The columns are referring to the degree, indexed from 1, and the rows are referring to the homological degree, indexed from 0.
i1 : M=lieAlgebra({a,b,c},genWeights => {{1,0},{1,0},{2,0}},diffl=>true, genSigns=>{1,1,0})/{a c-b c, a a c-2 b b b a} o1 = M o1 : LieAlgebra |
i2 : dimTableLie 7 o2 = | 2 4 3 4 9 17 30 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | 7 7 o2 : Matrix ZZ <--- ZZ |
i3 : L=lieAlgebra({a,b,c,r3,r4},genWeights => {{1,0},{1,0},{2,0},{3,1},{4,1}}, diffl=>true, genSigns=>{1,1,0,0,1}) o3 = L o3 : LieAlgebra |
i4 : L=diffLieAlgebra{L.zz,L.zz,L.zz,b c - a c,a a c - 2 b b b a} o4 = L o4 : LieAlgebra |
i5 : homologyTableLie 7 o5 = | 2 4 3 4 9 17 30 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | 7 7 o5 : Matrix ZZ <--- ZZ |
i6 : Q=L/{b c-a c,a b,b r4-a r4} o6 = Q o6 : LieAlgebra |
i7 : homologyTableLie 6 o7 = | 2 3 1 0 1 1 | | 0 0 1 2 4 7 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | 6 6 o7 : Matrix ZZ <--- ZZ |