We randomly choose an r × n matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00151106, .00108772) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .00425164, .0776173) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.00575473, .0217449}, {.0045445, .0066718}, {.0243089, .0107745}, ------------------------------------------------------------------------ {.00482875, .0169872}, {.00494068, .0253291}, {.00555174, .024866}, ------------------------------------------------------------------------ {.00438131, .0130586}, {.0228592, .0120511}, {.00410281, .00799339}, ------------------------------------------------------------------------ {.00535844, .0144382}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .0086631074 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .0153914814 o7 : RR (of precision 53) |