AWS Documentation
Release 2019

AdaCore

Feb 09, 2020

CONTENTS

1 Introduction 1
2 Building AWS 3
2.1 ReqUIrEMeNntS v v o o e 3
22 AWSNet.Std o e e 3
23 Building L e 4
2.4 Building on cross-platforms L 4
2.5 Demos .. o. oL e 5
2.6 Installing e e e e e e e e e e e e e e 6
3 Using AWS 7
3.1 Setting up €NVIrONMENT . .+« o v v v v v v e 7
3.1.1 Using environment variables e e e e e 7

3.1.2 Using GNAT Project Files e e e e e e e 7

32 BasiCnotions e e e 8
32.1 Buildingan AWSsserver e 8

322 Callback procedure i e e e e e e 10

323 FOrmparameters v v v e 11

324 Distribution of an AWS server e 12

3.3 Buildinganswers e e e 12
33,1 Redirection o . .o e e e e e e e e e e e e 13

33.2 Newlocationforapage e 13

3.3.3 Authenticationrequired L L L e e e e e e e 13

3.3.4 Sending back an error mesSaget e e e e e e e e e e e e e e e e e e e 13

33,5 Responsefromastring L e 13

3.3.6 Response from a Stream_Element_Array oo 13

33.7 Responsefromafile 14

3.3.8 Response fromastream v v it e e e e e e e e e e e e e e e e e e 14

3.3.9 Response fromaon-disk stream Lo L e 15
3.3.10 Response from aon-diskonce stream Lo e 15
3.3.11 Response from amemory streaml 15
3.3.12 Response from a compressed memory stream 15
3303 Splitpage oo i e e e e 16
3.3.14 Response a from pipe Stream u e e e e e e e e e e e e e e 16

3.4 Configuration OPtIONS . .« v v v v v v e 16
3.5 Sessionhandling L 22
3.6 HTTP state managementt ittt 23
3.7 Authentication oL e e e e e e 24
3.8 Fileupload e e e e e e e e 24
3.9 Communication oL e e e e e e e e e e e e e e e e 25

3.9.1 Communication - clientside e 25

3.9.2 Communication - serverside L. e 26
3.10 Hotplugmodule e e e e e e e e 26
3.10.1 Hotplug module - server activation oL 26
3.10.2 Hotplug module - creationo e e e e e e e 27
311 ServerPush o L L e 28
3.12 Working with Server sockets e e e e e e e e 29
313 Server Log e e e e e e e 29
314 SECUE SEIVET . o . . v v v v v ittt e e e e e e e e e e e e e e 30
3.14.1 Initialization L. e e e e e e e e e e e e e e 30
3.142 Verifycallback e 31
3.14.3 Self-signed certificate L. e e e e e e e e 31
3.14.4 Using a Certificate Authority o e e e e 32
3.14.5 Security level oL e e e e 34
3.14.6 Protocol L e e e e e e 34
3.15 Unexpected exception handler 34
3.16 Socketlog e e 36
3,17 Clientside o o e e e e e e e e e 36
High level services 37
4.1 DIrectory BIOWSET . . v v v v v o e 37
42 Dispatchers e e e e e e e e e e e e e 37
4.2.1 Callback dispatcher e 37
4.2.2 Method dispatcher L e 37
423 URILdispatcher e 38
424 Virtual hostdispatcher e e e e 38
4.2.5 Transient pages dispatcher e e 38
42.6 Timerdispatcher e e e 38
427 Linkerdispatcher L e 38
4.2.8 SOAPdispatcher L e 38
43 StaticPageserver. e 39
4.4 Transient Pages L e e e e e e e e 39
45 SpHEtPages o e e e e e e e e 40
4.6 Download Manager e e 40
477 WebElements e e e e e e e e 41
4.7.1 Installation oLl e e 42
472 AJAX . oo e 42
4.8 WebBlocks e e 48
4.8.1 WebBlockexample L e 49
4.8.2 WebBlockand Ajax L e 51
4.8.3 WebBlock and templates2ada 52
4.9 Web Cross-References e 55
4.10 WebSockets e e e e 55
4.10.1 Introductionto WebSockets Lo 55
4.10.2 WebSockets on the client (javascript) oo 56
4.10.3 WebSockets onthe client (Ada) e 56
4.10.4 WebSocketsontheserver e 57
Using SOAP 61
5.1 SOAPCLent o o e e e 61
52 SOAPSErver o o e e e 62
5.2.1 Step by Step INSruCtions v v v v i e e e e e e e e e e e e e e e 62

522 SOAPHheIpers o o e e e e e e 63

6

8

9

10

11

12

13

Using WSDL 65
6.1 Creating WSDL documents i i v i it e i e e e e e e e e e 65

6.1.1 Usingada2wsdl e e e e e 65

6.1.2 Adamappingto WSDL e 67

6.1.3 ada2wsdl e e e e e 71

6.1.4 ada2wsdl imitations e e e e e e e e e e e e e e e 71
6.2 Working with WSDL documents o v v i i et et e e e e e e 72

6.2.1 Clientside (stub) e e e e e e 72

6.2.2 Serverside (skeleton) L e e e e e e 72

6.2.3 wsdl2aws L e e e e e e e e e e 74

6.2.4 wsdl2aws behind the scene e e e 75

6.2.5 wsdl2aws Imitations e e e e e e e e e e e e e 76

6.2.6 awsasch e e e e e e e e 76
6.3 Using ada2wsdl and wsdl2aws together Lo L oo 77
Working with mails 79
7.1 Sendinge-mail L. e e e e e e e e e 79
7.2 Retrievinge-mail oL e 80
LDAP 83
Jabber 85
0.1 Jabberpresence o v . e e e e e e e e e e e e e e e 85
0.2 Jabber message e e e e e e e e e e e e 85
Resources 87
10.1 Buildin@ reSOUrces v v v v i e e e e e e e e e e e e e e e e e e e 87
10.2 USINZ TESOUICES . v v v v v v v e 87
10.3 Stream reSOUICES v v v v v e 87
104 awsres tool L. e e e e e e e e e e e e e e e e 88
Status page 89
References 93
AWS API Reference 97
13,1 AWS L e e e e e 97
13.2 AWS.Attachments e e e e e e e e e e e e e e 98
133 AWS.CHeNt o e e e e e e e e e e e e e 102
13.4 AWS.Client.Hotplug e e 112
13.5 AWS.Communication v it i e e e e e e e e e e e e e e e e e e 114
13.6 AWS.Communication.Client 0 0t e e e e e e e e e e e 115
13.7 AWS.Communication.SErver o i i e e e e e e 116
13.8 AWS.Config o o e e e e e e e e 118
13.9 AWS.ConfigIni e e e e e 126
13.10 AWS.Config.Set o e e e 127
13.11 AWS.Containers.Tables e 135
13,12 AWS.Co0Kie o o e e e e e e e e e e e e e e e 139
13.13 AWS.Default e e e e e e e e 143
13.14 AWS.Dispatchers o e e e e e e e e e e 147
13.15 AWS.Dispatchers.Callback 149
13.16 AWS.EXCEPLIONS o it e e e e e e e e 150
13.17 AWS.Headers e e e e e e e e e e e e e e 152
13.18 AWS.Headers.Values o 0 it e e e e e e e e e e e e e 154
13.19 AWS.Jabber o e e e e e e e 157

13.20 AWS.ILDAPCLent e 158

I3.21 AWSLOZ . . o o o e e e 164
13.22 AWS.MESSAZES « o v v v v e 168
13.23 AWS.MIME e 175
13.24 AWS.NEt . . . o o e e e 179
13.25 AWS.Net.Buffered o e e e e e e 187
13.26 AWS.Net.Log o o e e e e e e e 190
13.27 AWS.Net.Log.Callbacks o e e e e 192
1328 AWS.Net.SSL e e 194
13.29 AWS.Net.SSL.Certificate o i e e 200
13.30 AWS.Net.WebSocket o e e e e e e e e e e 203
13.31 AWS.Net.WebSocket. Registry o 0 0 i e e e e e e e e 208
13.32 AWS.Net.WebSocket.Registry.Control i e 212
1333 AWS.Parameters L. e e e e e e e e 213
13.34 AWS.POP . . . e 215
13.35 AWSLRESOUICES o v o e it e e e e e e e e e e e e e e e e e e 219
13.36 AWS.Resources.Embedded 222
13.37 AWS.Resources.Files e e 224
13.38 AWS.ReSOurces.Streams v v vttt e e e e e e e e e e e e e 226
13.39 AWS.Resources.Streams.Disk L 228
13.40 AWS.Resources.Streams.Disk.Once e 230
13.41 AWS.Resources.Streams.Memory oo e e e e e 231
13.42 AWS.Resources.Streams.Memory.ZLib e 233
13.43 AWS.Resources.Streams.Pipe L e e e 235
1344 AWS.IRESPONSE o o i e e e e e e e e e e e e e e e e 237
13.45 AWS.Server o e e e e e e e e e e e 245
13.46 AWS.Server.Hotplug e e 250
13.47 AWS.Server.Log o o e e e e e e e e 252
13.48 AWS.Server.Push o e 254
13.49 AWS.Server.Status L. e e e e e e e 260
13.50 AWS.Services.Callbacks e 262
13.51 AWS.Services.Directory o oo e e e e e 263
13.52 AWS.Services.Dispatchers e e e e e e e e e 266
13.53 AWS.Services.Dispatchers.Linker e e 268
13.54 AWS.Services.Dispatchers.Method e 269
13.55 AWS.Services.Dispatchers. URL 271
13.56 AWS.Services.Dispatchers.Virtual_Host 273
13.57 AWS.Services.Download e e e e e e e e 275
13.58 AWS.Services.Page_Server e e e e e e 277
13.59 AWS.Services.Split_Pages o e e e e e 279
13.60 AWS.Services.Split_Pages.Alpha L 282
13.61 AWS.Services.Split_Pages.Alpha.Bounded L. 284
13.62 AWS.Services.Split_Pages.Uniform 286
13.63 AWS.Services.Split_Pages.Uniform.Alpha 288
13.64 AWS.Services.Split_Pages.Uniform.Overlapping 290
13.65 AWS.Services. Transient_Pages L e 291
13.66 AWS.Services.Web_Block e 292
13.67 AWS.Services.Web_Block.Context 0 i i e e e e e 293
13.68 AWS.Services.Web_Block.Registry L 295
13.60 AWS.SESSION v v vt e e e e e e e e e e 298
13.70 AWS.SMTP . . e e e 303
13.71 AWS.SMTP.Client e e e e e e e e e e 306
13.72 AWS.Status o o e e e e 310
13.73 AWS. Templates o oo o e e e e e 317

13.74 AWS.Translator o e e e e e e e 318

1375 AWS.URL . . o o e e 322
1376 SOAP e e 326
13.77 SOAPClient e e e e e e e 327
13.78 SOAP.Dispatchers e 329
13.79 SOAPDispatchers.Callback e 331
13.80 SOAPMESSAZE . .« v v v o o e 333
13.81 SOAP.Message. XML o 0 i e e e e e e e e e e e 335
13.82 SOAPParameters e e e e e e e 337
13.83 SOAPTYPES . . o o v e e e e e e e e e 341
Index 355

vi

CHAPTER
ONE

INTRODUCTION

AWS stand for Ada Web Server. It is an Ada implementation of the HTTP/I.1 protocol as defined in the RFC-2616
from June 1999.

The goal is not to build a full Web server but more to make it possible to use a Web browser (like Internet Explorer,
or Netscape Navigator) to control an Ada application. As we’ll see later it is also possible to have two Ada programs
exchange informations via the HTTP protocol. This is possible as AWS also implement the client side of the HTTP
protocol.

Moreover with this library it is possible to have more than one server in a single application. It is then possible to
export different kind of services by using different HTTP ports, or to have different ports for different services priority.
Client which must be served with a very high priority can be assigned a specific port for example.

As designed, AWS big difference with a standard CGI server is that there is only one executable. A CGI server has
one executable for each request or so, this becomes a pain to build and to distribute when the project gets bigger. We
will also see that it is easier with AWS to deal with session data.

AWS support also HTTPS (secure HTTP) using SSL. This is based on either OpenSSL or GNUTLS two Open Source
SSL implementations.

Major supported features are:
e HTTP implementation
e HTTPS (Secure HTTP) implementation based on SSLv3
» Template Web pages (separate the code and the design)
* Web Services - SOAP based
* WSDL support (generate stub/skeleton from WSDL documents)
* Basic and Digest authentication
 Transparent session handling (server side)
* HTTP state management (client side cookies)
* File upload
* Server push
* SMTP / POP (client API)
* LDAP (client API)
* Embedded resources (full self dependant Web server)
* Complete client API, including HTTPS

* Web server activity log

AWS Documentation, Release 2019

2 Chapter 1. Introduction

CHAPTER
TWO

2.1

BUILDING AWS

Requirements

AWS has been mainly developed with GNAT on Windows. It is built and tested regularly on GNU/Linux and Solaris,
it should be fairly portable across platforms. To build AWS you need:

2.2

GNU/Ada (GNAT compiler) ;

Obviously an Ada compiler is mandatory. Only GNAT is tested, the code should be fairly portable but has never
been tested on another compiler. See INSTALL file distributed with AWS for specific versions supported.

OpenSSL (optional) ;

OpenSSL is an Open Source toolkit implementing the Secure Sockets Layer (SSL v2 and v3 and TLS 1.1,
1.2) and much more. It is possible to download the OpenSSL source distribution from http://www.openssl.org
<http://www.openssl.org> and build it. A Windows binary distribution may also be downloaded there.

LibreSSL (optional) ;

LibreSSL is an Open Source toolkit implementing the Secure Sockets Layer which is fully compatible with
OpenSSL. It is possible to download the LibreSSL source distribution from https://www.libressl.org/> and build
it.

GNUTLS (optional) ;

GNUTLS is an Open Source toolkit implementing the Secure Sockets Layer (SSL v3 and TLS 1.1, 1.2) and
much more. It is necessary to install the developers libraries to use it in AWS.

OpenLDAP (optional) ;

OpenLDAP is an Open Source toolkit implementing the Lightweight Directory Access Protocol. If you want
to use the AWS/LDAP API on UNIX based systems, you need to install properly the OpenLDAP package. On
Windows you don’t need to install it as the 1ibldap. a library will be built by AWS and will use the standard
Windows LDAP DLL wldap32.d11.

You can download OpenLDAP from http://www.openldap.org <http://www.openldap.org>.

AWS.Net.Std

This package is the standard (non-SSL) socket implementation. It exists different implementations of this package:

GNAT Version based on GNAT.Sockets from GNAT version 20 and later with IPv6 support. This is the default

IPv6

implementation used.

Compartible with GNAT before version 20 socket implementation with IPv6 support:

AWS Documentation, Release 2019

’$ make setup NETLIB=ipv6

IPv4 Compartible with GNAT before version 20 socket implementation based on GNAT.Sockets package without
IPv6 support:

’$ make setup NETLIB=ipv4

2.3 Building

Before building be sure to edit makefile.conf, this file contains many settings important for the build. Note that
it is important to run make setup each time you edit this file.

When you have built and configured all external libraries you must set the ADA_PROJECT_PATH variable to point
to the GNAT Project files for the different packages. For XML/Ada support, you also need to set XMLADA to true in
makefile.conf.

At this point you can build AWS with:

$ make setup build

Note that some demos require that AWS be built with SSL support. If you want to activate SSL you must have installed
the necessary developers libraries. It is possible to specify the SSL implementation to use with the SOCKET variable.

To build with GNUTLS:

$ make SOCKET=gnutls setup
$ make build

To build with OpenSSL or LibreSSL:

$ make SOCKET=openssl setup
S make build

It is is possible to build AWS in debug mode by setting DEBUG make’s variable:

’$ make DEBUG=true setup build

Note that by default AWS is configured to use the GNAT compiler. So, if you use GNAT you can build AWS just with:

’$ make setup build

2.4 Building on cross-platforms

To build for a cross platform the TARGET makefile variable must be set with the cross toolchain to be used. The value
must be the triplet of the toolchain to use.

For example, to build on VxWorks:

$ make TARGET=powerpc-wrs-vxworks setup build

Note that on cross-environment one need to build the demos manually. See demos/README.

4 Chapter 2. Building AWS

AWS Documentation, Release 2019

2.5 Demos

AWS comes with some ready to use demos. The demos are a good way to learn how to use AWS.
Here are a short description of them:

agent A program using the AWS client interface. This simple tool can be used to retrieve Web page content. It supports
passing through a proxy with authentication and basic authentication on the Web site.

auth A simple program to test the Web Basic and Digest authentication feature.
autobahn A demo to validate the WebSocket implementation against the autobahn test suite.

cert A secure server using a Certificate Authority and validating clients with certificate. This is the highest security
level possible.

com Two simples program that uses the AWS communication service.
dispatch A simple demo using the dispatcher facility. see URI dispatcher.

hello_world The famous Hello World program. This is a server that will always return a Web page saying ‘Hello
World!”.

hello_wsdl An hello world kind of application using a WSDL document for describing the messages format.
hotplug A simple test for the hotplug feature.

https A simple secure server enforcing TLS 1.2 protocol to be used by the Web Browser. This demo also uses a signed
server’s key and proper setup hand over the password to the secure layer.

interoplab A WSDL based demo that test most of the SOAP features.

Jjabber_demo A simple Jabber command line client to check the presence of a JID (Jabber ID). This uses the Jabber
API, see AWS.Jabber.

multiple_sessions A demo of two embedded servers using different sessions.

res_demo A demo using the resource feature. This Web Server embedded a PNG image and an HTML page. The
executable is self contained.

runme An example that test many AWS features.

soap_demo A simple client/server program to test the SOAP protocol.

soap_disp Like above but use a SOAP dispatcher.

soap_vs A client and server that implement seven SOAP procedures for testing purpose.

split A demo for the transient pages and page splitter AWS’s feature. Here a very big table is split on multiple pages.
A set of links can be used to navigate to the next or previous page or to access directly to a given page.

test_ldap A simple LDAP demo which access a public LDAP server and display some information.
test_mail A simple application that send a set of SMTP messages with different kind of attachments.
text_input A simple demo which handle textarea and display the content.

vh_demo Two servers on the same machine. .. virtual hosting demo. see Virtual host dispatcher.
web_block A simple Web Bock based counter.

web_block_ajax As above but using also Ajax.

web_block_ajax_templates As above but using also the femplates2ada tool which create a tight coupling between the
web templates and the Ada code.

web_elements A driver to browse the Web Elements library and see some examples.

2.5. Demos 5

AWS Documentation, Release 2019

web_mail A simple Web Mail implementation that works on a POP mailbox.

websockets A simple WebSocket demo.

wps A very simple static Web page server based on AWS.Services.Page_Server. see Static Page server.
ws A static Web page server and push enabled server.

ws_candy A WebSocket demo using many of the WebSocket’s features.

zdemo A simple demo of the Gzip content encoding feature.

For build instructions see demos /README.

2.6 Installing

When the build is done you must install AWS at a specific location. The target directory is defined with the prefix
makefile.conf variable. The default value is set to the compiler root directory. Note that the previously installed
version is automatically removed before installing the new one. To install:

’$ make install

To install AWS into another directory you can either edit makefile.conf and set prefix to the directory you like to
install AWS or just force the make prefix variable:

’$ make prefix=/opt install

Alternatively, with GNAT 5.03 and above it is possible to install AWS into the GNAT Standard Library location. In
this case AWS is ready-to-use as there is no need to set ADA_PROJECT_PATH, just set prefix to point to GNAT root
directory:

’5 make prefix=/opt/gnatpro/6.1.1 install

Now you are ready to use AWS !

6 Chapter 2. Building AWS

CHAPTER
THREE

USING AWS

3.1 Setting up environment

3.1.1 Using environment variables

After installing AWS you must set the build environment to point the compiler to the right libraries. First let’s say that
AWS has been installed in awsroot directory.

Following are the instructions to set the environment yourself. Note that the preferred solution is to use project files.
In this case there is no manual configuration.

spec files

The spec files are installed in <awsroot>/include/aws. Add this path into ADA_INCLUDE_PATH
or put it on the command line -al<awsroot>/include/aws.

libraries

The GNAT library files (.ali) and the AWS libraries (1ibaws.a) are installed into <awsroot>/
lib/aws. Add this path into ADA_OBJECTS_PATH or put it on the command line -
aO<awsroot>/lib/aws/static. Furthermore for gnatlink to find the libraries you must add the following
library path option on the gnatmake command line -largs -L<awsroot>/lib/aws -laws.

Note that to build SSL applications you need to add -Iss/ -Icrypto on gnatmake’s -largs section.
external libraries

You must do the same thing (setting ADA_INCLUDE_PATH and ADA_OBJECTS_PATH) for all external
libraries that you will be using.

3.1.2 Using GNAT Project Files

The best solution is to use the installed GNAT Project File aws . gpr. This is supported only for GNAT 5.01 or above.
You must have installed XML/Ada with project file support too.

If this is the case just set the ADA_PROJECT _PATH variable to point to the AWS and XMIL/Ada install directories.
From there you just have to with the AWS project file in your GNAT Project file, nothing else to set:

with "aws";
project Simple is

for Main use ("prog.adb");

(continues on next page)

AWS Documentation, Release 2019

(continued from previous page)

for Source_Dirs use ("src");
for Object_Dir use "obj";

end Simple;

See the GNAT User’s Guide for more information about GNAT Project Files.

3.2 Basic notions

AWS is not a Web Server like /IS or Apache, it is a component to embedded HTTP protocol in an application. It
means that it is possible to build an application which can also answer to a standard browser like Internet Explorer
or Netscape Navigator. Since AWS provides support client and server HTTP protocol, applications can communicate
through the HTTP channel. This give a way to build distributed applications, see AWS.Client.

An application using AWS can open many HTTP channels. Each channel will use a specific port. For example, it is
possible to embedded many HTTP and/or many HTTPS channels in the same application.

3.2.1 Building an AWS server

To build a server you must:

e declare the HTTP Web Server:

WS : AWS.Server.HTTP;

¢ Start the server

You need to start the server before using it. This is done by calling AWS.Server.Start (see AWS.Server):

procedure Start

(Web_Server : in out HTTP;

Name : in String;

Callback : in Response.Callback;
Max_Connection : in Positive := Def_ Max_Connect;
Admin_URI : in String := Def_Admin_URTI;
Port : in Positive := Def_Port;
Security : in Boolean := False;

Session : in Boolean := False;
Case_Sensitive_Parameters : in Boolean := True;
Upload_Directory : in String := Def_Upload_Dir);

-— Start the Web server. It initialize the Max Connection connections

—-— lines. Name is just a string used to identify the server. This is used
—-— for example in the administrative page. Admin_URI must be set to enable
—-— the administrative status page. Callback is the procedure to call for
—-— each resource requested. Port is the Web server port. If Security is

-— set to True the server will use an HTTPS/SSL connection. If Session is
-— set to True the server will be able to get a status for each client

—-— connected. A session ID is used for that, on the client side it 1s a

—-— cookie. Case _Sensitive Parameters 1f set to False it means that the CGI
—-— parameters name will be handled without case sensitivity. Upload

—-— directory point to a directory where uploaded files will be stored.

The procedure Start takes many parameters:

8 Chapter 3. Using AWS

AWS Documentation, Release 2019

Web_Server

this is the Web server to start.
Name

This is a string to identify the server. This name will be used for example in the administrative status page.
Callback

This is the procedure to call for each requested resources. In this procedure you must handle all the
possible URI that you want to support. (see below).

Max_Connection

This is the maximum number of simultaneous connections. It means that Max_Connection client’s
browsers can gets answer at the same time. This parameter must be changed to match your needs. A
medium Web server will certainly need something like 20 or 30 simultaneous connections.

Admin_URI

This is a special URI recognized internally by the server. If this URI is requested the server will return
the administrative page. This page is built using a specific template page (default is ‘aws_status.thtml’),
see Status page.

The administrative page returns many information about the server. It is possible to configure the server
via two configuration files see Configuration options.

Port

This is the port to use for the Web server. You can use any free port on your computer. Note that on some
OS specific range could be reserved or needs specials privileges (port 80 on Linux for example).

Security

If Security is set to True the server will use an HTTPS/SSL connection. This part uses the OpenSSL or
GNUTLS library.

Session

If Session is set to true the server will keep a session ID for each client. The client will be able to save
and get variables associated with this session ID.

Case_Sensitive_Parameters
If set to True the CGI name parameters will be handled without using the case.

Note that there is other Start routines which support other features. For example there is a Start routine which use
a dispatcher routine instead of the simple callback procedure, see AWS.Server. And there is also the version using a
Config.Object which is the most generic one.

* provides a callback procedure

The callback procedure has the following prototype:

function Service (Request : in AWS.Status.Data) return AWS.Response.Data;

This procedure receive the request status. It is possible to retrieve information about the request through the
AWS.Status API (see AWS.Status.).

For example, to know what URI has been asked:

constant String := AWS.Status.URI (Request);

if URI = "/whatever" then

(continues on next page)

3.2. Basic notions 9

AWS Documentation, Release 2019

(continued from previous page)

end if;

Then this function should return an answer using one of the constructors in AWS.Response (see AWS.Response.).
For example, to return an HTML message:

AWS.Response.Build (Content_Type => "text/html",
Message_Body => "<p>just a demo");

It is also possible to return a file. For example, here is the way to return a PNG image:

AWS.Response.File (Content_Type => "image/png",
Filename => "adains.png");

Note that the main procedure should exit only when the server is terminated. For this you can use the AWS.Server. Wait
service.

A better solution is to use a template engine like Templates_Parser to build the HTML Web Server answer. Tem-
plates_Parser module is distributed with this version of AWS.

3.2.2 Callback procedure

The callback procedure is the user’s code that will be called by the AWS component to get the right answer for the
requested resource. In fact AWS just open the HTTP message, parsing the HTTP header and it builds an object of type
AWS.Status.Data. At this point it calls the user’s callback procedure, passing the object. The callback procedure must
returns the right response for the requested resources. Now AWS will just build up the HTTP response message and
send it back to user’s browser.

But what is the resource ?

Indeed in a standard Web development a resource is either a static object - an HTML page, an XML or XSL document -
or a CGI script. With AWS a resource is just a string to identify the resource, it does not represent the name of a static
object or CGI script.

So this string is just an internal representation for the resource. The callback procedure must be implemented to handle
each internal resource and return the right response.

Let’s have a small example. For example we want to build a Web server that will answer ‘Hello World’ if we ask for
the internal resource /hello, and must answer ‘Hum. ..’ otherwise:

with AWS.Response;
with AWS.Server;
with AWS.Status;

procedure Hello_World is

WS : AWS.Server.HTTP;

function HW_CB (Request : in AWS.Status.Data)

return AWS.Response.Data
is

constant String := AWS.Status.URI (Request);
begin
if URI = "/hello" then
return AWS.Response.Build ("text/html", "<p>Hello world !");
else

(continues on next page)

10 Chapter 3. Using AWS

AWS Documentation, Release 2019

(continued from previous page)

return AWS.Response.Build ("text/html", "<p>Hum...");
end if;
end HW_CB;

begin
AWS.Server.Start
(WS, "Hello World", Callback => HW_CB'Unrestricted Access);
delay 30.0;
end Hello_World;

Now of course the resource internal name can represent a file on disk. It is not mandatory but it is possible. For
example it is perfectly possible to build with AWS a simple page server.

As an example, let’s build a simple page server. This server will returns files in the current directory. Resources
internal name represent an HTML page or a GIF or PNG image for example. This server will return a 404 message
(Web Page Not Found) if the file does not exist. Here is the callback procedure that implements such simple page
server:

function Get (Request : in AW
constant String
constant String

Status.Data) return AWS.Response.Data is
AWS.Status.URI (Request);
URI (2 .. URI'Last);

begin
if Utils.Is_Regular_File (Filename) then
return AWS.Response.File
(Content_Type => AWS.MIME.Content_Type (Filename),
Filename => Filename) ;

else
return AWS.Response.Acknowledge
(Messages.S404,
"<p>Page '" & URI & "' Not found.");
end if;
end Get;

3.2.3 Form parameters

Form parameters are stored into a table of key/value pair. The key is the form input tag name and the value is the
content of the input field as filled by the user:

Enter your name

<FORM METHOD=GET ACTION=/get-form>"

<INPUT TYPE=TEXT NAME=name VALUE="<default>" size=15>
<INPUT TYPE=SUBMIT NAME=go VALUE="Ok">

</FORM>

Note that as explained above Callback procedure, the resource described in ACTION is just an internal string repre-
sentation for the resource.

In this example there is two form parameters:
name The value is the content of this text field as filled by the client.
go The value is “Ok”.

There is many functions (in AWS. Parameters) to retrieve the tag name or value and the number of parameters. Here
are some examples:

3.2. Basic notions 11

AWS Documentation, Release 2019

function Service (Request : in AWS.Status.Data) return AWS.Response.Data is
: constant AWS.Parameters.List := AWS.Status.Parameters (Request);

AWS.Parameters.Get (P, “name”)

Returns the value for parameter named name
AWS.Parameters.Get_Name (P, 1)

Returns the string “name”.
AWS. Parameters.Get (P, 1)

Returns the value for parameter named name
AWS. Parameters.Get (P, “go”)

Returns the string “Ok”.
AWS. Parameters.Get_Name (P, 2)

Returns the string “go”.
AWS. Parameters.Get (P, 2)

Returns the string “Ok”.

Request is the AWS current connection status passed to the callback procedure. And P is the parameters list retrieved
from the connection status data. For a discussion about the callback procedure see Building an AWS server.

3.2.4 Distribution of an AWS server

The directory containing the server program must contain the following files if you plan to use a status page see Status
page.
aws_status.thtml
The template HTML file for the AWS status page.
aws_logo.png
The AWS logo displayed on the status page.
aws_up.png
The AWS hotplug table up arrow.
aws_down.png
The AWS hotplug table down arrow.

Note that these filenames are the current AWS default. But it is possible to change those defaults using the configuration
files see Configuration options.

3.3 Building answers

We have already seen, in simple examples, how to build basic answers using AWS.Response APL. In this section we
present all ways to build answers from basic support to the more advanced support like the compressed memory stream
response.

12 Chapter 3. Using AWS

AWS Documentation, Release 2019

3.3.1 Redirection

A redirection is a way to redirect the client’s browser to another URL. Client’s won’t notice that a redirection has
occurs. As soon as the browser has received the response from the server it will retrieve the page as pointed by the
redirection:

return Response.URL (Location => "/use-this-one");

3.3.2 New location for a page

User will receive a Web page saying that this page has moved and eventually pointing to the new location:

return Response.Moved
(Location => "/use-this-one";
Message => "This page has moved, please update your reference");

3.3.3 Authentication required

For protected pages you need to ask user to enter a password. See Authentication.

3.3.4 Sending back an error message

Acknowledge can be used to send back error messages. There is many kind of status code, see Message.Status_Code
definition. Together with the status code it is possible to pass textual error message in Message_Body parameter:

return Response.Acknowledge
(Status_Code => Messages.S503,
Message_Body => "Can't connect to the database, please retry later.",
Content_Type => MIME.Text_Plain);

3.3.5 Response from a string

This is the simplest way to build a response object. There is two constructors in AWS.Response, one based on a
standard string and one for Unbounded_String:

return Response.Build (MIME.Text_HTML, "My answer'");

The Build routine takes also a status code parameter to handle errors. By default this code is Messages.S200 which
is the standard HTTP status (no error encountered). The other parameter can be used to control caches. See
AWS.Response.

3.3.6 Response from a Stream_Element_Array

This is exactly as above but the Build routine takes a Stream_Element_Array instead of a string.

3.3. Building answers 13

AWS Documentation, Release 2019

3.3.7 Response from a file

To build a File response there is a single constructor named File. This routine is very similar to the one above except
that we specify a filename as the response:

return Response.File (MIME.Text_HTML, "index.html");

Again there parameters to control the status code and cache. No check on the filename is done at this point, so if
index.html does not exit no exception is raised. The server is responsible to check for the file and to properly send
back the 404 message if necessary.

Note that this routine takes an optional parameter named Once that is to be used for temporary files created on the
server side for the client. With Once set to True the file will be deleted by the server after sending it (this includes the
case where the download is suspended).

3.3.8 Response from a stream

Sometimes it is not possible (or convenient) to build the response in memory as a string object for example. Streams
can be used to workaround this. The constructor for such response is again very similar to the ones above except that
instead of the data we pass an handle to a Resources.Streams.Stream_Type object.

The first step is to build the stream object. This is done by deriving a new type from Resources.Streams.Stream_Type
and implementing three abstract procedures.

Read

Must return the next chunk of data from the stream. Note that initialization if needed are to be done there
during the first call to read.

End_Of File
Must return True when there is no more data on the stream.
Close
Must close the stream and for example release all memory used by the implementation.

The second step is to build the response object:

type SQIL_Stream is new Resources.Streams.Stream_ Type;

Stream_Object : SQL_Stream;

procedure Read (...) is
function End_Of_File (...) return Boolean is
procedure Close (...) is

return Response.Stream (MIME.Text_HTML, Stream_Object);

Note that in some cases it is needed to create a file containing the data for the client (for example a tar.gz or a zip
archive). But there is no way to properly remove this file from the file system as we really don’t know when the upload
is terminated when using the AWS.Response. File constructor. To solve this problem it is possible to use a stream as the
procedure Close is called by the server when all data have been read. In this procedure it is trivial to do the necessary
clean-up.

14 Chapter 3. Using AWS

AWS Documentation, Release 2019

3.3.9 Response from a on-disk stream

An ready-to-use implementation of the stream API described above where the stream content is read from an on-disk
file.

3.3.10 Response from a on-disk once stream

An ready-to-use implementation of the stream API described above where the stream content is read from an on-disk
file. When the transfer is completed the file is removed from the file system.

3.3.11 Response from a memory stream

This is an implementation of the standard stream support described above. In this case the stream is in memory and
built by adding data to it.

To create a memory stream just declare an object of type AWS.Resources.Streams.Memory.Stream_Type. When cre-
ated, this memory stream is empty, using the Streams.Memory.Append routines it is possible to add chunk of data to
it. It is of course possible to call Append as many times as needed. When done just return this object to the server:

Data : AWS.Resources.Streams.Memory.Stream_Type;

Append (Data, Translator.To_Stream_Element_Array ("First chunk"));
Append (Data, Translator.To_Stream Element_Array ("Second chunk..."));

return Response.Stream (MIME.Text_HTML, Data);

Note that you do not have to take care of releasing the allocated memory, the default Close routine will do just that.

3.3.12 Response from a compressed memory stream

This is a slight variant of the standard memory stream described above. In this case the stream object must be declared
as a AWS.Resources.Streams.Memory.ZLib.Stream_Type.

The ZLib stream object must be initialized to enable the compression and select the right parameters. This is done
using the AWS.Resources.Streams.Memory.ZLib.Deflate_Initialize routine which takes many parameters to select the
right options for the compression algorithm, all of them have good default values. When initialized the compressed
stream object is used exactly as a standard stream:

Data : AWS.Resources.Streams.Memory.ZLib.Stream_ Type;
Deflate_Initialize (Data);

Append (Data, Translator.To_Stream_Element_Array ("First chunk"));
Append (Data, Translator.To_Stream_Element_Array ("Second chunk..."));

return Response.Stream (MIME.Text_HTML, Data);

Note that there is the reverse implementation to decompress a stream. See AWS.Resources.Streams.Memory.ZLib. It’s
usage is identical.

3.3. Building answers 15

AWS Documentation, Release 2019

3.3.13 Split page

AWS has a specific high level service to split a large response into a set of pages. For more information see Split pages.

3.3.14 Response a from pipe stream

The response sent to the server is read from the output of an external application. This kind of stream can be used to
avoid writing a temporary file into the hard disk. For example it is possible to return an archive created with the tar
tool without writing the intermediate tar achive on the disk.

3.4 Configuration options

To configure an AWS server it is possible to use a configuration object. This object can be set using the AWS. Config.Set
API or initialized using a configuration file.

Configuration files are a way to configure the server without recompiling it. Each application can be configured using
two configurations files:

aws.ini
This file is parsed first and corresponds to the configuration for all AWS server runs in the same directory.
<program_name>.ini

This file is parsed after aws . ini. It is possible with this initialization file to have specific settings for
some servers. program_name . ini is looked first in the application’s directory and then in the current
working directory. This is only supported on platforms where Ada. Command_Line is implemented. So,
on VxWorks only aws . ini is parsed.

Furthermore, it is possible to read a specific configuration file using the AWS.Config.Ini.Read routine. See
AWS. Config.Ini.

Current supported options are:
Accept_Queue_Size (positive)

This is the size of the queue for the incoming requests. Higher this value will be and less “connection
refused” will be reported to the client. The default value is 64.

Admin_Password (string)

This is the password used to call the administrative page. The password can be generated with
aws_password (the module name must be admin):

$ aws_password admin <password>

Admin_URI (string)

This is the URI to call the administrative page. This can be used when calling AWS.Server.Start. The
default is <not-defined>.

Case_Sensitive_Parameters (boolean)
If set to True the HTTP parameters are case sensitive. The default value TRUE.

Certificate (string)

16 Chapter 3. Using AWS

AWS Documentation, Release 2019

Set the certificate file to be used with the secure servers. The default is cert.pem. A single certificate
or a certificate chain is supported. The certificates must be in PEM format and the chain must be sorted
starting with the subject’s certificate, followed by intermediate CA certificates if applicable and ending at
the highest level (root) CA certificate. If the file contains only a single certificate, it can be followed by a
private key. In this case the Key parameter (see below) must empty.

Check_URL_Validity (boolean)

Server have to check URI for validity. For example it checks that an URL does not reference a resource
above the Web root. The default is TRUE.

Cipher_Priorities

Values are dependent on the actual secure layer (OpenSSL or GNUTLS). It is used to specify the session’s
handshake algorithms and options.

Cleaner_Wait_For_Client_Timeout (duration)

Number of seconds to timeout on waiting for a client request. This is a timeout for regular cleaning task.
The default is 80.0 seconds.

Cleaner_Client_Header_Timeout (duration)

Number of seconds to timeout on waiting for client header. This is a timeout for regular cleaning task.
The default is 7.0 seconds.

Cleaner_Client_Data_Timeout (duration)

Number of seconds to timeout on waiting for client message body. This is a timeout for regular cleaning
task. The default is 28800.0 seconds.

Cleaner_Server_Response_Timeout (duration)

Number of seconds to timeout on waiting for client to accept answer. This is a timeout for regular cleaning
task. The default is 28800.0 seconds.

Config_Directory (string)
The directory in which AWS keeps some configuration parameters. The default is .config/ada-web-srv.
CRL_File (string)

This configuration option must point to a filename containing a CRL (Certificate Revocation List). This
will make it possible to control client connecting to the server. The default values is <not-defined>.

Directory_Browser_Page (string)

Specify the filename for the directory browser template page. The default value is aws_directory.thtml.
Down_Image (string)

The name of the down arrow image to use in the status page. The default is aws_down.png.
Error_Log_Activated (boolean)

A boolean to enable or disable the error log. By default the error log activation is set to FALSE.
Error_Log_Filename_Prefix (string)

This is to set the filename prefix for the error log file. By default the error log filename prefix is the
program name (without extension) followed by ““_error”.

Error_Log_Split_Mode [None/Each_Run/Daily/Monthly]

It indicates how to split the error logs. Each_Run means that a new log file is used each time the process
is started. Daily and Monthly will use a new log file each day or month. The default is NONE.

3.4. Configuration options 17

AWS Documentation, Release 2019

Exchange_Certificate (boolean)

If set to True it means that the client will be asked to send its certificate to the server. The default value is
FALSE.

Certificate_Required (boolean)

If set to True the server will reject all SSL connections if the client did not provide a certificate (be it valid
or not). The Exchange_Certificate option must be set in this case. The default value is FALSE.

Force_Wait_For_Client_Timeout (duration)

Number of seconds to timeout on waiting for a client request. This is a timeout for urgent request when
resources are missing. The default is 2.0 seconds.

Force_Client_Header_Timeout (duration)

Number of seconds to timeout on waiting for client header. This is a timeout for urgent request when
resources are missing. The default is 2.0 seconds.

Force_Client_Data_Timeout (duration)

Number of seconds to timeout on waiting for client message body. This is a timeout for urgent request
when resources are missing. The default is 10800.0 seconds.

Force_Server_Response_Timeout (duration)

Number of seconds to timeout on waiting for client to accept answer. This is a timeout for urgent request
when resources are missing. The default is 10800.0 seconds.

Free_Slots_Keep_Alive_Limit (positive)

This is the minimum number of remaining free slots to enable keep-alive HTTP connections.
For heavy-loaded HTTP servers, the Max_Connection parameter should be big enough, and
Free_Slots_Keep_Alive_Limit should be about 1-10% of the Max_Connection parameter depending on
the duration of the average server response. Longer is the average time to send back a response bigger
Free_Slots_Keep_Alive_Limit should be. The default is 1.

Hotplug_Port (positive)

This is the hotplug communication port needed to register and un-register an hotplug module. The default
value is 8888.

Key (string)
Set the RSA key file to be used with the secure servers. The default file is <not-defined>.
Line_Stack_Size (positive)

The HTTP lines stack size. The stack size must be adjusted for each applications depending on the use of
the stack done by the callback procedures. The default is 1376256.

Log_Activated (boolean)
A boolean to enable or disable the standard log. By default the standard log activation is set to FALSE.
Log_Extended_Fields (string list)

Comma separated list of the extended log field names. If this parameter is empty, the HTTP log would be
in the apache compartible format, otherwise log file would be in Extended format. For more information
see Server Log.

Log_File_Directory (string)

18 Chapter 3. Using AWS

AWS Documentation, Release 2019

This is to set the directory where log file must be written. This parameter will be used automatically by
AWS.Log if logging facility is enabled. By default log files are written in the current directory. The default
is /.

Log_Filename_Prefix (string)

This is to set the filename prefix for the log file. By default the log filename prefix is the program name
(without extension).

Log_Split_Mode [None/Each_Run/Daily/Monthly]

It indicates how to split the logs. Each_Run means that a new log file is used each time the process is
started. Daily and Monthly will use a new log file each day or month. The default is NONE.

Logo_Image (string).
The name of the logo image to use in the status page. The default is aws_logo.png.
Max_Concurrent_Download (positive)

Control the maximum number of parallel downloads accepted by the download manager. The default
value is 25.

Max_Connection (positive)

This is the maximum number of simultaneous connections for the server. This can be used when calling
the AWS.Server.Start. The default is 5.

Note that the total number of threads used by a server is:

N = <main server thread> + <max connections> [+ <session>]

Note: [...] means optional value Add 1 only if the session feature is activated. This is due to the session
cleaner task.

Max_POST_Parameters (positive)
The maximum number of POST parameters supported by AWS. The default value is 100.
Max_WebSocket (positive)

The maximum number of WebSocket that can be opened simultaneously in AWS. Above this value AWS
will try to close timed-out WebSockets (see WebSocket_Timeout). The default value is 512.

Max_WebSocket_Handler (positive)

The maximum number of message to handle simultaenously. The default value is 2.
MIME_Types (string)

The name of the file containing the MIME types associations. The default file name is aws.mime.
Receive_Timeout (duration)

Number of seconds to timeout when receiving chunk of data. The default is 30.0 seconds.
Reuse_Address (boolean)

Set the socket reuse address policy. If set to True the server will be able to bind to a socket that has just
been released without the need of waiting. Enabling this feature may introduce security risks on some
platforms. The default is FALSE.

Security_Mode (string)
Set the security mode to use for the secure connections. The default mode is TLS. See AWS.Net.SSL.

Send_Buffer_Size (positive)

3.4. Configuration options 19

AWS Documentation, Release 2019

This is the socket internal buffer used for sending data to the clients. The default is 0.
Send_Timeout (duration)

Number of seconds to timeout when sending chunk of data. The default is 40.0 seconds.
Server_Header (string)

The value to be used for the HTTP Server header. The default is AWS (Ada Web Server) v2019. If the
value is set to the empty string, the server header is not sent.

Server_Host (string)

The name of the host machine. This can be used if a computer has more than one IP address, it is possible
to have two servers at the same port on the same machine, both being binded on different IP addresses.

Server_Name (string)

The name of the server. This can be used when calling AWS.Server.Start. The default is AWS Module.
Server_Priority (natural)

Priority of the task handling the HTTP protocol. The default is Default_Priority.
Server_Port (integer)

The port where server will wait for incoming connections requests. This can be used when calling
AWS.Server.Start. The default is 8080.

Service_Priority (natural)

Priority of the tasks used by optional services like SMTP Server, Server Push, Jabber and the Transient
Page cleaner. The default is Default_Priority.

Session (boolean)
Whether the session support must be activated or not. The default is FALSE.
Session_Name (string)

The name of the cookie session. This can be used to support sessions for multiple servers embedded into
the same executable. The default is AWS.

Session_Id_Length (positive)
The length of the session id in characters. The default is 11 characters.
Session_Lifetime (duration)

Number of seconds to keep session information. After this period a session is obsoleted and will be
removed at next cleanup. The default is 600.0 seconds.

Session_Cleanup_Interval (duration)

Number of seconds between each run of the session cleanup task. This task will remove all session data
that have been obsoleted. The default is 300.0 seconds.

Session_Cleaner_Priority (natural)

Priority of the task cleaning the session data. The default is Default_Priority.
Status_Page (string)

The name of the status page to used. The default is aws_status.thtml.
TCP_No_Delay (boolean)

This control the server’s socket delay/no-delay option. This option should be used for applications that
require lower latency on every packet sent. The default is FALSE.

20 Chapter 3. Using AWS

AWS Documentation, Release 2019

TLS_Ticket_Support (boolean)
Specify whether the TLS ticket support is activated or not. The default value is FALSE.
Transient_Cleanup_Interval (positive)

Specify the number of seconds between each run of the cleaner task to remove transient pages. The default
value is 180.0 seconds.

Transient_Lifetime (duration)

Specify the number of seconds to keep a transient page. After this period the transient page is obsoleted
and will be removed during next cleanup. The default value is 300.0 seconds.

Trusted_CA (string)

This must point to the file containing the list of trusted Certificate Authorities. The CA in this file will be
used to verify the client certificate validity. The default values is <not-defined>.

Up_Image (string)
The name of the up arrow image to use in the status page. The default is aws_up.png.
Upload_Directory (string)

This is to set the directory where upload files must be stored. By default uploaded files are written in the
current directory. The default is <not-defined>.

User_Agent (string)

The value to be used for the HTTP User_Agent header. The default value is AWS (Ada Web Server)
v2019. If the value is set to the empty string, the User_Agent header is not sent.

WebSocket_Message_Queue_Size (positive)

This is the size of the queue containing incoming messages waiting to be handled by one of the task, see
Max_WebSocket_Handler above. The default value is 10.

WebSocket_Origin (string)

This is a regular expression which can be used to handle WebSockets originating from a specific domain.
By default AWS handles WebSockets from any origins.

WebSocket_Priority (natural)
Priority of the task handling the WebSockets. The default is Default_Priority.
WebSocket_Timeout (duration)

A number of seconds after which a WebSocket without activity is considered timed-out and can be elected
to be closed if the maximum number of sockets opened has been reached. (see Max_WebSocket). The
default is 28800.0.

WWW_Root (string)

This option sets the Web Server root directory. All Web resources are referenced from this root directory.
The default value is ./.

Each option value can be retrieved using the AWS. Config unit or set using AWS. Config.Set.

For example to build a server where the port and the maximum number of connection can be changed via a configura-
tion file (either aws . ini or <program_name>.ini):

WS : AWS.Server.HTTP;

: constant AWS.Config.Object := AWS.Config.Get_Current;

(continues on next page)

3.4. Configuration options 21

AWS Documentation, Release 2019

(continued from previous page)

Server.Start (WS, Service'Access, Conf);

3.5 Session handling

AWS provides a way to keep session data while users are browsing. It works by creating transparently a session ID
where it is possible to insert, delete and retrieve session data using a standard Ada API (see AWS.Session.). Session
data are key/value pair each of them being strings. These sessions data are kept on the server, for client side state
management see H11P state management.

* First you declare and start an HTTP channel with session enabled:

WS : AWS.Server.HTTP;

Server.Start (WS,

Port => 1234,
Callback => Service'Access,
Session => True);

Here we have built an HTTP channel with a maximum of 3 simultaneous connections using the port 1234. A
session ID will be created and sent inside a cookie to the client’s browser at the first request. This session ID
will be sent back to the server each time the client will ask for a resource to the server.

* Next, in the Service callback procedure that you have provided you must retrieve the Session ID. As we have
seen, the callback procedure has the following prototype:

’function Service (Request : in .Status.Data) return AWS.Response.Data;

The Session ID is kept in the Request object and can be retrieved using:

’ : constant AWS.Session.ID := AWS.Status.Session (Request);

» From there it is quite easy to get or set some session data using the provided API. For example:

declare
C : Integer;
begin
C := AWS.Session.Get (Session_ID, "counter");
C :=C + 1;
AWS.Session.Set (Session_ID, "counter", C);
end;

This example first get the value (as an Integer) for session data whose key is “counter”, increment this counter
and then set it back to the new value.

It is also possible to save and restore all session data. It means that the server can be shutdown and launched some
time after and all client data are restored as they were at shutdown time. Client will just see nothing. With this feature
it is possible to shutdown a server to update its look or because a bug has been fixed for example. It is then possible to
restart it keeping the complete Web server context.

22 Chapter 3. Using AWS

AWS Documentation, Release 2019

3.6 HTTP state management

AWS provides a full implementation of RFC 2109 via the AWS. Cookie package. Using this package you set, get and
expire client-side HTTP cookies.

First we set a cookie:

declare
Content : AWS.Response.Data;
begin
AWS.Cookie.Set (Content,
Key => "hello",
Value => "world",
Max_Age => 86400.0);
end;

Here we set the cookie hello with the value world, and we tell the client to expire the cookie 86400 seconds into the
future.

Getting the cookie value back is equally simple:

declare
Request : AWS.Status.Data
Assume that this object contain an actual HTTP request.
begin
Put_Line (AWS.Cookie.Get (Request, "hello"));
Output 'world'
end;

Had the cookie hello not existed, an empty String would’ve been returned.

In some cases it might be of value to know if a given cookie exists, and for that we have the Exists function available:

declare
Request : AWS.Status.Data
—-— Assume that this object contain an actual HTTP request

begin
if AWS.Cookie.Exists ("hello") then
Put_Line ("The 'hello' cookie exists!");
end if;
end;

Note that Exists doesn’t care if the cookie contains an actual value or not. If a cookie with no value exists, Exists will
return True.

And finally we might wish to tell the client to expire a cookie:

declare
Content : AWS.Response.Data;
begin
AWS.Cookie.Expire (Content,
Key => "hello");
end;

The Cookie package provide Get functions and Set procedures for String, Integer, Float and Boolean types, but
since cookies are inherently strings, it’s important to understand what happens when the cookie String value can’t be
converted properly to either Integer, Float or Boolean.

So if either conversion fails or the cookie simply doesn’t exist, the following happens:

3.6. HTTP state management 23

AWS Documentation, Release 2019

* For Integer, the value 0 is returned
e For Float, the value 0.0 is returned.
* For Boolean, the value False is returned. Note that only the string ‘True’ is True. Everything else is False.

For more information see AWS. Cookie.

3.7 Authentication

AWS supports Basic and Digest authentication. The authentication request can be sent at any time from the callback
procedure. For this the AWS.Response.Authenticate message must be returned.

The authentication process is as follow:
* Send authentication request

From the callback routine return an authentication request when needed:

function Service (Request : in Status.Data) return Response.Data is
constant String := Status.URI (Request);
constant String := Status.Authorization_Name (Request);
begin
-— URI starting with "/prot/" are protected
if URI (URI'First .. URI'First + 5) = "/prot/"
and then User = ""
then

return Response.Authenticate ("AWS", Response.Basic);

The first parameter is the Realm, it is just a string that will be displayed (on the authentication dialog box) by
the browser to indicate for which resource the authentication is needed.

¢ Check authentication

When an authentication as been done the callback’s request data contain the user and password. Checks the
values against an ACL for each protected resources:

function Protected_Service
(Request : in AWS.Status.Data) return AWS.Response.Data
is
constant String := Status.Authorization_Name (Request);
constant String := Status.Authorization_Password (Request);
begin
if User = "xyz" and then Pwd = "azerty" then
return ...;

Note that the Basic authentication is not secure at all. The password is sent unencoded by the browser to the server. If
security is an issue it is better to use the Digest authentication and/or an SSL server.

3.8 File upload

File upload is the way to send a file from the client to the server. To enable file upload on the client side the Web page
must contain a FORM with an INPUT tag of type FILE. The FORM must also contain the enctype attribute set to
multipart/form-data:

24 Chapter 3. Using AWS

AWS Documentation, Release 2019

<FORM enctype="multipart/form-data" ACTION=/whatever METHOD=POST>
File to process: <INPUT NAME=filename TYPE=FILE>
<INPUT TYPE=SUBMIT NAME=go VALUE="Send File">

</FORM>

On the server side, AWS will retrieve the file and put it into the upload directory. AWS add a prefix to the file to ensure
that the filename will be unique on the server side. The upload directory can be changed using the configuration
options. See Configuration options.

The uploaded files are removed after the user’s callback. This is done for security reasons, if files were not removed
it would be possible to fill the server hard disk by uploading large files to the server. This means that uploaded files
must be specifically handled by the users by either copying or renaming them.

AWS will also setup the form parameters as usual. In the above example there is two parameters (see Form parameters).
filename

This variable contains two values, one with the client side name and one with the server side name.
First value : Parameters.Get (P, “filename”)

The value is the full pathname of the file on the server. (i.e. the upload directory catenated with the prefix
and filename).

Second value : Parameters.Get (P, “filename”, 2)
The value is the simple filename (no path information) of the file on the client side.
go

The value is “Send File”

3.9 Communication

This API is used to do communication between programs using the HTTP GET protocol. It is a very simple API
not to be compared with GLADE or SOAP. This communication facility is to be used for simple request or when a
light communication support is needed. For more complex communications or to achieve inter-operability with other
modules it is certainly a good idea to have a look at the AWS/SOAP support, see SOAP.

In a communication there is a Client and a Server. Here is what is to be done on both sides to have programs talking
together.

3.9.1 Communication - client side

On the client side it is quite simple. You just have to send a message using AWS. Communication.Client.Send_Message:

function Send_Message
(Server : in String;
in P

in S

sitive;

“ring;

Parameters : in Parameter_Se

return Response.Data;

The message is sent to the specified server using the given port. A message is composed of a name which is a string
and a set of parameters. There is a parameter set constructor in AWS. Communication. This function return a response
as for any callback procedure.

3.9. Communication 25

AWS Documentation, Release 2019

3.9.2 Communication - server side

On the server side things are a bit more complex but not that difficult. You must instantiate the
AWS.Communication.Server generic package by providing a callback procedure. This callback procedure will must
handle all kind of message that a client will send.

During instantiation you must also pass a context for the communication server. This context will be passed back to
the callback procedure:

generic

type T (<>) is limited private;
type T_Access is access T;

with function Callback

(Server : in String;

Name : in String;

Context : in T_Access;

Parameters : in Parameter_Set := Null_ Parameter_Set)

return Response.Data;

package AWS.Communication.Server is

A complete example can be found in the demos directory. Look for com_1.adb and com_2 . adb.

Note that this communication API is used by the Hotplug module facility, see Hotplug module.

3.10 Hotplug module

An Hotplug module is a module that can by dynamically binded to a running server. It is a Web server and the
development process is very similar to what we have seen until now Building an AWS server. The Hotplug module
will register itself into a Web server by sending a message using the communication API. The Hotplug module send
to the server a regular expression and an URL. The main server will redirect all URL matching the regular expression
to the Hotplug module.

Note that the main server will redirect the URL to the first matching regular expression.

3.10.1 Hotplug module - server activation

The first step is to properly create the main server hotplug module registration file. This file must list all hotplug
modules that can register into the main server. Each line have the following format:

hotplug_module_name:password:server:port

hotplug_module_name

The name of the hotplug module. You can choose any name you want. This name will be use during the
registration process and to generate the password.

password
The MDS5 password, see below.

server

26 Chapter 3. Using AWS

AWS Documentation, Release 2019

The name of the server where the redirection will be made. This is for security reasons, main server will
not permit to redirect requests to any other server.

port
The port to use for the redirection on server.

You must create a password for each hotplug modules. The generated password depends on the hotplug module name.
A tool named aws_password is provided with AWS to generate such password. Usage is simple:

’$ aws_password <hotplug_module_name> <password>

Then, after starting the main server you must activate the Hotplug feature:

’AWS.Server.Hotplug.Activate (WS'Unchecked_Access, 2222, "hotplug_conf.ini");

hotplug_conf.ini is the hotplug module registration file described above.

3.10.2 Hotplug module - creation

Here is how to create an Hotplug module:

* First you create a standard Web server, see Building an AWS server:

WS : AWS.Server.HTTP (3, 1235, False, Hotplug_CB.Hotplug'Access, False);

Here we have a server listening to the port 1235. This server can be used alone if needed as any Server developed

with AWS.
* Then you register the Hotplug module to the main server, see AWS.Client.Hotplug:
Response := AWS.Client.Hotplug.Register
(Name => "Hotplug_Module_Demo",
Password => "my_password",
Server => "http://dieppe:2222",
Regexp => "_xAWS.x",
URL => "http://omsk:1235/");

The hotplug module Hotplug_Module_Demo must have been declared on the main server, the password and
redirection must have been properly recorded too for security reasons, see Hotplug module - server activation.
This command register Hotplug_Module_Demo into the server running on the machine dieppe and ask it to
redirect all URL containing AWS to the server running on machine omsk on port /235.

* When the Hotplug module is stopped, you must unregister it:

Response := AWS.Client.Hotplug.Unregister
(Name => "Hotplug_Module_Demo",
Password => "my_password",
Server => "http://dieppe:2222",
Regexp => " xAWS.x");

Here we ask to unregister Hotplug_Module_Demo from server dieppe. As for the registration process a proper
password must be specified, see Hotplug module - server activation.

A complete example can be found in the demos directory. Look for main.adb and hotplug.adb.

3.10. Hotplug module 27

AWS Documentation, Release 2019

3.11 Server Push

This protocol is obsolescent, it is hightly recommended to use the WebSockets now. See WebSockets.

Server Push is a feature that let the Web Server send continuously data to client’s Web Browser or client applications.
The client does not have to reload at periodic time (which is what is called client pull) to have the data updated, each
time the server send a piece of data it gets displayed on the client.

To build a push server you need to build an instance of the AWS.Server. Push package. This package takes a set of
formal parameters. Here are the step-by-step instructions to build a Push Server:

e The data to be sent

First you must create a type that will contains the data to be sent to client’s browser except if it is a standard Ada
type. See Client_Output_Type formal parameter.

¢ The data that will be streamed

This is the representation of the data that will be sent to client’s browser. This will be either a String for Web
pages or Stream_Element_Array for binary data like pictures. See Stream_Qutput_Type formal parameter.

¢ The context

It is often nice to be able to configure each client with different parameters if needed. This can be achieved
with the Context data type that will be passed as parameter of the conversion function described below. See
Client_Environment formal parameter.

* Provides a function to convert from the data type to be sent to the data that will be streamed.

This is a function that will transform the data described on point 1 above to the form described on point 2 above.
See To_Stream_Output formal parameter.

* Build the Push Server
To do so you just need to instantiate AWS.Server. Push with the above declarations.
* Registering new clients

In the standard AWS procedure callback it is possible to register a client if requested. This is done by calling
AWS.Server. Push.Register. It is possible to unregister a client using AWS.Server. Push.Unregister. Each client
must be identified with a unique client ID. After registering a new client from the callback procedure you must
return the AWS.Response.Socket_Taken message. This is very important, it tells the server to not close this
socket.

 Sending the data
At this point it is possible to send data to clients. To do so two routines are available.
AWS.Server. Push.Send_To
To send a piece of data to a specific client identified by its client ID.
AWS.Server. Push.Send
To send a piece of data to all clients registered on this server.

Very large Internet applications should use this feature carefully. A push server keeps a socket reserved for each
registered clients and the number of available sockets per process is limited by the OS.

28 Chapter 3. Using AWS

AWS Documentation, Release 2019

3.12 Working with Server sockets

With AWS is is possible to take out a socket from the server and give it back later. This feature must be used carefully
but it gives a lot of flexibility. As the socket is taken away, the connection line (or slot) is released, AWS can then use
it to handle other requests.

This can be used to better support heavy loaded servers when some requests need a long time to complete. Long time
here means longer than most of the other requests which should be mostly interractives for a Web server. Of course in
such a case a keep-alive connection is kept open.

The usage in such a case is to take out the socket and put it in a waiting line. This releases the connection for the
server. When the data to prepare the answer is ready you give back the socket to the server.

¢ Take a socket from the server

This first step is done form the callback function. A user instead of replying immediatly decides to take away
the socket from the server. The first step is to record the connection socket socket by calling AWS.Status.Socket.
The second step is to tell the server to not release this socket by returning AWS.Response.Socket_Taken from the
callback function. At this point the server will continue to serve other clients.

Note that this feature is used by the server push implementation, see Server Push.
* Give back the socket to the server

Calling AWS.Sever.Give_Back_Socket will register the socket for reuse. This socket will be placed into a spool,
next time the server will check for incoming requests it will be picked up.

3.13 Server Log

It is possible to have the server activity logged into the file <progname>-Y-M-D.log. To activate the logging
you must call the AWS.Server.Log.Start, and it is possible to stop logging by calling AWS.Server.Log.Stop. Note that
AWS.Server.Log.Start have a parameter named Auto_Flush to control output buffering. This parameter is False by
default. If set to True, the log file will be automatically flushed after each data. If the server logging is not buffered,
i.e. Auto_Flush is False, the log can still be flushed by calling the AWS.Server.Log.Flush routine. See AWS.Log for
more information especially about the way rotating logs can be setup. Using this feature it is possible to have automatic
split of the log file each day, each month or at every run. See AWS.Log spec. This is very useful to avoid having very
big log files.

The log format depend on Log_Extended_Fields configuration parameter. If this parameter is empty, the HTTP log
would have fixed apache compartible format:

’<client IP> - <auth name> - [<date and time>] "<request>" <status code> <size>

For example:

’100.99.12.1 - — [22/Nov/2000:11:44:14] "GET /whatever HTTP/1.1"™ 200 1789

If the extended fields list is not empty, the log file format would have user defined fields set:

#Version: 1.0

#Date: 2006-01-09 00:00:01

#Fields: date time c—-ip cs-method cs-uri cs-version sc-status sc-bytes
2006-01-09 00:34:23 100.99.12.1 GET /foo/bar.html HTTP/1.1 200 30

Fields in the comma separated Log_Extended_Fields list could be:

date Date at which transaction completed

3.12. Working with Server sockets 29

AWS Documentation, Release 2019

time Time at which transaction completed

time-taken Time taken for transaction to complete in seconds
c-ip Client side connected IP address

c-port Client side connected port

s-ip Server side connected IP address

s-port Server side connected port

cs-method HTTP request method

cs-username Client authentication username

cs-version Client supported HTTP version

cs-uri Request URI

cs-uri-stem Stem portion alone of URI (omitting query)
cs-uri-query Query portion alone of URI

sc-status Responce status code

sc-bytes Length of response message body

cs(<header>) Any header field name sent from client to server
sc(<header>) Any header field name sent from server to client
x-<appfield> Any application defined field name

AWS also support error log files. If activated every internal error detected by AWS will gets logged into this spe-
cial file. Log file for errors would be in simple apache compartible format. See AWS.Server.Log.Start_Error and
AWS.Server.Log.Stop_Error.

For the full set of routines supporting the log facility see AWS.Server.Log .

3.14 Secure server

It is not much difficult to use a secure server (HTTPS) than a standard one. Here we describe only what is specific to
an HTTPS server.

Before going further you must check that AWS has been configured with SSL support. See Building. You must also
have installed the OpenSSL or GNUTLS libraries on your system. If this is done, you can continue reading this section.

3.14.1 Initialization

A server is configured as using the HTTPS protocol at the time it is started. The only thing to do is to set the Start’s
Security parameter to True. This will start a server and activate the SSL layer by default. A secure server must use a
valid certificate, the default one is cert.pem. This certificate has been created by the OpenSSL or GNUTLS tool and is
valid until year 2008. Yet, this certificate has not been signed. To build a secure server user’s can rely on, you must
have a valid certificate signed by one of the Certificate Authorities.

The certificate to be used must be specified before starting the secure server with AWS.Server.Set_Security:

With a key and certificate files:

30 Chapter 3. Using AWS

AWS Documentation, Release 2019

AWS.Server.Set_Security
(WS,
Key_Filename => "server.key",
Certificate_Filename => "server.crt");

Or with a self-contained certificate:

AWS.Server.Set_Security (WS, Certificate_Filename => "aws.pen");

Or using the certificate configuration parameter, see Configuration options.

3.14.2 Verify callback

First note that it is not necessary to use such callback to verify the certificate validity, see Using a Certificate Authority.

This callback will receive the client certificate as sent during SSL handshake between the server and the client. The
certificate information can be checked for logging purpose or to impose some restriction. Generally this callback
should return the value from AWS.Net.SSL. Certificate. Verified, see AWS.Net.SSL.Certificate.

The Verified status of the certificate is the one that has been issued by the SSL implementation during certificate
verification and can generally be trusted.

3.14.3 Self-signed certificate

Creating a server certificate

The goal here is not to replace the OpenSSL documentation but just to present one way to create a self signed certificate
for an HTTPS test server. Note that GNUTLS offers similar tools to generate certificates.

Generate a RSA key:

’$ openssl genrsa —-rand <filename> -out aws-server.key

Filename must point to any file, this is used to initialized the random seed.

Generate the certificate:

’$ openssl req —-new -x509 -days 730 -key aws-server.key -out aws-server.cert

Create a single self contained file (optional):

’$ cat aws-server.key aws-server.cert > aws.pem

A this point you can use aws . pem with your server or the separate server.key and server.crt files.

It is also possible to sign the server’s key. In this case the key won’t be in plain text but will require to setup a password
on the server code for the key to be decoded. See routine Set_Password_Callback in AWS.Net.SSL.Certificate.

Generate a crypted RSA key:

$ openssl genrsa -aesl28 -passout pass:<PASSWORD> -out aws-server.key

3.14. Secure server 31

AWS Documentation, Release 2019

Creating a client certificate

A certificate can also be used on a Web browser and passed to the server to have a strong client authentication. A client
certificate must be PKCS/2. The steps to generate such certificate are:

Generate a RSA key:

’$ openssl genrsa —-des3 -out aws-client.key

Filename must point to any file, this is used to initialized the random seed.

Generate the certificate:

’$ openssl req -new -x509 -days 730 -key aws-client.key -out aws-client.cert

Create the corresponding PKCSI?2 certificate:

$ openssl pkcsl2 -export -clcerts —in aws-client.cert -inkey aws-client.key -out,
—client.pl2

3.14.4 Using a Certificate Authority

In this section we will use a Certificate Authority to signed the server certificates and the client certificates. Using
this method is required if the server must ensure that only clients with a valid certificate will be able to connect to the
server. The server will verify that the client certificate received has been signed by a known Certificate Authority.

Note that these checks are happening during the SSL handshake, so before the user’s callback.
For this to work the following configuration options must be used:
Exchange_Certificate To request that the client certificate be sent.

Trusted_CA The file containing the certificate of the Certificate Authority we trust. The CA which has signed the
client’s certificate.

Certificate_Required 1If no certificate has been received from the client the server will reject the connection. If this
is not set, we can still validate the client’s certificate in the verify callback, see Verify callback and for example
log the connecting users.

Initializing the Certificate Authority
First the Certificate Authority must be initialized on the computer. This is heavily dependent on the actual Operating
System used, describing this part is out of scope of this document.

On GNU/Debian the default setup (see default_ca in /etc/ssl/openssl.cnf) can be used to create a demo
Certificate Authority locally to test this feature:

$ mkdir demoCA

S mkdir demoCA/newcerts

$ touch demoCA/index.txt

$ echo ABCC > demoCA/serial
$ echo 01 > demoCA/crlnumber

Creating the Certificate Authority

Generate a RSA key:

32 Chapter 3. Using AWS

AWS Documentation, Release 2019

’$ openssl genrsa -out private-ca.key 1024

Generate the certificate signing request:

’$ openssl req -new —-key private-ca.key -out private-ca.csr

During this step you’ll be asked for information about the CA (Country, State or Province, Organization Name. . .).

Create the CA certificate:

$ openssl x509 -req -days 365 -in private-ca.csr -signkey private-ca.key -out private-
—ca.crt

This certificate will be used by AWS as the trusted CA, see Configuration options.

Creating a CA signed server certificate

Generate a RSA key:

’$ openssl genrsa -out aws-server.key 1024

Generate the certificate signing request:

’$ openssl req —new —-key aws-server.key —-out aws—-server.csr

During this step you’ll be asked for information about the server (Country, State or Province, Common Name. ..).
Note that the Organization Name here must match the one from the CA and the Common Name should be the server
fully qualified domain name.

Create the server certificate, signed it with our CA:

$ openssl ca —-in aws-server.csr -cert private-ca.crt -keyfile private-ca.key -out aws-
—sserver.crt

Create a single self contained file (optional):

$ cat aws-server.key aws-server.cert > aws.pem

Creating a CA signed client certificate

Generate a RSA key:

’$ openssl genrsa —-des3 -out aws-client.key 1024

Generate the certificate signing request:

’$ openssl req -new —-key aws-client.key -out aws-client.csr

During this step you’ll be asked for information about the client (Country, State or Province, Common Name. ..). Note
that the Organization Name here must match the one from the CA and the Common Name should be the client’s one.

Create the client certificate, signed it with our CA:

$ openssl ca —-in aws-client.csr —-cert private-ca.crt -keyfile private-ca.key -out aws-
—client.crt

3.14. Secure server 33

AWS Documentation, Release 2019

Create the corresponding PKCS12 certificate:

$ openssl pkcsl2 -export -clcerts —-in aws-client.crt —-inkey aws-client.key -out aws-
—client.pl2

Creating a Certificate Revocation List (CRL)

A Certificate Revocation List is used to revoke some client’s certificates. Those clients won’t be able to connect to the
secure server anymore. Using the CA created above the following commands can be used to create a CRL.

Revoke the certificate:

$ openssl ca -cert private-ca.crt -keyfile private-ca.key -revoke aws-client.crt

Generate the CRL:

$ openssl ca -cert private-ca.crt -keyfile private-ca.key -gencrl -out crl.pem -
—crldays 30

The file crl.pem is the one to install on the server using the CRL_File configuration option, see Configuration
options. This file contains the list of all revoked certificates for the corresponding CA.

3.14.5 Security level

This table summarize the security level achieved with different settings of the security oriented configuration parame-
ters.

Security SSL| Ex- Cer- Trusted
change tificate CA
Certifi- required
cate
Data between the client and the server are encrypted. Yes | No No No
Client can be identified, it is still possible to access the server without | Yes | Yes No No
having a certificate.
Client are identified, a certificate is required. The verification of the va- | Yes | Yes Yes No
lidity is up to the application using the verify callback.
Client are identified and verified, the certificate must have been signed | Yes | Yes Yes Yes
by a Certificate Authority. It is not possible to access the server without
a valid certificate.

3.14.6 Protocol

There are different security options, either SSLv2, SSLv3 or TLSv1. SSLv2 and SSLv3 are supported by most if not all
Web browsers. These are the default protocol used by AWS.

TLSv1 is not supported at this point.

3.15 Unexpected exception handler

When AWS detects an internal problem, it calls a specific handler. This handler can be used to log the error, send an
alert message or build the answer to be sent back to the client’s browser.

34 Chapter 3. Using AWS

AWS Documentation, Release 2019

Here is the spec for this handler:

type Unexpected Exception_Handler is access

procedure (E : in cptions.Exception_Occurrence;

The handler can be called in two modes:
Non fatal error (Error.Fatal is False)

In this case AWS will continue working without problem. A bug has been detected but it was not fatal
to the thread (slot in AWS’s terminology) handling. In this case it is possible to send back an application
level message to the client’s browser. For that you just have to fill the unexpected handler’s Answer
parameter with the right response message. The Error parameter receive information about the problem,
see AWS. Exceptions.

Fatal error (Error.Fatal is True)

In this case AWS will continue working but a thread (slot number Error.Slot in AWS’s terminology) will be
killed. It means that AWS will have lost one the simultaneous connection handler. The server will continue
working unless it was the last slot handler available. Note that a Fatal error means an AWS internal bug
and it should be reported if possible. In this mode there is no way to send back an answer to the client’s
browser and Error value must be ignored.

The default handler for unexpected exceptions send a message to standard error for fatal errors. For non fatal errors
it log a message (if the error log is activated for the server) and send back a message back to the client. The message
is either a built-in one or, if present in the server’s directory, the content of the 500 . tmplt file. This templates can

used the following tags:
AUTH_MODE

The authorization mode (Either NONE, BASIC or DIGEST).
EXCEPTION

Exception information with traceback if activated.
HTTP_VERSION

Either HTTP/1.0 or HTTP/1.1
METHOD

The request method (Either GET, HEAD, POST or PUT)
PAYLOAD

The full XML payload for SOAP request.
PEERNAME

The IP address of the client
SOAP_ACTION

Either True or False. Set to True for a SOAP request.
URI

The complete URI

For more information see AWS.Server and AWS. Exceptions.

3.15. Unexpected exception handler

35

AWS Documentation, Release 2019

3.16 Socket log

To ease AWS applications debugging it is possible to log all data sent/received to/from the sockets. For this you need
to call the AWS.Net.Log.Start routine by passing a write procedure callback. You have to create such procedure or use
one read-to-use provided in AWS.Net.Log.Callbacks package.

For more information see AWS.Net.Log and AWS.Net.Log.Callbacks.

3.17 Client side

AWS is not only a server it also implement the HTTP and HTTPS protocol from the client side. For example with AWS
it is possible to get a Web page content using the AWS. Client AP, see AWS.Client.

It also support client Keep-Alive connections. It is then possible to request many URI from the same server using the
same connection (i.e. the same sockets).

AWS client API also support proxy, proxy authentication and Web server authentication. Only basic (and not digest)
authentication is supported at this time.

Let’s say that you want to retrieve the contrib.html Web page from Pascal Obry’s homepage which is http://perso.
wanadoo.fr/pascal.obry. The code to do so is:

Data := Client.Get
(URL => "http://perso.wanadoo.fr/pascal.obry/contrib.html");

From there you can ask for the result’s content type:

if Response.Content_Type (Data) = "text/html" then

end if;

Or using the MIME types defined in AWS.MIME unit:

if Response.Content_Type (Data) = MIME.Text_ HTML then

end if;

And display the content if it is some kind of text data:

Text_I0.Put_Line (Response.Message_Body (Data));

If the content is some kind of binary data (executable, PNG image, Zip archive...), then it is possible to write the
result to a file for example. Look at the agent program in the demos directory.

If the Web page is protected and you must pass the request through an authenticating proxy, the call will becomes:

Data := Client.Get
(URL => "http://www.mydomain.net/protected/index.html"
User => "me",
Pwd => "mypwd",
Proxy => "192.168.67.1",

Proxy_User => "puser",
Proxy_Pwd => "ppwd");

The client upload protocol is implemented. Using AWS.Client.Upload it is possible to send a file to a server which
support the file upload protocol.

36 Chapter 3. Using AWS

http://perso.wanadoo.fr/pascal.obry
http://perso.wanadoo.fr/pascal.obry

CHAPTER
FOUR

HIGH LEVEL SERVICES

Here you will find a description of high level services. These services are ready to use with AWS and can be used
together with user’s callbacks.

Refer to the Ada spec for a complete API and usage description.

4.1 Directory browser

This service will help building a Web directory browser. It has a lot of options to sort directory entries and is based
on the templates interface AWS.Templates. This means that you can use the default directory template or provide your
own.

see AWS.Services.Directory for complete spec and services descriptions.

4.2 Dispatchers

In many AWS applications it is needed to check the URI to give the right answer. This means that part of the application
is a big if/elsif procedure. Also, in standard callback it is not possible to have user data. Both of these restrictions are
addressed with the Dispatchers facilities.

Working with a dispatcher is quite easy:
* Create a new dispatcher by inheriting from the service you want to build.

* Register a set of action based on rules (strings, regular expressions depending on the service)

4.2.1 Callback dispatcher

This is a wrapper around the standard callback procedure. It is needed to mix dispatcher based callback and access
to procedure callback. Note that it is not in the AWS.Services.Dispatchers hierarchy but in AWS. Dispatchers.Callback
because this is a basic service needed for the server itself. It is referenced here for documentation purpose but an AWS
server can be built with using it.

see AWS.Dispatchers.Callback for complete spec description.

4.2.2 Method dispatcher

This is a dispatcher based on the request method. A different callback procedure can be registered for the supported
request methods: GET, POST, PUT, HEAD.

see AWS.Services.Dispatchers.Method for complete spec description.

37

AWS Documentation, Release 2019

4.2.3 URI dispatcher

This is a dispatcher based on the request resource. A different callback procedure can be registered for specific
resources. The resource is described either by its full name (string) or a regular expression.

see AWS.Services.Dispatchers.URI for complete spec description.

4.2.4 Virtual host dispatcher

This is a dispatcher based on the host name. A different callback procedure can be registered for specific host. This is
also known as virtual hosting.

The same computer can be registered into the DNS with different names. So all names point to the same machine. But
in fact you want each name to be seen as a different Web server. This is called virtual hosting. This service will just
do that, call different callback procedures or redirect to some machine/port based on the host name in the client’s
request.

see AWS.Services.Dispatchers. Virtual_Host for complete spec description.

4.2.5 Transient pages dispatcher

This is a dispatcher that calls a user’s callback and if the resource requested is not found (i.e. the user’s callback returns
status code 404) it checks if this resource is known as a transient page. see Transient Pages.

4.2.6 Timer dispatcher

A timer dispatcher can be used to call different callback routines depending on the current date and time. Such
dispatcher is composed of a set of Period activated. When the current date and time is inside a Period the corresponding
callback is called. A Period can eventually be repeated. Here are the different kind of Period supported by AWS:

Once A unique period in time. The boundaries are fully described using a year, month, day, hour, minute and second.
Yearly A period that repeats each year. The boundaries are described using a month, day, hour, minute and second.
Monthly A period that repeats each month. The boundaries are described using a day, hour, minute and second.
Weekly A period that repeats each week. The boundaries are described using a day name, hour, minute and second.
Duaily A period that repeats each day. The boundaries are described using an hour, minute and second.

Hourly A period that repeats each hour. The boundaries are described using a minute and second.

Minutely A period that repeats each minute. The boundaries are described using a second.

4.2.7 Linker dispatcher

A dispatcher that can be used to chain two dispatchers. The response of the first dispatcher is returned except if it is a
404 (Not Found) error. In this case, the response of the second dispatcher is returned.

4.2.8 SOAP dispatcher

AWS provides also a SOAP specific dispatcher. This is a way to automatically route HTTP requests or SOAP requests
to different callback routines.

see SOAP helpers for more information. see SOAP.Dispatchers.Callback for complete spec description.

38 Chapter 4. High level services

AWS Documentation, Release 2019

4.3 Static Page server

This service is a ready to use static page server callback. Using it is possible to build a simple static page server, as
simple as:

with AWS.Server;
with AWS.Services.Page_Server;

procedure WPS is
WS : AWS.Server.HTTP;
begin
AWS.Server.Start
(WS, "Simple Page Server demo",
Port => 8080,
Callback => AWS.Services.Page_Server.Callback'Access,
Max_Connection => 5);

AWS.Server.Wait (AWS.Server.Q_Key_ Pressed);

AWS.Server.Shutdown (WS);
end WPS;

Build this program and launch it, it will server HTML pages and images in the current directory.

It is possible to activate the directory browsing facility of this simple page server. This is not activated by default. This
feature is based on the directory browsing service see Directory browser.

Note that this service uses two template files:

aws_directory.thtml The template page used for directory browsing. See see AWS.Services.Directory for a full de-
scription of this template usage.

404.thtml The Web page returned if the requested page is not found. This is a template with a single tag variable
named PAGE. It will be replaced by the ressource which was not found.

Note that on Microsoft IE this page will be displayed only if the total page size is bigger than 512 bytes or it
includes at least one image.

see AWS.Services.Page_Server for a complete spec description.

4.4 Transient Pages

A transient page is a resource that has a certain life time on the server. After this time the resource will be released
and will not be accessible anymore.

Sometimes you want to reference, in a Web page, a resource that is built in memory by the server. This resource can
be requested by the client (by clicking on the corresponding link) or not, in both cases the page must be released after
a certain amount of time to free the associated memory.

This is exactly what the transient pages high level service do automatically. Each transient page must be regis-
tered into the service, a specific routine named Get_URI can be used to create a unique URI/ on this server. see
AWS.Services. Transient_Pages.

A transient pages dispatcher can be used to build a transient pages aware server. see Transient pages dispatcher.

4.3. Static Page server 39

AWS Documentation, Release 2019

4.5 Split pages

It not not very convenient to send back a Web page with a large table. In such a case it is better to split the table in
chunks (20 lines or so) and to send only the first page. This page reference the next pages and can also contains an
index of the pages.

The AWS’s split page feature can automatically do that for you. Given template Translate_Table or Translate_Set and
the max line per page it returns the first page and create a set of transient pages for all other pages. A set of template
tags are used to reference the previous and next page and also to build the page index.

There is different ways to split a set of pages and ready-to-use splitters are available:

Alpha Split in (at most) 28 pages, one for empty fields, one for all fields that start with a digit, and one for each
different initial letter. see AWS.Services.Split_Pages.Alpha.

Alpha.Bounded Same as the alpha splitter, but pages larger than a Max_Per_Page value are further split-
ted. A secondary index is generated that gives the various pages for a given letter. see
AWS.Services.Split_Pages.Alpha.Bounded.

Uniform Split in pages of length Max_Per_Page (except the last one). This corresponds to the default service in
Split_Pages package. see AWS.Services.Split_Pages.Uniform.

Uniform.Alpha Same as the uniform splitter, but builds in addition an alphabetical secondary index from a key field.
see AWS.Services.Split_Pages.Uniform.Alpha.

Uniform.Overlapping Same as the uniform splitter, but pages (except the first one) repeat Overlap lines from the
previous page in addition to the Max_Per_Page lines. see AWS.Services.Split_Pages. Uniform.Overlapping.

Using the spliter abstract interface it is possible to build a customized splitter algorithm. see AWS.Services.Split_Pages.

4.6 Download Manager

A server that need to handle lot of large downloads can run out of connection to answer the standard Web pages. A
solution is to increase the number of simultaneous connections, but this is not really efficient as a task is created for
each connection and does not ensure that all the connections will be used for the downloads anyway.

The download manager can be used for that, and provides the following feature:
* use a single task for all downloads
* can be configured to limit the number of simultaneous connections
» downloads past this limit are queued
* send messages to the client with the position in the waiting line
 send messages to the client when the download is about to start

The server must be configured to use dispatchers (standard callbacks are not supported, note that it is possible to create
a dispatcher for standard callbacks. see AWS.Dispatchers.Callback).

To start the download manager you need to pass the main server dispatcher object. The start routine will return a new
dispatcher, linked with the download server specific dispatcher, that must be used to start the standard Web server. See
comment in see AWS.Services.Download.

To queue a download request in the download manager you just need to create a stream object (can be any kind of
stream, see AWS.Resources.Streams.*) for the resource to download.

The download manager needs two templates files:

40 Chapter 4. High level services

AWS Documentation, Release 2019

aws_download_manager_waiting.thtml This template is used for sending a message to the client when the request is
on the waiting line. The tags defined in this template file are:

NAME the name of the resource to download (the filename), this is the default filename used for the client side
save dialog.

RES URI the URI used to access the resource.
POSITION the position in the waiting line (not counting the current served clients).

aws_download_manager_start.thtml This template is used for sending a message to the client when the download is
about to start (the request is out of the waiting line). The tags defined in this template file are:

NAME as above
RES_URI as above

It is important to note that those templates must be reloaded periodically. The best way to do that in the context of an
HTML document is to use a meta-tag. For example to refresh the page every two seconds:

<meta http-equiv="refresh" content="2">

The templates could look like:

aws_download_manager_waiting.thtml

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="refresh" content="2">
<title>Download Manager - waiting</title>
</head>
<body>
<p>Waiting for downloading @_NAME_Q@
<p>Position in the waiting line Q@_POSITION_G@
</body>
</html>

aws_download_manager_start.thtml

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="refresh" content="2">
<title>Download Manager - waiting</title>
</head>
<body>
<p>Waiting for downloading @_NAME_Q@
<p>The download will start in a moment
</body>
</html>

4.7 Web Elements

AWS provides some components to help creating nice looking Web interfaces. It is possible to browse those Web
Elements using the web_elements demo. Just launch this Web application from the demos directory and turn your
Web browser to http://localhost:2400.

4.7. Web Elements 41

http://localhost:2400

AWS Documentation, Release 2019

Currently AWS provides:
¢ Notebooks (based on CSS)
* CSS Menu
* Rounded boxes
e Ajax

All of them are based on templates to be easily reused in other applications. The three first are best described by the
Web Elements demos as they are 100% design. The Ajax one is a bit more complex, we will present its use in the
following section.

4.7.1 Installation

To ease integration we have used the following design:

* Sub-directories found in the AWS’s web_elements directory are self contained. The content must be copied into
the project. Note that the icons and javascripts directories contain the icons and javascripts code shared by all
web elements and must also be copied, see below.

 Each graphic elements (icons) is referenced into the templates with the alias /we_icons/<icon_name>. So users
must provide the right alias (“/we_icons/’’) in the Web server.

» Each JavaScripts code is referenced into the templates with the alias /we_js/<script>. So users must provide the
right alias (“/we_js/”) in the Web server.

4.7.2 Ajax

First of all, Ajax stand for Asynchronous JavaScript language and XML, and is not well defined at the moment. Ajax
is on one side able to send HTTP requests to the Web server and on the other side able to manipulate directly the Web
browser’s DOM tree. On the DOM it can add, remove or replace XML nodes. So, it is possible to change the content
of a Web page without reloading it from the server.

Most importantly, Ajax changes the way Web applications are thought from page based to event based.

As implemented into AWS, Ajax support comes as a set of JavaScript templates. Using those templates there is no need
to know JavaScript (except for the JavaScript event names) and it makes Ajax programming lot easier. Two actions
are provided, one for replacing another for clearing part of the web page content.

Steps to do Ajax

What are the steps to do Ajax ?

Remember, do not think about the Web page but about a specific widget (HTML fragments) with the associated event
and action.

* Include the AWS/Ajax support file

This is the AWS/Ajax runtime, it contains JavaScript code needed for the AWS/Ajax support.
* Create the Web widgets/forms

There is nothing special here, use your favorite Web designer tool.
* Create Web area

Using some HTML <div> tags we create areas where we will place HTML fragments later. For example when
clicking on a button (described above) in our Web interface we want to display a new form in this area.

42 Chapter 4. High level services

AWS Documentation, Release 2019

* Name the widgets/forms/area using id="name” attribute

Give a different name to the widgets using id="name”. This name will be later used to identify the widgets
on which the envent and corresponding action must be placed. We do not want to clutter the Web design with
JavaScript code like onclick="dothis()” or onchange="dothat()” .

* Add the proper event/action to the widgets using the AWS/Ajax templates

This is the interresting part. At this point we link events/actions to the widgets and specify in which area the
results sent by the server will be placed.

This is not the only way to do Ajax, we just presented here a simple approach that works well with the AWS/Ajax
templates.

Basic Ajax support

This section describes the AWS/Ajax support where the answer from the server is an HTML fragment. This basic
support is designed to be used for migration of a Web server to Ajax. For new applications, it is worth considering
using the XML based Ajax support, see XML based Ajax.

Let’s have a very simple example:

* The AWS/Ajax runtime support

’@@INCLUDE@@@ aws.tjs

Must be included in every Web pages into the <head> tag.

* The widget: a button

’<input id="clickme" type="button" value="Clik Me">

¢ The result area: a div

’<div id="placeholder">... result here ...</div>

e The AWS/Ajax

’@@INCLUDE@@ aws_action_replace.tjs onclick clickme placeholder

Basically it places an onclick attribute (the event) in the HTML <input> identified as clickme (the action) above.
Here is what happen when the button is clicked:

— send the “/onclick$clickme” HTTP request to the server
— asynchronously wait for the answer, when received place the message body into the <div> placeholder.

On the server side the code would look like this:

function Callback (Request : in Status.Data) return Response.Data is
constant String := Status.URI (Request);
begin
if URI = "/clickme" then

return Response.Build (MIME.Text_HTML, "you click me!");

So when the button is clicked the string ‘““you click me!” will replace the *“... result here ...” string of the place
holder div above.

4.7. Web Elements 43

AWS Documentation, Release 2019

This is a simple and very limited example as there is no parameter passed to the HTTP request. In real Web applications
it is necessary to send a context with the request. This can be either the value of other widgets or all values of widgets’
form.

References to widgets or forms can be passed to the aws_action_ replace.tjs template starting with the Sth
parameter:

<input id="field" type="text" value="default value">

@@INCLUDE@Q@ aws_action_replace.tjs (onclick clickme placeholder 5=>field)

or:

<form id="small_form" name="small form">
</form>

@Q@INCLUDE@@ aws_action_replace.tjs (onclick clickme placeholder 5=>xmall_form)

Note that the onclick event is only one of the possible JavaScript event on a button. It is possible to used any supported
event, for example on an HTML <select> widget it is common to map the action to the onchange event.

AWS also provides support for clearing an area or a widget content (like an input):

@@INCLUDE@@ aws_action_clear.tjs (onclick, clear, field)

This simple action adds the onclick event to the clear button to erase the content of the field widget.

XML based Ajax

In many cases you’ll like to update and/or clear multiple areas in your Web interface. With the templates above only a
single action is possible. AWS provides support for XML based answers. In this XML documents it is possible to:

* replace an area with a new content:

’<replace id="item_id">new text</replace>

e clear an area:

’<clear id="item_id"/>

¢ add an item into a select widget:

<select action="add" id="item_id"
option_value="value" option_content="content"/>

e remove an item from a select widget:

’<select action="delete" id="item_id" option_value="value"/>

* select a specific item in a select widget:

’<select action="select" id="item_id" option_value="value"/>

¢ clear a select widget (remove all items):

44 Chapter 4. High level services

AWS Documentation, Release 2019

’<select action="clear" id="item_id"/>

¢ select a radio button:

’<radio action="select" id="item_id"/>

¢ check a checkbox:

’<check action="select" id="item_id"/>

e clear a checkbox:

’<check action="clear" id="item_id"/>

e call another URL:

<get url="http://thishost/action">
<parameters value="name=Ajax"/>
<field id="inputl"/>

</get>

This will send the following request:

http://thishost/action?name=Ajax&inputl=<val_inputl>

Where val_inputl is the current value of the inputl input widget. The result must be an XML/Ajax document
that will be parsed.

¢ make a list sortable:

<make_sortable>
<list id="firstlist"/>
<list id="secondlist"/>
</make_sortable>

Here firstlist and secondlist are id of UL elements. It is possible to specified as many list id as needed. A drag
and drop is then possible for all elements in those lists. It is then possible to reference such list by passing the
list id as a field to the template. Items on those list will be serialized and passed to the AWS callback. Note that
for the serialization to work properly, each LI elements must be given the id of the list and then the value we
want to pass:

<ul id="firstlist">
<1li id="firstlist red">Red
<1li id="firstlist_green">Green
<1li id="firstlist blue">Blue</1li>

The serialization will send each value on this list using a multi-valued parameter named firstlist[]:

http://server?firstlist[]=red&firstlist[]=green&firstlist[]=blue

¢ make a list not sortable:

<destroy_sortable>
<list id="firstlist"/>
<list id="secondlist"/>
</destroy_sortable>

4.7. Web Elements 45

AWS Documentation, Release 2019

Remove the sortable properly from the specified lists.

¢ redirect to another URL:

’<location url="http://thishost/go_there"/>

Redirect the browser to the specified URL.

* refresh the current page:

’<refresh/>

Refresh the current page as if the Web Browser refresh button was pressed.

* add a CSS style to a given node:

<apply_style id="node_id">
<attribute id="display" value="none"/>
</apply_style>

Add the CSS style display:none to the node_id element. It is possible to specify multiple attributes if needed.

* make an entry disabled or enabled:

’<disabled id="item_id" value="true/false"/>

* make an entry read-only or writable:

’<read_only id="item_id" value="true/false"/>

¢ reset a form:

’ <reset id="form_id"/>

Here is an example of such XML document:

<?xml version="1.0" encoding="UTF-8" ?>
<response>
<replace id="xml_status_bar">Fill Widgets...</replace>
<replace id="textl">Response from XML</replace>
<replace id="text2">Another response for text2</replace>
<replace id="inputl">tag is inputl</replace>
<replace id="input2">tag is input2</replace>
<select action="add" id="xmlsel" option_value="one" option_content="1"/>
<select action="add" id="xmlsel" option_value="two" option_content="2"/>
<select action="add" id="xmlsel" option_value="three" option_content="3"/>
<select action="select" id="xmlsel" option_value="two"/>
<radio action="select" id="radiol"/>
<check action="select" id="checkl"/>
<check action="select" id="check3"/>
<check action="clear" id="check2"/>
</response>

To register an Ajax action to a specific tag id a macro can be used. It is named JS_ACTION and defined in a jax_api .
t js. The usage is similar to what is described in the previous section (see Basic Ajax support) except that in this case
we use a macron instead of an include file and we do not have to pass the placeholder.

Let’s revisit the first example above to use the XML Ajax support.

* The AWS/Ajax runtime support:

46 Chapter 4. High level services

AWS Documentation, Release 2019

’@@INCLUDE@@@ aws.tjs

Must be included in every Web pages into the <head> tag.
¢ The AWS/Ajax API:

’@@INCLUDE@@@ ajax_api.tjs

Must be included at least once during an application life-time. It gives access to the JS_ACTION macro.

* The widget: a button:

’<input id="clickme" type="button" value="Clik Me">

e The result area: a div:

’<div id="placeholder">... result here ...</div>

e The AWS/Ajax:

’@_JS_ACTION(onclick, clickme)_Q@

Basically it places an onclick attribute (the event) in the HTML <input> identified as clickme (the action) above.
Here is what happen when the button is clicked:

— send the “/onclick$clickme” HTTP request to the server

— asynchronously wait for the XML answer, when received parse the answer and perform the actions ac-
cording to the XML content.

To set the placeholder with “new text”, the XML document returned by the server must be:

<?xml version="1.0" encoding="UTF-8" ?>
<response>

<replace id="placeholder">new text</replace>
</response>

If we want also to clear the input field named field and to select the radio button named radiol we must return:

<?xml version="1.0" encoding="UTF-8" ?>
<response>

<replace id="placeholder">new text</replace>

<clear id="field"/>

<radio action="select" id="radiol"/>
</response>

This is by far the most flexible solution as it is possible to return, from the server, a structured answer.

A final comment, if the text returned by the server to replace a specific area is an HTML fragment, the content must be
placed into a CDATA tag:

<?xml version="1.0" encoding="UTF-8" ?>
<response>
<replace id="item_id">
<! [CDATA[%HTML CODE HERE+]]>
</replace>
</response>

4.7. Web Elements 47

AWS Documentation, Release 2019

Advanced Ajax
Finally, if this is not enough because you need to use some specific JavaScript code, AWS provides a macro named
BIND_JS to add an event to a specific widget, the action being the name of a JavaScript routine.

This macro together with the aws_func_replace.tjs, aws_func_clear.t]js templates and the
JS_ACTION macro can be used to chain multiple actions. Those templates are the function body used by the corre-
sponding templates aws_action_replace.tjs,aws_action_clear.tjs.

Let say you want to clear a widget, change the content of another one and calling one of your specific JavaScript
routine when clicking on a button. It is not possible to have mutiple onclick events on the same widget, the solution is
the following:

* Create the JavaScript routine to do the job

For this in the the body of the clear_replace() JavaScript routine we place:

function clear_replace ()

{
@Q@INCLUDEQQ@ aws_func_replace.tjs (clickme placeholder 4=>field)
@QQ@INCLUDE@Q@ aws_func_clear.tjs (area)
call_this_routine();

Then to add the event on the widget:

@_BIND_JS (onclick, clickme clear_replace)_G@

Furthermore, it is possible to pass (as the parameter number 20) a routine to call after a specific action to all templates
and to the JS_ACTION macro. This is another way to chain multiple actions for a single event.

Note that all AWS/Ajax templates and the a jax_api . t js file have a set of comments at the start explaining in details
the usage of each parameter.

4.8 Web Blocks

The AWS.Services. Web_Block hierarchy contains an API useful for keeping context on Web pages. It has been designed
to be able to split a Web application into a set of independent blocks that can be put together in the same Web page.
The context is then useful as it is passed and known by each individual block. Note that this is different than the
session as a session is global to the current Web browser whereas the context can be different for each individual web
pages opened.

Instead of parsing a whole page using AWS.Templates API the web blocks are registered independently using
AWS.Services.Web_Block.Registry. The block is registered together with its templates and a callback to use to get
user’s data for this specific block with the given context.

So using this API, instead of having a set of callbacks returning an AWS.Response.Data and where the final rendering
is to be done by the client code, we have a set of callbacks that returns a Translate_Set. The client just have to fill the
set with the data corresponding to the actual request and possibly using the context. The final rendering is done by the
provided services in Web_Block.Registry.

Note that all Web pages must also be registered into the registry to ensure that the context identification is properly
kept. The context identification is injected into the Web pages transparently for the end-user when using Ajax.

48 Chapter 4. High level services

AWS Documentation, Release 2019

4.8.1 Web Block example

Let’s have a simple example, a page containing a single block with a tag (@ _COUNTER_@) which is incremented
by one each time it is used. The code can be found in demos/web_block.

First create the following HTML fragment and place it into counter.thtml:

<p>@_COUNTER_Q@</p>

Then create the main page and place it into page .thtml. The important part is the @_CTX_WB_@ tag which is
passed to the link. This tag is the context identifier, it must be passed to each request. Note that this is automatically
done when using the Ajax framework (see Web Block and Ajax):

<html>
<head>
<title>Main Page</title>
</head>
<body>
<p>This is the main page, bellow is a simple counter</p>
<p>@_COUNTER_R</p>
Next
</body>
</html>

The Web_Callbacks package contains the application callbacks:

with AWS.Response;

with AWS.Status;

with AWS.Templates;

with AWS.Services.Web_Block.Context;

package Web_Callbacks is

use AWS;
use AWS.Services;

function Main (Request : in Status.Data) return Response.Data;
—-— Main callback which handle the home page

procedure Counter

(Request : in Status.Data;
Context : not null access Web_Block.Context.Object;
Translations : in out Templates.Translate_Set);

—— The callback handling the counter web block

end Web_Callbacks;

Last part is to actually implement the Counter callback. Here is a possible implementation making use of the context
to keep the counter state:

with AWS.Utils;

with AWS.Messages;

with AWS.MIME;

with AWS.Services.Web_Block.Registry;

package body Web_Callbacks is

(continues on next page)

4.8. Web Blocks 49

AWS Documentation, Release 2019

(continued from previous page)

—— Counter —-—

procedure Counter

(Request : in Status.Data;

Context : not null access Web_Block.Context.Object;

Translations : in out Templates.Translate_Set)
is

N : Natural := 0;
begin

if Context.Exist ("N") then

N := Natural'Value (Context.Get_Value ("N"));
end if;
N := N + 1;

Context.Set_Value ("N", Utils.Image (N));
Templates.Insert

(Translations, AWS.Templates.Assoc ("COUNTER", N));
end Counter;

-— Main --
function Main (Request : in Status.Data) return Response.Data is
URI : constant String := Status.URI (Request);
begin
return Web_Block.Registry.Build
(Key => URI,
Request => Request,

Translations => Set);
end Main;

end Web_Callbacks;

Finally, we write the main procedure:

with Ada.Text_IO;

with AWS.Server;
with AWS.Services.Web_Block.Registry;

with Web_Callbacks;
procedure Web_Block is
use Ada;
use AWS;
use AWS.Services;

HTTP : AWS.Server.HTTP;

begin
-— First we register the main page and the counter block

Services.Web_Block.Registry.Register ("/", "page.thtml", null);

(continues on next page)

50 Chapter 4. High level services

AWS Documentation, Release 2019

(continued from previous page)

Services.Web_Block.Registry.Register

("COUNTER", "counter.thtml",

Web_Callbacks.Counter'Access, Context_Required => True);
—-— Then we just start the server
Server.Start (HTTP, "web_block", Web_Callbacks.Main'Access);
Text_TIO.Put_Line ("Press Q to terminate.");

Server.Wait (Server.Q_Key_Pressed);

Server.Shutdown (HTTP);
end Web_Block;

Compile and run the server. Then connect to the server and click on next. The counter will be incremented by one
each time.

4.8.2 Web Block and Ajax

The Web Block framework has really been designed to be used with Ajax. It is the only way to gain the full power of
the Web Block framework.

For the complete code, see demos/web_block_ajax.

When using Ajax it is not needed to explicitly pass the context identification to every link. This is done automatically
by the framework. So the main page will look like this:

@@INCLUDEQRR@ ../../web_elements/javascripts/ajax_api.tjs
<html>
<head>
<title>Main Page</title>
@Q@INCLUDERR@ ../../web_elements/javascripts/aws.t]s
</head>
<body>
<p>This is the main page, bellow is a simple counter</p>
@_WIDGET_COUNTER_Q@
</body>
</html>

The counter widget is on widget_counter.thtml:

<!--— implementation of a simple counter widget —-—>
<p><div id="counter">Q@_COUNTER_@</div></p>

Next

@_JS_ACTION (onclick, next)_Q@

For the Ajax part, see Ajax.

We now have one more register call for registering the next button Ajax callback, and a callback named Widget_Counter
for displaying the block:

Services.Web_Block.Registry.Register
("WIDGET_COUNTER", "widget_counter.thtml",
Web_Callbacks.Widget_Counter'Access);

(continues on next page)

4.8. Web Blocks 51

AWS Documentation, Release 2019

(continued from previous page)

Services.Web_Block.Registry.Register
("/onclick$next", "r_widget_counter.txml",
Web_Callbacks.Onclick_Next'Access,
Content_Type => MIME.Text_XML,
Context_Required => True);

The next Ajax button is using an XML based response which is defined in r_widget_counter.txml:

<?xml version="1.0" encoding="UTF-8" ?>
<response>

<replace id="counter">Q@_COUNTER_(@</replace>
</response>

The Widget_Counter callbacks just have to set the COUNTER tag variable to the corresponding value. This is used to
display the block. The Ajax callback Onclick_Next has to increment the counter and set the COUNTER tag variable, a
simple implementation is:

procedure Onclick_Next

(R st : 1n Status.Data;
Context : not null access b_Block.Context.Object;
Translations : in out Templates.Translate_
is
N : Natural := 0;
begin
if Context.Exist ("N") then
N := Natural'Value (Context.Get_Value ("N"));
end if;
N := N + 1;

Context.Set_Value ("N", Utils.Image (N));

Templates.Insert
(Translations, Templates.Assoc ("COUNTER", N));
end Onclick_Next;

The framework will then call Onclick_Next when pressing the Next button. This routine increments N by one sending
back a response based on r_widget_counter.txml. Finally, the client browser will parse this XML response and do the
corresponding actions.

4.8.3 Web Block and templates2ada

For the complete code, see demos/web_block_ajax_templates.

It is possible to use the Templates_Parser’s templates2ada tool for generating the callbacks register calls. This ensures
that all tags on the application Web Pages have a corresponding callback.

The code is almost identical to the standard Ajax example above. The main difference is that we need to use a naming
convention for the blocks. This way we can generate automatically the corresponding callbacks using a template. A
common convention is to add LAZY_ as prefix for the name of the blocks. With this convention the main page template
is:

@@INCLUDEQR@ ../../web_elements/javascripts/ajax_api.tjs
<html>

(continues on next page)

52 Chapter 4. High level services

AWS Documentation, Release 2019

(continued from previous page)

<head>
<title>Main Page</title>

@Q@INCLUDERR@ ../../web_elements/javascripts/aws.t]s

</head>
<body>

<p>This is the main page, bellow is a simple counter</p>

@Q_LAZY_ _WIDGET_COUNTER_@
</body>
</html>

We need also modify the standard templates.tads as distributed with the Templates_Parser. Here is the interest-

ing part:

@@SET@Q@ PACKAGE = WBlocks

with AWS.MIME;
with AWS.Services.Web_Block.Registry;
with Web_Callbacks;

@@TABLEQ@

with @_PACKAGE_Q.Q_CAPITALIZE:REPLACE_ALL (\\.

@Q@END_TABLE@Q@

package body @_PACKAGE_@ is
use AWS;
package body Lazy is

procedure Register is
use AWS.Services;
begin
—-— Register blocks
@@TABLE@@

/_) :BASENAME_Q;

QRIFQ@ @_UPPER:SLICE(1l..5):VARIABLE LIST @ = "LAZY "

Web_Block.Registry.Register
("@_VARIABLE_LIST_@",

"@_LOWER:REPLACE_ALL (LAZY_/) : VARIABLE_LIST_Q.thtml",
Web_Callbacks.@_ CAPITALIZE:REPLACE_ALL (LAZY_/) :VARIABLE_LIST_@'Access);

@E@END_IF@@
@@END_TABLE@@

-— Register Ajax
@Q@TABLERQ
@@TABLE@@

@QQRIF@@ not Q_IS_EMPTY:AJAX_EVENT_A@
Services.Web_Block.Registry.Register

("/Q@_AJAX_EVENT_@S$@_AJAX_ACTION_Q@",
@_PACKAGE_@.R_Q_CAPITALIZE:REPLACE_ALL (\\./_) :AJAX_FILE_Q@.Template,
Web_Callbacks.@_CAPITALIZE:AJAX_EVENT_QQ@_UNDERSCORE_Q@@_CAPITALIZE:AJAX_

—ACTION_Q'Access,

(continues on next page)

4.8. Web Blocks

53

AWS Documentation, Release 2019

(continued from previous page)

Content_Type => MIME.Text_XML,
Context_Required => True);
@Q@END_IF@@

@@END_TABLE@@
@Q@END_TABLE@Q@
end Register;
end Lazy;
end @_PACKAGE_Q@;

Basically this is to write a register call for every template’s tag starting with LAZY_. The second section is to write a
register call for every Ajax event. All callbacks are expected to be in a package named Web_Callbacks. 1t is of course
possible to change this template to reference callbacks for blocks and Ajax in separate packages. The use of a template
here is very flexible.

Now let’s parse the application HTML and XML templates and create the corresponding Ada specs and register calls:

$ templates2ada -d . -o code.ada -t templates.tada —-e .thtml -e .txml
$ gnatchop code.ada

Look at the generated code below, it properly register the Widget_Counter callback to be used for rendering
LAZY _WIDGET_COUNTER using the widget_counter.thtml. So we have a tight coupling between the code
and the template file. If the tag is renamed in the template file the application will not compile anymore. The same is
true for Ajax callbacks, every Ajax action put in a template file needs a corresponding callback in Ada. This greatly
helps keeping the application code synchronized:

procedure Register is
use AWS.Services;
begin
Web_Block.Registry.Register
("LAZY_WIDGET_COUNTER",
"widget_counter.thtml",
Web_Callbacks.Widget_Counter'Access);
Services.Web_Block.Registry.Register
("/onclick$next",
WBlocks.R_Widget_Counter.Template,
Web_Callbacks.Onclick_Next'Access,
Content_Type => MIME.Text_XML,
Context_Required => True);
end Register;

In the main, it is just now required to register the Web pages and to call the generated Register procedure:

Services.Web_Block.Registry.Register ("/", "page.thtml", null);

WBlocks.Lazy.Register;

Moreover, an Ada spec containing reference for the tag names is generated for every HTML and XML template file.
All tags can be referenced using those specs, it is not needed to use string literal in the application. Again, this ensures
that a tag which is renamed or deleted is detected at compilation time. For example the Widget_Counter callback can
be rewritten as follow:

procedure Widget_Counter
in

not null access

ons : 1in out

is

(continues on next page)

54 Chapter 4. High level services

AWS Documentation, Release 2019

(continued from previous page)

N : Natural := 0;
begin
if Context.Exist ("N") then
N := Natural'Value (Context.Get_Value ("N"));
end if;

Templates.Insert
(Translations, Templates.Assoc (WBlocks.Widget_Counter.COUNTER, N));
end Widget_Counter;

4.9 Web Cross-References

When building an Ajax Web applications it is required to give ids to web elements to be able to reference them. It is
also quite common to use CSS to give such and such item a specific style. After some time it is quite difficult to keep
track of all those ids. Are they all used ? Don’t we reference an id that does not exist anymore ?

webxref has been designed to help finding such problems.
The files kinds handled are:
.css, .tess A CSS (or template CSS file). Ids and classes inside are recorded as CSS definitions.

xml, .html, .thtml A meta-language document. Ids and classes inside are recorded as referencing a CSS definition
and meta-language definition.

.txml An Ajax response file. Ids declared inside are recorded as referencing a meta-language definition.
The features are:
cross-references By default webxref output all the references to ids and classes.

finding unused items Output the ids/classes that are defined but not used. For example an id declared in a CSS but
never referenced into an HTML document or an HTML id never referenced in an Ajax response file . txml
document.

finding undeclared items Output ids/classes that are referenced but never defined. This is for example an id inside an
Ajax response file which is never defined into an HTML document.

enforcing a naming scheme for ids and classes It can enforce a specific prefix for ids and classes. The id prefix can
be based on the filename (using filename’s first character and all character before an underscore). This make it
less likely to find the same id on multiple files.

Note that all references are in a format recognized by tools like GPS and Emacs. It is then possible to navigate inside
them easily.

All webxref options are listed using the -/ option.

4.10 WebSockets

4.10.1 Introduction to WebSockets

WebSockets are part of HTMLS, the API is being standardized by the W3C and the protocol by the IETF (see RFC-
6455). It is a bidirectional and full-duplex communication channel between the client and the server. Most Web
Browsers are now supporting (at least part) of the WebSocket recommendation. On the client side, the WebSockets
are programmed in JavaScript as done for Ajax for example.

4.9. Web Cross-References 55

AWS Documentation, Release 2019

A WebSocket is always opened at the request of a client. This can be done on the same port as the main HTTP
protocol. This is possible because the initial handshake to open a WebSocket is done in pure HTTP protocol. Past this
initial handshake the socket is switching protocol from HTTP to the one called WebSocket protocol.

It is not needed to know the protocol to use the WebSockets, AWS comes with some high level services on the server
side and also on the client side.

4.10.2 WebSockets on the client (javascript)

The WebSocket is created on the client side. As there is some differences between Web browsers, AWS provides a
wrapper routine to create a WebSocket:

’ws = AWS.WebSocket.open('ws://localhost:8080/echo');

This basically create a WebSocket and contact the local server using port 8080.

This method is declared into aws . t js which must be included:

’ @Q@INCLUDEQREG@ aws.t]js

A WebSocket Javascript’s object has four method’s callbacks:

onopen Called when the WebSocket has been opened. This means that the initial handshake with the server has been
accepted. At this point the WebSocket is ready to send and received messages.

onmessage Called for every incoming message. This callback receive a single parameter which is the event. The
actual message data can be found in e.data.

onclose Called when the WebSocket is closing. This means that the server has sent a close request. After this event it
is not possible to send nor receive messages through this WebSocket.

onerror Called when an error has occurred. This can be a lost connection for example. This callback takes a single
parameter which is the error message.

AWS comes with default implementation of those callbacks. With the two optional WebSocket constructor parameters
it can be configured to fit most needs:

ws = AWS.WebSocket.open('ws://localhost:8080/echo', message_id, status_id);

message_id The id of the HTML element which will be used to display the incoming messages. This is most of the
time the id of a p or div HTML element.

status_id The id of the HTML element which will be used to display the status and error messages. For example
when a connection is closed.

When those default callbacks are not what is needed it is always possible to redefine them:

ws.onmessage = function (e) {
code there

}i

Likewise for the other events.

4.10.3 WebSockets on the client (Ada)

AWS also supports writing websocket clients directly in Ada. Here is an example:

56 Chapter 4. High level services

AWS Documentation, Release 2019

type MySocket is new AWS.Net.WebSocket.Object with null record;
overriding procedure On_Message (Self : in out MySocket; Str : String);
-— You would likely also override On_Error and On_Close

overriding procedure On_Message (Self : in out MySocket; Str : String) is
begin
Ada.Text_IO.Put_Line ("++ Got message '" & Str & "'");

end On_Message;

declare
Socket : MySocket;
begin
AWS.Net .WebSocket.Connect (Socket, "ws://localhost:8765");

—-— Send one message
Socket.Send ("some message");

—— Then wait for any number of messages from the server. Give up if
-— no message 1is available for 2s. If messages become available, the
—-— procedure On_Message will be called.
while Socket.Poll (Timeout => 2.0) loop

null;
end loop;

Socket.Close ("");
end;

You are responsible for checking regularly whether any message has been received from the server.

4.10.4 WebSockets on the server

The first step is to setup the server to dispatch the incoming messages to the proper WebSocket object. For this one

needs to inherit from AWS.Net. WebSocket.Object and redefine at least two methods Create and On_Message:

Create This is the constructor that will be used by the server to handle some WebSockets. This constructor will be

associated to some URI, see below:

function Create
(Socket : Socket_Access;

Status.Data) return Object'Class;

Request

The default constructor creates a WebSocket of type AWS.Net.WebSocket.Object. 1t is not possible to receive

events (close, open, error) using such object it is only possible to send messages to the clients.

Here is an example on a custom socket:

type MySocket is new Net.WebSocket.Object with null record;

function Create

(Socket : Socket_Access;

Request : AWS.Status.Data) return AWS.Net.WebSocket.Object'Class
is

—-— Note the call to the other version of Createx*

return MySocket'

(AWS .Net .WebSocket .Object
(AWS .Net .WebSocket .Create (Socket, Request)) with null record);

end Create;

4.10. WebSockets

57

AWS Documentation, Release 2019

It is also possible to deny the handshake by returning an object from AWS.Net.WebSocket.Handshake_Error.
On_Open This is the callback that will be called when the WebSocket is opened:

procedure On_Open
(Socket : in out Object; Message : String) is null;

On_Message This is the callback that will be called for every message sent by the client on the corresponding Web-
Socket:

procedure On_Message

(Socket : in out Object; String);

The first parameter is the WebSocket itself, it is possible to send a message directly by using the associated Send
method. Note that the default implementation supports the XML based Ajax actions. See see XML based Ajax
and can be used to redirect simple message to an HTML widget given it’s id.

On_Close This is the callback that will be called when the WebSocket is closed:

procedure On_Close
(Socket : in out Object; Message : String) is null;

On_Error This is the callback that will be called when an error occurs on the WebSocket:

procedure On_Error
(Socket : in out Object; Message : String) is null;

When this is done, the constructor declared above needs to be registered to handle some WebSocket designated by the
URI. For example to have this WebSocket handling all URI named /echo:

’Net.WebSocket.Registry.Register ("/echo", CB.Create'Access);

Where CB.Create is the constructor redefined for the new WebSocket class.

The last step is to start the WebSocket server which are needed to handle the incoming messages:

’Net.WebSocket.Registry.Control.Start;

At this point all is setup to have AWS supports WebSockets. Sending messages can be done to a single client or by
broadcasting to all clients for a specific URI. To send a message one need to create a Net. WebSocket.Registry.Recipient
object. For example to broadcast a message to all Web clients having opened the /echo WebSocket:

Rcp : Net.WebSocket.Registry.Recipient :=
Net .WebSocket .Registry.Create (URI => "/echo");

Net .WebSocket .Registry.Send (Rcp, "A simple message");

As we have seen before, this will send a message to clients which will in turn trigger the onmessage Javascript method.

It is also possible to send a message to clients from a specific origin by using the Origin information:

Rcp : Net.WebSocket.Registry.Recipient :=
Net.WebSocket.Registry.Create (URI => "/echo"; Origin => ".x\\.fr");

Net .WebSocket .Registry.Send (Rcp, "A simple message");

The above recipent targets all WebSockets whose URI is “/echo” and that have been created from a Web page origi-
nating from a Web server running in the .fr domain. Note that URI and the Origin are regular expressions.

58 Chapter 4. High level services

AWS Documentation, Release 2019

The Origin value can be used by a server to handle only WebSockets originating from it’s own domain. Restricting
the origin of the WebSockets can be done with the WEBSOCKET_ORIGIN config parameter, see WebSocket_Origin.

4.10. WebSockets 59

AWS Documentation, Release 2019

60 Chapter 4. High level services

CHAPTER
FIVE

USING SOAP

SOAP can be used to implements Web Services. The SOAP implementation uses AWS HTTP as the transport layer.
SOAP is platforms and languages independent, to ensure a good inter-operability, AWS/SOAP implementation has
been validated through http://validator.soapware.org/, the version number listed on this server corresponds to the AWS
version string (AWS. Version) catenated with the SOAP version string (SOAP. Version).

This SOAP implementation is certainly one with the higher level of abstraction. No need to mess with a serializer, to
know what is a payload or be an XML expert. All the low level stuffs are completely hidden as the SOAP type system
has been binded as much as possible to the Ada type system.

The SOAP type system has been relaxed to be compatible with WSDL based SOAP implementation. In these imple-
mentations, types are generally (as in the Microsoft implementation) not part of the payload and should be taken from
the WSDL (Web Services Description Language). AWS/SOAP is not WSDL compliant at this stage, all such types are
binded into the Ada type system as strings. It is up to the programer to convert such strings to the desired type.

5.1 SOAP Client

The SOAP client interface is quite simple. Here are the step-by-step instructions to call a SOAP Web Service:

* Build the SOAP parameters
As for the SOAP servers, the SOAP parameters are built using a SOAP. Parameters.List object:

: constant Parameters.List := +I (10, "v1") & I (32, "v2");

* Build the SOAP Payload

The Payload object is the procedure name and the associated parameters:

declare
Payload : Message.Payload.Object;
begin
Payload := Message.Payload.Build ("Add", Params);

¢ Call the SOAP Web Service

Here we send the above Payload to the Web Server which handles the Web Service. Let’s say that this server is
named myserver, it is listening on port 8082 and the SOAPAction is soapdemo:

: constant Message.Response.Object'Class :=
SOAP.Client.Call ("http://myserver:8082/soapdemo", Payload);

¢ Retrieve the result

Let’s say that the answer is sent back into the parameter named “myres”, to get it:

61

http://validator.soapware.org/

AWS Documentation, Release 2019

: constant Integer := SOAP.Parameters.Get (Params, "myres");

In the above example we have called a Web Service whose spec could be described in Ada as follow:

function Add (V1, V2 : in Integer) return Integer;
-— Add V1 and V2 and returns the result. In SOAP the result is named "myres"

5.2 SOAP Server

A SOAP server implementation must provides a callback procedure as for standard Web server Callback procedure.
This callback must checks for the SOAP Action URI to handle both standard Web requests and SOAP ones. The
SOAPAction is sent with the HTTP headers and can be retrieved using AWS. Status.SOAPAction.

5.2.1 Step by step instructions

Here are the step-by-step instructions to be followed in the SOAP callback procedure:
* Retrieve the SOAP Payload

The SOAP Payload is the XML message, it contains the procedure name to be called and the associated parame-
ters:

function SOAP_CB (Request : in AWS.Status.Data) return AWS.Response.Data is
use SOAP.Types;
use SOAP.Parameters;

: constant SOAP.Message.Payload.Object :=
SOAP .Message.XML.Load_Payload (AWS.Status.Payload (Request));

AWS.Status. Payload returns the XML Payload as sent by the SOAP Client. This XML Payload is then parsed
using SOAP.Message.XML.Load_Payload which returns a SOAP.Message.Payload.Object object.

¢ Retrieve the SOAP Parameters

The SOAP procedure’s parameters:

: constant SOAP.Parameters.List :=
SOAP .Message.Parameters (Payload);

SOAP.Parameters.List is a structure which holds the SOAP parameters. Each parameter can be retrieved using
a SOAP Parameters AP, SOAP.Parameters. For example to get the parameter named myStruc which is a SOAP
struct:

: constant SOAP_Record :=
SOAP .Parameters.Get (Params, "myStruct");

Another example, to get the parameter named mylnt which is a SOAP integer:

: constant Integer := SOAP.Parameters.Get (Params, "myInt");

* Implements the Web Service

This is the real job, as for any procedure you can do whatever is needed to compute the result.

62 Chapter 5. Using SOAP

AWS Documentation, Release 2019

¢ Build the SOAP answer

This is the procedure answer. A SOAP answer is built from the SOAP Payload and by setting the returned

parameters:

declare
Resp : SOAP.Message.Response.Object;
Resp_Params : SOAP.Parameters.List;

begin
Resp := SOAP.Message.Response.From (Payload);
Resp_Params := +I (My_Int % 2, "answer");
SOAP .Message.Set_Parameters (Resp, Resp_Params);

This build a response which is a single integer value named answer with the value My_Int * 2.
* Returns the answer back to the client

This last step will encode the response object in XML and will returns it as the body of an HTTP message:

return SOAP.Message.Response.Build (Resp);

5.2.2 SOAP helpers

There is two ways to help building the SOAP callbacks. AWS provides a SOAP specific callback, the spec is:

function SOAP_Callback

(SOA

\Ct1ion 3 11

String;

ge.Payload.Object;

.Status

.Data) return AWS.Response.Data;

With both solutions exposed below, AWS retrieve the SOAPAction and the Payload from the SOAP request. This is
transparent to the user.

* Using Utils.SOAP_Wrapper
It is possible to dispatch to such callback by using the SOAP. Utils.SOAP_Wrapper generic routine:

generic
with function SOAP_CB
(SOAPAction : in String;

Payload : in Message.Payload.Object;
Request : in AWS.Status.Data) return AWS.Response.Data;
function SOAP_Wrapper
(Request : in AWS.Status.Data) return AWS.Response.Data;

-— From a standard HTTP callback call the SOAP callback passed as generic
—-— formal procedure. Raise Constraint_Error if Request 1is not a SOAP
—-— request.

For example, from the standard HTTP callback CB we want to call SOAP_CB for all SOAP requests:

function SOAP_CB

(SOAPAction : in Stri

Payload : in Mes je .Payload.Object;

Request : in AWS.Status.Data) return AWS.Response.Data is
begin

—-— Code here

(continues on next page)

5.2. SOAP Server 63

AWS Documentation, Release 2019

(continued from previous page)

end SOAP_CB;

procedure SOAP_Wrapper is new SOAP.Utils.SOAP_Wrapper (SOAP_CB);

function CB (Request : in Al Status.Data) return AWS.Response.Data is
constant String := Status.SOAPAction (Request);
begin
if SOAPAction /= "" then
SOAP_Wrapper (Request);
else

» Using a SOAP Dispatcher

AWS provides also a SOAP specific dispatcher. This dispatcher will automatically calls a standard HTTP or SOAP
callback depending on the request. If SOAPAction is specified (i.e. it is a SOAP request), the dispatcher will
call the SOAP callback otherwise it will call the standard HTTP callback. This is by far the easiest integration
procedure. Using dispatcher the above code will be written:

function SOAP_CB

(SOAPAction : in
Payload : in Me .Payload.Object;
Request : in AWS.Status.Data) return AWS.Response.Data is

begin
—-— Code here
end SOAP_CB;

function CB (Request : in AWS.Status.Data) return AWS.Response.Data is
constant String := Status.SOAPAction (Request);
begin
—-— Code here
end CB;

—-— In the main procedure

begin
AWS.Server.Start
(Ws,
Dispatcher =>
SOAP.Dispatchers.Callback.Create (CB'Access, SOAP_CB'Access),
Config =>
AWS.Config.Default_Config);

The dispacther is created using SOAP.Dispatchers.Callback.Create. This routine takes two parameters, one is
the standard HTTP callback procedure and the other is the SOAP callback procedure.

64 Chapter 5. Using SOAP

CHAPTER

SIX

USING WSDL

WSDL (Web Service Definition Language) is an XML based document which described a set of Web Services

either

based on SOAP or XML/RPC. By using a WSDL document it is possible to describe, in a formal way, the interface to any
Web Services. The WSDL document contains the end-point (URL to the server offering the service), the SOAPAction

(needed to call the right routine), the procedure names and a description of the input and output parameters.
AWS provides two tools to work with WSDL documents:
ada2wsdl
which creates a WSDL document from an Ada package spec.
wsdl2aws

which create the interfaces to use a Web Service or to implement Web Services. With this tool the SOAP
interface is completely abstracted out, users will deal only with Ada API. All the SOAP marshaling will
be created automatically.

6.1 Creating WSDL documents
Note that this tool is based on ASIS.

6.1.1 Using ada2wsdl

ada2wsdl can be used on any Ada spec file to generated a WSDL document. The Ada spec is parsed using ASIS.

The simplest way to use it is:

$ ada2wsdl simple.ads

Given the following Ada spec file:

package Simple is
function Plus (Value : in Natural) return Natural;
end Simple;

It will generate the following WSDL document:

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions name="Simple"
targetNamespace="http://soapaws/Simple_def/"
xmlns:tns="http://soapaws/Simple_def/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

(continues on next page)

65

AWS Documentation, Release 2019

(continued from previous page)

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:nl="http://soapaws/Standard_pkg/"
xmlns:n2="http://soapaws/Simple_pkg/">

<!-- Generated by AWS/AdaZWSDL vl1.3.1
on Tuesday 25 November 2014 at 11:02:44 ——>

<wsdl:message name="Plus_Request">
<wsdl:part name="Value" type="xsd:int"/>
</wsdl :message>

<wsdl:message name="Plus_Response">
<wsdl:part name="Result" type="xsd:int"/>
</wsdl:message>

<wsdl:portType name="Simple PortType">
<wsdl:operation name="Plus">
<wsdl:input message="tns:Plus_Request"/>
<wsdl:output message="tns:Plus_Response"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="Simple_Binding" type="tns:Simple_PortType">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="Plus">
<soap:operation soapAction="Plus"/>
<wsdl:input>
<soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soapaws/Simple_def/"
use="encoded"/>
</wsdl:input>
<wsdl:output>
<soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soapaws/Simple_def/"
use="encoded"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

<wsdl:service name="Simple_ Service">
<wsdl:port name="Simple_Port" binding="tns:Simple_Binding">
<soap:address location="http://.../"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

The value of the name attribute in the description node is the name of the WSDL document (the name of the Ada spec
package). On the portType section we have the description of the Ada Plus function. Something important to note
is that in Ada a function does not have a named return parameter, ada2wsdl use Result for the response. Both the
input and output parameter are mapped to SOAP xsd:int type.

66 Chapter 6. Using WSDL

AWS Documentation, Release 2019

Note that the SOAP address generated by default (http://.../) must be edited manually or specified using ada2wsdl’s
-a option.

This is of course a very simple example. ada2wsdl does support lot more complex specs and will map Ada records,
arrays, enumerations, derived types to a corresponding XML schema definition. See section below for a description of
the mapping.

6.1.2 Ada mapping to WSDL

ada2wsdl parse Ada records, arrays, derived types, enumerations, procedures and functions and generate the corre-
sponding WSDL document. In this section we describe the mapping between Ada and WSDL.

Integer Mapped to xsd:int.
Float Mapped to xsd:float.
Long_Float Mapped to xsd:double

Long_Long_Float Mapped to xsd:double, not supported by SOAP, mapped for convenience but precision cannot be
guaranteed.

Boolean Mapped to xsd:boolean
String Mapped to xsd:string

Unbounded_String Mapped to xsd:string, note that Unbounded_String should be used only inside a record for full
interoperability. This is a current limitation.

Character Mapped to a Character schema definition:

<simpleType name="Character">
<restriction base="xsd:string">
<length value="1"/>
</restriction>
</simpleType>

Ada.Calendar.Time Mapped to xsd:dateTime

SOAP.Utils.SOAP_Base64 Mapped to xsd:base64Binary. SOAP.Utils. SOAP_Base64 is a subtype of string which is
is recognized by ada2wsdl to generate the proper SOAP type.

SOAP.Types.Byte Mapped to xsd:byte. SOAP.Types.Byte is a type which is recognized by ada2wsdl to generate the
proper SOAP type.

SOAP.Types.Short Mapped to xsd:short. SOAP.Types.Short is a type which is recognized by ada2wsdl to generate
the proper SOAP type.

SOAP.Types.Long Mapped to xsd:long. SOAP.Types.Long is a type which is recognized by ada2wsdl to generate the
proper SOAP type.

SOAP.Types.Unsigned_Byte Mapped to xsd:unsignedByte. SOAP.Types.Unsigned_Byte is a type which is recog-
nized by ada2wsdl to generate the proper SOAP type.

SOAP.Types.Unsigned_Short Mapped to xsd:unsignedShort. SOAP.Types.Unsigned_Short is a type which is recog-
nized by ada2wsdl to generate the proper SOAP type.

SOAP.Types.Unsigned_Int Mapped to xsd:unsignedInt. SOAP.Types. Unsigned_Int is a type which is recognized by
ada2wsdl to generate the proper SOAP type.

SOAP.Types.Unsigned_Long Mapped to xsd:unsignedLong. SOAP.Types.Unsigned_Long is a type which is recog-
nized by ada2wsdl to generate the proper SOAP type.

Derived types Mapped to a type schema definition:

6.1. Creating WSDL documents 67

http://.../

AWS Documentation, Release 2019

type Number is new Integer;

is defined as:

<simpleType name="Number" targetNamespace="http://soapaws/WSDL_C_pkg/">
<restriction base="xsd:int"/>
</simpleType>

Derived types with constraints Mapped to a type schema definition with minInclusive and maxInclusive attributes:

type Number is new Integer range 1 .. 9345;

is defined as:

<simpleType name="Number" targetNamespace="http://soapaws/WSDL_C_pkg/">
<restriction base="xsd:int">

<xsd:minInclusive value=" 1"/>
<xsd:maxInclusive value=" 9345"/>
</restriction>
</simpleType>

Or for a string::
highlight:: ada

type Code is String (1 .. 10);

is defined as:

<simpleType name="Code" targetNamespace="http://soapaws/WSDL_C_pkg/">
<xsd:restriction base="xsd:string">
<xsd:Length value="10"/>
</xsd:restriction>
</simpleType>

User’s types Mapped to a type schema definition with minInclusive and maxInclusive attributes:

type Small is range 1 .. 10;

is defined as:

<simpleType name="Small" targetNamespace="http://soapaws/WSDL_C_pkg/">
<restriction base="xsd:byte">

<xsd:minInclusive value=" 1"/>
<xsd:maxInclusive value=" 10"/>
</restriction>
</simpleType>

Modular types Mapped to an unsigned type with an optional maxInclusive attribute:

type Count is mod 14;

is defined as:

<simpleType name="Count" targetNamespace="http://soapaws/WSDL_C_pkg/">
<xsd:restriction base="xsd:unsignedByte">
<xsd:maxInclusive value=" 13"/>

(continues on next page)

68 Chapter 6. Using WSDL

AWS Documentation, Release 2019

(continued from previous page)

</xsd:restriction>
</simpleType>

Enumerations Mapped to an enumeration schema definition. For example:

type Color is (Red, Green, Blue);

is defined as:

<simpleType name="Color">
<restriction base="xsd:string">
<enumeration value="Red"/>
<enumeration value="Green"/>
<enumeration value="Blue"/>
</restriction>
</simpleType>

Records Mapped to a struct schema definition. For example:

type Rec is record
A : Integer;

: Float;
Long_Float;
Character;
Unbounded_String;
: Boolean;
end record;

T E O QW

is defined as:

<complexType name="Rec">
<all>
<element name="A" type="xsd:int"/>
<element name="B" type="xsd:float"/>
<element name="C" type="xsd:double"/>
<element name="D" type="tns:Character"/>
<element name="E" type="xsd:string"/>
<element name="F" type="xsd:boolean"/>
</all>
</complexType>

Arrays Mapped to an array schema definition. For example:

type Set_Of_Rec is array (Positive range <>) of Rec;

is defined as:

<xsd:complexType name="Set_ Of Rec">
<xsd:sequence>
<xsd:element name="x" type="nl:Rec"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

A SOAP encoded format can be generated with the -sea option:

<complexType name="Set_Of_Rec”’>

6.1. Creating WSDL documents 69

AWS Documentation, Release 2019

<complexContent>

<restriction base=""soap-enc:Array”’> <attribute ref="soap-enc:arrayType”
wsdl:array Type="tns:Rec[]”/>

</restriction>
</complexContent>
</complexType>

Array inside a record This part is a bit delicate. A record field must be constrained but a SOAP arrays is most of the
time not constrained at all. To support this AWS use a safe access array component. Such a type is built using
a generic runtime support package named SOAP Utils.Safe_Pointers. This package implements a reference
counter for the array access and will release automatically the memory when no more reference exists for a
given object.

For example, let’s say that we have an array of integer that we want to put inside a record:

type Set_Of_Int is array (Positive range <>) of Integer;

The first step is to create the safe array access support:

type Set_Of_Int_Access is access Set_Of_Int;

package Set_Of Int_Safe Pointer is
new SOAP.Utils.Safe Pointers (Set_Of_Int, Set_Of_Int_Access);

Note that the name Set_Of _Int_Safe_Pointer (<type>_Safe_Pointer) is mandatory (and checked by ada2wsdl)
to achieve interoperability with wsd12aws. Working with WSDL documents.

From there the safe array access can be placed into the record:

type Complex_Rec is record
SI : Set_Of_Int_Safe_Pointer.Safe_Pointer;
end record;

To create a Safe_Pointer given a Set_Of_Int one must use Set_Of _Int_Safe_Pointer.To_Safe_Pointer routine.
Accessing individual items is done with SI.Item (K).

These Ada definitions are fully recognized by ada2wsdl and will generate standard array and record WSDL
definitions as seen above:

<xsd:complexType name="Set_ Of Int">
<xsd:sequence>
<xsd:element name="x" type="xsd:int"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<complexType name="Complex_Rec">
<all>
<element name="SI" type="tns:Set_Of_Int"/>
</all>
</complexType>

Array as routine parameter When an array is passed as parameter to a SOAP routine it is also require to create a
corresponding Safe_Pointer when using Document/Literal binding and using a user’s type package (see -fypes
and ‘-spec wsdl2aws options). This is needed for the AWS generated code to handle this routine. Even if required
in a very specific case it is never an error to declare such Safe_Pointer for an array.

70 Chapter 6. Using WSDL

AWS Documentation, Release 2019

For example:

type Set_Of_Int is array (Positive range <>) of Integer;

procedure Call (Values : Set_Of_Int);

Then the following declarations are required:

type Set_Of_Int_Access is access Set_Of_Int;

package Set_Of_Int_Safe_Pointer is
new SOAP.Utils.Safe_Pointers (Set_Of_Int, Set_Of_Int_Access);

6.1.3 ada2wsdl

Usage: ada2wsdl [options] ada_spec

ada2wsdl options are:

-a url Specify the URL for the Web Server address. Web Services will be available at this address. A port can be
specified on the URL, http://server(:port]. The default value is http.//.../.

-f Force creation of the WSDL file. Overwrite exiting file with the same name.
-doc Generate document’s style binding (default is RPC)
-lit Generate literal’s style binding (default is encoded)

-1 path Add path option for the ASIS compilation step. This option can appear any number of time on the command
line.

-n name Specify the schema name space root name. The default value is “soapaws”.

-noenum Do not generate WSDL representation for Ada enumerations, map them to standard string. Ada mapping to
WSDL.

-sea Generate SOAP encoded format for array definitions. This option is kept for compatibility reason, but the schema
based definition for arrays is recommended for better interoperability.

-0 file Generate the WSDL document into file.

-P proj The project file to use for building the spec.

-q Quiet mode (no output)

-s name Specify the Web Service name for the WSDL document, by default the spec package’s name is used.

-t path Specify the path to the tree file directory to use. This is needed when using a project file the object directory
is not the current directory.

-d Do not generate date/time in WSDL.

-v Verbose mode, display the parsed spec.

6.1.4 ada2wsdl limitations

* Do not handle constrained arrays into a records.
* Unbounded_String are supported with full interoperability only inside a record.

* Only unconstrained arrays are supported

6.1. Creating WSDL documents 71

AWS Documentation, Release 2019

* Arrays with multiple dimensions not supported

6.2 Working with WSDL documents

6.2.1 Client side (stub)

This section describe how to use a Web Service. Let’s say that we want to use the Barnes & Noble Price Quote service.
The WSDL document for this service can be found at http://www.xmethods.net/sd/2001/BNQuoteService.wsdl. In
summary this document says that there is a service named getPrice taking as input a string representing the ISBN
number and returning the price as floating point.

The first step is to generate the client interface (stub):

$ wsdl2aws -noskel http://www.xmethods.net/sd/2001/BNQuoteService.wsdl

This will create many files, the interesting one at this point is bnquoteservice-client .ads, inside we have:

function getPrice (isbn : in String) return Float;
—— Raises SOAP.SOAP_Error 1if the procedure fails

Let’s call this service to find out the price for The Sword of Shannara Trilogy book:

with Ada.Text_IO;
with BNQuoteService.Client;

procedure Price is
use Ada;

constant String := "0345453751";
—-— The Sword of Shannara Trilogy ISBN

package LFIO is new Text_ TIO.Float IO (Float);

begin
Text_IO.Put_Line ("B&N Price for The Sword of Shannara Trilogy");
LFIO.Put (BNQuoteService.Client.getPrice (ISBN), Aft => 2, Exp => 0);
end Price;

That’s all is needed to use this Web Service. This program is fully functional, It is possible to build it and to run it to
get the answer.

6.2.2 Server side (skeleton)

Building a Web Service can also be done from a WSDL document. Let’s say that you are Barnes & Noble and that you
want to build Web Service getPrice as described in the previous section.

You have created the WSDL document to specify the service spec. From there you can create the skeleton:

$ wsdl2aws -nostub http://www.xmethods.net/sd/2001/BNQuoteService.wsdl

This will create many files, the interesting one here is bnquoteservice—-server.ads, inside we have:

72 Chapter 6. Using WSDL

http://www.xmethods.net/sd/2001/BNQuoteService.wsdl

AWS Documentation, Release 2019

constant := 80;

generic

with function getPrice (isbn : in String) return Float;
function getPrice_CB

(SOAPActic : in String;

in SOAP.Message.

>.5tatus.Data) return AWS.Response.Data;

Payload.Object;

Request : in Al

This is a SOAP AWS’s callback routine that can be instantiated with the right routine to retrieve the price of a book
given its ISBN number. A possible implementation of such routine could be:

function getPrice (isbn : in String) return Float is
begin
if isbn = "0987654321" then
return 45.0;
elsif

end getPrice;

function SOAP_getPrice is new BNQuoteService.Server.getPrice_CB (getPrice);

SOAP_getPrice is a SOAP AWS’s callback routine (i.e. it is not a standard callback). To use it there is different
solutions:

Using SOAP.Utils. SOAP_Wrapper This generic function can be used to translate a standard callback based on
AWS.Status.Data into a SOAP callback routine:

function getPrice_Wrapper is new SOAP.Utils.SOAP_Wrapper (SOAP_getPrice);

The routine getPrice_Wrapper can be used as any other AWS’s callback routines. Note that inside this wrapper
the XML payload is parsed to check the routine name and to retrieve the SOAP parameters. To call this routine
the payload needs to be parsed (we need to know which routine has be invoked). In this case we have parsed the
XML payload twice, this is not efficient.

Building the wrapper yourself This solution is more efficient if there is many SOAP procedures as the payload is
parsed only once:

function CB (Request : in Status.Data) return Response.Data is
constant String := Status.SOAPAction (Request);
constant SOAP.Message.Payload.Object :=
SOAP .Message.XML.Load_Payload
(AWS.Status.Payload (Request), Schema => BNQuoteService.Schema) ;
constant String :=
SOAP .Message.Payload.Procedure_Name (Payload);

begin

if SOAPAction = "..." then

if Proc = "getPrice" then
return SOAP_getPrice (SOAPAction, Payload, Request);

elsif
end if;

else

end if;

Note that the port to be used by the AWS server is described into the server spec.

6.2. Working with WSDL documents 73

AWS Documentation, Release 2019

6.2.3 wsdl2aws

Usage: wsdl2aws [options] <file|URL>

It is possible to pass a WSDL file or direct wsd12aws to a WSDL document on the Web by passing it’s URL.
wsdl2aws options are:

-q Quiet mode (no output)

-d Do not generate date/time in Ada comment.

-debug Generate debug code. Will output some information about the payload to help debug a Web Service.

-a Generate using Ada style names. For example getPrice will be converted to Get_Price. This formatting is done for
packages, routines and formal parameters.

-f Force creation of the file. Overwrite any exiting files with the same name.
-e URL Specify the default endpoint to use instead of the one found in the WSDL document.

-s Skip non supported SOAP routines. If -s is not used, wsdl2aws will exit with an error when a problem is found
while parsing the WSDL document. This option is useful to skip routines using non supported types and still be
able to compile the generated files.

-0 name Specify the name of the local WSDL document. This option can be used only when using a Web WSDL
document (i.e. passing an URL to wsdl2aws).

-p name Specify a name prefix for all SOAPActions defined in the WDSL. This option can be used when multiple
WSDL generated callback are to be used together and some of the WSDL may have the same name.

-doc Handle document style binding as RPC ones. This is sometimes needed because some WSDL document specify
a document style binding even though the service behave like an RPC one.

-v Verbose mode, display the parsed spec.

-v -y Verbose mode, display the parsed spec and lot of information while parsing the WSDL document tree.
-wsdl Add WSDL document as comment into the generated root unit.

-cvs Add CVS Id tag in every generated file.

-nostub Do not generated stubs, only skeletons are generated.

-noskel Do not generated skeletons, only stubs are generated.

-cb Generate a SOAP dispatcher callback routine for the server. This dispatcher routine contains the code to handle
all the operations as described in the WSDL document. You need also to specify the -spec and/or -types options,
see below.

-x operation Add operation to the list of SOAP operations to skip during the code generation. It is possible to specify
multiple -x options on the command line.

-spec spec Specify the name of the spec containing the Ada implementation of the SOAP routines. This is used
for example by the -cb option above to instantiate all the server side SOAP callbacks used by the main SOAP
dispatcher routine. If -fypes is not specified, the type definitions are also used from this spec.

-types spec Specify the name of the spec containing the Ada types (record, array) used by SOAP routines specified
with option -spec. If -spec is not specified, the spec definitions are also used from this spec.

-main filename Specify the name of the server’s procedure main to generate. If file <filename>.amt (Ada Main
Template) is present, it uses this template file to generate the main procedure. The template can reference the
following variable tags:

74 Chapter 6. Using WSDL

AWS Documentation, Release 2019

SOAP_SERVICE The name of the service as described into the WSDL document. This tag can be used to
include the right units:

with @_SOAP_SERVICE_QR.Client;
with @ _SOAP_SERVICE_Q.CB;

SOAP_VERSION The AWS’s SOAP version.
AWS_VERSION The AWS’s version.

UNIT_NAME The name of the generated unit. This is the name of the procedure that will be created:

procedure @_UNIT_NAME_@ is
begin

-n name Specify the schema name space root name. The default value is “soapaws”.

-proxy namellP Use this proxy to access the WSDL document and generate code to access to these Web Services via
this proxy. The proxy can be specified by its DNS name or IP address.

-pu name User name for the proxy if proxy authentication required.
-pp password User password for the proxy if proxy authentication required.

-timeouts [timeouts | connect_timeout,send_timeout,receive_timeout | Set the timeouts for the SOAP connection.
The timeouts is either a single value used for the connect, send and receive timeouts or three values separated
by a colon to set each timeout independently.

6.2.4 wsdl2aws behind the scene

The wsdI2aws tool read a WSDL document and creates a root package and a set of child packages as described below:

<root> This is the main package, it contains eventually the full WSDL in comment and the description of the services
as read from the WSDL document.

<NS>.<type>_type_pkg Contains all the type definitions for non standard Ada types. In these packages we find for
example the definition of the records and the operation to convert them to/from SOAP objects. The types defined
here have possible constraints like range attribute and/or Dynamic_Predicate aspects for Pattern and/or Length
WSDL attribute.

The root package <NS> is the name-space of the actual type. This ensure that no type name clash will happen.
Those packages are generally not directly withed.

<root>.Types This package contains the definitions of the types which are not SOAP base types. We find here the
definitions of the SOAP structs and arrays with routines to convert them between the Ada and SOAP type model.
A subtype definition is also created for every routine’s returned type. In fact, all definitions here are only alias
or renaming of types and/or routines generated in other packages rooted with a name-space as described above.
This package is the one that user’s should import to gain the visibility of types definitions.

This package also contains the schema object which must be used when calling a Web service or parsing a
payload.

<root>.Client All spec to call Web Services.

<root>.Server All spec to build Web Services. These specs are all generic and must be instantiated with the right
routine to create the web services.

<root>.CB The SOAP dispatcher callback routine.

6.2. Working with WSDL documents 75

AWS Documentation, Release 2019

6.2.5 wsdl2aws limitations
It is hard to know all current limitations as the WSDL and SOAP world is quite complex. We list there all known
limitations:

* Some SOAP base types are not supported : date, time, xsd:hexBinary, decimal. All these are easy to add (except
decimal), it is just not supported with the current version.

* Multi-dimension arrays are not supported.

* abstract types are not supported.

* SOAP MIME attachments are not supported.

e WSDL type inheritance not supported.

* The Document/Encoded SOAP messages’ style is not supported

» complexType with xs:choice are only supported with a single occurence of each choice.

6.2.6 awsascb

The awsascb (AWS Aggregate Server Callback) tool can be used to aggregate multiple SOAP callback together. That
is, after generated multiple SOAP callback with wsdl2aws it may be needed to create a single server handling all the
services. This tools is designed for this.

Usage: awsascb <rootl> <root2>

This is no option to for this tool. The root parameters are the wsdl2aws generated root service name unit. This tool
generates a unit named agg_server_cb which contains a SOAP callback and a dispatcher to be used by the server main.
Here is the spec:

—-— DO NOT EDIT : generated by awsasc

with AWS.Response;
with AWS.Status;

with SOAP.Dispatchers.Callback;
with SOAP.Message.Payload;
with SOAP.WSDL.Schema;

package Agg_Server CB is

use AWS;
use SOAP;

pragma Style Checks (Off);
type Handler is new SOAP.Dispatchers.Callback.Handler with null record;

overriding function Schema
(Dispatcher : Handler;
SOAPAction : String)
return WSDL.Schema.Definition;

function Create
(HTTP_Cal ack : AWS.Response.Callback) return Handler;
—— Returns an handler whose SOAP_Callback 1s the one below

(continues on next page)

76 Chapter 6. Using WSDL

AWS Documentation, Release 2019

(continued from previous page)

function SOAP_CB

String;

age.Pay
: A .Status.Data)
return Response.Data;

oad.Object;

Reque:

AWS

end Agg_Server_CB;

And following is an example on using such generated aggregate server callback from a server’s main:

WS : Server.HTTP;
Conf : Config.Obiject;
Disp : Agg_Server_CB.Handler;

begin
Config.Set.Server_Port (Conf, 0);

Disp := Agg_Server_CB.Create (HTTP_CB'Access);

AWS.Server.Start (WS, Disp, Conf);

6.3 Using ada2wsdl and wsdl2aws together

Using both tools together is an effective way to build rapidely a SOAP server. It can be said that doing so is quite
trivial in fact. Let’s take the following spec:

package Graphics is

type Point is record
X, Y : Float;
end record;

function Distance (P1, P2 : in Point) return Float;
— Returns the distance between points P1 and P2

end Graphics;

We do not show the body here but we suppose it is implemented. To build a server for this service it is as easy as:

$ ada2wsdl -a http://localhost:8787 -o graphics.wsdl graphics.ads

The server will be available on localhost at port 8787:

$ wsdl2aws -cb -main server -types graphics graphics.wsdl
$ gnatmake server -largs

Options
-cb is to create the SOAP dispatcher callback routine,
-main server to generate the main server procedure in server . adb,

-types graphics to use graphics.ads to get references from user’s spec (reference to Graphics. Point for example).

6.3. Using ada2wsdl and wsdl2aws together 77

AWS Documentation, Release 2019

78 Chapter 6. Using WSDL

CHAPTER
SEVEN

WORKING WITH MAILS

7.1 Sending e-mail

AWS provides a complete API to send e-mail using SMTP protocol. You need to have access to an SMTP server to use
this feature. The API covers sending simple mail with text message and/or with MIME attachments (base64 encoded).
Here are the steps to send a simple e-mail:

¢ Initialize the SMTP server

SMTP_Server : SMTP.Receiver :=
SMTP.Client.Initialize ("smtp.hostname");

Here AWS uses the default SMTP port to create an SMTP mail server but it is possible to specify a different one.
The hostname specified must be a valid SMTP server.

¢ Send the e-mail

To send an e-mail there is many different API. Let’s send a simple text mail:

Status : SMTP.Status;

SMTP.Client.Send
(SMTP_Server,
From => SMTP.E_Mail ("Pascal Obry", "p.obry@wanadoo.fr"),
To => SMTP.E_Mail ("John Doe", "john.doe@here.com"),
Subject => "About AWS SMTP protocol",
Message => "AWS can now send mails",
Status => Status);

Here Status will contain the SMTP returned status.
¢ Check that everything is ok

Using above status data it is possible to check that the message was sent or not by the server. The status contain
a code and an error message, both of them can be retrieved using specific routines, see AWS.SMTP. 1t is also
possible to check that the call was successful with SMTP.Is_Ok routine:

if not SMTP.Is_Ok (Status) then
Put_Line ("Can't send message: " & SMTP.Status_Message (Status));
end if;

In the above example, the message content was given as a string but it is possible to specify a disk file. AWS can also
send MIME messages either from disk files or with in memory base64 encoded binary data. The API provides also a
way to send messages to multiple recipients at the same time and to send messages with alternative contents (text and

79

AWS Documentation, Release 2019

HTML for example). These features are not described here, complete documentation can be found on the spec see
AWS.SMTP and AWS.SMTP.Client.

7.2 Retrieving e-mail

AWS provides an API to retrieve e-mails from a POP mailbox. POP stands for Post Office Protocol and is the main
protocol used by Internet Service Providers around the world. IMAP is another well known protocol in this area but it
is not supported by AWS.

We describes here the POP API. For a complete description see AWS.POP.

* Opening the mailbox

The first step is to authenticate using a user name and password. AWS supports two methods one called
Clear_Text which is the most used and another one APOP which is more secure but almost not supported
by ISP for the moment (and will probably never be supported as a more secure protocol named SPA -Secure
Password Authentication- could be used instead):

Mailbox : POP.Mailbox :=
POP.Initialize ("pop.hostname", "john.does", "mysuperpwd");

The default Authentication method is Clear_Text.
¢ Getting mailbox information

When the connection is opened it is possible to get information about the mailbox like the number of messages
or the total number of bytes in the mailbox:

constant Natural := POP.Message_Count (Mailbox);

constant Natural := POP.Size (Mailbox);

* Retreiving individual e-mail

Each message is numbered starting from 1. A function named Ger will return a message given its mailbox’s
number:

constant POP.Message := POP.Get (Mailbox, 2, Remove => True);

Remove can be set to False for the message to stay on the mailbox. The default value is False.
e Iterating through the mailbox content

Another way to retreive message is by using an iterator:

procedure Print_Subject

(M in POP.M
Inde in Positive;
Quit : in out Boolean) is

begin
Text_I0.Put_Line (POP.Subject (Message));
end Print_Message;

procedure Print_All_Subjects is new POP.For_Every_Message (Print_Subject);

Print_All_Subjects (Mailbox, Remove => True);

80

Chapter 7. Working with mails

AWS Documentation, Release 2019

It exists a set of routines on a POP.Message object to get the subject the content, the date or any headers. It is
also possible to work with attachments. See point below.

* Working with attachments

A message can have a set of MIME attachments. The number of attachments can be retrieved using Aftach-
ment_Count:

constant POP.Message := ...;

constant Natural := POP.Attachment_Count (Message);

As for messages it is possible to get a single attachment using its index in the message or by using an iterator:

constant POP.Attachment := POP.Get (Message, 1);

procedure Write_Attachment
(Attachment : in POP.Attachment

Index : in Positiv

e;
Quit : in out Boolean) is

begin
POP.Write (Attachment, Directory => ".");

end Print_Message;

procedure Write_All_Attachments is
new POP.For_FEvery_Attachment (Write_Attachment);

Write_All_Attachments (Message);

It is also possible to retrieve the attachment’s filename, the content as a memory stream. See AWS.POP.

* Closing the connection

POP.Close (POP_Server);

7.2. Retrieving e-mail 81

AWS Documentation, Release 2019

82 Chapter 7. Working with mails

CHAPTER
EIGHT

LDAP

AWS provides a complete API to retrieve information from LDAP servers. Note that there is no support for updating,
modifying or deleting information only to read information from the server.

The AWS/LDAP implementation is based on OpenLDAP. To build an LDAP application you need to link with the
libldap.a library. This library is built by AWS on Windows based system and will use the wldap32.d11 as
provided with Windows NT/2000/XP. On UNIX based systems, you must install properly the OpenLDAP package.

The steps required to read information from an LDAP server are:

Initialize the LDAP directory We open a connection:

declare

Directory : LDAP.Client.Directory;
begin

Directory := LDAP.Client.Init (Host);

Host is the hostname where the LDAP directory is running. It is possible to specify the port if the LDAP server
does not use the default one.

Bind to the LDAP server This step is the way to pass a login/password if the LDAP server required an authentication.
If not, the login/password must be empty strings:

ILDAP.Client.Bind (Directory, "", "");

Do the search For the search you must specify the base name, a filter, the scope and a set of attributes to retrieve:

Response_Set := LDAP.Client.Search
(Directory, Base_DN, Filter, LDAP.Client.LDAP_Scope_Subtree,
LDAP.Client.Attributes ("cn", "sn", "telephonenumber"));

Attributes The set of attributes to retrieve from the directory.

Filter A set of values for some attributes. A filter is <attribute_name>=<value> where value can contain ‘*’ at the
end. For example “(cn=DUPON¥*)” will look for all entries where the common name is starting by the string
“DUPON”.

Scope

Define how far in the hierarchical directory the search will operate. It is either one level, all subtrees
or on the base of the tree.

For more information see AWS.LDAP.Client.

Iterate through the response set For this there is two iterators. First_Entry/Next_Entry or the generic high level iter-
ator For_Every_Entry:

83

AWS Documentation, Release 2019

declare
Message : LDAP.Client.LDAP_Message;
begin
Message := LDAP.Client.First_Entry (Directory, Response_Set);

while Message /= LDAP.Client.Null_LDAP_Message loop
Do_Job (Message);

Message := LDAP.Client.Next_Entry (Directory, Message);
end loop;
end;

Read attributes for each entry Each entry has an associated set of attributes. To retrieve attributes values there is two

iterators. First_Attribute | Next_Attribute or the generic high level iterator For_Every_Attribute:

declare
BER : aliased LDAP.Client.BER_Element;
constant String := LDAP.Client.First_Attribute
(Directory, Message, BER'Unchecked_ Access);
begin

Do_Job (Attr);

loop
declare
constant String := LDAP.Client.Next_Attribute
(Directory, Message, BER);
begin
exit when Attr = "";
Do_Job (Attr);
end;
end loop;
end;

Cleanup At the end of the processing it is important to release memory associated with LDAP objects:

LDAP.Client.Free (Message);
ILDAP.Client.Unbind (Directory);

See AWS.LDAP.Client for all high level supported API and documentation.

Note that for complete information about AWS/LDAP you you should read an LDAP API description. AWS/LDAP is
only a binding and follow the LDAP API closely.

84

Chapter 8. LDAP

CHAPTER
NINE

JABBER

AWS support part of the Jabber protocol. At this stage only two kind of messages are supported:
* Presence
To check the presence status of a specific JID (Jabber ID)
* Message
To send messages to a specific JID (Jabber ID)

Note that if you want an application to check the presence or send message to users it is recommended to create a
specific Jabber ID on the server for this application and ask users to accept this specific user to check their presence
status.

9.1 Jabber presence

To check for the presence of another JID you must first have the right to do so. The jabber server won’t let you see
presence of another JID unless the JID have permitted you to see its presence.

* First declare the server and status objects:

Server : AWS.Jabber.Server;
Status : AWS.Jabber.Presence_Status;

Connect to the server, you must have an account created and must know the login and password:

AWS .Jabber.Connect
(Server, "jabber.domain.org", "joe", "mysuperpwd");

Then, to check the presence of user “john”:

AWS.Jabber.Check_Presence
(Server, "john@jabber.domain.org", Status);

* Then, you just have to close the server:

’AWS.Jabber.Close (Server) ;

9.2 Jabber message

To send a message to a specific JID, you must connect to the server as above and close the server when you don’t need
to communicate with it anymore. The only different part is to send the message, here is an example:

85

AWS Documentation, Release 2019

Send_Message
(Server,
JID => "john@jabber.domain.org",
Subject => "Hello there!",
Content => "Are you using AWS ?");

86 Chapter 9. Jabber

CHAPTER
TEN

RESOURCES

AWS support embedded resources. It means that it is possible to build a fully self dependent executable. This is
useful when distributing a server. The server program contains the code but also the images (PNG, JPEG, GIF), the
templates, the HTML pages. .. more generally any file the Web Server must serve to clients.

10.1 Building resources

To embbed the files into the executable you must build a resource tree. This task is greatly simplified using AWSRes
tool. For example let’s say that you want to build a simple server with a single page containing some text and one
PNG image. The text is handled directly in the callback procedure and contain a reference to the image 1ogo.png.
To build the resource tree:

$ awsres logo.png

This will create a set of packages whose root is the unit res by default. The resource tree is created. See awsres tool
for the complete AWS’s usage description.

awsres can also compress the resource files. This can be done by using awsres’s -z option. Compressed resources are
handled transparently. If the Web client supports compression the resource is sent as-is otherwise a decompression
stream will be created for the resource to be decompressed on-the-fly while sending it.

10.2 Using resources

This is really the simplest step. The resource tree must be linked with your executable, to do so you just have to ‘with’
the resource tree root into one of your program unit. This will ensure that the resource tree will be compiled and linked
into the executable. AWS and Templates_Parser know about resource files and will pick them up if available.

Note that this is transparent to users. It is possible to build the very same server based on standard files or resources
files. The only change in the code is to ‘with’ or not the resource tree.

Note that AWS supports only a single resource tree. If more than one resource tree is included into a program only one
will be seen.

10.3 Stream resources

Users can build a response directly from a stream. In this case the callback answer is built using AWS.Response.Stream.
It creates a resource object whose operations have been inherited from AWS.Resource.Stream.Stream_Type and rede-
fined by the user. So the Read operation can dynamically create the result stream data, the End_Of_File operation must

87

AWS Documentation, Release 2019

returns True when the stream data is out and so on. This feature is useful to let users completely create and control
dynamically AWS’s response content.

See AWS.Resources.Streams.

10.4 awsres tool

AWSRes is a tool to build resource files. It creates a root package named res by default and a child package for each
resource file:

’Usage: awsres [~hopgrRuz] filel/dirl [-uz] [file2/dir2...]

-a packages are named after the actual filenames

-h Display help message.

-0 Specify the output directory, by default it is the current directory.
-p name Append the specified prefix to the resource names.

-q Quiet mode.

-R Activate recursive behavior. In this mode awsres will parse recursively all subdirectories. If a directory is
specified on the command line then all files in this directory and sub-directories will be added. If a file (possibly
a pattern) is specificed on the command line then only files matching in directroy and sub-directories will be
added.

-r name Set the root unit name. Default is res.
-u Add following files as uncompressed resources.

-z Add following files as compressed resources.

88 Chapter 10. Resources

CHAPTER
ELEVEN

STATUS PAGE

The status page gives information about the AWS internal status. For example it returns the server socket ID, the
number of simultaneous connection, the number of time a connection has been used. ..

To display the information AWS use a template file. The template file (default is aws_status.thtml) is an HTML file
with some specific tags recognized by the parser. For more information about how the template parser works, please
look for the template parser documentation distributed with AWS.

Here are the tag variables recognized by AWS status page:

ABORTABLE_V (vector tag) A list of boolean. One for each connection. True means that this connection can be
aborted if none is available. This is to be inserted in a template table.

ACCEPT_QUEUE_SIZE see Configuration options.
ACCEPTOR_LENGTH Number of sockets in the internal socket set.

ACTIVITY_COUNTER_V (vector tag) A list of natural. One for each connection. This is the number of request the
connection has answered. This counter is reset each time the connection is closed. In other word this is the
number of request a keep-alive connection has processed.

ACTIVITY_TIME_STAMP_V (vector tag) A list of date. One for each connection. This is the time of the latest
request answered.

ADMIN URI to the administrative page.
CASE_SENSITIVE_PARAMETERS see Configuration options.
CHECK_URL_VALIDITY see Configuration options.
CLEANER_CLIENT_DATA_TIMEOUT see Configuration options.
CLEANER_CLIENT_HEADER_TIMEOUT see Configuration options.
CLEANER_SERVER_RESPONSE_TIMEOUT see Configuration options.
CLEANER_WAIT FOR_CLIENT _TIMEOUT see Configuration options.
CURRENT_CONNECTIONS Number of current connections to the server.
ERROR_LOG (boolean tag) This is set to true if error logging is active.
ERROR_LOG_FILE The error log file full pathname.
ERROR_LOG_FILENAME_PREFIX see Configuration options.
ERROR_LOG_SPLIT_MODE see Configuration options.
FORCE_CLIENT_DATA_TIMEOUT see Configuration options.
FORCE_CLIENT_HEADER_TIMEOUT see Configuration options.
FORCE_SERVER_RESPONSE_TIMEOUT see Configuration options.

89

AWS Documentation, Release 2019

FORCE_WAIT_FOR_CLIENT_TIMEOUT see Configuration options.
FREE_SLOTS_KEEP_ALIVE_LIMIT see Configuration options.
LINE_STACK_SIZE see Configuration options.

KEYS_M (matrix tag) A list of set of keys (for each key correspond a value in the tag VALUES_L, see below). Each
key in the vector tag start with an HTML “<td>" tag. This is to be able to display the key/value in column.

LOG (boolean tag) This is set to true if logging is active.

LOG_FILE The log file full pathname.

LOG_FILENAME_PREFIX see Configuration options.

LOG_FILE_DIRECTORY see Configuration options.

LOG_MODE The rotating log mode, this is either NONE, DAILY, MONTHLY or EACH_RUN.
LOGO A string to be placed in an img HTML tag. This is the name of the AWS logo image.
MAX_CONCURRENT_DOWNLQOAD see Configuration options.

MAX_CONNECTION see Configuration options.

PEER_NAME_V (vector tag) A list of peer name. One for each connection. This is the name of the last peer con-
nected to the slot.

PHASE_V (vector tag) What is the slot currently doing, for example Server_Processing or Closed.
RECEIVE_TIMEOUT see Configuration options.

REUSE_ADDRESS see Configuration options.

SECURITY A boolean set to True if this is a secure socket (HTTPS/SSL).
SECURITY_MODE see Configuration options.

CIPHER_PRIORITIES see Configuration options.

SEND_TIMEOUT see Configuration options.

SERVER_HOST see Configuration options.

SERVER_NAME see Configuration options.

SERVER_PORT see Configuration options.

SERVER_SOCK Server socket ID.

SESSION see Configuration options.

SESSION_CLEANUP_INTERVAL Number of seconds between each run of the session cleanup task. This task will
remove all session data that have been obsoleted.

SESSION_LIFETIME Number of seconds to keep session information. After this period a session is obsoleted and
will be removed at next cleanup.

SESSION_NAME see Configuration options.

SESSIONS_TERMINATE_YV (vector tag) A list of time. Each item correspond to the time when the session will be
obsoleted.

SESSIONS_TS_V (vector tag) A list of time stamp. Each item correspond to a session last access time.
SESSIONS_V (vector tag) A list of session ID.

SLOT_ACTIVITY_COUNTER_YV (vector tag) A list of natural. One for each connection. This is the total number of
requests the slot has answered. This counter is never reseted.

920 Chapter 11. Status page

AWS Documentation, Release 2019

SOCK_V (vector tag) A list of sockets ID. One for each connection.

STATUS_PAGE see Configuration options.

START_TIME A timestamp in YYYY-MM-DD HH:MM:SS format. When the server was started.
TRANSIENT _CLEANUP_INTERVAL see Configuration options.

TRANSIENT _LIFETIME see Configuration options.

UPLOAD_DIRECTORY see Configuration options.

UPLOAD_SIZE _LIMIT see Configuration options.

VALUES_M (matrix tag) A list of set of values (for each value correspond a key in the vector tag KEYS_L, see
above). Each key in the vector tag start with an HTML “<td>" tag. This is to be able to display the key/value in
column.

VERSION AWS version string.
WWW_ROOT see Configuration options.

There is also all Templates_Parser specific tags. This is not listed here please have a look at the Templates_Parser
documentation distributed with AWS.

91

AWS Documentation, Release 2019

92 Chapter 11. Status page

CHAPTER
TWELVE

REFERENCES

Here is a list of documents used to implement AWS, the SOAP support and associated services:

RFC 0821

SIMPLE MAIL TRANSFER PROTOCOL

Jonathan B. Postel
August 1982

Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina del Rey, California 90291

RFC 1867
Network Working Group E. Nebel
Request For Comments: 1867 L. Masinter
Category: Experimental Xerox Corporation
November 1995
Form-based File Upload in HTML
RFC 1939
Network Working Group J. Myers
Request for Comments: 1939 Carnegie Mellon
STD: 53 M. Rose
Obsoletes: 1725 Dover Beach Consulting, Inc.
Category: Standards Track May 1996
Post Office Protocol - Version 3
RFC 1945
Network Working Group T. Berners-Lee
Request for Comments: 1945 MIT/LCS
Category: Informational R. Fielding

UC Irvine
H. Frystyk
MIT/LCS
May 1996

Hypertext Transfer Protocol -— HTTP/1.0

93

AWS Documentation, Release 2019

RFC 2049
Network Working Group N. Freed
Request for Comments: 2049 Innosoft
Obsoletes: 1521, 1522, 1590 N. Borenstein
Category: Standards Track First Virtual
November 1996
Multipurpose Internet Mail Extensions
(MIME) Part Five:
Conformance Criteria and Examples
RFC 2109
Network Working Group D. Kristol
Request for Comments: 2109 Bell Laboratories, Lucent Technologies
Category: Standards Track L. Montulli
Netscape Communications
February 1997
HTTP State Management Mechanism
RFC 2195
Network Working Group J. Klensin
Request for Comments: 2195 R. Catoe
Category: Standards Track P. Krumviede
Obsoletes: 2095 MCI

September 1997

IMAP/POP AUTHorize Extension for Simple Challenge/Response

RFC 2554
Network Working Group J. Myers
Request for Comments: 2554 Netscape Communications
Category: Standards Track March 1999
SMTP Service Extension
for Authentication
RFC 2616

Network Working Group R. Fielding

Request for Comments: 2616 UC Irvine

Obsoletes: 2068 J. Gettys

Category: Standards Track Compaqg/W3C

J. Mogul

Compaqg

H. Frystyk

W3C/MIT

L. Masinter

Xerox

P. Leach

Microsoft

T. Berners-Lee

W3C/MIT

June 1999

(continues on next page)

94 Chapter 12. References

AWS Documentation, Release 2019

(continued from previous page)

Hypertext Transfer Protocol —-—- HTTP/1.1
RFC 2617
Network Working Group J. Franks
Request for Comments: 2617 Northwestern University
Obsoletes: 2069 P. Hallam-Baker
Category: Standards Track Verisign, Inc.

J. Hostetler
AbiSource, Inc.

S. Lawrence

Agranat Systems, Inc.
P. Leach

Microsoft Corporation
A. Luotonen

Netscape Communications Corporation
L. Stewart

Open Market, Inc.
June 1999

HTTP Authentication: Basic and Digest Access Authentication

draft 302

Transport Layer Security Working Group Alan O. Freier
INTERNET-DRAFT Netscape Communications
Expire in six months Philip Karlton

Netscape Communications
Paul C. Kocher
Independent Consultant
November 18, 1996

The SSL Protocol
Version 3.0

SOAP (W3C Note 08 May 2000)

Simple Object Access Protocol (SOAP) 1.1
W3C Note 08 May 2000

This version:
http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508

Latest version:
http://www.w3.0rg/TR/SOAP

Authors (alphabetically):
Don Box, DevelopMentor
David Ehnebuske, IBM
Gopal Kakivaya, Microsoft
Andrew Layman, Microsoft
Noah Mendelsohn, Lotus Development Corp.
Henrik Frystyk Nielsen, Microsoft
Satish Thatte, Microsoft
Dave Winer, UserLand Software, Inc.

(continues on next page)

95

AWS Documentation, Release 2019

(continued from previous page)

Copyright 2000 DevelopMentor, International Business Machines Corporation,
Lotus Development Corporation, Microsoft, UserLand Software

“http://www.w3.0rg/TR/SOAP/ <http://www.w3.org/TR/SOAP/>"_

A Busy Developer’s Guide to SOAP 1.1

By Dave Winer, Jake Savin, UserlLand Software, 4/2/01.

“http://www.soapware.org/bdg <http://www.soapware.org/bdg>"

96 Chapter 12. References

CHAPTER

THIRTEEN

AWS API REFERENCE

13.1 AWS

- Ada Web Server -
- Copyright (C) 2000-2018, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
-— it under terms of the GNU General Public License as published by the -—-—
-— Free Software Foundation; either version 3, or (at your option) any —-
-— later version. This library is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of --
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
-— a copy of the GCC Runtime Library Exception along with this program; -
—-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. -

pragma Ada_2012;

package AWS with Pure is

Version : constant String := "2019";
HTTP_10 : constant String := "HTTP/1.0";
HTTP_11 : constant String := "HTTP/1.1";

HTTP_Version : String renames HTTP_11;

end AWS;

97

AWS Documentation, Release 2019

13.2 AWS.Attachments

- Ada Web Server -
- Copyright (C) 2004-2017, AdaCore -
—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-

-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;

with Ada.Strings.Unbounded;

with AWS.Headers;

with AWS.MIME;

with AWS.Net;

private with Ada.Containers.Vectors;
package AWS.Attachments is

use Ada.Strings.Unbounded;

type Element is private;
type List is tagged private;

Empty_List : constant List;

type Content is private;

type Encoding is (None, Base64);
function File

(Filename : String;
Encode : Encoding := None;

(continues on next page)

98 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

Content_TId : String
Content_Type : String := MIME.Text Plain) return Content;
-— A filename as content, 1if Encode is set to Base64 the file content will
—-— be baseb64 encoded.

wn .
’

function Value

(Data : Unbounded_String;

Name : String = "";

Encode : Encoding := None;

Content_TId : String = "";

Content_Type : String := MIME.Text Plain) return Content;

—— An unbounded string as content

function Value

(Data : String;

Name : String = "";

Encode : Encoding := None;

Content_Id : String := "";

Content_ Type : String := MIME.Text Plain) return Content

is (Value (To_Unbounded_String (Data), Name, Encode, Content_Id,
Content_Type)) ;
-—- A string as content

type Attachment_Kind is (Data, Alternative);
—-— Data : for a standard MIME attachment

—-— Alternative : for a set of alternative content

procedure Add

(Attachments : in out List;
Filename : String;
Content_Id : String;
Headers : AWS.Headers.List := AWS.Headers.Empty_List;
Name : String = "";
Encode : Encoding := None)
with Post => Count (Attachments) = Count (Attachments'Old) + 1;

—-— Adds an Attachment to the 1ist.
—-— Note that the encoding will overwrite the corresponding entry 1in
—— headers.

procedure Add

(Attachments : in out List;
Filename : String;
Headers : AWS.Headers.List;
Name : String = "";
Encode : Encoding := None)
with Post => Count (Attachments) = Count (Attachments'Old) + 1;

—— Adds an Attachment to the 1list.
—-— Note that the encoding will overwrite the corresponding entry in
—— headers.

procedure Add

(Attachments : in out List;

Name ¢ String;

Data : Content;

Headers : AWS.Headers.List := AWS.Headers.Empty_List)
with Post => Count (Attachments) = Count (Attachments'Old) + 1;

—-— Adds an Attachment to the 1list.

(continues on next page)

13.2. AWS.Attachments 99

AWS Documentation, Release 2019

(continued from previous page)

—-— Note that the encoding and content type attached to Data will
—-— overwrite the corresponding entry in headers.

—-— Alternatives content
type Alternatives is private;

procedure Add
(Parts : in out Alternatives;
Data : Content);

—-— Add an alternative content

procedure Add
(Attachments : in out List;
Parts : Alternatives);
—-— Add an alternative group to the current attachment 1list

procedure Reset

(Attachments : in out List;
Delete_Files : Boolean)
with Post => Count (Attachments) = 0;

—-— Reset the list to be empty. If Delete Files is set to true the
—-— attached files are removed from the file system.

function Count (Attachments : List) return Natural with Inline;
—-— Returns the number of Attachments in the data

function Get

(Attachments : List;

Index : Positive) return Element
with Pre => Index <= Count (Attachments);
—-— Returns specified Attachment

function Get
(Attachments : List;

Content_TId : String) return Element
with
Pre =>
(for some K in 1 .. Count (Attachments)
=> AWS.Attachments.Content_Id (Get (Attachments, K)) = Content_Id);

—-— Returns the Attachment with the Content Id

generic
with procedure Action
(Attachment : Element;

Index : Positive;
Quit : in out Boolean);
procedure For_Every_Attachment (Attachments : List);

—-— Calls action for every Attachment in Message. Stop iterator if Quit 1is

-— set to True, Quit 1is set to False by default.

procedure Iterate

(Attachments : List;

Process : not null access procedure (Attachment : Element));
—-— Calls Process for every Attachment in Message

function Headers (Attachment : Element) return AWS.Headers.List with Inline;

(continues on next page)

100 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

—-— Returns the 1list of header lines for the attachment

function Content_Type (Attachment : Element) return String;
—-— Get value for "Content-Type:" header

function Content_Id (Attachment : Element) return String;
—-— Returns Attachment's content id

function Local_ Filename (Attachment : Element) return String;

—-— Returns the local filename of the Attachment.

—-— Local filename is the name the receiver used when extracting the
—-— Attachment into a file.

function Filename (Attachment : Element) return String;
—— Original filename on the server side. This 1s generally encoded on the
—-— content-type or content-disposition header.

function Kind (Attachment : Element) return Attachment_Kind with Inline;
—-— Returns the kind of the given attachment

function Length
(Attachments : List;
Boundary : String) return Positive
with Post => Length'Result > 8;
—-— Returns the complete size of all attachments including the surrounding
—-— boundaries.

procedure Send_MIME_Header

(Socket : Net.Socket_Type'Class;
Attachments : List;

Boundary : out Unbounded_String;
Alternative : Boolean := False);

—— Output MIME header, returns the boundary for the content

procedure Send

(Socket : AWS.Net.Socket_Type'Class;
Attachments : List;
Boundary : String);

—-— Send all Attachments, including the surrounding boundarys, in the list
-— to the socket.

type Root_MIME_Kind is (Multipart Mixed, Multipart_ Alternative);

function Root_MIME (Attachments : List) return Root_MIME_Kind;
—-— Returns the root MIME kind for the given attachment 1ist

private
—-— Implementation removed
end AWS.Attachments;

13.2. AWS.Attachments 101

AWS Documentation, Release 2019

13.3 AWS.Client

- Ada Web Server -
- Copyright (C) 2000-2018, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;

with Ada.Streams;
with Ada.Strings.Unbounded;

with AWS.Attachments;

with AWS.Default;

with AWS.Headers;

with AWS.Net.SSL.Certificate;
with AWS.Response;

private with Ada.Exceptions;
private with Ada.Finalization;
private with Ada.Real_Time;
private with ZLib;

private with AWS.URL;
private with AWS.Utils;

package AWS.Client is

use Ada.Streams;
use Ada.Strings.Unbounded;

Connection_Error : exception;
—— Raised 1f the connection with the server cannot be established

(continues on next page)

102 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

Protocol_Error : exception;
—-— Raised if the client receives wrong HTTP protocol data

No_Data : constant String;

—-— Used as the default parameter when no data specified for a specific
—— parameter.

Retry_Default : constant := 0;

—-— Number of time a data is requested from the Server if the first
-— time fails.

type Timeouts_Values is private;
—-— Defined the duration for the connect, send, receive and complete
—-— response receive timeouts.

No_Timeout : constant Timeouts_Values;
-— No timeout, allow infinite time to send or retrieve data

function Timeouts

(Connect : Duration := Net.Forever;
Send : Duration := Net.Forever;
Receive : Duration := Net.Forever;
Response : Duration := Net.Forever) return Timeouts_Values;

—-— Constructor for the timeouts values
function Timeouts (Fach : Duration) return Timeouts_Values;
—-— Constructor for the timeouts values, sets all timeouts values (see

—— Contructor above) to Each.

function Connect_Timeout (T : Timeouts_Values) return Duration with Inline;
—-— Returns the corresponding timeout value

function Send_Timeout (T : Timeouts_ Values) return Duration with Inline;
—-— Returns the corresponding timeout value

function Receive_Timeout (T : Timeouts_ Values) return Duration with Inline;
—-— Returns the corresponding timeout value

function Response_Timeout (T : Timeouts_Values) return Duration with Inline;
—-— Returns the corresponding timeout value

—-— Messages —-—
type Content_Bound is new Integer range -1 .. Integer'Last;
Undefined : constant Content_Bound := -1;

type Content_Range is record
First, Last : Content_Bound := Undefined;
end record;

(continues on next page)

13.3. AWS.Client 103

AW

S Documentation, Release 2019

(continued from previous page)

—-— Range for partial download

No_ Range : constant Content_Range := (Undefined, Undefined);

type Authentication_Mode is new AWS.Response.Authentication_Mode;
type Authentication_Level is private;

type Authentication Type is private;

type Auth_Attempts_Count is private;

subtype Header_List is Headers.List;
Empty_Header List : constant Header_List := Headers.Empty_List;

subtype Attachment_ List is Attachments.List;

Empty Attachment List : constant Attachment_List := Attachments.Empty_List;

function Get

(URL : String;

User : String := No_Data;

Pwd : String := No_Data;

Proxy : String := No_Data;

Proxy_User : String := No_Data;

Proxy_Pwd : String := No_Data;

Timeouts : Timeouts_Values := No_Timeout;
Data_Range : Content_Range := No_Range;
Follow_Redirection : Boolean := False;

Certificate : String := Default.Client_Certificate;
Headers : Header_ List := Empty_Header_List;
User_Agent : String := Default.User_Agent)

return Response.Data;

—-— Retrieve the message data given a specific URL. It open a connection
-— with the server and ask for the resource specified in the URL it then

—-— return it in the Response.Data structure.
-—- If User/Pwd are given then it uses it to access the URL.

—— Optionally it connects through a PROXY using 1f necessary the Proxy

—-— authentication Proxy_User:Proxy_Pwd.

—— Only Basic authentication is supported (i.e. Digest is not). Digest
—-— authentication is supported with the keep-alive client API, see below.

—-— If Follow Redirection is set to True, Get will follow the redirection

—-— information for 301 status code response. Note that this is not

-— supported for keep-alive connections as the redirection could point to

—-— another server.

-— Get will retry one time if it fails.

function Head

(URL : String;

User : String := No_Data;
Pwd : String := No_Data;
Proxy : String := No_Data;
Proxy_User : String := No_Data;
Proxy_Pwd : String := No_Data;

(continues on next page)

104

Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

Timeouts : Timeouts_Values := No_Timeout;
Headers : Header_List := Empty_Header_List;
User_Agent : String := Default.User_Agent) return Response.Data;

—-— Idem as above but we do not get the message body.
—-— Head will retry one time if it fails.

function Put

(URL : String;

Data : String;

User : String := No_Data;

Pwd : String := No_Data;

Proxy : String := No_Data;

Proxy_User : String := No_Data;

Proxy_Pwd : String := No_Data;

Timeouts : Timeouts_Values := No_Timeout;

Headers : Header_List := Empty_Header_List;

User_Agent : String := Default.User Agent) return Response.Data;

—-— Send to the server URL a PUT request with Data
-— Put will retry one time if it fails.

function Delete

(URL : String;

Data : String;

User : String := No_Data;

Pwd : String := No_Data;

Proxy : String := No_Data;

Proxy_User : String := No_Data;

Proxy_Pwd : String := No_Data;

Timeouts : Timeouts_Values := No_Timeout;

Headers : Header_List := Empty_Header_List;

User_Agent : String := Default.User Agent) return Response.Data;

—-— Send to the server URL a DELETE request with Data
—-— Delete will retry one time if it fails.

function Delete

(URL : String;

Data : Stream FElement_Array;

User : String := No_Data;

Pwd : String := No_Data;

Proxy : String := No_Data;

Proxy_User : String := No_Data;

Proxy_Pwd : String := No_Data;

Timeouts : Timeouts_Values := No_Timeout;

Headers : Header_List := Empty_Header_List;

User_Agent : String := Default.User Agent) return Response.Data;

-— Send to the server URL a DELETE request with Data
—-— Delete will retry one time 1if it fails.

function Post

(URL : String;

Data : String;

Content_Type : String := No_Data;
User : String := No_Data;
Pwd : String := No_Data;
Proxy : String := No_Data;
Proxy_User : String := No_Data;
Proxy_Pwd : String := No_Data;

(continues on next page)

13.3. AWS.Client 105

AWS Documentation, Release 2019

(continued from previous page)

Timeouts : Timeouts_Values := No_Timeout;
Attachments : Attachment_List := Empty_Attachment_List;
Headers : Header_List := Empty_Header_List;
User_Agent : String := Default.User_Agent)

return Response.Data;
—-— Send to the server URL a POST request with Data
—-— Post will retry one time if it fails.

function Post

(URL : String;

Data : Stream_Element_Array;

Content_Type : String := No_Data;

User : String := No_Data;

Pwd : String := No_Data;

Proxy : String := No_Data;

Proxy_User : String := No_Data;

Proxy_Pwd : String := No_Data;

Timeouts : Timeouts_Values := No_Timeout;
Attachments : Attachment_List := Empty_Attachment_List;
Headers : Header_List := Empty_Header_List;
User_Agent : String := Default.User_Agent)

return Response.Data;
—-— Idem as above but with binary data

function SOAP_Post

(URL : String;

Data : String;

SOAPAction : String;

User : String := No_Data;

Pwd : String := No_Data;

Proxy : String := No_Data;

Proxy_User : String := No_Data;

Proxy_Pwd : String := No_Data;

Timeouts : Timeouts_Values := No_Timeout;
Attachments : Attachment_List := Empty_Attachment_List;
Headers : Header_List := Empty_Header_List;
User_Agent : String := Default.User_Agent)

return Response.Data;
—-— Send to the server URL a POST request with Data
-— Post will retry one time 1if it fails.

function Upload

(URL : String;
Filename : String;
User : String := No_Data;
Pwd : String = No_Data;
Proxy : String = No_Data;
Proxy_User : String = No_Data;
Proxy_Pwd : String = No_Data;
Timeouts : Timeouts_Values := No_Timeout;
Headers : Header_List = Empty_Header_List;
Progress : access procedure

(Total, Sent : Stream_Element_Offset) := null;
User_Agent : String := Default.User_Agent)

return Response.Data;
—— This is a file upload request. Filename file's content will be send to
—-— the server at address URL.

(continues on next page)

106 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

type HTTP_Connection is limited private;
type HTTP_Connection_Access is access all HTTP_Connection;

function Create

(Host : String;

User : String := No_Data;

Pwd : String := No_Data;

Proxy : String := No_Data;

Proxy_User : String := No_Data;

Proxy_Pwd : String := No_Data;

Retry : Natural := Retry_Default;
Persistent : Boolean := True;

Timeouts : Timeouts_Values := No_Timeout;
Server_Push : Boolean := False;

Certificate : String := Default.Client_Certificate;
User_Agent : String := Default.User_Agent)

return HTTP Connectlon,

procedure Create

(Connection : in out HTTP_Connection;

Host : String;

User : String := No_Data;

Pwd : String := No_Data;

Proxy : String := No_Data;

Proxy_User : String := No_Data;

Proxy_Pwd : String := No_Data;

Retry : Natural := Retry_Default;
Persistent : Boolean := True;

Timeouts : Timeouts_Values := No_Timeout;
Server_Push : Boolean := False;

SSL_Config : Net.SSL.Config := Net.SSL.Null_ Config;
Certificate : String := Default.Client_Certificate;
User_Agent : String := Default.User_Agent);

—-— Create a new connection. This is to be used with Keep-Alive client API
—-— below. The connection will be tried Retry times if it fails. If

—-— persistent is True the connection will remain open otherwise it will be
-— closed after each request. User/Pwd are the server authentication info,
-— Proxy 1is the name of the proxy server to use, Proxy_User/Proxy_Pwd are
—-— the proxy authentication data. Only Basic authentication is supported
-— from this routine, for Digest authentication see below. Timeouts are

—-— the send/receive timeouts for each request. If Server_ Push is True the
—— connection will be used to push information to the client.

—-— SSL Config is to define secure connection configuration. Othewhise

—-— Certificate can be set to specify the certificate filename to use for
—-— the secure connection. User_Agent can be overridden to whatever you want
—-— the client interface to present itself to the server.

function Get_Certificate

(Connection : HTTP_Connection) return Net.SSL.Certificate.Object;
—-— Return the certificate used for the secure connection. If this is not a
—-— secure connection, returns Net.SSL.Certificate.Undefined.

(continues on next page)

13.3. AWS.Client 107

AWS Documentation, Release 2019

(continued from previous page)

function Host (Connection : HTTP_Connection) return String;
—-— Returns the host as recorded into the connection

procedure Set_Headers
(Connection : in out HTTP_Connection; Headers : Header_List) with Inline;

—-— Set additional headers for connection

procedure Set_WWW_Authentication

(Connection : in out HTTP_Connection;
User : String;

Pwd : String;

Mode : Authentication_Mode);

—-— Sets the username password and authentication mode for the Web
—-— authentication.

—-— "Any" mean that user want to use Digest server authentication mode but
—-— could use Basic if the server does not support Digest authentication.

—-— "Basic" mean that client will send basic authentication. "Basic"
—-— authentication is send with the first request and is a fast
—— authentication protocol.

—-— "Digest" mean that the client ask for Digest authentication, it
—-— requires that a first unauthorized request be sent to the server. The

-— server will answer "nonce" for the authentication protocol to continue.

procedure Set_Proxy_Authentication

(Connection : in out HTTP_Connection;

User : String;

Pwd : String;

Mode : Authentication_Mode) ;
—-— Sets the username, password and authentication mode for the proxy
—-— authentication.

procedure Set_Persistent

(Connection : in out HTTP_Connection; Value : Boolean) with Inline;
—— Change Persistent flag of the connection. If persistent is True the
—-— connection will remain open, otherwise it will be closed after each
-— request, next request and further would be with "Connection: Close"
-— header line.

procedure Clear_SSL_Session (Connection : in out HTTP_Connection);
-— Avoid reuse SSL session data after reconnect

procedure Copy_Cookie

(Source : HTTP_Connection;

Destination : in out HTTP_Connection);
—-— Copy a session Id from connection Source to connection Destination.
—-— Allow both connections to share the same user environment. Note that
—-— user's environment are thread-safe.

function Get_Cookie (Connection : HTTP_ Connection) return String
with Inline;
—-— Get the connection cookie

procedure Set_Cookie
(Connection : in out HTTP_Connection; Cookie : String) with Inline;

(continues on next page)

108 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

Set the connection cookie

function Cipher_Description (Connection HTTP_Connection) return String;
function SSL_Session_Id (Connection HTTP_Connection)
Returns base64 encoded SSL session identifier.

Returns empty string for plain HTTP connections and for not connected

SSL HTTP connections.

return String;

function Read_ Until

(Connection HTTP_Connection;
Delimiter String;
Wait Boolean := True) return String;

Read data on the Connection until the delimiter (including the
delimiter). It can be used to retrieve the next piece of data from a
push server. If Wait is False the routine is looking for delimiter only
in the internal socket buffer and return empty string if no delimiter
found. If Wait is True and returned data is empty or does not termintate
with the delimiter the server push connection is closed.

procedure Read Until

(Connection in out HTTP_Connection;
Delimiter String;

Result in out Unbounded_String;
Wait Boolean := True);

—-— Idem as above but returns the result as an Unbounded_String

procedure Read_Some

(Connection in out HTTP_Connection;
Data out Stream_Element_Array;
Last out Stream_Element_Offset);

Reads any available data from the client's connection.
If no data available,
until it timeouts. Returns Last < Data'First when there is no data
available in the HTTP response. Connection have to be created with
parameter Server_Push => True.

it will wait for some data to become available or

procedure Read

(Connection in out HTTP_Connection;

Data out Stream_Element_Array;

Last out Stream_Element_Offset);
—-— Reads data from the client's connection until Data buffer if filled
—-— or it reached the end of the response. Returns Last < Data'Last if
—— there 1is no more data available in HTTP response. Connection have
—-— to be created with parameter Server._ Push => True.
procedure Get

(Connection in out HTTP_Connection;

Result out Response.Dataj;

URI String = No_Data;

Data_Range Content_Range = No_Range;

Headers Header_List = Empty_Header_List);

Same as Get above but using a Connection
procedure Head
(Connection
Result

in out HTTP_Connection;
out Response.Data;

(continues on next page)

13.3. AWS.Client 109

AWS Documentation, Release 2019

(continued from previous page)

URI : String := No_Data;
Headers : Header_List
—-— Same as Head above but using a Connection

procedure Delete

(Connection : in out HTTP_Connection;

Result : out Response.Data;

Data : String;

URI : String := No_Data;

Headers : Header_List := Empty_Header_List);

—-— Same as Delete above but using a Connection

procedure Delete

(Connection : in out HTTP_Connection;
Result : out Response.Data;

Data : Stream_FElement_Array;

URI : String = No_Data;
Headers : Header_List =

-— Same as Delete above but using a Connection

procedure Put

(Connection : in out HTTP_Connection;

Result ¢ out Response.Data;

Data : String;

URI : String := No_Data;

Headers : Header_List := Empty_Header_List);

—-— Same as Put above but using a Connection

procedure Put

(Connection : in out HTTP_Connection;

Result : out Response.Dataj;

Data : Stream_Element_Array;

URI : String := No_Data;

Headers : Header_List := Empty_Header_List);

procedure Post

(Connection : in out HTTP_Connection;
Result : out Response.Data;

Data : String;

Content_Type : String := No_Data;
URI : String = No_Data;
Attachments : Attachment_List :=

Empty_Header_List);

Empty_Header_List);

Empty_Attachment_List;

Headers : Header_List := Empty_Header_List);

-— Same as Post above but using a Connection

procedure Post

(Connection : in out HTTP_Connection;

Result : out Response.Data;

Data : Stream_Element_Array;

Content_Type : String := No_Data;

URI : String := No_Data;

Attachments : Attachment_List := Empty_Attachment_List;
Headers : Header_List := Empty_Header_List);

—-— Same as Post above but using a Connection

procedure Upload
(Connection : in out HTTP_Connection;

(continues on next page)

110

Chapter 13.

AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

Result : out Response.Data;
Filename : String;
URI : String = No_Data;
Headers : Header_List := Empty_Header_List;
Progress : access procedure
(Total, Sent : Stream_ Element_Offset) := null);

-— Same as Upload above but using a Connection

procedure SOAP_Post

(Connection : HTTP_Connection;

Result : out Response.Data;

SOAPAction : String;

Data : String;

Streaming : Boolean = False;

Attachments : Attachment_List := Empty_Attachment_List;
Headers : Header_List := Empty_Header_List);

-— Same as SOAP_Post above but using a Connection
—-— Streaming is to be able to parse response XML on the fly,
-— without intermediate buffer.

procedure Close (Connection : in out HTTP_Connection);
—-— (Close connection, 1t releases all associated resources

procedure Set_Streaming_Output

(Connection : in out HTTP_Connection;

Value : Boolean)
with Inline;
—-— Call this routine with Value => True to be able to read data as a
—-— stream by using Read and/or Read_Some routines above. Note that
—— Connection is already in Streaming mode if it has been created
-— with Server_Push => True.

procedure Set_Debug (On : Boolean);
-— Set debug mode on/off. If debug is activated the request header and the
—-— server response header will be displayed.

function Get_Socket (Connection : HTTP_Connection) return Net.Socket_Access;
—-— Retrieve the socket used for the connection

private
—— Implementation removed
end AWS.Client;

13.3. AWS.Client

111

AWS Documentation, Release 2019

13.4 AWS.Client.Hotplug

- Ada Web Server -
- Copyright (C) 2004-2012, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

with AWS.Response;
package AWS.Client.Hotplug is

—-— Below are two routines to register/unregister hotplug modules into

—-— server. Note that such server must be configured to accept hotplug

—-— modules. Password parameter is the clear text paswword, it will be sent
—-— encoded. An authorization entry for module Name with Password (and the
—-— given URL host for registration) must be found in the server's

—-— authorization file. See AWS.Server.Hotplug.Activate.

function Register

(Name : String;
Password : String;
Server : String;
Regexp : String;
URL : String) return Response.Data;

—— Register hotplug module Name into Server with address URL to respond to
-—- requests matching Regexp. Server must be a valid URL, http://host:port.
-— If port is not specified the default HTTP port is used.

function Unregister

(Name : String;
Password : String;
Server : String;
Regexp : String) return Response.Data;

(continues on next page)

112 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

—— Unregister hotplug module Name responding to Regexp requests from
—-— Server. See comment above about Password.

end AWS.Client.Hotplug;

13.4. AWS.Client.Hotplug 113

AWS Documentation, Release 2019

13.5 AWS.Communication

- Ada Web Server -
- Copyright (C) 2000-2012, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—— it under terms of the GNU General Public License as published by the —-—
-— Free Software Foundation; either version 3, or (at your option) any --
—-— later version. This library 1is distributed in the hope that it will be -—-
-— useful, but WITHOUT ANY WARRANTY,; without even the implied warranty of —-—
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
—-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. -

—— The communication protocol uses a light encoding scheme based on the HTTP
—-— GET method. For standard, XML based, communication you can use the SOAP
—-— protocol. This API can be convenient if you do not plan to build AWS with
—-— SOAP support.

with Ada.Strings.Unbounded;
package AWS.Communication is
use Ada.Strings.Unbounded;
type Parameter_Set is array (Positive range <>) of Unbounded_String;
Null Parameter Set : constant Parameter_Set;
function Parameters
(p1, P2, P3, P4, P5 : String := "") return Parameter_Set;
—-— Constructor function to help create a Parameter_Set. This function will
—-— return a Parameter_Set array contalining any parameter with a non emptry
-— string value.
private

-— implementation removed
end AWS.Communication;

114 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

13.6 AWS.Communication.Client

- Ada Web Server -
- Copyright (C) 2000-2012, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—— it under terms of the GNU General Public License as published by the —-—
-— Free Software Foundation; either version 3, or (at your option) any --
—-— later version. This library 1is distributed in the hope that it will be -—-
-— useful, but WITHOUT ANY WARRANTY,; without even the implied warranty of —-—
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
—-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. -

with AWS.Response;
package AWS.Communication.Client is

function Send_Message

(Server : String;

Port : Positive;

Name : String;

Parameters : Parameter_Set := Null_Parameter_Set)

return Response.Data;
—-— Send a message to server with a set of parameters. The destination is
-- server 1s http://Server:Port, the message name is Name and the set of
—-— parameters 1s to be found into Parameters.

—-— The complete message format 1s:

-— http://<Server>:<Port>/AWS_Com?HOST=<host>&NAME=<name>
- &Pl=<paraml>&P2=<param2>

end AWS.Communication.Client;

13.6. AWS.Communication.Client 115

AWS Documentation, Release 2019

13.7 AWS.Communication.Server

- Ada Web Server -
- Copyright (C) 2000-2014, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

with AWS.Response;
generic

type T (<>) is limited private; - Data type received by this server
type T_Access is access T;

with function Callback

(Server : String; —— Host name

Name : String; - Message name

Context : not null access T;

Parameters : Parameter_Set := Null_Parameter_Set)

return Response.Data;
package AWS.Communication.Server is

—-— Each instantiation of this package will create an HTTP server waiting
—-— for incoming requests at the Port specified in the Start formal

—-— parameter. This communication server must be started with the Start
—-— procedure and can be stopped with the procedure Shutdown below.

procedure Start (Port : Positive; Context : T_Access; Host : String := "");
—-— Start communication HITP server listening at the given port

procedure Shutdown;
—— Shutdown the communication HTTP server

(continues on next page)

116 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

end AWS.Communication.Server;

13.7. AWS.Communication.Server 117

AWS Documentation, Release 2019

13.8 AWS.Config

- Ada Web Server -
- Copyright (C) 2000-2019, AdaCore -
—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-

-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;
—— This package provide an easy way to handle server configuration options.

—-— If initialization of this package is not done all functions below will
—-— return the default value as declared in AWS.Default.

with System;
with GNAT.Regexp;
private with Ada.Strings.Unbounded;
private with AWS.Containers.String Vectors;
private with AWS.Default;
package AWS.Config is
type Object is private;
Default Config : constant Object;

—-— For the external configuration to be loaded either Get_Current or
—-— Load_Config must be called explicitely.

function Get_Current return Object;
—-— Returns a configuration record. This is the properties as read in files

(continues on next page)

118 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

-— 'aws.ini' and 'progname.ini'. This configuration object holds only the
-— per-server options.

procedure Load_Config;

—— Load configuration and store it into an internal object. This can be
—-— called when only some server-wide configuration are to be set from
-— .ini files for example.

function Server_Name (O : Object) return String with Inline;
—— This is the name of the server as set by AWS.Server.Start

function Protocol_Family (O : Object) return String with Inline;
—-— Server protocol family. Family Inet for IPv4, Family Inet6é for IPv6 and
—-— Family_Unspec for unspecified protocol family.

function IPv6_Only (O : Object) return Boolean with Inline;
-— IPv6 server accepts only IPvé connections

function Server_Host (O : Object) return String with Inline;

—-— This is the server host. Can be used if the computer has a more than
—— one IP address. It is possible to have two servers at the same port
—-— on the same machine, both being binded on different IP addresses.

function Server_Port (O : Object) return Natural with Inline;
—-— This 1is the server port as set by the HTTP object declaration

function Hotplug_Port (O : Object) return Positive with Inline;
—— This is the hotplug communication port needed to register and
—-— un-register an hotplug module.

function Session (O : Object) return Boolean with Inline;
—-— Returns True 1f the server session 1is activated

function Case_Sensitive_Parameters (O : Object) return Boolean with Inline;
—-— HTTP parameters are case sensitive

function Session_Name (O : Object) return String with Inline;
—-— Name of the cookie session

function Session_Private_Name (O : Object) return String with Inline;
—-— Name of the private cookie session

function Server_ Priority (O : Object) return System.Any_ Priority
with Inline;
—— Returns the priority used by the HTTP and WebSockets servers

function Server_Header (O : Object) return String with Inline;
—-— Returns the Server header value

(continues on next page)

13.8. AWS.Config 119

AWS Documentation, Release 2019

(continued from previous page)

function Max_Connection (O : Object) return Positive with Inline;
—— This 1is the max simultaneous connections as set by the HTTP object
—-— declaration.

function Send_Buffer_Size (O : Object) return Natural with Inline;

—-— This is the socket buffer size used for sending data. Increasing this
-— value will give better performances on slow or long distances

—-— connections.

function TCP_No_Delay (O : Object) return Boolean with Inline;
—— Returns wether the TCP_NODELAY option is set for this server

function Free_Slots_Keep_Alive_Limit (O : Object) return Natural

with Inline;
—— The minimum number of free slots where keep-alive connections are still
—— enabled. After this limit no more keep-alive connection will be
—-— accepted by the server. This parameter must be used for heavy-loaded
—-— servers to make sure the server will never run out of slots. This limit
—-— must be less than Max_ Connection.

function Keep_Alive_Force_Limit (O : Object) return Positive with Inline;

—-— Server could have more than Max_Connection keep-alive sockets. Keep

-— alive sockets are waiting for client input in the internal server socket
—-— set. This parameter defines the maximum number of keep alive sockets

—-— processed by the server with standard timeouts. If number of keep-alive
—-— sockets becomes more than Keep_Alive Force_Limit the server starts to

—-— use shorter timeouts. If this parameter is not defined in the

—-— configuration, the server uses Max_Connection x 2 as value.

function Keep_Alive_Close_Limit (O : Object) return Positive with Inline;

—— This parameter defines the limit of keep alive sockets in the internal
-— server socket set. If the number of sockets in socket set became more

—-— than Keep_Alive_Close_Limit, most close to timeout socket would be

—— closed. If this parameter 1is not defined in the configuration,

—— the server uses Max_Connection 4 as value.

function Accept_Queue_Size (O : Object) return Positive with Inline;

—-— This is the size of the queue for the incoming requests. Higher this
-— wvalue will be and less "connection refused" will be reported to the
-— client.

function Line_Stack_Size (O : Object) return Positive with Inline;
—-— HTTP lines stack size

function Reuse_Address (O : Object) return Boolean with Inline;

—-— Returns true if bind is allowed to reuse an address (not waiting for
—-— the delay between two bind to the same port).

function WWW_Root (O : Object) return String with Inline;

(continues on next page)

120 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

—-— This is the root directory name for the server. This variable is not

—-— used internally by AWS. It is supposed to be used by the callback

—-— procedures who want to retrieve physical objects (images, Web pages...).
—-— The default value is the current working directory. The returned

—-— directory ends with a directory separator.

function Upload_Directory (O : Object) return String with Inline;
—— This point to the directory where uploaded files will be stored. The
—-— directory returned will end with a directory separator.

function Upload_Size_Limit (O : Object) return Positive with Inline;

function Directory_Browser_Page (O : Object) return String with Inline;
—-— Filename for the directory browser template page

function Max_POST_Parameters (O : Object) return Positive with Inline;
—-— Returns the maximum number of POST parameters handled. Past this limit
—— the exception Too_Many_Parameters 1is raised.

function Log_Activated (O : Object) return Boolean with Inline;
—— Whether the default log should be activated

function Log_File_Directory (O : Object) return String with Inline;
—— This point to the directory where log files will be written. The
—— directory returned will end with a directory separator.

function Log_Filename_Prefix (O : Object) return String with Inline;
—— This is the prefix to use for the log filename

function Log_Split_Mode (O : Object) return String with Inline;
—— This is split mode for the log file. Possible values are : Each_Run,
—-— Daily, Monthly and None. Any other values will raise an exception.

function Log_Size_Limit (O : Object) return Natural with Inline;

generic
with procedure Field_Id (Id : String);
procedure Log_Extended_Fields_Generic_Iterate (O : Object);
-— Calls procedure Field Id for each extended http log field identifier

function Log_Extended_Fields_Length (O : Object) return Natural with Inline;
-— Returns the number of extended http log fileds identifiers.
-— If returned value 1is zero then http log is not extended.

function Error_Log_Activated (O : Object) return Boolean with Inline;
—— Whether the error log should be activated

function Error_Log_Filename_Prefix (O : Object) return String with Inline;
—— This is the prefix to use for the log filename

function Error_Log_Split_Mode (O : Object) return String with Inline;
—— This 1is split mode for the log file. Possible values are : Each_Run,
—-— Daily, Monthly and None. Any other values will raise an exception.

(continues on next page)

13.8. AWS.Config 121

AWS Documentation, Release 2019

(continued from previous page)

function Admin_Password (O : Object) return String with Inline;
—-— The admin password

function Admin_Realm (O : Object) return String with Inline;
—-— The admin password

function Admin_URI (O : Object) return String with Inline;
—— This is the name of the admin server page as set by AWS.Server.Start.
-— It is also known as the status page.

function Status_Page (O : Object) return String with Inline;
—-— Filename for the status template page

function Up_Image (O : Object) return String with Inline;
—-— Filename for the up arrow image used in the status page

function Down_Image (O : Object) return String with Inline;
—-— Filename for the down arrow image used in the status page

function Logo_Image (O : Object) return String with Inline;
—-— Filename for the AWS logo image used in the status page

function Cleaner_Wait_For_Client_Timeout (O : Object) return Duration
with Inline;

—-— Number of seconds to timout on waiting for a client request.

—-— This 1is a timeout for regular cleaning task.

function Cleaner_Client_Header_Timeout (O : Object) return Duration
with Inline;

—— Number of seconds to timout on waiting for client header.

-— This is a timeout for regular cleaning task.

function Cleaner_Client_Data_Timeout (O : Object) return Duration
with Inline;

—— Number of seconds to timout on waiting for client message body.

—-— This is a timeout for regular cleaning task.

function Cleaner_Server_Response_Timeout (O : Object) return Duration
with Inline;

—-— Number of seconds to timout on waiting for client to accept answer.

—-— This is a timeout for regular cleaning task.

function Force_Wait_For_Client_Timeout (O : Object) return Duration
with Inline;

—— Number of seconds to timout on waiting for a client request.

—-— This is a timeout for urgent request when resources are missing.

function Force_Client_Header_Timeout (O : Object) return Duration

(continues on next page)

122 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

with Inline;
—— Number of seconds to timout on waiting for client header.
—-— This 1is a timeout for urgent request when resources are missing.

function Force_Client_Data_Timeout (O : Object) return Duration with Inline;
—— Number of seconds to timout on waiting for client message body.
—-— This is a timeout for urgent request when resources are missing.

function Force_Server_Response_Timeout (O : Object) return Duration
with Inline;

—— Number of seconds to timout on waiting for client to accept answer.

—— This 1is a timeout for urgent request when resources are missing.

function Send_Timeout (O : Object) return Duration with Inline;
—— Number of seconds to timeout when sending chunck of data

function Receive_Timeout (O : Object) return Duration with Inline;
—— Number of seconds to timeout when receiving chunck of data

function Check_URL_Validity (O : Object) return Boolean with Inline;
—-— Server have to check URI for validity. For example it checks that an
—— URL does not reference a resource above the Web root.

function Security (O : Object) return Boolean with Inline;
—-— Is the server working through th SSL

function Certificate (O : Object) return String with Inline;
—-— Returns the certificate to be used with the secure server. Returns the
-— empty string if the server is not a secure one.

function Key (O : Object) return String with Inline;
—-— Returns the key to be used with the secure server. Returns the
-— empty string if the server is not a secure one.

function Security_Mode (O : Object) return String with Inline;
—-— Returns the security mode to be used with the secure server. Returns the
-— empty string if the server is not a secure one.

function Cipher_ Priorities (O : Object) return String with Inline;
—— Returns the cipher priorities for the security communication

function TLS_Ticket_Support (O : Object) return Boolean with Inline;
—-— Is security communication side has support stateless TLS session
—-— resumption. See RFC 5077

function Exchange_Certificate (O : Object) return Boolean with Inline;
—-— Returns True if the client is requested to send its certificate to the
-—- server.

function Certificate_Required (O : Object) return Boolean with Inline;
—-— Returns True if the server must abort the connection if the

—-— client did not provide trusted certificate. If this option is set
—— the Exchange_Certificate must also be set.

(continues on next page)

13.8. AWS.Config 123

AWS Documentation, Release 2019

(continued from previous page)

function Trusted _CA (O : Object) return String with Inline;

—-— Returns the filename containing a list of trusted CA, this is to be used
—-— with the Exchange_Certificate option. The filename is on bundle of CAs
—-— that can be trusted. A client certificate signed with one of those CA

-— will be accetped by the server.

function CRL_File (O : Object) return String with Inline;
—-— Returns the filename containing the Certificate Revocation List. This
-— list is used by the server to check for revoked certificate.

function SSIL_Session_Cache_Size (O : Object) return Natural with Inline;
—-— Returns SSL session cashe size

function Session_Cleanup_Interval return Duration with Inline;
—— Number of seconds between each run of the cleaner task to remove
—-— obsolete session data.

function Session_Lifetime return Duration with Inline;
—— Number of seconds to keep a session 1f not used. After this period the
—-— session data is obsoleted and will be removed during next cleanup.

function Session_Id_Length return Positive with Inline;
—-— Returns the length (number of characters) of the session id

function Session_Cleaner_Priority return System.Any_Priority with Inline;
—-— Returns the priority used by the session cleaner task

function Service_Priority return System.Any_Priority with Inline;
—-— Returns the priority used by the others services (SMTP server, Jabber
-—- server, Push server...).

function Config_Directory return String with Inline;
—— Directory where AWS parameter files are located

function Transient_Cleanup_Interval return Duration with Inline;
—— Number of seconds between each run of the cleaner task to remove
-— transient pages.

function Transient_Lifetime return Duration with Inline;
—— Number of seconds to keep a transient page. After this period the
—-— transient page is obsoleted and will be removed during next cleanup.

function Max_Concurrent_Download return Positive with Inline;
—-— Number of maximum concurrent download supported by the download manager
-— service.

function MIME_Types return String with Inline;
—— Returns the file name of the MIME types to use

function Input_Line_Size_Limit return Positive with Inline;
—-— Limit of the HTTP protocol text lines length

(continues on next page)

124 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

function Context_Lifetime return Duration with Inline;
—— Number of seconds to keep a context if not used. After this period the
—— context data is obsoleted and will be removed during next cleanup.

function Max_WebSocket_Handler return Positive with Inline;
—— This 1is the max simultaneous connections handling WebSocket's messages

function WebSocket_Message_Queue_Size return Positive with Inline;
—— This 1is the size of the queue containing incoming messages

function WebSocket_Send_Message_Queue_Size return Positive with Inline;
—— This is the size of the queue containing messages to send

function Max_WebSocket return Positive with Inline;

—— The maximum number of simultaneous WebSocket opened. Note that that
—-— there could be more WebSocket registered when counting the closing
—-— WebSockets.

function WebSocket_Timeout return Duration with Inline;
—-— Returns the WebSocket activity timeout. After this number of seconds
—-— without any activity the WebSocket can be closed when needed.

function Is_WebSocket_Origin_Set return Boolean with Inline;
—— Returns True 1if the Origin has been set

function WebSocket_Origin return GNAT.Regexp.Regexp;
—-— This is regular expression to restrict WebSocket to a specific origin

function WebSocket_Origin return String;
—-— This is the string regular expression to restrict WebSocket to a
-— specific origin.

function WebSocket_Priority return System.Any_ Priority;
-— Set the priority used by the WebSocket service

function User_Agent return String with Inline;
—— Returns the User_Agent header value

private

-— Iimplementation removed

end AWS.Config;

13.8. AWS.Config 125

AWS Documentation, Release 2019

13.9 AWS.Config.Ini

- Ada Web Server -
- Copyright (C) 2000-2012, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—— it under terms of the GNU General Public License as published by the —-—
-— Free Software Foundation; either version 3, or (at your option) any --
—-— later version. This library 1is distributed in the hope that it will be -—-
-— useful, but WITHOUT ANY WARRANTY,; without even the implied warranty of —-—
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
—-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. -

—— Handle .ini style configuration files. In those files each option is on one
-— line. The first word is the option name and the second one is the option
-— value.

package AWS.Config.Ini is

function Program Ini_File (Full Path : Boolean) return String;
—-— Returns initialization filename for current server (using the
-— executable name and adding .ini).

procedure Read

(Config : in out Obiject;

Filename : String);
—-— Read Filename and update the configuration object with the
-— options read from it. Raises Ada.Text_I0.Name_Error if Filename does
—-— not exist. Raises Constraint_Error 1in case of wrong any parameter name
-— or value.

end AWS.Config.Ini;

126 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

13.10 AWS.Config.Set

- Ada Web Server -
- Copyright (C) 2000-2019, AdaCore -
—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-

-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

—— This package can be used to Set any AWS parameters

package AWS.Config.Set is

procedure Server_Name (O : in out Object; Value : String);
—-— This is the name of the server as set by AWS.Server.Start

procedure Protocol_Family (O : in out Object; Value : String);
—-— Set the server protocol family. Family Inet for IPv4, Family Ineté6 for

—-— IPvé6 and Family Unspec for unspecified protocol family.

procedure IPv6_Only (O : in out Object; Value : Boolean);
—-— Set the mode when IPv6 server allows connect only IPv6 clients

procedure Server_Host (O : in out Object; Value : String);
—-— This is the server host as set by the HTTP object declaration

procedure Server_Port (O : in out Object; Value : Natural);

(continues on next page)

13.10. AWS.Config.Set 127

AWS Documentation, Release 2019

(continued from previous page)

—-— This is the server port as set by the HITP object declaration

procedure Hotplug Port (O : in out Object; Value : Positive);
—— This is the hotplug communication port needed to register and
—-— un-register an hotplug module.

procedure Session (O : in out Object; Value : Boolean);
—-— Enable session handling is Value is True

procedure Case_Sensitive_Parameters (O : in out Object; Value : Boolean);
—-— Parameters are handled with the case if Value is True

procedure Line_Stack_Size (O : in out Object; Value : Positive);
—-— HTTP lines stack size

procedure Reuse_Address (O : in out Object; Value : Boolean);
—-— Set the reuse address policy allowing a bind without a dealy to the same
—— address and port.

procedure Session_Name (O : in out Object; Value : String);
—— Name of the cookie session

procedure Server_Priority (O : in out Object; Value : System.Any Priority);
—-— Set the priority used by the HTTP and WebSockets servers

procedure Server_Header (O : in out Object; Value : String);
—-— Set the server header (value used by the Server: request header)

—-— Connection —-—

procedure Max_Connection (O : in out Object; Value : Positive);

—-— This is the max simultaneous connections as set by the HITTP object
—-— declaration.

procedure Send_Buffer_Size (O : in out Object; Value : Positive);

—-— This 1is the socket buffer size used for sending data. Increasing this
-— value will give better performances on slow or long distances
-— connections.

procedure TCP_No_Delay (O : in out Object; Value : Boolean);
-— Set the TCP_NODELAY option for this server

procedure Free_Slots_Keep_Alive_Limit

(O : in out Object; Value : Natural);
—— The minimum number of free slots where keep-alive connections are still
—-— enabled. After this limit no more keep-alive connection will be
—-— accepted by the server. This parameter must be used for heavy-loaded
—-— servers to make sure the server will never run out of slots. This limit
—— must be less than Max_ Connection.

procedure Keep_Alive_Force_Limit (O : in out Object; Value : Natural);

—-— Define maximum number of keep alive sockets where server process 1t with
—-— normal timeouts. If number of keep-alive sockets become more than

-— Keep_Alive Force_ Limit, server start to use shorter force timeouts.

—-— If this parameter not defined in configuration or defined as 0 value

(continues on next page)

128 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

—-— server use calculated value Max Connection x 2.

procedure Accept_Queue_Size (O : in out Object; Value : Positive);

—-— This is the size of the queue for the incoming requests. Higher this
-— value will be and less "connection refused" will be reported to the
-— client.

procedure WWW_Root (O : in out Object; Value : String);

—-— This is the root directory name for the server. This variable is not
—-— used internally by AWS. It is supposed to be used by the callback

—-— procedures who want to retrieve physical objects (images, Web

-— pages...). The default value is the current working directory.

procedure Upload_Directory (O : in out Object; Value : String);
—-— This point to the directory where uploaded files will be stored. The
—-— directory returned will end with a directory separator.

procedure Upload_Size_Limit (O : in out Object; Value : Positive);
—-— Set the maximum size accepted for uploaded files

procedure Directory_Browser_Page (O : in out Object; Value : String);
—-— Filename for the directory browser template page

procedure Max_POST_Parameters (O : in out Object; Value : Positive);
—-— Set the maximum number of POST parameters handled. Past this limit
—-— the exception Too_Many_ Parameters 1s raised.

procedure Log_Activated (O : in out Object; Value : Boolean);
—-— Whether the default log should be activated

procedure Log_File_Directory (O : in out Object; Value : String);
—-— This point to the directory where log files will be written. The
—-— directory returned will end with a directory separator.

procedure Log_Filename_Prefix (O : in out Object; Value : String);
—— This is the prefix to use for the log filename

procedure Log_Size_Limit (O : in out Object; Value : Natural);
—-— If Log _Size Limit is more than zero and size of log file
—-— become more than Log _Size_Limit, log file is be split.

procedure Log_Split_Mode (O : in out Object; Value : String);
—— This is split mode for the log file. Possible values are : Each_Run,
—-— Daily, Monthly and None. Any other values will raise an exception.

procedure Log_Extended_Fields (O : in out Object; Value : String);
-— Comma separated list of the extended log field names. If this parameter
-— 1s empty, the HTTP log would have fixed apache compartible format:

(continues on next page)

13.10. AWS.Config.Set 129

AWS Documentation, Release 2019

(continued from previous page)

-- 127.0.0.1 - - [25/Apr/1998:15:37:29 +0200] "GET / HTTP/1.0" 200 1363

—-— If the extended fields list is not empty, the log file format would have
—— user defined fields set:

-— #Version: 1.0

-— #Date: 2006-01-09 00:00:01

-— #Fields: date time cs-method cs—uri cs-version sc-status sc-bytes
-— 2006-01-09 00:34:23 GET /foo/bar.html HTTP/1.1 200 30

—-— Fields in the 1list could be:

-— date Date at which transaction completed
-— time Time at which transaction completed
-- c-ip Client side connected IP address

-— c-port Client side connected port

-— s-ip Server side connected IP address

-— s-port Server side connected port

—-— c¢s—-method HTTP request method

—-— cs-username Client authentication username

—-— cs-version Client supported HTTP version

-— c¢s-uri Request URI

—-— cs-uri-stem Stem portion alone of URI (omitting query)

-— c¢s-uri-query Query portion alone of URI

-— sc-status Responce status code

-— sc-bytes Length of response message body

—— c¢s(<header>) Any header field name sent from client to server
—-— sc(<header>) Any header field name sent from server to client
-— x—-<appfield> Any application defined field name

procedure Error_Log_Activated (O : in out Object; Value : Boolean);
—— Whether the error log should be activated

procedure Error_lLog_Filename_Prefix (O : in out Object; Value : String);
—— This is the prefix to use for the log filename

procedure Error_Log_Split_Mode (O : in out Object; Value : String);
—— This is split mode for the log file. Possible values are : Each_Run,
—-— Daily, Monthly and None. Any other values will raise an exception.

procedure Admin_Password (O : in out Object; Value : String);

—-— This is the password for the admin server page as set by

-— AWS.Server.Start. The password must be created with the aws_password
-— tool.

procedure Admin_URI (O : in out Object; Value : String);
—— This is the name of the admin server page as set by AWS.Server.Start

procedure Status_Page (O : in out Object; Value : String);
—-— Filename for the status template page

procedure Up_Image (O : in out Object; Value : String);
—-— Filename for the up arrow image used in the status page

(continues on next page)

130 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

procedure Down_Image (O in out Object;

down arrow image used

Filename for the

procedure Logo_Image (O in out Object;

Filename for the

procedure Cleaner_ Wait_For_Client_Timeout
(O in out Object;
Value Duration);
Number of seconds to timout on waiting
This is a timeout for regular cleaning

procedure Cleaner_ Client_Header_Timeout

(O in out Object;

Value Duration);
Number of seconds to timout on waiting
This is a timeout for regular cleaning

procedure Cleaner_Client_Data_Timeout
(O
Value

in out Object;

Duration);

Number of seconds to timout on waiting
This is a timeout for regular cleaning

procedure Cleaner_Server_Response_Timeout
(O in out Object;
Value Duration);
Number of seconds to timout on waiting
This is a timeout for regular cleaning

procedure Force_Wait_For_Client_Timeout
(O in out Object;
Value Duration);
Number of seconds to timout on waiting

procedure Force_Client_Header_Timeout
(O in out Object;
Value Duration);
Number of seconds to timout on waiting

procedure Force_Client_Data_Timeout
(O in out Object;
Value Duration);
Number of seconds to timout on waiting

procedure Force_Server_Response_Timeout
(O in out Object;
Value Duration);
Number of seconds to timout on waiting

Value

Value
AWS logo image used in the status page

String);
in the status page

String);

for a client request.
task.

for client header.
task.

for client message body.
task.

for client to accept answer.
task.

for a client request.

This is a timeout for urgent request when resources are missing.

for client header.

This is a timeout for urgent request when resources are missing.

for client message body.

This is a timeout for urgent request when resources are missing.

for client to accept answer.

(continues on next page)

13.10. AWS.Config.Set

131

AWS Documentation, Release 2019

(continued from previous page)

—-— This is a timeout for urgent request when resources are missing.

procedure Send_Timeout (O : in out Object; Value : Duration);
—-— Number of seconds to timeout when sending chunck of data

procedure Receive_Timeout (O : in out Object; Value : Duration);
—— Number of seconds to timeout when receiving chunck of data

procedure Check_ URL_Validity (O : in out Object; Value : Boolean);
—-— Set the check URL validity flag. If True an URL that reference a
—-— resource above the Web root will be rejected.

procedure Security (O : in out Object; Value : Boolean);
—-— Enable security (HTTPS/SSL) if Value is True

procedure Certificate (O : in out Object; Filename : String);
—-— Set the certificate to be used with the secure server

procedure Key (O : in out Object; Filename : String);
—-— Set the key to be used with the secure server

procedure Security_Mode (O : in out Object; Mode : String);
—-— Set the security mode to be used with the secure server. Only values
-— from AWS.Net.SSL.Method can be used.

procedure Cipher_ Priorities (O : in out Object; Value : String);

—-— Sets priorities for the cipher suites supported by SSL implementation.
—— GNUTLS and OpenSSL implementations has different sintax for this

—-— parameter.

procedure TLS_Ticket_Support (O : in out Object; Value : Boolean);
-— Set to True for security communication side support stateless TLS
-— session resumption. See RFC 5077.

procedure Exchange_Certificate (O : in out Object; Value : Boolean);
-— Set to True to request the client to send its certificate to the server

procedure Certificate_Required (O : in out Object; Value : Boolean);
—-— Returns True if the server must abort the connection if the

—-— client did not provide a certificate. If this option is set

—— the Exchange_Certificate must also be set.

procedure Trusted CA (O : in out Object; Filename : String);

—-— Returns the filename containing a list of trusted CA, this is to be used
—-— with the Exchange_Certificate option. The filename is on bundle of CAs
—— that can be trusted. A client certificate signed with one of those CA

-— will be accetped by the server.

procedure CRL_File (O : in out Object; Filename : String);
—— Returns the filename containing the Certificate Revocation List. This

-— list is used by the server to check for revoked certificate.

procedure SSL_Session_Cache_Size (O : in out Object; Value : Natural);

(continues on next page)

132 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

procedure Session_Cleanup_Interval (Value : Duration);
—— Number of seconds between each run of the cleaner task to remove
—-— obsolete session data.

procedure Session_Lifetime (Value : Duration);
—— Number of seconds to keep a session if not used. After this period the
—-— session data is obsoleted and will be removed during next cleanup.

procedure Session_Id_Length (Value : Positive);
—— Returns the length (number of characters) of the session id

procedure Session_Cleaner_Priority (Value : System.Any Priority);
—-— Set the priority used by the session cleaner task

procedure Service_Priority (Value : System.Any Priority);

—-— Set the priority used by the others services (SMTP server, Jabber
-—- server, Push server...).

procedure Config_Directory (Value : String);

—-— Directory where AWS parameter files are located

procedure Transient_Cleanup_Interval (Value : Duration);
—— Number of seconds between each run of the cleaner task to remove
—-— transient pages.

procedure Transient_Lifetime (Value : Duration);
—— Number of seconds to keep a transient page. After this period the
—-— transient page 1is obsoleted and will be removed during next cleanup.

procedure Context_Lifetime (Value : Duration);
—— Number of seconds to keep a context 1f not used. After this period the
—-— context data is obsoleted and will be removed during next cleanup.

procedure Max_Concurrent_Download (Value : Positive);
—-— Control the maximum number of parallel downloads accepted by the
—-— download manager.

procedure Max_WebSocket (Value : Positive);

—— The maximum number of simultaneous WebSocket opened. Note that that
—— there could be more WebSocket registered when counting the closing
-— WebSockets.

procedure Max_WebSocket_Handler (Value : Positive);
—-— This is the max simultaneous connections handling WebSocket's messages

procedure MIME_Types (Value : String);
—— The name of the file containing the MIME types associations

procedure WebSocket_Message_Queue_Size (Value : Positive);
—-— This is the size of the queue containing incoming messages

procedure WebSocket_Send_Message_Queue_Size (Value : Positive);

(continues on next page)

13.10. AWS.Config.Set 133

AWS Documentation, Release 2019

(continued from previous page)

—-— This is the size of the queue containing messages to send

procedure WebSocket_Origin (Value : String);
—-— This is regular expression to restrict WebSocket to a specific origin

procedure WebSocket_Priority (Value : System.Any_ Priority);
-— Set the priority used by the WebSocket service

procedure WebSocket_Timeout (Value : Duration);
—-— Returns the WebSocket activity timeout. After this number of seconds

—-— without any activity the WebSocket can be closed when needed.

procedure Input_Line_Size_Limit (Value : Positive);
—— Maximum length of an HTTP parameter

procedure User_Agent (Value : String);
—-— Set the user agent for client request heaser

procedure Parameter

(Config : in out Object;
Name : String;
Value : String;
Error_Context : String := "");

—-— Set one of the AWS HTTP per server parameters. Ralises Constraint_ Error
—-— 1n case of wrong parameter name or wrong parameter value.

—-— Error_Context may contain additional information about the parameter.
—-— This message will be added to the Constraint_Error exception.

—-— One way to use Error_Context is to set it with information about

—-— where this parameter come form.

procedure Parameter

(Name : String;
Value : String;
Error_Context : String := "");

—-— Set one of the AWS HTTP per process parameters. See description above

end AWS.Config.Set;

134 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

13.11 AWS.Containers.Tables

- Ada Web Server -
- Copyright (C) 2000-2017, AdaCore -
—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-

-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;
with Ada.Strings.Unbounded;
private with Ada.Containers.Indefinite_Ordered Maps;
private with Ada.Containers.Indefinite_ Vectors;
private with Ada.Containers.Vectors;
package AWS.Containers.Tables is
use Ada.Strings.Unbounded;
type Table_Type is tagged private;
Empty_Table : constant Table_Type;
type Element is record
Name : Unbounded_String;
Value : Unbounded_String;
end record;
—-— Data type to store name/value pair retrieved from a Table_Type

Null Element : constant Element;

type VString Array is array (Positive range <>) of Unbounded_String;

(continues on next page)

13.11. AWS.Containers.Tables 135

AWS Documentation, Release 2019

(continued from previous page)

function Count (Table : Table Type) return Natural;
—-— Returns the number of items in Table

function Is_Empty (Table : Table Type) return Boolean;
—-— Returns true if table is empty

function Name_Count (Table : Table_Type) return Natural;
—-— Returns the number of unique key name in Table

function Case_Sensitive (Table : Table_ Type) return Boolean with Inline;

—-— Returns case sensitivity flag of the Table

function Count (Table : Table Type; Name : String) return Natural;
—-— Returns the number of value for Key Name in Table. It returns
-— 0 if Key does not exist.

function Exist (Table : Table Type; Name : String) return Boolean;
—— Returns True 1if Key exist in Table

function Get

(Table : Table_Type;

Name : String;

N : Positive := 1) return String
with Post => (if N > Count (Table, Name) then Get'Result'Length =
—-— Returns the Nth value associated with Key into Table. Returns
—-— the emptry string if key does not exist.

function Get_Name
(Table : Table Type; N : Positive := 1) return String

with Post => (if N > Count (Table) then Get_Name'Result'Length = 0);

—-— Returns the Nth Name in Table or the empty string if there is
—— no parameter with this number.

function Get_Value

(Table : Table Type; N : Positive := 1) return String
with Post => (if N > Count (Table) then Get_Value'Result'Length =
—-— Returns the Nth Value in Table or the empty string if there is
—— no parameter with this number.

function Get (Table : Table Type; N : Positive) return Element with

Post => (if N > Count (Table) then Get'Result = Null_Element);

—-— Returns N'th name/value pair. Returns Null_FElement 1if there is no

-— such item in the table.

function Get_Names (Table : Table Type) return VString Array
with Post => Get_Names'Result'Length = Name_Count (Table);
—-— Returns sorted array of unique key names

function Get_Values

(Table : Table Type; Name : String) return VString_Array
with Post => Get_Values'Result'Length = Count (Table, Name);
—-— Returns all values for the specified parameter key name

generic

with procedure Process (Name, Value : String);
procedure Generic_Iterate_Names

(Table : Table_Type; Separator : String);

(continues on next page)

136 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

-— Iterates over all names in the table.
—-— All Values of the same name are separated by Separator string.

procedure Iterate_Names

(Table : Table_Type;
Separator : String;
Process : not null access procedure (Name, Value : String));

function Union

(Left : Table_Type;

Right : Table_Type;

Unigque : Boolean) return Table_Type;
—-— Concatenates two tables, If Unique is True do not add Right container
—-— element into result when element with the same name already exists in
—-— the Left container.

procedure Add (Table : in out Table Type; Name, Value : String);

procedure Add

(Table : in out Table_Type;
Name, Value : Unbounded_String)
with Post => Count (Table) = Count (Table'Old) + 1
or else

Count (Table, To_String (Name))

= Count (Table'Old, To_String (Name)) + 1;
-— Add a new Key/Value pair into Table. A new value is always added,
-— even 1if there is already an entry with the same name.

procedure Update
(Table : in out Table_Type;

Name : String;
Value : String;
N : Positive := 1);

procedure Update
(Table : in out Table_Type;

Name : Unbounded_String;

Value : Unbounded_String;

N : Positive := 1)
with

Pre =>

-— Count + 1 means it is added at the end of the table
N <= Count (Table, To_String (Name)) + 1,
Post =>
-— Value already exists, it is updated
(N <= Count (Table'Old, To_String (Name))
and then Count (Table, To_String (Name))
= Count (Table'Old, To_String (Name)))
—-— New value appended
or else
(N = Count (Table'Old, To_String (Name)) + 1
and then N = Count (Table, To_String (Name)));
—-— Update the N-th Value with the given Name into the Table.
—— The container could already have more than one value associated with
—-— this name.

procedure Case_Sensitive

(continues on next page)

13.11. AWS.Containers.Tables 137

AWS Documentation, Release 2019

(continued from previous page)

(Table : in out Table_Type;
Mode : Boolean);
—— If Mode is True it will use all parameters with case sensitivity

procedure Reset (Table : in out Table Type) with

Post => Count (Table) = 0;
—-— Removes all object from Table. Table will be reinitialized and will be
—-— ready for new use.

private
—-— Implementation removed
end AWS.Containers.Tables;

138 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

13.12 AWS.Cookie

- Ada Web Server -
- Copyright (C) 2010-2018, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

—-— A package for basic HTTP state management, ie. cookies. Tokens and
-— attributes adhere to RFC-2109: http://tools.ietf.org/html/rfc2109

with AWS.Default;
with AWS.Response;
with AWS.Status;

package AWS.Cookie is
use type AWS.Response.Data_Mode;

Response_Data_Not_Initialized : exception;

—— The Response_Data_Not_Initialized exception 1is raised when trying to add
—-— headers to an un-initialized AWS.Response.Data object.

—— The AWS.Response.Data object is initialized using the

—-— AWS.Response.Build function.

No_Max_Age : constant Duration;
—— When no Max—-Age 1is required, this value can be passed to the Set

—-— routines below.

function Exists

(Request : Status.Data;
Key : String;
Case_Sensitive : Boolean := True) return Boolean;

—— Check if the 'Key' cookie exists in AWS.Headers.List. Return Boolean

(continues on next page)

13.12. AWS.Cookie 139

AWS Documentation, Release 2019

(continued from previous page)

—— True of the cookie exists, else Boolean False.

procedure Expire

(Content : in out Response.Data;
Key : String;
Path : String = "/");

-— Expire the 'Key' cookie. This is done by setting the Max-Age attribute
—— to 0. The Value of the cookie is also set to "", in case a browser does

—— not honor the Max-Age attribute.

function Get

(Request : Status.Data;
Key : String;
Case_Sensitive : Boolean := True) return String;

—— Return the 'Key' cookie from AWS.Headers.List. If the cookie does not

-—- exist, return an empty string, ie. ""

function Get

(Request : Status.Data;
Key : String;
Case_Sensitive : Boolean := True) return Integer;

—-— Return the 'Key' cookie from AWS.Headers.List. If the cookie does not
—-— exist or can't be converted from String to Integer then return 0.

function Get

(Request : Status.Data;
Key : String;
Case_Sensitive : Boolean := True) return Float;

—— Return the 'Key' cookie from AWS.Headers.List. If the cookie does not
—-— exist or can't be converted from String to Float then return 0.0.

function Get

(Request : Status.Data;
Key : String;
Case_Sensitive : Boolean := True) return Boolean;

—-— Return the 'Key' cookie from AWS.Headers.List. Only if the cookie value

-— equals "True" is Boolean True returned, else Boolean

procedure Set

(Content : in out Response.Data;

Key : String;

Value : String;

Comment : String = "";

Domain : String := "";

Max_Age : Duration := Default.Ten_Years;
Path : String := "/";

Secure : Boolean := False;

HTTP_Only : Boolean := False)

with Pre => Response.Mode (Content) /= Response.No_Data;
—-— Set a new cookie named 'Key' with value 'Value'. See
—-— information about the individual cookie attributes:
- http://tools.ietf.org/html/rfc2109

-— Exceptions:

- Response_Data_Not_Initialized

—= Is raised if AWS.Cookie.Set is called before the
- been initialized by a call to AWS.Response.Build

False is returned.

RFC 2109 for more

Content object has

(continues on next page)

140 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

procedure Set

(Content : in out Response.Data;

Key : String;

Value : Integer;

Comment : String := "";

Domain : String = "";

Max_Age : Duration := Default.Ten_Years;

Path : String := "/";

Secure : Boolean := False;

HTTP_Only : Boolean := False)
with Pre => Response.Mode (Content) /= Response.No_Data;
-— Set a new cookie named 'Key' with Integer value 'Value'. The Integer is
—-— converted to a String, as both cookie keys and values are inherently
-— strings.
—-— Exceptions:

— Response_Data_Not_Initialized
- Is raised i1f AWS.Cookie.Set is called before the Content object has
- been initialized by a call to AWS.Response.Build

procedure Set

(Content : in out Response.Data;

Key : String;

Value : Float;

Comment : String = "";

Domain : String = "";

Max_Age : Duration := Default.Ten_Years;

Path : String := "/";

Secure : Boolean := False;

HTTP_Only : Boolean := False)
with Pre => Response.Mode (Content) /= Response.No_Data;
—-— Set a new cookie named 'Key' with Float value 'Value'. The Float is
-— converted to a String, as both cookie keys and values are inherently
-— strings.
-— Exceptions:

—— Response_Data_Not_Initialized
- Is raised if AWS.Cookie.Set is called before the Content object has
- been initialized by a call to AWS.Response.Build

procedure Set

(Content : in out Response.Data;

Key : String;

Value : Boolean;

Comment : String = "";

Domain : String := "";

Max_Age : Duration := Default.Ten_Years;

Path : String := "/";

Secure : Boolean := False;

HTTP_Only : Boolean := False)
with Pre => Response.Mode (Content) /= Response.No_Data;
—-— Set a new cookie named 'Key' with Boolean value 'Value'. The Boolean 1is

—-— converted to a String ("False" or "True"), as both cookie keys and
-— values are inherently strings.

-— Exceptions:

(continues on next page)

13.12. AWS.Cookie 14

AWS Documentation, Release 2019

(continued from previous page)

—— Response_Data_Not_Initialized
- Is raised if AWS.Cookie.Set is called before the Content object has
- been initialized by a call to AWS.Response.Build

private
—-— implementation removed
end AWS.Cookie;

142 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

13.13 AWS.Default

- Ada Web Server -
- Copyright (C) 2000-2019, AdaCore -
—— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the --
-— Free Software Foundation; either version 3, or (at your option) any —--
—— later version. This library is distributed in the hope that it will be —-

—-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —--
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
—-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
—-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;

—-— This package contains the default AWS configuration values. These values
—-— are used to initialize the configuration objects. Users should not modify
-— the values here, see AWS.Config.x API.

with System;

package AWS.Default with Pure is

use System;

—-— All times are in seconds

Ten_Years : constant := 86_400.0 *x 365 % 10;
One_Hour : constant := 3_600.0;

One_Minute : constant := 60.0;

Eight_Hours : constant := 8.0 % One_Hour;
Three_Hours : constant := 3.0 % One_Hour;
Three_Minutes : constant := 3.0 » One_Minute;
Five_Minutes : constant := 5.0 % One_Minute;
Ten_Minutes : constant := 10.0 * One_Minute;

(continues on next page)

13.13. AWS.Default 143

AWS Documentation, Release 2019

(continued from previous page)

Server configuration

Server_Name

WWW_Root

Admin_URI

Admin_Password

Admin_Realm

Protocol_ Family

IPv6_Only

Server_Port

Hotplug_Port

Max_Connection
Max_WebSocket_Handler
Max_WebSocket
WebSocket_Message_Queue_Size
WebSocket_Send_Message_Queue_Size
WebSocket_Timeout
Send_Buffer_Size
TCP_No_Delay
Free_Slots_Keep_Alive_Limit
Keep_Alive_Force_Limit
Keep_Alive_Close_Limit
Accept_Queue_Size
Upload_Directory
Upload_Size_Limit
Line_Stack_Size
Case_Sensitive_Parameters
Input_Line_Size_Limit
Max_POST_Parameters
Max_Concurrent_Download
Reuse_Address

MIME_Types

Client configuration
User_Agent

Server_Header

—-— Log values. The character '@'

—-— replaced by the
Log_Activated
Log_File_Directory

Log_Split_Mode
Log_Filename_Prefix

Error_Log_Activated
Error_Log_Split_Mode
Error_Log_Filename_Prefix
Log_Size_Limit

Session

constant String := "AWS Module";
constant String ="/
constant String = """,

constant String ="

constant String := "AWS Admin Page";
constant String := "FAMILY_ UNSPEC";
constant Boolean := False;
constant := 8080;
constant := 8888;
constant := 5;

constant = 2;

constant := 512;

constant := 10;

constant 1= 30;

constant Duration := Eight_Hours;
constant := 03

constant Boolean := False;
constant = 1;

constant := 03

constant := 0;

constant 1= 64;

constant String =",

constant 1= 16#500_000¢%#;
constant := 16#150_000%;
constant Boolean := True;
constant := 16#4000%#;
constant := 100;

constant = 25;

constant Boolean := False;
constant String := "aws.mime";

constant String :=
"AWS (Ada Web Server)

constant String :=
User_Agent;

v" & Version;

in the error log filename prefix is

running program name.

constant Boolean := False;
constant String := "./";
constant String := "NONE";
constant String "en;
constant Boolean := False;
constant String := "NONE";
constant String := "@_error";
constant Natural := 0;

(continues on next page)

144

Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

Session : constant Boolean := False;
Session_Name : constant String := "AWS";
Session_Private_Name : constant String := "AWS_Private";
Session_Cleanup_Interval : constant Duration := Five_Minutes;
Session_Lifetime : constant Duration := Ten_Minutes;
Session_Id_Length : constant Positive := 11;

—-— Context

Context_Lifetime : constant Duration := Eight_Hours;

-— Transient pages

Transient_Cleanup_Interval : constant Duration := Three_Minutes;
Transient_Lifetime : constant Duration := Five_Minutes;

-— Server's timeouts

Cleaner_Wait_For_Client_Timeout : constant Duration := 80.0;
Cleaner_Client_Header_Timeout : constant Duration := 7.0;
Cleaner_Client_Data_Timeout : constant Duration := Eight_Hours;
Cleaner_Server_Response_Timeout : constant Duration := Eight_Hours;
Force_Wait_For_Client_Timeout : constant Duration := 2.0;
Force_Client_Header_Timeout : constant Duration := 2.0;
Force_Client_Data_Timeout : constant Duration := Three_Hours;
Force_Server_Response_Timeout : constant Duration := Three_Hours;
Send_Timeout : constant Duration := 40.0;
Receive_Timeout : constant Duration := 30.0;

—-— Directory template
Directory_Browser_Page : constant String := "aws_directory.thtml";

—-— Status page

Status_Page : constant String := "aws_status.thtml";
Up_Image : constant String := "aws_up.png";
Down_Image : constant String := "aws_down.png";
Logo_Image : constant String := "aws_logo.png";

-— Security

Security : constant Boolean := False;
Security_Mode : constant String := "TLS";
Config_Directory : constant String := ".config/ada-web-srv";
Cipher_Priorities : constant String :="";
TLS_Ticket_Support : constant Boolean := False;

Certificate : constant String := "cert.pem";

Key : constant String = "";
Client_Certificate : constant String :="";
Exchange_Certificate : constant Boolean := False;
Certificate_Required : constant Boolean := False;

Trusted_CA : constant String :="";

CRL_File : constant String :="";

Check_ URL_Validity : constant Boolean := True;

(continues on next page)

13.13. AWS.Default 145

AWS Documentation, Release 2019

(continued from previous page)

SSI_Session_Cache_Size
-— Priorities
Server_Priority
WebSocket_Priority
Session_Cleaner_Priority

Service_Priority

end AWS.Default;

constant := 16#4000#;

constant Any_Priority
constant Any_Priority
constant Any_Priority
constant Any_Priority

= Default_Priority;
Default_Priority;
Default_Priority;
Default_Priority;

146

Chapter 13. AWS API Reference

AWS Documentation, Release 2019

13.14 AWS.Dispatchers

- Ada Web Server -
- Copyright (C) 2000-2014, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;

—— This package provides a service to build Callbacks which can support
—-— user's data. It is possible to build a new dispatcher by inheriting the
—-— handler type and to provides the Dispatch routine.

with Ada.Finalization;

with AWS.Response;
with AWS.Status;
with AWS.Utils;

package AWS.Dispatchers is

type Handler is abstract new Ada.Finalization.Controlled
and AWS.Utils.Clonable with private;

function Dispatch

(Dispatcher : Handler;

Request : Status.Data) return Response.Data is abstract;
—-— Call the appropriate inherited dispatcher

function Ref_Counter (Dispatcher : Handler) return Natural;
—-— Returns the reference counter for Handler. If 0 is returned then this
—-— object 1is not referenced anymore, it 1is safe to deallocate resources.

(continues on next page)

13.14. AWS.Dispatchers 147

AWS Documentation, Release 2019

(continued from previous page)

type Handler Class_Access is access all Handler'Class;

procedure Free (Dispatcher : in out Handler Class_Access) with Inline;

—-— Release memory associated with the dispatcher

private
-— implementation removed
end AWS.Dispatchers;

148 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

13.15 AWS.Dispatchers.Callback

- Ada Web Server -
- Copyright (C) 2000-2013, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—— it under terms of the GNU General Public License as published by the —-—
-— Free Software Foundation; either version 3, or (at your option) any --
—-— later version. This library 1is distributed in the hope that it will be -—-
-— useful, but WITHOUT ANY WARRANTY,; without even the implied warranty of —-—
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
—-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. -

pragma Ada 2012;
—-— Dispatch on a Callback procedure

with AWS.Dispatchers;
with AWS.Response;
with AWS.Status;

package AWS.Dispatchers.Callback is

type Handler is new Dispatchers.Handler with private;

—-— This is a simple wrapper around standard callback procedure (access to
—-— function). It will be used to build dispatchers services and for the
-— main server callback.

function Create (Callback : Response.Callback) return Handler
with Inline;
—-— Build a dispatcher for the specified callback

private
—-— Implementation removed
end AWS.Dispatchers.Callback;

13.15. AWS.Dispatchers.Callback 149

AWS Documentation, Release 2019

13.16 AWS.Exceptions

- Ada Web Server -
- Copyright (C) 2003-2014, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

with Ada.Exceptions;

with AWS.Log;
with AWS.Response;
with AWS.Status;

package AWS.Exceptions is
use Ada.Exceptions;

type Data is record
Fatal : Boolean;
—-— If True it means that we go a fatal error. The slot will be
-— terminated so AWS will loose one of it's simultaneous connection.
—— This is clearly an AWS internal error that should be fixed in AWS.

Slot : Positive;
—— The failing slot number

Request : Status.Data;
—— The complete request information that was served when the slot has
—-— failed. This variable 1is set only when Fatal 1is False.

end record;

type Unexpected Exception_Handler is not null access
procedure (E : Exception_Occurrence;

(continues on next page)

150 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

Log : in out AWS.Log.Object;
Error : Data;
Answer : in out Response.Data);

—-— Unexpected exception handler can be set to monitor server errors.
—-— Answer can be set with the answer to send back to the client's

—-— browser. Note that this is possible only for non fatal error

-— (i.e. Error.Fatal is False).

—-— Log 1is the error log object for the failing server, it can be used
-— to log user's information (if error log is activated for this

—-— server). Note that the server will have already logged information
—-— about the problem.

end AWS.Exceptions;

13.16. AWS.Exceptions

151

AWS Documentation, Release 2019

13.17 AWS.Headers

- Ada Web Server -
- Copyright (C) 2000-2015, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;

with AWS.Containers.Tables;
with AWS.Net;

package AWS.Headers is
type List is new AWS.Containers.Tables.Table_Type with private;
—— Header container. This set handles a set of HITP header line, each new
—— header line 1s inserted at the end of the 1ist (see AWS.Headers.Set API)
—-— and can be retrieved by the following services. Header lines are
—-— numbered from 1 to N.
Empty_List : constant List;
subtype VString Array is AWS.Containers.Tables.VString Array;

subtype Element is AWS.Containers.Tables.Element;

Format_Error : exception;
—-— Raised when header line format is wrong

procedure Send_Header (Socket : Net.Socket Type'Class; Headers : List);
—-— Send all header lines in Headers list to the socket

function Get_Line (Headers : List; N : Positive) return String with

(continues on next page)

152 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

Post =>
(N > Count (Headers) and then Get_Line'Result'Length = 0)
or else N <= Count (Headers);
—— Returns the Nth header 1line in Headers container. The returned value 1is
-— formatted as a correct header line:

—— message—header = field-name ":" [field-value]

—— That is the header—-name followed with character ':' and the header

-— values. If there is less than Nth header line it returns the empty

—-— string. Note that this routine does returns all header line values, for
-— example it would return:

—— Content_Type: multipart/mixed; boundary="0123 The_Boundary Value_ "
-— For a file upload content type header style.

function Get_Values (Headers : List; Name : String) return String;

—-— Returns all values for the specified header field Name in a

—-— comma-separated string. This format is conformant to [RFC 2616 - 4.2]
-— (see last paragraph).

function Length (Headers : AWS.Headers.List) return Natural;
—— Returns the length (in bytes) of the header, including the ending
-— empty line.

procedure Read (Headers : in out List; Socket : Net.Socket_ Type'Class);
—-— Read and parse HTTP header from the socket

overriding procedure Reset (Headers : in out List)

with Post => Headers.Count = 0;
—-— Removes all object from Headers. Headers will be reinitialized and will
—-— be ready for new use.

procedure Debug (Activate : Boolean);
—— Turn on Debug output

-— See AWS.Containers.Tables for inherited routines
private

—— Implementation removed
end AWS.Headers;

13.17. AWS.Headers

153

AWS Documentation, Release 2019

13.18 AWS.Headers.Values

- Ada Web Server -
- Copyright (C) 2002-2014, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

with Ada.Strings.Unbounded;
package AWS.Headers.Values is
use Ada.Strings.Unbounded;
Format_Error : exception renames Headers.Format_Error;

—-— Data represent a token from an header line. There is two kinds of
-— token, either named or un-named.

—= Content-Type: xyz boundary="uvt"

—-— Here xyz is an un-named value and uvt a named value the name 1is
—— boundary.

type Data (Named Value : Boolean := True) is record
Value : Unbounded_String;
case Named_Value is
when True =>
Name : Unbounded_String;
when False =>
null;
end case;
end record;

(continues on next page)

154 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

type Set is array (Positive range <>) of Data;

generic

with procedure Value (Item : String; Quit : in out Boolean);
—-— Called for every un-named value read from the header value

with procedure Named_Value

(Name : String;
Value : String;
Quit : in out Boolean);

—-— Called for every named value read from the header value

procedure Parse (Header Value : String);

—-— Look for un—named values and named ones (Name="Value" pairs) in the
—— header line, and call appropriate routines when found. Quit is set to
—-— False before calling Value or Named Value, the parsing can be stopped
-— by setting Quit to True.

function Split (Header_ Value : String) return Set;
—-— Returns a Set with each named and un—-named values splited from Data

function Index

(Set : Values.Set;
Name : String;
Case_Sensitive : Boolean := True) return Natural;

—-— Returns index for Name in the set or 0 if Name not found.
—— If Case_Sensitive 1s false the find 1s case_insensitive.

function Search

(Header_Value : String;
Name : String;
Case_Sensitive : Boolean := True) return String;

—-— Returns Value for Name in Header._Value or the empty string if Name not
—-— found. If Case_Sensitive is False the search is case insensitive.

function Get_Unnamed_Value
(Header_Value : String; N : Positive := 1) return String;

—— Returns N-th un—-named value from Header Value

function Unnamed_Value_Exists

(Header_Value : String;
Value : String;
Case_Sensitive : Boolean := True) return Boolean;

—-— Returns True if the unnamed value specified has been found in

(continues on next page)

13.18. AWS.Headers.Values 155

AWS Documentation, Release 2019

(continued from previous page)

—— Header_Value.

end AWS.Headers.Values;

156

Chapter 13. AWS API Reference

AWS Documentation, Release 2019

13.19 AWS.Jabber

- Ada Web Server -
- Copyright (C) 2002-2013, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—— it under terms of the GNU General Public License as published by the —-—
-— Free Software Foundation; either version 3, or (at your option) any --
—-— later version. This library 1is distributed in the hope that it will be -—-
-— useful, but WITHOUT ANY WARRANTY,; without even the implied warranty of —-—
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
—-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. -

pragma Ada 2012;
package AWS.Jabber with Pure is

end AWS.Jabber;

13.19. AWS.Jabber 157

AWS Documentation, Release 2019

13.20 AWS.LDAP.Client

- Ada Web Server -
- Copyright (C) 2003-2014, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

—-— Provides an API to add, read, modify and delete information from a LDAP
-— server. It is a thick binding, see AWS.LDAP.Thin for a thin binding.

—— This API has been tested on Windows and Linux (OpenLDAP).
with Ada.Containers.Indefinite_Vectors;

with Ada.Exceptions;

with Ada.Strings.Unbounded;

with AWS.LDAP.Thin;

package AWS.LDAP.Client is

use Ada.Exceptions;
use Ada.Strings.Unbounded;

LDAP_Error : exception renames LDAP.LDAP_Error;

Default_Port : constant Positive := Positive (Thin.LDAP_PORT);

subtype Directory is Thin.LDAP_Type;

—— An LDAP directory. This object must be initialized with Init and Bind

—-— and terminated with Unbind.

subtype LDAP_Message is Thin.LDAPMessage;
—-— An LDAP message or set of messages. There is a set of iterators to

(continues on next page)

158 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

—— access all messages returned by the search procedure.

subtype BER _Element is Thin.BerElement;
—-— An iterator structure. Initialized and used to iterate through all the
-— attributes for a specific message.

Null_ Directory : constant Directory := Thin.Null_LDAP_Type;
Null ILDAP Message : constant LDAP_Message := Thin.Null_LDAPMessage;

type Scope_Type is
(LDAP_Scope_Default, LDAP_Scope_Base,
LDAP_Scope_One_Level, LDAP_Scope_Subtree);
—— LDAP scope for the search

type String_Set is array (Positive range <>) of Unbounded_String;
-— A set of strings, this is used to map C array of strings (a char xx)
—-— from the thin binding.

Null Set : constant String_Set;

function Get_Error (E : Exception_Occurrence) return Thin.Return_Code;
—-— Returns the error code in the LDAP_Error exception occurence E. Returns
—— Think.LDAP _SUCCESS 1f no error code has been found.

subtype Attribute_Set is String_Set;
—-— Used to represent the set of attributes to retrieve from the LDAP server

function Attributes

(s1, s2, s3, s4, s5, se6, S7, S8, S9, S10 : String := "")

return Attribute_Set;
—-— Returns a String_Set object containing only none empty values. Values
-— for S1 through S10 must be set in the order of the parameters. This 1is
—— an helper routine to help building an array of unbounded string from a
-— set of string.

function uid (Val : String := "") return String;
—-— Returns the uid attribute, if Val is specified "=<Val>" is
-— added after the attribute name.

function givenName (Val : String := "") return String;
—-— Returns the given name (firstname) attribute. if Val is specified
-— "=<Val>" is added after the attribute name.

function cn (Val : String := "") return String;
function commonName (Val : String := "") return String renames cn;
—-— Returns the common Name attribute, 1f Val is specified "=<Val>" is

—-— added after the attribute name.

function sn (Val : String := "") return String;
function surname (Val : String := "") return String renames sn;
—— Returns the surname attribute, 1if Val is specified "=<Val>" is

—-— added after the attribute name.

(continues on next page)

13.20. AWS.LDAP.Client 159

AWS Documentation, Release 2019

(continued from previous page)

function telephoneNumber (Val : String := "") return String;

—— Returns the phone number. if Val is specified "=<Val>" is

—-— added after the attribute name. Val must use the international notation
—-— according to CCITT E.123.

function mail (Val : String := "") return String;
—-— Returns the mail attribute. if Val is specified "=<Val>" is added after
-— the attribute name.

function 1 (Val : String := "") return String;

function localityName (Val : String := "") return String renames 1;
—-— Returns the locality attribute, if Val is specified "=<Val>" is
—— added after the attribute name.

function o (Val : String := "") return String;
function organizationName (Val : String := "") return String renames o;
—-— Returns the organization attribute, i1f Val is specified "=<Val>" is

—-— added after the attribute name.

function ou (Val : String := "") return String;
function organizationalUnitName (Val : String := "") return String
renames ou;
—-— Returns the organizational unit attribute, 1if Val is specified "=<Val>"
-— 1is added after the attribute name.

function st (Val : String := "") return String;

function stateOrProvinceName (Val : String := "") return String
renames st;

—-— Returns the state name attribute, if Val is specified "=<Val>" is

—-— added after the attribute name.

function ¢ (Val : String := "") return String;

function countryName (Val : String) return String renames c;

—-— Returns country code attribute, 1f Val is specified "=<Val>" is
—-— added after the attribute name. Val must be a two-letter ISO 3166
—-— country code.

function dc (Val : String := "") return String;

function domainComponent (Val : String := "") return String renames dc;
—-— Returns a domain component attribute, 1if Val is specified "=<Val>" is
—-— added after the attribute name.

function Cat

(s1, s2, S3, sS4, s5, s6, s7, S8, S9, S10 : String := "") return String;
—-— Returns a string object containing only none empty values. Values for
—-— S1 through S10 must be set in the order of the parameters. All values
—-— are catenated and separated with a coma. This is an helper routine to
—-— help building a filter objects or base distinguished name.

function Init
(Host : String;
Port : Positive := Default_Port) return Directory;

(continues on next page)

160 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

—-— Must be called first, to initialize the LDAP communication with the
—-— server. Returns Null_Directory in case of error.

procedure Bind

(Dir : Directory;
Login : String;
Password : String);

—-— Bind to the server by providing a login and password

procedure Unbind (Dir : in out Directory);

—-— Must be called to release resources associated with the Directory. Does
—— nothing if Dir is Null_Directory.

function Is_Open (Dir : Directory) return Boolean;

—— Returns True 1f the directory has correctly been initialized and binded
—-— with the server.

function Search

(Dir : Directory;

Base : String;

Filter : String;

Scope : Scope_Type = LDAP_Scope_Default;
Attrs : Attribute_Set := Null_Set;

Attrs_Only : Boolean F'alse) return LDAP_Message;
—-— Do a search on the LDAP server. Base 1s the name of the database.
—-— Filter can be used to retrieve a specific set of entries. Attrs specify
—-— the set of attributes to retrieve. If Attrs Only is set to True only
—-— the types are returned. Raises LDAP_Error in case of problem.

type Mod_Type is (LDAP_Mod_Add, LDAP_Mod_Replace, LDAP_Mod_BValues);
—-— Modification types: Add, Replace and BER flag

type Mod_Element (Values_ Size : Natural) is record

Mod_Op : Mod_Type;
Mod_Type : Unbounded_String;
Mod_Values : Attribute_Set (1 .. Values_Size);

end record;
—-— Holds modification elements. 'Abstraction' of the LDAPMod_Element type
—-— used in the thin-binding. Mod_Values 1is static to make it less complex.

package LDAP_Mods is

new Ada.Containers.Indefinite_Vectors (Positive, Mod_Element) ;
—-— Vector-based Storage for all modification elements. Will be
—— mapped to C LDAPMod x*x*.

procedure Add
(Dir : Directory;
DN ¢ String;
Mods : LDAP_Mods.Vector);

(continues on next page)

13.20. AWS.LDAP.Client 161

AWS Documentation, Release 2019

(continued from previous page)

—-— Add an entry specified by 'DN' to the LDAP server. The Mods-Vector
—-— contains the attributes for the entry.

procedure Modify

(Dir : Directory;

DN : String;

Mods : LDAP_Mods.Vector);
—-— Modify an attribute of entry specified by 'DN'. The Mods-Vector
—-— contains the attributes to add/replace/delete for the entry.

procedure Delete (Dir : Directory; DN : String);
—-— Delete an entry specified by 'DN' from the LDAP server

function First_Entry
(Dir : Directory;
Chain : LDAP_Message) return LDAP_Message;
—— Returns the first entry (or Node) for the search result (Chain)

function Next_Entry

(Dir : Directory;

Entries : LDAP_ Message) return LDAP_Message;
—-— Returns next entry (or Node) for Entries

function Count_Entries
(Dir : Directory;
Chain : LDAP_Message) return Natural;
—— Returns the number of entries in the search result (Chain)

procedure Free (Chain : LDAP_Message);
—-— Release memory associated with the search result Chain

generic
with procedure Action

(Node : LDAP_Message;

Quit : in out Boolean);
procedure For_Every_Entry (Dir : Directory; Chain : LDAP_Message);
—— This iterator call Action for each entry (Node) found in the LDAP result
—-— set as returned by the search procedure. Quit can be set to True to
-— stop iteration; its initial value is False.

function First_Attribute

(Dir : Directory;
Node : LDAP_Message;
BER : not null access BER_Element) return String;

—-— Returns the first attribute for the entry. It initialize an iteraror
—-— (the BER structure). The BER structure must be released after used by
—-— using the Free routine below.

function Next_Attribute

(Dir : Directory;
Node : LDAP_Message;
BER : BER_Element) return String;

—— Returns next attribute for iterator BER. First_Attribute must have been

(continues on next page)

162 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

—-— called to initialize this iterator.

procedure Free (BER : BER _Element);
—-— Releases memory associated with the BER structure which has been
—-— allocated by the First_Attribute routine.

generic
with procedure Action
(Attribute : String;
Quit : in out Boolean);
procedure For_Every_Attribute
(Dir : Directory;
Node : LDAP_Message);
—-— This iterator call action for each attribute found in the LDAP Entries
—— Node as returned by First_Entry or Next_Entry. Quit can be set to True
-— to stop iteration; its initial value is False.

function Get_DN
(Dir : Directory;
Node : LDAP_Message) return String;
—-— Returns the distinguished name for the given entry Node

function DN2UFN (DN : String) return String;
—-— Returns a distinguished name converted to a user-friendly format

function Get_Values

(Dir : Directory;

Node : LDAP_Message;

Target : String) return String_Set;
—-— Returns the list of values of a given attribute (Target) found in entry
—-— Node.

function Explode_DN

(DN : String;

No_Types : Boolean := True) return String_Set;
—-— Breaks up an entry name into its component parts. If No_Types 1is set to
—-— True the types information ("cn=") won't be included.

private
—— Implementation removed
end AWS.LDAP.Client;

13.20. AWS.LDAP.Client 163

AWS Documentation, Release 2019

13.21 AWS.Log

- Ada Web Server -
- Copyright (C) 2000-2014, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

—— This package handle the logging facility for AWS. The log file is named
-— '<progname>-Y-M-D.log' and is written by default in the directory where
—-— the server is launched, see configuration file.

—-— Note that this package is used internally by AWS to log server requests
-— but it can also be used by users to handle application's log.

—-— This package 1is thread safe.

with AWS.Containers.String Vectors;
with AWS.Headers;

with AWS.Messages;

with AWS.Response;

with AWS.Status;

private with Ada.Containers.Indefinite Ordered Maps;
private with Ada.Finalization;

private with Ada.Strings.Unbounded;

private with Ada.Text_ IO;

private with AWS.Utils;

package AWS.Log is

type Object is limited private;
-— A log object. It must be activated by calling Start below

(continues on next page)

164 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

type Callback is access procedure (Message : String);

—-— Access to a procedure that handles AWS access and/or error log data.

-— If the access and/or error logs are started with a Callback procedure

-— set, then AWS will no longer handle writing the log data to file, nor

-— will it rotate or split the data. In short : If you set a Callback, it's
-— up to you to handle these things.

—— The raw log data generated by AWS is simply handed verbatim to the

—-— Callback procedure.

type Split_Mode is (None, Each Run, Daily, Monthly);
—-— It specifies when to create a new log file.

—-— None : all log info gets accumulated into the same file.

—-— Each_Run : a new log file is created each time the server 1is started.
-— Daily : a new log file is created each day.

—-— Monthly : a new log file is created each month.

type Fields_Table is private;
-— Type to keep record for Extended Log File Format

Empty_Fields Table : constant Fields_Table;
Not_ Specified : constant String;

procedure Start

(Log : in out Object;

Split : Split_Mode := None;
Size_Limit : Natural = 0;
File_Directory : String := Not_Specified;
Filename_Prefix : String := Not_Specified;
Auto_Flush : Boolean := False);

—-— Activate server's activity logging. Split indicate the way the log file

—-— should be created. If Size Limit more than zero and size of log file

—-— become more than Size Limit, log file would be splitted. Filename Prefix
-— 1s the log filename prefix. If it is not specified the default prefix is
—-— the program name. Set Auto_Flush to True if you want every write to the

—-— log to be flushed (not buffered). Auto_Flush should be set to True only

—-— for logs with few entries per second as the flush has a performance

—-— penalty.

procedure Start

(Log : in out Object;
Writer : Callback;
Name : String);

—-— Activate server's activity logging and send all log data to Callback.

—— When the logging object is started with a Callback no splitting or size
—-— limits are imposed on the logging data. This will all have to be handled
—-— 1in the Callback.

—-— When a log is started with a Callback, all log data is passed verbatim
—-— to the Callback.

—— The Name String 1s returned when the Filename function 1is called. This
—-— serves no other function than to label the Callback procedure.

procedure Register_Field (Log : in out Object; Id : String);
—-— Register field to be written into extended log format

procedure Set_Field
(Log : Object; Data : in out Fields_Table; Id, Value : String);

(continues on next page)

13.21. AWS.Log 165

AWS Documentation, Release 2019

(continued from previous page)

-— Set field value into the extended log record. Data could be used only
—-— 1n one task and with one log file. Different tasks could write own Data
—-— using the Write routine with Fields Table parameter type.

procedure Set_Header_Fields

(Log Object;
Data : in out Fields_Table;
Prefix : String;

Header : AWS.Headers.List);
—— Set header fields into extended log record.
—— Name of the header fields would be <Prefix> (<Header_Name>).
—-— Prefix should be "cs" - Client to Server or "sc" - Server to Client.

procedure Write (Log : in out Object; Data : in out Fields_Table);

—-— Write extended format record to log file and prepare record for the next
—— data. It is not allowed to use same Fields Table with different extended
-— logs.

procedure Write

(Log : in out Object;
Connect_Stat : Status.Data;
Answer : Response.Data);

—-— Write log info if activated (i.e. Start routine above has been called)

procedure Write

(Log : in out Object;
Connect_Stat : Status.Data;
Status_Code : Messages.Status_Code;

Content_Length : Response.Content_Length_Type);
-— Write log info if activated (i.e. Start routine above has been called).
—-— This version separated the Content_Length from Status.Data, this is
—-— required for example in the case of a user defined stream content. See
-— AWS.Resources.Stream.

procedure Write

(Log : in out Object;

Connect_Stat : Status.Data;

Data : String);
-— Write user's log info if activated. (i.e. Start routine above has been
-— called).
procedure Write (Log : in out Object; Data : String);

-— Write Data into the log file. This Data is unstructured, only a time
—-— tag prefix is prepended to Data. This routine is designed to be used
—-— for user's info in error log file.

procedure Flush (Log : in out Object);

—-— Flush the data to the Log file, for be able to see last logged

-— messages.

—-— If a Callback procedure is used to handle the log data, then calling
—— Flush does nothing.

procedure Stop (Log : in out Object);
-— Stop logging activity

function Is_Active (Log : Object) return Boolean;
—-— Returns True if Log is activated

(continues on next page)

166 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

function Filename (Log : Object) return String;

—-— Returns current log filename or the empty string if the log 1is not

-— activated.

—-— If a Callback is used to handle the log, then the name given in the

—-— Start procedure 1is returned. See the Start procedure for starting logs
-— with a Callback.

function Mode (Log : Object) return Split_Mode;
—-— Returns the split mode. None will be returned if log is not activated or
—-— a Callback procedure is used to handle the log data.

private
—-— Implementation removed
end AWS.Log;

13.21. AWS.Log 167

AWS Documentation, Release 2019

13.22 AWS.Messages

- Ada Web Server -
- Copyright (C) 2000-2018, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;

with Ada.Calendar;

with Ada.Streams;

with Ada.Strings.Unbounded;

package AWS.Messages is
use Ada;

use Ada.Streams;
use Ada.Strings.Unbounded;

HTTP_Token : constant String := "HTTP/";
Options_Token : constant String := "OPTIONS";
Get_Token : constant String := "GET";
Head_Token : constant String := "HEAD";
Post_Token : constant String := "POST";
Put_Token : constant String := "PUT";
Delete_Token : constant String := "DELETE";
Trace_Token : constant String := "TRACE";
Connect_Token : constant String := "CONNECT";

—-— Sorted like in RFC 2616 Method definition

(continues on next page)

168 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

—— General header tokens RFC 2616

Cache_Control_Token : constant String := "Cache-Control";
Connection_Token : constant String := "Connection";
Date_Token : constant String := "Date";

Pragma_Token : constant String := "Pragma";
Trailer_Token : constant String := "Trailer";
Transfer_Encoding_Token : constant String := "Transfer-Encoding";
Upgrade_Token : constant String := "Upgrade";

Via_Token : constant String := "Via";

Warning_Token : constant String := "Warning";

—— Request header tokens RFC 2616

Accept_Token : constant String := "Accept";
Accept_Charset_Token : constant String := "Accept-Charset";
Accept_Encoding_Token : constant String := "Accept-Encoding";
Accept_Language_Token : constant String := "Accept-Language";
Authorization_Token : constant String := "Authorization";
Expect_Token : constant String := "Expect";

From_Token : constant String := "From";

Host_Token : constant String := "Host";

If _Match_Token : constant String := "If-Match";

If Modified_Since_Token : constant String := "If-Modified-Since";
If_None_Match_Token : constant String := "If-None-Match";
If_Range_Token : constant String := "If-Range";

If Unmodified Since Token : constant String := "If-Unmodified-Since";
Max_Forwards_Token : constant String := "Max-Forwards";
Proxy_Authorization Token : constant String := "Proxy-Authorization";
Range_Token : constant String := "Range";

Referer_Token : constant String := "Referer";

TE_Token : constant String := "TE";

User_Agent_Token : constant String := "User-Agent";

—-— C(Cross-Origin Resource Sharing request header tokens
Access_Control Request Headers Token : constant String :=
"Access—-Control-Request—-Headers";

Access_Control Request Method Token : constant String :=
"Access—-Control-Request—-Method";
Origin_Token : constant String := "Origin";

—— Response header tokens RFC 2616

Accept_Ranges_Token : constant String := "Accept-Ranges";
Age_Token : constant String := "Age";

ETag_Token : constant String := "ETag";
Location_Token : constant String := "Location";
Proxy_Authenticate_Token : constant String := "Proxy-Authenticate";
Retry_After_ Token : constant String := "Retry-After";
Server_Token : constant String := "Server";

Vary_Token : constant String := "Vary";
WWW_Authenticate_Token : constant String := "WWW-Authenticate";

—-— Cross-Origin Resource Sharing response header tokens
Access_Control Allow Credentials Token : constant String :=

(continues on next page)

13.22. AWS.Messages 169

AWS Documentation, Release 2019

(continued from previous page)

"Access—-Control-Allow-Credentials";
Access_Control_Allow_Headers_Token

Access_Control_Allow_Methods_Token
Access_Control_Allow_Origin_Token
Access_Control_Expose_Headers_Token

Access_Control_Max_Age_Token

Entity header tokens RFC 2616

constant String :=
"Access—-Control-Allow-Headers";
constant String :=
"Access—-Control-Allow-Methods";
constant String :=
"Access—-Control-Allow-Origin";
constant String :=
"Access—-Control-Expose—-Headers";
constant String :=
"Access—-Control-Max—Age";

Allow_Token constant String := "Allow";
Content_Encoding_Token constant String := "Content-Encoding";
Content_Language_Token constant String := "Content-Language";
Content_Length_Token constant String := "Content-Length";
Content_Location_Token constant String := "Content-Location";
Content_MD5_Token constant String := "Content-MD5";
Content_Range_Token constant String := "Content-Range";
Content_Type_Token constant String := "Content-Type";
Expires_Token constant String := "Expires";
Last_Modified_Token constant String := "Last-Modified";

-— Cookie token RFC 2109

Cookie_Token constant String := "Cookie";
Set_Cookie_Token constant String := "Set-Cookie";
Comment_Token constant String := "Comment";
Domain_Token constant String := "Domain";
Max_Age_Token constant String := "Max-Age";
Path_Token constant String := "Path";
Secure_Token constant String := "Secure";
HTTP_Only_Token constant String := "HttpOnly";

—— Other tokens

Proxy_Connection_Token constant String := "Proxy-Connection";
Content_Disposition_Token constant String := "Content-Disposition";
SOAPAction_Token constant String := "SOAPAction";
Content_Id_Token constant String := "Content-ID";
Content_Transfer_Encoding_Token constant String :=

"Content-Transfer—-Encoding";

WebSockets tokens

Websocket_Token constant
Sec_WebSocket_Accept_Token constant
Sec_WebSocket_Protocol_Token constant
Sec_WebSocket_Key_Token constant
Sec_WebSocket_Keyl_ Token constant
Sec_WebSocket_Key2_Token constant
Sec_WebSocket_Version_Token constant
Sec_WebSocket_Origin_Token constant
Sec_WebSocket_Location_Token constant
Chat_Token constant

S100_Continue constant String :=

Supported expect header value

"100-

String := "WebSocket";

String := "Sec-WebSocket-Accept";
String := "Sec-WebSocket-Protocol";
String := "Sec-WebSocket-Key";
String := "Sec-WebSocket-Keyl";
String := "Sec-WebSocket-Key2";
String := "Sec-WebSocket-Version";
String := "Sec-WebSocket-Origin";
String := "Sec-WebSocket-Location";
String := "chat";

continue";

(continues on next page)

170

Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

type Status_Code is
(s100, si01, s102,
-— Ixx : Informational - Request received, continuing process

5200, s201, S202, sS203, s204, sS205, s20e6, Sz207,
-— 2xx : Success — The action was successfully received, understood and
—-— accepted

s$300, S301, sS302, S303, sS304, S305, s307,
-— 3xx : Redirection - Further action must be taken in order to
—-— complete the request

s400, s401, S402, s403, sS404, s405, s406, S407, s408, sS409,

5410, S411, S412, S413, S414, S415, s416, S417, S422, s423, S424,

-— 4xx : Client Error - The request contains bad syntax or cannot be
—-— fulfilled

s500, s501, sS502, s503, s504, sS505, s507
-— bxx : Server Error — The server failed to fulfill an apparently
-— wvalid request

)i

subtype Informational is Status_Code range S100 .. S102;
subtype Success is Status_Code range S200 .. S207;
subtype Redirection is Status_Code range S300 .. S307;
subtype Client_ Error is Status_Code range S400 .. S424;
subtype Server_Error is Status_Code range S500 .. S507;
function Image (S : Status_Code) return String;

—-— Returns Status_Code image. This value does not contain the leading S

function Reason_Phrase (S : Status_Code) return String;
—-— Returns the reason phrase for the status code S, see [RFC 2616 - 6.1.1]

function With_Body (S : Status_Code) return Boolean;
—-— Returns True if message with status can have a body

type Content_Encoding is (Identity, GZip, Deflate);
—-— Encoding mode for the response, Identity means that no encoding is
—-— done, Gzip/Deflate to select the Gzip or Deflate encoding algorithm.

type Cache_Option is new String;
—— Cache Option is a string and any specific option can be specified. We
—-— define four options:

(continues on next page)

13.22. AWS.Messages 171

AWS Documentation, Release 2019

(continued from previous page)

—-— Unspecified : No cache option will used.

—-— No_Cache : Ask browser and proxy to not cache data (no-cache,

- max—-age, and s—-maxage are specified).

—-— No_Store : Ask browser and proxy to not store any data. This can be
- used to protect sensitive data.

—-— Prevent_Cache : Equivalent to No_Store + No_Cache

Unspecified : constant Cache_Option;

No_Cache : constant Cache_Option;

No_Store : constant Cache_Option;

Prevent Cache : constant Cache_Option;

type Cache_Kind is (Request, Response);

type Delta Seconds is new Integer range -1 .. Integer'Last;
—-— Represents a delta-seconds parameter for some Cache_Data fields like
-— max-age, max-stale (value -1 is used for Unset).

Unset : constant Delta_Seconds;
No_Max_ Stale : constant Delta_Seconds;
Any_Max_Stale : constant Delta_Seconds;

type Private_ Option is new Unbounded_String;

All_Private : constant Private_ Option;
Private Unset : constant Private_Option;

—— Cache_Data is a record that represents cache control information

type Cache_Data (CKind : Cache Kind) is record

No_Cache : Boolean := False;
No_Store : Boolean := False;
No_Transform : Boolean := False;
Max_Age : Delta_Seconds := Unset;

case CKind is
when Request =>

Max_Stale : Delta_Seconds := Unset;
Min_Fresh : Delta_Seconds := Unset;
Only_If_Cached : Boolean := False;

when Response =>

S_Max_Age : Delta_Seconds := Unset;
Public : Boolean := False;
Private Field : Private Option := Private_Unset;
Must_Revalidate : Boolean := False;
Proxy_Revalidate : Boolean := False;

end case;
end record;

function To_Cache_Option (Data : Cache_Data) return Cache_Option;
-— Returns a cache control value for an HTTP request/response, fields are
—-— described into RFC 2616 [14.9 Cache-Control].

function To_Cache_Data
(Kind : Cache_Kind; Value : Cache_ Option) return Cache_Data;
—-— Returns a Cache_Data record parsed out of Cache_Option

(continues on next page)

172 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

type ETag Value is new String;
function Create_ETag
(Name : String; Weak : Boolean := False) return ETag_Value;

—-— Returns an ETag value (strong by default and Weak if specified). For a
—-— discussion about ETag see RFC 2616 [3.11 Entity Tags] and [14.19 ETag].

function Accept_Encoding (Encoding : String) return String with Inline;
function Accept_Type (Mode : String) return String with Inline;

function Accept_Language (Mode : String) return String with Inline;
function Authorization (Mode, Password : String) return String with Inline;
function Connection (Mode : String) return String with Inline;

function Content_Length (Size : Stream Element Offset) return String
with Inline;

function Cookie (Value : String) return String with Inline;
function Content_Type (Format : String) return String with Inline;

function Content_Type

(Format : String; Boundary : String) return String with Inline;
function Cache_Control (Option : Cache Option) return String with Inline;
function Cache_Control (Data : Cache_Data) return String with Inline;

function Content_Disposition

(Format, Name, Filename : String) return String with Inline;
-— Note that this is not part of HTTP/1.1 standard, it is there because
—-— there is a lot of implementation around using it. This header is used
—-— 1in multipart data.

function ETag (Value : ETag Value) return String with Inline;
function Expires (Date : Calendar.Time) return String with Inline;

—— The date should not be more than a year in the future, see RFC 2616
-— [14.21 Expires].

function Host (Name : String) return String with Inline;
function Last_Modified (Date : Calendar.Time) return String with Inline;
function Location (URL : String) return String with Inline;

(continues on next page)

13.22. AWS.Messages 173

AWS Documentation, Release 2019

(continued from previous page)

function Proxy_Authorization (Mode, Password : String) return String
with Inline;

function Proxy_Connection (Mode : String) return String with Inline;
function Data_Range (Value : String) return String with Inline;
function SOAPAction (URI : String) return String with Inline;

function Status_Line

(Code : Status_Code;

Reason_Phrase : String := "") return String with Inline;
function Transfer_Encoding (Encoding : String) return String with Inline;
function User_Agent (Name : String) return String with Inline;

function WWW_Authenticate (Realm : String) return String with Inline;
—-— Basic authentication request

function WWW_Authenticate

(Realm, Nonce : String; Stale : Boolean) return String with Inline;
—-— Digest authentication request

function Sec_WebSocket_Accept (Key : String) return String with Inline;

function To_HTTP_Date (Time : Calendar.Time) return String;
—-— Returns an Ada time as a string using the HTTP normalized format.
-— Format is RFC 822, updated by RFC 1123.

function To_Time (HTTP_Date : String) return Calendar.Time;
—-— Returns an Ada time from an HTTP one. This is To_HTTP_Date opposite
-— function.

private

—-— Implementation removed
end AWS.Messages;

174 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

13.23 AWS.MIME

- Ada Web Server -
- Copyright (C) 2000-2014, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

package AWS.MIME is

-— Some content type constants. All of them will be defined into this

—-— package and associated with the right extensions. It is possible to
-— add new MIME types with the routines below or by placing a file named
-— aws.mime into the startup directory.

-- A MIME type 1is written in two parts: type/format

—-— Text —-—

Text_CSS : constant String := "text/css";
Text_Javascript : constant String := "text/javascript";
Text_HTML : constant String := "text/html";
Text_Plain : constant String := "text/plain";
Text_ XML : constant String := "text/xml";
Text_X_SGML : constant String := "text/x-sgml";

-— Image —-—

Image_Gif : constant String := "image/gif";
Image_Jpeg : constant String := "image/jpeg";

(continues on next page)

13.23. AWS.MIME 175

AWS Documentation, Release 2019

(continued from previous page)

Image_Png

Image_SVG

Image_Tiff

Image_Icon
Image_X_Portable_Anymap
Image_X_Portable_Bitmap
Image_X_Portable_Graymap
Image_X_Portable_Pixmap
Image_X_RGB
Image_X_Xbitmap
Image_X_Xpixmap
Image_X_Xwindowdump

Application_Postscript
Application_Pdf
Application_Zip
Application_Octet_Stream
Application_Form_Data

Application_Mac_Binhex40
Application_Msword
Application_Powerpoint
Application_Rtf
Application_XML
Application_JSON
Application_SOAP
Application_X_Compress
Application_X_GTar
Application_X_GZip
Application_X Latex
Application_X_Sh
Application_X_Shar
Application_X_ Tar
Application_X_Tcl
Application_X_Tex
Application_X_ Texinfo
Application_X_Troff
Application_X_Troff_Man

Audio_Basic

Audio_Mpeg

Audio_X Wav
Audio_X_Pn_Realaudio
Audio_X_Pn_Realaudio_Plugin

Audio_X_ Realaudio

—-— Video —-

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

constant
constant
constant
constant
constant

String
String
String
String
String
String
String
String
String
String
String
String

String
String
String
String
String

"image/png";
"image/svg+xml";
"image/tiff";
"image/x—-icon";
"image/x-portable—anymap";
"image/x-portable-bitmap";
"image/x-portable-graymap";
"image/x-portable-pixmap";
"image/x-rgb";
"image/x-xbitmap";
"image/x-xpixmap";
"image/x-xwindowdump";

"application/postscript";
"application/pdf";
"application/zip";
"application/octet—-stream";

"application/x-www—form-urlencoded";

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

constant
constant
constant
constant
constant

String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String

String
String
String
String
String

"application/mac-binhex40";
"application/msword";
"application/powerpoint";
"application/rtf";
"application/xml";
"application/Jjson";
"application/soap";
"application/x—-compress";
"application/x-gtar";
"application/x-gzip";
"application/x-latex";
"application/x-sh";
"application/x-shar";
"application/x-tar";
"application/x-tcl";
"application/x-tex";
"application/x-texinfo";
"application/x-troff";
"application/x-troff-man";

"audio/basic";
"audio/mpeg";
"audio/x-wav";
"audio/x-pn-realaudio";

"audio/x-pn-realaudio-plugin";
:= "audio/x-realaudio";

constant

String

(continues on next page)

176

Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

Video_Mpeg : constant String := "video/mpeg";
Video_Quicktime : constant String := "video/quicktime";
Video_X_Msvideo : constant String := "video/x-msvideo";

-— Multipart --

Multipart_Form_Data : constant String := "multipart/form-data";
Multipart_Byteranges : constant String := "multipart/byteranges";
Multipart_Related : constant String := "multipart/related";
Multipart_X Mixed_Replace : constant String :=

"multipart/x-mixed-replace";

procedure Add_Extension (Ext : String; MIME_Type : String);

—-— Add extension Ext (file extension without the dot, e.g. "txt") to the
-— set of MIME type extension handled by this API. Ext will be mapped to
—-— the MIME_Type string.

procedure Add_Regexp (Filename : String; MIME Type : String);
—-— Add a specific rule to the MIME type table. Filename 1is a regular
—-— expression and will be mapped to the MIME Type string.

function Content_Type

(Filename : String;

Default : String := Application_Octet_Stream) return String;
—-— Returns the MIME Content Type based on filename's extension or if not
—— found the MIME Content type where Filename matches one of the specific
—-— rules set by Add_Regexp (see below).
—-— Returns Default if the file type is unknown (i.e. no extension and
—-— no regular expression match filename).

function Extension (Content Type : String) return String;
—-— Returns the best guess of the extension to use for the Content Type.
—-— Note that extensions added indirectly by Add_Regexp are not searched.

function Is_Text (MIME Type : String) return Boolean;
—-— Returns True if the MIME_Type 1is a text data

function Is_Audio (MIME Type : String) return Boolean;
—-— Returns True if the MIME Type is an audio data

function Is_Image (MIME Type : String) return Boolean;
—-— Returns True if the MIME Type is an image data

function Is_Video (MIME Type : String) return Boolean;
—-— Returns True if the MIME Type is a video data

(continues on next page)

13.23. AWS.MIME 177

AWS Documentation, Release 2019

(continued from previous page)

function Is_Application (MIME_ Type : String) return Boolean;
—-— Returns True 1if the MIME_Type 1is an application data

procedure Load (MIME File : String);
-— Load MIME_File, record every MIME type. Note that the format of this
—-— file follows the common standard format used by Apache mime.types.

end AWS.MIME;

178 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

13.24 AWS.Net

- Ada Web Server -
- Copyright (C) 2000-2016, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;

—-— There 1is two implementations for this spec. One for standard sockets and
—-— one for SSL socket. Note that the SSL implementation does support standard
-— socket too, this is controlled with the Security boolean on rountine

—-— below. The corresponding implementation will be selected at build time.

with Ada.Exceptions;
with Ada.Finalization;
with Ada.Streams;

private with AWS.Utils;
private with Interfaces.C;

package AWS.Net is

use Ada;
use Ada.Exceptions;
use Ada.Streams;

Socket_Error : exception;
—-— Raised by all routines below, a message will indicate the nature of
—-— the error.

type Socket_Type is abstract new Finalization.Controlled with private;
type Socket_Access is access all Socket_Type'Class;

(continues on next page)

13.24. AWS.Net 179

AWS Documentation, Release 2019

(continued from previous page)

type Socket_Set is array (Positive range <>) of Socket_Access;

subtype FD_Type is Integer;
—— Represents an external socket file descriptor

No_Socket : constant := -1;
—— Represents closed socket file descriptor

type Event_Type is (Error, Input, Output);

-— Error - socket 1is in error state.
—-— Input - socket ready for read.
-— Output - socket available for write.

type Event_Set is array (Event_Type) of Boolean;
-— Type for get result of events waiting

subtype Wait_Event_ Type is Event_Type range Input .. Output;

type Wait_Event_Set is array (Wait_Event_Type) of Boolean;

-— Type for set events to wait, note that Error event would be waited
-— anyway.

type Family Type is (Family Inet, Family Inet6, Family Unspec);

type Shutmode Type is (Shut_Read, Shut _Write, Shut_Read Write);

Forever : constant Duration;
—— The longest delay possible on the implementation

function Socket (Security : Boolean) return Socket_Type'Class;
—-— Create an uninitialized socket

function Socket
(Security : Boolean) return not null access Socket_Type'Class;

—-— Create a dynamically allocated uninitialized socket

procedure Bind

(Socket : in out Socket_Type;

Port : Natural;

Host : String = "";

Reuse_Address : Boolean := False;

IPv6_Only : Boolean = False;

Family : Family Type := Family_ Unspec) is abstract;

—-— Create the server socket and bind it on the given port.

—-— Using 0 for the port will tell the 0OS to allocate a non-privileged

—-— free port. The port can be later retrieved using Get_Port on the

—-— bound socket.

—-— IPv6_Only has meaning only for Family = Family Ineté6 and mean that only
—-— IPv6 clients allowed to connect.

procedure Listen
(Socket : Socket_Type; Queue_Size : Positive := 5) is abstract;
—-— Set the queue size of the socket

(continues on next page)

180 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

procedure Accept_Socket
(Socket : Socket_Type'Class; New_Socket : in out Socket_Type) is abstract;
—-— Accept a connection on a socket. If it raises Socket_Error, all
—-— resources used by new_Socket have been released.
—— There is not need to call Free or Shutdown.

type Socket_Constructor is not null access
function (Security : Boolean) return Socket_Type'Class;

procedure Connect
(Socket : in out Socket_Type;

Host : String;
Port : Positive;
Wait : Boolean 1= True;

Family : Family_Type Family_Unspec) is abstract
with Pre'Class => Host'Length > 0;
- Connect a socket on a given host/port. If Wait is True Connect will wait
—-— for the connection to be established for timeout seconds, specified by
—-— Set_Timeout routine. If Wait is False Connect will return immediately,
—-— not waiting for the connection to be establised. It is possible to wait
—-— for the Connection completion by calling Wait routine with Output set to
—-— True in Events parameter.

procedure Socket_Pair (S1, S2 : out Socket Type);
—-— Create 2 sockets and connect them together

procedure Shutdown
(Socket : Socket_Type;
How : Shutmode_Type := Shut_Read Write) is abstract;
—-— Shutdown the read, write or both side of the socket.
—-— If How is Both, close it. Does not raise Socket_Error if the socket 1is
—-— not connected or already shutdown.

procedure Free (Socket : in out Socket Access);
—-— Release memory associated with the socket

procedure Send
(Socket : Socket_Type'Class; Data : Stream_Element_Array);
—-— Send Data chunk to the socket

procedure Send
(Sockets : Socket_Set; Data : Stream Element_Array);
—-— Send Data to all sockets from the socket set. This call will ensure that
—-— the data are sent in priority to client waiting for reading. That is,
—-— slow connection for one sokcet should not delay the fast connections.
-— Yet, this routine will return only when the data is sent to all sockets.

procedure Send
(Socket : Socket_Type;
Data : Stream_Element_Array;
Last : out Stream Element_ Offset) is abstract;
-— Try to place data to Socket's output buffer. If all data cannot be

(continues on next page)

13.24. AWS.Net 181

AWS Documentation, Release 2019

(continued from previous page)

-— placed to the socket output buffer, Last will be lower than Data'Last,
—-— 1f no data has been placed into the output buffer, Last is set to

—-— Data'First — 1. If Data'First is equal to Stream Element_Offset'First
—-— then constraint error is raised to follow advice in AI95-227.

procedure Receive
(Socket : Socket_Type;
Data : out Stream Element_Array;
Last : out Stream Element_ Offset) is abstract;
—-— Read a chunk of data from the socket and set appropriate Last value.
—— This call always returns some data and will wait for incoming data only
—-— 1f necessary.

function Receive

(Socket : Socket_Type'Class;

Max : Stream Element Count := 4096) return Stream_Element_Array;
—-— Read a chunk of data from the socket and returns it. This call always
—-— returns some data and will wait for incoming data only if necessary.

function Pending (Socket : Socket_ Type) return Stream Element_Count
is abstract;

—— Returns the number of bytes which are available inside socket

-— for immediate read.

function Output_Space (Socket : Socket Type) return Stream Element_Offset;
—-— Returns the free space in output buffer in bytes. If 0S could not
—-— provide such information, routine returns -1.

function Output_Busy (Socket : Socket Type) return Stream_Element_Offset;

—-— How many bytes in the send queue. If OS could not provide such
-— information, routine returns -1.

function Get_FD (Socket : Socket_Type) return FD_Type is abstract;
—-— Returns the file descriptor associated with the socket

function Peer_Addr (Socket : Socket Type) return String is abstract;
—— Returns the peer name/address

function Peer_Port (Socket : Socket_Type) return Positive is abstract;
—— Returns the port of the peer socket

function Get_Addr (Socket : Socket_ Type) return String is abstract;
—— Returns the name/address of the socket

function Get_Port (Socket : Socket_Type) return Positive is abstract;
—— Returns the port of the socket

function Is_Any_Address (Socket : Socket_Type) return Boolean;
—— Return true 1if the socket accepts connections on any of the hosts's

—-— network addresses.

function Is_IPv6 (Socket : Socket_ Type) return Boolean;

(continues on next page)

182 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

function Is_Listening (Socket : Socket Type) return Boolean;
—-— Returns true if the socket has been marked to accept connections with
-— listen.

function IPv6_Available return Boolean;
—-— Returns True 1if IPv6 available in OS and in AWS socket implementation

function Host_Name return String;
—-— Returns the running host name

procedure Set_Send Buffer_ Size
(Socket : Socket_Type; Size : Natural) is abstract;
—-— Set the internal socket send buffer size.
—-— Do not confuse with buffers for the AWS.Net.Buffered operations.

procedure Set_Receive_Buffer_Size
(Socket : Socket_Type; Size : Natural) is abstract;
—-— Set the internal socket receive buffer size.
—-— Do not confuse with buffers for the AWS.Net.Buffered operations.

function Get_Send Buffer_Size (Socket : Socket Type) return Natural
is abstract;

—-— Returns the internal socket send buffer size.

—— Do not confuse with buffers for the AWS.Net.Buffered operations.

function Get_Receive_Buffer_Size (Socket : Socket_Type) return Natural
is abstract;

—-— Returns the internal socket receive buffer size.

—-— Do not confuse with buffers for the AWS.Net.Buffered operations.

function Cipher_Description (Socket : Socket Type) return String;
—— Returns cipher description on SSL implementation or empty string on
-— plain socket.

procedure Set_Blocking_Mode

(Socket : in out Socket_Type; Blocking : Boolean);
pragma Obsolescent ("Use Set_Timeout instead");
—-— Set the blocking mode for the socket

procedure Set_Timeout (Socket : in out Socket_ Type; Timeout : Duration)
with Inline;
-— Sets the timeout for the socket read/write operations

procedure Set_No_Delay
(Socket : Socket_Type; Value : Boolean := True) is null;
-- Set/clear TCP_NODELAY option on socket

function Wait
(Socket : Socket_Type'Class;
Events : Wait_Event_Set) return Event_Set;
-— Waiting for Input/Output/Error events.
—-— Waiting time is defined by Set_Timeout.
-— Empty event set in result mean that timeout occured.

function Check
(Socket : Socket_Type'Class;
Events : Wait_Event_Set) return Event_Set;

(continues on next page)

13.24. AWS.Net 183

AWS Documentation, Release 2019

(continued from previous page)

Check for Input/Output/Error events availability.
No wait for socket timeout.

function Poll

(Socket : Socket_Type'Class;
Events : Wait_Event_Set;
Timeout : Duration) return Event_Set;

Wait events on socket descriptor for specified Timeout

function Errno (Socket : Socket Type) return Integer is abstract;

Returns and clears error state in socket

function Is_Timeout

(Socket : Socket_Type;

E : Exception_Occurrence) return Boolean;
Returns True 1if the message associated with the Exception_Occurence for
a Socket_Error is a timeout.

function Is_Timeout (E : Exception_Occurrence) return Boolean;

As above but without Socket parameter

function Is_Peer Closed

(Socket : Socket_Type;

E : Exception_Occurrence) return Boolean;
Returns True 1if the message associated with the Exception_Occurence for
a Socket_Error is a "socket closed by peer".

type FD_Set (Size : Natural) is abstract tagged private;

Abstract type for waiting of network events on group of sockets FD

type FD_Set_Access is access all FD_Set'Class;

function To_FD_Set

(Socket : Socket_Type;
Events : Wait_Event_Set;
Size : Positive := 1) return FD_Set'Class;
Create appropriate socket FD set and put Socket fd there

procedure Add

(FD_Set : in out FD_Set_Access;
FD : FD_Type;

Event : Wait_Event_Set);

Add FD to the end of FD_Set

procedure Free (FD_Set : in out FD_Set_Access) with Inline;

Deallocate the socket FD set

procedure Add

(FD_Set : in out Net.FD_Set;

FD : FD_Type;

Event : Wait_FEvent_Set) is abstract;
Add FD to the end of FD_Set

(continues on next page)

184

Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

procedure Replace

(FD_Set : in out Net.FD_Set;

Index : Positive;

FD : FD_Type) is abstract
with Pre'Class => Index <= Length (FD_Set);
—— Replaces the socket FD in FD_Set

procedure Set_Mode
(FD_Set : in out Net.FD_Set;
Index : Positive;
Mode : Wait_Event_Set) is abstract
with Pre'Class => Index <= Length (FD_Set);
—-— Sets the kind of network events to wait for

procedure Set_Event
(FD_Set : in out Net.FD_Set;

Index : Positive;
Event : Wait_Event_Type;
Value : Boolean) is abstract

with Pre'Class => Index <= Length (FD_Set);

function Copy
(FD_Set : not null access Net.FD_Set;
Size : Natural) return FD_Set_Access is abstract;
—— Allocates and copy the given FD_Set with different size

procedure Remove

(FD_Set : in out Net.FD_Set; Index : Positive) is abstract

with Pre'Class => Index <= Length (FD_Set);
—-— Removes socket FD from Index position.
—-— Last socket FD in FD_Set is placed at position Index.

function Length (FD_Set : Net.FD_Set) return Natural is abstract;

—— Returns number of socket FD elements 1in FD_Set

procedure Wait

(FD_Set : in out Net.FD_Set;
Timeout : Duration;
Count : out Natural) is abstract

with Post'Class => Count <= Length (FD_Set);

—-— Wait for network events on the sockets FD set. Count value is

—-— number of socket FDs with non empty event set.

procedure Next

(FD_Set : Net.FD_Set; Index : in out Positive) is abstract

with
Pre'Class => Index <= Length (FD_Set) + 1,
Post'Class => Index <= Length (FD_Set) + 1;

the

—-— Looking for an active (for which an event has been detected by routine
-— Wait above) socket FD starting from Index and return Index of the found
-— active socket FD. Use functions Status to retreive the kind of network

-— events for this socket.

function Status

(FD_Set : Net.FD_Set;

Index : Positive) return Event_Set is abstract
with Pre'Class => Index <= Length (FD_Set);

(continues on next page)

13.24. AWS.Net

185

AWS Documentation, Release 2019

(continued from previous page)

—-— Returns events for the socket FD at position Index

procedure Free (Socket : in out Socket_ Type) is null;

—— Release memory associated with the socket object. This default version
—-— can be overriden to properly release the memory for the derived

-— implementation. The controlled Finalize routine is in charge of calling
-— Free. We could not have it in the private part because we could not make
-— AWS.Net.SSL.Free overriding this way.

function Localhost (IPv6 : Boolean) return String;
-— Returns "::1" if IPvé6 is true or "127.0.0.1" otherwise

private

—— Implementation removed

end AWS.Net;

186

Chapter 13. AWS API Reference

AWS Documentation, Release 2019

13.25 AWS.Net.Buffered

- Ada Web Server -
- Copyright (C) 2002-2015, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;

—-— All routines below are buffered both ways (input and output) for better
—-— performances.

package AWS.Net.Buffered is

procedure Put (Socket : Socket_Type'Class; Item : String);
—-— Write Item into Socket's buffer. Send the buffer to the socket if full

procedure Put_Line (Socket : Socket Type'Class; Item : String);
—-— Write Item & CRLF into Socket's buffer. Send the buffer to the socket
-— 1f full.

procedure New_Line (Socket : Socket Type'Class) with Inline;
—-— Write CRLF into Socket's buffer. Send the buffer to the socket if full

procedure Write
(Socket : Socket_Type'Class; Item : Stream_Element_Array);

—-— Write Item into Socket's buffer. Send the buffer to the socket if full

procedure Flush (Socket : Socket Type'Class);

(continues on next page)

13.25. AWS.Net.Buffered 187

AWS Documentation, Release 2019

(continued from previous page)

—-— Send the buffer to the socket

Data_Overflow : exception;

—-— Raised from Get_Line and Read _Until routines when size of receiving data
—-— exceeds the limit defined by Set_Input_Limit. It avoid unlimited dynamic
—-— memory allocation inside of Get_Line and Read _Until when client trying
—-— to attack the server by the very long lines in request. Moreover it

—-— avoid stack overflow on very long data returned from Get_Line and

-— Read Until.

procedure Set_Input_Limit (Limit : Positive) with Inline;
—-— Set the input size limit for Get_Line and Read Until routines

function Get_Input_Limit return Stream Element_Offset with Inline;
—-— Get the input size limit for Get_Line and Read Until routines

procedure Read
(Socket : Socket_Type'Class; Data : out Stream_Element_Array) with Inline;
—— Returns Data array read from the socket

function Read
(Socket : Socket_Type'Class;
Max : Stream_ Element Count := 4096) return Stream_Element_Array
with Inline;
—— Returns an array of bytes read from the socket

procedure Read
(Socket : Socket_Type'Class;
Data : out Stream_ Element_Array;
Last : out Stream_Element_Offset);
—— Read any available data from buffered socket.
-— Wait if no data available.
-— Same semantic with Net.Receive procedure.

function Get_Line (Socket : Socket Type'Class) return String;
-— Returns a line read from Socket. A line is a set of character
—-— terminated by CRLF.

function Get_Char (Socket : Socket_Type'Class) return Character with Inline;
—-— Returns a single character read from socket

function Peek_Char (Socket : Socket_Type'Class) return Character

with Inline;
—-— Returns next character that will be read from Socket. It does not
-— actually consume the character, this character will be returned by
—— the next read operation on the socket.

procedure Read_Buffer

(Socket : Socket_Type'Class;

Data : out Stream_ Element_Array;

Last : out Stream_Element_Offset);
—-— Returns data read from the internal socket's read buffer. No data are
—-— read from the socket. This can be useful when switching to non buffered

(continues on next page)

188 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

—-— mode.

function Read_Until

(Socket : Socket_Type'Class;
Delimiter : Stream_Element_Array;
Wait : Boolean := True) return Stream_Element_Array;

—-— Read data on the Socket until the delimiter (including the delimiter).
-— If Wait is False the routine looking for the delimiter only in the

—-— cache buffer, if delimiter not found in the cache buffer, empty array

-— 1is be returned.

—— If returned data 1is without delimiter at the end, it means that socket
—-— 1s closed from peer or socket error occured and rest of data returned.
—-— This routine could loose some data on timeout 1f does not meet delimiter
—— longer then Read buffer size.

function Read Until

(Socket : Socket_Type'Class;
Delimiter : String;
Wait : Boolean := True) return String;

—-— Same as above but returning a standard string

procedure Shutdown (Socket : Socket Type'Class);
—— Shutdown and close the socket. Release all memory and resources
—-— associated with it.

end AWS.Net.Buffered;

13.25. AWS.Net.Buffered 189

AWS Documentation, Release 2019

13.26 AWS.Net.Log

- Ada Web Server -
- Copyright (C) 2004-2013, AdaCore -
—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-

-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;

—-— This package handles the Net logging facility for AWS.

-— AWS calls the Write procedure which in turn calls the callback routine
-— provided by the user when starting the logging. This feature can help

—-— greatly to debug an application.

—— This package is thread safe. There will never be two simultaneous calls
—-— to the callback routine.

package AWS.Net.Log is

type Data_Direction is (Sent, Received);
—— The direction of the data, sent or received to/from the socket

type Event_Type is (Connect, Accept_ Socket, Shutdown);

type Write_Callback is access procedure

(Direction : Data_Direction;

Socket : Socket_Type'Class;

Data : Stream_Element_Array;
Last : Stream_Element_Offset);

—— The callback procedure which is called for each incoming/outgoing data

type Event_Callback is access procedure

(continues on next page)

190 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

(Action : Event_Type; Socket : Socket_Type'Class);
—— The callback procedure which is called for every socket creation,
—— connect and accept.

type Error_Callback is access procedure
(Socket : Socket_Type'Class; Message : String);
—— The callback procedure which is called for every socket error

procedure Start
(Write : Write_Callback;
Event : Event_Callback null;
Error : Error_Callback := null);
—-— Activate the logging

function Is_Active return Boolean with Inline;
—-— Returns True if Log 1is activated and False otherwise

function Is_Write_ Active return Boolean with Inline;
—-— Returns True 1if Write Log is activated and False otherwise

function Is_FEvent_Active return Boolean with Inline;
—-— Returns True 1if Event Log is activated and False otherwise

procedure Write

(Direction
Socket
Data
Last

Data_Direction;
Socket_Type'Class;
Stream_Element_Array;
Stream_Element_Offset);

-— Write sent/received data indirectly through the callback routine,

-— 1f activate
—-— call does n

procedure Event
—-— Call Event
-— called). Ot

procedure Error
—-— Call Error

-— called). Ot

procedure Stop;
-— Stop loggin

end AWS.Net.Log;

d (i.e. Start routine above has been called). Otherwise this
othing.

(Action : Event_Type; Socket : Socket_Type'Class);
callback if activated (i.e. Start routine above has been
herwise this call does nothing.

(Socket : Socket_Type'Class; Message : String);

callback if activated (i.e. Start routine above has been
herwise this call does nothing.

g activity

13.26. AWS.Net.Log

191

AWS Documentation, Release 2019

13.27 AWS.Net.Log.Callbacks

- Ada Web Server -
- Copyright (C) 2004-2012, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

—-— Some ready to use write procedures
package AWS.Net.Log.Callbacks is
procedure Initialize
(Filename : String;
Callback : Write_Callback);

—-— Initialize the logging, must be called before using the callbacks below

procedure Finalize;
-— Stop logging, close log file

procedure Text

(Direction : Data_Direction;

Socket : Socket_Type'Class;

Data : Stream_Element_Array;
Last : Stream_Element_Offset);

-— A text output, each chunk is output with an header and footer:
- Data sent/received to/from socket <FD> (<size>/<buffer size>)
—— <data>

- Total data sent: <nnn> received: <nnn>

procedure Binary
(Direction : Data_Direction;
Socket : Socket_Type'Class;
Data : Stream_Element_Array;

(continues on next page)

192 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

Last : Stream_Element_Offset);
-— A binary output, each chunk is output with an header and footer. The
—-— data itself is written using a format close to the Emacs hexl-mode:
—— Data sent/received to/from socket <FD> (<size>/<buffer size>)
—— HH HH HH HH HH HH HH HH HH HH HH HH az.rt.mpl..q
- Total data sent: <nnn> received: <nnn>

HH is the hex character number, 1f the character is not printable a dot
is written.

end AWS.Net.Log.Callbacks;

13.27. AWS.Net.Log.Callbacks 193

AWS Documentation, Release 2019

13.28 AWS.Net.SSL

- Ada Web Server -
- Copyright (C) 2002-2018, AdaCore -
—— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the --
-— Free Software Foundation; either version 3, or (at your option) any —--
—— later version. This library is distributed in the hope that it will be —-

—-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —--
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
—-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
—-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;

—-— This is the SSL based implementation of the Net package. The implementation
—— should depend only on AWS.Net.Std and the SSL library. It is important to
-— not call directly a socket binding here to ease porting.

with Ada.Calendar;

with System;

with AWS.Net.Std;
with SSL.Thin;

package AWS.Net.SSL is
Socket_Error : exception renames Net.Socket_Error;
type Socket_Type is new Net.Std.Socket_Type with private;

type Session_Type is private;
—-— To keep session data over plain socket reconnect

Null_Session : constant Session_Type;

Is_Supported : constant Boolean;
—-— True if SSL supported in the current runtime

(continues on next page)

194 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

type Debug_Output_Procedure is access procedure (Text : String);

overriding procedure Accept_Socket
(Socket : Net.Socket_Type'Class; New_Socket : in out Socket_Type);
—-— Accept a connection on a socket

overriding procedure Connect
(Socket : in out Socket_Type;

Host : String;

Port : Positive;

Wait : Boolean := True;

Family : Family_Type := Family_Unspec);

—-— Connect a socket on a given host/port. If Wait is True Connect will wait
—-— for the connection to be established for timeout seconds, specified by
—-— Set_Timeout routine. If Wait is False Connect will return immediately,
—-— not waiting for the connection to be establised and it does not make the
—— SSL handshake. It is possible to wait for the Connection completion by
—-— calling Wait routine with Output set to True in Events parameter.

overriding procedure Socket_Pair (S1, S2 : out Socket_Type);
—-— Create 2 sockets and connect them together

overriding procedure Shutdown
(Socket : Socket_Type; How : Shutmode_Type := Shut_Read_Write);
—— Shutdown the read, write or both side of the socket.
—-— If How is Both, close it. Does not raise Socket_Error if the socket is
—-— not connected or already shutdown.

overriding procedure Send
(Socket : Socket_Type;
Data : Stream_Element_Array;
Last : out Stream_Element_Offset);

overriding procedure Receive
(Socket : Socket_Type;
Data : out Stream_Element_Array;
Last : out Stream_Element_Offset)
with Inline;

overriding function Pending
(Socket : Socket_Type) return Stream Element_Count;
—-— Returns the number of bytes which are available inside socket

-— for immediate read.

(continues on next page)

13.28. AWS.Net.SSL

195

AWS Documentation, Release 2019

(continued from previous page)

type Method is
(TLS, TLS_Server, TLS_Client, —— Highest available TLS
TLSv1, TLSv1_Server, TLSvl_Client, -— TLS 1.0
TLSv1l_1, TLSv1l_1_Server, TLSvl_1_Client, -— TLS 1.1
TLSv1l_2, TLSvl_2_Server, TLSvl_2_Client); -- TLS 1.2

SSLv23 : constant Method := TLS

with Obsolescent => "use TLS instead";
SSLv23_Server : constant Method := TLS_Server

with Obsolescent => "use TLS_Server instead";
SSLv23_Client : constant Method := TLS_Client

with Obsolescent => "use TLS_Client instead";
SSLv3 : constant Method := TLS

with Obsolescent => "use TLS instead";
SSLv3_Server : constant Method := TLS_Server

with Obsolescent => "use TLS_Server instead";
SSLv3_Client : constant Method := TLS_Client

with Obsolescent => "use TLS_Client instead";

type Config is private;
Null_Config : constant Config;

procedure Initialize

(Config : in out SSL.Config;
Certificate_Filename : String;
Security_Mode : Method .= TLS;
Priorities : String =",
Ticket_Support : Boolean := False;
Key_Filename : String ="y
Exchange_Certificate : Boolean := False;
Certificate_Required : Boolean := False;
Trusted_CA_Filename : String =",
CRL_Filename : String =",
Session_Cache_Size : Natural := 16#4000#);

—— Initialize the SSL layer into Config. Certificate_Filename must point
-— to a valid certificate. Security mode can be used to change the

—-— security method used by AWS. Key_Filename must be specified if the key
—-— 1is not in the same file as the certificate. The Config object can be
—-— associated with all secure sockets sharing the same options. If

—— Exchange_Certificate is True the client will send its certificate to
—-— the server, if False only the server will send its certificate.

procedure Add_Host_Certificate

(Config : SSL.Config;
Host : String;
Certificate_Filename : String;
Key_Filename : String := "");
—-— Support for Server name indication (SNI). Client can ask for different

—-— host names on the same IP address. This routines provide a way to have
—-— different certificates for different server host names.

procedure Initialize_Default_Config

(Certificate_Filename : String;
Security_Mode : Method .= TLS;
Priorities : String =",
Ticket_Support : Boolean := False;

(continues on next page)

196 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

Key_Filename : String ="y
Exchange_Certificate : Boolean := False;
Certificate_Required : Boolean := False;
Trusted_CA_Filename : String =",
CRL_Filename : String c= """,
Session_Cache_Size : Natural := 16#40004#);

—-— As above but for the default SSL configuration which is will be used
-— for any socket not setting explicitly an SSL config object. Not that
— this routine can only be called once. Subsequent calls are no-op. To
—-— Dbe effective it must be called before any SSL socket is created.

procedure Release (Config : in out SSL.Config);
—-— Release memory associated with the Config object

procedure Set_Config
(Socket : in out Socket_Type; Config : SSL.Confiqg);
—-— Set the SSL configuration object for the secure socket

function Get_Config (Socket : Socket_Type) return SSL.Config with Inline;
—-— Get the SSL configuration object of the secure socket

function Secure_Client
(Socket : Net.Socket_Type'Class;
Config : SSL.Config := Null_Config;
Host : String := "") return Socket_Type;
—-— Make client side SSL connection from plain socket.
— SSL handshake does not performed. SSL handshake would be made
-— automatically on first Read/Write, or explicitly by the Do_Handshake
— <call. Do not free or close source socket after this call.
— Host parameter is hostname to connect and used to send over SSL
—-— connection to server if defined.

function Secure_Server
(Socket : Net.Socket_Type'Class;
Config : SSL.Config := Null_Config) return Socket_Type;
—-— Make server side SSL connection from plain socket.
—— SSL handshake does not performed. SSL handshake would be made
— automatically on first Read/Write, or explicitly by the Do_Handshake
—-— call. Do not free or close source socket after this call.

procedure Do_Handshake (Socket : in out Socket_Type);

-— Wait for a SSL/TLS handshake to take place. You need to call this

—-— routine if you have converted a standard socket to secure one and need
—-— to get the peer certificate.

function Version (Build_Info : Boolean := False) return String;
—-— Returns version information

procedure Clear_Session_Cache (Config : SSL.Config := Null_Config);
- Remove all sessions from SSL session cache from the SSL context.
—— Null_Config mean default context.

procedure Set_Session_Cache_Size

(Size : Natural; Config : SSL.Config := Null_Config);
—-— Set session cache size in the SSL context.
— Null_Config mean default context.

(continues on next page)

13.28. AWS.Net.SSL 197

AWS Documentation, Release 2019

(continued from previous page)

function Session_Cache_Number

(Config : SSL.Config := Null_Config) return Natural;
—-— Returns number of sessions currently in the cache.
—— Null_Config mean default context.

overriding function Cipher_Description (Socket : Socket_Type) return String;

procedure Ciphers (Cipher : not null access procedure (Name : String));
—-— Calls callback Cipher for all available ciphers

procedure Generate_DH;

—-— Regenerates Diffie-Hellman parameters.

—— The call could take a quite long time.

—-— Diffie-Hellman parameters should be discarded and regenerated once a
-— week or once a month. Depends on the security requirements.

--— (gnutls/src/serv.c).

procedure Generate_RSA;

—— Regenerates RSA parameters.

—— The call could take some time.

—— RSA parameters should be discarded and regenerated once a day, once
-— every 500 transactions etc. Depends on the security requirements

-— (gnutls/src/serv.c).

procedure Abort_DH_Generation with Inline;

—-— DH generation could be for a few minutes. If it is really necessary to
-— terminate process faster, this call should be used.

—-— GNUTLS generates DH parameters much faster than OpenSSL, at least in
—-— Linux x86_64 and does not support DH generation abort at least in

-— wversion 3.2.12.

procedure Start_Parameters_Generation
(DH : Boolean; Logging : access procedure (Text : String) := null)
with Inline;

—-— Start SSL parameters regeneration in background.

-— DH is False mean only RSA parameters generated.

—-— DH is True mean RSA and DH both parameters generated.

function Generated_Time_DH return Ada.Calendar.Time with Inline;
—-— Returns date and time when the DH parameters was generated last time.
—-— Need to decide when new regeneration would start.

function Generated_Time_RSA return Ada.Calendar.Time with Inline;
—-— Returns date and time when the RSA parameters was generated last time.
—-— Need to decide when new regeneration would start.

procedure Set_Debug
(Level : Natural; Output : Debug_Output_Procedure := null);
-— Set debug information printed level and output callback.
—— Null output callback mean output to Ada.Text_IO.Current_Error.

function Session_Id_Image (Session : Session_Type) return String;
—-— Returns base64 encoded session id. Could be used to recognize resumed
—-— session when it has the same Id.

function Session_Id_Image (Socket : Socket_Type) return String;
—-— Returns base64 encoded session id of the socket

(continues on next page)

198 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

function Session_Data (Socket : Socket_Type) return Session_Type;
—-— For the client side SSL socket returns session data to be used to
—-— resume session after socket disconnected.

procedure Free (Session : in out Session_Type);
—-— Free session data

procedure Set_Session_Data

(Socket : in out Socket_Type; Data : Session_Type);
—-— For the client side SSL socket try to resume session from data taken
-— from previosly connected socket by Session_Data routine.

function Session_Reused (Socket : Socket_Type) return Boolean;
—-— Returns True in case session was successfully reused after
—— Set_Session_Data and handshake.

type Private_Key 1is private;
Null_Private_Key : constant Private_Key;
type Hash_Method is (MD5, SHAl, SHA224, SHA256, SHA384, SHAS512);
function Load (Filename : String) return Private_Key;
procedure Free (Key : in out Private_Key) with Inline;
function Signature
(Data : String;
Key : Private_Key;
Hash : Hash_Method) return Stream_Element_Array with Inline;
function Signature
(Data : Stream_Element_Array;
Key : Private_Key;
Hash : Hash_Method) return Stream_Element_Array with Inline;
private

—-— implementation removed
end AWS.Net.SSL;

13.28. AWS.Net.SSL

199

AWS Documentation, Release 2019

13.29 AWS.Net.SSL.Certificate

- Ada Web Server -
- Copyright (C) 2003-2015, AdaCore -
—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-

-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;
with Ada.Calendar;
private with Ada.Containers.Indefinite_Holders;
private with Ada.Strings.Unbounded;
private with AWS.Utils;
package AWS.Net.SSL.Certificate is
type Object is private;

Undefined : constant Object;

function Get (Socket : Socket_Type) return Object;
—— Returns the certificate used by the SSL

function Common_Name (Certificate : Object) return String with Inline;
—— Returns the certificate's common name

function Subject (Certificate : Object) return String with Inline;
—— Returns the certificate's subject

function Issuer (Certificate : Object) return String with Inline;
—— Returns the certificate's issuer

(continues on next page)

200 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

function Serial_ Number (Certificate : Object) return String with Inline;
—-— Returns the certificate's serial number

function DER (Certificate : Object) return Stream_Element_Array with Inline;
—-— Returns all certificate's data in DER format

overriding function "=" (Left, Right : Object) return Boolean with Inline;
-— Compare 2 certificates

function Load (Filename : String) return Object;
—-— Load certificate from file in PEM format

function Activation_Time (Certificate : Object) return Calendar.Time
with Inline;
—-— Certificate validity starting date

function Expiration_Time (Certificate : Object) return Calendar.Time
with Inline;
—-— Certificate validity ending date

function Verified (Certificate : Object) return Boolean with Inline;

—-— Returns True 1if the certificate has already been verified, this is

—-— mostly interresting when used from the Verify Callback below. If this
—-— routine returns True it means that the certificate has already been
—-— properly checked. If checked the certificate can be trusted and the
—-— Verify Callback should return True also. If it is False it 1is up to
—— the application to check the certificate into the Verify Callback and
-— returns the appropriate status.

function Status (Certificate : Object) return Long_ Integer with Inline;
—-— Returns the status for the certificate. This is to be used inside the
—-— verify callback to know why the certificate has been rejected.

function Status_Message (Certificate : Object) return String;
—-— Returns the error message for the current certificate status (as
—-— returned by Status above).

—-— Client verification support

type Verify Callback is

access function (Cert : SSL.Certificate.Object) return Boolean;
—-— C(Client certificate verification callback, must return True 1if Cert can
—-— be accepted or False otherwise. Such callback should generally return
-— the value returned by Verified above.

procedure Set_Verify_Callback
(Config : in out SSL.Config; Callback : Verify_Callback);
—-— Register the callback to use to verify client's certificates

type Password Callback is

access function (Certificate Filename : String) return String;
—-— Callback to get password for signed server's keys. An empty string
—-— must be returned 1if the password is unknown or the certificate isn't
-— signed.

(continues on next page)

13.29. AWS.Net.SSL.Certificate 201

AWS Documentation, Release 2019

(continued from previous page)

procedure Set_Password_Callback (Callback
—-— Set the password callback

function Get_Password (Certificate Filename

Request a password for the giver certificate.
implementation just returns an empty string.

private

—-— Iimplementation removed
end AWS.Net.SSL.Certificate;

Password_Callback);

String) return String;

The default

202

Chapter 13. AWS API Reference

AWS Documentation, Release 2019

13.30 AWS.Net.WebSocket

- Ada Web Server -
- Copyright (C) 2012-2019, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;
—-— This implements the WebSocket protocol as defined in RFC-6455

with Ada.Strings.Unbounded;
with AWS.Status;

private with Ada.Calendar;

private with Ada.Containers.Doubly_ Linked_Lists;
private with AWS.Client;

private with Interfaces;

package AWS.Net.WebSocket is

use Ada.Strings.Unbounded;

type Object is new Net.Socket_Type with private;
type Object_Class is access all Object'Class;

No_Object : constant Object'Class;
type Kind_ Type
is (Unknown, Connection_Open, Text, Binary, Ping, Pong, Connection_Close);

—-— Data Frame Kind

type Error_Type is

(continues on next page)

13.30. AWS.Net.WebSocket 203

AWS Documentation, Release 2019

(continued from previous page)

(Normal_Closure,

Going_Away,

Protocol_Error,
Unsupported_Data,
No_Status_Received,
Abnormal_Closure,
Invalid_Frame_Payload_Data,
Policy_Violation,
Message_Too_Big,
Mandatory_Extension,
Internal_Server_FError,
TLS_Handshake,
Cannot_Resolve_Error,
User_01, —— User's defined error code
User_02,

User_03,

User_04,

User_05);

—— The following three methods are the one to override or redefine. In fact
—-— the default Send implementation should be ok for most usages.

function Create
(Socket : Socket_Access;
Request : AWS.Status.Data) return Object'Class
with Pre => Socket /= null;
—-— C(Create a new instance of the WebSocket, this is used by AWS internal
-— server to create a default WebSocket i1f no other constructor are
—-— provided. It is also needed when deriving from WebSocket.

—-— This function must be registered via AWS.Net.WebSocket.Registry.Register

procedure On_Message (Socket : in out Object; Message : String) is null;

—-— Default implementation does nothing, it needs to be overriden by the

—-— end-user. This 1is the callback that will get activated for every server
—-— incoming data. It is also important to keep in mind that the thread

—— handling this WebSocket won't be released until the procedure returns.
—-— So the code inside this routine should be small and most Importantly not
-— wailit for an event to occur otherwise other requests won't be served.

procedure On_Message (Socket : in out Object; Message : Unbounded String);
—-— Same a above but takes an Unbounded_String. This 1is supposed to be

—-— overriden when handling large messages otherwise a stack-overflow could
—-— be raised. The default implementation of this procedure to to call the
—-— On_Message above with a string.

—-— So either this version is overriden to handle the incoming messages oOr
—-— the one above i1f the messages are known to be small.

procedure On_Open (Socket : in out Object; Message : String) is null;
-— As above but activated when a WebSocket 1is opened

procedure On_Close (Socket : in out Object; Message : String) is null;
—-— As above but activated when a WebSocket is closed

(continues on next page)

204 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

procedure On_Error (Socket : in out Object; Message : String) is null;
-— As above but activated when a WebSocket error is detected

procedure Send

(Socket : in out Object;
Message : String;
Is_Binary : Boolean := False);

—— This default implementation just send a message to the client. The
—-— message 1s sent in a single chunk (not fragmented).

procedure Send

(Socket : in out Object;
Message : Unbounded_String;
Is_Binary : Boolean := False);

—-— Same as above but can be used for large messages. The message 1is
—-— possibly sent fragmented.

procedure Send

(Socket : in out Object;
Message : Stream_Element_Array;
Is_Binary : Boolean := True);

-— As above but default is a binary message

procedure Close

(Socket : in out Object;
Message : String;
Error : Error_Type := Normal_Closure);

—-— Send a close frame to the WebSocket

—-— (Client side

procedure Connect
(Socket : in out Object'Class;
URI : String);
—-— Connect to a remote server using websockets.
—-— Socket can then be used to Send messages to the server. It will
—-— also receive data from the server, via the On_Message, when you call
-— Poll

function Poll
(Socket : in out Object'Class;
Timeout : Duration) return Boolean;
-— Wait for up to Timeout seconds for some message.

—-— In the websockets protocol, a message can be split (by the server)
—-— onto several frames, so that for instance the server doesn't have to
—-— store the whole message in 1its memory.

—— The size of those frames, however, 1is not limited, and they will

—— therefore possibly be split into several chunks by the transport

-— layer.

—— These function waits until it either receives a close or an error, oOr
—-— the beginning of a message frame. In the latter case, the function

—-— will then block until it has receives all chunks of that frame, which
-— might take longer than Timeout.

(continues on next page)

13.30. AWS.Net.WebSocket 205

AWS Documentation, Release 2019

(continued from previous page)

—— The function will return early if it doesn't receive the beginning
—-— of a frame within Timeout seconds.

—— When a full frame has been received, it will be sent to the

—-— Socket.On_Message primitive operation. Remember this might not be the
—-— whole message however, and you should check Socket.End Of_ Message to
—-— check.

—-— Return True if a message was processed, False 1if nothing happened during
-— Timeout.

-— Simple accessors to WebSocket state

function Kind (Socket : Object) return Kind_Type;
—-— Returns the message kind of the current read data

function Protocol_Version (Socket : Object) return Natural;
—— Returns the version of the protocol for this WebSocket

function URI (Socket : Object) return String;
—— Returns the URI for the WebSocket

function Origin (Socket : Object) return String;
—-— Returns the Origin of the WebSocket. That is the value of the Origin
—-— header of the client which has opened the socket.

function Request (Socket : Object) return AWS.Status.Data;
—-— Returns Request of the WebSocket. That is the HITP-request
—-— of the client which has opened the socket.

function Error (Socket : Object) return Error_Type;
—-— Returns the current error type

function End_Of_Message (Socket : Object) return Boolean;
—-— Returns True i1f we have read a whole message

—-— Socket's methods that must be overriden

overriding procedure Shutdown

(Socket : Object;

How : Shutmode_Type := Shut_Read_Write);
—-— Shutdown the socket

overriding function Get_FD (Socket : Object) return FD_Type;
—— Returns the file descriptor associated with the socket

overriding function Peer_Addr (Socket : Object) return String;
-— Returns the peer name/address

overriding function Peer_Port (Socket : Object) return Positive;
—-— Returns the port of the peer socket

(continues on next page)

206 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

overriding function Get_Addr (Socket : Object) return String;
—-— Returns the name/address of the socket

overriding function Get_Port (Socket : Object) return Positive;
—— Returns the port of the socket

overriding function Errno (Socket : Object) return Integer;
—-— Returns and clears error state in socket

overriding function Get_Send_Buffer_Size (Socket : Object) return Natural;
—-— Returns the internal socket send buffer size.
—— Do not confuse with buffers for the AWS.Net.Buffered operations.

overriding function Get_Receive_Buffer_ Size
(Socket : Object) return Natural;
—-— Returns the internal socket receive buffer size.
—-— Do not confuse with buffers for the AWS.Net.Buffered operations.

—-— Socket reference

type UID is range 0 .. 2x%31;

No_UID : constant UID;
-— Not an UID, this is a WebSocket not yet initialized

function Get_UID (Socket : Object) return UID;
—— Returns a unique id for the given socket. The uniqueness for this socket
—-— 1s guaranteed during the lifetime of the application.

private
—-— Implementation removed
end AWS.Net.WebSocket;

13.30. AWS.Net.WebSocket 207

AWS Documentation, Release 2019

13.31 AWS.Net.WebSocket.Registry

- Ada Web Server -
- Copyright (C) 2012-2019, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;

—— This package is used to build and register the active WebSockets. Some
—-— services to send or broadcast messages are also provided.

with AWS.Status;
private with GNAT.Regexp;
package AWS.Net.WebSocket.Registry is
type Factory is not null access function
(Socket : Socket_Access;
Request : AWS.Status.Data) return Object'Class;
—-— Creating and Registering WebSockets
function Constructor (URI : String) return Registry.Factory
with Pre => URI'Length > 0;
—-— Get the WebObject's constructor for a specific URI
procedure Register (URI : String; Factory : Registry.Factory)
with Pre => URI'Length > 0;

—-— Register a WebObject's constructor for a specific URI

procedure Register_Pattern

(continues on next page)

208 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

(Pattern String;
Factory Registry.Factory)
with Pre => Pattern'Length > 0;

Sending messages
type Recipient is private;

No_Recipient constant Recipient;

function Create (URI String; return
with Pre => URI'Length > 0,
Post => Create'Result /= No_Recipient;
A recipient with only an URI is called a broadcast as it
registered WebSocket for this specific URI. If Origin 1is

it designates a single client.

Origin String "

function Create (Id UID) return Recipient
with Pre => Id /= No_UID,
Post => Create'Result /= No_Recipient;
A recipient for a specific WebSocket

type Action_Kind is (None, Close);
procedure Send
(To Recipient;
Message String;
Except_Peer String := "";
Timeout Duration := Forever;
Asynchronous Boolean := False;
Error access procedure (Socket Object'Class;
Action out Action_Kind)

with Pre => To /= No_Recipient
and then (if Asynchronous then Error null) ;

Note that both URI and Origin can be regular expressions.

Register a WebObject's constructor for a specific URI and pattern

Recipient

designate all
specified then

null)

Send a message to the WebSocket designated by Origin and URI. Do not
send this message to the peer whose address is given by Except_Peer.
Except_Peer must be the address as reported by AWS.Net.Peer_ Addr. It is
often needed to send a message to all registered sockets except the one
which has sent the message triggering a response.

procedure Send

(To Recipient;
Message Unbounded_String;
Except_Peer String = "";
Timeout Duration := Forever;
Asynchronous Boolean := False;
Error access procedure (Socket Object'Class;
Action out Action_Kind) = null)

with Pre => To /= No_Recipient
and then (if Asynchronous then Error
As above but with an Unbounded String

null);

procedure Send

(To Recipient;

(continues on next page)

13.31. AWS.Net.WebSocket.Registry

209

AWS Documentation, Release 2019

(continued from previous page)

Message String;

Request AWS.Status.Data;

Timeout Duration := Forever;

Asynchronous Boolean := False;

Error access procedure (Socket Object'Class;
Action out Action_Kind)

with Pre => To /= No_Recipient
and then (if Asynchronous then Error = null);

:= null)

—-— As above but filter out the client having set the given request

procedure Send
(To : Recipient;

Message Unbounded_String;

Request AWS.Status.Data;

Timeout Duration := Forever;

Asynchronous Boolean := False;

Error access procedure (Socket Object'Class;
Action out Action_Kind)

with Pre => To /= No_Recipient
and then (if Asynchronous then Error = null);
—-— As above but with an Unbounded_String

procedure Close

(To : Recipient;

Message String;

Except_Peer String := "";

Timeout Duration := Forever;

Error Error_Type := Normal_Closure)

with Pre => To /= No_Recipient;
—-— C(Close connections

—-— Targetting a single WebSocket,
—— Net.WebSocket ones but are thread-safe. That 1is,

-— with other WebSocket activity to and from the clients.

procedure Send

(Socket in out Object'Class;
Message String;

Is_Binary Boolean := False;
Timeout Duration := Forever;
Asynchronous Boolean := False);

—— This default implementation just send a message to the client.

-— message 1is sent in a single chunk (not fragmented).

procedure Send

(Socket in out Object'Class;
Message Unbounded_String;
Is_Binary Boolean := False;
Timeout Duration := Forever;
Asynchronous Boolean := False);

—-— Same as above but can be used for large messages.
-— possibly sent fragmented.

procedure Send
(Socket
Message

in out Object'Class;
Stream_Element_Array;

Is_Binary Boolean := True;

:= null)

these routines are equivalent to the
they can be mixed

The

The message is

(continues on next page)

210

Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

Timeout : Duration := Forever;
Asynchronous : Boolean := False);
—-— As above but for a Stream Element_Array

procedure Close

(Socket : in out Object'Class;

Message : String;

Timeout : Duration := Forever;

Error : Error_Type := Normal_Closure);

function Is_Registered (Id : UID) return Boolean;
—-— Returns True 1if the WebSocket Id is registered and False otherwise

private
—-— Iimplementation removed
end AWS.Net.WebSocket.Registry;

13.31. AWS.Net.WebSocket.Registry 211

AWS Documentation, Release 2019

13.32 AWS.Net.WebSocket.Registry.Control

- Ada Web Server -
- Copyright (C) 2012, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—— it under terms of the GNU General Public License as published by the —-—
-— Free Software Foundation; either version 3, or (at your option) any --
—-— later version. This library 1is distributed in the hope that it will be -—-
-— useful, but WITHOUT ANY WARRANTY,; without even the implied warranty of —-—
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
—-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

-— This package 1is used to start/stop the WebSockets services
package AWS.Net.WebSocket.Registry.Control is

procedure Start;
—-— Start the WebSockets servers

procedure Shutdown;
—-— Shutdown the WebSockets servers

end AWS.Net.WebSocket.Registry.Control;

212 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

13.33 AWS.Parameters

- Ada Web Server -
- Copyright (C) 2000-2017, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with AWS.Containers.Tables;
with AWS.Resources.Streams.Memory;

package AWS.Parameters is
type List is new AWS.Containers.Tables.Table_Type with private;
subtype VString Array is AWS.Containers.Tables.VString_ Array;

function URI_Format
(Parameter List : List; Limit : Positive := Positive'Last) return String;
—— Returns the list of parameters in the URI format. This can be added
—-— after the resource to form the complete URI. The format 1is:
—-— "?namel=valuelé&nameZ=value2..."
—-— If there is no parameter in the list, the empty string is returned.
—-— Limit is maximum size of the output line, parameters name=value will be
—-— returned unbroken in case of limit applied.

procedure Add
(Parameter_List : in out List; Name, Value : String; Decode : Boolean);

procedure Add
(Parameter_List : in out List;

(continues on next page)

13.33. AWS.Parameters 213

AWS Documentation, Release 2019

(continued from previous page)

Name, Value : Unbounded_String;
Decode : Boolean);
—— URL decode and add Name=Value pair into parameters

procedure Add (Parameter List : in out List; Parameters : String);
—-— Set parameters for the current request. The Parameters string has the
—-— form "namel=valuel&namel=valuelZ...". The paramaters are added to the

—-— 1list. The parameters can start with a '?' (standard Web character
—-— separator) which is just ignored.

procedure Add

(Parameter_List : in out List;

Parameters : in out Resources.Streams.Memory.Stream_ Type'Class);
-— Same as above, but use different parameters source. Used to reduce
—-— stack usage on big POST requests. This is the routine used by AWS for
—-— parsing the POST parameters. This routine also control the maximum
—-— number of parameter parsed as set by the corresponding configuration
-— option.

procedure Update
(Parameter_List : in out List; Name, Value : String; Decode : Boolean);

procedure Update

(Parameter_List : in out List;
Name, Value : Unbounded_String;
Decode : Boolean);

Too_Long_Parameter : exception;
—-— Raised if the Add routine detects a too long parameter line when reading
—-— parameters from Memory_Stream.

Too_Many_Parameters : exception;
—-— Raised when the maximum number of parameters has been reached

—-— See AWS.Containers.Tables for inherited routines
private

—— Implementation removed
end AWS.Parameters;

214 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

13.34 AWS.POP

- Ada Web Server -
- Copyright (C) 2003-2012, AdaCore -
—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-

-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

with Ada.Finalization;
with Ada.Strings.Unbounded;

with AWS.Headers;

with AWS.Net.Std;

with AWS.Resources.Streams;
with AWS.Utils;

package AWS.POP is

use Ada.Strings.Unbounded;

POP_Error : exception;
—-— Raised by all routines when an error has been detected

Default POP_Port : constant := 110;
type Mailbox is private;
type Authenticate_Mode is (Clear Text, APOP);

function Initialize

(continues on next page)

13.34. AWS.POP 215

AWS Documentation, Release 2019

(continued from previous page)

(Server_Name : String;

User : String;

Password : String;

Authenticate : Authenticate_Mode := Clear_Text;

Port : Positive = Default_POP_Port) return Mailbox;

—— Connect on the given Port to Server_ Name and open User's Mailbox. This
-— mailbox object will be used to retrieve messages.

procedure Close (Mailbox : POP.Mailbox);
—— Close mailbox

function User_Name (Mailbox : POP.Mailbox) return String;
—-— Returns User's name for this mailbox

function Message_Count (Mailbox : POP.Mailbox) return Natural;
—-— Returns the number of messages in the user's mailbox

function Size (Mailbox : POP.Mailbox) return Natural;
—-— Returns the total size in bytes of the user's mailbox

type Message is tagged private;

function Get

(Mailbox : POP.Mailbox;

N : Positive;

Remove : Boolean 1= False) return Message;
—-— Retrieve Nth message from the mailbox, let the message on the mailbox
-— 1f Remove 1is False.

procedure Delete
(Mailbox : POP.Mailbox;
N : Positive);
—-— Detele message number N from the mailbox

function Get_Header

(Mailbox : POP.Mailbox;

N : Positive) return Message;
—-— Retrieve headers for the Nth message from the mailbox, let the message
—-— on the mailbox. This is useful to build a quick summary of the mailbox.

generic
with procedure Action
(Message : POP.Message;
Index : Positive;
Quit : in out Boolean);
procedure For_Every_Message
(Mailbox : POP.Mailbox;
Remove : Boolean := False);
—— Calls Action for each message read on the mailbox, delete the message
—-— from the mailbox if Remove 1is True. Set Quit to True to stop the
-— iterator. Index is the mailbox's message index.

generic

(continues on next page)

216 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

with procedure Action

(Message : POP.Message;

Index : Positive;

Quit : in out Boolean);
procedure For_Every_Message_Header (Mailbox : POP.Mailbox);
—— Calls Action for each message read on the mailbox. Only the headers are
-— read from the mailbox. Set Quit to True to stop the iterator. Index 1is
—-— the mailbox's message index.

function Size (Message : POP.Message) return Natural;
—-— Returns the message size in bytes

function Content (Message : POP.Message) return Unbounded_String;
—-— Returns message's content as an Unbounded _String. Each line are
—-— separated by CR+LF characters.

function From (Message : POP.Message) return String;
—— Returns From header value

function To (Message : POP.Message; N : Natural := 0) return String;
—— Returns the To header value. If N = 0 returns all recipients separated
-— by a coma otherwise it returns the Nth To recipient.

function To_Count (Message : POP.Message) return Natural;
—-— Returns the number of To recipient for Message. returns 0 if there is
—-— no To for this message.

function CC (Message : POP.Message; N : Natural := 0) return String;
—-— Retruns the CC header value. If N = 0 returns all recipients separated
-— by a coma otherwise it returns the Nth CC recipient.

function CC_Count (Message : POP.Message) return Natural;
—-— Returns the number of CC recipient for Message. Returns 0 if there is
-— no CC for this message.

function Subject (Message : POP.Message) return String;
—-— Returns Subject header value

function Date (Message : POP.Message) return String;
—-— Returns Date header value

function Header
(Message : POP.Message;
Header : String) return String;

—— Returns header value for header named Header, returns the empty string
-— 1f such header does not exist.

type Attachment is private;

function Attachment_Count (Message : POP.Message) return Natural;
—-— Returns the number of Attachments into Message

function Get

(continues on next page)

13.34. AWS.POP 217

AWS Documentation, Release 2019

(continued from previous page)

(Message : POP.Message'Class;

Index : Positive) return Attachment;
—-— Returns the Nth Attachment for Message, Raises Constraint_Error if
—-— there is not such attachment.

generic
with procedure Action

(Attachment : POP.Attachment;

Index : Positive;

Quit : in out Boolean);
procedure For_Every_Attachment (Message : POP.Message);
—-— Calls action for every Attachment in Message. Stop iterator if Quit 1is
-— set to True, Quit is set to False by default.

function Content

(Attachment : POP.Attachment)

return AWS.Resources.Streams.Stream_Access;
—— Returns Attachment's content as a memory stream. Note that the stream
—— has already been decoded. Most attachments are MIME Base64 encoded.

function Content (Attachment : POP.Attachment) return Unbounded_String;

—-— Returns Attachment's content as an Unbounded_String. This routine must
—-— only be used for non file attachments. Raises Constraint_FError 1if

—-— called for a file attachment.

function Filename (Attachment : POP.Attachment) return String;
—-— Returns the Attachment filename or the empty string if it is not a file
—-— but an embedded message.

function Is_File (Attachment : POP.Attachment) return Boolean;
—-— Returns True 1if Attachment is a file

procedure Write (Attachment : POP.Attachment; Directory : String);
-— Writes Attachment's file content into Directory. This must only be used
—-— for a file attachment.

private
—— Implementation removed
end AWS.POP;

218 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

13.35 AWS.Resources

- Ada Web Server -
- Copyright (C) 2002-2014, AdaCore -
—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-

-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

with Ada.Calendar;
with Ada.Streams;
with AWS.Utils;
private with Ada.Unchecked Deallocation;
package AWS.Resources is
use Ada.Streams;
Resource_Error : exception;

type File Type is limited private;

type File_Instance is (None, Plain, GZip, Both);

- None : No instance of this file present.

—-— Plain : A non-compressed version of this file exists.

-— GZip : A gzip encoded version of this file exists.

—-— Both : Both versions of this file exists.

function "or" (Il, I2 : File_ TInstance) return File_Instance;

—-— Returns the union of Il and IZ2
subtype Content_Length_Type is Stream_ Element_Offset;

Undefined Length : constant Content_Length_Type;

(continues on next page)

13.35. AWS.Resources 219

AWS Documentation, Release 2019

(continued from previous page)

—— Undefined length could be used when we do not know the message sStream
—-— length at the start of transfer. The end of message could be determined
-— by the chunked transfer-encoding in the HTTP/1.1, or by the closing

-— connection in the HTTP/1.0.

procedure Open
(File : out File_Type;
Name : String;
Form : String = """y
—-— Open file in mode In File. Only reading from the file is supported.
—-— This procedure open the in-memory (embedded) file if present, otherwise
—-— the file on disk 1is opened. Note that if Name file is not found, it
—-— checks for Name & ".gz" and unzipped the file content in this case.

procedure Open
(File : out File_Type;

Name : String;
Form : String ="
GZip : in out Boolean);

—— Open file in mode In _File. Only reading from the file is supported.

—— This procedure open the in-memory (embedded) file if present, otherwise
—-— the file on disk is opened. If GZip parameter is False this call is

-— equivalent to the Open routine above. If GZip is True this routine will
—-— first check for the compressed version of the resource (Name & ".gz"),

-— 1f found GZip output value will remain True. If GZip value is True and
—-— the compressed version of the resource does not exist it looks for

—-— non-compressed version and set GZip value to False.

procedure Reset (Resource : in out File Type);
—-— Reset the file, reading will restart at the beginning

procedure Set_Index

(Resource : in out File_Type;

To : Stream_Element_Offset);
—-— Set the position in the stream, next Read will start at the position
-— whose index is To. If To is outside the content the index 1is set to
—— Last + 1 to ensure that next End Of File will return True.

procedure Close (Resource : in out File Type);
-— C(Close the file

procedure Read

(Resource : in out File_Type;
Buffer : out Stream_ Element_Array;
Last : out Stream_Element_Offset);

—-— Returns a set of bytes from the file

procedure Get_Line

(Resource : in out File_Type;
Buffer : out String;
Last : out Natural);

—-— Returns a line from the file. A line is a set of character terminated
-— by ASCII.LF (UNIX style EOL) or ASCII.CR+ASCII.LF (DOS style EOL).

function End_Of_File (Resource : File Type) return Boolean;
—-— Returns true 1if there is no more data to read

(continues on next page)

220 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

function LF_Terminated (Resource : File_ Type) return Boolean;
- Returns True if last line returned by Get_Line was terminated with a LF
- or CR+LF on DOS based systems.

function Size (Resource : File Type) return Content_Length_Type;
— Returns the size (in bytes) of the resource. If the size of the
-— resource 1is not defined, the routine Size returns Undefined_Length

- value.

function Exist (Name : String) return File_Instance;

- Return GzZip if only file Name & ".gz" exists.

— Return Plain if only file Name exists.

—-— Return Both if both file Name and Name & ".gz" exists.

- Return None if files neither Name nor Name & ".gz" exist.

function Is_Regular_File (Name : String) return Boolean;
- Returns True if Filename is a regular file and is readable. Checks
- first for in memory file then for disk file.

function File_Size (Name : String) return Utils.File_Size_Type;

— Returns Filename's size in bytes. Checks first for in memory file
—-— then for disk file.

function File_Timestamp (Name : String) return Ada.Calendar.Time;
—-— Get the time for last modification to a file in UTC/GMT. Checks first
—-— for in memory file then for disk file.
private

—— Implementation removed
end AWS.Resources;

13.35. AWS.Resources 221

AWS Documentation, Release 2019

13.36 AWS.Resources.Embedded

- Ada Web Server -
- Copyright (C) 2002-2013, AdaCore -
—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-

-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;

with AWS.Resources.Streams.Memory;

package AWS.Resources.Embedded is
use Ada;
Resource_FError : exception renames Resources.Resource_Error;
subtype Buffer Access is Streams.Memory.Buffer_ Access;

procedure Open
(File : out File_Type;

Name : String;
Form : String =",
GZip : in out Boolean);

—-— Open resource from registered data

procedure Create
(File : out File_Type;
Buffer : Buffer_ Access);
—-— Create the resource directly from memory data

function Exist (Name : String) return File_Instance;
—-— Return GZip if only file Name & ".gz" exists.

(continues on next page)

222 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

—-— Return Plain if only file Name exists.

—-— Return Both if both file Name and Name & ".gz" exists.

—— Return None if files neither Name nor Name & ".gz" exist.

function Is_Regular_File (Name : String) return Boolean with Inline;
—-— Returns True 1if file named Name has been registered (i.e. it 1is an
-— in-memory file).

function File_Size (Name : String) return Utils.File_Size_Type;

function File_Timestamp (Name : String) return Ada.Calendar.Time;

procedure Register

(Name : String;
Content : Buffer_Access;
File_Time : Calendar.Time);

—-— Register a new file named Name into the embedded resources. The file
—-— content 1is pointed to by Content, the File Time must be the last

-— modification time stamp for the file. If Name ends with ".gz" the

—-— embedded resource registered as compressed. If a file is already

—-— registered for this name, Content replace the previous one.

end AWS.Resources.Embedded;

13.36. AWS.Resources.Embedded

223

AWS Documentation, Release 2019

13.37 AWS.Resources.Files

- Ada Web Server -
- Copyright (C) 2002-2012, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

with AWS.Utils;
package AWS.Resources.Files is
Resource_FError : exception renames Resources.Resource_Error;

procedure Open
(File : out File_Type;

Name : String;
Form : String =",
GZip : in out Boolean);

procedure Open
(File : out File_Type;

Name : String;
Form : String = "");
function Exist (Name : String) return File_Instance;

—-— Return GZip if only file Name & ".gz" exists.
—-— Return Plain if only file Name exists.
—-— Return Both if both file Name and Name & ".gz" exists.

—— Return None if files neither Name nor Name & ".gz" exist.
function Is_Regular_File (Name : String) return Boolean;
function File_Size (Name : String) return Utils.File_Size_Type;

(continues on next page)

224 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

function File_Timestamp (Name : String) return Ada.Calendar.Time;

end AWS.Resources.Files;

13.37. AWS.Resources.Files 225

AWS Documentation, Release 2019

13.38 AWS.Resources.Streams

- Ada Web Server -
- Copyright (C) 2002-2017, AdaCore -
—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-

-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;
package AWS.Resources.Streams is
type Stream Type is abstract tagged limited private;
type Stream Access is access all Stream _Type'Class;
function End_Of_File (Resource : Stream_Type) return Boolean is abstract;

procedure Read

(Resource : in out Stream_ Type;

Buffer : out Stream_Element_Array;

Last : out Stream Element_Offset) is abstract;
procedure Reset (Resource : in out Stream_ Type) is abstract;

procedure Set_Index

(Resource : in out Stream_Type;

To : Stream_Element_Offset) is abstract;
—-— Set the position in the stream, next Read will start at the position
—-— whose index is To. If To is outside the content the index is set to
—— Last + 1 to ensure that next End Of File will return True.

procedure Close (Resource : in out Stream_Type) is abstract;

(continues on next page)

226 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

function Size (Resource : Stream Type) return Stream_ Element_Offset;

—— This default implementation returns Undefined_Length. If the derived
—-— stream Implementation knows about the size (in bytes) of the stream
—-— this routine should be redefined.

function Name (Resource : Stream Type) return String;

—-— This default implementation returns the empty string. It is must be
—-— overwritten by file based stream to provide the proper filename

-— associated with the stream.

procedure Create
(Resource : out File_Type;
Stream : Stream_Access) with Inline;
—-— Create a resource file from user defined stream

private
—-— Implementation removed
end AWS.Resources.Streams;

13.38. AWS.Resources.Streams 227

AWS Documentation, Release 2019

13.39 AWS.Resources.Streams.Disk

- Ada Web Server -
- Copyright (C) 2003-2014, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-
-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

—-— An ready-to-use implementation of the stream API where the stream content
-— 1s read from an on-disk file.

private with Ada.Strings.Unbounded;
private with Ada.Streams.Stream IO;

package AWS.Resources.Streams.Disk is
type Stream Type is new Streams.Stream_Type with private;

procedure Open
(File : out Stream_Type;

Name : String;
Form : String := "shared=no");
overriding function End_Of_File (Resource : Stream Type) return Boolean;

overriding procedure Read

(Resource : in out Stream_Type;
Buffer : out Stream_ Element_Array;
Last : out Stream_Element_Offset);

overriding function Size
(Resource : Stream_Type) return Stream Element_Offset;

overriding function Name (Resource : Stream Type) return String;

(continues on next page)

228 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

(continued from previous page)

overriding procedure Reset (Resource : in out Stream_Type);

overriding procedure Set_Index
(Resource : in out Stream_Type;
.

To : Stream_Element_Offset);

overriding procedure Close (Resource : in out Stream_Type);
private

—-— Implementation removed
end AWS.Resources.Streams.Disk;

13.39. AWS.Resources.Streams.Disk 229

AWS Documentation, Release 2019

13.40 AWS.Resources.Streams.Disk.Once

- Ada Web Server -
- Copyright (C) 2003-2012, AdaCore -

—-— This library is free software; you can redistribute it and/or modify -
—— it under terms of the GNU General Public License as published by the —-—
-— Free Software Foundation; either version 3, or (at your option) any --
—-— later version. This library 1is distributed in the hope that it will be -—-
-— useful, but WITHOUT ANY WARRANTY,; without even the implied warranty of —-—
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
—-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. -

—-— An ready-to-use Implementation of the stream API where the stream content
-— 1s read from an on-disk file. The file is removed from the file system
—-— when the transfer is completed.

package AWS.Resources.Streams.Disk.Once is

type Stream Type is new Disk.Stream Type with null record;

overriding procedure Close (Resource : in out Stream_Type);
—-— Only redefine Close that will not only close the stream but also delete
-— the file.

end AWS.Resources.Streams.Disk.Once;

230 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

13.41 AWS.Resources.Streams.Memory

- Ada Web Server -
- Copyright (C) 2003-2014, AdaCore -
—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-

-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty of —-
—— MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -

—-— You should have received a copy of the GNU General Public License and -
—-— a copy of the GCC Runtime Library Exception along with this program; -
-— see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -
-— <http://www.gnu.org/licenses/>. ——

pragma Ada_2012;

—-— API to handle a memory stream. A memory stream is first created

-— empty. User can add chunk of data using the Append routines. The stream
-— 1s then read using the Read procedure.

with AWS.Utils;

private with AWS.Containers.Memory_ Streams;

package AWS.Resources.Streams.Memory is

type Stream Type is new Streams.Stream_ Type with private;

subtype Stream Element_Access is Utils.Stream Element_Array_Access;
subtype Buffer Access is Utils.Stream_Element_Array_Constant_Access;

procedure Append

(Resource : in out Stream_Type;
Buffer : Stream_Element_Array;
Trim : Boolean := False);

—-— Append Buffer into the memory stream

procedure Append
(Resource : in out Stream_Type;
Buffer : Stream_Element_Access);

(continues on next page)

13.41. AWS.Resources.Streams.Memory 231

AWS Documentation, Release 2019

(continued from previous page)

—-— Append static data pointed to Buffer into the memory stream as 1is.
—— The stream will free the memory on close.

procedure Append

(Resource : in out Stream_ Type;

Buffer : Buffer_ Access);
—-— Append static data pointed to Buffer into the memory stream as 1is.
—— The stream would not try to free the memory on close.

overriding procedure Read

(Resource : in out Stream_ Type;
Buffer : out Stream_Element_Array;
Last : out Stream_Element_Offset);

—-— Returns a chunck of data in Buffer, Last point to the last element
—-— returned in Buffer.

overriding function End_Of_File (Resource : Stream Type) return Boolean;
—— Returns True 1if the end of the memory stream has been reached

procedure Clear (Resource : in out Stream Type) with Inline;
—-— Delete all data from memory stream

overriding procedure Reset (Resource : in out Stream_Type);
—— Reset the streaming data to the first position

overriding procedure Set_Index

(Resource : in out Stream Type;

To : Stream_Element_Offset);
—-— Set the position in the stream, next Read will start at the position
—-— whose index is To.

overriding function Size
(Resource : Stream Type) return Stream_Element_Offset;
—-— Returns the number of bytes in the memory stream

overriding procedure Close (Resource : in out Stream_ Type);
—-— Close the memory stream. Release all memory associated with the stream

private
-— Iimplementation removed
end AWS.Resources.Streams.Memory;

232 Chapter 13. AWS API Reference

AWS Documentation, Release 2019

13.42 AWS.Resources.Streams.Memory.ZLib

- Ada Web Server -
- Copyright (C) 2003-2013, AdaCore -
—-— This library is free software; you can redistribute it and/or modify -
—-— it under terms of the GNU General Public License as published by the -—-
-— Free Software Foundation; either version 3, or (at your option) any —-
—-— later version. This library 1is distributed in the hope that it will be —-

-— useful, but WITHOUT ANY WARRANTY; without even the implied warranty