

We learned how to generate scatter plots with single color using only marks, scatter plots with individually
colored markers using the scatter key, scatter plots with specific marker styles depending on some class
label using scatter/classes and text nodes using nodes near coords.

Furthermore, we introduced the concept of “point meta data”’: once as (scalar valued) color data, once
as symbolic class label and once as text label.

There is much more to say, especially about point meta which is introduced and explained in all depth
in Section 4.8.

There is also more to say about scatter plots, for example how to generate scatter plots with individually
sized markers and/or colors (by relying on \pgfplotspointmetatransformed, see the reference manual
section for visualization depends on). In addition, scatter plots can be customized to a high degree
which is explained in Section 4.5.12.

3.5 Solving a Real Use Case: Functions of Two Variables

In this tutorial, we assume that we have two functions for which we seek a plot: the first is a sampled
function given by a huge data file and the second is the math expression g(z,y) = exp(—a? — y?) - z.

Our first function actually consists of two data files: the first file contains some scattered data which
resembles a discretization (“sampling”) of a function and the second file contains data for the function as
such, sampled on a lattice. Our requirement here is two draw two graphs into the same axis: one in which
the function is plotted as a smooth, colored surface and one in which the scattered data file should be on
top of the surface because it provides more detail how the function was represented in the computer.

The second function which is given as math expression should be visualized using a contour plot. A
contour plot expects some fixed values ¢1,. .., g as input (the contour values) and plots one curve for each
g; = g(z,y) (i-e. if you go hiking without ever changing the height of your path).

34 CHAPTER 3. STEP-BY-STEP TUTORIALS

3.5.1 Surface Plot from Data File

Our first step is to load the data file and to plot a surface.

Clearly, functions of two variables require a more sophisticated input format: they are typically sampled
on a unified grid with n x m points, i.e. n points for x and m points for y, resulting in a total of matrix
with n - m values f;; = f(z;,y;). How can we read matrix data? And what if you have more than just the
z value? A standard way is to write the matrix to a table, either in line by line ordering or in column by
column ordering (both are common).

Here, we assume that our function values are written to a table in which the y values vary from line to
line. Here is an extract of the data file (which is too large to list it here):

ordering=colwise, number points=1089,
(max)level(s): (5,5), domain=[0,1] x [0,6.2831853]

x_0 x_1 f(x) 1_0 i_0
0 0 0 0 0
0 0.19634954 0.038239818 0 0
0 0.39269908 0.14662768 0 0
0 5.8904862 0.14662768 0 0
0 6.0868358 0.038239818 0 0
0 6.2831853 6.9388939e-18 O 0
0.03125 0 3.0517578e-05 5 1
0.03125 0.19634954 0.030093496 5 1
0.03125 0.39269908 0.1146012 5 1
0.03125 0.58904862 0.24129102 5 1
0.03125 0.78539816 0.38946059 5 1
0.03125 0.9817477 0.53949733 5 1

Note that the data file (and all others referenced in this manual) are shipped with PGFPLOTS; you can
find them in the subfolder doc/latex/pgfplots/plotdata.

The input file contains xg, x1, and f(zg,21) in columns named x_0, x_1, and f(x), respectively. In
addition, it contains some meta data which is irrelevant for us here.

Note that our input file contains empty lines whenever x_0 changes. This is a common data format which
simplifies the detection of “scanline length”. A scanline is one line in the input matrix, for example the line
consisting of all points with zp = 0. With such scanlines, PGFPLOTS can automatically deduce the size of
the input matrix.

In order to plot the file as a surface, we proceed as in the previous example by using \addplot table.
However, we have to use \addplot3 to indicate that a three-dimensional result is expected:

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}
\addplot3 [
surf,
mesh/ordering=y varies,
] table {concat_VV_together.dat};
\end{axis}
\end{tikzpicture}

The example looks familiar compared to our results of the preceding tutorials: a tikzpicture environ-
ment containing an axis environment and the mentioned \addplot3 command. The option list contains
surf, which tells PGFPLOTS how to visualize the input data. The key mesh/ordering=y varies tells PGF-
PLOTS how to decode the input matrix. This is important; otherwise PGFPLOTS would have chosen x varies
which does not match our file.

Note that we there is no need to configure either mesh/rows=(N) or mesh/cols=(N) here because these
parameters are automatically deduced from the scan line lengths marked by empty lines in our input file.

3.5. SOLVING A REAL USE CASE: FUNCTIONS OF TWO VARIABLES 35

Since our \addplot3 table statement does not contain any hints which columns should be plotted,
PGFPLOTS simply plots the first three columns against each other.

The colors of a surf plot are chosen from the function values (unless you configure some other value for
point meta; this is similar to the scatter plot example). In case of a function of two variables, the function
value is the third column.

3.5.2 Fine-Tuning

In order to stress how colors are to be mapped to values, we add a color bar to our example from the previous
subsection. In addition, we rotate the view a little bit and add axis labels. Furthermore, we would like to
have a smooth color mapping.

We end up at

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[

view/h=40,

colorbar horizontal,

xlabel=x, ylabel=y,

\addplot3 [
surf,
mesh/ordering=y varies,
shader=interp,
] table {concat_VV_together.dat};
\end{axis}
\end{tikzpicture}

Here, view/h rotates the “horizontal” parts of the view (only). It chooses a new view angle for the
orthographic projection. As you guessed, there is also a view/v key and a view={(h)}{(v)} variant.

The key colorbar horizontal is a style which activates a colorbar and configures it to be displayed
horizontally. The labels are placed using xlabel and ylabel as we saw it before for visualizations of one-
dimensional functions. A colorbar uses the current colormap and adds axis descriptions to show how values
are mapped to colors.

The shader=interp key activates a smooth color interpolation.

3.5.3 Adding Scattered Data on Top of the Surface

As motivated earlier, we have a second data set, one which characterizes how the function has been repre-
sented in some computer simulation. We would like to add the second data set as scatter plot on top of the
function.

The data set as such is the very same as the one used in Section 3.4.1, so we do not need to list it here
again. However, we have to include the two-dimensional scatter data into the three-dimensional axis in a
suitable way. We chose to place it on a fixed z value as follows:

36 CHAPTER 3. STEP-BY-STEP TUTORIALS

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[

view/h=40,

colorbar horizontal,

xlabel=x, ylabel=y,

\addplot3 [surf,mesh/ordering=y varies,
shader=interp
] table {concat_VV_together.dat};

\addplot3 [blue,mark=*,
mark options={fill=blue!80!black},
only marks,mark size=0.6pt,
] table [z expr=1.2]{concat_VV_together_grid.dat};
\end{axis}
\end{tikzpicture}

Now, we have two \addplot3 table statements in the same axis. None of them uses the cycle list
as we used explicit option lists. The first is our surface plot. Note that it is plotted before the scatter
plot: PGFPLOTS cannot handle depth information between adjacent \addplot statements. It does, however,
handle z buffer information for data of a single \addplot statement. The second plot is our scatter plot:
we recognize only marks and mark size from Section 3.4.1. In addition, we configured some color and
marker options.

An important aspect is \addplot3 table[z expr=1.2] — it tells PGFPLOTS how to choose z values for
the input file (otherwise, PGFPLOTS would have used the third column of that file). This is a convenient way
to insert two-dimensional data into a three-dimensional axis, provided you have table data. There is also a
different way which works for both tables and math expressions (or other input types). This different way
is to install a z filter, but that is beyond the scope of this tutorial for now.

3.5.4 Computing a Contour Plot of a Math Expression

This section addresses the second part of our use case example: a function of two variables given by a math
expression.

Our function of interest is x exp(—z? — y?). We start as in our tutorial for one-dimensional functions
given by a math expression (compare Section 3.2.3): by using an \addplot statement which is followed by
a math expression in curly braces. However, we rely on \addplot3 as in the preceding section:

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[
title={$x \exp(-x~2-y~2)$},
xlabel=x, ylabel=y,
small,

zexp(—x? — y?)

]

\addplot3 {exp(-x"2-y~2)*x};
\end{axis}
\end{tikzpicture}

Our example contains a basic axis environment with title, xlabel, ylabel and the small key which
are already known from the preceding tutorials. The \addplot3 has no options and is immediately followed
by the math expression. The absence of options tells PGFPLOTS to rely on its cycle list. This, in turn
configures mark=* with blue color — and a line plot. A line plot combined with \addplot3 is of limited use;
it merely connects all incoming points. Since points are sampled as a matrix (line by line). Our next step
will be to define a suitable plot handler.

Note, however, that our math expression depends on x and y. These two variables are the sampling
variables of PGFPLOTS in its default configures: both are sampled in the domain of interest using the correct

3.5. SOLVING A REAL USE CASE: FUNCTIONS OF TWO VARIABLES 37

number of samples. The \addplot3 statement takes care of computing N - M points in the correct sequence
where N is the number of samples for z and M is samples y, the number of samples used for y.

We can see that our sampling domain is too large. Switching to a smaller domain focusses on the
interesting parts of our function:

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[
title={$x \exp(-x~2-y~2)$},
xlabel=x, ylabel=y,
small,

zexp(—a? — y?)

\addplot3 [
surf,
domain=-2:2,
domain y=-1.3:1.3,
1 {exp(-x"2-y~2)*x};
\end{axis}
\end{tikzpicture}

Here, we introduced an option list after \addplot3. Since we provided the option list without the leading
plus sign ‘+’, PGFPLOTS does not consider its cycle list at all (and switches off marks and the default color
settings). We added domain and domain y in order to restrict the sampling domain in a suitable way. If we
would have omitted domain y, the y domain would use the same value as the £ domain.

As you might have guessed, the surf key has the main use case of providing a connection to the previous
tutorial section: it is one of the natural visualizations for functions of two variables. As in the preceding
section, the color has been deduced from the function value z = f(z,y) (more precisely, by relying on the
default configuration point meta=f (x)).

The next step is to switch to contour plots by replacing ‘surf‘ by ‘contour gnuplot’

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[
title={$x \exp(-x~2-y~2)$3},
xlabel=x, ylabel=y,
small,

zexp(—a® — y?)

\addplot3 [
contour gnuplot,
domain=-2:2,
domain y=-1.3:1.3,
1 {exp(—x~2-y~2)*x};
\end{axis}
\end{tikzpicture}

Now, we have a contour plot — although it is not quite what we had in mind. First, there are so few
contour lines that it is hard to see anything (especially since the line width is too small). Furthermore,
the view direction is unfamiliar.

We add the view option with the argument for “view from top” and configure the number of contour
lines using the contour/number key and the line width using the thick style:

38 CHAPTER 3. STEP-BY-STEP TUTORIALS

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[
title={$x \exp(-x~2-y~2)$3},
enlarge x limits,
view={0}{90},

0.5 N xlabel=x, ylabel=y,
z small,
> 0 \ N 1
= \addplot3[
[\ s==9
—05 B domain=-2:2,

domain y=-1.3:1.3,

contour gnuplot={number=14},
B thick,

| 1 {exp(-x"2-y~2) *x};

2 \end{axis}

\end{tikzpicture}

This is what we wanted to achieve. Note that contour gnuplot accepts options which have the key
prefix contour/. In this context, the prefix is optional.

Note that contour gnuplot is different from almost all other plot handlers of PGFPLOTS with respect to
one aspect: it relies on an external tool to compute coordinates whereas all other PGFPLOTS plot handlers
depend on TEX alone and do not need 3rd party tools. The nonlinear algorithm to compute contour lines
is currently unavailable in PGFPLOTS which is stressed by the name ‘contour gnuplot’. Consequently, you
can only reproduce the example if you have gnuplot installed. PGFPLOTS invokes the executable name
‘gnuplot’, i.e. the executable must be on your search path (the PATH environment variable must contain
it). And, more importantly, you have to tell IXTEX that it is allowed to launch 3rd party executables while
processing your .tex file. Typically, you have to add the argument -shell-escape to your TEX executable,
i.e. one of

latex -shell-escape (tezfilename)

or

pdflatex -shell-escape (texfilename)
or

lualatex -shell-escape (fezfilename)
or

xelatex -shell-escape (tezfilename).
Note that it is occasionally named in a different way like “~enable-write18”. The interaction with gnuplot
is controlled by means of temporary input and output files.

Note that contour gnuplot and \addplot gnuplot are two ways to extend the built-in capabilities of
PGFPLOTS by means of gnuplot’s math library, although their use is optional.

3.5.5 Summary

We have sketched how to load a data table containing a sampled function of two variables, and we learned
how to visualize such data as surface plot. We learned how to rotate the view, how to change the color
shader of surface plots, how to enabled colorbars, and how to add scatter plots on top of surface plots.
Furthermore, we encountered the first contour plot as an example for how to sample a function of two
variables by means of built-in methods of PGFPLOTS.

It should be stressed that PGFPLOTS needs no external tool to generate such plots (except for contour
gnuplot which is the only exception): every computer with a decent version of PGFPLOTS can regenerate
these plots.

There is more to say about three-dimensional axes, in particular regarding mesh/ordering, parametric
plots, perhaps line plots in three dimensions or other plot types. Furthermore, there are some limitations
regarding the z buffering, i.e. how PGFPLOTS decides which parts of the figure are in front of others. These
items can be read in Section 4.6 and its subsections.

You might also be interested in styles to change the appearance of a three-dimensional axis, compare
Section 4.11.

Chapter 4

The Reference

4.1 TgX dialects: BTEX, ConTEXt, plain TEX

The starting point for PGFPLOTS is an axis environment like axis or the logarithmic variants semilogxaxis,
semilogyaxis or loglogaxis.

Each environment is available for ITEX, ConTEXt and plain TEX:

ITEX: \usepackage{pgfplots} \pgfplotsset{compat=1.16} and

\begin{tikzpicture} \begin{tikzpicture}
\begin{axis} \begin{semilogxaxis}
\end{axis} \end{semilogxaxis}
\end{tikzpicture} \end{tikzpicture}

Here, the \pgfplotsset{compat=1.16} key should be set to at least version 1.3. Otherwise PGF-
PLOTS assumes that your document has been generated years ago and attempts to run in backwards
compatibility mode as good as it can.

Since WTEX is the default for many people, this manual only shows ITEX examples. A full document
skeleton can be found below this enumeration.

ConTEXt: \usemodule[pgfplots] \pgfplotsset[compat=1.16] and

\starttikzpicture \starttikzpicture
\startaxis \startsemilogxaxis
\stopaxis \stopsemilogxaxis
\stoptikzpicture \stoptikzpicture

A complete ConTEXt example file can be found in

doc/context/pgfplots/pgfplotsexample.tex.

plain TEX: \input pgfplots.tex \pgfplotsset{compat=1.16} and

\tikzpicture \tikzpicture
\axis \semilogxaxis
\endaxis \endsemilogxaxis
\endtikzpicture \endtikzpicture

A complete plain TEX example file can be found in

doc/plain/pgfplots/pgfplotsexample.tex.

39

40 CHAPTER 4. THE REFERENCE

For TEX, a complete example will look somehow like this:
\documentclass [adpaper]{article}

% for dvipdfm:

%\def\pgfsysdriver{pgfsys-dvipdfm.def}

\usepackage{pgfplots}

\pgfplotsset{compat=1.6}% <-- moves axis labels near ticklabels (respects tick label widths)

\begin{document}
\begin{figure}
\centering
\begin{tikzpicture}
\begin{loglogaxis}[xlabel=Cost,ylabel=Error]
\addplot coordinates {
(5, 8.31160034e-02)

(17, 2.54685628e-02)
(49, 7.40715288e-03)
(129, 2.10192154e-03)
(321, 5.87352989e-04)
(769, 1.62269942e-04)
(1793, 4.44248889e-05)
(4097, 1.20714122e-05)
(9217, 3.26101452e-06)
};
\addplot coordinates {
(7, 8.47178381e-02)
(31, 3.04409349e-02)
(111, 1.02214539e-02)
(351, 3.30346265e-03)
(1023, 1.03886535e-03)
(2815, 3.19646457e-04)
(7423, 9.65789766e-05)
(18943, 2.87339125e-05)
(47103, 8.43749881e-06)
};
\legend{Case 1,Case 2}
\end{loglogaxis}
\end{tikzpicture}
\caption{A larger examplel}
\end{figure}
\end{document}

If you use latex / dvips or pdflatex, no further modifications are necessary. For dvipdfm, you should
use the \def\pgfsysdriver line as indicated above in the examples (see also Section 2.6.3).

4.2 The Axis Environments

There is an axis environment for linear scaling, two for semi-logarithmic scaling and one for double-
logarithmic scaling.

\begin{tikzpicture} [{options of tikz)]
(environment contents)
\end{tikzpicture}

This is the graphics environment of TikZ. It produces a single picture and encloses also every axis.
Instead of using the environment version, there is also a shortcut command
\tikz{(picture content)}

which can be used alternatively.
\begin{axis} [{options)]

(environment contents)
\end{axis}

The axis environment for normal plots with linear axis scaling.

The ‘every linear axis’ style key can be modified with

\pgfplotsset{every linear axis/.append style={...}}

4.3. THE \ADDPLOT COMMAND: COORDINATE INPUT 41

to install styles specifically for linear axes. These styles can contain both TikZ and PGFPLOTS options.

\begin{semilogxaxis} [{options)]
(environment contents)
\end{semilogxaxis}

The axis environment for logarithmic scaling of z and normal scaling of y. Use
\pgfplotsset{every semilogx axis/.append style={...}}

to install styles specifically for the case with xmode=1log, ymode=normal.

The logarithmic scaling means to apply the natural logarithm (base e) to each x coordinate. Further-
more, ticks will be typeset as 10{€*Poment) gee Section 4.13 for more details.

\begin{semilogyaxis} [{options)]
(environment contents)
\end{semilogyaxis}

The axis environment for normal scaling of x and logarithmic scaling of vy,
The style ‘every semilogy axis’ will be installed for each such plot.

The same remarks as for semilogxaxis apply here as well.

\begin{loglogaxis} [{options)]
(environment contents)
\end{loglogaxis}

The axis environment for logarithmic scaling of both, z- and y-axes. As for the other axis possibilities,
there is a style ‘every loglog axis’ which is installed at the environment’s beginning.

The same remarks as for semilogxaxis apply here as well.
They are all equivalent to
\begin{axis}[

xmode=log|normal,

ymode=1log |normall
\end{axis}

with properly set variables ‘xmode’ and ‘ymode’ (see below).

4.3 The \addplot Command: Coordinate Input

1 % Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis} [ymin=0,ymax=1,enlargelimits=false]
0.8 = \addplot [blue!80!black,fill=blue,fill
opacity=0.5,
1 coordinates {
(0,0.1) (0.1,0.15) (0.2,0.5) (0.3,0.62)

(0.4,0.56) (0.5,0.58) (0.6,0.65) (0.7,0.6)
(0.8,0.58) (0.9,0.55) (1,0.52)

|- (0,0) -- cycle;

\addplot [red,fill=red!90!black,opacity=0.5,

] coordinates {
(0,0.25) (0.1,0.27) (0.2,0.24) (0.3,0.24)
(0.4,0.26) (0.5,0.3) (0.6,0.23) (0.7,0.2)
(0.8,0.15) (0.9,0.1) (1,0.1)

|- (0,0) -- cycle;

\addplot [green!20!black] coordinates {
(0,0.4) (0.2,0.75) (1,0.75)
}
\end{axis}
\end{tikzpicture}

42

100

50

100

,1ﬂmui§\
nnw' ®N
t ','

nm"""an~&

A\ \\\\\Q

\ &’%'"nn,
‘\

0, tbé

200

300 g

% Preamble: \pgfplotsset{width=7cm,compat=1.16}

\begin{tikzpicture}

\begin{axis}[colormap/redyellow,colorbar]
\addplot3 [

surf,

domain=0:360,
samples=40,
1 {sin(x)*sin(y)};

\end{axis}

\end{tikzpicture}

CHAPTER 4. THE REFERENCE

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}
\addplot+ [
id=parable,
domain=-5:5,
1 gnuplot {4*x**2 - 5}
node [pin=180:{$4x"2-5$}1{}

\end{axis}
\end{tikzpicture}

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}
\addplot3 [
surf,
domain=0:360,
samples=40,
1 {sin(x)*sin(y)};
\end{axis}
\end{tikzpicture}

4.3. THE \ADDPLOT COMMAND: COORDINATE INPUT 43

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis} [view={60}{30}]
\addplot3 [
surf,shader=flat,
samples=20,
domain=-1:0,y domain=0:2*pi,
z buffer=sort,
1«
{sqrt(1-x72) * cos(deg(y))},
{sqrt(1-x"2) * sin(deg(y))},
X
)
\end{axis}
\end{tikzpicture}

Inside of an axis environment, the \addplot command is the main user interface. It comes in two variants:
\addplot for two-dimensional visualization and \addplot3 for three-dimensional visualization.

\addplot [{options)] (input data) (trailing path commands);

This is the main plotting command, available within each axis environment. It can be used one or more
times within an axis to add plots to the current axis. There is also an \addplot3 command which is
described in Section 4.6.

It reads point coordinates from one of the available input sources specified by (input data), updates
limits, remembers (options) for use in a legend (if any) and applies any necessary coordinate transfor-
mations (or logarithms).

The (options) can be omitted in which case the next entry from the cycle list will be inserted as
(options). These keys characterize the plot’s type like linear interpolation with sharp plot, smooth
plot, constant interpolation with const plot, bar plot, mesh plots, surface plots or whatever and
define colors, markers and line specifications.! Plot variants like error bars, the number of samples or
a sample domain can also be configured in (options).

The (input data) is one of several coordinate input tools which are described in more detail below.
Finally, if \addplot successfully processed all coordinates from (input data), it generates TikZ paths
to realize the drawing operations. Any (trailing path commands) are appended to the final drawing
command, allowing to continue the TikZ path (from the last plot coordinate).

Some more details:

e The style /pgfplots/every axis plot will be installed at the beginning of (options). That means
you can use

\pgfplotsset{every axis plot/.append style={...}}

to add options to all your plots — maybe to set line widths to thick. Furthermore, if you have
more than one plot inside of an axis, you can also use

\pgfplotsset{every axis plot no 3/.append style={...}}

to modify options for the plot with number 3 only. The first plot in an axis has number 0.

e The (options) are remembered for the legend. They are available as ‘current plot style’ aslong
as the path is not yet finished or in associated error bars.

e See Subsection 4.7 for a list of available markers and line styles.

e For log plots, PGFPLOTS will compute the natural logarithm log(-) numerically using a floating
point unit developed for this purpose.? For example, the following numbers are valid input to
\addplot.

n version 1.2.2 and earlier, there was an explicit distinction between “behaviour” options like error bars, domain, number
of samples etc. and “style options” like color, line width, markers etc. This distinction is obsolete now, simply collect everything
into (options).

2This floating point unit is available as TikZ library as part of TikZ.

44

CHAPTER 4. THE REFERENCE

UL L L L L AL B AL % Preamble: \pgfplotsset{width=7cm,compat=1.16}

10~3 \begin{tikzpicture}

\begin{loglogaxis}
\addplot coordinates {
(769, 1.6227e-04)
1(y—4 (1793, 4.4425e-05)
(4097, 1.2071e-05)
(9217, 3.2610e-06)
(2.2e5, 2.1E-6)
0
0

(1e6, .00003341)
(2.3e7, 0.00131415)

107°

I
\end{loglogaxis}
\end{tikzpicture}

103 10* 10° 10° 107

You can represent arbitrarily small or very large numbers as long as its logarithm can be represented
as a TEX length (up to about 16384). Of course, any coordinate < 0 is not possible since the
logarithm of a non-positive number is not defined. Such coordinates will be skipped automatically
(using the initial configuration unbounded coords=discard).

For normal (non-logarithmic) axes, PGFPLOTS applies floating point arithmetics to support large
or small numbers like 0.00000001234 or 1.234 - 10%*. Its number range is much larger than TEX'’s
native support for numbers. The relative precision is between 4 and 7 significant decimal digits for
the mantissa.

As soon as the axes limits are completely known, PGFPLOTS applies a transformation which maps
these floating point numbers into TEX precision using transformations

Ty(z) = 10% - — a, and Ty(y) = 10° - y — a, and (for 3D plots) T, (y) = 10%* - z — a,

with properly chosen integers s, sy,s. € Z and shifts as,a,,a, € R. Section 4.25 contains a
description of disabledatascaling and provides more details about the transformation.

Some of the coordinate input routines use the powerful \pgfmathparse feature of PGF to read their
coordinates, among them \addplot coordinates, \addplot expression and \addplot table.
This allows to use mathematical expressions as coordinates which will be evaluated using the
floating point routines (this applies to logarithmic and linear scales).

PGFPLOTS automatically computes missing axis limits. The automatic computation of axis limits
works as follows:

1. Every coordinate will be checked. Care has been taken to avoid TEX'’s limited numerical
capabilities.

2. Since more than one \addplot command may be used inside of \begin{axis}...\end{axis},
all drawing commands will be postponed until \end{axis}.

\addplot+[{options)] ...;

T T
1+ - 1+ .o. .o. B
[}
° ([]
[]
° []
ot 1 of o |
° []
()
) ([]
° ®
-1 | —1F ... o® |
| | | | | | | | | |

Does the same like \addplot [{options)] ...; except that (options) are appended to the arguments
which would have been taken for \addplot ... (the element of the default list).

Thus, you can combine cycle list and (options).

4.3. THE \ADDPLOT COMMAND: COORDINATE INPUT 45

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}
\addplot {sin(deg(x))};
\end{axis}
\end{tikzpicture}

\begin{tikzpicture}
\begin{axis}
\addplot+ [only marks] {sin(deg(x))};
\end{axis}
\end{tikzpicture}

The distinction is as follows: \addplot ... (without options) lets PGFPLOTS select colors, markers
and linestyles automatically (using cycle list). The variant \addplot+[{option)] ... will use the
same automatically determined styles, but in addition it uses (options). Finally, \addplot [{options)]
(without the +) uses only the manually provided (options).

/pgfplots/empty line=auto|none|scanline|jump (initially auto)
Controls how empty lines in the input coordinate stream are to be interpreted. You should ensure that

you have \pgfplotsset{compat=1.4} or newer in your preamble and leave this key at its default empty
line=auto.

Empty lines can occur between the coordinates of \addplot coordinates or successive rows of the
data file input routines \addplot table (and \addplot file).

The choice auto checks if the current plot type is mesh or surf. If so, it uses scanline. If the current
plot type is some other plot type (like a standard line plot), it uses jump. Note that the value auto
for non-mesh plots results in none if compat=1.3 or older is used. In other words: you have to write
\pgfplotsset{compat=1.4} or newer to let PGFPLOTS interpret empty lines as jump in standard line

plots:
Ignored' Compatzl 3 Jump compat:l 4 % Preamble: \pgfplotsset{width=7cm,compat=1.16}
’ ' ; ; \begin{tikzpicture}
[T T T Py [T T i T i7
’ - : \begin{axis}[tiny,
L5) L5) title={Ignored: compat=1.3},

1r 4 h 1 h compat=1.3,
0.5 |- . 0.5 [.]
ol i ol i \addplot table {
L L L L L L L L
0 05 1 15 2 0 05 1 15 2 AB

00
11

12
22
};
\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
\begin{axis}[tiny,
title={Jump: compat=1.4},
compat=1.4,

\addplot table {

A B
00
11
12
2 2
};
\end{axis}
\end{tikzpicture}

The choice scanline is only useful for mesh and surf: it is used to decode a matrix from a coordinate
stream. If an empty line occurs once every N data points, the “scanline” length is V. This information,
together with mesh/ordering and the total number of points, allows to deduce the matrix size. However,
the distance between empty lines has to be consistent: if the first two empty lines have a distance of 2
and the next comes after 5, PGFPLOTS will ignore the information and will expect explicit matrix sizes

46 CHAPTER 4. THE REFERENCE

using mesh/rows and/or mesh/cols. The choice scanline is ignored if mesh input=patches. It has
no effect for other plot types.

The choice none will silently discard any empty line in the input stream.

The choice jump tells PGFPLOTS to generate a jump.

4.3.1 Coordinate Lists

\addplot coordinates {(coordinate list)};
\addplot [{options)] coordinates {(coordinate list)} (trailing path commands);
\addplot3 ...

The ‘\addplot coordinates’ command is like that provided by TikZ and reads its input data from a
sequence of point coordinates, encapsulated in round braces.

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
2 m \begin{tikzpicture}
\begin{axis}
\addplot coordinates {
0,0)
(0.5,1)
1 (1,2)
};
\end{axis}
\end{tikzpicture}

\ \
02 04 06 08

ol
— |-

You should only use this input format if you have short diagrams and you want to provide mathematical
expressions for each of the involved coordinates. Any data plots are typically easier to handle using a
table format and \addplot table.

The coordinates can be numbers, but they can also contain mathematical expressions like sin(0.5) or
\h*8 (assuming you defined \h somewhere). However, expressions which involve round braces need to
be encapsulated in a further set of curly braces, for example ({sin(0.5)},{cos(0.1)}).

You can also supply error coordinates (reliability bounds) if you are interested in error bars. Simply
append the error coordinates with ‘“+- ((ez,ey))’ (or +-= ({ez,ey,ez))) to the associated coordinate:

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}
4 B \addplot+ [
error bars/.cd,

x dir=both,

x explicit,
2] coordinates {
(0,0) +- (0.1,0)
(0.5,1) +- (0.4,0.2)
(1,2)
(2,56) +- (1,0.1)
0 = ¥
‘ ‘ : : \end{axis}
0 1 2 3 \end{tikzpicture}

or

\addplot coordinates {
(900,1e-6) +- (0.1,0.2)
(2600,5e-7) +- (0.2,0.5)
(4000,7e-8) +- (0.1,0.01)
};

These error coordinates are only used in case of error bars, see Section 4.12. You will also need to
configure whether these values denote absolute or relative errors.

4.3. THE \ADDPLOT COMMAND: COORDINATE INPUT 47

The coordinates as such can be numbers as +5, -1.2345e3, 35.0e2, 0.00000123 or 1e2345e-8. They
are not limited to TEX’s precision.

Furthermore, coordinates allows to define “meta data” for each coordinate. The interpretation of
meta data depends on the visualization technique: for scatter plots, meta data can be used to define
colors or style associations for every point (see page 112 for an example). Meta data (if any) must be
provided after the coordinates and after error bar bounds (if any) in square brackets:

.10_6 % Preamble: \pgfplotsset{width=7cm,compat=1.16}
T \begin{tikzpicture}
1 = \begin{axis}
\addplot+ [
scatter,
scatter src=explicit,
] coordinates {
(900,1e-6) [1]
0.5 s (2600,5e-7) [2]
(4000,7e-8) [3]

};
\end{axis}
\end{tikzpicture}

(V= | | _—
1,000 2,000 3,000 4,000

Please refer to the documentation of point meta on page 230 for more information about per point
meta data.

The coordinate stream can contain empty lines to tell PGFPLOTS that the function has jumps. To use
it, simply insert an empty line (and ensure that you have \pgfplotsset{compat=1.4} or newer in your
preamble). See the documentation of empty line for details.

/pgfplots/plot coordinates/math parser=true|false (initially true)

Allows to turn off support for mathematical expressions in every coordinate inside of \addplot
coordinates. This might be necessary if coordinates are not in numerical form (or if you’d like to
improve speed).

It is necessary to disable plot coordinates/math parser if you use some sort of symbolic transfor-
mations (i.e. text coordinates).

4.3.2 Reading Coordinates From Tables

\addplot table [{column selection)1{(file or inline table)};
\addplot [(options)] table [(column selection)]{{file or inline table)} (trailing path commands);
\addplot3 ...
This input method is the main input format for any data-based function. It accepts either a file
containing data or an inline table provided in curly braces.

Given a data file like

dof L2 Lmax maxlevel
5 8.31160034e-02 1.80007647e-01 2
17 2.54685628e-02 3.75580565e-02 3
49 7.40715288e-03 1.49212716e-02 4
129 2.10192154e-03 4.23330523e-03 5
321 5.87352989e-04 1.30668515e-03 6
769 1.62269942e-04 3.88658098e-04 7
1793 4.44248889e-05 1.12651668e-04 8
4097 1.20714122e-05 3.20339285e-05 9
9217 3.26101452e-06 8.97617707e-06 10

one may want to plot ‘dof’ versus ‘L2’ or ‘dof’ versus ‘Lmax’. This can be done by

48 CHAPTER 4. THE REFERENCE

\begin{tikzpicture}
\begin{loglogaxis}[
xlabel=Dof,
ylabel=L_2 error,
]
\addplot table [x=dof,y=L2] {datafile.dat};
\end{loglogaxis}
\end{tikzpicture}

or, for the Lmax column, using

\begin{tikzpicture}
\begin{loglogaxis}[
xlabel=Dof,
ylabel=L_∞ error,
]
\addplot table [x=dof,y=Lmax] {datafile.dat};
\end{loglogaxis}
\end{tikzpicture}

It is also possible to provide the data inline, i.e. directly as argument in curly braces:

\begin{tikzpicture}
\begin{loglogaxis}[
xlabel=Dof,
ylabel=L_∞ error,

\addplot table [x=dof,y=Lmax] {
dof L2 Lmax maxlevel

5 8.31160034e-02 1.80007647e-01 2
17 2.54685628e-02 3.75580565e-02 3
49 7.40715288e-03 1.49212716e-02 4
129 2.10192154e-03 4.23330523e-03 5
321 5.87352989e-04 1.30668515e-03 6
769 1.62269942e-04 3.88658098e-04 7
1793 4.44248889e-05 1.12651668e-04 8
4097 1.20714122e-05 3.20339285e-05 9
9217 3.26101452e-06 8.97617707e-06 10
};
\end{loglogaxis}
\end{tikzpicture}

Inline table may be convenient together with ‘\\’ and row sep=\\, see below for more information.

Alternatively, you can load the table once into an internal structure and use it multiple times:?

\pgfplotstableread{datafile.dat}\loadedtable % use any custom name in place of ‘\loadedtable’
\addplot table [x=dof,y=L2] {\loadedtable};

\addplot table [x=dof,y=Lmax] {\loadedtable};

I am not really sure how much time can be saved, but it works anyway. The \pgfplotstableread
command is documented in all detail in the manual for PGFPLOTSTABLE. As a rule of thumb, decide
as follows:

1. If tables contain few rows and many columns, the (\macro) framework will be more efficient.
2. If tables contain more than 200 data points (rows), you should always use file input (and reload if
necessary).
Occasionally, it might be handy to load a table, apply manual preparation steps (for example
\pgfplotstabletranspose) and plot the result tables afterwards.

If you do prefer to access columns by column indices instead of column names (or your tables do not
have column names), you can also use

\addplot table [x index=2,y index=3] {datafile.dat};
\addplot table [x=dof,y index=2] {datafile.dat};

31n earlier versions, there was an addition keyword ‘from’ before the argument like \addplot table from {\loadedtable}.
This keyword is still accepted, but no longer required.

4.3. THE \ADDPLOT COMMAND: COORDINATE INPUT 49

Summary and remarks:

Use \addplot table [x={{column name)},y={{column name)}] to access column names. Those
names are case sensitive and need to exist.

Use \addplot table [x index={(column indezx)},y index={{column indezx)}] to access column
indices. Indexing starts with 0. You may also use an index for x and a column name for y.

Use \addplot table [x expr=\coordindex,y={(column name)}] to plot the coordinate index
versus some y data.

Use \addplot table [header=falsel {(file name)} if your input file has no column names. Oth-
erwise, the first non-comment line is checked for column names: if all entries are numbers, they
are treated as numerical data; if one of them is not a number, all are treated as column names.

It is possible to read error coordinates from tables as well. Simply add options ‘x error’, ‘y error’
or ‘x error index’/‘y error index’ to (source columns). See Section 4.12 for details about error
bars.

It is possible to read per point meta data (usable in scatter src, see page 109) as has been
discussed for \addplot coordinates and \addplot file above. The meta data column can be
provided using the meta key (or the meta index key).

Use \addplot table [(source columns)]l {{\macro)} to use a pre-read table. Tables can be read
using

\pgfplotstableread{datafile.dat}\macroname.

If you like, you can insert the optional keyword ‘from’ before \macroname.
The accepted input format of tables is as follows:

— Rows are separated by new line characters.

Alternatively, you can use row sep=\\ which enables ‘\\’ as row separator. This might become
necessary for inline table data, more precisely: if newline characters have been converted to
white spaces by TEX’s character processing before PGFPLOTS had a chance to see them. This
happens if inline tables are provided inside of macros. Use row sep=\\ and separate the rows
by ‘\\’ if you experience such problems.

— Columns are usually separated by white spaces (at least one tab or space).

If you need other column separation characters, you can use the
col sep=space|tab|comma|colon|semicolon|braces|&|ampersand
option documented in all detail in the manual for PGFPLOTSTABLE which is part of PGFPLOTS.

— Any line starting with ‘#’ or ‘%’ is ignored.

— The first line will be checked if it contains numerical data. If there is a column in the first
line which is no number, the complete line is considered to be a header which contains column
names. Otherwise it belongs to the numerical data and you need to access column indices
instead of names.

— The accepted number format is the same as for ‘\addplot coordinates’, see above.

— If you omit column selectors, the default is to plot the first column against the second. That
means \addplot table does exactly the same job as \addplot file for this case.

— If you need unbalanced columns, simply use nan as “empty cell” placeholder. These coordinates
will be skipped in plots.

It is also possible to use mathematical expressions together with ‘\addplot table’. This is
documented in all detail in Section 4.3.4, but the key idea is to use one of x expr, y expr, z expr
or meta expr as in ‘\addplot table[x expr=\thisrow{maxlevell}+3,y=L2]".

The PGFPLOTSTABLE package coming with PGFPLOTS has a the feature “Postprocessing Data in
New Columns” (see its manual).

This allows to compute new columns based on existing data. One of these features is create
col/linear regression (described in Section 4.24).

You can invoke all the create col/(key name) features directly in \addplot table using
\addplot table [x={create col/(key name)={arguments)}].

In this case, a new column will be created using the functionality of (key name). This column
generation is described in all detail in PGFPLOTSTABLE. Finally, the resulting data is available as
x coordinate (the same holds for y= or z=).

50 CHAPTER 4. THE REFERENCE

One application (with several examples how to use this syntax) is line fitting with create
col/linear regression, see Section 4.24 for details.

e The table can contain empty lines to tell PGFPLOTS that the function has jumps. To use it,
simply insert an empty line (and ensure that you have \pgfplotsset{compat=1.4} or newer in
your preamble). See the documentation of empty line for details.

e Technical note: every opened file will be protocolled into your log file.

Keys To Configure Table Input

The following list of keys allow different methods to select input data or different input formats. Note that
the common prefix ‘table/’ can be omitted if these keys are set after \addplot tablel[(options)]. The
/pgfplots/ prefix can always be omitted when used in a PGFPLOTS method.

/pgfplots/table/header=true|false (initially true)
Allows to disable header identification for \addplot table. See above.

/pgfplots/table/x={{column name)}
/pgfplots/table/y={{column name)}
/pgfplots/table/z={{column name)}
/pgfplots/table/x index={({column index)}
/pgfplots/table/y index={(column index)}
/pgfplots/table/z index={{column index)}

These keys define the sources for \addplot table. If both column names and column indices are given,
column names are preferred. Column indexing starts with 0. The initial setting is to use x index=0
and y index=1.

Please note that column aliases will be considered if unknown column names are used. Please refer to
the manual of PGFPLOTSTABLE which comes with this package.

/pgfplots/table/x expr={({expression)}

/pgfplots/table/y expr={({expression)}

/pgfplots/table/z expr={(expression)}
These keys allow to combine the mathematical expression parser with file input. They are listed here
to complete the list of table keys, but they are described in all detail in Section 4.3.4.

The key idea is to provide an (exzpression) which depends on table data (possibly on all columns in one
row). Only data within the same row can be used where columns are referenced with \thisrow{({column
name)} or \thisrowno{(column indezx)}.

Please refer to Section 4.3.4 for details.

/pgfplots/table/x error={{column name)}
/pgfplots/table/y error={({column name)}
/pgfplots/table/z error={({column name)}
/pgfplots/table/x error index={{column index)}
/pgfplots/table/y error index={{column indezx)}
/pgfplots/table/z error index={{column indezx)}
/pgfplots/table/x error expr={(math expression)}
/pgfplots/table/y error expr={(math expression)}
/pgfplots/table/z error expr={(math expression)}

These keys define input sources for error bars with explicit error values.

The x error method provides an input column name (or alias), the x error index method provides
input column indices and x error expr works just as table/x expr: it allows arbitrary mathematical
expressions which may depend on any number of table columns using \thisrow{{col name)}.

Please see Section 4.12 for details about the usage of error bars.

/pgfplots/table/x error plus={(column name)}
/pgfplots/table/y error plus={{column name)}
/pgfplots/table/z error plus={{column name)}
/pgfplots/table/x error plus index={(column index)}

4.3. THE \ADDPLOT COMMAND: COORDINATE INPUT

/pgfplots/table/y
/pgfplots/table/z
/pgfplots/table/x
/pgfplots/table/y
/pgfplots/table/z
/pgfplots/table/x
/pgfplots/table/y
/pgfplots/table/z
/pgfplots/table/x
/pgfplots/table/y
/pgfplots/table/z
/pgfplots/table/x
/pgfplots/table/y
/pgfplots/table/z

error
error
error
error
error
error
error
error
error
error
error
error
error
error

plus
plus
plus
plus
plus
minus
minus
minus
minus
minus
minus
minus
minus
minus

index={(column indezx)}
index={(column index)}
expr={(math expression)}
expr={(math expression)}
expr={(math expression)}
={{column name)?}
={{column name)?}
={(column name)}
index={(column index)}
index={(column index)}
index={(column index)}
expr={(math expression)
expr={(math expression)
expr={(math expression)

}
}
}

51

These keys define input sources for error bars with asymmetric error values, i.e. different values for
upper and lower bounds.

They are to be used in the same way as x error. In fact, x error is just a style which sets both x
error plus and x error minus to the same value.

Please see Section 4.12 for details about the usage of error bars.

/pgfplots/table/meta={(column name)}
/pgfplots/table/meta index={{column index)}
/pgfplots/table/meta expr={{erpression)}

/pgfplots/table/row sep=newline|\\

/pgfplots/table/col sep=space|tab|commalsemicolon|colon|braces|&|ampersand

These keys define input sources for per point meta data. Please see page 109 for details about meta
data or the documentation for \addplot coordinates and \addplot file for further information.

These keys are only useful in conjunction with point meta=explicit or point meta=explicit
symbolic. Note that

\addplot [point meta=explicit] table [meta=colname] ... ;
is equivalent to
\addplot [point meta=\thisrow{colname}] table [] ... ;

If the value of point meta is neither explicit nor explicit symbolic, the choice table/meta (and
its friends) are ignored.

However, if point meta is one of explicit or explicit symbolic, the choice table/meta (or one of
its friends) is mandatory.

(initially newline)
Configures the character to separate rows.

The choice newline uses the end of line as it appears in the table data (i.e. the input file or any inline
table data).

The choice \\ uses ‘\\’ to indicate the end of a row.
Note that newline for inline table data is “fragile”: you can’t provide such data inside of TEX macros
(this does not apply to input files). Whenever you experience problems, proceed as follows:
1. First possibility: call \pgfplotstableread{(data)}\yourmacro outside of any macro declaration.
2. Use row sep=\\.
The same applies if you experience problems with inline data and special col sep choices (like col
sep=tab).
The reasons for such problems is that TEX scans the macro bodies and replaces newlines by white
spaces. It does other substitutions of this sort as well, and these substitutions can’t be undone (maybe
not even found).
(initially space)
Allows to choose column separators for \addplot table. Please refer to the manual of PGFPLOTSTABLE
which comes with this package for details about col sep.

52 CHAPTER 4. THE REFERENCE

/pgfplots/table/read completely={(auto,true,false)} (initially auto)
Allows to customize \addplot table{(file name)} such that it always reads the entire table into mem-
ory.

This key has just one purpose, namely to create postprocessing columns on the fly and to plot those
columns afterwards. This “lazy evaluation” which creates missing columns on the fly is documented in
the PGFPLOTSTABLE manual (in section “Postprocessing Data in New Columns”).

The initial configuration auto checks whether one of the keys table/x, table/y, table/z or table/meta
contains a create on use column. If so, it enables read completely, otherwise it prefers to load the
file in the normal way.

Attention: Usually, \addplot table only picks required entries, requiring linear runtime complexity.
As soon as read completely is activated, tables are loaded completely into memory. Due to data
structures issues (“macro append runtime”), the runtime complexity for read completely is O(N?)
where N is the number of rows. Thus: use this feature only for “small” tables.*

/pgfplots/table/ignore chars={{comma-separated-list)} (initially empty)

Allows to silently remove a set of single characters from input files. The characters are separated by
commas. The documentation for this command, including cases like ‘\%,\#,\ ’ or binary character
codes like ‘\""ff’ can be found in the manual for PGFPLOTSTABLE.

This setting applies to \addplot file as well.

/pgfplots/table/white space chars={(comma-separated-list)} (initially empty)

Allows to define a list of single characters which are actually treated like white spaces (in addition to
tabs and spaces). Please refer to the manual of PGFPLOTSTABLE for details.

This setting applies to \addplot file as well.

/pgfplots/table/comment chars={({comma-separated-list)} (initially empty)

Allows to add one or more additional comment characters. Each of these characters has a similar effect
as the # character, i.e. all following characters of that particular input line are skipped.

For example, comment chars=! wuses ‘!’ as additional comment character (which allows to parse
Touchstone files).

Please refer to the manual of PGFPLOTSTABLE for details.

/pgfplots/table/skip first n={(integer)} (initially 0)
Allows to skip the first (integer) lines of an input file. The lines will not be processed.
Please refer to the manual of PGFPLOTSTABLE for details.

/pgfplots/table/search path={(comma-separated-list)} (initially .)

Allows to provide a search path for input tables. This variable is evaluated whenever PGFPLOTS attempts
to read a data file. This includes both \pgfplotstableread and \addplot table; its value resembles
a comma-separated list of path names. The requested file will be read from the first matching location
in that list.

Use ‘.” to search using the normal TEX file searching procedure. This standard search procedure will
typically use the current working directory and the environment variable TEXINPUTS as for any other
\input or \include statements.

An entry in {comma-separated-list) can be relative to the current working directory, i.e. something like
search path={.,../datafiles} is accepted.

/pgfplots/table/search path/implicit .=true|false (initially true)

PcrpPLOTSTABLE allows to add ‘.’ to the value of search path implicitly as this is typically assumed
in many applications of search paths.

The initial configuration search path/implicit .=true will ensure that ‘.’ is added in front of the
search path if the user value does not contain a .’.

4This remark might be deprecated; many of the slow routines have been optimized in the meantime to have at least
pseudolinear runtime.

4.3. THE \ADDPLOT COMMAND: COORDINATE INPUT

The value search path/implicit

4.3.3 Computing Coordinates with Mathematical Expressions

\addplot {(math expression)} ;
\addplot [{options)] {(math expression)} (trailing path commands);

\addplot3 ...

This input method allows to provide mathematical expressions which will be sampled. But unlike
\addplot gnuplot, the expressions are evaluated using the math parser of PGF, no external program

is required.

Plot expression samples x from the interval [a,b] where a and b are specified with the domain key. The

.=false will not add ‘..

Keep in mind that ‘.” means “let TEX search for the file on its own”. This will typically find files in the
current working directory, but it will also include processing of the environment variable TEXINPUTS.

number of samples can be configured with samples=(N) as for plot gnuplot.

500 -

—500

-6 -4 -2 0 2

Please note that PGF’s math parser
trigonometric functions are involved:

If you want to use radians, use

| | |
0 100 200 300

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}
\addplot {x"2 + 4};
\addplot {-5*x"3 - x"2};
\end{axis}
\end{tikzpicture}

is configured to use trig format=degrees by default whenever

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}

\addplot+ [

domain=0:360,

] {sin(x)};
\end{axis}
\end{tikzpicture}

54

CHAPTER 4. THE REFERENCE

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
1 N \begin{tikzpicture}
\begin{axis}

\addplot+ [

domain=-pi:pi,

1 {sin(deg(x))};
0l | \end{axis}
\end{tikzpicture}

=2 0 2

to convert the radians to degrees (also see trig format and trig format plots).

The plot expression parser also accepts some more options like samples at={(coordinate list)} or
domain=(first): (last) which are described below.

Remarks

1. What really goes on is a loop which assigns the current sample coordinate to the macro \x.
PGFPLOTS defines a math constant x which always has the same value as \x.

In short: it is the same whether you write \x or just x inside of math expressions.
The variable name can be customized using variable=t. Then, t will be the same as \t.

2. The complete set of math expressions can be found in the PGF manual. The most important
mathematical operations are +, -, *, /, abs, round, floor, mod, <, >, max, min, sin, cos, tan, deg
(conversion from radians to degrees), rad (conversion from degrees to radians), atan, asin, acos,
cot, sec, cosec, exp, 1n, sqrt, the constants pi and e, = (power operation), factoria1,5 rand
(random between —1 and 1), rnd (random between 0 and 1), number format conversions hex, Hex,
oct, bin and some more. The math parser has been written by Mark Wibrow and Till Tantau [7],
the FPU routines have been developed as part of PGFPLOTS. The documentation for both parts
can be found in [7].

Please note, however, that trigonometric functions are defined in degrees (see trig format). The
character ‘~’ is used for exponentiation (not ‘**’ as in gnuplot).
3. If the z-axis is logarithmic, samples will be drawn logarithmically.

4. Plot expression also allows to define per point meta data (color data) using point meta=(math
expression).

About the precision and number range: Starting with version 1.2, \addplot expression uses
a floating point unit. The FPU provides the full data range of scientific computing with a relative
precision between 10~* and 1076, The /pgf/fpu key provides some more details.

Note that PGFPLOTS makes use of lualatex’s features: if you use lualatex instead of pdflatex,
PGFPLOTS will use lua’s math engine which is both faster and more accurate (compat=1.12 or higher).

5Starting with PGF versions newer than 2.00, you can use the postfix operator ! instead of factorial.

4.3. THE \ADDPLOT COMMAND: COORDINATE INPUT 55

1 % Preamble: \pgfplotsset{width=7cm,compat=1.16}
2 \begin{tikzpicture}

106 ‘ ‘ ‘ \begin{loglogaxis}[

title={$\frac{1}{x"2}$},

]
\addplot [
05 blue,
107 m domain=1:1e30,
1 {x"-2};
\end{loglogaxis}
\end{tikzpicture}

10766 | | |
1073 106 10%° 10% 1033

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}

10334 — T T T \begin{semilogyaxis}[

title={$e"x$ logarithmically plotted},

e” logarithmically plotted

]
\addplot [
blue,
domain=1:700,
1 {exp(x)};
\end{semilogyaxis}
\end{tikzpicture}

10213 [|

1092 [|

| | |
0 200 400 600

\addplot expression {(math expr)};
\addplot [{options)] expression {(math expr)} (trailing path commands);
\addplot3 ...

The syntax
\addplot {({math expression)};
as short-hand equivalent for

\addplot expression {(math expression)};

\addplot ({z expression),(y expression)) ;

\addplot [{options)] ({x expression),(y expression)) (trailing path commands);

\addplot3 ...
A variant of \addplot expression which allows to provide different coordinate expressions for the z
and y coordinates. This can be used to generate parameterized plots.

Please note that \addplot (x,x"2) is equivalent to \addplot expression {x"2}.
Note further that since the complete point expression is surrounded by round braces, round braces for

either (x expression) or (y expression) need special attention. You will need to introduce curly braces
additionally to allow round braces:

\addplot ({(z expr)}, {(y expr)}, {(z expr)});

/pgfplots/domain=(x1):(x2) (initially [-5:5])
/pgfplots/y domain=(y1):(y2)
/pgfplots/domain y=(y1):(ya)
Sets the function’s domain(s) for \addplot expression and \addplot gnuplot. Two dimensional
plot expressions are defined as functions f: [21,22] — R and (x;) and (z3) are set with domain. Three

56

CHAPTER 4. THE REFERENCE

dimensional plot expressions use functions f: [z1,z2] X [y1,y2] — R and (y;) and (y2) are set with y
domain. If y domain is empty, [y1,y2] = [z1,22] is assumed for three dimensional plots (see page 127
for details about three dimensional plot expressions).

The keys y domain and domain y are the same.

The domain key will be ignored if samples at is specified; samples at has higher precedence.

Please note that domain is not necessarily the same as the axis limits (which are configured with the
xmin/xmax options).

The domain keys are only relevant for gnuplot and \addplot expression. In case you'd like to plot

only a subset of other coordinate input routines, consider using the coordinate filter restrict x to
domain.

Remark for TikZ users: /pgfplots/domain and /tikz/domain are independent options. Please
prefer the PGFPLOTS variant (i.e. provide domain to an axis, \pgfplotsset or a plot command). Since
older versions also accepted something like \begin{tikzpicture}[domain=...], this syntax is also
accepted as long as no PGFPLOTS domain key is set.

/pgfplots/samples={({number)} (initially 25)
/pgfplots/samples y={(number)}

Sets the number of sample points for \addplot expression and plot gnuplot. The samples key
defines the number of samples used for line plots while the samples y key is used for mesh plots (three
dimensional visualisation, see page 127 for details). If samples y is not set explicitly, it uses the value
of samples.

The samples key won’t be used if samples at is specified; samples at has higher precedence.

The same special treatment of /tikz/samples and /pgfplots/samples as for the domain key applies
here. See above for details.

/pgfplots/samples at={(coordinate list)}

Sets the = coordinates for \addplot expression explicitly. This overrides domain and samples.

The (coordinate list) is a \foreach expression, that means it can contain a simple list of coordinates
(comma-separated), but also complex ... expressions like®

\pgfplotsset{samples at={5e-5,7e-5,10e-5,12e-5}}
\pgfplotsset{samples at={-5,-4.5,...,5}}
\pgfplotsset{samples at={-5,-3,-1,-0.5,0,...,5}}

The same special treatment of /tikz/samples at and /pgfplots/samples at as for the domain key
applies here. See above for details.

Attention: samples at overrides domain, even if domain has been set after samples at! Use
samples at={} to clear (coordinate list) and re-activate domain.

/pgfplots/variable={(variable name)} (initially x)
/pgfplots/variable y={(variable name)} (initially y)

Defines the variables names which will be sampled in domain (with variable) and in domain y (with
variable y).

The same variables are used for parametric and for non-parametric plots. Use variable=t to change
them if you like (for gnuplot, there is such a distinction; see parametric/var 1d).

Technical remark: TikZ also uses the variable key. However, it expects a macro name, i.e. \x instead
of just x. Both possibilities are accepted here.

/pgfplots/trig format plots=default|deg|rad (initially default)

Allows to reconfigure the input format for trigonometric functions like sin, cos, tan, and their friends.

This key reconfigures trigonometric functions inside of plot expressions, point meta arguments, and
other items which are directly related to the evaluation of plot coordinates.

SUnfortunately, the ... is somewhat restrictive when it comes to extended accuracy. So, if you have particularly small or

large numbers (or a small distance), you have to provide a comma-separated list (or use the domain key).

4.3. THE \ADDPLOT COMMAND: COORDINATE INPUT 57

Note that this does not apply to TikZ drawing instructions like \node, \draw, \fill, etc.

% Preamble: \pgfplotsset{width=7cm,compat=1.16}

\begin{tikzpicture}

\begin{axis}[view={60}{30},trig format plots=rad,
title=plots in radians,

plots in radians

]
\addplot3+ [domain=0:4*pi,samples=19,samples y=0]
({sin(x)},
{cos(x)},
{2*x/ (4*pi)}) ;
% drawing instructions still use PGF’s default
\node [fill=white,draw=black,anchor=center] at
({sin(90)},{cos(90)},1) {X};
\end{axis}
\end{tikzpicture}

Limitations: this feature is currently unavailable for polaraxis and smithchart.

/pgf/trig format=deg|red (initially deg)
Allows to reconfigure the trigonometric format for all user arguments.

This affects all user arguments including view, TikZ polar coordinates, pins of \nodes, start/end angles
for edges, etc.

At the time of this writing, this feature is in experimental state: it can happen that it breaks TikZ
internals. Please handle with care and report any bugs.

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[view={rad(60)}{rad(30)},
trig format=rad,
title=all in radiams,

all in radians

\addplot3+ [domain=0:4*pi,samples=19,samples y=0]
({sin(x)},
{cos(x)},
{2*x/ (4*pi)}) ;

% drawing instructions now also use radians
\node [fill=white,draw=black,anchor=center] at
({sin(pi/2)},{cos(pi/2)},1) {X};
\end{axis}
\end{tikzpicture}

4.3.4 Mathematical Expressions And File Data

PGFPLOTS allows to combine ‘\addplot table’ and ‘plot expression’ to get both file input and modifi-
cations by means of mathematical expressions.

\addplot table [{column selection and expressions)]{{file)};
\addplot [{options)] table [(column selection and expressions)1{(file)} (trailing path commands);
\addplot3 ...

Besides the already discussed possibility to provide a column selection by means of column names

(x=(name) or x index=(indez), see Section 4.3.2), it is also possible to provide mathematical expressions
as arguments.

Mathematical expressions are specified with x expr=(expression) inside of (column selection and
expressions). They can depend on zero, one or more columns of the input file. A column is referenced

using the special command ‘\thisrow{(column name)}’ within (expression) (or \thisrowno(column
index)).

58

CHAPTER 4. THE REFERENCE

maxlevel L2

2 2.97-1072
2 2.97-1072
4 5.27-1073
5 3.8-1073
6 8.41-10~*
6 5.01-10~*
7 1.11-10~*
8 5.41-107°
9 1.25-107°
10 6.01-10-9
11 1.11-10°6
11 5.9-107"
12 1.03- 1077

10=7 8

12 14 16 18 20 22
maxlevel+10

% Preamble: \pgfplotsset{width=7cm,compat=1.16}

\pgfplotstabletypeset [columns={maxlevel,L2}]{plotdata/newexperimentl.dat}

\begin{tikzpicture}
\begin{semilogyaxis}[
xlabel=\texttt{maxlevel}$ + 10%,
]
\addplot table [
x expr=\thisrow{maxlevel}+10,
y=L2,
1 {plotdata/newexperimentl.dat};
\end{semilogyaxis}
\end{tikzpicture}

Besides x expr, there are keys y expr, z expr and meta expr where the latter allows to provide point
meta data (which is used as scatter src or color data for surface plots etc.).

Inside of (expression), the following macros can be used to access numerical data cells inside of the
input file:

\thisrow{{column name)}

Yields the value of the column designated by {column name). There is no limit on the number of
columns which can be part of a mathematical expression, but only values inside of the currently
processed table row can be used.

It is possible to provide column aliases for (column name) as described in the manual of PGFPLOT-
STABLE.

The argument (column name) has to denote either an existing column or one for which a column
alias exists (see the manual of PGFPLOTSTABLE). If it can’t be resolved, the math parser yields an
“Unknown function” error message.

Limitations: this macro is currently unavailable if you use something of like \addplot table
{\loadedtable} and the expression occurs outside of the normal plot coordinates. You have hit
the limitation if and only if you encounter an error of sorts

4.3. THE \ADDPLOT COMMAND: COORDINATE INPUT 59

I Package PGF Math Error: Unknown function ‘thisrow_unavailable_load-table_directly’.

The only alternative is to load the table directly from a file name, i.e. using \addplot table
{filename.txt}. Also see \pgfplotstablesave.

\thisrowno{(column index)}

Similar to \thisrow, this command yields the value of the column with index (column index)
(starting with 0).

Limitations: see limitations for \thisrow.

\coordindex

Yields the current index of the table row (starting with 0). This does not count header or comment
lines.

\lineno

Yields the current line number (starting with 0). This does also count header and comment lines.

If x index, x and x expr (or the corresponding keys for y, z or meta) are combined, this is how they
interact:

1. Column access via x has higher precedence than index access via x index.

2. Even if x expr is provided, the values of x index and x are still checked. Any value found using
column name access or column index access is made available as \columnx (or \columny, \columnz,
\columnmeta, resp.). However, the result of x expr is used as plot coordinate.

This allows to access the cell values identified by x or x index using the “pointer” \columnx. I
am not sure if this yields any advantage, but it is possible nevertheless. If in doubt, prefer using
\thisrow{(column name)}.

Attention: If your table has less than two rows, you may need to set x index={},y index={} ex-
plicitly. This is a consequence of the fact that column name/index access is still applied even if an
expression is provided.

4.3.5 Computing Coordinates with Mathematical Expressions (gnuplot)

\addplot gnuplot [(further options)]l{(gnuplot code)};
\addplot [{options)] gnuplot [{further options)]l{{gnuplot code)} (trailing path commands);
\addplot3 ...

In contrast to \addplot expression, the plot gnuplot command’ employs the external program
gnuplot to compute coordinates. The resulting coordinates are written to a text file which will be
plotted with \addplot file. PGF checks whether coordinates need to be regenerated and calls gnuplot
whenever necessary (this is usually the case if you change the number of samples, the argument to
\addplot gnuplot or the plotted domain).®

The differences between \addplot expression and plot gnuplot are:

e \addplot expression does not require any external programs and requires no additional command
line options.

e \addplot expression does not produce a lot of temporary files.

e \addplot gnuplot uses radians for trigonometric functions while \addplot expression has de-
grees (unless PGF is configured for trig format=rad).

e \addplot gnuplot is faster than pdflatex. Using lualatex and compat=1.12 (or higher) can
reach a similar speed.

e \addplot gnuplot has a larger mathematical library.

"Note that plot gnuplot is actually a re-implementation of the plotfunction method known from PGF. It also invokes PGF
basic layer commands.

8Please note that PGFPLOTS produces slightly different files than TikZ when used with plot gnuplot (it configures high
precision output). You should use different id for PGFPLOTS and TikZ to avoid conflicts in such a case.

60 CHAPTER 4. THE REFERENCE

e \addplot gnuplot has a higher accuracy. Note that lualatex and compat=1.12 (or higher) come
with the same precision.

Since system calls are a potential danger, they need to be enabled explicitly using command line options,
for example

pdflatex -shell-escape filename.tex.

Sometimes it is called shell-escape or enable-writel8. Sometimes one needs two hyphens — that all
depends on your TEX distribution.

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
1 N \begin{tikzpicture}
\begin{axis}

\addplot gnuplot [

id=sin,

1 {sin(x)};
0 \end{axis}
\end{tikzpicture}

= E % Preamble: \pgfplotsset{width=7cm,compat=1.16}
all 1 \begin{tikzpicture}
10 E E \begin{semilogyaxis}
E 3 \addplot gnuplot [
103 s - 1d=e}.cp,
B E domain=0:10,
. . 1 {exp(x)};
10 3 E \end{semilogyaxis}
F 4 \end{tikzpicture}
10' £ E
10° ¢ E
= ! | | | -

ol
[\
~
D
oo
—_
=

The (options) determine the appearance of the plotted function; these parameters also affect the legend.
There is also a set of options which are specific to the gnuplot interface. These options are described in
all detail in [7, Section 18.6]. A short summary is shown below.

Some remarks:
e The independent variable for one-dimensional plots can be changed with the variable option,

just as for \addplot expression. Similarly, the second variable for two dimensional plots can be
changed with variable y.

For parametric plots, the variable names need to be adjusted with parametric/var 1d and
parametric/var 2d (since gnuplot uses t and u,v as initial values for parametric plots).

e Please note that \addplot gnuplot does not allow separate per point meta data (color data for
each coordinate). You can, however, use point meta=f(x) or point meta=x.

e The generated output file name can be customized with id, see below.

Please refer to [7, Section 18.6] for more details about \addplot function and the gnuplot interaction.

\addplot function {({gnuplot code)};
\addplot [{options)] function {(gnuplot code)} (trailing path commands);
\addplot3 ...

Use

4.3. THE \ADDPLOT COMMAND: COORDINATE INPUT 61

\addplot function {(gnuplot code)};
as alias for

\addplot gnuplot {(gnuplot code)};

/pgfplots/translate gnuplot=true|false (initially true)
Enables or disables automatic translation of the exponentiation operator ‘=’ to ‘**’.

This features allows to use ~ in \addplot gnuplot instead of gnuplot’s *x*.

/pgfplots/parametric=true|false (initially false)

Set this to true if you'd like to use parametric plots with gnuplot. Parametric plots use a comma
separated list of expressions to make up x(t), y(t) for a line plot or x(u,v), y(u,v) z(u,v) for a mesh
plot (refer to the gnuplot manual for more information about its input methods for parametric plots).

/pgfplots/parametric/var 1d={(variable name)} (initially t)
/pgfplots/parametric/var 2d={({variable name,variable name)} (initially u,v)

Allows to change the dummy variables used by parametric gnuplot plots. The initial setting is the
one of gnuplot: to use the dummy variable ‘t’ for parametric line plots and ‘u,v’ for parametric mesh
plots.

These keys are quite the same as variable and variable y, only for parametric plots. If you like to
change variables for non-parametric plots, use variable and/or variable y.

In case you don’t want the distinction between parametric and non-parametric plots, use

\pgfplotsset{parametric/var 1d=,parametric/var 2d=}.

/tikz/id={{unique string identifier)}

A unique identifier for the current plot. It is used to generate temporary filenames for gnuplot output.

/tikz/prefix={(file name prefix)}

A common path prefix for temporary filenames (see [7, Section 18.6] for details).

/tikz/raw gnuplot (no value)

Disables the use of samples and domain.

4.3.6 Computing Coordinates with External Programs (shell)

\addplot shell [(further options)]{(shell commands)};
\addplot [{options)] shell [{further options)1{(shell commands)} (trailing path commands);
\addplot3 ...

An extension by Stefan Tibus

In contrast to \addplot gnuplot, the plot shell command allows execution of arbitrary shell com-
mands to compute coordinates. The resulting coordinates are written to a text file which will be plotted
with \addplot file. PGF checks whether coordinates need to be regenerated and executes the (shell
commands) whenever necessary.

Since system calls are a potential danger, they need to be enabled explicitly using command line options,
for example

pdflatex -shell-escape filename.tex.

Sometimes it is called shell-escape or enable-writel8. Sometimes one needs two slashes — that all
depends on your TEX distribution.

62

CHAPTER 4. THE REFERENCE

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
1y 1 \begin{tikzpicture}
\begin{axis}

\addplot shell [
prefix=pgfshell_,
id=cos

0 1{

awk ’BEGIN{
pi=3.14159; N=10;
for(i=0;i<=N;i++) print i,cos(i/N*pi);

})

s
=1 |- N \end{axis}
: ‘ . ‘ ‘ \end{tikzpicture}

ol
[N}
S
(@)}
oo
=
=

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
1+ n \begin{tikzpicture}
\begin{axis}
% just reprint the result from above
\addplot+ [
prefix=pgfshell_,

0l N id=replot,
] shell {cat pgfshell_cos.out};
\end{axis}
\end{tikzpicture}
1l |
| | | | | |
0 2 4 6 8 10

The (options) determine the appearance of the plotted function; these parameters also affect the legend.
There is also a set of options which are specific to the gnuplot and the shell interface. These options
are described in all detail in [7, Section 19.6]. A short summary is shown below.

/tikz/id={({unique string identifier)}

A unique identifier for the current plot. It is used to generate temporary filenames for shell output.

/tikz/prefix={(file name prefiz)}

A common path prefix for temporary filenames (see [7, section 19.6] for details).

4.3.7 Using External Graphics as Plot Sources

\addplot graphics {(file name)};
\addplot [{options)] graphics {(file name)} (trailing path commands);
\addplot3 ...

This plot type allows to extend the plotting capabilities of PGFPLOTS beyond its own limitations. The
idea is to generate the graphics as such (for example, a contour plot, a complicated shaded surface? or a
large point cluster) with an external program like Matlab® or gnuplot. The graphics, however, should
not contain an axis or descriptions. Then, we use \includegraphics and a PGFPLOTS axis which fits
exactly on top of the imported graphics.

Of course, one could do this manually by providing proper scales and such. The operation \addplot
graphics is intended so simplify this process. However the main difficulty is to get images with correct
bounding box. Typically, you will have to adjust bounding boxes manually.

Let’s start with an example: Suppose we use, for example, Matlab to generate a surface plot like

[X,Y] = meshgrid(linspace(-3,3,500));
surf(X,Y, exp(-(X - Y)."2 - X."2));
shading flat; view(0,90); axis off;
print -dpng externall

9See also Section 4.6.6 for an overview of PGFPLOTS methods to draw shaded surfaces.

4.3. THE \ADDPLOT COMMAND: COORDINATE INPUT 63

which is then found in externall.png. The surf command of Matlab generates the surface, the
following commands disable the axis descriptions, initialise the desired view and export it. Viewing
the image in any image tool, we see a lot of white space around the surface — Matlab has a particular
weakness in producing tight bounding boxes, as far as I know. Well, no problem: use your favorite
image editor and crop the image (most image editors can do this automatically). We could use the free
ImageMagick command

convert -trim externall.png externall.png

to get a tight bounding box. Then, we use

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[
enlargelimits=false,
axis on top,

\addplot graphics [
xmin=-3,xmax=3,
ymin=-3,ymax=3,

] {externalil};

\end{axis}
\end{tikzpicture}

to load the graphics'® just as if we would have drawn it with PGFPLOTS. The axis on top simply tells
PGFPLOTS to draw the axis on top of any plots (see its description).

Please note that PGFPLOTS offers support for smaller surface plots as well which might be an option —
unless the number of samples is too large. See Section 4.6.6 for details.

However, external programs have the following advantages here: they are faster, allow more complexity
and provide real z buffering which is currently only simulated by PGFPLOTS. Thus, it may help to
consider \addplot graphics for complicated surface plots.

Our first test was successful — and not difficult at all because graphics programs can automatically
compute the bounding box. There are a couple of free tools available which can compute tight bounding
boxes for .eps or .pdf graphics:

1. The free vector graphics program inkscape can help here. Its feature “File > Document Proper-
ties: Fit page to selection” computes a tight bounding box around every picture element.
However, some images may contain a rectangular path which is as large as the bounding box
(Matlab® computes such .eps images). In this case, use the “Ungroup” method (context menu
of inkscape) as often as necessary and remove such a path.

Finally, save as .eps.

However, inkscape appears to have problems with postscript fonts — it substitutes them. This
doesn’t pose problems in this application because fonts shouldn’t be part of such images — the
descriptions will be drawn by PGFPLOTS.

2. The tool pdfcrop removes surrounding whitespace in .pdf images and produces quite good bound-
ing boxes.

Adjusting bounding boxes manually

In case you don’t have tools at hand to provide correct bounding boxes, you can still use TEX to set
the bounding box manually. Some viewers like gv provide access to low-level image coordinates. The
idea is to determine the number of units which need to be removed and communicate these units to
\includegraphics.

I am aware of the following methods to determine bounding boxes manually:

inkscape I am pretty sure that inkscape can do it.

10Please note that I had no Matlab license at hand, so I used gnuplot to produce an equivalent replacement graphics. The
principles hold for gnuplot, Matlab, and Octave, however.

64

CHAPTER 4. THE REFERENCE

gv The ghost script viewer gv always shows the postscript units under the mouse cursor.

gimp The graphics program gimp usually shows the cursor position in pixels, but it can be configured
to display postscript points (pt) instead.

Let’s follow this approach in a further example.

We use gnuplot to draw a (relatively stupid) example data set. The gnuplot script

set samples 30000

set parametric

unset border

unset xtics

unset ytics

set output "external2.eps"

set terminal postscript eps color

plot [t=0:1] rand(0),rand(0) with dots notitle lw 5

generates external2.eps with a uniform random sample of size 30000. As before, we import this scatter
plot into PGFPLOTS using \addplot graphics. Again, the bounding box is too large, so we need to
adjust it (gnuplot can do this automatically, but we do it anyway to explain the mechanisms):

Using gv, I determined that the bounding box needs to be shifted 12 units to the left and 9 down.
Furthermore, the right end is 12 units too far off and the top area has about 8 units space wasted. This
can be provided to the trim option of \includegraphics, and we use clip to clip the rest away:

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}

T T T T T T \begin{axis} [

— axis on top,
title=Graphics Import,

Graphics Import

\addplot graphics [
xmin=0,xmax=1,
ymin=0,ymax=1,
% trim=left bottom right top
includegraphics={trim=12 9 12 8,clip},
] {external2};
\addplot coordinates {(0,0) (1,1)};
\end{axis}
| \end{tikzpicture}

0.5

So, \addplot graphics takes a graphics file along with options which can be passed to
\includegraphics. Furthermore, it provides the information how to embed the graphics into an
axis. The axis can contain any other \addplot command as well and will be resized properly.

Details about plot graphics:

The loaded graphics file is drawn with

\node [/pgfplots/plot graphics/node] {\includegraphics [{options)]1{(file name)}};

where the node style is a configurable style. The node is placed at the coordinate designated by xmin,
ymin.

The (options) are any arguments provided to the includegraphics key (see below) and width and
height determined such that the graphics fits exactly into the rectangle denoted by the xmin, ymin and
xmax, ymax coordinates.

The scaling will thus ignore the aspect ratio of the external image and prefer the one used by PGFPLOTS.
You will need to provide width and height to the PGFPLOTS axis to change its scaling. Use the scale
only axis key in such a case.

Legends in plot graphics:

A legend for \addplot graphics uses the current plot handler and the current plot mark:

4.3. THE \ADDPLOT COMMAND: COORDINATE INPUT

Graphics Import

0.5

wusned © Scatter
| —m— Line

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[axis on top,title=Graphics Import]
% provide options for the legend:
\addplot [
red,
only marks,mark=*,mark size=1pt,
] graphics [
xmin=0,xmax=1,ymin=0,ymax=1,
% trim=left bottom right top
includegraphics={trim=12 9 12 8,clip},
] {external2};

\addplot coordinates {(0,0) (1,1)};
\legend{Scatter,Line}

\end{axis}
\end{tikzpicture}

4.3.8 Keys To Configure Plot Graphics

The following list of keys configure \addplot graphics. Note that the common prefix ‘\addplot graph-
ics/’ can be omitted if these keys are set after \addplot graphics[{options)]. The /pgfplots/ prefix can

always be omitted when used in a PGFPLOTS method.

/pgfplots/plot
/pgfplots/plot
/pgfplots/plot
/pgfplots/plot
/pegfplots/plot
/pgfplots/plot

graphics/xmin={(coordinate)}
graphics/ymin={(coordinate)
graphics/zmin={(coordinate)
graphics/xmax={(coordinate)
graphics/ymax={(coordinate)
graphics/zmax={{coordinate)}

}
}
}
}

65

These keys are required for \addplot graphics and provide information about the external data range.
The graphics will be squeezed between these coordinates. The arguments are axis coordinates; they are
only useful if you provide each of them.

Alternatively, you can also use the plot graphics/points feature to provide the external data range,

see below.

/pgfplots/plot graphics/points={(list of coordinates)}

(initially empty)

This key also allows to provide the external data range. It constitutes an alternative to plot graph-
ics/xmin (and its variants): simply provide at least two coordinates in (list of coordinates). Their
bounding box is used to determine the external data range, and the graphics is squeezed between these

coordinates.

The example from above can be written equivalently as

Graphics Import

0.5

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[
axis on top,
title=Graphics Import,

\addplot graphics [
% instead of the min/max things:
points={(0,1) (1,0)},
% trim=left bottom right top
includegraphics={trim=12 9 12 8,clip},
] {external2};
\addplot coordinates {(0,0) (1,1)};
\end{axis}
\end{tikzpicture}

The (list of coordinates) is a sequence of the form (x,y) for two-dimensional plots and (x,y,z) for

three-dimensional ones, the ordering is irrelevant. The single elements are separated by white space.

66

CHAPTER 4. THE REFERENCE

It is possible to mix plot graphics/xmin and variants with plot graphics/points.

The plot graphics/points key has further functionality for inclusion of three-dimensional graphics
which is discussed at the end of this section (on page 66). Here is a short reference on the accepted syntax
for three-dimensional plot graphics: in addition to the (x,y,z) syntax, you can provide arguments of
the form (x,y,z) => (X,Y). Here, the first (three-dimensional) coordinate is a logical coordinate and
the second (two-dimensional) coordinate denotes the coordinates of the very same point, but inside of
the included image (relative to the lower left corner of the image). Applications and examples for this
syntax can be found in the section for three-dimensional plot graphics (see page 66).

/pgfplots/plot graphics/includegraphics={(options)}

A list of options which will be passed as is to \includegraphics. Interesting options include the
trim=(left) (bottom) (right) (top) key which reduces the bounding box and clip which discards every-
thing outside of the bounding box. The scaling options won’t have any effect, they will be overwritten
by PGFPLOTS.

/pgfplots/plot graphics/includegraphics cmd={(\macro)} (initially \includegraphics)

Allows to use a different graphics routine. A possible choice could be \pgfimage. The macro should
accept the width and height arguments (in brackets) and the file name as first argument.

/pgfplots/plot graphics/node (style, no value)

A predefined style used for the TikZ node containing the graphics. The predefined value is

\pgfplotsset{
plot graphics/node/.style={

transform shape,
inner sep=0Opt,
outer sep=0pt,
every node/.style={},
anchor=south west,
at={(0pt,0pt)},
rectangle

/pgfplots/plot graphics (no value)

This key belongs to the public low-level plotting interface. You won’t need it in most cases.

This key is similar to sharp plot or smooth or const plot: it installs a low-level plot handler which
expects exactly two points: the lower left corner and the upper right one. The graphics will be drawn
between them. The graphics file name is expected as value of the /pgfplots/plot graphics/src key.
The other keys described above need to be set correctly (excluding the limits, these are ignored at this
level of abstraction). This key can be used independently of an axis.

/pgfplots/plot graphics/lowlevel draw={(width)}{(height)}

A low-level interface for \addplot graphics which actually invokes \includegraphics. But there is
no magic involved: the command is simply expected to draw a box of dimensions (width) x (height).
The coordinate system has already been shifted correctly.

The initial configuration is
\includegraphics [{value of “plot graphics/includegraphics”),width=#1,height=#2]
{(value of “plot graphics/src”)}.

Thus, you can tweak \addplot graphics to place any TEX box of the desired dimensions into an axis
between the provided minimum and maximum coordinates. It is not necessary to make use of the
graphics file name or the options in the ‘includegraphics’ key if you overwrite this low-level interface
with

plot graphics/lowlevel draw/.code 2 args={(code which depends on #1 and #2)}.

Support for External Three-Dimensional Graphics

PGFPLOTS offers several visualization techniques for three dimensional graphics. Nevertheless, complex
visualizations or specialized applications are beyond the scope of PGFPLOTS and you might want to use
other tools to generate such figures.

4.3. THE \ADDPLOT COMMAND: COORDINATE INPUT 67

<

File Xtns Help

i

) ;f; mﬂmﬂllll]l
i

Figure 4.1: Using Matlab to extract image coordinates (left) and Gimp to measure distances (right).

The \addplot graphics tool of PGFPLOTS allows to include three-dimensional external graphics: it
generates a three-dimensional axis on its own. The idea is to provide a graphics (without descriptions)
and use PGFPLOTS to overlay a three-dimensional axis automatically. This allows to maintain document
consistency (making it unnecessary to use different programs within the same document).

You are probably wondering how this is possible. Well, it needs more user input than two-dimensional
external graphics. The cost to include external three dimensional images into PGFPLOTS is essentially control
of a graphics program like gimp: you need to identify the 3D coordinates of a couple of points in your image.
PGFPLOTS will then squeeze the graphics correctly, and it reconfigures the axis to ensure a correct display
of the result.

Matlab versus other tools: Although this section is based on Matlab images, the technique to import
three-dimensional graphics is independent of Matlab. Thus, if you have a different tool, you need to read all
that follows. However, users of Matlab can use a simplified export mechanism which has been contributed
by Jirnjakob Dugge. Please skip to section 4.3.8 on page 71 if you use Matlab to generate the graphics files
(although you may want to take a brief look at the examples on the following pages to learn about flexibility
or legends).

Let’s start with two examples. Suppose you generate a surface plot with Matlab and want to include it
in PGFPLOTS. We have the Matlab script

[x,yl=meshgrid(linspace(0,1,120));

surf (x,y,sin(8*pi*x) .* exp(-20%(y-0.5).72) + exp(-(x-0.5).72%30 - (y-0.25).72 - (x-0.5).*(y-0.25)))
xlabel(’x’), ylabel(’y’)

axis off

print -dpng plotgraphics3dsurf

which generates the figure in question.

After automatically computing a tight bounding box for plotgraphics3dsurf.png (I used gimp’s
Image>>Autocrop feature), and making the background color transparent (gimp: select the outer white
space with the magic wand, then use'! Layer>Transparency>>Color to Transparency) we get:

/(I W/I;/II /’I"n,
.

It
I /f{}%’fl,%
S

The key idea is now to identify several points in the image, and assign both their logical three-dimensional
coordinates and the corresponding two-dimensional canvas coordinates in image coordinates. How? Well,
the three-dimensional coordinates are known to Matlab, it can display them for you if you click somewhere
into the image, compare Figure 4.1 (left).

The two-dimensional canvas coordinates need work; they need to be provided relative to the lower left
corner of the image. I used gimp and activated “Points” as units (lower left corner). The lower left corner
now displays the image coordinates in pt which is compatible with PGFPLOTS. An alternative to pointing
onto coordinates is a measurement tool; compare Figure 4.1 (right) for the “Measure” tool in gimp which
allows to compute the length of a line (in our case, the length of the lower left corner to the point of interest).

1T have a German version, I am not sure if the translation is correct.

68 CHAPTER 4. THE REFERENCE

I selected four points in the graphics and noted their 2d image coordinates and their 3d logical coordinates
as follows:

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[
grid=both,minor tick num=1,
xlabel=x,ylabel=y,

\addplot3 graphics [
points={/, important
(0,1,0) => (0,207-112)
(1,0,0) => (446,207-133)
(0.5546,0.5042,1.825) => (236,207)
(0,0,0) => (194,207-202)

yu

i /”'ﬂ i
WMZ il
iy Il
L
. %WM%’;II%%

i
i

o
] {plotdata/plotgraphics3dsurf.png};
\end{axis}
\end{tikzpicture}

Here, the points key gets our collected coordinates as argument. It accepts a sequence of maps of
the form (3d logical coordinate) => (2d canvas coordinate). In our case, (0,1,0) has been found in the
.png file at (0,207-112). Note that I introduced the difference since gimp counts from the upper left, but
PGFPLOTS counts from the lower left.

Once these four point coordinates are gathered, we find Matlab’s surface plot in a PGFPLOTS axis. You
can modify any appearance options, including different axis limits or further \addplot commands:

— % Preamble: \pgfplotsset{width=7cm,compat=1.16}
Q Graphics \begin{tikzpicture}
\begin{axis}[
|
_ Scatter xmax=1.5,% extra limits
grid=both,minor tick num=1,
xlabel=x,ylabel=y,

]
\addplot3 [surf] % ’surf’: only used for legend
graphics [
points={
(0,1,0) => (0,207-112)
(1,0,0) => (446,207-133)
(0.5546,0.5042,1.825) => (236,207)
(0,0,0) => (194,207-202)
o
] {plotdata/plotgraphics3dsurf.png};
\addlegendentry{Graphics}
\addplot3+ [only marks] coordinates {
(0,1,0) (1,0,0)
(0.5546,0.5042,1.825) (0,0,0)
};
\addlegendentry{Scatter}
\end{axis}
\end{tikzpicture}

PGFPLOTS uses the four input points to compute appropriate x, y and z unit vectors (and the origin in
graphics coordinates). These four vectors (with two components each) can be computed as a result of a
linear system of size 8 x 8, that is why you need to provide four input points (each has two coordinates).
PGFPLOTS computes the unit vectors of the imported graphics, and afterwards it rescales the result such that
it fits into the specified width and height. This rescaling respects the unit vector ratio (more precisely, it
uses scale mode=scale uniformly instead of scale mode=stretch to f£ill). Consequently, the freedom
to change the view of a three-dimensional axis which contains a projected graphics is considerably smaller
than before. Surprisingly, you can still change axis limits and width and height — PGFPLOTS will take care
of a correct display of your imported graphics. Since version 1.6, you can also change zmin and/or zmax —
PGFPLOTS will respect your changes as good as it can.
Here is a further example. Suppose we are given the three-dimensional visualization

4.3. THE \ADDPLOT COMMAND: COORDINATE INPUT 69

It has been generated by Matlab (I only added transparency to the background with gimp). Besides
advanced visualization techniques, it uses axis equal, i.e. unit vector ratio=1 1 1. As before, we need
to identify four points, each with its 3d logical coordinates (from Matlab) and the associated 2d canvas
coordinates relative to the lower left corner of the graphics (note that there is a lot of white space around
the graphics). Here is the output of PGFPLOTS when you import the resulting graphics:

Geometry provided by Sven Grof, Bonn % Preamble: \pgfplotsset{width=7cm,compat=1.16}
http://www.igpm.rwth-aachen.de/DROPS \begin{tikzpicture}
\begin{axis}[
grid=both,minor tick num=1,
xlabel=x,ylabel=y,
title={\centering
Geometry provided by Sven Gro\ss, Bonn\\
\url{http://www.igpm.rwth-aachen.de/DROPS}\\},
title style={text width=6cm,font=\tiny},

\addplot3 graphics [
points={

(-0.002625,0.002625,0) => (140,234)
(0,0.00263,0.00263) => (230,364)
(0,-0.00263,-0.00263) => (366,81)
(0,-0.00263,0.00263) => (366,276)

(0.002625,0.002625,0.002625)
1,
1 {plotdata/risingdrop3d.png};
\end{axis}
\end{tikzpicture}

Note that I provided five three-dimensional coordinates here, but the last entry has no => mapping to two-
dimensional canvas coordinates. Thus, it is only used to update the bounding box (see the reference manual
for the points key for details).

The example above leads to a relatively small image and much “empty space”. This is due to the scale
mode=scale uniformly implementation of PGFPLOTS: it decided that the best way is to enlarge the involved
axis limits. Here, “best way” means to satisfy width/height constraints combined with minimally enlarged
(never shrinked) axis limits. The remaining degrees of freedom are width, height, and the axis limits. In
our case, changing the ratio between width and height improves the display:

http://www.igpm.rwth-aachen.de/DROPS

70 CHAPTER 4. THE REFERENCE

Geometry provided by Sven Grof, Bonn % Preamble: \pgfplotsset{width=7cm,compat=1.16}
http://www.igpm.rwth-aachen.de/DROPS \begin{tikzpicture}
\begin{axis}[

height=8cm,width=7cm,’% improve scaling manually
grid=both,minor tick num=1,
xlabel=x,ylabel=y,

title={\centering
Geometry provided by Sven Gro\ss, Bonn\\
\url{http://www.igpm.rwth-aachen.de/DROPS}\\},
title style={text width=6cm,font=\tiny},
]
\addplot3 graphics [
points={
(-0.002625,0.002625,0) => (140,234)
(0,0.00263,0.00263) => (230,364)
(0,-0.00263,-0.00263) => (366,81)
(0,-0.00263,0.00263) => (366,276)
(0.002625,0.002625,0.002625)
1,
1 {plotdata/risingdrop3d.png};
\end{axis}

10-3 \end{tikzpicture}

X

What happens is that PGFPLOTS selects a single scaling factor which is applied to all units as they have
been deduced from the points key. This ensures that the imported graphics fits correctly into the axis. In
addition, PGFPLOTS does its best to satisfy the remaining constraints.

The complete description of how PGFPLOTS scales the axis can be found in the documentation for scale
mode=scale uniformly. Here is just a brief summary: PGFPLOTS assumes that the prescribed width and
height have to be satisfied. To this end, it rescales the projected unit vectors (i.e. the space which is
taken up for each unit in z, y, and z) and it can modify the axis limits. In the default configuration scale
uniformly strategy=auto, PGFPLOTS will never shrink axis limits.

Compatibility remark: Note that the scaling capabilities have been improved for PGFPLOTS version 1.6.
In previous versions, only scale uniformly strategy=change vertical limits was available which lead
to clipped axes. In short: please consider writing \pgfplotsset{compat=1.62} or newer into your document
to benefit from the improved scaling. If you have \pgfplotsset{compat=1.5} or older, the outcome for
\addplot3 graphics will be different.

We consider a third example which has been generated by the Matlab code

clear all

close all

seed = sum(clock)

rand(’seed’ ,seed) ;

X = rand(10,10,10);

data = smooth3(X, ’box’,5);

pl = patch(isosurface(data,.5),
’FaceColor’, ’blue’, ’EdgeColor’, ’none’) ;

p2 = patch(isocaps(data,.5),
’FaceColor’,’interp’, ’EdgeColor’, ’none’);

isonormals(data,pl)

daspect([1 2 2])

view(3); axis vis3d tight

camlight; lighting phong

% print -dpng plotgraphics3withaxis

axis off

print -dpng plotgraphics3

save plotgraphics3.seed seed -ASCII % to reproduce the result

I only added background transparency with gimp and got the following graphics:

http://www.igpm.rwth-aachen.de/DROPS

4.3. THE \ADDPLOT COMMAND: COORDINATE INPUT 71

-

P -

We proceed as before and collect four points, each with 3d logical coordinates (by clicking into the Matlab
figure) and their associated 2d canvas (graphics) coordinates using the measure tool of gimp. The result is
shown in the code example below.

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[
grid=both,minor tick num=1,
xlabel=x,ylabel=3y,

3d box,
]
\addplot3 graphics [
points={
(1,1,1) => (205,48)
(10,1,10) => (503,324)
(1,1,4.044)=> (206,102)
(10,10,10) => (390,398)
o
] {plotdata/plotgraphics3.png};
\end{axis}
\end{tikzpicture}

Note that it has non-standard data aspect ratio which is respected by PGFPLOTS automatically.

External Three-Dimensional Graphics and Matlab

An extension by Jirnjakob Dugge

The procedure to map three-dimensional logical coordinates to two-dimensional canvas coordinates is tedious.
Jirnjakob Dugge contributed a script which does most of the logic and your work is reduced to a copy—
paste job. With his permission, I post the contribution here.
The idea is to start a simple script which records mappings for any coordinates which have been clicked
by the user. It works as follows:

1. Create the Matlab plot, say, using

hist3(randn(10000,2)) % some random data

set(get(gca, ’child’), ’FaceColor’,’interp’, ’CDataMode’,’auto’); % colors

% make sure the "print" paper format is the same as the screen paper format:
set (gcf, ’PaperPositionMode’, >auto’)

2. Save the following code as pgfplotscsconversion.m:

72

CHAPTER 4. THE REFERENCE

function pgfplotscsconversion

% Hook into the Data Cursor "click" event

h = datacursormode(gcf) ;

set (h,’UpdateFcn’ ,,O@myupdatefcn, ’SnapToDataVertex’,’off’);
datacursormode on

% select four points in plot using mouse

% The function that gets called on each Data Cursor click
function [txt] = myupdatefcn(obj,event_obj)

% Get the screen resolution, in dots per inch
dpi = get(0,’ScreenPixelsPerInch’);

% Get the click position in pixels, relative to the lower left of the
% screen
screen_location=get (0, ’PointerLocation’);

% Get the position of the plot window, relative to the lower left of
% the screen
figurePos = get(gcf,’Position’);

% Get the data coordinates of the cursor
pos = get(event_obj,’Position’);

% Format the data and figure coordinates. The factor "72.27/dpi" is
% necessary to convert from pixels to TeX points (72.27 poins per inch)
display([’ (’ ,num2str(pos(1)),’,’ ,num2str(pos(2)),’,’ ,num2str(pos(3)),’) => (,
num2str ((screen_location(1)-figurePos(1))*72.27/dpi),’,’, .
num2str ((screen_location(2)-figurePos(2))*72.27/dpi),’)’])

% Format the tooltip display
txt = {[’X: ’,num2str(pos(1))],[’Y: ’,num2str(pos(2))],[’Z: ’,num2str(pos(3))]1};

Run pgfplotscsconversion, click on four points in your plot. Preferably select non-colinear points
near the edges of the plot. Copy and paste the four lines that were written to the Matlab command
window.

Make sure that the first two points have different X and Y values on screen (i.e. image canvas coordi-
nates).

. Export the plot as an image

axis off
print -dpng matlabout -r400 % PNG called "matlabout.png" with 400 dpi resolution

If you want to export vectors graphics, you should note that pdf output of Matlab is clumsy. It might
be best to export to eps first, followed by a conversion from eps to pdf.

If you really want to use pdf output of Matlab, you may need to set the paper size to match the figure
size by yourself, since the PDF driver does not automatically adjust the size:

% It might be better to use print -depsc followed by epstopdf.
% Use this if you (really) want to use print -dpdf:

currentScreenUnits=get (gcf, ’Units’) % Get current screen units
currentPaperUnits=get (gcf, ’PaperUnits’) % Get current paper units
set(gef,’Units’, currentPaperUnits) % Set screen units to paper units
plotPosition=get (gcf, ’Position’) % Get the figure position and size

set (gcf, ’PaperSize’ ,plotPosition(3:4)) % Set the paper size to the figure size
set(gcf,’Units’,currentScreenUnits) % Restore the screen units

print -dpdf matlabout % PDF called "matlabout.pdf"

. Include the image in your PGFPLOTS axis. If you selected points on the plot corners, your xmin,

xmax, ymin and ymax should be set automatically, otherwise you may want to provide those yourself.
Also, adjustments of width and height might be of interest to get the right vertical placement of the
plot. Consider changing zmin and/or zmax to fit your needs (preferably only one of them; otherwise
PGFPLOTS may be unable to fix the height).

This contribution is from

http://tex.stackexchange.com/questions/52987/3-dimensional-histogram-in-pgfplots .

http://tex.stackexchange.com/questions/52987/3-dimensional-histogram-in-pgfplots

4.3. THE \ADDPLOT COMMAND: COORDINATE INPUT 73

Summary: External Three-Dimensional Graphics

As has been shown in the previous sections, \addplot3 graphics allows to include three-dimensional graphics
and PGFPLOTS overlays a flexible axis with all its power. The cost to do so is

1. collect both logical three-dimensional coordinates and image-internal two-dimensional coordinates for
four points of your graphics.

In Matlab, this can be simplified by the tool mentioned on page 71.

2. If your axes form a right-handed coordinate system, that is all. If not, also add x dir=reverse for
any reversed axes.

Consider the following list of you encounter problems while working with \addplot3 graphics:

e It must be possible to deduce the origin and the three (two-dimensional) unit vectors from the four
provide points; otherwise the algorithm will fail.

The algorithm should detect any deficiencies. However, if you encounter strange “Dimension too large”
messages here, you can try other arguments in points. Take a look into your logfile, it will probably
indicate the source of problems (or use the debug key).

e Ensure that the external graphics has an orthogonal axis. In fact, the axis may be skewed (just like a
PGFPLOTS axis can be created by means of custom x, y, and z vectors). However, the external image
must not have perspective projection as this is unsupported by PGFPLOTS. The points command
needs to receive four points which belong to linearly independent position vectors.

e PGFPLOTS uses the first two points to squeeze the graphics into the desired coordinates (which implies
that they should not have the same canvas X or Y coordinates). It verifies that the remaining points
arguments are projected correctly.

e The resulting scaling by means of scale mode=scale uniformly will try to satisfy all scaling con-
straints. You can change these constraints by modifying width, height, xmin, xmax, ymin, ymax, zmin,
zmax and/or any combination of these parameters. See also unit rescale keep size which controls
the flexibility of limit changes. There is also a key scale uniformly strategy which allows to select
a different scaling strategy.

e The image should have a “right-handed coordinate system”: you should be able to take your right
hand, point your thumb in direction of the x-axis, your first finger in direction of y, and your second
finger in direction of the z-axis. If that is impossible, once of your axes is reversed and you need to
communicate that to PGFPLOTS explicitly by means of the x dir=reverse key (and its variants).

e Note that this feature has been verified with standard Cartesian axes only.
e There is a debug key to investigate what the algorithm is doing:

/pgfplots/plot graphics/debug=true|false|visual (initially false)
If you provide \addplot3 graphics[debug,points={...}], PGFPLOTS will provide debug in-
formation onto your terminal and into the logfile. It will also generate extra files containing
the determined unit vectors and the linear system used to derive them (one such file for every
\addplot3 graphics statement, the filename will be the graphics file name and .dat appended).
Without the debug key, only the logfile will contain brief information what PGFPLOTS is doing
behind the scenes.

The choice true activates log messages. The choice visual activates log messages and places
some filled circles at the provided points. The choice false disables all debug features.

4.3.9 Reading Coordinates From Files

\addplot file {(name)};
\addplot [{options)] £ile {{name)} (lrailing path commands);
\addplot3 ...

74 CHAPTER 4. THE REFERENCE

Deprecation note: If you have data files, you should generally use \addplot table. The input
type \addplot file is almost the same, but considerably less powerful. It is only kept for backwards
compatibility.

The \addplot file input mechanism is similar to the TikZ command ‘\addplot file’. It is to be
used like

\addplot file {datafile.dat};

where (name) is a text file with at least two columns which will be used as and y coordinates. Lines
starting with ‘%’ or ‘#” are ignored. Such files are often generated by GNUPLOT:

#Curve 0, 20 points
#x y type

0.00000 0.00000
0.52632 0.50235
1.05263 0.86873
1.57895 0.99997

e He e e

9.47368 -0.04889 i
10.00000 -0.54402 i

This listing has been copied from [7, section 16.4].

Plot file accepts one optional argument,
\addplot file [skip first] {datafile.dat};

which allows to skip over a non-comment header line. This allows to read the same input files as
\addplot table by skipping over column names. Please note that comment lines do not count as lines
here.

The input method \addplot file can also read meta data for every coordinate. As already explained
for \addplot coordinates (see above), meta data can be used to change colors or other style parameters
for every marker separately. Now, if point meta is set to explicit or to explicit symbolic and the
input method is \addplot file, one further element will be read from disk — for every line. Meta data
is always the last element which is read. See page 109 for information and examples about per point
meta data and page 112 for an application example using scatter/classes.

Plot file is very similar to \addplot table: you can achieve the same effect with
\addplot table [x index=0,y index=1,header=false] {datafile.dat};

Due to its simplicity, \addplot file is slightly faster while \addplot table allows higher flexibility.
Technical note: every opened file will be protocolled into your logfile.

The file can contain empty lines to tell PGFPLOTS that the function has jumps. To use it, simply insert
an empty line (and ensure that you have \pgfplotsset{compat=1.4} or newer in your preamble). See
the documentation of empty line for details.

/pgfplots/plot file/skip first=true|false (initially false)
/pgfplots/plot file/ignore first=true|false (initially false)

The two keys can be provided as arguments to \addplot filel[{options)] {(filename)}; to skip the
first non-comment entry in the file. They are equivalent. If you provide them in this context, the prefix
/pgfplots/plot file can be omitted.

4.4 About Options: Preliminaries

PGFPLOTS knows a whole lot of key—value options which can be (re)defined to activate desired features or
modified to apply some fine-tuning.

A key usually has a value (like a number, a string, or perhaps some macro code). You can assign values
to keys (“set keys”) in many places in a IWTEX document. The value will remain effective until it is changed
or until the current TEX scope ends (which happens after a closing curly brace ‘}’; after \end{(name)} or,
for example, after \addplot).

Most keys can be used like

4.4. ABOUT OPTIONS: PRELIMINARIES 75

\begin{tikzpicture}
\begin{axis} [key=value,key2=value2] J axis-wide keys

\end{axis}

\end{tikzpicture}

which changes them for the complete axis. A key in this context can be any option defined in this manual,
no matter if it has the /pgfplots/ or the /tikz/ key prefix. Note that key prefixes can be omitted in almost
all cases.

A value can usually be provided without curly braces. For example, if the manual contains something
like ‘xmin={(x coordinate)}’, you can safely skip the curly braces. The curly braces are mandatory if values
contain something which would otherwise confuse the key setup (for example an equal sign ‘=" or a comma
4 s 7).

Some keys can be changed individually for each plot:

\begin{tikzpicture}
\begin{axis}
% keys valid for single plots:
\addplot ... ; % uses the "cycle list" to determine keys
\addplot [key=value,key2=value2] ... ; % uses the provided keys (not the "cycle list")
\addplot+ [key=value,key2=value2] ... ; % appends something to the "cycle list"
\end{axis}
\end{tikzpicture}

Besides these two possibilities, it is also possible to work with document-wide keys:

\chapter{My Section}
\pgfplotsset{
key=value,
key2=value2,
}
This section has a common key configuration:
\begin{tikzpicture}
\begin{axis}), uses the key config from above

\end{axis}
\end{tikzpicture}

In the example above, the \pgfplotsset command changes keys. The changes are permanent and will be
used until

e you redefine them or
e the current environment (like \end{figure}) is ended or
e TEX encounters a closing brace ‘}’.
This includes document-wide preamble configurations like
\documentclass{article}

\usepackage{pgfplots}

\pgfplotsset{
xticklabel={$\mathsf{\pgfmathprintnumber{\tick}}$},
every axis/.append style={

font=\sffamily,
1,

The basic engine to manage key—value pairs is pgfkeys which is part of PGF. This engine always has
a key name and a key “path”, which is somehow similar to file name and directory of files. The common
“directory” (key path) of PGFPLOTS is ‘/pgfplots/’. Although the key definitions below provide this full
path, it is always (well, almost always) safe to skip this prefix — PGFPLOTS uses it automatically. The same
holds for the prefixes ‘/tikz/’ which are common for all TikZ drawing options and ‘/pgf/’ which are for
the (more or less) low-level commands of PGF. All these prefixes can be omitted.

One important concept is the concept of styles. A style is a key which contains one or more other keys.
It can be redefined or modified until it is actually used by the internal routines. Each single component of
TikZ and PGFPLOTS can be configured with styles.

For example,

76 CHAPTER 4. THE REFERENCE

\pgfplotsset{legend style={line width=1pt}}

sets the line width for every legend to 1pt by appending ‘line width=1pt’ to the existing style for legends.
There are keys like legend style, ticklabel style, and label style which allow to modify the
predefined styles (in this case the styles for legends, ticklabels and axis labels, respectively). They are, in
general, equivalent to a (style name)/.append style={} command (the only difference is that the /.append
style thing is a little bit longer). There is also the possibility to define a new style (or to overwrite an
already existing one) using /.style={}.
There are several other styles predefined to modify the appearance, see Section 4.18.

\pgfplotsset{(key-value-list)}
Defines or sets all options in (key-value-list). The (key-value-list) can contain any of the options in this
manual which have the prefix /pgfplots/ (however, you do not need to type that prefix).

Inside of (key-value-list), the prefixes ‘/pgfplots/’ which are commonly presented in this manual can
be omitted (they are checked automatically).

This command can be used to define default options for the complete document or a part of the
document. For example,

\pgfplotsset{
cycle list={
{red, mark=%}, {blue,mark=*},
{red, mark=x}, {blue,mark=x},
{red, mark=squarex}, {blue,mark=square*},
{red, mark=triangle*}, {blue,mark=trianglex},
{red, mark=diamondx*}, {blue,mark=diamondx*},

{red, mark=pentagon*}, {blue,mark=pentagon*}
s
legend style={

at={(0.5,-0.2)},

anchor=north,

legend columns=2,

cells={anchor=west},

font=\footnotesize,

rounded corners=2pt,
o
xlabel=x,

ylabel=$£f(x)$,
}

can be used to set document-wise styles for line specifications, the legends’ style and axis labels. The
settings remain in effect until the end of the current environment (like \end{figurel}) or until you
redefine them or until the next closing curly brace ‘}’ (whatever comes first).

You can also define new styles (collections of key—value pairs) with /.style and /.append style.

\pgfplotsset{
My Style 1/.style={xlabel=x, legend entries={1,2,3} },
My Style 2/.style={xlabel=X, legend entries={4,5,6} }
}

The /.style and /.append style key handlers are described in Section 4.18 in more detail.

Key handler (key)/.code={(TgX code)}

Occasionally, the PGFPLOTS user interface offers to replace parts of its routines. This is accomplished
using so called “code keys”. What it means is to replace the original key and its behavior with new
(TEX code). Inside of (TEX code), any command can be used. Furthermore, the #1 pattern will be the
argument provided to the key.

I’ve been invoked with ‘this here’ \pgfplotsset{
My Code/.code={I’ve been invoked with ‘#1’}}
\pgfplotsset{My Code={this herel}}

The example defines a (new) key named My Code. Essentially, it is nothing else but a \newcommand,
plugged into the key—value interface. The second statement “invokes” the code key.

4.5. TWO DIMENSIONAL PLOT TYPES 7

Key handler (key)/.code 2 args={(TgX code)}

As /.code, but this handler defines a key which accepts two arguments. When the so defined key is
used, the two arguments are available as #1 and #2.

Key handler (key)/.cd

Each key has a fully qualified name with a (long) prefix, like /pgfplots/xmin. However, if the “current
directory” is /pgfplots, it suffices to write just xmin. The /.cd key handler changes the “current
directory” in this way.

The prefixes /tikz/ and /pgfplots/ are checked automatically for any argument provided to \be-
gin{axis} [(options)] or \addplot. So, you won’t need to worry about them, just omit them — and
look closer in case the package doesn’t identify the option.

4.4.1 PGFPIlots and TikZ Options

This section is more or less technical and can be skipped unless one really wants to know more about this
topic.

TikZ options and PGFPLOTS options can be mixed inside of the axis arguments and in any of the associated
styles. For example,

\pgfplotsset{every axis legend/.append style={
legend columns=3,font=\Large},
}

assigns the ‘legend columns’ option (a PGFPLOTS option) and uses ‘font’ for drawing the legend (a TikZ
option). The point is: legend columns needs to be known before the legend is typeset whereas font needs
to be active when the legend is typeset. PGFPLOTS sorts out any key dependencies automatically:

The axis environments will process any known PGFPLOTS options, and all ‘every’ styles will be parsed
for PGFPLOTS options. Every unknown option is assumed to be a TikZ option and will be forwarded to the
associated TikZ drawing commands. For example, the ‘font=\Large’ above will be used as argument to the
legend matrix, and the ‘font=\Large’ argument in

\pgfplotsset{every axis label/.append style={
ylabe1=Error,x1abe1=Dof,font=\Large},
}
will be used in the nodes for axis labels (but not the axis title, for example).
It is an error if you assign incompatible options to axis labels, for example ‘xmin’ and ‘xmax’ can’t be set
inside of ‘every axis label’.

4.5 Two Dimensional Plot Types

PGFPLOTS supports several two-dimensional line plots like piecewise linear line plots, piecewise constant
plots, smoothed plots, bar plots and comb plots. Most of them use the PGF plot handler library directly, see
[7, Section 18.8].

Plot types are part of the plot style, so they are set with options. Most of the basic 2d plot types are
part of TikZ, see [7, Section 18.8], and are probably known to users of TikZ. They are documented here as
well.

4.5.1 Linear Plots

/tikz/sharp plot (no value)

\addplot+[sharp plot]

Linear (‘sharp’) plots are the default. Point coordinates are simply connected by straight lines.

78 CHAPTER 4. THE REFERENCE

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
3 N \begin{tikzpicture}
\begin{axis}
\addplot+ [
sharp plot,
] coordinates {
0,00 (1,2) (2,3)
};
11 | \end{axis}
\end{tikzpicture}

ol
o
(@)
=
=
ot
o

The ‘+’ here means to use the normal plot cycle list and append ‘sharp plot’ to its option list.

4.5.2 Smooth Plots

/tikz/smooth (no value)

\addplot+[smooth]

Smooth plots interpolate smoothly between successive points.

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
3 7 \begin{tikzpicture}
\begin{axis}
\addplot+ [
smooth,
] coordinates {
(0,0) (1,2) (2,3)
};
1+ | \end{axis}
\end{tikzpicture}

ol
)=

0.5 1 1.5

As described in [7] in all detail, this plot handler results in a “smooth” outline. However, it “not very
intelligent” (compare [7]) and is unrelated to common plot-based interpolation schemes.

/tikz/tension={(tension)} (initially 0.55)

A parameter which controls how the remaining degrees of freedom are fixed: it controls the smoothing
effect. Higher values results in more “rounded” corners whereas low values result in sharp corners.

Please refer to [7] for details.

4.5.3 Constant Plots

Constant plots draw lines parallel to the z-axis to connect coordinates. The discontinuous edges may be
drawn or not, and marks may be placed on left or right ends.

/tikz/const plot (no value)

\addplot+[const plot]

Connects all points with horizontal and vertical lines. Marks are placed left-handed on horizontal line
segments, causing the plot to be right-sided continuous at all data points.

4.5. TWO DIMENSIONAL PLOT TYPES 79

% Preamble: \pgfplotsset{width=7cm,compat=1.16}

\begin{tikzpicture}

0.6 |- n \begin{axis}

\addplot+ [
const plot,

] coordinates {

0.4 2 (0,0.1) (0.1,0.15) (0.2,0.5) (0.3,0.62)
(0.4,0.56) (0.5,0.58) (0.6,0.65) (0.7,0.6)
(0.8,0.58) (0.9,0.55) (1,0.52)

5

0.2 - N \end{axis}

\end{tikzpicture}

0 02 04 06 08 1

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[ymin=0,ymax=1,enlargelimits=false]
\addplot [
const plot,
fill=blue,
draw=black,
] coordinates {
(0,0.1) (0.1,0.15) (0.2,0.5) (0.3,0.62)
(0.4,0.56) (0.5,0.58) (0.6,0.65) (0.7,0.6)
(0.8,0.58) (0.9,0.55) (1,0.52)

}
\closedcycle

\endiaxis}

\end{tikzpicture}
/tikz/const plot mark left (no value)
\addplot+[const plot mark left]

An alias for ‘const plot’.

/tikz/const plot mark right (no value)

\addplot+[const plot mark right]
A variant which places marks on the right of each line segment, causing plots to be left-sided continuous
at the given coordinates.

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
0.6 |- N \begin{axis}
\addplot+ [
const plot mark right,
] coordinates {
0.4 N (0,0.1) (0.1,0.15) (0.2,0.5) (0.3,0.62)
(0.4,0.56) (0.5,0.58) (0.6,0.65) (0.7,0.6)
(0.8,0.58) (0.9,0.55) (1,0.52)

e
0.2 N \end{axis}
\end{tikzpicture}
| | | | | |
0 02 04 06 08 1
/tikz/const plot mark mid (no value)

\addplot+[const plot mark mid]
A variant which places marks in the middle of each line segment, causing plots to be symmetric around
its data points.

80

0.6

0.4

0.2

0 02

|
04 06 08

CHAPTER 4. THE REFERENCE

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}
\addplot+ [
const plot mark mid,
] coordinates {
(0,0.1) (0.1,0.15) (0.2,0.5) (0.3,0.62)
(0.4,0.56) (0.5,0.58) (0.6,0.65) (0.7,0.6)
(0.8,0.58) (0.9,0.55) (1,0.52)
¥
\end{axis}
\end{tikzpicture}

Note that “symmetric” is only true for constant mesh width: if the z-distances between adjacent data
points differ, const plot mark mid will produce vertical lines in the middle between each pair of

consecutive points.

/tikz/jump mark left (no value)
\addplot+[jump mark left]
A variant of ‘const plot mark left’ which does not draw vertical lines.
100 | T | % Preamble: \pgfplotsset{width=7cm,compat=1.16}
~— \begin{tikzpicture}
\begin{axis} [samples=8]
*— \addplot+ [
jump mark left,
50 - .“‘1444i“‘.444.444. N domain=-5:0,
|] {4*x"2 - 5};
—na
\addplot+ [
0 - o—9 | jump mark right,
domain=-5:0,
] {0.7xx"3 + 50};
u \end{axis}
—50 ‘ ‘ ‘ \end{tikzpicture}
—4 —2 0
/tikz/jump mark right (no value)
\addplot+[jump mark right]
A variant of ‘const plot mark right’ which does not draw vertical lines.
/tikz/jump mark mid (no value)
\addplot+[jump mark mid]
A variant of ‘const plot mark mid’ which does not draw vertical lines.
T T T % Preamble: \pgfplotsset{width=7cm,compat=1.16}
- \begin{tikzpicture}
0.6 - - o~ O o | \begin{axis}
- +* \addplot+ [
- jump mark mid,
] coordinates {
0.4 N (0,0.1) (0.1,0.15) (0.3,0.62)
(0.4,0.56) (0.5,0.58) (0.7,0.6)
(0.8,0.58) (0.9,0.55)
s
0.2 |- N \end{axis}
—o- \end{tikzpicture}
.7
| | | |

4.5. TWO DIMENSIONAL PLOT TYPES 81

4.5.4 Bar Plots

Bar plots place horizontal or vertical bars at coordinates. Multiple bar plots in one axis can be stacked on
top of each other or aligned next to each other.

/tikz/xbar (no value)

\addplot+[xbar]
Places horizontal bars between the (y = 0) line and each coordinate.

This option is used on a per-plot basis and configures only the visualization of coordinates. The figure-
wide style /pgfplots/xbar also sets reasonable options for ticks, legends and multiple plots.

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}

4 # B \addplot+ [

xbar,

+] coordinates {

(4,0) (1,1 (2,2)
(5,3) (6,4) (1,5)

L]

};
\end{axis}
\end{tikzpicture}

il

Bars are centered at plot coordinates with width bar width. Using bar plots usually means more than
just a different way of how to connect coordinates, for example to draw ticks outside of the axis, change
the legend’s appearance or introduce shifts if multiple \addplot commands appear.

There is a pre-configured style for xbar which is installed automatically if you provide xbar as argument
to the axis environment which provides this functionality.

\begin{tikzpicture}

l \begin{axis} [xbar,enlargelimits=0.15]

l
_ \addplot [draw=blue,
20 l l [pattern=horizontal lines light blue,
] coordinates {
(R (10,5) (15,10) (5,15) (24,20) (30,25)
[] b
- \addplot [draw=black,
10 | * pattern=horizontal lines dark blue,
[::::::::::::]] coordinates {
=] (3,5) (5,10) (15,15) (20,20) (35,25)

s
. ‘ \end{axis}

0 10 20 30 \end{tikzpicture}

Here xbar yields /pgfplots/xbar because it is an argument to the axis, not to a single plot.

For bar plots, it is quite common to provide textual coordinates or even descriptive nodes near the bars.
This can be implemented using the keys symbolic y coords and nodes near coords, respectively:

yes 7 |

no | | 3 =

#participants

82

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[
xbar, xmin=0,
width=12cm, height=3.5cm, enlarge y 1limits=0.5,
xlabel={\#participants},
symbolic y coords={no,yes},

ytick=data,
nodes near coords, nodes near coords align={horizontall,
]
\addplot coordinates {(3,no) (7,yes)};
\end{axis}
\end{tikzpicture}

CHAPTER 4. THE REFERENCE

The symbolic y coords defines a dictionary of accepted coordinates which are then expected in y
coordinates and the nodes near coords key displays values as extra nodes (see their reference docu-
mentations for details). The example employs enlarge y limits in order to get some more free space

since the default spacing is not always appropriate for bar plots.

Note that it might be quite important to include xmin=0 explicitly as in the example above. Without

it, the lower bound will be used:

Uses lowest 2 coords for xmin

yes |

no | 1

1 2 3 4 5 6 7
#participants
% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[
title=Uses lowest x coords for xmin,
xbar,

width=12cm, height=3.5cm, enlarge y limits=0.5,
xlabel={\#participants},
symbolic y coords={no,yes},

ytick=data,
nodes near coords, nodes near coords align={horizontall,
]
\addplot coordinates {(1,no) (9,yes)};
\end{axis}
\end{tikzpicture}

Besides line, fill, and color styles, bars can be configured with bar width and bar shift, see below.

/pgfplots/xbar={(shift for multiple plots)}

(style, default 2pt)

This style sets /tikz/xbar and some commonly used options concerning horizontal bars for the complete
axis. This is automatically done if you provide xbar as argument to an axis argument, see above.

The xbar style defines shifts if multiple plots are placed into one axis. It draws bars adjacent to each
other, separated by (shift for multiple plots). Furthermore, it sets the style bar cycle list and sets

tick and legend appearance options.
The style is defined as follows.

\pgfplotsset{
/pgfplots/xbar/.style={
/tikz/xbar,
bar cycle list,
tick align=outside,
xbar legend,
/pgfplots/bar shift auto={#1},

4.5. TWO DIMENSIONAL PLOT TYPES 83

/pgfplots/bar shift auto={(shift for multiple plots)} (default 2pt)
The formula for bar shift assigns shifts dependent on the total number of plots and the current
plot’s number. It is designed to fill a total width of n-bar width+(n — 1)-(shift for multiple plots).
The 0.5 compensates for centering.

The style is defined as

\pgfplotsset{
/pgfplots/bar shift auto/.style={
/pgf/bar shift={%
% total width = n¥w + (n-1)*skip
% —> subtract half for centering
-0.5*(\numplotsofactualtype*\pgfplotbarwidth + (\numplotsofactualtype-1)*(#1)) +
% the ’0.5%w’> is for centering
(.5+\plotnumofactualtype)*\pgfplotbarwidth + \plotnumofactualtypex(#1)},

/tikz/ybar (no value)

\addplot+[ybar]
Like xbar, this option generates bar plots. It draws vertical bars between the (x = 0) line and each
input coordinate.

T % Preamble: \pgfplotsset{width=7cm,compat=1.16}
4 r® | \begin{tikzpicture}
\begin{axis}
\addplot+ [
ybar,
] coordinates {
0,3) (1,2) (2,4) (38,1) (4,2)
5
2 . \end{axis}
\end{tikzpicture}

1 m a

0 1 2 3 4

The example above simply changes how input coordinates shall be visualized. As mentioned for xbar,
one usually needs modified legends and shifts for multiple bars in the same axis.

There is a predefined style which installs these customizations when provided to the axis environment:

CHAPTER 4. THE REFERENCE

.1()7 % Preamble: \pgfplotsset{width=7cm,compat=1.16}

‘ \begin{tikzpicture}
\begin{axis}[

X tick label style={
6| /pgf/number format/1000 sep=},
ylabel=Population,

o enlargelimits=0.15,
Houses| | legend style={at={(0.5,-0.15)},

anchor=north,legend columns=-1},
ybar,
bar width=7pt,

Population
N
[
|

\addplot coordinates {
(} (1 (} (1930,50e6) (1940,33e6)
: ‘ ‘ (1950,40e6) (1960,50e6) (1970,70e6)

I I
1930 1940 1950 1960 1970 s

\addplot coordinates {

’ loFarl0Near |0 Here —— Annot (1930,38e6) (1940,42e6)
(1950,43e6) (1960,45e6) (1970,65e6)

};
\addplot coordinates {
(1930,15e6) (1940,12e6)
(1950,13e6) (1960,25e6) (1970,35e6)
};
\addplot [red,line legend,
sharp plot,update limits=false,
] coordinates { (1910,4.3e7) (1990,4.3e7) }
node [above] at (1950,4.3e7) {Houses};

\legend{Far,Near,Here,Annot}
\end{axis}
\end{tikzpicture}

Here, ybar yields /pgfplots/ybar because it is an argument to the axis, not to a single plot. The
style affects the first three \addplot commands. Note that it shifts them horizontally around the plot
coordinates. The fourth \addplot command is some kind of annotation which doesn’t update limits.

The ybar style can be combined with symbolic x coords in a similar way as described for xbar:

10 — L — % Preamble: \pgfplotsset{width=7cm,compat=1.16}

9 \begin{tikzpicture}

\begin{axis}[

81 N ybar,

enlargelimits=0.15,

legend style={at={(0.5,-0.15)},
anchor=north,legend columns=-1},
ylabel={\#participants},

4 — symbolic x coords={too0l8,to00l9,t00110},
xtick=data,

nodes near coords,

1 1 1| nodes near coords align={verticall,

F#£participants
=~
=~
B
IS

]
0 [:] L] [:] [:1 \addplot coordinates {(tool8,7) (t00l9,9) (to0l10,4)};
‘ ‘ ‘ \addplot coordinates {(tool8,4) (to00l9,4) (to0l10,4)};
tool8 tool9 tool10 \addplot coordinates {(t00l8,1) (t001l9,1) (t00110,1)};
’ B used DB understood I D not understood ‘ \legend{used,understood,not understood}
\end{axis}
\end{tikzpicture}

As for xbar, the bar width and shift can be configured with bar width and bar shift. However, the
bar shift is better provided as argument to /pgfplots/ybar since this style will overwrite the bar shift.
Thus, prefer /pgfplots/ybar=4pt to set the bar shift.

Sometimes it is useful to write the y values directly near the bars. This can be realized using the nodes
near coords method:

4.5. TWO DIMENSIONAL PLOT TYPES 85

107 % Preamble: \pgfplotsset{width=7cm,compat=1.16}

: \begin{tikzpicture}
7 \begin{axis}[
6.5 X tick label style={
] /pgf/number format/1000 sep=},
ylabel=Population,
enlargelimits=0.15,
5 5 legend style={at={(0.5,-0.15)},
anchor=north,legend columns=-1},
4.5 ybar=5pt,% configures ‘bar shift’
bar width=9pt,
nodes near coords,

49 43
38 1
3.3 {w point meta=y *10°-7, J the displayed number
T T

Population
()

I

|

W

\addplot coordinates {

T T T
(1930,50e6) (1940,33e6)
1930 1940 1950 1960 1970 (1950,40e6) (1960,50e6) (1970,70e6)

00Far[0Near }
\addplot coordinates {

(1930,38e6) (1940,42e6)
(1950,43e6) (1960,45e6) (1970,65e6)

s

\legend{Far,Near}
\end{axis}
\end{tikzpicture}

Any support style changes are possible, of course. A useful example for bar plots might be to use rotated
tick labels:

L % Preamble: \pgfplotsset{width=7cm,compat=1.16}

8 \begin{tikzpicture}
8] N \begin{axis}[
ybar,
6 . enlargelimits=0.15,

legend style={at={(0.5,-0.2)},

anchor=north,legend columns=-1},

41 ylabel={\#participants},

symbolic x coords={excellent,good,neutral,?
not good,poor},

2
2 :
xtick=data,
0 0 0 nodes near coords,

#participants

0 — - nodes near coords align={verticall,
x tick label style={rotate=45,anchor=east},
T T T T T
> S 1
\\/QJ& OOb ,é‘b’ OOb QOO \addplot coordinates {
@ @ cﬁb é§§7 (excellent,0) (good,8) (neutral,2)
é% < (not good,0) (poor,0)
s
\end{axis}
\end{tikzpicture}
/pgfplots/ybar={(shift for multiple plots)} (style, default 2pt)

As /pgfplots/xbar, this style sets the /tikz/ybar option to draw vertical bars, but it also provides
commonly used options for vertical bars.

If you supply ybar to an axis environment, /pgfplots/ybar will be chosen instead of /tikz/ybar.

It changes the legend, draws ticks outside of the axis lines and draws multiple \addplot arguments
adjacent to each other; block-centered at the x coordinate and separated by (shift for multiple plots).
It will also install the bar shift for every node near coord. Furthermore, it installs the style bar
cycle list. It is defined similarly to /pgfplots/xbar.

/pgfplots/bar cycle list (no value)
A style which installs cycle lists for multiple bar plots.

86 CHAPTER 4. THE REFERENCE
\pgfplotsset{
/pgfplots/bar cycle list/.style={/pgfplots/cycle list={
{blue,fill=blue!30!white,mark=none},
{red,fill=red!30!white,mark=nonel},
{brown!60!black,fill=brown!30!white,mark=none},
{black,fill=gray,mark=none},
},
})
}
/pgf/bar width={(dimension or unit)} (initially 10pt)

Configures the width used by xbar and ybar. It is accepted to provide mathematical expressions.

As of PGFPLOTS 1.7, it is allows to provide a unit as bar width. In this case, the bar width will be
interpreted as axis unit:

% Preamble: \pgfplotsset{width=7cm,compat=1.16}

\begin{tikzpicture}

\begin{axis}[

25 | xbar=0pt,7 space of Opt between adjacent bars
bar width=2,

width=7cm,

height=12cm,

b B minor y tick num=4,

B = ytick=data,

20 [enlargelimits=0.15,

\addplot coordinates {
(10,5) (15,10) (5,15) (24,20) (30,25)

) I };

g I \addplot coordinates {

15 [(3,5) (5,10) (15,15) (20,20) (35,25)
e

\end{axis}

\end{tikzpicture}

10 + B

0 10 20 30

In order to interpret arguments as units, you have to write \pgfplotsset{compat=1.7} (or newer) into
your preamble. Older versions will implicitly append the pt suffix if the argument is no dimension.

\pgfplotbarwidth

A mathematical expression which results in the fully computed value of bar width (i.e. it includes
any unit computations).

Note that you may need to enlargelimits in order to see the complete bar — PGFPLOTS will not
automatically update the axis limits to respect bar width.

/pgf/bar shift={(dimension or unit)} (initially Opt)

Configures a shift for xbar and ybar. Use bar shift together with bar width to draw multiple bar
plots into the same axis. It is accepted to provide mathematical expressions.

As of PGFPLOTS 1.7, it is allows to provide an unit as bar shift. In this case, the bar shift will be
interpreted as axis unit.

4.5. TWO DIMENSIONAL PLOT TYPES 87

\pgfplotbarshift

A mathematical expression which results in the fully computed value of bar shift (i.e. it includes
any unit computations).

Note that you may need to enlargelimits in order to see the complete bar — PGFPLOTS will not
automatically update the axis limits to respect bar shift.

/pgfplots/bar direction=auto|x|y (initially auto)

If PGFPLOTS encounters a value bar width=1 (i.e. without dimension like 1pt), it attempts to evaluate
the bar’s direction.

The default configuration auto assumes that you write something like ybar ,bar width=1. In this case,
it is clear that you have a y bar and PGFPLOTS assumes bar direction=y.

However, this context information is unavailable. In this case, you can use the choice x if PGFPLOTS in
unaware that it works on an xbar plot or y if PGFPLOTS is unaware that you meant an ybar plot.

/tikz/ybar interval (no value)

\addplot+[ybar interval]

This plot type produces vertical bars with width (and shift) relatively to intervals of coordinates.
There is one conceptional difference when working with intervals: an interval is defined by two coordi-
nates. Since ybar has one value for each interval, the ith bar is defined by

1. the y value of the ith coordinates,

2. the z value of the ith coordinate as left interval boundary,

3. the z value of the (i + 1)th coordinate as right interval boundary.
Consequently, there is one coordinate too much: the last coordinate will only be used to determine the
interval width; its y value doesn’t influence the bar appearance.

It is installed on a per-plot basis and configures only the visualization of coordinates. See the style
/pgfplots/ybar interval which configures the appearance of the complete figure.

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
4 7 \begin{tikzpicture}
\begin{axis}
\addplot+ [
3+ *— N ybar interval,
1 coordinates {
(0,2) (0.1,1) (0.3,0.5) (0.35,4) (0.5,3)
2 — - (0.6,2) (0.7,1.5) (1,1.5)
s
\end{axis}
11 | \end{tikzpicture}

88
L |
4 | |
3 | — |
2 | — |
1 | |
|
— ™M 10 10 O b~ —
S o MS o3 [
\ = T I~
(e} — ‘ 0 0 O (e}
S NN S oS
o O
.;07
6 | |
o . _
.S
)=
= 41 |
o
O
A
2 | |
ﬂ | 1
1930 1940 1950 1960
’DEIFarDDNearDDHere

/pgfplots/ybar interval={(relative width)}

CHAPTER 4. THE REFERENCE

% Preamble: \pgfplotsset{width=7cm,compat=1.16}

\begin{tikzpicture}

\begin{axis}[ybar interval,
xtick=data,

xticklabel interval boundaries,

x tick label style={
rotate=90,
anchor=east,

i

\addplot coordinates {
(0,2) (0.1,1) (0.3,0.5)

(0.35,4) (0.5,3)

(0.6,2) (0.7,1.5) (1,1.5)

e
\end{axis}
\end{tikzpicture}

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[

X tick label style={

/pgf/number format/1000 sep=},

ylabel=Population,
enlargelimits=0.05,

legend style={at={(0.5,-0.15)},
anchor=north,legend columns=-1},

ybar interval=0.7,

\addplot coordinates {
(1930,50e6) (1940,33e6)
(1950,40e6) (1960,50e6)

};

\addplot coordinates {
(1930,38e6) (1940,42e6)
(1950,43e6) (1960,45€6)

};

\addplot coordinates {
(1930,15e6) (1940,12e6)
(1950,13e6) (1960,25e6)

e

\legend{Far,Near,Here}

\end{axis}

\end{tikzpicture}

(1970,70e6)

(1970,65e6)

(1970, 35e6)

(style, default 1)

A style which is intended to install options for ybar interval for a complete figure. This includes tick
and legend appearance, management of multiple bar plots in one figure and a more adequate cycle

list using the style bar cycle list.
/tikz/xbar interval

\addplot+[xbar interval]

As ybar interval, just for horizontal bars.

(no value)

4.5. TWO DIMENSIONAL PLOT TYPES 89

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
50 — 70 \begin{axis}[
xmin=0,xmax=53,
[ylabel=Age,
xlabel=Quantity,
& 30 — 50 enlargelimits=false,
< ytick=data,
o B yticklabel interval boundaries,
%g - g% | xbar interval,
-] 1
13 - 18 | | \addplot coordinates {
1%*%% | - (10,5) (10.5,10) (15,13) (24,18) (50,21)
B ‘ ‘ : ‘ (23,25) (10,30) (3,50) (3,70)
0 10 20 30 40 50 };
Quantity \end{axis}
\end{tikzpicture}
/pgfplots/xbar interval={(relative width)} (style, default 1)

A style which is intended to install options for xbar interval for a complete figure, see the style
/pgfplots/ybar interval for details.

/pgfplots/xticklabel interval boundaries (no value)
/pgfplots/yticklabel interval boundaries (no value)
/pgfplots/zticklabel interval boundaries (no value)

These are style keys which set x tick label as interval (see page 342 for details) and configure the
tick appearance to be (start) — (end) for each tick interval.

4.5.5 Histograms

This section has been moved to the statistics library, see Section 5.12.2 on page 505.

4.5.6 Box Plots

This section has been moved to the statistics library, see Section 5.12.1 on page 494.

4.5.7 Comb Plots

Comb plots are very similar to bar plots except that they employ single horizontal /vertical lines instead of
rectangles.

/tikz/xcomb (no value)

\addplot+ [xcomb]

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}

4 ® \addplot+ [

xcomb,

o 1 coordinates {

(4,0) (1,1 (2,2)
(5,3) (6,4) (1,5)

};
\end{axis}
\end{tikzpicture}

[\
e
(=)

/tikz/ycomb (no value)

90 CHAPTER 4. THE REFERENCE

\addplot+[ycomb]
T % Preamble: \pgfplotsset{width=7cm,compat=1.16}
41 * | \begin{tikzpicture}
\begin{axis}
\addplot+ [
| B ycomb,
3 *] coordinates {
0,3) (1,2) (2,4) (3,1) (4,2)
5
2+ - \end{axis}
\end{tikzpicture}
1+ T B

4.5.8 Quiver Plots (Arrows)
/pgfplots/quiver={(options with ‘quiver/’ prefix)}

\addplot+[quiver={(options with ‘quiver/’ prefix)}]

A plot type which draws small arrows, starting at (z,y), in direction of (u,v).

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
30| B \begin{axis}
\addplot [
blue,
20 quiver={u=1,v=2*x},
-stealth,
samples=15,
1 {x"2};
10~ N \end{axis}
\end{tikzpicture}

0 - |
| | | | | | |

-6 —4 -2 0 2 4 6

The base point (x,y) is provided as before; in the example above, it is generated by \addplot expres-
sion and yields (z,2%). The vector direction (u,v) needs to be given in addition. Our example with
quiver/u=1 and quiver/v=2*x results in u = 1 and v = 2z. Thus, we have defined and visualized a
vector field for the derivative of f(z) = x2.

A common example is to visualize the gradient (0, f, 9, f)(x,y) of a two-dimensional function f(z,y):

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[
title={$x \exp(-x"2-y~2)$ and its gradient},
domain=-2:2,
view={0}{90},
axis background/.style={fill=white},

rexp(—2? — y?) and its gradient

Fr o>y >y >
I

4 4
By >
AN vk
S k

A A x> >

13

>

-
'y
3

N 2

\addplot3 [
contour gnuplot={number=9,labels=false},thick,
1 {exp(0-x"2-y~2)*x};
\addplot3 [
- blue,-stealth,samples=15,
quiver={
u={exp(0-x"2-y~2)*(1-2%x"2) },
| v={exp(0-x"2-y~2) *(-2*x*y) },
1 2 scale arrows=0.3,
o
1 {exp(0-x"2-y~2)*x};
\end{axis}
\end{tikzpicture}

11 4 4 AFTAE R r ey
1

v 1 1 1

=]
Fr » KTk K K A A A A4 4 7
>
>
vy v 7

Py R R N A A A A gy

e L R N e

k «+ v v = X A
K < £ & & L
' oy ¢ l

Hk << x s

|
)
|

4.5. TWO DIMENSIONAL PLOT TYPES 91

The example visualizes f(x,y) = zexp(—x? — y?) using contour gnuplot as first step. The options
contour/number and contour/labels provide fine-tuning for the contour and are not of interest here
(so is the axis background which just improves visibility of contour lines). What we are interested in
is the quiver= style: it defines u and v to some two-dimensional expressions. Furthermore, we used
quiver/scale arrows to reduce the arrow size. The -stealth is a TikZ style which configures outgoing
arrow styles of type ‘stealth’. The samples=15 key configures how we get our input data. In our case,
we have input data (z;,y;, f(2s,y;)) with 15 samples for each, ¢ and j.

It is also possible to place quiver plots on a prescribed z value:

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[

domain=0:1,

xmax=1,

ymax=1,

\addplot3 [surf] {x*y};
\addplot3 [
blue,-stealth,samples=10,
quiver,quiver/.cd,
u=y,v=x,w=0,
scale arrows=0.1,

1 {1};
\end{axis}
\end{tikzpicture}

Here, the quiver plots is placed on top of a surf. It visualizes the gradient (using a common scale factor of
1/10 to reduce the arrow lengths). The quiver/w=0 means that arrows have no z difference, and the {1}
argument indicates that all start at (z;,y;,1). Here, the values (x;,y;) are sampled in the domain=0:1
argument (with samples=10), i.e. arrows start at (z;,y;,1) and end at (z; +y;/10,y; + ;/10,1).

So far, quiver plots do not assume a special sequence of input points. This has two consequences: first,
you can plot any vector field by considering just (z,y) + (u,v) (or (x,y, z) + (u,v,w)) — the data doesn’t
necessarily need to be a two-dimensional function (as opposed to surf etc). On the other hand, you
need to provide quiver/scale arrows manually since quiver doesn’t know the mesh width in case you
provide matrix data'2.

Note that quiver plots are currently not available together with logarithmic axes.

/pgfplots/quiver/u=(expression) (initially 0)

/pgfplots/quiver/v=(expression) (initially 0)

/pgfplots/quiver/w=(erpression) (initially 0)
These keys define how the vector directions (u,v) (or, for three dimensional plots, (u,v,w)) shall
be set.

The (expression) can be a constant expression like quiver/u=1 or quiver/u=42+#5. It may also
depend on the final base point values using the values x, y or z as in the example above. In this
context, x yields the = coordinate of the point where the vector starts, y the y coordinate and so
on.

Attention: the fact that x refers to the final x coordinate means that parametric plots should
use t as variable*®. Consider the following example:

12 Actually, I might add something like quiver/scale arrows=auto in the future, I don’t know yet. Loops through input data
are slow in TEX, automatic mesh widths computation even more. ..
13Sorry for this usability issue.

CHAPTER 4. THE REFERENCE

~ % Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[
axis equal,
axis lines=middle,
axis line style={->},
/ tick style={color=black},
] xtick=\empty,ytick=\empty,

\addplot [samples=20, domain=0:2*pi,->,blue,
% the default choice ’variable=\x’ leads to
% unexpected results here!
variable=\t,

N quiver={

u={-sin(deg(t))},

v={cos(deg(t))},

scale arrows=0.5,

o
1 ({cos(deg(t))}, {sin(deg(t))});
\addplot [
samples=100, domain=0:2*pi,
] ({cos(deg(x))}, {sin(deg(x))});
\end{axis}
\end{tikzpicture}

Here, a parametric plot is used to draw a circle and tangent vectors. The choice variable=\t plays
a functional role besides naming conventions: it allows to access the parametric variable within the
expressions for both u and v. On the other hand, we could have used u=y and v=-x since x expands
to the x coordinate with value sin(deg(t)) and y expands to the y coordinate cos(deg(t)).

Another important application is to use table column references like quiver/u=\thisrow{col} in
conjunction with \addplot table:

% Preamble: \pgfplotsset{width=7cm,compat=1.16}

Quiver and plot table

\begin{tikzpicture}
T T \begin{axis}[title=Quiver and plot tablel
\addplot [
blue,
20 |- N quiver={u=\thisrow{u},v=\thisrow{v}},
-stealth,
] table {
/////ﬂ Xyuv
0010
10 | 1111
/ 2414
3916
R 41618
o —— — };
| | | \end{axis}
0 2 4 \end{tikzpicture}

Here, the (expression) employs \thisrow which always refers to the actual row of \addplot table.

Note that (expression) should always be of numeric type (no symbolic input extensions are sup-
ported currently).

/pgfplots/quiver/u value={(value)} (initially 0)
/pgfplots/quiver/v value={(value)} (initially 0)
/pgfplots/quiver/w value={(value)} (initially 0)

These keys have the same function as quiver/u and its variants. However, they don’t call the
math parser, so only single values are allowed (including something like \thisrow{columnname}).

/pgfplots/quiver/colored (no value)
/pgfplots/quiver/colored={{color)}

Allows to define an individual color for each arrow. Omitting the argument ‘(color)’ is identical to
quiver/colored=mapped color which uses the point meta to get colors for every arrow.

If you just want to set the same color for every arrow, prefer using \addplot [blue,quiver] which
is more efficient.

4.5. TWO DIMENSIONAL PLOT TYPES 93

/pgfplots/quiver/scale arrows={(scale)} (initially 1)
Allows to rescale the arrows by a factor. This may be necessary if the arrow length is longer
than the distance between adjacent base points (z;,y;). There may come a feature to rescale them
automatically.

/pgfplots/quiver/update limits=true|false (initially true)
A boolean indicating whether points (x,y) + (u, v) shall contribute to the axis limits.

/pgfplots/quiver/every arrow (style, initially empty)
Allows to provide individual arrow styles.

The style can contain any TikZ drawing option. It will be evaluated for every individual arrow and
may depend upon anything which is available at visualization time.

In particular, this includes point meta data, typically using \pgfplotspointmetatransformed
€ [0,1000] where 0 corresponds to point meta min and 1000 corresponds to point meta max:

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
T T T % define some constants:

A \def\U{1}
\Z \def\V{2*x}
\def\LEN{ (sqrt ((\U)"2 + (\V)"2)}

Thickness indicates “strength”.

20

v \begin{axis}[axis equal image,

title=Thickness indicates ‘¢

strength’’.
]
10 - 1 \addplot [blue,
" point meta={\LEN},
\) quiver={
\, 1 u={(\U)/\LEN}, v={(\V)/\LEN},
O scale arrows=2,
L | | every arrow/.append style={
-5 0 b5 line width=2pt*\pgfplotspointmetatransformed/1000
I
¥o
-stealth,samples=15,
1 {x72};
\end{axis}
\end{tikzpicture}

In the example, we have some 2d vector field stored in helper constants \U and \V. The length of
each vector is stored in \LEN here. The quiver plot as such contains unit length vectors — and the
\LEN enters an every arrow style to get varying line width.

An every arrow style might also depend upon mapped color (provided point meta has been set).

Again, if you do not need individual arrow styles, prefer using a plot style (cycle list or argument
to \addplot) which is more efficient.

/pgfplots/quiver/before arrow/.code={(...)}
/pgfplots/quiver/after arrow/.code={(...)}

Advanced keys for more fine tuning of the display. They allow to install some TEX code manually
before or after the drawing operations for single arrows. Both are initially empty.

/pgfplots/quiver/quiver legend (style, no value)
A style which redefines legend image code in order to produce a suitable legend for quiver plots.

It is implicitly activated whenever quiver plot handlers are selected.

94

—> Legend

CHAPTER 4.

% Preamble: \pgfplotsset{width=7cm,compat=1.16}
\begin{tikzpicture}
\begin{axis}[tiny]
\addplot [
blue,

THE REFERENCE

quiver={u=1,v=3*x},
-stealth,
samples=15,
1 {x"3};
\addlegendentry{Legend}
\end{axis}
\end{tikzpicture}

4.5.9 Stacked Plots

/pgfplots/stack plots=x|y|false (initially false)

Allows stacking of plots in either = or y direction. Stacking means to add either x or y coordinates of
successive \addplot commands on top of each other.

% Preamble: \pgfplotsset{width=7cm,compat=1.16}

6 7 \begin{tikzpicture}

\begin{axis}[stack plots=y]
\addplot coordinates {

0,1) (1,1) (2,2) (3,2)

41 N 5

\addplot coordinates {
(0,1) (1,1 (2,2) (8,2)

};

\addplot coordinates {
(0,1) (1,1) (2,2) (8,2)

21 |
.—/.—. };
\end{axis}

\end{tikzpicture}

ol
—_
[\)
(SO =

The current implementation for stack plots does not interpolate missing coordinates. That means
stacking will fail if the plots have different grids.

/pgfplots/ybar stacked=plus|minus (style, default plus)

The plot handler stack plots is particularly useful for bar plots. There are two possible modes of
operation: the first is to set stack plots=y