next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
OldToricVectorBundles :: ToricVectorBundle ** ToricVectorBundle

ToricVectorBundle ** ToricVectorBundle -- the tensor product of two toric vector bundles

Synopsis

Description

If E1 and E2 are defined over the same fan and in the same description, then tensor computes the tensor product of the two vector bundles in this description

i1 : E1 = toricVectorBundle(2,hirzebruchFan 3)

o1 = {dimension of the variety => 2 }
      number of affine charts => 4
      number of rays => 4
      rank of the vector bundle => 2

o1 : ToricVectorBundleKlyachko
i2 : E2 = tangentBundle hirzebruchFan 3

o2 = {dimension of the variety => 2 }
      number of affine charts => 4
      number of rays => 4
      rank of the vector bundle => 2

o2 : ToricVectorBundleKlyachko
i3 : E = E1 ** E2

o3 = {dimension of the variety => 2 }
      number of affine charts => 4
      number of rays => 4
      rank of the vector bundle => 4

o3 : ToricVectorBundleKlyachko
i4 : details E

o4 = HashTable{| -1 | => (| -1 1/3 0  0   |, | -1 0 -1 0 |)}
               | 3  |     | 3  0   0  0   |
                          | 0  0   -1 1/3 |
                          | 0  0   3  0   |
               | 0  | => (| 0  1 0  0 |, | -1 0 -1 0 |)
               | -1 |     | -1 0 0  0 |
                          | 0  0 0  1 |
                          | 0  0 -1 0 |
               | 0 | => (| 0 1 0 0 |, | -1 0 -1 0 |)
               | 1 |     | 1 0 0 0 |
                         | 0 0 0 1 |
                         | 0 0 1 0 |
               | 1 | => (| 1 0 0 0 |, | -1 0 -1 0 |)
               | 0 |     | 0 1 0 0 |
                         | 0 0 1 0 |
                         | 0 0 0 1 |

o4 : HashTable
i5 : E1 = toricVectorBundle(2,hirzebruchFan 3,"Type" => "Kaneyama")

o5 = {dimension of the variety => 2 }
      number of affine charts => 4
      rank of the vector bundle => 2

o5 : ToricVectorBundleKaneyama
i6 : E2 = tangentBundle(hirzebruchFan 3,"Type" => "Kaneyama")

o6 = {dimension of the variety => 2 }
      number of affine charts => 4
      rank of the vector bundle => 2

o6 : ToricVectorBundleKaneyama
i7 : E = E1 ** E2

o7 = {dimension of the variety => 2 }
      number of affine charts => 4
      rank of the vector bundle => 4

o7 : ToricVectorBundleKaneyama
i8 : details E

o8 = (HashTable{0 => (| 0 -1 |, | 1 1 -3 -3 |) }, HashTable{(0, 1) => |
                      | 1 3  |  | 0 0 -1 -1 |                         |
                1 => (| 0  -1 |, | 1 1 3 3 |)                         |
                      | -1 3  |  | 0 0 1 1 |                          |
                2 => (| 1 0 |, | -1 -1 0  0  |)             (0, 2) => |
                      | 0 1 |  | 0  0  -1 -1 |                        |
                3 => (| 1 0  |, | -1 -1 0 0 |)                        |
                      | 0 -1 |  | 0  0  1 1 |                         |
                                                            (1, 3) => |
                                                                      |
                                                                      |
                                                                      |
                                                            (2, 3) => |
                                                                      |
                                                                      |
                                                                      |
     ------------------------------------------------------------------------
     1 0 0  0  |})
     0 1 0  0  |
     0 0 -1 0  |
     0 0 0  -1 |
     -1 0  0 0 |
     0  -1 0 0 |
     3  0  1 0 |
     0  3  0 1 |
     -1 0  0 0 |
     0  -1 0 0 |
     -3 0  1 0 |
     0  -3 0 1 |
     1 0 0  0  |
     0 1 0  0  |
     0 0 -1 0  |
     0 0 0  -1 |

o8 : Sequence

See also