
PyMuPDF Documentation
Release 1.16.10

Jorj X. McKie

Dec 21, 2019

CONTENTS

1 Introduction 1
1.1 Note on the Name fitz . 2
1.2 License . 2
1.3 Covered Version . 2

2 Installation 3
2.1 Option 1: Install from Sources . 3

2.1.1 Step 1: Download PyMuPDF . 3
2.1.2 Step 2: Download and Generate MuPDF . 3
2.1.3 Step 3: Build / Setup PyMuPDF . 4

2.2 Option 2: Install from Binaries . 4

3 Tutorial 5
3.1 Importing the Bindings . 5
3.2 Opening a Document . 5
3.3 Some Document Methods and Attributes . 6
3.4 Accessing Meta Data . 6
3.5 Working with Outlines . 6
3.6 Working with Pages . 7

3.6.1 Inspecting the Links, Annotations or Form Fields of a Page 7
3.6.2 Rendering a Page . 8
3.6.3 Saving the Page Image in a File . 8
3.6.4 Displaying the Image in GUIs . 8

3.6.4.1 wxPython . 9
3.6.4.2 Tkinter . 9
3.6.4.3 PyQt4, PyQt5, PySide . 9

3.6.5 Extracting Text and Images . 10
3.6.6 Searching for Text . 10

3.7 PDF Maintenance . 10
3.7.1 Modifying, Creating, Re-arranging and Deleting Pages . 11
3.7.2 Joining and Splitting PDF Documents . 11
3.7.3 Embedding Data . 12
3.7.4 Saving . 12

3.8 Closing . 12
3.9 Further Reading . 13

4 Collection of Recipes 15
4.1 Images . 15

4.1.1 How to Make Images from Document Pages . 15
4.1.2 How to Increase Image Resolution . 15

i

4.1.3 How to Create Partial Pixmaps (Clips) . 16
4.1.4 How to Create or Suppress Annotation Images . 16
4.1.5 How to Extract Images: Non-PDF Documents . 17
4.1.6 How to Extract Images: PDF Documents . 17
4.1.7 How to Handle Stencil Masks . 18
4.1.8 How to Make one PDF of all your Pictures (or Files) . 19
4.1.9 How to Create Vector Images . 22
4.1.10 How to Convert Images . 23
4.1.11 How to Use Pixmaps: Glueing Images . 24
4.1.12 How to Use Pixmaps: Making a Fractal . 25
4.1.13 How to Interface with NumPy . 27
4.1.14 How to Add Images to a PDF Page . 27

4.2 Text . 28
4.2.1 How to Extract all Document Text . 28
4.2.2 How to Extract Text from within a Rectangle . 29
4.2.3 How to Extract Text in Natural Reading Order . 30
4.2.4 How to Extract Tables from Documents . 32
4.2.5 How to Search for and Mark Text . 32
4.2.6 How to Analyze Font Characteristics . 34
4.2.7 How to Insert Text . 35

4.2.7.1 How to Write Text Lines . 36
4.2.7.2 How to Fill a Text Box . 37
4.2.7.3 How to Use Non-Standard Encoding . 38

4.3 Annotations . 39
4.3.1 How to Add and Modify Annotations . 40
4.3.2 How to Mark Text . 43
4.3.3 How to Use FreeText . 44
4.3.4 How to Use Ink Annotations . 45

4.4 Drawing and Graphics . 47
4.5 Multiprocessing . 49
4.6 General . 53

4.6.1 How to Open with a Wrong File Extension . 53
4.6.2 How to Embed or Attach Files . 54
4.6.3 How to Delete and Re-Arrange Pages . 54
4.6.4 How to Join PDFs . 55
4.6.5 How to Add Pages . 56
4.6.6 How To Dynamically Clean Up Corrupt PDFs . 57
4.6.7 How to Split Single Pages . 58
4.6.8 How to Combine Single Pages . 59
4.6.9 How to Convert Any Document to PDF . 61
4.6.10 How to Deal with Messages Issued by MuPDF . 62
4.6.11 How to Deal with PDF Encryption . 63

4.7 Common Issues and their Solutions . 65
4.7.1 Changing Annotations: Unexpected Behaviour . 65

4.7.1.1 Problem . 65
4.7.1.2 Cause . 65
4.7.1.3 Solutions . 65

4.7.2 Misplaced Item Insertions on PDF Pages . 66
4.7.2.1 Problem . 66
4.7.2.2 Cause . 66
4.7.2.3 Solutions . 66

4.8 Low-Level Interfaces . 67
4.8.1 How to Iterate through the xref Table . 67
4.8.2 How to Handle Object Streams . 68

ii

4.8.3 How to Handle Page Contents . 69
4.8.4 How to Access the PDF Catalog . 70
4.8.5 How to Access the PDF File Trailer . 70
4.8.6 How to Access XML Metadata . 71

5 Using fitz as a Module 73
5.1 Invocation . 73
5.2 Cleaning and Copying . 74
5.3 Extracting Fonts and Images . 74
5.4 Joining PDF Documents . 75
5.5 Low Level Information . 76
5.6 Embedded Files Commands . 77

5.6.1 Information . 77
5.6.2 Extraction . 78
5.6.3 Deletion . 79
5.6.4 Insertion . 79
5.6.5 Updates . 79
5.6.6 Copying . 80

6 Classes 81
6.1 Annot . 81

6.1.1 Annotation Icons in MuPDF . 87
6.1.2 Example . 87

6.2 Colorspace . 88
6.3 DisplayList . 89
6.4 Document . 90

6.4.1 setMetadata() Example . 108
6.4.2 setToC() Demonstration . 108
6.4.3 insertPDF() Examples . 108
6.4.4 Other Examples . 109

6.5 Identity . 109
6.6 IRect . 110
6.7 Link . 113
6.8 linkDest . 115
6.9 Matrix . 116

6.9.1 Examples . 120
6.9.2 Shifting . 120
6.9.3 Flipping . 121
6.9.4 Shearing . 122
6.9.5 Rotating . 123

6.10 Outline . 124
6.11 Page . 126

6.11.1 Adding Page Content . 126
6.11.2 Description of getLinks() Entries . 143
6.11.3 Notes on Supporting Links . 144

6.11.3.1 Reading (pertains to method getLinks() and the firstLink property chain) 144
6.11.3.2 Writing . 144

6.11.4 Homologous Methods of Document and Page . 144
6.12 Pixmap . 145

6.12.1 Supported Input Image Formats . 153
6.12.2 Supported Output Image Formats . 153

6.13 Point . 154
6.14 Quad . 156

6.14.1 Remark . 158

iii

6.15 Rect . 158
6.16 Shape . 162

6.16.1 Usage . 173
6.16.2 Examples . 173
6.16.3 Common Parameters . 175

6.17 TextPage . 177
6.17.1 Dictionary Structure of extractDICT() and extractRAWDICT() 180

6.17.1.1 Page Dictionary . 180
6.17.1.2 Block Dictionaries . 181
6.17.1.3 Line Dictionary . 182
6.17.1.4 Span Dictionary . 182
6.17.1.5 Character Dictionary for extractRAWDICT() 183

6.18 Tools . 183
6.18.1 Example Session . 186

6.19 Widget . 187
6.19.1 Standard Fonts for Widgets . 188

7 Operator Algebra for Geometry Objects 191
7.1 General Remarks . 191
7.2 Unary Operations . 191
7.3 Binary Operations . 192
7.4 Some Examples . 192

7.4.1 Manipulation with numbers . 192
7.4.2 Manipulation with “like” Objects . 193

8 Low Level Functions and Classes 195
8.1 Functions . 195
8.2 Device . 208
8.3 Working together: DisplayList and TextPage . 209

8.3.1 Create a DisplayList . 209
8.3.2 Generate Pixmap . 209
8.3.3 Perform Text Search . 210
8.3.4 Extract Text . 210
8.3.5 Further Performance improvements . 210

8.3.5.1 Pixmap . 210
8.3.5.2 TextPage . 210

9 Glossary 211

10 Constants and Enumerations 215
10.1 Constants . 215
10.2 Document Permissions . 216
10.3 PDF encryption method codes . 216
10.4 Font File Extensions . 216
10.5 Text Alignment . 217
10.6 Preserve Text Flags . 217
10.7 Link Destination Kinds . 217
10.8 Link Destination Flags . 218
10.9 Annotation Related Constants . 219
10.10 Widget Constants . 220

10.10.1 Widget flags (field_flags) . 220
10.11 Stamp Annotation Icons . 221

11 Color Database 223
11.1 Function getColor() . 223

iv

11.2 Printing the Color Database . 224

12 Appendix 1: Performance 225
12.1 Part 1: Parsing . 225
12.2 Part 2: Text Extraction . 228
12.3 Part 3: Image Rendering . 230

13 Appendix 2: Details on Text Extraction 233
13.1 General structure of a TextPage . 233
13.2 Plain Text . 233
13.3 BLOCKS . 234
13.4 WORDS . 234
13.5 HTML . 234
13.6 Controlling Quality of HTML Output . 235
13.7 DICT (or JSON) . 236
13.8 RAWDICT . 236
13.9 XML . 237
13.10 XHTML . 238
13.11 Text Extraction Flags Defaults . 238
13.12 Performance . 239

14 Appendix 3: Considerations on Embedded Files 241
14.1 General . 241
14.2 MuPDF Support . 241
14.3 PyMuPDF Support . 241

15 Appendix 4: Assorted Technical Information 243
15.1 PDF Base 14 Fonts . 243
15.2 Adobe PDF Reference 1.7 . 244
15.3 Using Python Sequences as Arguments in PyMuPDF . 244
15.4 Ensuring Consistency of Important Objects in PyMuPDF . 245
15.5 Design of Method Page.showPDFpage() . 246

15.5.1 Purpose and Capabilities . 246
15.5.2 Technical Implementation . 247

15.6 Redirecting Error and Warning Messages . 248

16 Change Logs 249
16.1 Changes in Version 1.16.10 . 249
16.2 Changes in Version 1.16.9 . 249
16.3 Changes in Version 1.16.8 . 249
16.4 Changes in Version 1.16.7 . 250
16.5 Changes in Version 1.16.6 . 250
16.6 Changes in Version 1.16.5 . 250
16.7 Changes in Version 1.16.4 . 250
16.8 Changes in Version 1.16.3 . 251
16.9 Changes in Version 1.16.2 . 251
16.10 Changes in Version 1.16.1 . 251
16.11 Changes in Version 1.16.0 . 251
16.12 No version published for MuPDF v1.15.0 . 253
16.13 Changes in Version 1.14.20 / 1.14.21 . 253
16.14 Changes in Version 1.14.19 . 253
16.15 Changes in Version 1.14.17 . 253
16.16 Changes in Version 1.14.16 . 253
16.17 Changes in Version 1.14.15 . 253
16.18 Changes in Version 1.14.14 . 254

v

16.19 Changes in Version 1.14.13 . 254
16.20 Changes in Version 1.14.12 . 254
16.21 Changes in Version 1.14.11 . 254
16.22 Changes in Version 1.14.10 . 254
16.23 Changes in Version 1.14.9 . 255
16.24 Changes in Version 1.14.8 . 255
16.25 Changes in Version 1.14.7 . 255
16.26 Changes in Version 1.14.5 . 255
16.27 Changes in Version 1.14.4 . 256
16.28 Changes in Version 1.14.3 . 256
16.29 Changes in Version 1.14.1 . 256
16.30 Changes in Version 1.14.0 . 256
16.31 Changes in Version 1.13.19 . 257
16.32 Changes in Version 1.13.18 . 257
16.33 Changes in Version 1.13.17 . 258
16.34 Changes in Version 1.13.16 . 258
16.35 Changes in Version 1.13.15 . 258
16.36 Changes in Version 1.13.14 . 258
16.37 Changes in Version 1.13.13 . 259
16.38 Changes in Version 1.13.12 . 259
16.39 Changes in Version 1.13.11 . 259
16.40 Changes in Version 1.13.7 . 260
16.41 Changes in Version 1.13.6 . 260
16.42 Changes in Version 1.13.5 . 260
16.43 Changes in Version 1.13.4 . 260
16.44 Changes in Version 1.13.3 . 260
16.45 Changes in Version 1.13.2 . 261
16.46 Changes in Version 1.13.1 . 261
16.47 Changes in Version 1.13.0 . 261
16.48 Changes in Version 1.12.4 . 262
16.49 Changes in Version 1.12.3 . 262
16.50 Changes in Version 1.12.2 . 262
16.51 Changes in Version 1.12.1 . 262
16.52 Changes in Version 1.12.0 . 263
16.53 Changes in Version 1.11.2 . 263
16.54 Changes in Version 1.11.1 . 264
16.55 Changes in Version 1.11.0 . 264
16.56 Changes in Version 1.10.0 . 265

16.56.1 MuPDF v1.10 Impact . 265
16.56.2 Other Changes compared to Version 1.9.3 . 265

16.57 Changes in Version 1.9.3 . 266
16.58 Changes in Version 1.9.2 . 266
16.59 Changes in Version 1.9.1 . 267

vi

CHAPTER

ONE

INTRODUCTION

PyMuPDF is a Python binding for MuPDF1 – “a lightweight PDF and XPS viewer”.

MuPDF can access files in PDF, XPS, OpenXPS, CBZ (comic book archive), FB2 and EPUB (e-book) formats.

These are files with extensions .pdf, .xps, .oxps, .cbz, .fb2 or .epub (so you can develop e-book viewers in Python
. . .).

PyMuPDF provides access to many important functions of MuPDF from within a Python environment, and we are
continuously seeking to expand this function set.

MuPDF stands out among all similar products for its top rendering capability and unsurpassed processing speed. At
the same time, its “light weight” makes it an excellent choice for platforms where resources are typically limited, like
smartphones.

Check this out yourself and compare the various free PDF-viewers. In terms of speed and rendering quality Suma-
traPDF2 ranges at the top (apart from MuPDF’s own standalone viewer) – since it has changed its library basis to
MuPDF!

While PyMuPDF has been available since several years for an earlier version of MuPDF (v1.2, called fitz-python
then), it was until only mid May 2015, that its creator and a few co-workers decided to elevate it to support current
releases of MuPDF.

PyMuPDF runs and has been tested on Mac, Linux, Windows XP SP2 and up, Python 2.7 through Python 3.7 (note
that Python supports Windows XP only up to v3.4), 32bit and 64bit versions. Other platforms should work too, as
long as MuPDF and Python support them.

PyMuPDF is hosted on GitHub3. We also are registered on PyPI4.

For MS Windows and popular Python versions on Mac OSX and Linux we have created wheels. So installation should
be convenient enough for hopefully most of our users: just issue

pip install –upgrade pymupdf

If your platform is not among those supported with a wheel, your installation consists of two separate steps:

1 http://www.mupdf.com/
2 http://www.sumatrapdfreader.org/
3 https://github.com/pymupdf/PyMuPDF
4 https://pypi.org/project/PyMuPDF/

1

http://www.mupdf.com/
http://www.sumatrapdfreader.org/
http://www.sumatrapdfreader.org/
https://github.com/pymupdf/PyMuPDF
https://pypi.org/project/PyMuPDF/

PyMuPDF Documentation, Release 1.16.10

1. Installation of MuPDF: this involves downloading the source from their website and then compiling it on your
machine. Adjust setup.py to point to the right directories (next step), before you try generating PyMuPDF.

2. Installation of PyMuPDF: this step is normal Python procedure. Usually you will have to adapt the setup.py to
point to correct include and lib directories of your generated MuPDF.

For installation details check out the respective chapter.

There exist several demo5 and example6 programs in the main repository, ranging from simple code snippets to full-
featured utilities, like text extraction, PDF joiners and bookmark maintenance.

Interesting PDF manipulation and generation functions have been added over time, including metadata and book-
mark maintenance, document restructuring, annotation / link handling and document or page creation.

1.1 Note on the Name fitz

The standard Python import statement for this library is import fitz. This has a historical reason:

The original rendering library for MuPDF was called Libart.

“After Artifex Software acquired the MuPDF project, the development focus shifted on writing a new modern graphics
library called *Fitz. Fitz was originally intended as an R&D project to replace the aging Ghostscript graphics library,
but has instead become the rendering engine powering MuPDF.”* (Quoted from Wikipedia7).

1.2 License

PyMuPDF is distributed under GNU GPL V3 (or later, at your choice).

MuPDF is distributed under a separate license, the GNU AFFERO GPL V3.

Both licenses apply, when you use PyMuPDF.

Note: Version 3 of the GNU AFFERO GPL is a lot less restrictive than its earlier versions used to be. It basically
is an open source freeware license, that obliges your software to also being open source and freeware. Consult this
website8, if you want to create a commercial product with PyMuPDF.

1.3 Covered Version

This documentation covers PyMuPDF v1.16.10 features as of 2019-12-21 07:31:32.

Note: The major and minor versions of PyMuPDF and MuPDF will always be the same. Only the third qualifier
(patch level) may be different from that of MuPDF.

5 https://github.com/pymupdf/PyMuPDF/tree/master/demo
6 https://github.com/pymupdf/PyMuPDF/tree/master/examples
7 https://en.wikipedia.org/wiki/MuPDF
8 http://artifex.com/licensing/

2 Chapter 1. Introduction

https://github.com/pymupdf/PyMuPDF/tree/master/demo
https://github.com/pymupdf/PyMuPDF/tree/master/examples
https://en.wikipedia.org/wiki/MuPDF
http://artifex.com/licensing/
http://artifex.com/licensing/

CHAPTER

TWO

INSTALLATION

PyMuPDF can be installed from sources as follows or from wheels, see Option 2: Install from Binaries.

2.1 Option 1: Install from Sources

This is a three-step process.

2.1.1 Step 1: Download PyMuPDF

Download the sources from https://pypi.org/project/PyMuPDF/#files and decompress them.

2.1.2 Step 2: Download and Generate MuPDF

Download mupdf-x.xx.x-source.tar.gz from Mupdf9 and unzip / decompress it. Make sure to download the (sub-)
version for which PyMuPDF has stated its compatibility.

Note: The latest MuPDF development sources are available on https://github.com/ArtifexSoftware/mupdf – this is
not what you want here.

Applying any Changes and Hot Fixes to MuPDF Sources

On occasion, vital hot fixes or functional enhancements must be applied to MuPDF sources before it is generated.

Any such files are contained in the fitz directory of the PyMuPDF homepage10 – their names all start with an underscore
“_”. Currently (v1.16.x), these files and their copy destinations are the following:

• _config.h – PyMuPDF’s configuration to control the binary file size and the inclusion of MuPDF features, see
next section. This file must renamed and replace MuPDF file /include/mupdf/fitz/config.h. This file controls the
size of the PyMuPDF binary by cutting away unneeded fonts from MuPDF.

Generate MuPDF

The MuPDF source includes generation procedures / makefiles for numerous platforms. For Windows platforms,
Visual Studio solution and project definitions are provided.

PyMuPDF’s homepage11 contains additional details and hints.

9 https://mupdf.com/downloads/archive
10 https://github.com/pymupdf/PyMuPDF/tree/master/fitz
11 https://github.com/pymupdf/PyMuPDF/

3

https://pypi.org/project/PyMuPDF/#files
https://mupdf.com/downloads/archive
https://github.com/ArtifexSoftware/mupdf
https://github.com/pymupdf/PyMuPDF/tree/master/fitz
https://github.com/pymupdf/PyMuPDF/

PyMuPDF Documentation, Release 1.16.10

2.1.3 Step 3: Build / Setup PyMuPDF

Adjust the setup.py script as necessary. E.g. make sure that:

• the include directory is correctly set in sync with your directory structure

• the object code libraries are correctly defined

Now perform a python setup.py install.

Note: You can also install from the sources of the Github repository. These do not contain the pre-generated
files fitz.py or fitz_wrap.c, which instead are generated by the installation script setup.py. To use it, SWIG12 must be
installed on your system.

2.2 Option 2: Install from Binaries

This installation option is available for all MS Windows and the most popular 64-bit Mac OS and Linux platforms for
Python versions 2.7 and 3.4 through 3.7.

Windows binaries are provided for Python 32-bit and 64-bit versions.

Mac OSX wheels are provided with the platform tag macosx_10_6_intel.

Linux wheels are provided with the platform tag manylinux1_x86_64. This makes them usable for most Linux variants
like Debian, Ubuntu, etc.

Older versions can be found in the releases directory of our home page https://github.com/pymupdf/PyMuPDF/
releases.

12 https://www.swig.org/

4 Chapter 2. Installation

https://www.swig.org/
https://github.com/pymupdf/PyMuPDF/releases
https://github.com/pymupdf/PyMuPDF/releases

CHAPTER

THREE

TUTORIAL

This tutorial will show you the use of PyMuPDF, MuPDF in Python, step by step.

Because MuPDF supports not only PDF, but also XPS, OpenXPS, CBZ, CBR, FB2 and EPUB formats, so does
PyMuPDF34. Nevertheless, for the sake of brevity we will only talk about PDF files. At places where indeed only PDF
files are supported, this will be mentioned explicitely.

3.1 Importing the Bindings

The Python bindings to MuPDF are made available by this import statement. We also show here how your version can
be checked:

>>> import fitz
>>> print(fitz.__doc__)
PyMuPDF 1.16.0: Python bindings for the MuPDF 1.16.0 library.
Version date: 2019-07-28 07:30:14.
Built for Python 3.7 on win32 (64-bit).

3.2 Opening a Document

To access a supported document, it must be opened with the following statement:

doc = fitz.open(filename) # or fitz.Document(filename)

This creates the Document object doc. filename must be a Python string specifying the name of an existing file.

It is also possible to open a document from memory data, or to create a new, empty PDF. See Document for details.

A document contains many attributes and functions. Among them are meta information (like “author” or “subject”),
number of total pages, outline and encryption information.

34 PyMuPDF lets you also open several image file types just like normal documents. See section Supported Input Image Formats in chapter
Pixmap for more comments.

5

PyMuPDF Documentation, Release 1.16.10

3.3 Some Document Methods and Attributes

Method / Attribute Description
Document.pageCount the number of pages (int)
Document.metadata the metadata (dict)
Document.getToC() get the table of contents (list)
Document.loadPage() read a Page

3.4 Accessing Meta Data

PyMuPDF fully supports standard metadata. Document.metadata is a Python dictionary with the following keys.
It is available for all document types, though not all entries may always contain data. For details of their meanings
and formats consult the respective manuals, e.g. Adobe PDF Reference 1.7 for PDF. Further information can also be
found in chapter Document. The meta data fields are strings or None if not otherwise indicated. Also be aware that
not all of them always contain meaningful data – even if they are not None.

Key Value
producer producer (producing software)
format format: ‘PDF-1.4’, ‘EPUB’, etc.
encryption encryption method used if any
author author
modDate date of last modification
keywords keywords
title title
creationDate date of creation
creator creating application
subject subject

Note: Apart from these standard metadata, PDF documents starting from PDF version 1.4 may also contain so-
called “metadata streams”. Information in such streams is coded in XML. PyMuPDF deliberately contains no XML
components, so we do not directly support access to information contained therein. But you can extract the stream as
a whole, inspect or modify it using a package like lxml13 and then store the result back into the PDF. If you want, you
can also delete these data altogether.

Note: There are two utility scripts in the repository that import (PDF only)14 resp. export15 metadata from resp. to
CSV files.

3.5 Working with Outlines

The easiest way to get all outlines (also called “bookmarks”) of a document, is by loading its table of contents:
13 https://pypi.org/project/lxml/
14 https://github.com/pymupdf/PyMuPDF/blob/master/examples/csv2meta.py
15 https://github.com/pymupdf/PyMuPDF/blob/master/examples/meta2csv.py

6 Chapter 3. Tutorial

https://pypi.org/project/lxml/
https://github.com/pymupdf/PyMuPDF/blob/master/examples/csv2meta.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/meta2csv.py

PyMuPDF Documentation, Release 1.16.10

toc = doc.getToC()

This will return a Python list of lists [[lvl, title, page, . . .], . . .] which looks much like a conventional table of contents
found in books.

lvl is the hierarchy level of the entry (starting from 1), title is the entry’s title, and page the page number (1-based!).
Other parameters describe details of the bookmark target.

Note: There are two utility scripts in the repository that import (PDF only)16 resp. export17 table of contents from
resp. to CSV files.

3.6 Working with Pages

Page handling is at the core of MuPDF’s functionality.

• You can render a page into a raster or vector (SVG) image, optionally zooming, rotating, shifting or shearing it.

• You can extract a page’s text and images in many formats and search for text strings.

• For PDF documents many more methods are available to add text or images to pages.

First, a Page must be created. This is a method of Document:

page = doc.loadPage(pno) # loads page number 'pno' of the document (0-based)
page = doc[pno] # the short form

Any integer -inf < pno < pageCount is possible here. Negative numbers count backwards from the end, so doc[-1] is
the last page, like with Python sequences.

Some more advanced way would be using the document as an iterator over its pages:

for page in doc:
do something with 'page'

... or read backwards
for page in reversed(doc):

do something with 'page'

... or even use 'slicing'
for page in doc.pages(start, stop, step):

do something with 'page'

Once you have your page, here is what you would typically do with it:

3.6.1 Inspecting the Links, Annotations or Form Fields of a Page

Links are shown as “hot areas” when a document is displayed with some viewer software. If you click while your
cursor shows a hand symbol, you will usually be taken to the taget that is encoded in that hot area. Here is how to get
all links:

get all links on a page
links = page.getLinks()

16 https://github.com/pymupdf/PyMuPDF/blob/master/examples/csv2toc.py
17 https://github.com/pymupdf/PyMuPDF/blob/master/examples/toc2csv.py

3.6. Working with Pages 7

https://github.com/pymupdf/PyMuPDF/blob/master/examples/csv2toc.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/toc2csv.py

PyMuPDF Documentation, Release 1.16.10

links is a Python list of dictionaries. For details see Page.getLinks().

You can also use an iterator which emits one link at a time:

for link in page.links():
do something with 'link'

If dealing with a PDF document page, there may also exist annotations (Annot) or form fields (Widget), each of which
have their own iterators:

for annot in page.annots():
do something with 'annot'

for field in page.widgets():
do something with 'field'

3.6.2 Rendering a Page

This example creates a raster image of a page’s content:

pix = page.getPixmap()

pix is a Pixmap object which (in this case) contains an RGB image of the page, ready to be used for many pur-
poses. Method Page.getPixmap() offers lots of variations for controlling the image: resolution, colorspace
(e.g. to produce a grayscale image or an image with a subtractive color scheme), transparency, rotation, mirroring,
shifting, shearing, etc. For example: to create an RGBA image (i.e. containing an alpha channel), specify pix =
page.getPixmap(alpha=True).

A Pixmap contains a number of methods and attributes which are referenced below. Among them are the integers
width, height (each in pixels) and stride (number of bytes of one horizontal image line). Attribute samples represents
a rectangular area of bytes representing the image data (a Python bytes object).

Note: You can also create a vector image of a page by using Page.getSVGimage(). Refer to this Wiki18 for
details.

3.6.3 Saving the Page Image in a File

We can simply store the image in a PNG file:

pix.writeImage("page-%i.png" % page.number)

3.6.4 Displaying the Image in GUIs

We can also use it in GUI dialog managers. Pixmap.samples represents an area of bytes of all the pixels as a
Python bytes object. Here are some examples, find more in the examples19 directory.

18 https://github.com/pymupdf/PyMuPDF/wiki/Vector-Image-Support
19 https://github.com/pymupdf/PyMuPDF/tree/master/examples

8 Chapter 3. Tutorial

https://github.com/pymupdf/PyMuPDF/wiki/Vector-Image-Support
https://github.com/pymupdf/PyMuPDF/tree/master/examples

PyMuPDF Documentation, Release 1.16.10

3.6.4.1 wxPython

Consult their documentation for adjustments to RGB(A) pixmaps and, potentially, specifics for your wxPython release:

if pix.alpha:
bitmap = wx.Bitmap.FromBufferRGBA(pix.width, pix.height, pix.samples)

else:
bitmap = wx.Bitmap.FromBuffer(pix.width, pix.height, pix.samples)

3.6.4.2 Tkinter

Please also see section 3.19 of the Pillow documentation20:

from PIL import Image, ImageTk

set the mode depending on alpha
mode = "RGBA" if pix.alpha else "RGB"
img = Image.frombytes(mode, [pix.width, pix.height], pix.samples)
tkimg = ImageTk.PhotoImage(img)

The following avoids using Pillow:

remove alpha if present
pix1 = fitz.Pixmap(pix, 0) if pix.alpha else pix # PPM does not support transparency
imgdata = pix1.getImageData("ppm") # extremely fast!
tkimg = tkinter.PhotoImage(data = imgdata)

If you are looking for a complete Tkinter script paging through any supported document, here it is!21 It can also zoom
into pages, and it runs under Python 2 or 3. It requires the extremely handy PySimpleGUI22 pure Python package.

3.6.4.3 PyQt4, PyQt5, PySide

Please also see section 3.16 of the Pillow documentation23:

from PIL import Image, ImageQt

set the mode depending on alpha
mode = "RGBA" if pix.alpha else "RGB"
img = Image.frombytes(mode, [pix.width, pix.height], pix.samples)
qtimg = ImageQt.ImageQt(img)

Again, you also can get along without using PIL if you use the pixmap stride property:

from PyQt<x>.QtGui import QImage

set the correct QImage format depending on alpha
fmt = QImage.Format_RGBA8888 if pix.alpha else QImage.Format_RGB888
qtimg = QImage(pix.samples, pix.width, pix.height, pix.stride, fmt)

20 https://Pillow.readthedocs.io
21 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/doc-browser.py
22 https://pypi.org/project/PySimpleGUI/
23 https://Pillow.readthedocs.io

3.6. Working with Pages 9

https://Pillow.readthedocs.io
https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/doc-browser.py
https://pypi.org/project/PySimpleGUI/
https://Pillow.readthedocs.io

PyMuPDF Documentation, Release 1.16.10

3.6.5 Extracting Text and Images

We can also extract all text, images and other information of a page in many different forms, and levels of detail:

text = page.getText(opt)

Use one of the following strings for opt to obtain different formats35:

• “text”: (default) plain text with line breaks. No formatting, no text position details, no images.

• “blocks”: generate a list of text blocks (= paragraphs).

• “words”: generate a list of words (strings not containing spaces).

• “html”: creates a full visual version of the page including any images. This can be displayed with your internet
browser.

• “dict” / “json”: same information level as HTML, but provided as a Python dictionary or resp. JSON string.
See TextPage.extractDICT() resp. TextPage.extractJSON() for details of its structure.

• “rawdict”: a super-set of TextPage.extractDICT(). It additionally provides character detail information
like XML. See TextPage.extractRAWDICT() for details of its structure.

• “xhtml”: text information level as the TEXT version but includes images. Can also be displayed by internet
browsers.

• “xml”: contains no images, but full position and font information down to each single text character. Use an
XML module to interpret.

To give you an idea about the output of these alternatives, we did text example extracts. See Appendix 2: Details on
Text Extraction.

3.6.6 Searching for Text

You can find out, exactly where on a page a certain text string appears:

areas = page.searchFor("mupdf", hit_max = 16)

This delivers a list of up to 16 rectangles (see Rect), each of which surrounds one occurrence of the string “mupdf”
(case insensitive). You could use this information to e.g. highlight those areas (PDF only) or create a cross reference
of the document.

Please also do have a look at chapter Working together: DisplayList and TextPage and at demo programs demo.py24

and demo-lowlevel.py25. Among other things they contain details on how the TextPage, Device and DisplayList classes
can be used for a more direct control, e.g. when performance considerations suggest it.

3.7 PDF Maintenance

PDFs are the only document type that can be modified using PyMuPDF. Other file types are read-only.

However, you can convert any document (including images) to a PDF and then apply all PyMuPDF features to
the conversion result. Find out more here Document.convertToPDF(), and also look at the demo script pdf-
converter.py26 which can convert any supported document to PDF.

35 Page.getText() is a convenience wrapper for several methods of another PyMuPDF class, TextPage. The names of these methods
correspond to the argument string passed to Page.getText() : Page.getText(“dict”) is equivalent to TextPage.extractDICT() .

24 https://github.com/pymupdf/PyMuPDF/blob/master/demo/demo.py
25 https://github.com/pymupdf/PyMuPDF/blob/master/demo/demo-lowlevel.py
26 https://github.com/pymupdf/PyMuPDF/blob/master/demo/pdf-converter.py

10 Chapter 3. Tutorial

https://github.com/pymupdf/PyMuPDF/blob/master/demo/demo.py
https://github.com/pymupdf/PyMuPDF/blob/master/demo/demo-lowlevel.py
https://github.com/pymupdf/PyMuPDF/blob/master/demo/pdf-converter.py
https://github.com/pymupdf/PyMuPDF/blob/master/demo/pdf-converter.py

PyMuPDF Documentation, Release 1.16.10

Document.save() always stores a PDF in its current (potentially modified) state on disk.

You normally can choose whether to save to a new file, or just append your modifications to the existing one (“incre-
mental save”), which often is very much faster.

The following describes ways how you can manipulate PDF documents. This description is by no means complete:
much more can be found in the following chapters.

3.7.1 Modifying, Creating, Re-arranging and Deleting Pages

There are several ways to manipulate the so-called page tree (a structure describing all the pages) of a PDF:

Document.deletePage() and Document.deletePageRange() delete pages.

Document.copyPage(), Document.fullcopyPage() and Document.movePage() copy or move a
page to other locations within the same document.

Document.select() shrinks a PDF down to selected pages. Parameter is a sequence36 of the page numbers that
you want to keep. These integers must all be in range 0 <= i < pageCount. When executed, all pages missing in this
list will be deleted. Remaining pages will occur in the sequence and as many times (!) as you specify them.

So you can easily create new PDFs with

• the first or last 10 pages,

• only the odd or only the even pages (for doing double-sided printing),

• pages that do or don’t contain a given text,

• reverse the page sequence, . . .

. . . whatever you can think of.

The saved new document will contain links, annotations and bookmarks that are still valid (i.a.w. either pointing to a
selected page or to some external resource).

Document.insertPage() and Document.newPage() insert new pages.

Pages themselves can moreover be modified by a range of methods (e.g. page rotation, annotation and link mainte-
nance, text and image insertion).

3.7.2 Joining and Splitting PDF Documents

Method Document.insertPDF() copies pages between different PDF documents. Here is a simple joiner
example (doc1 and doc2 being openend PDFs):

append complete doc2 to the end of doc1
doc1.insertPDF(doc2)

Here is a snippet that splits doc1. It creates a new document of its first and its last 10 pages:

doc2 = fitz.open() # new empty PDF
doc2.insertPDF(doc1, to_page = 9) # first 10 pages
doc2.insertPDF(doc1, from_page = len(doc1) - 10) # last 10 pages
doc2.save("first-and-last-10.pdf")

More can be found in the Document chapter. Also have a look at PDFjoiner.py27.
36 “Sequences” are Python objects conforming to the sequence protocol. These objects implement a method named __getitem__(). Best known

examples are Python tuples and lists. But array.array, numpy.array and PyMuPDF’s “geometry” objects (Operator Algebra for Geometry Objects)
are sequences, too. Refer to Using Python Sequences as Arguments in PyMuPDF for details.

27 https://github.com/pymupdf/PyMuPDF/blob/master/examples/PDFjoiner.py

3.7. PDF Maintenance 11

https://github.com/pymupdf/PyMuPDF/blob/master/examples/PDFjoiner.py

PyMuPDF Documentation, Release 1.16.10

3.7.3 Embedding Data

PDFs can be used as containers for abitrary data (exeutables, other PDFs, text or binary files, etc.) much like ZIP
archives.

PyMuPDF fully supports this feature via Document embeddedFile* methods and attributes. For some detail read Ap-
pendix 3: Considerations on Embedded Files, consult the Wiki on embedding files28, or the example scripts embedded-
copy.py29, embedded-export.py30, embedded-import.py31, and embedded-list.py32.

3.7.4 Saving

As mentioned above, Document.save() will always save the document in its current state.

You can write changes back to the original PDF by specifying option incremental=True. This process is (usually)
extremely fast, since changes are appended to the original file without completely rewriting it.

Document.save() options correspond to options of MuPDF’s command line utility mutool clean, see the following
table.

Save Option mutool Effect
garbage=1 g garbage collect unused objects
garbage=2 gg in addition to 1, compact xref tables
garbage=3 ggg in addition to 2, merge duplicate objects
garbage=4 gggg in addition to 3, skip duplicate streams
clean=1 cs clean and sanitize content streams
deflate=1 z deflate uncompressed streams
ascii=1 a convert binary data to ASCII format
linear=1 l create a linearized version
expand=1 i decompress images
expand=2 f decompress fonts
expand=255 d decompress all

For example, mutool clean -ggggz file.pdf yields excellent compression results. It corresponds to doc.save(filename,
garbage=4, deflate=1).

3.8 Closing

It is often desirable to “close” a document to relinquish control of the underlying file to the OS, while your program
continues.

This can be achieved by the Document.close() method. Apart from closing the underlying file, buffer areas
associated with the document will be freed.

28 https://github.com/pymupdf/PyMuPDF/wiki/Dealing-with-Embedded-Files
29 https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-copy.py
30 https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-export.py
31 https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-import.py
32 https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-list.py

12 Chapter 3. Tutorial

https://github.com/pymupdf/PyMuPDF/wiki/Dealing-with-Embedded-Files
https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-copy.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-copy.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-export.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-import.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-list.py

PyMuPDF Documentation, Release 1.16.10

3.9 Further Reading

Also have a look at PyMuPDF’s Wiki33 pages. Especially those named in the sidebar under title “Recipes” cover over
15 topics written in “How-To” style.

This document also contains a Collection of Recipes. This chapter has close connection to the aforementioned recipes,
and it will be extended with more content over time.

33 https://github.com/pymupdf/PyMuPDF/wiki

3.9. Further Reading 13

https://github.com/pymupdf/PyMuPDF/wiki

PyMuPDF Documentation, Release 1.16.10

14 Chapter 3. Tutorial

CHAPTER

FOUR

COLLECTION OF RECIPES

A collection of recipes in “How-To” format for using PyMuPDF. We aim to extend this section over time. Where
appropriate we will refer to the corresponding Wiki37 pages, but some duplication may still occur.

4.1 Images

4.1.1 How to Make Images from Document Pages

This little script will take a document filename and generate a PNG file from each of its pages.

The document can be any supported type like PDF, XPS, etc.

The script works as a command line tool which expects the filename being supplied as a parameter. The generated
image files (1 per page) are stored in the directory of the script:

import sys, fitz # import the binding
fname = sys.argv[1] # get filename from command line
doc = fitz.open(fname) # open document
for page in doc: # iterate through the pages

pix = page.getPixmap(alpha = False) # render page to an image
pix.writePNG("page-%i.png" % page.number) # store image as a PNG

The script directory will now contain PNG image files named page-0.png, page-1.png, etc. Pictures have the dimension
of their pages, e.g. 596 x 842 pixels for an A4 portrait sized page. They will have a resolution of 96 dpi in x and y
dimension and have no transparency. You can change all that – for how to do do this, read the next sections.

4.1.2 How to Increase Image Resolution

The image of a document page is represented by a Pixmap, and the simplest way to create a pixmap is via method
Page.getPixmap().

This method has many options for influencing the result. The most important among them is the Matrix, which lets
you zoom, rotate, distort or mirror the outcome.

Page.getPixmap() by default will use the Identity matrix, which does nothing.

37 https://github.com/pymupdf/PyMuPDF/wiki

15

https://github.com/pymupdf/PyMuPDF/wiki

PyMuPDF Documentation, Release 1.16.10

In the following, we apply a zoom factor of 2 to each dimension, which will generate an image with a four times better
resolution for us (and also about 4 times the size):

zoom_x = 2.0 # horizontal zoom
zomm_y = 2.0 # vertical zoom
mat = fitz.Matrix(zoom_x, zomm_y) # zoom factor 2 in each dimension
pix = page.getPixmap(matrix = mat) # use 'mat' instead of the identity matrix

4.1.3 How to Create Partial Pixmaps (Clips)

You do not always need the full image of a page. This may be the case e.g. when you display the image in a GUI and
would like to zoom into a part of the page.

Let’s assume your GUI window has room to display a full document page, but you now want to fill this room with the
bottom right quarter of your page, thus using a four times better resolution.

To achieve this, we define a rectangle equal to the area we want to appear in the GUI and call it “clip”. One way of
constructing rectangles in PyMuPDF is by providing two diagonally opposite corners, which is what we are doing
here.

mat = fitz.Matrix(2, 2) # zoom factor 2 in each direction
rect = page.rect # the page rectangle
mp = rect.tl + (rect.br - rect.tl) * 0.5 # its middle point
clip = fitz.Rect(mp, rect.br) # the area we want
pix = page.getPixmap(matrix=mat, clip=clip)

In the above we construct clip by specifying two diagonally opposite points: the middle point mp of the page rectangle,
and its bottom right, rect.br.

4.1.4 How to Create or Suppress Annotation Images

Normally, the pixmap of a page also shows the page’s annotations. Occasionally, this may not be desireable.

To suppress the annotation images on a rendered page, just specify annots=False in Page.getPixmap().

16 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

You can also render annotations separately: Annot objects have their own Annot.getPixmap() method. The
resulting pixmap has the same dimensions as the annotation rectangle.

4.1.5 How to Extract Images: Non-PDF Documents

In contrast to the previous sections, this section deals with extracting images contained in documents, so they can be
displayed as part of one or more pages.

If you want recreate the original image in file form or as a memory area, you have basically two options:

1. Convert your document to a PDF, and then use one of the PDF-only extraction methods. This snippet will
convert a document to PDF:

>>> pdfbytes = doc.convertToPDF() # this a bytes object
>>> pdf = fitz.open("pdf", pdfbytes) # open it as a PDF document
>>> # now use 'pdf' like any PDF document

2. Use Page.getText() with the “dict” parameter. This will extract all text and images shown on the page,
formatted as a Python dictionary. Every image will occur in an image block, containing meta information and
the binary image data. For details of the dictionary’s structure, see TextPage. The method works equally well
for PDF files. This creates a list of all images shown on a page:

>>> d = page.getText("dict")
>>> blocks = d["blocks"]
>>> imgblocks = [b for b in blocks if b["type"] == 1]

Each item if “imgblocks” is a dictionary which looks like this:

{"type": 1, "bbox": (x0, y0, x1, y1), "width": w, "height": h, "ext": "png", "image":
→˓b"..."}

4.1.6 How to Extract Images: PDF Documents

Like any other “object” in a PDF, images are identified by a cross reference number (xref, an integer). If you know
this number, you have two ways to access the image’s data:

1. Create a Pixmap of the image with instruction pix = fitz.Pixmap(doc, xref). This method is very fast (single
digit micro-seconds). The pixmap’s properties (width, height, . . .) will reflect the ones of the image. In this
case there is no way to tell which image format the embedded original has.

2. Extract the image with img = doc.extractImage(xref). This is a dictionary containing the binary image data as
img[“image”]. A number of meta data are also provided – mostly the same as you would find in the pixmap
of the image. The major difference is string img[“ext”], which specifies the image format: apart from “png”,
strings like “jpeg”, “bmp”, “tiff”, etc. can also occur. Use this string as the file extension if you want to store
to disk. The execution speed of this method should be compared to the combined speed of the statements pix =
fitz.Pixmap(doc, xref);pix.getPNGData(). If the embedded image is in PNG format, the speed of Document.
extractImage() is about the same (and the binary image data are identical). Otherwise, this method is
thousands of times faster, and the image data is much smaller.

The question remains: “How do I know those ‘xref’ numbers of images?”. There are two answers to this:

4.1. Images 17

PyMuPDF Documentation, Release 1.16.10

a. “Inspect the page objects:” Loop through the items of Page.getImageList(). It is a list of list, and its
items look like [xref, smask, . . .], containing the xref of an image. This xref can then be used with one of
the above methods. Use this method for valid (undamaged) documents. Be wary however, that the same image
may be referenced multiple times (by different pages), so you might want to provide a mechanism avoiding
multiple extracts.

b. “No need to know:” Loop through the list of all xrefs of the document and perform a Document.
extractImage() for each one. If the returned dictionary is empty, then continue – this xref is no image.
Use this method if the PDF is damaged (unusable pages). Note that a PDF often contains “pseudo-images”
(“stencil masks”) with the special purpose of defining the transparency of some other image. You may want to
provide logic to exclude those from extraction. Also have a look at the next section.

For both extraction approaches, there exist ready-to-use general purpose scripts:

extract-imga.py38 extracts images page by page:

and extract-imgb.py39 extracts images by xref table:

4.1.7 How to Handle Stencil Masks

Some images in PDFs are accompanied by stencil masks. In their simplest form stencil masks represent alpha (trans-
parency) bytes stored as seperate images. In order to reconstruct the original of an image, which has a stencil mask, it

38 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/extract-imga.py
39 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/extract-imgb.py

18 Chapter 4. Collection of Recipes

https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/extract-imga.py
https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/extract-imgb.py

PyMuPDF Documentation, Release 1.16.10

must be “enriched” with transparency bytes taken from its stencil mask.

Whether an image does have such a stencil mask can be recognized in one of two ways in PyMuPDF:

1. An item of Document.getPageImageList() has the general format [xref, smask, . . .], where xref is the
image’s xref and smask, if positive, is the xref of a stencil mask.

2. The (dictionary) results of Document.extractImage() have a key “smask”, which also contains any
stencil mask’s xref if positive.

If smask == 0 then the image encountered via xref can be processed as it is.

To recover the original image using PyMuPDF, the procedure depicted as follows must be executed:

:: pix1 = fitz.Pixmap(doc, xref) # (1) pixmap of image w/o alpha pix2 = fitz.Pixmap(doc, smask) # (2) stencil pixmap
pix = fitz.Pixmap(pix1) # (3) copy of pix1, empty alpha channel added pix.setAlpha(pix2.samples) # (4) fill
alpha channel

Step (1) creates a pixmap of the “netto” image. Step (2) does the same with the stencil mask. Please note that the
Pixmap.samples attribute of pix2 contains the alpha bytes that must be stored in the final pixmap. This is what
happens in step (3) and (4).

The scripts extract-imga.py40, and extract-imgb.py41 above also contain this logic.

4.1.8 How to Make one PDF of all your Pictures (or Files)

We show here three scripts that take a list of (image and other) files and put them all in one PDF.

Method 1: Inserting Images as Pages

The first one converts each image to a PDF page with the same dimensions. The result will be a PDF with one page
per image. It will only work for supported image file formats:

import os, fitz
import PySimpleGUI as psg # for showing a progress bar
doc = fitz.open() # PDF with the pictures
imgdir = "D:/2012_10_05" # where the pics are
imglist = os.listdir(imgdir) # list of them
imgcount = len(imglist) # pic count

(continues on next page)

40 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/extract-imga.py
41 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/extract-imgb.py

4.1. Images 19

https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/extract-imga.py
https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/extract-imgb.py

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

for i, f in enumerate(imglist):
img = fitz.open(os.path.join(imgdir, f)) # open pic as document
rect = img[0].rect # pic dimension
pdfbytes = img.convertToPDF() # make a PDF stream
img.close() # no longer needed
imgPDF = fitz.open("pdf", pdfbytes) # open stream as PDF
page = doc.newPage(width = rect.width, # new page with ...

height = rect.height) # pic dimension
page.showPDFpage(rect, imgPDF, 0) # image fills the page
psg.EasyProgressMeter("Import Images", # show our progress

i+1, imgcount)

doc.save("all-my-pics.pdf")

This will generate a PDF only marginally larger than the combined pictures’ size. Some numbers on performance:

The above script needed about 1 minute on my machine for 149 pictures with a total size of 514 MB (and about the
same resulting PDF size).

Look here42 for a more complete source code: it offers a directory selection dialog and skips unsupported files and
non-file entries.

Note: We might have used Page.insertImage() instead of Page.showPDFpage(), and the result would
have been a similar looking file. However, depending on the image type, it may store images uncompressed. There-
fore, the save option deflate = True must be used to achieve a reasonable file size, which hugely increases the runtime
for large numbers of images. So this alternative cannot be recommended here.

Method 2: Embedding Files

The second script embeds arbitrary files – not only images. The resulting PDF will have just one (empty) page,
required for technical reasons. To later access the embedded files again, you would need a suitable PDF viewer that
can display and / or extract embedded files:

import os, fitz
import PySimpleGUI as psg # for showing progress bar
doc = fitz.open() # PDF with the pictures
imgdir = "D:/2012_10_05" # where my files are

(continues on next page)

42 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/all-my-pics-inserted.py

20 Chapter 4. Collection of Recipes

https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/all-my-pics-inserted.py

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

imglist = os.listdir(imgdir) # list of pictures
imgcount = len(imglist) # pic count
imglist.sort() # nicely sort them

for i, f in enumerate(imglist):
img = open(os.path.join(imgdir,f), "rb").read() # make pic stream
doc.embeddedFileAdd(img, f, filename=f, # and embed it

ufilename=f, desc=f)
psg.EasyProgressMeter("Embedding Files", # show our progress

i+1, imgcount)

page = doc.newPage() # at least 1 page is needed

doc.save("all-my-pics-embedded.pdf")

This is by far the fastest method, and it also produces the smallest possible output file size. The above pictures needed
20 seonds on my machine and yielded a PDF size of 510 MB. Look here43 for a more complete source code: it offers
a direcory selection dialog and skips non-file entries.

Method 3: Attaching Files

A third way to achieve this task is attaching files via page annotations see here44 for the complete source code.

This has a similar performance as the previous script and it also produces a similar file size. It will produce PDF pages
which show a ‘FileAttachment’ icon for each attached file.

43 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/all-my-pics-embedded.py
44 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/all-my-pics-attached.py

4.1. Images 21

https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/all-my-pics-embedded.py
https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/all-my-pics-attached.py

PyMuPDF Documentation, Release 1.16.10

Note: Both, the embed and the attach methods can be used for arbitrary files – not just images.

Note: We strongly recommend using the awesome package PySimpleGUI45 to display a progress meter for tasks that
may run for an extended time span. It’s pure Python, uses Tkinter (no additional GUI package) and requires just one
more line of code!

4.1.9 How to Create Vector Images

The usual way to create an image from a document page is Page.getPixmap(). A pixmap represents a raster
image, so you must decide on its quality (i.e. resolution) at creation time. It cannot be changed later.

PyMuPDF also offers a way to create a vector image of a page in SVG format (scalable vector graphics, defined in
XML syntax). SVG images remain precise across zooming levels (of course with the exception of any raster graphic
elements embedded therein).

Instruction svg = page.getSVGimage(matrix = fitz.Identity) delivers a UTF-8 string svg which can be stored with
extension “.svg”.

45 https://pypi.org/project/PySimpleGUI/

22 Chapter 4. Collection of Recipes

https://pypi.org/project/PySimpleGUI/

PyMuPDF Documentation, Release 1.16.10

4.1.10 How to Convert Images

Just as a feature among others, PyMuPDF’s image conversion is easy. It may avoid using other graphics packages like
PIL/Pillow in many cases.

Notwithstanding that interfacing with Pillow is almost trivial.

Input Formats Output Formats Description
BMP . Windows Bitmap
JPEG . Joint Photographic Experts Group
JXR . JPEG Extended Range
JPX . JPEG 2000
GIF . Graphics Interchange Format
TIFF . Tagged Image File Format
PNG PNG Portable Network Graphics
PNM PNM Portable Anymap
PGM PGM Portable Graymap
PBM PBM Portable Bitmap
PPM PPM Portable Pixmap
PAM PAM Portable Arbitrary Map
. PSD Adobe Photoshop Document
. PS Adobe Postscript

The general scheme is just the following two lines:

pix = fitz.Pixmap("input.xxx") # any supported input format
pix.writeImage("output.yyy") # any supported output format

Remarks

1. The input argument of fitz.Pixmap(arg) can be a file or a bytes / io.BytesIO object containing an image.

2. Instead of an output file, you can also create a bytes object via pix.getImageData(“yyy”) and pass this around.

3. As a matter of course, input and output formats must be compatible in terms of colorspace and transparency.
The Pixmap class has batteries included if adjustments are needed.

Note: Convert JPEG to Photoshop:

pix = fitz.Pixmap("myfamily.jpg")
pix.writeImage("myfamily.psd")

Note: Save to JPEG using PIL/Pillow:

from PIL import Image
pix = fitz.Pixmap(...)
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
img.save("output.jpg", "JPEG")

Note: Convert JPEG to Tkinter PhotoImage. Any RGB / no-alpha image works exactly the same. Conversion
to one of the Portable Anymap formats (PPM, PGM, etc.) does the trick, because they are supported by all Tkinter
versions:

4.1. Images 23

PyMuPDF Documentation, Release 1.16.10

if str is bytes: # this is Python 2!
import Tkinter as tk

else: # Python 3 or later!
import tkinter as tk

pix = fitz.Pixmap("input.jpg") # or any RGB / no-alpha image
tkimg = tk.PhotoImage(data=pix.getImageData("ppm"))

Note: Convert PNG with alpha to Tkinter PhotoImage. This requires removing the alpha bytes, before we can do
the PPM conversion:

if str is bytes: # this is Python 2!
import Tkinter as tk

else: # Python 3 or later!
import tkinter as tk

pix = fitz.Pixmap("input.png") # may have an alpha channel
if pix.alpha: # we have an alpha channel!

pix = fitz.Pixmap(pix, 0) # remove it
tkimg = tk.PhotoImage(data=pix.getImageData("ppm"))

4.1.11 How to Use Pixmaps: Glueing Images

This shows how pixmaps can be used for purely graphical, non-document purposes. The script reads an image file and
creates a new image which consist of 3 * 4 tiles of the original:

import fitz
src = fitz.Pixmap("img-7edges.png") # create pixmap from a picture
col = 3 # tiles per row
lin = 4 # tiles per column
tar_w = src.width * col # width of target
tar_h = src.height * lin # height of target

create target pixmap
tar_pix = fitz.Pixmap(src.colorspace, (0, 0, tar_w, tar_h), src.alpha)

now fill target with the tiles
for i in range(col):

src.x = src.width * i # modify input's x coord
for j in range(lin):

src.y = src.height * j # modify input's y coord
tar_pix.copyPixmap(src, src.irect) # copy input to new loc

tar_pix.writePNG("tar.png")

This is the input picture:

Here is the output:

24 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

4.1.12 How to Use Pixmaps: Making a Fractal

Here is another Pixmap example that creates Sierpinski’s Carpet – a fractal generalizing the Cantor Set to two
dimensions. Given a square carpet, mark its 9 sub-suqares (3 times 3) and cut out the one in the center. Treat each of
the remaining eight sub-squares in the same way, and continue ad infinitum. The end result is a set with area zero and
fractal dimension 1.8928. . .

This script creates a approximative PNG image of it, by going down to one-pixel granularity. To increase the image
precision, change the value of n (precision):

import fitz, time
if not list(map(int, fitz.VersionBind.split("."))) >= [1, 14, 8]:

raise SystemExit("need PyMuPDF v1.14.8 for this script")
n = 6 # depth (precision)
d = 3**n # edge length

t0 = time.perf_counter()
ir = (0, 0, d, d) # the pixmap rectangle

pm = fitz.Pixmap(fitz.csRGB, ir, False)
pm.setRect(pm.irect, (255,255,0)) # fill it with some background color

color = (0, 0, 255) # color to fill the punch holes

alternatively, define a 'fill' pixmap for the punch holes
this could be anything, e.g. some photo image ...
fill = fitz.Pixmap(fitz.csRGB, ir, False) # same size as 'pm'
fill.setRect(fill.irect, (0, 255, 255)) # put some color in

def punch(x, y, step):
"""Recursively "punch a hole" in the central square of a pixmap.

(continues on next page)

4.1. Images 25

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

Arguments are top-left coords and the step width.

Some alternative punching methods are commented out.
"""
s = step // 3 # the new step
iterate through the 9 sub-squares
the central one will be filled with the color
for i in range(3):

for j in range(3):
if i != j or i != 1: # this is not the central cube

if s >= 3: # recursing needed?
punch(x+i*s, y+j*s, s) # recurse

else: # punching alternatives are:
pm.setRect((x+s, y+s, x+2*s, y+2*s), color) # fill with a color
#pm.copyPixmap(fill, (x+s, y+s, x+2*s, y+2*s)) # copy from fill
#pm.invertIRect((x+s, y+s, x+2*s, y+2*s)) # invert colors

return

#==
main program
#==
now start punching holes into the pixmap
punch(0, 0, d)
t1 = time.perf_counter()
pm.writeImage("sierpinski-punch.png")
t2 = time.perf_counter()
print ("%g sec to create / fill the pixmap" % round(t1-t0,3))
print ("%g sec to save the image" % round(t2-t1,3))

The result should look something like this:

26 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

4.1.13 How to Interface with NumPy

This shows how to create a PNG file from a numpy array (several times faster than most other methods):

import numpy as np
import fitz
#==
create a fun-colored width * height PNG with fitz and numpy
#==
height = 150
width = 100
bild = np.ndarray((height, width, 3), dtype=np.uint8)

for i in range(height):
for j in range(width):

one pixel (some fun coloring)
bild[i, j] = [(i+j)%256, i%256, j%256]

samples = bytearray(bild.tostring()) # get plain pixel data from numpy array
pix = fitz.Pixmap(fitz.csRGB, width, height, samples, alpha=False)
pix.writePNG("test.png")

4.1.14 How to Add Images to a PDF Page

There are two methods to add images to a PDF page: Page.insertImage() and Page.showPDFpage(). Both
methods have things in common, but there also exist differences.

Criterion Page.insertImage() Page.showPDFpage()
displayable
content

image file, image in memory, pixmap PDF page

display reso-
lution

image resolution vectorized (except raster page content)

rotation multiple of 90 degrees any angle
clipping no (full image only) yes
keep aspect
ratio

yes (default option) yes (default option)

trans-
parency
(water
marking)

depends on image yes

location /
placement

scaled to fit target rectangle scaled to fit target rectangle

performance automatic prevention of duplicates;
MD5 calculation on every execution

automatic prevention of duplicates; faster than Page.
insertImage()

multi-page
image
support

no yes

ease of use simple, intuitive; performance consid-
erations apply for multiple insertions
of same image

simple, intuitive; usable for all document types (includ-
ing images!) after conversion to PDF via Document.
convertToPDF()

4.1. Images 27

PyMuPDF Documentation, Release 1.16.10

Basic code pattern for Page.insertImage(). Exactly one of the parameters filename / stream / pixmap must
be given:

page.insertImage(
rect, # where to place the image (rect-like)
filename=None, # image in a file
stream=None, # image in memory (bytes)
pixmap=None, # image from pixmap
rotate=0, # rotate (int, multiple of 90)
keep_proportion=True, # keep aspect ratio
overlay=True, # put in foreground

)

Basic code pattern for Page.showPDFpage(). Source and target PDF must be different Document objects (but
may be opened from the same file):

page.showPDFpage(
rect, # where to place the image (rect-like)
src, # source PDF
pno=0, # page number in source PDF
clip=None, # only display this area (rect-like)
rotate=0, # rotate (float, any value)
keep_proportion=True, # keep aspect ratio
overlay=True, # put in foreground

)

4.2 Text

4.2.1 How to Extract all Document Text

This script will take a document filename and generate a text file from all of its text.

The document can be any supported type like PDF, XPS, etc.

The script works as a command line tool which expects the document filename supplied as a parameter. It generates
one text file named “filename.txt” in the script directory. Text of pages is separated by a line “—–”:

import sys, fitz
fname = sys.argv[1] # get document filename
doc = fitz.open(fname) # open document
out = open(fname + ".txt", "wb") # open text output
for page in doc: # iterate the document pages

text = page.getText().encode("utf8") # get plain text (is in UTF-8)
out.write(text) # write text of page
out.write(bytes((12,))) # write page delimiter (form feed 0x0C)

out.close()

The output will be plain text as it is coded in the document. No effort is made to prettify in any way. Specifally for
PDF, this may mean output not in usual reading order, unexpected line breaks and so forth.

You have many options to cure this – see chapter Appendix 2: Details on Text Extraction. Among them are:

1. Extract text in HTML format and store it as a HTML document, so it can be viewed in any browser.

28 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

2. Extract text as a list of text blocks via Page.getText(“blocks”). Each item of this list contains position informa-
tion for its text, which can be used to establish a convenient reading order.

3. Extract a list of single words via Page.getText(“words”). Its items are words with position information. Use it
to determine text contained in a given rectangle – see next section.

See the following two section for examples and further explanations.

4.2.2 How to Extract Text from within a Rectangle

Please refer to the script textboxtract.py46.

It demonstrates ways to extract text contained in the following red rectangle,

by using more or less restrictive conditions to find the relevant words:

Select the words strictly contained in rectangle
--
Die Altersübereinstimmung deutete darauf hin,
engen, nur 50 Millionen Jahre großen
Gesteinshagel auf den Mond traf und dabei
hinterließ - einige größer als Frankreich.
es sich um eine letzte, infernalische Welle
Geburt des Sonnensystems. Daher tauften die
das Ereignis »lunare Katastrophe«. Später
die Bezeichnung Großes Bombardement durch.

Or, more forgiving, respectively:

Select the words intersecting the rectangle

Die Altersübereinstimmung deutete darauf hin, dass
einem engen, nur 50 Millionen Jahre großen Zeitfenster
ein Gesteinshagel auf den Mond traf und dabei unzählige
Krater hinterließ - einige größer als Frankreich. Offenbar
handelte es sich um eine letzte, infernalische Welle nach
der Geburt des Sonnensystems. Daher tauften die Caltech-

(continues on next page)

46 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/textboxtract.py

4.2. Text 29

https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/textboxtract.py

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

Forscher das Ereignis »lunare Katastrophe«. Später setzte
sich die Bezeichnung Großes Bombardement durch.

The latter output also includes words intersecting the rectangle.

What if your rectangle spans across more than one page? Follow this recipe:

• Create a common list of all words of all pages which your rectangle intersects.

• When adding word items to this common list, increase their y-coordinates by the accumulated height of all
previous pages.

4.2.3 How to Extract Text in Natural Reading Order

One of the common issues with PDF text extraction is, that text may not appear in any particular reading order.

Responsible for this effect is the PDF creator (software or a human). For example, page headers may have been
inserted in a separate step – after the document had been produced. In such a case, the header text will appear at
the end of a page text extraction (allthough it will be correctly shown by PDF viewer software). For example, the
following snippet will add some header and footer lines to an existing PDF:

doc = fitz.open("some.pdf")
header = "Header" # text in header
footer = "Page %i of %i" # text in footer
for page in doc:

page.insertText((50, 50), header) # insert header
page.insertText(# insert footer 50 points above page bottom

(50, page.rect.height - 50),
footer % (page.number + 1, len(doc)),

)

The text sequence extracted from a page modified in this way will look like this:

1. original text

2. header line

3. footer line

PyMuPDF has several means to re-establish some reading sequence or even to re-generate a layout close to the original.

As a starting point take the above mentioned script47 and then use the full page rectangle.

On rare occasions, when the PDF creator has been “over-creative”, extracted text does not even keep the correct
reading sequence of single letters: instead of the two words “DELUXE PROPERTY” you might sometimes get an
anagram, consisting of 8 words like “DEL”, “XE” , “P”, “OP”, “RTY”, “U”, “R” and “E”.

Such a PDF is also not searchable by all PDF viewers, but it is displayed correctly and looks harmless.

In those cases, the following function will help composing the original words of the page. The resulting list is also
searchable and can be used to deliver rectangles for the found text locations:

from operator import itemgetter
from itertools import groupby
import fitz

(continues on next page)

47 https://github.com/pymupdf/PyMuPDF/wiki/How-to-extract-text-from-a-rectangle

30 Chapter 4. Collection of Recipes

https://github.com/pymupdf/PyMuPDF/wiki/How-to-extract-text-from-a-rectangle

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

def recover(words, rect):
""" Word recovery.

Notes:
Method 'getTextWords()' does not try to recover words, if their single
letters do not appear in correct lexical order. This function steps in
here and creates a new list of recovered words.

Args:
words: list of words as created by 'getTextWords()'
rect: rectangle to consider (usually the full page)

Returns:
List of recovered words. Same format as 'getTextWords', but left out
block, line and word number - a list of items of the following format:
[x0, y0, x1, y1, "word"]

"""
build my sublist of words contained in given rectangle
mywords = [w for w in words if fitz.Rect(w[:4]) in rect]

sort the words by lower line, then by word start coordinate
mywords.sort(key=itemgetter(3, 0)) # sort by y1, x0 of word rectangle

build word groups on same line
grouped_lines = groupby(mywords, key=itemgetter(3))

words_out = [] # we will return this

iterate through the grouped lines
for each line coordinate ("_"), the list of words is given
for _, words_in_line in grouped_lines:

for i, w in enumerate(words_in_line):
if i == 0: # store first word

x0, y0, x1, y1, word = w[:5]
continue

r = fitz.Rect(w[:4]) # word rect

Compute word distance threshold as 20% of width of 1 letter.
So we should be safe joining text pieces into one word if they
have a distance shorter than that.
threshold = r.width / len(w[4]) / 5
if r.x0 <= x1 + threshold: # join with previous word

word += w[4] # add string
x1 = r.x1 # new end-of-word coordinate
y0 = max(y0, r.y0) # extend word rect upper bound
continue

now have a new word, output previous one
words_out.append([x0, y0, x1, y1, word])

store the new word
x0, y0, x1, y1, word = w[:5]

output word waiting for completion
words_out.append([x0, y0, x1, y1, word])

return words_out
(continues on next page)

4.2. Text 31

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

def search_for(text, words):
""" Search for text in items of list of words

Notes:
Can be adjusted / extended in obvious ways, e.g. using regular
expressions, or being case insensitive, or only looking for complete
words, etc.

Args:
text: string to be searched for
words: list of items in format delivered by 'getTextWords()'.

Returns:
List of rectangles, one for each found locations.

"""
rect_list = []
for w in words:

if text in w[4]:
rect_list.append(fitz.Rect(w[:4]))

return rect_list

4.2.4 How to Extract Tables from Documents

If you see a table in a document, you are not normally looking at something like an embedded Excel or other identi-
fyable object. It usually is just text, formatted to appear as appropriate.

Extracting a tabular data from such a page area therefore means that you must find a way to (1) graphically indicate
table and column borders, and (2) then extract text based on this information.

The wxPython GUI script wxTableExtract.py48 strives to exactly do that. You may want to have a look at it and adjust
it to your liking.

4.2.5 How to Search for and Mark Text

There is a standard search function to search for arbitrary text on a page: Page.searchFor(). It returns a list of
Rect objects which surround a found occurrence. These rectangles can for example be used to automatically insert
annotations which visibly mark the found text.

This method has advantages and drawbacks. Pros are

• the search string can contain blanks and wrap across lines

• upper or lower cases are treated equal

• return may also be a list of Quad objects to precisely locate text that is not parallel to either axis.

Disadvantages:

• you cannot determine the number of found items beforehand: if hit_max items are returned you do not know
whether you have missed any.

But you have other options:
48 https://github.com/pymupdf/PyMuPDF/blob/master/examples/wxTableExtract.py

32 Chapter 4. Collection of Recipes

https://github.com/pymupdf/PyMuPDF/blob/master/examples/wxTableExtract.py

PyMuPDF Documentation, Release 1.16.10

import sys
import fitz

def mark_word(page, text):
"""Underline each word that contains 'text'.
"""
found = 0
wlist = page.getTextWords() # make the word list
for w in wlist: # scan through all words on page

if text in w[4]: # w[4] is the word's string
found += 1 # count
r = fitz.Rect(w[:4]) # make rect from word bbox
page.addUnderlineAnnot(r) # underline

return found

fname = sys.argv[1] # filename
text = sys.argv[2] # search string
doc = fitz.open(fname)

print("underlining words containing '%s' in document '%s'" % (word, doc.name))

new_doc = False # indicator if anything found at all

for page in doc: # scan through the pages
found = mark_word(page, text) # mark the page's words
if found: # if anything found ...

new_doc = True
print("found '%s' %i times on page %i" % (text, found, page.number + 1))

if new_doc:
doc.save("marked-" + doc.name)

This script uses Page.getTextWords() to look for a string, handed in via cli parameter. This method separates a
page’s text into “words” using spaces and line breaks as delimiters. Therefore the words in this lists contain no spaces
or line breaks. Further remarks:

• If found, the complete word containing the string is marked (underlined) – not only the search string.

• The search string may not contain spaces or other white space.

• As shown here, upper / lower cases are respected. But this can be changed by using the string method lower()
(or even regular expressions) in function mark_word.

• There is no upper limit: all occurrences will be detected.

• You can use anything to mark the word: ‘Underline’, ‘Highlight’, ‘StrikeThrough’ or ‘Square’ annotations, etc.

• Here is an example snippet of a page of this manual, where “MuPDF” has been used as the search string. Note
that all strings containing “MuPDF” have been completely underlined (not just the search string).

4.2. Text 33

PyMuPDF Documentation, Release 1.16.10

4.2.6 How to Analyze Font Characteristics

To analyze the characteristics of text in a PDF use this elementary script as a starting point:

import fitz

def flags_decomposer(flags):
"""Make font flags human readable."""
l = []
if flags & 2 ** 0:

l.append("superscript")
if flags & 2 ** 1:

l.append("italic")
if flags & 2 ** 2:

l.append("serifed")
else:

l.append("sans")
if flags & 2 ** 3:

l.append("monospaced")
else:

l.append("proportional")
if flags & 2 ** 4:

l.append("bold")
return ", ".join(l)

doc = fitz.open("text-tester.pdf")
page = doc[0]

read page text as a dictionary, suppressing extra spaces in CJK fonts
blocks = page.getText("dict", flags=11)["blocks"]
for b in blocks: # iterate through the text blocks

for l in b["lines"]: # iterate through the text lines
for s in l["spans"]: # iterate through the text spans

print("")
font_properties = "Font: '%s' (%s), size %g, color #%06x" % (

s["font"], # font name
flags_decomposer(s["flags"]), # readable font flags

(continues on next page)

34 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

s["size"], # font size
s["color"], # font color

)
print("Text: '%s'" % s["text"]) # simple print of text
print(font_properties)

Here is the PDF page and the script output:

4.2.7 How to Insert Text

PyMuPDF provides ways to insert text on new or existing PDF pages with the following features:

• choose the font, including built-in fonts and fonts that are available as files

• choose text characteristics like bold, italic, font size, font color, etc.

• position the text in multiple ways:

– either as simple line-oriented output starting at a certain point,

– or fitting text in a box provided as a rectangle, in which case text alignment choices are also available,

– choose whether text should be put in foreground (overlay existing content),

– all text can be arbitrarily “morphed”, i.e. its appearance can be changed via a Matrix, to achieve effects
like scaling, shearing or mirroring,

– independently from morphing and in addition to that, text can be rotated by integer multiples of 90 degrees.

All of the above is provided by three basic Page, resp. Shape methods:

4.2. Text 35

PyMuPDF Documentation, Release 1.16.10

• Page.insertFont() – install a font for the page for later reference. The result is reflected in the output of
Document.getPageFontList(). The font can be:

– provided as a file,

– already present somewhere in this or another PDF, or

– be a built-in font.

• Page.insertText() – write some lines of text. Internally, this uses Shape.insertText().

• Page.insertTextbox() – fit text in a given rectangle. Here you can choose text alignment features (left,
right, centered, justified) and you keep control as to whether text actually fits. Internally, this uses Shape.
insertTextbox().

Note: Both text insertion methods automatically install the font as necessary.

4.2.7.1 How to Write Text Lines

Output some text lines on a page:

import fitz
doc = fitz.open(...) # new or existing PDF
page = doc.newPage() # new or existing page via doc[n]
p = fitz.Point(50, 72) # start point of 1st line

text = "Some text,\nspread across\nseveral lines."
the same result is achievable by
text = ["Some text", "spread across", "several lines."]

rc = page.insertText(p, # bottom-left of 1st char
text, # the text (honors '\n')
fontname = "helv", # the default font
fontsize = 11, # the default font size
rotate = 0, # also available: 90, 180, 270
)

print("%i lines printed on page %i." % (rc, page.number))

doc.save("text.pdf")

With this method, only the number of lines will be controlled to not go beyond page height. Surplus lines will not be
written and the number of actual lines will be returned. The calculation uses 1.2 * fontsize as the line height and 36
points (0.5 inches) as bottom margin.

Line width is ignored. The surplus part of a line will simply be invisible.

However, for built-in fonts there are ways to calculate the line width beforehand - see getTextlength().

Here is another example. It inserts 4 text strings using the four different rotation options, and thereby explains, how
the text insertion point must be chosen to achieve the desired result:

import fitz
doc = fitz.open()
page = doc.newPage()
the text strings, each having 3 lines
text1 = "rotate=0\nLine 2\nLine 3"
text2 = "rotate=90\nLine 2\nLine 3"

(continues on next page)

36 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

text3 = "rotate=-90\nLine 2\nLine 3"
text4 = "rotate=180\nLine 2\nLine 3"
red = (1, 0, 0) # the color for the red dots
the insertion points, each with a 25 pix distance from the corners
p1 = fitz.Point(25, 25)
p2 = fitz.Point(page.rect.width - 25, 25)
p3 = fitz.Point(25, page.rect.height - 25)
p4 = fitz.Point(page.rect.width - 25, page.rect.height - 25)
create a Shape to draw on
shape = page.newShape()

draw the insertion points as red, filled dots
shape.drawCircle(p1,1)
shape.drawCircle(p2,1)
shape.drawCircle(p3,1)
shape.drawCircle(p4,1)
shape.finish(width=0.3, color=red, fill=red)

insert the text strings
shape.insertText(p1, text1)
shape.insertText(p3, text2, rotate=90)
shape.insertText(p2, text3, rotate=-90)
shape.insertText(p4, text4, rotate=180)

store our work to the page
shape.commit()
doc.save(...)

This is the result:

4.2.7.2 How to Fill a Text Box

This script fills 4 different rectangles with text, each time choosing a different rotation value:

import fitz
doc = fitz.open(...) # new or existing PDF
page = doc.newPage() # new page, or choose doc[n]

(continues on next page)

4.2. Text 37

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

r1 = fitz.Rect(50,100,100,150) # a 50x50 rectangle
disp = fitz.Rect(55, 0, 55, 0) # add this to get more rects
r2 = r1 + disp # 2nd rect
r3 = r1 + disp * 2 # 3rd rect
r4 = r1 + disp * 3 # 4th rect
t1 = "text with rotate = 0." # the texts we will put in
t2 = "text with rotate = 90."
t3 = "text with rotate = -90."
t4 = "text with rotate = 180."
red = (1,0,0) # some colors
gold = (1,1,0)
blue = (0,0,1)
"""We use a Shape object (something like a canvas) to output the text and
the rectangles surounding it for demonstration.
"""
shape = page.newShape() # create Shape
shape.drawRect(r1) # draw rectangles
shape.drawRect(r2) # giving them
shape.drawRect(r3) # a yellow background
shape.drawRect(r4) # and a red border
shape.finish(width = 0.3, color = red, fill = gold)
Now insert text in the rectangles. Font "Helvetica" will be used
by default. A return code rc < 0 indicates insufficient space (not checked here).
rc = shape.insertTextbox(r1, t1, color = blue)
rc = shape.insertTextbox(r2, t2, color = blue, rotate = 90)
rc = shape.insertTextbox(r3, t3, color = blue, rotate = -90)
rc = shape.insertTextbox(r4, t4, color = blue, rotate = 180)
shape.commit() # write all stuff to page /Contents
doc.save("...")

Several default values were used above: font “Helvetica”, font size 11 and text alignment “left”. The result will look
like this:

4.2.7.3 How to Use Non-Standard Encoding

Since v1.14, MuPDF allows Greek and Russian encoding variants for the Base14_Fonts. In PyMuPDF this is
supported via an additional encoding argument. Effectively, this is relevant for Helvetica, Times-Roman and Courier
(and their bold / italic forms) and characters outside the ASCII code range only. Elsewhere, the argument is ignored.
Here is how to request Russian encoding with the standard font Helvetica:

page.insertText(point, russian_text, encoding=fitz.TEXT_ENCODING_CYRILLIC)

The valid encoding values are TEXT_ENCODING_LATIN (0), TEXT_ENCODING_GREEK (1), and
TEXT_ENCODING_CYRILLIC (2, Russian) with Latin being the default. Encoding can be specified by all rele-
vant font and text insertion methods.

By the above statement, the fontname helv is automatically connected to the Russian font variant of Helvetica. Any
subsequent text insertion with this fontname will use the Russian Helvetica encoding.

38 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

If you change the fontname just slightly, you can also achieve an encoding “mixture” for the same base font on the
same page:

import fitz
doc=fitz.open()
page = doc.newPage()
shape = page.newShape()
t="Sômé tèxt wìth nöñ-Lâtîn characterß."
shape.insertText((50,70), t, fontname="helv", encoding=fitz.TEXT_ENCODING_LATIN)
shape.insertText((50,90), t, fontname="HElv", encoding=fitz.TEXT_ENCODING_GREEK)
shape.insertText((50,110), t, fontname="HELV", encoding=fitz.TEXT_ENCODING_CYRILLIC)
shape.commit()
doc.save("t.pdf")

The result:

The snippet above indeed leads to three different copies of the Helvetica font in the PDF. Each copy is uniquely
idetified (and referenceable) by using the correct upper-lower case spelling of the reserved word “helv”:

for f in doc.getPageFontList(0): print(f)

[6, 'n/a', 'Type1', 'Helvetica', 'helv', 'WinAnsiEncoding']
[7, 'n/a', 'Type1', 'Helvetica', 'HElv', 'WinAnsiEncoding']
[8, 'n/a', 'Type1', 'Helvetica', 'HELV', 'WinAnsiEncoding']

4.3 Annotations

In v1.14.0, annotation handling has been considerably extended:

• New annotation type support for ‘Ink’, ‘Rubber Stamp’ and ‘Squiggly’ annotations. Ink annots simulate hand-
writings by combining one or more lists of interconnected points. Stamps are intended to visuably inform about
a document’s status or intended usage (like “draft”, “confidential”, etc.). ‘Squiggly’ is a text marker annot,
which underlines selected text with a zigzagged line.

• Extended ‘FreeText’ support:

1. all characters from the Latin character set are now available,

2. colors of text, rectangle background and rectangle border can be independently set

3. text in rectangle can be rotated by either +90 or -90 degrees

4. text is automatically wrapped (made multi-line) in available rectangle

5. all Base-14 fonts are now available (normal variants only, i.e. no bold, no italic).

• MuPDF now supports line end icons for ‘Line’ annots (only). PyMuPDF supported that in v1.13.x already –
and for (almost) the full range of applicable types. So we adjusted the appearance of ‘Polygon’ and ‘PolyLine’
annots to closely resemble the one of MuPDF for ‘Line’.

4.3. Annotations 39

PyMuPDF Documentation, Release 1.16.10

• MuPDF now provides its own annotation icons where relevant. PyMuPDF switched to using them (for ‘FileAt-
tachment’ and ‘Text’ [“sticky note”] so far).

• MuPDF now also supports ‘Caret’, ‘Movie’, ‘Sound’ and ‘Signature’ annotations, which we may include in
PyMuPDF at some later time.

4.3.1 How to Add and Modify Annotations

In PyMuPDF, new annotations are added via Page methods. To keep code duplication effort small, we only offer a
minimal set of options here. For example, to add a ‘Circle’ annotation, only the containing rectangle can be specified.
The result is a circle (or ellipsis) with white interior, black border and a line width of 1, exactly fitting into the rectangle.
To adjust the annot’s appearance, Annot methods must then be used. After having made all required changes, the
annot’s Annot.update() methods must be invoked to finalize all your changes.

As an overview for these capabilities, look at the following script that fills a PDF page with most of the available
annotations. Look in the next sections for more special situations:

-*- coding: utf-8 -*-
from __future__ import print_function
import sys

import fitz

print(fitz.__doc__)
if fitz.VersionBind.split(".") < ["1", "16", "0"]:

sys.exit("PyMuPDF v1.16.0+ is needed.")
"""

Demo script showing how annotations can be added to a PDF using PyMuPDF.

It contains the following annotation types:
Text ("sticky note"), FreeText, text markers (underline, strike-out,
highlight), Circle, Square, Line, PolyLine, Polygon, FileAttachment and Stamp.

Dependencies

PyMuPDF v1.16.0

"""
text = "text in line\ntext in line\ntext in line\ntext in line"
red = (1, 0, 0)
blue = (0, 0, 1)
gold = (1, 1, 0)
green = (0, 1, 0)

displ = fitz.Rect(0, 50, 0, 50)
r = fitz.Rect(72, 100, 220, 135)
t1 = u"têxt üsès Lätiñ charß,\nEUR: C, mu: µ, super scripts: 23!"

def print_descr(rect, annot):
"""Print a short description to the right of an annot rect."""
annot.parent.insertText(

rect.br + (10, -5), "'%s' annotation" % annot.type[1], color=red
)

(continues on next page)

40 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

doc = fitz.open()
page = doc.newPage()

annot = page.addCaretAnnot(r.tl) # 'Caret'
print_descr(annot.rect, annot)

r = r + displ
annot = page.addFreetextAnnot(# 'FreeText'

r, t1, fontsize=10, rotate=90, text_color=blue, fill_color=gold
)
annot.setBorder(width=0.3, dashes=[2])
annot.update()

print_descr(annot.rect, annot)
r = annot.rect + displ

annot = page.addTextAnnot(r.tl, t1)
print_descr(annot.rect, annot)

#--
prepare insertion of 4 text highlight annotations
#--
pos = annot.rect.tl + displ.tl
1. insert 4 rotated text lines
page.insertText(pos, text, fontsize=11, morph=(pos, fitz.Matrix(-15)))
2. search text to get the quads
rl = page.searchFor("text in line", quads=True)
r0 = rl[0] # these are the 4 quads
r1 = rl[1]
r2 = rl[2]
r3 = rl[3]
annot = page.addHighlightAnnot(r0)
need to convert quad to rect for descriptive text ...
print_descr(r0.rect, annot)

annot = page.addStrikeoutAnnot(r1)
print_descr(r1.rect, annot)

annot = page.addUnderlineAnnot(r2)
print_descr(r2.rect, annot)

annot = page.addSquigglyAnnot(r3)
print_descr(r3.rect, annot)
end of text highlight annot code
#--

r = r3.rect + displ
annot = page.addPolylineAnnot([r.bl, r.tr, r.br, r.tl]) # 'Polyline'
annot.setBorder(width=0.3, dashes=[2])
annot.setColors(stroke=blue, fill=gold)
annot.setLineEnds(fitz.PDF_ANNOT_LE_CLOSED_ARROW,

fitz.PDF_ANNOT_LE_R_CLOSED_ARROW)
annot.update()
print_descr(annot.rect, annot)

r += displ
(continues on next page)

4.3. Annotations 41

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

annot = page.addPolygonAnnot([r.bl, r.tr, r.br, r.tl]) # 'Polygon'
annot.setBorder(width=0.3, dashes=[2])
annot.setColors(stroke=blue, fill=gold)
annot.setLineEnds(fitz.PDF_ANNOT_LE_DIAMOND,

fitz.PDF_ANNOT_LE_CIRCLE)
annot.update()
print_descr(annot.rect, annot)

r += displ
annot = page.addLineAnnot(r.tr, r.bl) # 'Line'
annot.setBorder(width=0.3, dashes=[2])
annot.setColors(stroke=blue, fill=gold)
annot.setLineEnds(fitz.PDF_ANNOT_LE_DIAMOND,

fitz.PDF_ANNOT_LE_CIRCLE)
annot.update()
print_descr(annot.rect, annot)

r += displ
annot = page.addRectAnnot(r) # 'Square'
annot.setBorder(width=1, dashes=[1, 2])
annot.setColors(stroke=blue, fill=gold)
annot.setOpacity(0.5)
annot.update()
print_descr(annot.rect, annot)

r += displ
annot = page.addCircleAnnot(r) # 'Circle'
annot.setBorder(width=0.3, dashes=[2])
annot.setColors(stroke=blue, fill=gold)
annot.update()
print_descr(annot.rect, annot)

r += displ
annot = page.addFileAnnot(r.tl, # 'FileAttachment'

b"just anything for testing",
"testdata.txt")

print_descr(annot.rect, annot)

r += displ
annot = page.addStampAnnot(r, stamp=10) # 'Stamp'
annot.setColors(stroke=green)
annot.update()
print_descr(annot.rect, annot)

doc.save("new-annots.pdf")

This script should lead to the following output:

42 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

4.3.2 How to Mark Text

This script searches for text and marks it:

4.3. Annotations 43

PyMuPDF Documentation, Release 1.16.10

-*- coding: utf-8 -*-
import fitz

the document to annotate
doc = fitz.open("tilted-text.pdf")

the text to be marked
t = "¡La práctica hace el campeón!"

work with first page only
page = doc[0]

get list of text locations
we use "quads", not rectangles because text may be tilted!
rl = page.searchFor(t, quads = True)

mark all found quads with one annotation
page.addSquigglyAnnot(rl)

save to a new PDF
doc.save("a-squiggly.pdf")

The result looks like this:

4.3.3 How to Use FreeText

This script shows a couple of possibilities for ‘FreeText’ annotations:

-*- coding: utf-8 -*-
import fitz

some colors
blue = (0,0,1)
green = (0,1,0)
red = (1,0,0)

(continues on next page)

44 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

gold = (1,1,0)

a new PDF with 1 page
doc = fitz.open()
page = doc.newPage()

3 rectangles, same size, abvove each other
r1 = fitz.Rect(100,100,200,150)
r2 = r1 + (0,75,0,75)
r3 = r2 + (0,75,0,75)

the text, Latin alphabet
t = "¡Un pequeño texto para practicar!"

add 3 annots, modify the last one somewhat
a1 = page.addFreetextAnnot(r1, t, color=red)
a2 = page.addFreetextAnnot(r2, t, fontname="Ti", color=blue)
a3 = page.addFreetextAnnot(r3, t, fontname="Co", color=blue, rotate=90)
a3.setBorder(width=0)
a3.update(fontsize=8, fill_color=gold)

save the PDF
doc.save("a-freetext.pdf")

The result looks like this:

4.3.4 How to Use Ink Annotations

Ink annotations are used to contain freehand scribblings. A typical example maybe an image of your signature con-
sisting of first name and last name. Technically an ink annotation is implemented as a list of lists of points. Each point
list is regarded as a continuous line connecting the points. Different point lists represent indepndent line segments of
the annotation.

The following script creates an ink annotation with two mathematical curves (sine and cosine function graphs) as line
segments:

4.3. Annotations 45

PyMuPDF Documentation, Release 1.16.10

import math
import fitz

#--
preliminary stuff: create function value lists for sine and cosine
#--
w360 = math.pi * 2 # go through full circle
deg = w360 / 360 # 1 degree as radiants
rect = fitz.Rect(100,200, 300, 300) # use this rectangle
first_x = rect.x0 # x starts from left
first_y = rect.y0 + rect.height / 2. # rect middle means y = 0
x_step = rect.width / 360 # rect width means 360 degrees
y_scale = rect.height / 2. # rect height means 2
sin_points = [] # sine values go here
cos_points = [] # cosine values go here
for x in range(362): # now fill in the values

x_coord = x * x_step + first_x # current x coordinate
y = -math.sin(x * deg) # sine
p = (x_coord, y * y_scale + first_y) # corresponding point
sin_points.append(p) # append
y = -math.cos(x * deg) # cosine
p = (x_coord, y * y_scale + first_y) # corresponding point
cos_points.append(p) # append

#--
create the document with one page
#--
doc = fitz.open() # make new PDF
page = doc.newPage() # give it a page

#--
add the Ink annotation, consisting of 2 curve segments
#--
annot = page.addInkAnnot((sin_points, cos_points))
let it look a little nicer
annot.setBorder(width=0.3, dashes=[1,]) # line thickness, some dashing
annot.setColors(stroke=(0,0,1)) # make the lines blue
annot.update() # update the appearance

page.drawRect(rect, width=0.3) # only to demonstrate we did OK

doc.save("a-inktest.pdf")

This is the result:

46 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

4.4 Drawing and Graphics

PDF files support elementary drawing operations as part of their syntax. This includes basic geometrical objects like
lines, curves, circles, rectangles including specifying colors.

The syntax for such operations is defined in “A Operator Summary” on page 985 of the Adobe PDF Reference 1.7.
Specifying these operators for a PDF page happens in its contents objects.

PyMuPDF implements a large part of the available features via its Shape class, which is comparable to notions like
“canvas” in other packages (e.g. reportlab49).

A shape is always created as a child of a page, usually with an instruction like shape = page.newShape(). The
class defines numerous methods that perform drawing operations on the page’s area. For example, last_point =
shape.drawRect(rect) draws a rectangle along the borders of a suitably defined rect = fitz.Rect(. . .).

The returned last_point always is the Point where drawing operation ended (“last point”). Every such elementary
drawing requires a subsequent Shape.finish() to “close” it, but there may be multiple drawings which have one
common finish() method.

In fact, Shape.finish() defines a group of preceding draw operations to form one – potentially rather complex –
graphics object. PyMuPDF provides several predefined graphics in shapes_and_symbols.py50 which demonstrate how
this works.

If you import this script, you can also directly use its graphics as in the following exmple:

-*- coding: utf-8 -*-
"""
Created on Sun Dec 9 08:34:06 2018

@author: Jorj
@license: GNU GPL 3.0+

Create a list of available symbols defined in shapes_and_symbols.py

This also demonstrates an example usage: how these symbols could be used
as bullet-point symbols in some text.

"""

import fitz
import shapes_and_symbols as sas

list of available symbol functions and their descriptions
tlist = [

(sas.arrow, "arrow (easy)"),
(sas.caro, "caro (easy)"),
(sas.clover, "clover (easy)"),
(sas.diamond, "diamond (easy)"),
(sas.dontenter, "do not enter (medium)"),
(sas.frowney, "frowney (medium)"),
(sas.hand, "hand (complex)"),
(sas.heart, "heart (easy)"),
(sas.pencil, "pencil (very complex)"),
(sas.smiley, "smiley (easy)"),
]

(continues on next page)

49 https://pypi.org/project/reportlab/
50 https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/shapes_and_symbols.py

4.4. Drawing and Graphics 47

https://pypi.org/project/reportlab/
https://github.com/JorjMcKie/PyMuPDF-Utilities/blob/master/shapes_and_symbols.py

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

r = fitz.Rect(50, 50, 100, 100) # first rect to contain a symbol
d = fitz.Rect(0, r.height + 10, 0, r.height + 10) # displacement to next ret
p = (15, -r.height * 0.2) # starting point of explanation text
rlist = [r] # rectangle list

for i in range(1, len(tlist)): # fill in all the rectangles
rlist.append(rlist[i-1] + d)

doc = fitz.open() # create empty PDF
page = doc.newPage() # create an empty page
shape = page.newShape() # start a Shape (canvas)

for i, r in enumerate(rlist):
tlist[i][0](shape, rlist[i]) # execute symbol creation
shape.insertText(rlist[i].br + p, # insert description text

tlist[i][1], fontsize=r.height/1.2)

store everything to the page's /Contents object
shape.commit()

import os
scriptdir = os.path.dirname(__file__)
doc.save(os.path.join(scriptdir, "symbol-list.pdf")) # save the PDF

This is the script’s outcome:

48 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

4.5 Multiprocessing

MuPDF has no integrated support for threading - they call themselves “threading-agnostic”. While there do exist
tricky possibilities to still use threading with MuPDF, the baseline consequence for PyMuPDF is:

No Python threading support.

Using PyMuPDF in a Python threading environment will lead to blocking effects for the main thread.

However, there exists the option to use Python’s multiprocessing module in a variety of ways.

If you are looking to speed up page-oriented processing for a large document, use this script as a starting point. It
should be at least twice as fast as the corresponding sequential processing.

"""
Demonstrate the use of multiprocessing with PyMuPDF.

Depending on the number of CPUs, the document is divided in page ranges.
Each range is then worked on by one process.
The type of work would typically be text extraction or page rendering. Each
process must know where to put its results, because this processing pattern
does not include inter-process communication or data sharing.

Compared to sequential processing, speed improvements in range of 100% (ie.
twice as fast) or better can be expected.
"""
from __future__ import print_function, division
import sys
import os
import time
from multiprocessing import Pool, cpu_count
import fitz

choose a version specific timer function (bytes == str in Python 2)
mytime = time.clock if str is bytes else time.perf_counter

def render_page(vector):
""" Render a page range of a document.

Notes:
The PyMuPDF document cannot be part of the argument, because that
cannot be pickled. So we are being passed in just its filename.
This is no performance issue, because we are a separate process and
need to open the document anyway.
Any page-specific function can be processed here - rendering is just
an example - text extraction might be another.
The work must however be self-contained: no inter-process communication
or synchronization is possible with this design.
Care must also be taken with which parameters are contained in the
argument, because it will be passed in via pickling by the Pool class.
So any large objects will increase the overall duration.

Args:
vector: a list containing required parameters.

"""
recreate the arguments
idx = vector[0] # this is the segment number we have to process
cpu = vector[1] # number of CPUs

(continues on next page)

4.5. Multiprocessing 49

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

filename = vector[2] # document filename
mat = vector[3] # the matrix for rendering
doc = fitz.open(filename) # open the document
num_pages = len(doc) # get number of pages

pages per segment: make sure that cpu * seg_size >= num_pages!
seg_size = int(num_pages / cpu + 1)
seg_from = idx * seg_size # our first page number
seg_to = min(seg_from + seg_size, num_pages) # last page number

for i in range(seg_from, seg_to): # work through our page segment
page = doc[i]
page.getText("rawdict") # use any page-related type of work here, eg
pix = page.getPixmap(alpha=False, matrix=mat)
store away the result somewhere ...
pix.writePNG("p-%i.png" % i)

print("Processed page numbers %i through %i" % (seg_from, seg_to - 1))

if __name__ == "__main__":
t0 = mytime() # start a timer
filename = sys.argv[1]
mat = fitz.Matrix(0.2, 0.2) # the rendering matrix: scale down to 20%
cpu = cpu_count()

make vectors of arguments for the processes
vectors = [(i, cpu, filename, mat) for i in range(cpu)]
print("Starting %i processes for '%s'." % (cpu, filename))

pool = Pool() # make pool of 'cpu_count()' processes
pool.map(render_page, vectors, 1) # start processes passing each a vector

t1 = mytime() # stop the timer
print("Total time %g seconds" % round(t1 - t0, 2))

Here is a more complex example involving inter-process communication between a main process (showing a GUI)
and a child process doing PyMuPDF access to a document.

"""
Created on 2019-05-01

@author: yinkaisheng@live.com
@copyright: 2019 yinkaisheng@live.com
@license: GNU GPL 3.0+

Demonstrate the use of multiprocessing with PyMuPDF

This example shows some more advanced use of multiprocessing.
The main process show a Qt GUI and establishes a 2-way communication with
another process, which accesses a supported document.
"""
import os
import sys
import time
import multiprocessing as mp

(continues on next page)

50 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

import queue
import fitz
from PyQt5 import QtCore, QtGui, QtWidgets

my_timer = time.clock if str is bytes else time.perf_counter

class DocForm(QtWidgets.QWidget):
def __init__(self):

super().__init__()
self.process = None
self.queNum = mp.Queue()
self.queDoc = mp.Queue()
self.pageCount = 0
self.curPageNum = 0
self.lastDir = ""
self.timerSend = QtCore.QTimer(self)
self.timerSend.timeout.connect(self.onTimerSendPageNum)
self.timerGet = QtCore.QTimer(self)
self.timerGet.timeout.connect(self.onTimerGetPage)
self.timerWaiting = QtCore.QTimer(self)
self.timerWaiting.timeout.connect(self.onTimerWaiting)
self.initUI()

def initUI(self):
vbox = QtWidgets.QVBoxLayout()
self.setLayout(vbox)

hbox = QtWidgets.QHBoxLayout()
self.btnOpen = QtWidgets.QPushButton("OpenDocument", self)
self.btnOpen.clicked.connect(self.openDoc)
hbox.addWidget(self.btnOpen)

self.btnPlay = QtWidgets.QPushButton("PlayDocument", self)
self.btnPlay.clicked.connect(self.playDoc)
hbox.addWidget(self.btnPlay)

self.btnStop = QtWidgets.QPushButton("Stop", self)
self.btnStop.clicked.connect(self.stopPlay)
hbox.addWidget(self.btnStop)

self.label = QtWidgets.QLabel("0/0", self)
self.label.setFont(QtGui.QFont("Verdana", 20))
hbox.addWidget(self.label)

vbox.addLayout(hbox)

self.labelImg = QtWidgets.QLabel("Document", self)
sizePolicy = QtWidgets.QSizePolicy(

QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Expanding
)
self.labelImg.setSizePolicy(sizePolicy)
vbox.addWidget(self.labelImg)

self.setGeometry(100, 100, 400, 600)
self.setWindowTitle("PyMuPDF Document Player")
self.show()

(continues on next page)

4.5. Multiprocessing 51

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

def openDoc(self):
path, _ = QtWidgets.QFileDialog.getOpenFileName(

self,
"Open Document",
self.lastDir,
"All Supported Files (*.pdf;*.epub;*.xps;*.oxps;*.cbz;*.fb2);;PDF Files

→˓(*.pdf);;EPUB Files (*.epub);;XPS Files (*.xps);;OpenXPS Files (*.oxps);;CBZ Files
→˓(*.cbz);;FB2 Files (*.fb2)",

options=QtWidgets.QFileDialog.Options(),
)
if path:

self.lastDir, self.file = os.path.split(path)
if self.process:

self.queNum.put(-1) # use -1 to notify the process to exit
self.timerSend.stop()
self.curPageNum = 0
self.pageCount = 0
self.process = mp.Process(

target=openDocInProcess, args=(path, self.queNum, self.queDoc)
)
self.process.start()
self.timerGet.start(40)
self.label.setText("0/0")
self.queNum.put(0)
self.startTime = time.perf_counter()
self.timerWaiting.start(40)

def playDoc(self):
self.timerSend.start(500)

def stopPlay(self):
self.timerSend.stop()

def onTimerSendPageNum(self):
if self.curPageNum < self.pageCount - 1:

self.queNum.put(self.curPageNum + 1)
else:

self.timerSend.stop()

def onTimerGetPage(self):
try:

ret = self.queDoc.get(False)
if isinstance(ret, int):

self.timerWaiting.stop()
self.pageCount = ret
self.label.setText("{}/{}".format(self.curPageNum + 1, self.

→˓pageCount))
else: # tuple, pixmap info

num, samples, width, height, stride, alpha = ret
self.curPageNum = num
self.label.setText("{}/{}".format(self.curPageNum + 1, self.

→˓pageCount))
fmt = (

QtGui.QImage.Format_RGBA8888
if alpha
else QtGui.QImage.Format_RGB888

(continues on next page)

52 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

)
qimg = QtGui.QImage(samples, width, height, stride, fmt)
self.labelImg.setPixmap(QtGui.QPixmap.fromImage(qimg))

except queue.Empty as ex:
pass

def onTimerWaiting(self):
self.labelImg.setText(

'Loading "{}", {:.2f}s'.format(
self.file, time.perf_counter() - self.startTime

)
)

def closeEvent(self, event):
self.queNum.put(-1)
event.accept()

def openDocInProcess(path, queNum, quePageInfo):
start = my_timer()
doc = fitz.open(path)
end = my_timer()
quePageInfo.put(doc.pageCount)
while True:

num = queNum.get()
if num < 0:

break
page = doc.loadPage(num)
pix = page.getPixmap()
quePageInfo.put(

(num, pix.samples, pix.width, pix.height, pix.stride, pix.alpha)
)

doc.close()
print("process exit")

if __name__ == "__main__":
app = QtWidgets.QApplication(sys.argv)
form = DocForm()
sys.exit(app.exec_())

4.6 General

4.6.1 How to Open with a Wrong File Extension

If you have a document with a wrong file extension for its type, you can still correctly open it.

Assume that “some.file” is actually an XPS. Open it like so:

>>> doc = fitz.open("some.file", filetype = "xps")

Note: MuPDF itself does not try to determine the file type from the file contents. You are responsible for supplying

4.6. General 53

PyMuPDF Documentation, Release 1.16.10

the filetype info in some way – either implicitely via the file extension, or explicitely as shown. There are pure Python
packages like filetype51 that help you doing this. Also consult the Document chapter for a full description.

4.6.2 How to Embed or Attach Files

PDF supports incorporating arbitrary data. This can be done in one of two ways: “embedding” or “attaching”.
PyMuPDF supports both options.

1. Attached Files: data are attached to a page by way of a FileAttachment annotation with this statement: annot =
page.addFileAnnot(pos, . . .), for details see Page.addFileAnnot(). The first parameter “pos” is the Point,
where a “PushPin” icon should be placed on the page.

2. Embedded Files: data are embedded on the document level via method Document.embeddedFileAdd().

The basic differences between these options are (1) you need edit permission to embed a file, but only annotation
permission to attach, (2) like all annotations, attachments are visible on a page, embedded files are not.

There exist several example scripts: embedded-list.py52, new-annots.py53.

Also look at the sections above and at chapter Appendix 3: Considerations on Embedded Files.

4.6.3 How to Delete and Re-Arrange Pages

With PyMuPDF you have all options to copy, move, delete or re-arrange the pages of a PDF. Intuitive methods exist
that allow you to do this on a page-by-page level, like the Document.copyPage() method.

Or you alternatively prepare a complete new page layout in form of a Python sequence, that contains the page numbers
you want, in the sequence you want, and as many times as you want each page. The following may illustrate what can
be done with Document.select():

doc.select([1, 1, 1, 5, 4, 9, 9, 9, 0, 2, 2, 2])

Now let’s prepare a PDF for double-sided printing (on a printer not directly supporting this):

The number of pages is given by len(doc) (equal to doc.pageCount). The following lists represent the even and the
odd page numbers, respectively:

>>> p_even = [p in range(len(doc)) if p % 2 == 0]
>>> p_odd = [p in range(len(doc)) if p % 2 == 1]

This snippet creates the respective sub documents which can then be used to print the document:

>>> doc.select(p_even) # only the even pages left over
>>> doc.save("even.pdf") # save the "even" PDF
>>> doc.close() # recycle the file
>>> doc = fitz.open(doc.name) # re-open
>>> doc.select(p_odd) # and do the same with the odd pages
>>> doc.save("odd.pdf")

51 https://pypi.org/project/filetype/
52 https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-list.py
53 https://github.com/pymupdf/PyMuPDF/blob/master/demo/new-annots.py

54 Chapter 4. Collection of Recipes

https://pypi.org/project/filetype/
https://github.com/pymupdf/PyMuPDF/blob/master/examples/embedded-list.py
https://github.com/pymupdf/PyMuPDF/blob/master/demo/new-annots.py

PyMuPDF Documentation, Release 1.16.10

For more information also have a look at this Wiki article54.

The following example will reverse the order of all pages (extremely fast: sub-second time for the 1310 pages of the
Adobe PDF Reference 1.7):

>>> lastPage = len(doc) - 1
>>> for i in range(lastPage):

doc.movePage(lastPage, i) # move current last page to the front

This snippet duplicates the PDF with itself so that it will contain the pages 0, 1, . . . , n, 0, 1, . . . , n (extremely fast and
without noticeably increasing the file size!):

>>> pageCount = len(doc)
>>> for i in range(pageCount):

doc.copyPage(i) # copy this page to after last page

4.6.4 How to Join PDFs

It is easy to join PDFs with method Document.insertPDF(). Given open PDF documents, you can copy page
ranges from one to the other. You can select the point where the copied pages should be placed, you can revert the
page sequence and also change page rotation. This Wiki article55 contains a full description.

The GUI script PDFjoiner.py56 uses this method to join a list of files while also joining the respective table of contents
segments. It looks like this:

54 https://github.com/pymupdf/PyMuPDF/wiki/Rearranging-Pages-of-a-PDF
55 https://github.com/pymupdf/PyMuPDF/wiki/Inserting-Pages-from-other-PDFs
56 https://github.com/pymupdf/PyMuPDF/blob/master/examples/PDFjoiner.py

4.6. General 55

https://github.com/pymupdf/PyMuPDF/wiki/Rearranging-Pages-of-a-PDF
https://github.com/pymupdf/PyMuPDF/wiki/Inserting-Pages-from-other-PDFs
https://github.com/pymupdf/PyMuPDF/blob/master/examples/PDFjoiner.py

PyMuPDF Documentation, Release 1.16.10

4.6.5 How to Add Pages

There two methods for adding new pages to a PDF: Document.insertPage() and Document.newPage()
(and they share a common code base).

newPage

Document.newPage() returns the created Page object. Here is the constructor showing defaults:

>>> doc = fitz.open(...) # some new or existing PDF document
>>> page = doc.newPage(to = -1, # insertion point: end of document

width = 595, # page dimension: A4 portrait
height = 842)

The above could also have been achieved with the short form page = doc.newPage(). The to parameter specifies the
document’s page number (0-based) in front of which to insert.

To create a page in landscape format, just exchange the width and height values.

Use this to create the page with another pre-defined paper format:

>>> w, h = fitz.PaperSize("letter-l") # 'Letter' landscape
>>> page = doc.newPage(width = w, height = h)

The convenience function PaperSize() knows over 40 industry standard paper formats to choose from. To see
them, inspect dictionary paperSizes. Pass the desired dictionary key to PaperSize() to retrieve the paper

56 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

dimensions. Upper and lower case is supported. If you append “-L” to the format name, the landscape version is
returned.

Note: Here is a 3-liner that creates a PDF with one empty page. Its file size is 470 bytes:

>>> doc = fitz.open()
>>> doc.newPage()
>>> doc.save("A4.pdf")

insertPage

Document.insertPage() also inserts a new page and accepts the same parameters to, width and height. But it
lets you also insert arbitrary text into the new page and returns the number of inserted lines:

>>> doc = fitz.open(...) # some new or existing PDF document
>>> n = doc.insertPage(to = -1, # default insertion point

text = None, # string or sequence of strings
fontsize = 11,
width = 595,
height = 842,
fontname = "Helvetica", # default font
fontfile = None, # any font file name
color = (0, 0, 0)) # text color (RGB)

The text parameter can be a (sequence of) string (assuming UTF-8 encoding). Insertion will start at Point (50, 72),
which is one inch below top of page and 50 points from the left. The number of inserted text lines is returned. See the
method definiton for more details.

4.6.6 How To Dynamically Clean Up Corrupt PDFs

This shows a potential use of PyMuPDF with another Python PDF library (the excellent pure Python package pdfrw57

is used here as an example).

If a clean, non-corrupt / decompressed PDF is needed, one could dynamically invoke PyMuPDF to recover from many
problems like so:

import sys
from io import BytesIO
from pdfrw import PdfReader
import fitz

#---------------------------------------
'Tolerant' PDF reader
#---------------------------------------
def reader(fname, password = None):

idata = open(fname, "rb").read() # read the PDF into memory and
ibuffer = BytesIO(idata) # convert to stream
if password is None:

try:
return PdfReader(ibuffer) # if this works: fine!

except:
(continues on next page)

57 https://pypi.python.org/pypi/pdfrw

4.6. General 57

https://pypi.python.org/pypi/pdfrw

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

pass

either we need a password or it is a problem-PDF
create a repaired / decompressed / decrypted version
doc = fitz.open("pdf", ibuffer)
if password is not None: # decrypt if password provided

rc = doc.authenticate(password)
if not rc > 0:

raise ValueError("wrong password")
c = doc.write(garbage=3, deflate=True)
del doc # close & delete doc
return PdfReader(BytesIO(c)) # let pdfrw retry

#---------------------------------------
Main program
#---------------------------------------
pdf = reader("pymupdf.pdf", password = None) # inlude a password if necessary
print pdf.Info
do further processing

With the command line utility pdftk (available58 for Windows only, but reported to also run under Wine59) a similar
result can be achieved, see here60. However, you must invoke it as a separate process via subprocess.Popen, using
stdin and stdout as communication vehicles.

4.6.7 How to Split Single Pages

This deals with splitting up pages of a PDF in arbitrary pieces. For example, you may have a PDF with Letter format
pages which you want to print with a magnification factor of four: each page is split up in 4 pieces which each go to a
separate PDF page in Letter format again:

"""
Create a PDF copy with split-up pages (posterize)

License: GNU GPL V3
(c) 2018 Jorj X. McKie

Usage

python posterize.py input.pdf

Result

A file "poster-input.pdf" with 4 output pages for every input page.

Notes

(1) Output file is chosen to have page dimensions of 1/4 of input.

(2) Easily adapt the example to make n pages per input, or decide per each
input page or whatever.

Dependencies

(continues on next page)

58 https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
59 https://www.winehq.org/
60 http://www.overthere.co.uk/2013/07/22/improving-pypdf2-with-pdftk/

58 Chapter 4. Collection of Recipes

https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
https://www.winehq.org/
http://www.overthere.co.uk/2013/07/22/improving-pypdf2-with-pdftk/

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

PyMuPDF 1.12.2 or later
"""
from __future__ import print_function
import fitz, sys
infile = sys.argv[1] # input file name
src = fitz.open(infile)
doc = fitz.open() # empty output PDF

for spage in src: # for each page in input
r = spage.rect # input page rectangle
d = fitz.Rect(spage.CropBoxPosition, # CropBox displacement if not

spage.CropBoxPosition) # starting at (0, 0)
#--
example: cut input page into 2 x 2 parts
#--
r1 = r * 0.5 # top left rect
r2 = r1 + (r1.width, 0, r1.width, 0) # top right rect
r3 = r1 + (0, r1.height, 0, r1.height) # bottom left rect
r4 = fitz.Rect(r1.br, r.br) # bottom right rect
rect_list = [r1, r2, r3, r4] # put them in a list

for rx in rect_list: # run thru rect list
rx += d # add the CropBox displacement
page = doc.newPage(-1, # new output page with rx dimensions

width = rx.width,
height = rx.height)

page.showPDFpage(
page.rect, # fill all new page with the image
src, # input document
spage.number, # input page number
clip = rx, # which part to use of input page

)

that's it, save output file
doc.save("poster-" + src.name,

garbage = 3, # eliminate duplicate objects
deflate = True) # compress stuff where possible

This shows what happens to an input page:

4.6.8 How to Combine Single Pages

This deals with joining PDF pages to form a new PDF with pages each combining two or four original ones (also
called “2-up”, “4-up”, etc.). This could be used to create booklets or thumbnail-like overviews:

4.6. General 59

PyMuPDF Documentation, Release 1.16.10

'''
Copy an input PDF to output combining every 4 pages

License: GNU GPL V3
(c) 2018 Jorj X. McKie

Usage

python 4up.py input.pdf

Result

A file "4up-input.pdf" with 1 output page for every 4 input pages.

Notes

(1) Output file is chosen to have A4 portrait pages. Input pages are scaled

maintaining side proportions. Both can be changed, e.g. based on input
page size. However, note that not all pages need to have the same size, etc.

(2) Easily adapt the example to combine just 2 pages (like for a booklet) or
make the output page dimension dependent on input, or whatever.

Dependencies

PyMuPDF 1.12.1 or later
'''
from __future__ import print_function
import fitz, sys
infile = sys.argv[1]
src = fitz.open(infile)
doc = fitz.open() # empty output PDF

width, height = fitz.PaperSize("a4") # A4 portrait output page format
r = fitz.Rect(0, 0, width, height)

define the 4 rectangles per page
r1 = r * 0.5 # top left rect
r2 = r1 + (r1.width, 0, r1.width, 0) # top right
r3 = r1 + (0, r1.height, 0, r1.height) # bottom left
r4 = fitz.Rect(r1.br, r.br) # bottom right

put them in a list
r_tab = [r1, r2, r3, r4]

now copy input pages to output
for spage in src:

if spage.number % 4 == 0: # create new output page
page = doc.newPage(-1,

width = width,
height = height)

insert input page into the correct rectangle
page.showPDFpage(r_tab[spage.number % 4], # select output rect

src, # input document
spage.number) # input page number

by all means, save new file using garbage collection and compression
doc.save("4up-" + infile, garbage = 3, deflate = True)

60 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

Example effect:

4.6.9 How to Convert Any Document to PDF

Here is a script that converts any PyMuPDF supported document to a PDF. These include XPS, EPUB, FB2, CBZ and
all image formats, including multi-page TIFF images.

It features maintaining any metadata, table of contents and links contained in the source document:

from __future__ import print_function
"""
Demo script: Convert input file to a PDF

Intended for multi-page input files like XPS, EPUB etc.

Features:

Recovery of table of contents and links of input file.
While this works well for bookmarks (outlines, table of contents),
links will only work if they are not of type "LINK_NAMED".
This link type is skipped by the script.

For XPS and EPUB input, internal links however **are** of type "LINK_NAMED".
Base library MuPDF does not resolve them to page numbers.

So, for anyone expert enough to know the internal structure of these
document types, can further interpret and resolve these link types.

Dependencies

PyMuPDF v1.14.0+
"""
import sys
import fitz
if not (list(map(int, fitz.VersionBind.split("."))) >= [1,14,0]):

raise SystemExit("need PyMuPDF v1.14.0+")
fn = sys.argv[1]

print("Converting '%s' to '%s.pdf'" % (fn, fn))

doc = fitz.open(fn)

b = doc.convertToPDF() # convert to pdf
pdf = fitz.open("pdf", b) # open as pdf

(continues on next page)

4.6. General 61

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

toc= doc.getToC() # table of contents of input
pdf.setToC(toc) # simply set it for output
meta = doc.metadata # read and set metadata
if not meta["producer"]:

meta["producer"] = "PyMuPDF v" + fitz.VersionBind

if not meta["creator"]:
meta["creator"] = "PyMuPDF PDF converter"

meta["modDate"] = fitz.getPDFnow()
meta["creationDate"] = meta["modDate"]
pdf.setMetadata(meta)

now process the links
link_cnti = 0
link_skip = 0
for pinput in doc: # iterate through input pages

links = pinput.getLinks() # get list of links
link_cnti += len(links) # count how many
pout = pdf[pinput.number] # read corresp. output page
for l in links: # iterate though the links

if l["kind"] == fitz.LINK_NAMED: # we do not handle named links
print("named link page", pinput.number, l)
link_skip += 1 # count them
continue

pout.insertLink(l) # simply output the others

save the conversion result
pdf.save(fn + ".pdf", garbage=4, deflate=True)
say how many named links we skipped
if link_cnti > 0:

print("Skipped %i named links of a total of %i in input." % (link_skip, link_
→˓cnti))

4.6.10 How to Deal with Messages Issued by MuPDF

Since PyMuPDF v1.16.0, error messages issued by the underlying MuPDF library are being redirected to the Python
standard device sys.stderr. So you can handle them like any other output going to these devices.

We always prefix these messages with an identifying string “mupdf:”.

MuPDF warnings continue to be stored in an internal buffer and can be viewed using Tools.mupdf_warnings().
Please note that MuPDF errors may or may not lead to Python exceptions. In other words, you may see error messages
from which MuPDF can recover and continue processing.

Example output for a recoverable error. We are opening a damaged PDF, but MuPDF is able to repair it and gives
us a few information on what happened. Then we illustrate how to find out whether the document can later be saved
incrementally:

>>> import fitz
>>> doc = fitz.open("damaged-file.pdf") # leads to a sys.stderr message:
mupdf: cannot find startxref
>>> print(fitz.TOOLS.mupdf_warnings()) # check if there is more info:
trying to repair broken xref

(continues on next page)

62 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

repairing PDF document
object missing 'endobj' token
>>> doc.can_save_incrementally() # this is to be expected:
False
>>> # the document has nevertheless been created:
>>> doc
fitz.Document('damaged-file.pdf')
>>> # we now know that any save must occur to a new file

Example output for an unrecoverable error:

>>> import fitz
>>> doc = fitz.open("does-not-exist.pdf")
mupdf: cannot open does-not-exist.pdf: No such file or directory
Traceback (most recent call last):

File "<pyshell#1>", line 1, in <module>
doc = fitz.open("does-not-exist.pdf")

File "C:\Users\Jorj\AppData\Local\Programs\Python\Python37\lib\site-
→˓packages\fitz\fitz.py", line 2200, in __init__

_fitz.Document_swiginit(self, _fitz.new_Document(filename, stream, filetype, rect,
→˓ width, height, fontsize))
RuntimeError: cannot open does-not-exist.pdf: No such file or directory
>>>

4.6.11 How to Deal with PDF Encryption

Starting with version 1.16.0, PDF decryption and encryption (using passwords) are fully supported. You can do the
following:

• Check whether a document is password protected / (still) encrypted (Document.needsPass, Document.
isEncrypted).

• Gain access authorization to a document (Document.authenticate()).

• Set encryption details for PDF files using Document.save() or Document.write() and

– decrypt or encrypt the content

– set password(s)

– set the encryption method

– set permission details

Note: A PDF document may have two different passwords:

• The owner password provides full access rights, including changing passwords, encryption method, or permis-
sion detail.

• The user password provides access to document content according to the established permission details. If
present, opening the PDF in a viewer will require providing it.

Method Document.authenticate() will automatically establish access rights according to the password used.

The following snippet creates a new PDF and encrypts it with separate user and owner passwords. Permissions are
granted to print, copy and annotate, but no changes are allowed to someone authenticating with the user password:

4.6. General 63

PyMuPDF Documentation, Release 1.16.10

import fitz

text = "some secret information" # keep this data secret
perm = int(

fitz.PDF_PERM_ACCESSIBILITY # always use this
| fitz.PDF_PERM_PRINT # permit printing
| fitz.PDF_PERM_COPY # permit copying
| fitz.PDF_PERM_ANNOTATE # permit annotations

)
owner_pass = "owner" # owner password
user_pass = "user" # user password
encrypt_meth = fitz.PDF_ENCRYPT_AES_256 # strongest algorithm
doc = fitz.open() # empty pdf
page = doc.newPage() # empty page
page.insertText((50, 72), text) # insert the data
doc.save(

"secret.pdf",
encryption=encrypt_meth, # set the encryption method
owner_pw=owner_pass, # set the owner password
user_pw=user_pass, # set the user password
permissions=perm, # set permissions

)

Opening this document with some viewer (Nitro Reader 5) reflects these settings:

Decrypting will automatically happen on save as before when no encryption parameters are provided.

To keep the encryption method of a PDF save it using encryption=fitz.PDF_ENCRYPT_KEEP. If
doc.can_save_incrementally() == True, an incremental save is also possible.

To change the encryption method specify the full range of options above (encryption, owner_pw, user_pw, permis-
sions). An incremental save is not possible in this case.

64 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

4.7 Common Issues and their Solutions

4.7.1 Changing Annotations: Unexpected Behaviour

4.7.1.1 Problem

There are two scenarios:

1. Updating an annotation, which has been created by some other software, via a PyMuPDF script.

2. Creating an annotation with PyMuPDF and later changing it using some other PDF application.

In both cases you may experience unintended changes like a different annotation icon or text font, the fill color or line
dashing have disappeared, line end symbols have changed their size or even have disappeared too, etc.

4.7.1.2 Cause

Annotation maintenance is handled differently by each PDF maintenance application (if it is supported at all). For
any given PDF application, some annotation types may not be supported at all or only partly, or some details may be
handled in a different way than with another application.

Almost always a PDF application also comes with its own icons (file attachments, sticky notes and stamps) and its
own set of supported text fonts. For example:

• (Py-) MuPDF only supports these 5 basic fonts for ‘FreeText’ annotations: Helvetica, Times-Roman, Courier,
ZapfDingbats and Symbol – no italics / no bold variations. When changing a ‘FreeText’ annotation created by
some other app, its font will probably not be recognized nor accepted and be replaced by Helvetica.

• PyMuPDF fully supports the PDF text markers, but these types cannot be updated with Adobe Acrobat Reader.

In most cases there also exists limited support for line dashing which causes existing dashes to be replaced by straight
lines. For example:

• PyMuPDF fully supports all line dashing forms, while other viewers only accept a limited subset.

4.7.1.3 Solutions

Unfortunately there is not much you can do in most of these cases.

1. Stay with the same software for creating and changing an annotation.

2. When using PyMuPDF to change an “alien” annotation, try to avoid Annot.update(). The following
methods can be used without it so that the original appearance should be maintained:

• Annot.setRect() (location changes)

• Annot.setFlags() (annotation behaviour)

• Annot.setInfo() (meta information, except changes to content)

• Annot.fileUpd() (file attachment changes)

4.7. Common Issues and their Solutions 65

PyMuPDF Documentation, Release 1.16.10

4.7.2 Misplaced Item Insertions on PDF Pages

4.7.2.1 Problem

You inserted an item (like an image, an annotation or some text) on an existing PDF page, but later you find it being
placed at a different location than intended. For example an image should be inserted at the top, but it unexpectedly
appears near the bottom of the page.

4.7.2.2 Cause

The creator of the PDF has established a non-standard page geometry without keeping it “local” (as they should!).
Most commonly, the PDF standard point (0,0) at bottom-left has been changed to the top-left point. So top and bottom
are reversed – causing your insertion to be misplaced.

The visible image of a PDF page is controlled by commands coded in a special mini-language. For an overview of
this language consult “Operator Summary” on pp. 985 of the Adobe PDF Reference 1.7. These commands are stored
in contents objects as strings (bytes in PyMuPDF).

There are commands in that language, which change the coordinate system of the page for all the following commands.
In order to limit the scope of such commands local, they must be wrapped by the command pair q (“save graphics
state”, or “stack”) and Q (“restore graphics state”, or “unstack”).

So the PDF creator did this:

stream
1 0 0 -1 0 792 cm % <=== change of coordinate system:
... % letter page, top / bottom reversed
... % remains active beyond these lines
endstream

where they should have done this:

stream
q % put the following in a stack
1 0 0 -1 0 792 cm % <=== scope of this is limited by Q command
... % here, a different geometry exists
Q % after this line, geometry of outer scope prevails
endstream

Note:

• In the mini-language’s syntax, spaces and line breaks are equally accepted token delimiters.

• Multiple consecutive delimiters are treated as one.

• Keywords “stream” and “endstream” are inserted automatically – not by the programmer.

4.7.2.3 Solutions

Since v1.16.0, there is the property Page._isWrapped, which lets you check whether a page’s contents are
wrapped in that string pair.

If it is False or if you want to be on the safe side, pick one of the following:

1. The easiest way: in your script, do a Page._cleanContents() before you do your first item insertion.

66 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

2. Pre-process your PDF with the MuPDF command line utility mutool clean -c . . . and work with its output file
instead.

3. Directly wrap the page’s contents with the stacking commands before you do your first item insertion.

Solutions 1. and 2. use the same technical basis and do a lot more than what is required in this context: they also
clean up other inconsistencies or redundancies that may exist, multiple /Contents objects will be concatenated into
one, and much more.

Note: For incremental saves, solution 1. has an unpleasant implication: it will bloat the update delta, because
it changes so many things and, in addition, stores the cleaned contents uncompressed. So, if you use Page.
_cleanContents() you should consider saving to a new file with (at least) garbage=3 and deflate=True.

Solution 3. is completely under your control and only does the minimum corrective action. There exists a handy
low-level utility function which you can use for this. Suggested procedure:

• Prepend the missing stacking command by executing fitz.TOOLS._insert_contents(page, b”qn”, False).

• Append an unstacking command by executing fitz.TOOLS._insert_contents(page, b”nQ”, True).

• Alternatively, just use Page._wrapContents(), wich executes the previous two functions.

Note: If small incremental update deltas are a concern, this approach is the most effective. Other contents objects are
not touched. The utility method creates two new PDF stream objects and inserts them before, resp. after the page’s
other contents. We therefore recommend the following snippet to get this situation under control:

>>> if not page._isWrapped:
page._wrapContents()

>>> # start inserting text, images or annotations here

4.8 Low-Level Interfaces

Numerous methods are available to access and manipulate PDF files on a fairly low level. Admittedly, a clear distinc-
tion between “low level” and “normal” functionality is not always possible or subject to personal taste.

It also may happen, that functionality previously deemed low-level is lateron assessed as being part of the normal
interface. This has happened in v1.14.0 for the class Tools – you now find it as an item in the Classes chapter.

Anyway – it is a matter of documentation only: in which chapter of the documentation do you find what. Everything
is available always and always via the same interface.

4.8.1 How to Iterate through the xref Table

A PDF’s xref table is a list of all objects defined in the file. This table may easily contain many thousand entries –
the manual Adobe PDF Reference 1.7 for example has over 330‘000 objects. Table entry “0” is reserved and must not
be touched. The following script loops through the xref table and prints each object’s definition:

4.8. Low-Level Interfaces 67

PyMuPDF Documentation, Release 1.16.10

>>> xreflen = doc.xrefLength() # length of objects table
>>> for xref in range(1, xreflen): # skip item 0!

print("")
print("object %i (stream: %s)" % (xref, doc.isStream(xref)))
print(doc.xrefObject(i, compressed=False))

This produces the following output:

object 1 (stream: False)
<<

/ModDate (D:20170314122233-04'00')
/PXCViewerInfo (PDF-XChange Viewer;2.5.312.1;Feb 9 2015;12:00:06;

→˓D:20170314122233-04'00')
>>

object 2 (stream: False)
<<

/Type /Catalog
/Pages 3 0 R

>>

object 3 (stream: False)
<<

/Kids [4 0 R 5 0 R]
/Type /Pages
/Count 2

>>

object 4 (stream: False)
<<

/Type /Page
/Annots [6 0 R]
/Parent 3 0 R
/Contents 7 0 R
/MediaBox [0 0 595 842]
/Resources 8 0 R

>>
...
object 7 (stream: True)
<<

/Length 494
/Filter /FlateDecode

>>
...

A PDF object definition is an ordinary ASCII string.

4.8.2 How to Handle Object Streams

Some object types contain additional data apart from their object definition. Examples are images, fonts, embedded
files or commands describing the appearance of a page.

Objects of these types are called “stream objects”. PyMuPDF allows reading an object’s stream via method
Document.xrefStream()with the object’s xref as an argument. And it is also possible to write back a modified
version of a stream using Document.updatefStream().

68 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

Assume that the following snippet wants to read all streams of a PDF for whatever reason:

>>> xreflen = doc.xrefLength() # number of objects in file
>>> for xref in range(1, xreflen): # skip item 0!

stream = doc.xrefStream(xref)
do something with it (it is a bytes object or None)
e.g. just write it back:
if stream:

doc.updatefStream(xref, stream)

Document.xrefStream() automatically returns a stream decompressed as a bytes object – and Document.
updatefStream() automatically compresses it (where beneficial).

4.8.3 How to Handle Page Contents

A PDF page can have one or more contents objects – in fact, a page will be empty if it has no such object. These
are stream objects describing what appears where on a page (like text and images). They are written in a special mini-
language desribed e.g. in chapter “APPENDIX A - Operator Summary” on page 985 of the Adobe PDF Reference
1.7.

Every PDF reader application must be able to interpret the contents syntax to reproduce the intended appearance of
the page.

If multiple contents objects are provided, they must be read and interpreted in the specified sequence in exactly the
same way as if these streams were provided as a concatenation of the several.

There are good technical arguments for having multiple contents objects:

• It is a lot easier and faster to just add new contents objects than maintaining a single big one (which entails
reading, decompressing, modifying, recompressing, and rewriting it for each change).

• When working with incremental updates, a modified big contents object will bloat the update delta and can
thus easily negate the efficiency of incremental saves.

For example, PyMuPDF adds new, small contents objects in methods Page.insertImage(), Page.
showPDFpage() and the Shape methods.

However, there are also situations when a single contents object is beneficial: it is easier to interpret and better
compressible than multiple smaller ones.

Here are two ways of combining multiple contents of a page:

>>> # method 1: use the clean function
>>> for i in range(len(doc)):

doc[i]._cleanContents() # cleans and combines multiple Contents
page = doc[i] # re-read the page (has only 1 contents now)
cont = page._getContents()[0]
do something with the cleaned, combined contents

>>> # method 2: concatenate multiple contents yourself
>>> for page in doc:

cont = b"" # initialize contents
for xref in page._getContents(): # loop through content xrefs

cont += doc.xrefStream(xref)
do something with the combined contents

4.8. Low-Level Interfaces 69

PyMuPDF Documentation, Release 1.16.10

The clean function Page._cleanContents() does a lot more than just glueing contents objects: it also
corrects and optimizes the PDF operator syntax of the page and removes any inconsistencies.

4.8.4 How to Access the PDF Catalog

This is a central (“root”) object of a PDF. It serves as a starting point to reach important other objects and it also
contains some global options for the PDF:

>>> import fitz
>>> doc=fitz.open("PyMuPDF.pdf")
>>> cat = doc._getPDFroot() # get xref of the /Catalog
>>> print(doc.xrefObject(cat)) # print object definition
<<

/Type/Catalog % object type
/Pages 3593 0 R % points to page tree
/OpenAction 225 0 R % action to perform on open
/Names 3832 0 R % points to global names tree
/PageMode /UseOutlines % initially show the TOC
/PageLabels<</Nums[0<</S/D>>2<</S/r>>8<</S/D>>]>> % names given to pages
/Outlines 3835 0 R % points to outline tree

>>

Note: Indentation, line breaks and comments are inserted here for clarification purposes only and will not normally
appear. For more information on the PDF catalog see section 3.6.1 on page 137 of the Adobe PDF Reference 1.7.

4.8.5 How to Access the PDF File Trailer

The trailer of a PDF file is a dictionary located towards the end of the file. It contains special objects, and pointers
to important other information. See Adobe PDF Reference 1.7 p. 96. Here is an overview:

Key Type Value
Size int Number of entries in the cross-reference table + 1.
Prev int Offset to previous xref section (indicates incremental updates).
Root dictionary (indirect) Pointer to the catalog. See previous section.
Encrypt dictionary Pointer to encryption object (encrypted files only).
Info dictionary (indirect) Pointer to information (metadata).
ID array File identifier consisting of two byte strings.
XRefStm int Offset of a cross-reference stream. See Adobe PDF Reference 1.7 p. 109.

Access this information via PyMuPDF with Document._getTrailerString().

>>> import fitz
>>> doc=fitz.open("PyMuPDF.pdf")
>>> trailer=doc._getTrailerString()
>>> print(trailer)
<</Size 5535/Info 5275 0 R/Root 5274 0 R/ID[(\340\273fE\225^
→˓l\226\232O|\003\201\325g\245)(}#1,\317\205\000\371\251wO6\352Oa\021)]>>
>>>

70 Chapter 4. Collection of Recipes

PyMuPDF Documentation, Release 1.16.10

4.8.6 How to Access XML Metadata

A PDF may contain XML metadata in addition to the standard metadata format. In fact, most PDF reader or mod-
ification software adds this type of information when being used to save a PDF (Adobe, Nitro PDF, PDF-XChange,
etc.).

PyMuPDF has no way to interpret or change this information directly, because it contains no XML features. The
XML metadata is however stored as a stream object, so we do provide a way to read the XML stream and, poten-
tially, also write back a modified stream or even delete it:

>>> metaxref = doc._getXmlMetadataXref() # get xref of XML metadata
>>> # check if metaxref > 0!!!
>>> doc.xrefObject(metaxref) # object definition
'<</Subtype/XML/Length 3801/Type/Metadata>>'
>>> xmlmetadata = doc.xrefStream(metaxref) # XML data (stream - bytes obj)
>>> print(xmlmetadata.decode("utf8")) # print str version of bytes
<?xpacket begin="\ufeff" id="W5M0MpCehiHzreSzNTczkc9d"?>
<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="3.1-702">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
...
omitted data
...
<?xpacket end="w"?>

Using some XML package, the XML data can be interpreted and / or modified and then stored back:

>>> # write back modified XML metadata:
>>> doc.updatefStream(metaxref, xmlmetadata)
>>>
>>> # if these data are not wanted, delete them:
>>> doc._delXmlMetadata()

4.8. Low-Level Interfaces 71

PyMuPDF Documentation, Release 1.16.10

72 Chapter 4. Collection of Recipes

CHAPTER

FIVE

USING FITZ AS A MODULE

(New in version 1.16.8)

PyMuPDF can also be used in the command line as a module to perform basic utility functions.

This is work in progress and subject to changes. This feature should obsolete writing some of the most basic scripts.

As a guideline we are using the feature set of MuPDF command line tools. Admittedly, there is some functional over-
lap. On the other hand, PDF embedded files are no longer supported by MuPDF, so PyMuPDF is offering something
unique here.

5.1 Invocation

Invoke the module like this:

python -m fitz command parameters

General remarks:

• Request help via “-h”, resp. command-specific help via “command -h”.

• Parameters may be abbreviated as long as the result is not ambiguous (Python 3.5 or later only).

• Several commands support parameters -pages and -xrefs. They are intended for down-selection. Please note
that:

– page numbers for this utility must be given 1-based.

– valid xref numbers start at 1.

– Specify any number of either single integers or integer ranges, separated by one comma each. A range
is a pair of integers separated by one hyphen “-“. Integers must not exceed the maximum page number
or resp. xref number. To specify that maximum, the symbolic variable “N” may be used instead of an
integer. Integers or ranges may occur several times, in any sequence and may overlap. If in a range the
first number is greater than the second one, the respective items will be processed in reversed order.

• You can also use the fitz module inside your script:

>>> from fitz.__main__ import main as fitz_command
>>> cmd = "clean input.pdf output.pdf -pages 1,N".split() # prepare command
>>> saved_parms = sys.argv[1:] # save original parameters
>>> sys.argv[1:] = cmd # store command
>>> fitz_command() # execute command
>>> sys.argv[1:] = saved_parms # restore original parameters

73

PyMuPDF Documentation, Release 1.16.10

• You can use the following 2-liner and compile it with Nuitka61 in either normal or standalone mode, if you want
to distribute it. This will give you a command line utility with all the functions explained below:

from fitz.__main__ import main
main()

5.2 Cleaning and Copying

This command will optimize the PDF and store the result in a new file. You can use it also for encryption, decryption
and creating sub documents. It is mostly similar to the MuPDF command line utility “mutool clean”:

python -m fitz clean -h
usage: fitz clean [-h] [-password PASSWORD]

[-encryption {keep,none,rc4-40,rc4-128,aes-128,aes-256}]
[-owner OWNER] [-user USER] [-garbage {0,1,2,3,4}]
[-compress] [-ascii] [-linear] [-permission PERMISSION]
[-sanitize] [-pretty] [-pages PAGES]
input output

-------------- optimize PDF or create sub-PDF if pages given --------------

positional arguments:
input PDF filename
output output PDF filename

optional arguments:
-h, --help show this help message and exit
-password PASSWORD password
-encryption {keep,none,rc4-40,rc4-128,aes-128,aes-256}

encryption method
-owner OWNER owner password
-user USER user password
-garbage {0,1,2,3,4} garbage collection level
-compress compress (deflate) output
-ascii ASCII encode binary data
-linear format for fast web display
-permission PERMISSION

integer with permission levels
-sanitize sanitize / clean contents
-pretty prettify PDF structure
-pages PAGES output selected pages, format: 1,5-7,50-N

If you specify “-pages”, be aware that only page-related objects are copied, no document-level items like e.g. em-
bedded files.

Please consult Document.save() for the parameter meanings.

5.3 Extracting Fonts and Images

Extract fonts or images from selected PDF pages to a desired directory:

61 https://pypi.org/project/Nuitka/

74 Chapter 5. Using fitz as a Module

https://pypi.org/project/Nuitka/

PyMuPDF Documentation, Release 1.16.10

python -m fitz extract -h
usage: fitz extract [-h] [-images] [-fonts] [-output OUTPUT] [-password PASSWORD]

[-pages PAGES]
input

--------------------- extract images and fonts to disk --------------------

positional arguments:
input PDF filename

optional arguments:
-h, --help show this help message and exit
-images extract images
-fonts extract fonts
-output OUTPUT output directory, defaults to current
-password PASSWORD password
-pages PAGES only consider these pages, format: 1,5-7,50-N

Image filenames are built according to the naming scheme: “img-xref.ext”, where “ext” is the extension associated
with the image and “xref” the xref of the image PDF object.

Font filenames consist of the fontname and the associated extension. Any spaces in the fontname are replaced with
hyphens “-“.

The output directory must already exist.

Note: Except for output directory creation, this feature is functionally equivalent to and obsoletes this script62.

5.4 Joining PDF Documents

To join several PDF files specify:

python -m fitz join -h
usage: fitz join [-h] -output OUTPUT [input [input ...]]

---------------------------- join PDF documents ---------------------------

positional arguments:
input input filenames

optional arguments:
-h, --help show this help message and exit
-output OUTPUT output filename

specify each input as 'filename[,password[,pages]]'

Note:

1. Each input must be entered as “filename,password,pages”. Password and pages are optional.

2. The password entry is required if the “pages” entry is used. If the PDF needs no password, specify two commas.

3. The “pages” format is the same as explained at the top of this section.

62 https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/extract-imga.py

5.4. Joining PDF Documents 75

https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/extract-imga.py

PyMuPDF Documentation, Release 1.16.10

4. Each input file is immediately closed after use. Therefore you can use one of them as output filename, and thus
overwrite it.

Example: To join the following files

1. file1.pdf: all pages, back to front, no password

2. file2.pdf: last page, first page, password: “secret”

3. file3.pdf: pages 5 to last, no password

and store the result as output.pdf enter this command:

python -m fitz join -o output.pdf file1.pdf„N-1 file2.pdf,secret,N,1 file3.pdf„5-N

5.5 Low Level Information

Display PDF internal information. Again, there are similarities to “mutool show”:

python -m fitz show -h
usage: fitz show [-h] [-password PASSWORD] [-catalog] [-trailer] [-metadata]

[-xrefs XREFS] [-pages PAGES]
input

------------------------- display PDF information -------------------------

positional arguments:
input PDF filename

optional arguments:
-h, --help show this help message and exit
-password PASSWORD password
-catalog show PDF catalog
-trailer show PDF trailer
-metadata show PDF metadata
-xrefs XREFS show selected objects, format: 1,5-7,N
-pages PAGES show selected pages, format: 1,5-7,50-N

Examples:

python -m fitz show x.pdf
PDF is password protected

python -m fitz show x.pdf -pass hugo
authentication unsuccessful

python -m fitz show x.pdf -pass jorjmckie
authenticated as owner
file 'x.pdf', pages: 1, objects: 19, 58 MB, PDF 1.4, encryption: Standard V5 R6 256-
→˓bit AES
Document contains 15 embedded files.

python -m fitz show FDA-1572_508_R6_FINAL.pdf -tr -m
'FDA-1572_508_R6_FINAL.pdf', pages: 2, objects: 1645, 1.4 MB, PDF 1.6, encryption:
→˓Standard V4 R4 128-bit AES
document contains 740 root form fields and is signed

(continues on next page)

76 Chapter 5. Using fitz as a Module

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

------------------------------- PDF metadata ------------------------------
format: PDF 1.6
title: FORM FDA 1572

author: PSC Publishing Services
subject: Statement of Investigator

keywords: None
creator: PScript5.dll Version 5.2.2

producer: Acrobat Distiller 9.0.0 (Windows)
creationDate: D:20130522104413-04'00'

modDate: D:20190718154905-07'00'
encryption: Standard V4 R4 128-bit AES

------------------------------- PDF trailer -------------------------------
<<
/DecodeParms <<

/Columns 5
/Predictor 12

>>
/Encrypt 1389 0 R
/Filter /FlateDecode
/ID [<9252E9E39183F2A0B0C51BE557B8A8FC> <85227BE9B84B724E8F678E1529BA8351>]
/Index [1388 258]
/Info 1387 0 R
/Length 253
/Prev 1510559
/Root 1390 0 R
/Size 1646
/Type /XRef
/W [1 3 1]
>>

5.6 Embedded Files Commands

The following commands deal with embedded files – which is a feature completely removed from MuPDF after v1.14,
and hence from all its command line tools.

5.6.1 Information

Show the embedded file names (long or short format):

python -m fitz embed-info -h
usage: fitz embed-info [-h] [-name NAME] [-detail] [-password PASSWORD] input

--------------------------- list embedded files ---------------------------

positional arguments:
input PDF filename

optional arguments:
-h, --help show this help message and exit
-name NAME if given, report only this one
-detail show detail information
-password PASSWORD password

5.6. Embedded Files Commands 77

PyMuPDF Documentation, Release 1.16.10

Example:

python -m fitz embed-info some.pdf
'some.pdf' contains the following 15 embedded files.

20110813_180956_0002.jpg
20110813_181009_0003.jpg
20110813_181012_0004.jpg
20110813_181131_0005.jpg
20110813_181144_0006.jpg
20110813_181306_0007.jpg
20110813_181307_0008.jpg
20110813_181314_0009.jpg
20110813_181315_0010.jpg
20110813_181324_0011.jpg
20110813_181339_0012.jpg
20110813_181913_0013.jpg
insta-20110813_180944_0001.jpg
markiert-20110813_180944_0001.jpg
neue.datei

Detailed output would look like this per entry:

name: neue.datei
filename: text-tester.pdf

ufilename: text-tester.pdf
desc: nur zum Testen!
size: 4639

length: 1566

5.6.2 Extraction

Extract an embedded file like this:

python -m fitz embed-extract -h
usage: fitz embed-extract [-h] -name NAME [-password PASSWORD] [-output OUTPUT]

input

---------------------- extract embedded file to disk ----------------------

positional arguments:
input PDF filename

optional arguments:
-h, --help show this help message and exit
-name NAME name of entry
-password PASSWORD password
-output OUTPUT output filename, default is stored name

For details consult Document.embeddedFileGet(). Example (refer to previous section):

python -m fitz embed-extract some.pdf -name neue.datei
Saved entry 'neue.datei' as 'text-tester.pdf'

78 Chapter 5. Using fitz as a Module

PyMuPDF Documentation, Release 1.16.10

5.6.3 Deletion

Delete an embedded file like this:

python -m fitz embed-del -h
usage: fitz embed-del [-h] [-password PASSWORD] [-output OUTPUT] -name NAME input

--------------------------- delete embedded file --------------------------

positional arguments:
input PDF filename

optional arguments:
-h, --help show this help message and exit
-password PASSWORD password
-output OUTPUT output PDF filename, incremental save if none
-name NAME name of entry to delete

For details consult Document.embeddedFileDel().

5.6.4 Insertion

Add a new embedded file using this command:

python -m fitz embed-add -h
usage: fitz embed-add [-h] [-password PASSWORD] [-output OUTPUT] -name NAME -path

PATH [-desc DESC]
input

---------------------------- add embedded file ----------------------------

positional arguments:
input PDF filename

optional arguments:
-h, --help show this help message and exit
-password PASSWORD password
-output OUTPUT output PDF filename, incremental save if none
-name NAME name of new entry
-path PATH path to data for new entry
-desc DESC description of new entry

“NAME” must not already exist in the PDF. For details consult Document.embeddedFileAdd().

5.6.5 Updates

Update an existing embedded file using this command:

python -m fitz embed-upd -h
usage: fitz embed-upd [-h] -name NAME [-password PASSWORD] [-output OUTPUT]

[-path PATH] [-filename FILENAME] [-ufilename UFILENAME]
[-desc DESC]
input

--------------------------- update embedded file --------------------------

(continues on next page)

5.6. Embedded Files Commands 79

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

positional arguments:
input PDF filename

optional arguments:
-h, --help show this help message and exit
-name NAME name of entry
-password PASSWORD password
-output OUTPUT Output PDF filename, incremental save if none
-path PATH path to new data for entry
-filename FILENAME new filename to store in entry
-ufilename UFILENAME new unicode filename to store in entry
-desc DESC new description to store in entry

except '-name' all parameters are optional

Use this method to change meta-information of the file – just omit the “PATH”. For details consult Document.
embeddedFileUpd().

5.6.6 Copying

Copy embedded files between PDFs:

python -m fitz embed-copy -h
usage: fitz embed-copy [-h] [-password PASSWORD] [-output OUTPUT] -source

SOURCE [-pwdsource PWDSOURCE]
[-name [NAME [NAME ...]]]
input

--------------------- copy embedded files between PDFs --------------------

positional arguments:
input PDF to receive embedded files

optional arguments:
-h, --help show this help message and exit
-password PASSWORD password of input
-output OUTPUT output PDF, incremental save to 'input' if omitted
-source SOURCE copy embedded files from here
-pwdsource PWDSOURCE password of 'source' PDF
-name [NAME [NAME ...]]

restrict copy to these entries

80 Chapter 5. Using fitz as a Module

CHAPTER

SIX

CLASSES

6.1 Annot

This class is supported for PDF documents only.

Quote from the Adobe PDF Reference 1.7: “An annotation associates an object such as a note, sound, or movie with
a location on a page of a PDF document, or provides a way to interact with the user by means of the mouse and
keyboard.”

There is a parent-child relationship between an annotation and its page. If the page object becomes unusable (closed
document, any document structure change, etc.), then so does every of its existing annotation objects – an exception
is raised saying that the object is “orphaned”, whenever an annotation property or method is accessed.

Attribute Short Description
Annot.fileGet() return attached file content
Annot.fileInfo() return attached file information
Annot.fileUpd() set attached file new content
Annot.getPixmap() image of the annotation as a pixmap
Annot.setBorder() change the border
Annot.setColors() change the colors
Annot.setFlags() change the flags
Annot.setInfo() change various properties
Annot.setLineEnds() set line ending styles
Annot.setOpacity() change transparency
Annot.setName() change the “Name” field (e.g. icon name)
Annot.setRect() change the rectangle
Annot.update() apply accumulated annot changes
Annot.border border details
Annot.colors border / background and fill colors
Annot.flags annotation flags
Annot.info various information
Annot.lineEnds start / end appearance of line-type annotations
Annot.next link to the next annotation
Annot.opacity the annot’s transparency
Annot.parent page object of the annotation
Annot.rect rectangle containing the annotation
Annot.type type of the annotation
Annot.vertices point coordinates of Polygons, PolyLines, etc.
Annot.xref the PDF xref number

Class API

81

PyMuPDF Documentation, Release 1.16.10

class Annot

getPixmap(matrix=fitz.Identity, colorspace=fitz.csRGB, alpha=False)
Creates a pixmap from the annotation as it appears on the page in untransformed coordinates. The pixmap’s
IRect equals Annot.rect.irect (see below).

Parameters

• matrix (matrix_like) – a matrix to be used for image creation. Default is the
fitz.Identity matrix.

• colorspace (Colorspace) – a colorspace to be used for image creation. Default is
fitz.csRGB.

• alpha (bool) – whether to include transparency information. Default is False.

Return type Pixmap

Note: If the annotation has just been created or modified

setInfo(info=None, content=None, title=None, creationDate=None, modDate=None, subject=None)
(Changed in version 1.16.10)

Changes annotation properties. These include dates, contents, subject and author (title). Changes for name
will be ignored. The update happens selectively: To leave a property unchanged, set it to None. To delete
existing data, use an empty string.

Parameters

• info (dict) – a dictionary compatible with the info property (see below). All entries
must be strings. If this argument is not a dictionary, the other arguments are used instead
– else they are ignored.

• content (str) – (new in v1.16.10) see description in info.

• title (str) – (new in v1.16.10) see description in info.

• creationDate (str) – (new in v1.16.10) date of annot creation. If given, should be in
PDF datetime format.

• modDate (str) – (new in v1.16.10) date of last modification. If given, should be in PDF
datetime format.

• subject (str) – (new in v1.16.10) see description in info.

setLineEnds(start, end)
Sets an annotation’s line ending styles. Only ‘FreeText’, ‘Line’, ‘PolyLine’, and ‘Polygon’ annotations
can have these properties. Each of these annotation types is defined by a list of points which are connected
by lines. The symbol identified by start is attached to the first point, and end to the last point of this list.
For unsupported annotation types, a no-operation with a warning message results.

Parameters

• start (int) – The symbol number for the first point.

• end (int) – The symbol number for the last point.

setOpacity(value)
Change an annotation’s transparency.

Parameters value (float) – a float in range [0, 1]. Any value outside is assumed to be 1.
E.g. a value of 0.5 sets the transparency to 50%.

82 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

Three overlapping ‘Circle’ annotations with each opacity set to 0.5:

setName(name)
(New in version 1.16.0) Change the name field of any annotation type. For ‘FileAttachment’ and ‘Text’
annotations, this is the icon name, for ‘Stamp’ annotations the text in the stamp. The visual result (if any)
depends on your PDF viewer. See also Annotation Icons in MuPDF.

Parameters name (str) – the new name.

setRect(rect)
Change the rectangle of an annotation. The annotation can be moved around and both sides of the rectangle
can be independently scaled. However, the annotation appearance will never get rotated, flipped or sheared.

Parameters rect (rect_like) – the new rectangle of the annotation (finite and not empty).
E.g. using a value of annot.rect + (5, 5, 5, 5) will shift the annot position 5 pixels to the right
and downwards.

setBorder(border=None, width=0, style=None, dashes=None)
PDF only: Change border width and dashing properties.

Changed in version 1.16.9: Allow specification without using a dictionary. The direct parameters are used
if border is not a dictionary.

Parameters

• border (dict) – a dictionary as returned by the border property, with keys “width”
(float), “style” (str) and “dashes” (sequence). Omitted keys will leave the resp. property
unchanged. To e.g. remove dashing use: “dashes”: []. If dashes is not an empty sequence,
“style” will automatically be set to “D” (dashed).

• width (float) – see above.

• style (str) – see above.

• dashes (sequence) – see above.

setFlags(flags)
Changes the annotation flags. Use the | operator to combine several.

Parameters flags (int) – an integer specifying the required flags.

setColors(colors=None, stroke=None, fill=None)
Changes the “stroke” and “fill” colors for supported annotation types.

Changed in version 1.16.9: Allow colors to be directly set. These parameters are used if colors is not a
dictionary.

6.1. Annot 83

PyMuPDF Documentation, Release 1.16.10

Parameters

• colors (dict) – a dictionary containing color specifications. For accepted dictionary
keys and values see below. The most practical way should be to first make a copy of the
colors property and then modify this dictionary as required.

• stroke (sequence) – see above.

• fill (sequence) – see above.

update(fontsize=0, text_color=None, border_color=None, fill_color=None, rotate=-1)
Synchronize the appearance of an annotation with its properties after any changes.

You can safely omit this method only for the following changes:

• setRect()

• setFlags()

• fileUpd()

• setInfo() (except changes to “content”)

All arguments are optional and are reserved for ‘FreeText’ annotations – because of implementation
peculiarities of this annotation type. For other types they are ignored.

Color specifications may be made in the usual format used in PuMuPDF as sequences of floats ranging
from 0.0 to 1.0 (including both). The sequence length must be 1, 3 or 4 (supporting GRAY, RGB and
CMYK colorspaces respectively). For mono-color, just a float is also acceptable.

Parameters

• fontsize (float) – change font size of the text.

• text_color (sequence,float) – change the text color.

• border_color (sequence,float) – change the border color.

• fill_color (sequence,float) – the fill color. If you set (or leave) this to None,
then no rectangle at all will be drawn around the text, and the border color will be ignored.
This will leave anything “under” the text visible.

• rotate (int) – new rotation value. Default (-1) means no change.

Return type bool

fileInfo()
Basic information of the annot’s attached file.

Return type dict

Returns a dictionary with keys filename, ufilename, desc (description), size (uncompressed file
size), length (compressed length) for FileAttachment annot types, else None.

fileGet()
Returns attached file content.

Return type bytes

Returns the content of the attached file.

fileUpd(buffer=None, filename=None, ufilename=None, desc=None)
Updates the content of an attached file. All arguments are optional. No arguments lead to a no-op.

Parameters

84 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

• buffer (bytes|bytearray|BytesIO) – the new file content. Omit to only change
meta-information.

(Changed in version 1.14.13) io.BytesIO is now also supported.

• filename (str) – new filename to associate with the file.

• ufilename (str) – new unicode filename to associate with the file.

• desc (str) – new description of the file content.

opacity
The annotation’s transparency. If set, it is a value in range [0, 1]. The PDF default is 1.0. However, in an
effort to tell the difference, we return -1.0 if not set.

Return type float

parent
The owning page object of the annotation.

Return type Page

rect
The rectangle containing the annotation.

Return type Rect

next
The next annotation on this page or None.

Return type Annot

type
A number and one or two strings describing the annotation type, like [2, ‘FreeText’, ‘FreeTextCallout’].
The second string entry is optional and may be empty. See the appendix Annotation Related Constants for
a list of possible values and their meanings.

Return type list

info
A dictionary containing various information. All fields are optional (unicode) strings.

• name – e.g. for ‘Stamp’ annotations it will contain the stamp text like “Sold” or “Experimental”, for
other annot types you will see the name of the annot’s icon here (“PushPin” for FileAttachment).

• content – a string containing the text for type Text and FreeText annotations. Commonly used for
filling the text field of annotation pop-up windows.

• title – a string containing the title of the annotation pop-up window. By convention, this is used for
the annotation author.

• creationDate – creation timestamp.

• modDate – last modified timestamp.

• subject – subject.

• id – (new in version 1.16.10) a unique identification of the annotation. This is taken from PDF key
/NM. Annotations added by PyMuPDF will have a unique name, which appears here.

Return type dict

flags
An integer whose low order bits contain flags for how the annotation should be presented.

6.1. Annot 85

PyMuPDF Documentation, Release 1.16.10

Return type int

lineEnds
A pair of integers specifying start and end symbol of annotations types ‘FreeText’, ‘Line’, ‘PolyLine’, and
‘Polygon’. None if not applicable. For possible values and descriptions in this list, see the Adobe PDF
Reference 1.7, table 8.27 on page 630.

Return type tuple

vertices
A list containing a variable number of point (“vertices”) coordinates (each given by a pair of floats) for
various types of annotations:

• ‘Line’ – the starting and ending coordinates (2 float pairs).

• ‘FreeText’ – 2 or 3 float pairs designating the starting, the (optional) knee point, and the ending
coordinates.

• ‘PolyLine’ / ‘Polygon’ – the coordinates of the edges connected by line pieces (n float pairs for n
points).

• text markup annotations – 4 float pairs specifying the QuadPoints of the marked text span (see Adobe
PDF Reference 1.7, page 634).

• ‘Ink’ – list of one to many sublists of vertex coordinates. Each such sublist represents a separate line
in the drawing.

Return type list

colors
dictionary of two lists of floats in range 0 <= float <= 1 specifying the “stroke” and the interior (“fill”)
colors. The stroke color is used for borders and everything that is actively painted or written (“stroked”).
The fill color is used for the interior of objects like line ends, circles and squares. The lengths of these lists
implicitely determine the colorspaces used: 1 = GRAY, 3 = RGB, 4 = CMYK. So “[1.0, 0.0, 0.0]” stands
for RGB color red. Both lists can be empty if no color is specified.

Return type dict

xref
The PDF xref.

Return type int

border
A dictionary containing border characteristics. Empty if no border information exists. The following keys
may be present:

• width – a float indicating the border thickness in points. The value is -1.0 if no width is specified.

• dashes – a sequence of integers specifying a line dash pattern. [] means no dashes, [n] means equal
on-off lengths of n points, longer lists will be interpreted as specifying alternating on-off length values.
See the Adobe PDF Reference 1.7 page 217 for more details.

• style – 1-byte border style: “S” (Solid) = solid rectangle surrounding the annotation, “D” (Dashed)
= dashed rectangle surrounding the annotation, the dash pattern is specified by the dashes entry, “B”
(Beveled) = a simulated embossed rectangle that appears to be raised above the surface of the page,
“I” (Inset) = a simulated engraved rectangle that appears to be recessed below the surface of the page,
“U” (Underline) = a single line along the bottom of the annotation rectangle.

Return type dict

86 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

6.1.1 Annotation Icons in MuPDF

This is a list of icons referencable by name for annotation types ‘Text’ and ‘FileAttachment’. You can use them via the
icon parameter when adding an annotation, or use the as argument in Annot.setName(). It is left to your discretion
which item to choose when – no mechanism will keep you from using e.g. the “Speaker” icon for a ‘FileAttachment’.

6.1.2 Example

Change the graphical image of an annotation. Also update the “author” and the text to be shown in the popup window:

doc = fitz.open("circle-in.pdf")
page = doc[0] # page 0
annot = page.firstAnnot # get the annotation
annot.setBorder({"dashes": [3]}) # set dashes to "3 on, 3 off ..."

set stroke and fill color to some blue
annot.setColors({"stroke":(0, 0, 1), "fill":(0.75, 0.8, 0.95)})
info = annot.info # get info dict
info["title"] = "Jorj X. McKie" # set author

text in popup window ...
info["content"] = "I changed border and colors and enlarged the image by 20%."
info["subject"] = "Demonstration of PyMuPDF" # some PDF viewers also show this

(continues on next page)

6.1. Annot 87

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

annot.setInfo(info) # update info dict
r = annot.rect # take annot rect
r.x1 = r.x0 + r.width * 1.2 # new location has same top-left
r.y1 = r.y0 + r.height * 1.2 # but 20% longer sides
annot.setRect(r) # update rectangle
annot.update() # update the annot's appearance
doc.save("circle-out.pdf") # save

This is how the circle annotation looks like before and after the change (pop-up windows displayed using Nitro PDF
viewer):

6.2 Colorspace

Represents the color space of a Pixmap.

Class API

class Colorspace

__init__(self, n)
Constructor

Parameters n (int) – A number identifying the colorspace. Possible values are CS_RGB,
CS_GRAY and CS_CMYK.

name
The name identifying the colorspace. Example: fitz.csCMYK.name = ‘DeviceCMYK’.

Type str

n

The number of bytes required to define the color of one pixel. Example: fitz.csCMYK.n == 4.

88 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

type int

Predefined Colorspaces

For saving some typing effort, there exist predefined colorspace objects for the three available cases.

• csRGB = fitz.Colorspace(fitz.CS_RGB)

• csGRAY = fitz.Colorspace(fitz.CS_GRAY)

• csCMYK = fitz.Colorspace(fitz.CS_CMYK)

6.3 DisplayList

DisplayList is a list containing drawing commands (text, images, etc.). The intent is two-fold:

1. as a caching-mechanism to reduce parsing of a page

2. as a data structure in multi-threading setups, where one thread parses the page and another one renders pages.
This aspect is currently not supported by PyMuPDF.

A display list is populated with objects from a page, usually by executing Page.getDisplayList(). There also
exists an independent constructor.

“Replay” the list (once or many times) by invoking one of its methods run(), getPixmap() or getTextPage().

Method Short Description
run() Run a display list through a device.
getPixmap() generate a pixmap
getTextPage() generate a text page
rect mediabox of the display list

Class API

class DisplayList

__init__(self, mediabox)
Create a new display list.

Parameters mediabox (Rect) – The page’s rectangle.

Return type DisplayList

run(device, matrix, area)
Run the display list through a device. The device will populate the display list with its “commands” (i.e.
text extraction or image creation). The display list can later be used to “read” a page many times without
having to re-interpret it from the document file.

You will most probably instead use one of the specialized run methods below – getPixmap() or
getTextPage().

Parameters

• device (Device) – Device

• matrix (Matrix) – Transformation matrix to apply to the display list contents.

• area (Rect) – Only the part visible within this area will be considered when the list is run
through the device.

6.3. DisplayList 89

PyMuPDF Documentation, Release 1.16.10

getPixmap(matrix=fitz.Identity, colorspace=fitz.csRGB, alpha=0, clip=None)
Run the display list through a draw device and return a pixmap.

Parameters

• matrix (Matrix) – matrix to use. Default is the identity matrix.

• colorspace (Colorspace) – the desired colorspace. Default is RGB.

• alpha (int) – determine whether or not (0, default) to include a transparency channel.

• clip (IRect or Rect) – an area of the full mediabox to which the pixmap should be re-
stricted.

Return type Pixmap

Returns pixmap of the display list.

getTextPage(flags)
Run the display list through a text device and return a text page.

Parameters flags (int) – control which information is parsed into a text
page. Default value in PyMuPDF is 3 = TEXT_PRESERVE_LIGATURES |
TEXT_PRESERVE_WHITESPACE, i.e. ligatures are passed through, white spaces are
passed through (not translated to spaces), and images are not included. See Preserve Text
Flags.

Return type TextPage

Returns text page of the display list.

rect
Contains the display list’s mediabox. This will equal the page’s rectangle if it was created via Page.
getDisplayList().

Type Rect

6.4 Document

This class represents a document. It can be constructed from a file or from memory.

Since version 1.9.0 there exists the alias open for this class.

For addional details on embedded files refer to Appendix 3.

Method / Attribute Short Description
Document.authenticate() gain access to an encrypted document
Document.can_save_incrementally() check if incremental save is possible
Document.close() close the document
Document.convertToPDF() write a PDF version to memory
Document.copyPage() PDF only: copy a page reference
Document.deletePage() PDF only: delete a page
Document.deletePageRange() PDF only: delete a page range
Document.embeddedFileAdd() PDF only: add a new embedded file from buffer
Document.embeddedFileCount() PDF only: number of embedded files
Document.embeddedFileDel() PDF only: delete an embedded file entry
Document.embeddedFileGet() PDF only: extract an embedded file buffer
Document.embeddedFileInfo() PDF only: metadata of an embedded file

Continued on next page

90 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

Table 1 – continued from previous page
Method / Attribute Short Description
Document.embeddedFileNames() PDF only: list of embedded files
Document.embeddedFileUpd() PDF only: change an embedded file
Document.fullcopyPage() PDF only: duplicate a page
Document.getPageFontList() PDF only: make a list of fonts on a page
Document.getPageImageList() PDF only: make a list of images on a page
Document.getPagePixmap() create a pixmap of a page by page number
Document.getPageText() extract the text of a page by page number
Document.getSigFlags() PDF only: determine signature state
Document.getToC() create a table of contents
Document.insertPage() PDF only: insert a new page
Document.insertPDF() PDF only: insert pages from another PDF
Document.layout() re-paginate the document (if supported)
Document.loadPage() read a page
Document.metadataXML() PDF only: xref of XML metadata
Document.movePage() PDF only: move a page to another location
Document.newPage() PDF only: insert a new empty page
Document.pages() iterator over a page range
Document.PDFCatalog() PDF only: xref of catalog (root)
Document.PDFTrailer() PDF only: trailer source
Document.reload_page() PDF only: provide a new copy of a page
Document.save() PDF only: save the document
Document.saveIncr() PDF only: save the document incrementally
Document.searchPageFor() search for a string on a page
Document.select() PDF only: select a subset of pages
Document.setMetadata() PDF only: set the metadata
Document.setToC() PDF only: set the table of contents (TOC)
Document.updateObject() PDF only: replace object source
Document.updateStream() PDF only: replace stream source
Document.write() PDF only: writes the document to memory
Document.xrefObject() PDF only: object source at the xref
Document.xrefStream() PDF only: stream source at the xref
Document.xrefStreamRaw() PDF only: raw stream source at the xref
Document.FormFonts PDF only: list of global widget fonts
Document.isClosed has document been closed?
Document.isEncrypted document (still) encrypted?
Document.isFormPDF is this a Form PDF?
Document.isPDF is this a PDF?
Document.isReflowable is this a reflowable document?
Document.metadata metadata
Document.name filename of document
Document.needsPass require password to access data?
Document.outline first Outline item
Document.pageCount number of pages
Document.permissions permissions to access the document

Class API

class Document

__init__(self, filename=None, stream=None, filetype=None, rect=None, width=0, height=0, font-
size=11)

6.4. Document 91

PyMuPDF Documentation, Release 1.16.10

Creates a Document object.

• With default parameters, a new empty PDF document will be created.

• If stream is given, then the document is created from memory and either filename or filetype must
indicate its type.

• If stream is None, then a document is created from the file given by filename. Its type is inferred from
the extension, which can be overruled by specifying filetype.

Parameters

• filename (str,pathlib) – A UTF-8 string or pathlib object containing a file path
(or a file type, see below).

• stream (bytes,bytearray,BytesIO) – A memory area containing a supported
document. Its type must be specified by either filename or filetype.

(Changed in version 1.14.13) io.BytesIO is now also supported.

• filetype (str) – A string specifying the type of document. This may be something
looking like a filename (e.g. “x.pdf”), in which case MuPDF uses the extension to deter-
mine the type, or a mime type like application/pdf. Just using strings like “pdf” will also
work.

• rect (rect_like) – a rectangle specifying the desired page size. This parameter is
only meaningful for documents with a variable page layout (“reflowable” documents),
like e-books or HTML, and ignored otherwise. If specified, it must be a non-empty, finite
rectangle with top-left coordinates (0, 0). Together with parameter fontsize, each page will
be accordingly laid out and hence also determine the number of pages.

• width (float) – may used together with height as an alternative to rect to specify layout
information.

• height (float) – may used together with width as an alternative to rect to specify
layout information.

• fontsize (float) – the default fontsize for reflowable document types. This parameter
is ignored if none of the parameters rect or width and height are specified. Will be used to
calculate the page layout.

Overview of possible forms (using the open synonym of Document):

>>> # from a file
>>> doc = fitz.open("some.pdf")
>>> doc = fitz.open("some.file", None, "pdf") # copes with wrong extension
>>> doc = fitz.open("some.file", filetype="pdf") # copes with wrong extension
>>>
>>> # from memory
>>> doc = fitz.open("pdf", mem_area)
>>> doc = fitz.open(None, mem_area, "pdf")
>>> doc = fitz.open(stream=mem_area, filetype="pdf")
>>>
>>> # new empty PDF
>>> doc = fitz.open()
>>>

authenticate(password)
Decrypts the document with the string password. If successful, document data can be accessed. For PDF
documents, the “owner” and the “user” have different priviledges, and hence different passwords may exist

92 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

for these authorization levels. The method will automatically establish the appropriate access rights for the
provided password.

Parameters password (str) – owner or user password.

Return type int

Returns

a positive value if successful, zero otherwise. If successful, the indicator isEncrypted is set
to False. Positive return codes carry the following information detail:

• bit 0 set => no password required – happens if method was used although needsPass()
was zero.

• bit 1 set => user password authenticated

• bit 2 set => owner password authenticated

loadPage(pno=0)
Create a Page object for further processing (like rendering, text searching, etc.).

Parameters pno (int) – page number, zero-based (0 is default and the first page of the
document). Any integer -inf < pno < pageCount is acceptable. If pno is negative, then
pageCount will be added until this is no longer the case. For example: to load the last
page, you can specify doc.loadPage(-1). After this you have page.number = doc.pageCount
- 1.

Return type Page

Note: Documents also follow the Python sequence protocol with page numbers as indices: doc.loadPage(n)
== doc[n]. Consequently, expressions like “for page in doc: . . . ” and “for page in reversed(doc): . . . ” will
successively yield the document’s pages. Refer to Document.pages() which allows processing pages as
with slicing.

reload_page(page)
(New in version 1.16.10)

PDF only: Provide a new copy of a page after finishing and updating all pending changes.

Parameters page (Page) – page object.

Return type Page

Returns a new copy of the same page. All pending updates (e.g. to annotations or widgets) will
be finalized and a fresh copy of the page will be loaded.

pages(start=None[, stop=None[, step=None]])
(New in version 1.16.4)

A generator for a given range of pages. Parameters have the same meaning as in the built-in function
range(). Intended for expressions of the form “for page in doc.pages(start, stop, step): . . . ”.

Parameters

• start (int) – start iteration with this page number. Default is zero, allowed values are
-inf < start < pageCount. While this is negative, pageCount is added before starting the
iteration.

• stop (int) – stop iteration at this page number. Default is pageCount, possible are
-inf < stop <= pageCount. Larger values are silently replaced by the default. Negative

6.4. Document 93

PyMuPDF Documentation, Release 1.16.10

values will cyclically emit the pages in reversed order. As with the built-in range(), this is
the first page not returned.

• step (int) – stepping value. Defaults are 1 if start < stop and -1 if start > stop. Zero is
not allowed.

Returns

a generator iterator over the document’s pages. Some examples:

• ”doc.pages()” emits all pages.

• ”doc.pages(4, 9, 2)” emits pages 4, 6, 8.

• ”doc.pages(0, None, 2)” emits all pages with even numbers.

• ”doc.pages(-2)” emits the last two pages.

• ”doc.pages(-1, -1)” emits all pages in reversed order.

• ”doc.pages(-1, -10)” emits pages in reversed order, starting with the last page repeatedly.
For a 4-page document the following page numbers are emitted: 3, 2, 1, 0, 3, 2, 1, 0, 3, 2,
1, 0, 3.

convertToPDF(from_page=-1, to_page=-1, rotate=0)
Create a PDF version of the current document and write it to memory. All document types (except PDF)
are supported. The parameters have the same meaning as in insertPDF(). In essence, you can restrict
the conversion to a page subset, specify page rotation, and revert page sequence.

Parameters

• from_page (int) – first page to copy (0-based). Default is first page.

• to_page (int) – last page to copy (0-based). Default is last page.

• rotate (int) – rotation angle. Default is 0 (no rotation). Should be n * 90 with an
integer n (not checked).

Return type bytes

Returns

a Python bytes object containing a PDF file image. It is created by internally using
write(garbage=4, deflate=True). See write(). You can output it directly to disk or open
it as a PDF. Here are some examples:

>>> # convert an XPS file to PDF
>>> xps = fitz.open("some.xps")
>>> pdfbytes = xps.convertToPDF()
>>>
>>> # either do this --->
>>> pdf = fitz.open("pdf", pdfbytes)
>>> pdf.save("some.pdf")
>>>
>>> # or this --->
>>> pdfout = open("some.pdf", "wb")
>>> pdfout.write(pdfbytes)
>>> pdfout.close()

>>> # copy image files to PDF pages
>>> # each page will have image dimensions
>>> doc = fitz.open() # new PDF
>>> imglist = [... image file names ...] # e.g. a directory listing

(continues on next page)

94 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

>>> for img in imglist:
imgdoc=fitz.open(img) # open image as a document
pdfbytes=imgdoc.convertToPDF() # make a 1-page PDF of it
imgpdf=fitz.open("pdf", pdfbytes)
doc.insertPDF(imgpdf) # insert the image PDF

>>> doc.save("allmyimages.pdf")

Note: The method uses the same logic as the mutool convert CLI. This works very well in most cases –
however, beware of the following limitations.

• Image files: perfect, no issues detected. Apparently however, image transparency is ignored. If you
need that (like for a watermark), use Page.insertImage() instead. Otherwise, this method is
recommended for its much better prformance.

• XPS: appearance very good. Links work fine, outlines (bookmarks) are lost, but can easily be recov-
ered70.

• EPUB, CBZ, FB2: similar to XPS.

• SVG: medium. Roughly comparable to svglib63.

getToC(simple=True)
Creates a table of contents out of the document’s outline chain.

Parameters simple (bool) – Indicates whether a simple or a detailed ToC is required. If
simple == False, each entry of the list also contains a dictionary with linkDest details for
each outline entry.

Return type list

Returns

a list of lists. Each entry has the form [lvl, title, page, dest]. Its entries have the following
meanings:

• lvl – hierarchy level (positive int). The first entry is always 1. Entries in a row are either
equal, increase by 1, or decrease by any number.

• title – title (str)

• page – 1-based page number (int). Page numbers < 1 either indicate a target outside this
document or no target at all (see next entry).

• dest – (dict) included only if simple=False. Contains details of the link destination.

getPagePixmap(pno, *args, **kwargs)
Creates a pixmap from page pno (zero-based). Invokes Page.getPixmap().

Parameters pno (int) – page number, 0-based in -inf < pno < pageCount.

Return type Pixmap

getPageImageList(pno, full=False)
PDF only: Return a list of all image descriptions referenced by a page.

Parameters
70 However, you can use Document.getToC() and Page.getLinks() (which are available for all document types) and copy this infor-

mation over to the output PDF. See demo pdf-converter.py71.
71 https://github.com/pymupdf/PyMuPDF/blob/master/demo/pdf-converter.py
63 https://github.com/deeplook/svglib

6.4. Document 95

https://github.com/deeplook/svglib
https://github.com/pymupdf/PyMuPDF/blob/master/demo/pdf-converter.py

PyMuPDF Documentation, Release 1.16.10

• pno (int) – page number, 0-based in -inf < pno < pageCount.

• full (bool) – whether to also include the xref of the Form /XObject where the item is
referenced. This is zero if the item is part of page’s /Resources.

Return type list

Returns a list of images shown on this page. Each item looks like

[xref, smask, width, height, bpc, colorspace, alt. colorspace, name, filter, form_xref],

Where

• xref (int) is the image object number,

• smask (int optional) is the object number of its soft-mask image (if present),

• width and height (ints) are the image dimensions,

• bpc (int) denotes the number of bits per component (a typical value is 8),

• colorspace (str)a string naming the colorspace (like DeviceRGB),

• alt. colorspace (str optional) is any alternate colorspace depending on the value of colorspace,

• name (str) is the symbolic name by which the page references the image in its content stream, and

• filter (str optional) is the decode filter of the image (Adobe PDF Reference 1.7, pp. 65).

• form_xref (int optional) the xref number of the Form XObject, which references the item. Zero if
directly referenced by the page.

See below how this information can be used to extract PDF images as separate files. Another demonstra-
tion:

>>> doc = fitz.open("pymupdf.pdf")
>>> doc.getPageImageList(0, full=True)
[[316, 0, 261, 115, 8, 'DeviceRGB', '', 'Im1', 'DCTDecode', 0]]
>>> pix = fitz.Pixmap(doc, 316) # 316 is the xref of the image
>>> pix
fitz.Pixmap(DeviceRGB, fitz.IRect(0, 0, 261, 115), 0)

Note: This list has no duplicate entries: the combination of xref and name is unique. But by themselves,
each of the two may occur multiple times. The same image may well be referenced under different names
within a page. Duplicate name entries on the other hand indicate the presence of “Form XObjects” on the
page, e.g. generated by Page.showPDFpage().

getPageFontList(pno, full=False)
PDF only: Return a list of all fonts referenced by the page.

Parameters

• pno (int) – page number, 0-based, -inf < pno < pageCount.

• full (bool) – whether to also include the xref of the Form /XObject where the item is
referenced. This is zero if the item is part of page’s /Resources.

Return type list

Returns a list of fonts referenced by this page. Each entry looks like

[xref, ext, type, basefont, name, encoding, form_xref],

Where

96 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

• xref (int) is the font object number (may be zero if the PDF uses one of the builtin fonts directly),

• ext (str) font file extension (e.g. “ttf”, see Font File Extensions),

• type (str) is the font type (like “Type1” or “TrueType” etc.),

• basefont (str) is the base font name,

• name (str) is the reference name (or label), by which the page references the font in its contents
stream, and

• encoding (str optional) the font’s character encoding if different from its built-in encoding (Adobe
PDF Reference 1.7, p. 414):

• form_xref (int optional) the xref number of the Form XObject, which references the item. Zero if
directly referenced by the page.

Example:

>>> doc = fitz.open("some.pdf")
>>> for f in doc.getPageFontList(0, full=False): print(f)
[24, 'ttf', 'TrueType', 'DOKBTG+Calibri', 'R10', '']
[17, 'ttf', 'TrueType', 'NZNDCL+CourierNewPSMT', 'R14', '']
[32, 'ttf', 'TrueType', 'FNUUTH+Calibri-Bold', 'R8', '']
[28, 'ttf', 'TrueType', 'NOHSJV+Calibri-Light', 'R12', '']
[8, 'ttf', 'Type0', 'ECPLRU+Calibri', 'R23', 'Identity-H']

Note: This list has no duplicate entries: the combination of xref and name is unique. But by them-
selves, each of the two may occur multiple times. Duplicate name entries indicate the presence of “Form
XObjects” on the page, e.g. generated by Page.showPDFpage().

getPageText(pno, output="text")
Extracts the text of a page given its page number pno (zero-based). Invokes Page.getText().

Parameters

• pno (int) – page number, 0-based, any value -inf < pno < pageCount.

• output (str) – A string specifying the requested output format: text, html, json or xml.
Default is text.

Return type str

layout(rect=None, width=0, height=0, fontsize=11)
Re-paginate (“reflow”) the document based on the given page dimension and fontsize. This only affects
some document types like e-books and HTML. Ignored if not supported. Supported documents have True
in property isReflowable.

Parameters

• rect (rect_like) – desired page size. Must be finite, not empty and start at point (0,
0).

• width (float) – use it together with height as alternative to rect.

• height (float) – use it together with width as alternative to rect.

• fontsize (float) – the desired default fontsize.

select(s)
PDF only: Keeps only those pages of the document whose numbers occur in the list. Empty sequences or

6.4. Document 97

PyMuPDF Documentation, Release 1.16.10

elements outside range(len(doc)) will cause a ValueError. For more details see remarks at the bottom or
this chapter.

Parameters s (sequence) – The sequence (see Using Python Sequences as Arguments in
PyMuPDF) of page numbers (zero-based) to be included. Pages not in the sequence will
be deleted (from memory) and become unavailable until the document is reopened. Page
numbers can occur multiple times and in any order: the resulting document will reflect
the sequence exactly as specified.

Note:

• Page numbers in the sequence need not be unique nor be in any particular order. This makes the
method a versatile utility to e.g. select only the even or the odd pages or meeting some other criteria
and so forth.

• On a technical level, the method will always create a new pagetree.

• When dealing with only a few pages, methods copyPage(), movePage(), deletePage() are
easier to use. In fact, they are also much faster – by at least one order of magnitude when the
document has many pages.

setMetadata(m)
PDF only: Sets or updates the metadata of the document as specified in m, a Python dictionary. As with
select(), these changes become permanent only when you save the document. Incremental save is
supported.

Parameters m (dict) – A dictionary with the same keys as metadata (see below). All keys
are optional. A PDF’s format and encryption method cannot be set or changed and will be
ignored. If any value should not contain data, do not specify its key or set the value to None.
If you use {} all metadata information will be cleared to the string “none”. If you want
to selectively change only some values, modify a copy of doc.metadata and use it as the
argument. Arbitrary unicode values are possible if specified as UTF-8-encoded.

setToC(toc, collapse=1)
PDF only: Replaces the complete current outline tree (table of contents) with the new one provided as the
argument. After successful execution, the new outline tree can be accessed as usual via method getToC()
or via property outline. Like with other output-oriented methods, changes become permanent only via
save() (incremental save supported). Internally, this method consists of the following two steps. For a
demonstration see example below.

• Step 1 deletes all existing bookmarks.

• Step 2 creates a new TOC from the entries contained in toc.

Parameters

• toc (sequence) – A Python sequence (list or tuple) with all bookmark entries that
should form the new table of contents. Output variants of getToC() are acceptable. To
completely remove the table of contents specify an empty sequence or None. Each item
must be a list with the following format.

– [lvl, title, page [, dest]] where

* lvl is the hierarchy level (int > 0) of the item, which must be 1 for the first item and
at most 1 larger than the previous one.

* title (str) is the title to be displayed. It is assumed to be UTF-8-encoded (relevant for
multibyte code points only).

98 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

* page (int) is the target page number (attention: 1-based). Must be in valid range if
positive. Set it to -1 if there is no target, or the target is external.

* dest (optional) is a dictionary or a number. If a number, it will be interpreted as the
desired height (in points) this entry should point to on the page. Use a dictionary (like
the one given as output by getToC(False)) if you want to store destinations that are
either “named”, or reside outside this document (other files, internet resources, etc.).

• collapse (int) – (new in version 1.16.9) controls the hierarchy level beyond which
outline entries should initially show up collapsed. The default 1 will hence only display
level 1, higher levels must be expanded in the PDF viewer. To completely expand specify
either a large integer, 0 or None.

Return type int

Returns the number of inserted, resp. deleted items.

can_save_incrementally()
(New in version 1.16.0)

Check whether the document can be saved incrementally. Use it to choose the right option without en-
countering exceptions.

save(outfile, garbage=0, clean=False, deflate=False, incremental=False, ascii=False, ex-
pand=0, linear=False, pretty=False, encryption=PDF_ENCRYPT_NONE, permissions=-1,
owner_pw=None, user_pw=None)

PDF only: Saves the document in its current state.

Parameters

• outfile (str) – The file path to save to. Must be different from the original value
if “incremental” is false or zero. When saving incrementally, “garbage” and “lin-
ear” must be false or zero and this parameter must equal the original filename (for
convenience use doc.name).

• garbage (int) – Do garbage collection. Positive values exclude “incremental”.

– 0 = none

– 1 = remove unused objects

– 2 = in addition to 1, compact the xref table

– 3 = in addition to 2, merge duplicate objects

– 4 = in addition to 3, check object streams for duplication (may be slow)

• clean (bool) – Clean and sanitize content streams69. Corresponds to “mutool clean
-sc”.

• deflate (bool) – Deflate (compress) uncompressed streams.

• incremental (bool) – Only save changed objects. Excludes “garbage” and “lin-
ear”. Cannot be used for files that are decrypted or repaired and also in some other
cases. To be sure, check Document.can_save_incrementally(). If this is
false, saving to a new file is required.

• ascii (bool) – convert binary data to ASCII.

• expand (int) – Decompress objects. Generates versions that can be better read by
some other programs and will lead to larger files.

69 Content streams describe what (e.g. text or images) appears where and how on a page. PDF uses a specialized mini language similar to
PostScript to do this (pp. 985 in Adobe PDF Reference 1.7), which gets interpreted when a page is loaded.

6.4. Document 99

PyMuPDF Documentation, Release 1.16.10

– 0 = none

– 1 = images

– 2 = fonts

– 255 = all

• linear (bool) – Save a linearised version of the document. This option creates a
file format for improved performance when read via internet connections. Excludes
“incremental”.

• pretty (bool) – Prettify the document source for better readability. PDF objects
will be reformatted to look like the default output of Document.xrefObject().

• permissions (int) – (new in version 1.16.0) Set the desired permission levels.
See Document Permissions for possible values. Default is granting all.

• encryption (int) – (new in version 1.16.0) set the desired encryption method.
See PDF encryption method codes for possible values.

• owner_pw (str) – (new in version 1.16.0) set the document’s owner password.

• user_pw (str) – (new in version 1.16.0) set the document’s user password.

saveIncr()
PDF only: saves the document incrementally. This is a convenience abbreviation for doc.save(doc.name,
incremental=True, encryption=PDF_ENCRYPT_KEEP).

write(garbage=0, clean=False, deflate=False, ascii=False, expand=0, linear=False, pretty=False,
encryption=PDF_ENCRYPT_NONE, permissions=-1, owner_pw=None, user_pw=None)

PDF only: Writes the current content of the document to a bytes object instead of to a file. Obviously,
you should be wary about memory requirements. The meanings of the parameters exactly equal those in
save(). Chater Collection of Recipes contains an example for using this method as a pre-processor to
pdfrw64.

(Changed in version 1.16.0) for extended encryption support.

Return type bytes

Returns a bytes object containing the complete document.

searchPageFor(pno, text, hit_max=16, quads=False)
Search for “text” on page number “pno”. Works exactly like the corresponding Page.searchFor().
Any integer -inf < pno < pageCount is acceptable.

insertPDF(docsrc, from_page=-1, to_page=-1, start_at=-1, rotate=-1, links=True, annots=True)
PDF only: Copy the page range [from_page, to_page] (including both) of PDF document docsrc into the
current one. Inserts will start with page number start_at. Negative values can be used to indicate default
values. All pages thus copied will be rotated as specified. Links can be excluded in the target, see below.
All page numbers are zero-based.

Parameters

• docsrc (Document) – An opened PDF Document which must not be the current
document object. However, it may refer to the same underlying file.

• from_page (int) – First page number in docsrc. Default is zero.

• to_page (int) – Last page number in docsrc to copy. Default is the last page.

64 https://pypi.python.org/pypi/pdfrw/0.3

100 Chapter 6. Classes

https://pypi.python.org/pypi/pdfrw/0.3

PyMuPDF Documentation, Release 1.16.10

• start_at (int) – First copied page will become page number start_at in the des-
tination. If omitted, the page range will be appended to current document. If zero, the
page range will be inserted before current first page.

• rotate (int) – All copied pages will be rotated by the provided value (degrees,
integer multiple of 90).

• links (bool) – Choose whether (internal and external) links should be included in
the copy. Default is True. An internal link is always excluded, if its destination is
not one of the copied pages.

• annots (bool) – (new in version 1.16.1) choose whether annotations should be
included in the copy.

Note:

1. If from_page > to_page, pages will be copied in reverse order. If 0 <= from_page == to_page, then
one page will be copied.

2. docsrc bookmarks will not be copied. It is easy however, to recover a table of contents for the resulting
document. Look at the examples below and at program PDFjoiner.py65 in the examples directory: it can
join PDF documents and at the same time piece together respective parts of the tables of contents.

newPage(pno=-1, width=595, height=842)
PDF only: Insert an empty page.

Parameters

• pno (int) – page number in front of which the new page should be inserted. Must
be in 1 < pno <= pageCount. Special values -1 and len(doc) insert after the last page.

• width (float) – page width.

• height (float) – page height.

Return type Page

Returns the created page object.

insertPage(pno, text=None, fontsize=11, width=595, height=842, fontname="helv", fontfile=None,
color=None)

PDF only: Insert a new page and insert some text. Convenience function which combines Document.
newPage() and (parts of) Page.insertText().

Parameters pno (int) – page number (0-based) in front of which to insert. Must be in
range(-1, len(doc) + 1). Special values -1 and len(doc) insert after the last page.

Changed in version 1.14.12 This is now a positional parameter

For the other parameters, please consult the aforementioned methods.

Return type int

Returns the result of Page.insertText() (number of successfully inserted lines).

deletePage(pno=-1)
PDF only: Delete a page given by its 0-based number in -inf < pno < pageCount - 1.

Changed in version 1.14.17

Parameters pno (int) – the page to be deleted. Negative number count backwards from the
end of the document (like with indices). Default is the last page.

65 https://github.com/pymupdf/PyMuPDF/blob/master/examples/PDFjoiner.py

6.4. Document 101

https://github.com/pymupdf/PyMuPDF/blob/master/examples/PDFjoiner.py

PyMuPDF Documentation, Release 1.16.10

deletePageRange(from_page=-1, to_page=-1)
PDF only: Delete a range of pages given as 0-based numbers. Any -1 parameter will first be replaced by
len(doc) - 1 (ie. last page number). After that, condition 0 <= from_page <= to_page < len(doc) must be
true. If the parameters are equal, this is equivalent to deletePage().

(Changed in version 1.14.17) Table of contents and internal links are now resynchronized.

Parameters

• from_page (int) – the first page to be deleted.

• to_page (int) – the last page to be deleted.

Note: In an effort to maintain a valid PDF structure, this method and deletePage() will also remove
the deleted pages from the table of contents.

Similarly, it will scan all pages of the PDF and remove any links that point to deleted pages. This action
may have an extended response time for documents with a lot of pages.

The number of deleted pages has a very small response time effect. Therefore, whenever possible, delete
page ranges instead of single pages.

Example: Delete the page range 500 to 520 from a large PDF, using different methods.

Method 1 - deletePageRange:

import time, fitz
doc = fitz.open("Adobe PDF Reference 1-7.pdf")
t0=time.perf_counter();doc.deletePageRange(500, 520);t1=time.perf_counter()
round(t1 - t0, 2)
0.66

Method 2 - select, this is more than 10 times slower:

l = list(range(500)) + list(range(521, 1310))
t0=time.perf_counter();doc.select(l);t1=time.perf_counter()
round(t1 - t0, 2)
7.62

copyPage(pno, to=-1)
PDF only: Copy a page reference within the document.

Parameters

• pno (int) – the page to be copied. Must be in range 0 <= pno < len(doc).

• to (int) – the page number in front of which to copy. The default inserts after the
last page.

Note: Only a new reference to the page object will be created – not a new page object, all copied pages
will have identical attribute values, including the Page.xref. This implies that any changes to one of
these copies will appear on all of them.

fullcopyPage(pno, to=-1)
(New in version 1.14.17)

PDF only: Make a new copy (duplicate) of a page.

Parameters

102 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

• pno (int) – the page to be duplicated. Must be in range 0 <= pno < len(doc).

• to (int) – the page number in front of which to copy. The default inserts after the
last page.

Note: In contrast to copyPage(), this method creates a completely identical new page object – with
the exception of Page.xref of course, which will be different. So changes to a copy will only show
there.

movePage(pno, to=-1)
PDF only: Move (copy and then delete original) a page within the document.

Parameters

• pno (int) – the page to be moved. Must be in range 0 <= pno < len(doc).

• to (int) – the page number in front of which to insert the moved page. The default
moves after the last page.

getSigFlags()
PDF only: Return whether the document contains signature fields.

Return type int

Returns

• -1: not a Form PDF or no signature fields exist.

• 1: at least one signature field exists.

• 3: contains signatures that may be invalidated if the file is saved (written) in a way
that alters its previous contents, as opposed to an incremental update.

embeddedFileAdd(name, buffer, filename=None, ufilename=None, desc=None)
PDF only: Embed a new file. All string parameters except the name may be unicode (in previous versions,
only ASCII worked correctly). File contents will be compressed (where beneficial).

Changed in version 1.14.16 The sequence of positional parameters “name” and “buffer” has been
changed to comply with the layout of other functions.

Parameters

• name (str) – entry identifier, must not already exist.

• buffer (bytes,bytearray,BytesIO) – file contents.

(Changed in version 1.14.13) io.BytesIO is now also supported.

• filename (str) – optional filename. Documentation only, will be set to name if
None.

• ufilename (str) – optional unicode filename. Documentation only, will be set to
filename if None.

• desc (str) – optional description. Documentation only, will be set to name if None.

embeddedFileCount()
PDF only: Return the number of embedded files.

Changed in version 1.14.16 This is now a method. In previous versions, this was a property.

6.4. Document 103

PyMuPDF Documentation, Release 1.16.10

embeddedFileGet(item)
PDF only: Retrieve the content of embedded file by its entry number or name. If the document is not a
PDF, or entry cannot be found, an exception is raised.

Parameters item (int,str) – index or name of entry. An integer must be in
range(embeddedFileCount()).

Return type bytes

embeddedFileDel(item)
PDF only: Remove an entry from /EmbeddedFiles. As always, physical deletion of the embedded file
content (and file space regain) will occur only when the document is saved to a new file with a suitable
garbage option.

Changed in version 1.14.16 Items can now be deleted by index, too.

Parameters item (int/str) – index or name of entry.

Warning: When specifying an entry name, this function will only delete the first item with that
name. Be aware that PDFs not created with PyMuPDF may contain duplicate names. So you may
want to take appropriate precautions.

embeddedFileInfo(item)
PDF only: Retrieve information of an embedded file given by its number or by its name.

Parameters item (int/str) – index or name of entry. An integer must be in
range(embeddedFileCount()).

Return type dict

Returns

a dictionary with the following keys:

• name – (str) name under which this entry is stored

• filename – (str) filename

• ufilename – (unicode) filename

• desc – (str) description

• size – (int) original file size

• length – (int) compressed file length

embeddedFileNames()
(New in version 1.14.16)

PDF only: Return a list of embedded file names. The sequence of names equals the physical sequence in
the document.

Return type list

embeddedFileUpd(item, buffer=None, filename=None, ufilename=None, desc=None)
PDF only: Change an embedded file given its entry number or name. All parameters are optional. Letting
them default leads to a no-operation.

Parameters

• item (int/str) – index or name of entry. An integer must be in range(0, embed-
dedFileCount()).

104 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

• buffer (bytes,bytearray,BytesIO) – the new file content.

(Changed in version 1.14.13) io.BytesIO is now also supported.

• filename (str) – the new filename.

• ufilename (str) – the new unicode filename.

• desc (str) – the new description.

embeddedFileSetInfo(n, filename=None, ufilename=None, desc=None)
PDF only: Change embedded file meta information. All parameters are optional. Letting them default
will lead to a no-operation.

Parameters

• n (int,str) – index or name of entry. An integer must be in
range(embeddedFileCount()).

• filename (str) – sets the filename.

• ufilename (str) – sets the unicode filename.

• desc (str) – sets the description.

Note: Deprecated subset of embeddedFileUpd(). Will be deleted in a future version.

close()
Release objects and space allocations associated with the document. If created from a file, also closes
filename (releasing control to the OS).

xrefObject(xref, compressed=False, ascii=False)
(New in version 1.16.8)

PDF only: Return the definition of a PDF object. For details please refer to Document.
xrefObject().

PDFCatalog()
(New in version 1.16.8)

PDF only: Return the xref of the PDF catalog (or root) object. For details please refer to Document.
_getPDFroot().

PDFTrailer(compressed=False)
(New in version 1.16.8)

PDF only: Return the trailer of the PDF (UTF-8), which is usually located at the PDF file’s end. For
details please refer to Document._getTrailerString().

metadataXML()
(New in version 1.16.8)

PDF only: Return the xref of the document’s XML metadata. For details please refer to Document.
_getXmlMetadataXref().

xrefStream(xref)
(New in version 1.16.8)

PDF only: Return the decompressed contents of the xref stream object. For details please refer to
Document._getXrefStream().

xrefStreamRaw(xref)
(New in version 1.16.8)

6.4. Document 105

PyMuPDF Documentation, Release 1.16.10

PDF only: Return the unmodified contents of the xref stream object. Otherwise equal to Document.
xrefStream().

updateObject(xref, obj_str, page=None)
(New in version 1.16.8)

PDF only: Update object at xref. For details please refer to Document._updateObject().

updateStream(xref, data, new=False)
(New in version 1.16.8)

PDF only: Repleace the stream at :data‘xref‘. For details please refer to Document.
_updateStream().

outline
Contains the first Outline entry of the document (or None). Can be used as a starting point to walk
through all outline items. Accessing this property for encrypted, not authenticated documents will raise
an AttributeError.

Type Outline

isClosed
False if document is still open. If closed, most other attributes and methods will have been deleted / dis-
abled. In addition, Page objects referring to this document (i.e. created with Document.loadPage())
and their dependent objects will no longer be usable. For reference purposes, Document.name still ex-
ists and will contain the filename of the original document (if applicable).

Type bool

isPDF
True if this is a PDF document, else False.

Type bool

isFormPDF
False if this is not a PDF or has no form fields, otherwise the number of root form fields (fields with no
ancestors).

Changed in version 1.16.4 Returns the total number of (root) form fields.

Type bool,int

isReflowable
True if document has a variable page layout (like e-books or HTML). In this case you can set the desired
page dimensions during document creation (open) or via method layout().

Type bool

needsPass
Indicates whether the document is password-protected against access. This indicator remains unchanged
– even after the document has been authenticated. Precludes incremental saves if true.

Type bool

isEncrypted
This indicator initially equals needsPass. After successful authentication, it is set to False to reflect the
situation.

Type bool

permissions
Contains the permissions to access the document. This is an integer containing bool values in respective
bit positions. For example, if doc.permissions & fitz.PDF_PERM_MODIFY > 0, you may change the
document. See Document Permissions for details.

106 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

Changed in version 1.16.0 This is now an integer comprised of bit indicators. Was a dictionary previously.

Type int

metadata
Contains the document’s meta data as a Python dictionary or None (if isEncrypted=True and need-
Pass=True). Keys are format, encryption, title, author, subject, keywords, creator, producer, creation-
Date, modDate. All item values are strings or None.

Except format and encryption, for PDF documents, the key names correspond in an obvious way to
the PDF keys /Creator, /Producer, /CreationDate, /ModDate, /Title, /Author, /Subject, and /Keywords
respectively.

• format contains the document format (e.g. ‘PDF-1.6’, ‘XPS’, ‘EPUB’).

• encryption either contains None (no encryption), or a string naming an encryption method (e.g.
‘Standard V4 R4 128-bit RC4’). Note that an encryption method may be specified even if
needsPass=False. In such cases not all permissions will probably have been granted. Check
Document.permissions for details.

• If the date fields contain valid data (which need not be the case at all!), they are strings in the PDF-
specific timestamp format “D:<TS><TZ>”, where

– <TS> is the 12 character ISO timestamp YYYYMMDDhhmmss (YYYY - year, MM - month, DD
- day, hh - hour, mm - minute, ss - second), and

– <TZ> is a time zone value (time intervall relative to GMT) containing a sign (‘+’ or ‘-‘), the
hour (hh), and the minute (‘mm’, note the apostrophies!).

• A Paraguayan value might hence look like D:20150415131602-04‘00’, which corresponds to the
timestamp April 15, 2015, at 1:16:02 pm local time Asuncion.

Type dict

name
Contains the filename or filetype value with which Document was created.

Type str

pageCount
Contains the number of pages of the document. May return 0 for documents with no pages. Function
len(doc) will also deliver this result.

Type int

FormFonts
A list of form field font names defined in the /AcroForm object. None if not a PDF.

Type list

Note: For methods that change the structure of a PDF (insertPDF(), select(), copyPage(),
deletePage() and others), be aware that objects or properties in your program may have been invalidated or
orphaned. Examples are Page objects and their children (links, annotations, widgets), variables holding old page
counts, tables of content and the like. Remember to keep such variables up to date or delete orphaned objects. Also
refer to Ensuring Consistency of Important Objects in PyMuPDF.

6.4. Document 107

PyMuPDF Documentation, Release 1.16.10

6.4.1 setMetadata() Example

Clear metadata information. If you do this out of privacy / data protection concerns, make sure you save the document
as a new file with garbage > 0. Only then the old /Info object will also be physically removed from the file. In this
case, you may also want to clear any XML metadata inserted by several PDF editors:

>>> import fitz
>>> doc=fitz.open("pymupdf.pdf")
>>> doc.metadata # look at what we currently have
{'producer': 'rst2pdf, reportlab', 'format': 'PDF 1.4', 'encryption': None, 'author':
'Jorj X. McKie', 'modDate': "D:20160611145816-04'00'", 'keywords': 'PDF, XPS, EPUB,
→˓CBZ',
'title': 'The PyMuPDF Documentation', 'creationDate': "D:20160611145816-04'00'",
'creator': 'sphinx', 'subject': 'PyMuPDF 1.9.1'}
>>> doc.setMetadata({}) # clear all fields
>>> doc.metadata # look again to show what happened
{'producer': 'none', 'format': 'PDF 1.4', 'encryption': None, 'author': 'none',
'modDate': 'none', 'keywords': 'none', 'title': 'none', 'creationDate': 'none',
'creator': 'none', 'subject': 'none'}
>>> doc._delXmlMetadata() # clear any XML metadata
>>> doc.save("anonymous.pdf", garbage = 4) # save anonymized doc

6.4.2 setToC() Demonstration

This shows how to modify or add a table of contents. Also have a look at csv2toc.py66 and toc2csv.py67 in the examples
directory.

>>> import fitz
>>> doc = fitz.open("test.pdf")
>>> toc = doc.getToC()
>>> for t in toc: print(t) # show what we have
[1, 'The PyMuPDF Documentation', 1]
[2, 'Introduction', 1]
[3, 'Note on the Name fitz', 1]
[3, 'License', 1]
>>> toc[1][1] += " modified by setToC" # modify something
>>> doc.setToC(toc) # replace outline tree
3 # number of bookmarks inserted
>>> for t in doc.getToC(): print(t) # demonstrate it worked
[1, 'The PyMuPDF Documentation', 1]
[2, 'Introduction modified by setToC', 1] # <<< this has changed
[3, 'Note on the Name fitz', 1]
[3, 'License', 1]

6.4.3 insertPDF() Examples

(1) Concatenate two documents including their TOCs:

>>> doc1 = fitz.open("file1.pdf") # must be a PDF
>>> doc2 = fitz.open("file2.pdf") # must be a PDF
>>> pages1 = len(doc1) # save doc1's page count

(continues on next page)

66 https://github.com/pymupdf/PyMuPDF/blob/master/examples/csv2toc.py
67 https://github.com/pymupdf/PyMuPDF/blob/master/examples/toc2csv.py

108 Chapter 6. Classes

https://github.com/pymupdf/PyMuPDF/blob/master/examples/csv2toc.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/toc2csv.py

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

>>> toc1 = doc1.getToC(False) # save TOC 1
>>> toc2 = doc2.getToC(False) # save TOC 2
>>> doc1.insertPDF(doc2) # doc2 at end of doc1
>>> for t in toc2: # increase toc2 page numbers

t[2] += pages1 # by old len(doc1)
>>> doc1.setToC(toc1 + toc2) # now result has total TOC

Obviously, similar ways can be found in more general situations. Just make sure that hierarchy levels in a row do not
increase by more than one. Inserting dummy bookmarks before and after toc2 segments would heal such cases. A
ready-to-use GUI (wxPython) solution can be found in script PDFjoiner.py68 of the examples directory.

(2) More examples:

>>> # insert 5 pages of doc2, where its page 21 becomes page 15 in doc1
>>> doc1.insertPDF(doc2, from_page=21, to_page=25, start_at=15)

>>> # same example, but pages are rotated and copied in reverse order
>>> doc1.insertPDF(doc2, from_page=25, to_page=21, start_at=15, rotate=90)

>>> # put copied pages in front of doc1
>>> doc1.insertPDF(doc2, from_page=21, to_page=25, start_at=0)

6.4.4 Other Examples

Extract all page-referenced images of a PDF into separate PNG files:

for i in range(len(doc)):
imglist = doc.getPageImageList(i)
for img in imglist:

xref = img[0] # xref number
pix = fitz.Pixmap(doc, xref) # make pixmap from image
if pix.n - pix.alpha < 4: # can be saved as PNG

pix.writePNG("p%s-%s.png" % (i, xref))
else: # CMYK: must convert first

pix0 = fitz.Pixmap(fitz.csRGB, pix)
pix0.writePNG("p%s-%s.png" % (i, xref))
pix0 = None # free Pixmap resources

pix = None # free Pixmap resources

Rotate all pages of a PDF:

>>> for page in doc: page.setRotation(90)

6.5 Identity

Identity is a Matrix that performs no action – to be used whenever the syntax requires a matrix, but no actual transfor-
mation should take place. It has the form fitz.Matrix(1, 0, 0, 1, 0, 0).

Identity is a constant, an “immutable” object. So, all of its matrix properties are read-only and its methods are disabled.

If you need a mutable identity matrix as a starting point, use one of the following statements:
68 https://github.com/pymupdf/PyMuPDF/blob/master/examples/PDFjoiner.py

6.5. Identity 109

https://github.com/pymupdf/PyMuPDF/blob/master/examples/PDFjoiner.py

PyMuPDF Documentation, Release 1.16.10

>>> m = fitz.Matrix(1, 0, 0, 1, 0, 0) # specify the values
>>> m = fitz.Matrix(1, 1) # use scaling by factor 1
>>> m = fitz.Matrix(0) # use rotation by zero degrees
>>> m = fitz.Matrix(fitz.Identity) # make a copy of Identity

6.6 IRect

IRect is a rectangular bounding box similar to Rect, except that all corner coordinates are integers. IRect is used
to specify an area of pixels, e.g. to receive image data during rendering. Otherwise, many similarities exist, e.g.
considerations concerning emptiness and finiteness of rectangles also apply to this class.

Attribute / Method Short Description
IRect.contains() checks containment of another object
IRect.getArea() calculate rectangle area
IRect.getRect() return a Rect with same coordinates
IRect.getRectArea() calculate rectangle area
IRect.intersect() common part with another rectangle
IRect.intersects() checks for non-empty intersection
IRect.norm() the Euclidean norm
IRect.normalize() makes a rectangle finite
IRect.bottom_left bottom left point, synonym bl
IRect.bottom_right bottom right point, synonym br
IRect.height height of the rectangle
IRect.isEmpty whether rectangle is empty
IRect.isInfinite whether rectangle is infinite
IRect.rect equals result of method getRect()
IRect.top_left top left point, synonym tl
IRect.top_right top_right point, synonym tr
IRect.quad Quad made from rectangle corners
IRect.width width of the rectangle
IRect.x0 X-coordinate of the top left corner
IRect.x1 X-coordinate of the bottom right corner
IRect.y0 Y-coordinate of the top left corner
IRect.y1 Y-coordinate of the bottom right corner

Class API

class IRect

__init__(self)

__init__(self, x0, y0, x1, y1)

__init__(self, irect)

__init__(self, sequence)
Overloaded constructors. Also see examples below and those for the Rect class.

If another irect is specified, a new copy will be made.

If sequence is specified, it must be a Python sequence type of 4 numbers (see Using Python Sequences
as Arguments in PyMuPDF). Non-integer numbers will be truncated, non-numeric entries will raise an
exception.

110 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

The other parameters mean integer coordinates.

getRect()
A convenience function returning a Rect with the same coordinates. Also available as attribute rect.

Return type Rect

getRectArea([unit])
getArea([unit])

Calculates the area of the rectangle and, with no parameter, equals abs(IRect). Like an empty rectangle,
the area of an infinite rectangle is also zero.

Parameters unit (str) – Specify required unit: respective squares of “px” (pixels, default),
“in” (inches), “cm” (centimeters), or “mm” (millimeters).

Return type float

intersect(ir)
The intersection (common rectangular area) of the current rectangle and ir is calculated and replaces the
current rectangle. If either rectangle is empty, the result is also empty. If either rectangle is infinite, the
other one is taken as the result – and hence also infinite if both rectangles were infinite.

Parameters ir (rect_like) – Second rectangle.

contains(x)
Checks whether x is contained in the rectangle. It may be rect_like, point_like or a number. If
x is an empty rectangle, this is always true. Conversely, if the rectangle is empty this is always False, if
x is not an empty rectangle and not a number. If x is a number, it will be checked to be one of the four
components. x in irect and irect.contains(x) are equivalent.

Parameters x (IRect or Rect or Point or int) – the object to check.

Return type bool

intersects(r)
Checks whether the rectangle and the rect_like “r” contain a common non-empty IRect. This will
always be False if either is infinite or empty.

Parameters r (rect_like) – the rectangle to check.

Return type bool

norm()
(New in version 1.16.0)

Return the Euclidean norm of the rectangle treated as a vector of four numbers.

normalize()
Make the rectangle finite. This is done by shuffling rectangle corners. After this, the bottom right corner
will indeed be south-eastern to the top left one. See Rect for a more details.

top_left

tl
Equals Point(x0, y0).

Type Point

top_right

tr
Equals Point(x1, y0).

Type Point

6.6. IRect 111

PyMuPDF Documentation, Release 1.16.10

bottom_left

bl
Equals Point(x0, y1).

Type Point

bottom_right

br
Equals Point(x1, y1).

Type Point

quad
The quadrilateral Quad(irect.tl, irect.tr, irect.bl, irect.br).

Type Quad

width
Contains the width of the bounding box. Equals abs(x1 - x0).

Type int

height
Contains the height of the bounding box. Equals abs(y1 - y0).

Type int

x0
X-coordinate of the left corners.

Type int

y0
Y-coordinate of the top corners.

Type int

x1
X-coordinate of the right corners.

Type int

y1
Y-coordinate of the bottom corners.

Type int

isInfinite
True if rectangle is infinite, False otherwise.

Type bool

isEmpty
True if rectangle is empty, False otherwise.

Type bool

Note:

• This class adheres to the Python sequence protocol, so components can be accessed via their index, too. Also
refer to Using Python Sequences as Arguments in PyMuPDF.

• Rectangles can be used with arithmetic operators – see chapter Operator Algebra for Geometry Objects.

112 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

6.7 Link

Represents a pointer to somewhere (this document, other documents, the internet). Links exist per document page, and
they are forward-chained to each other, starting from an initial link which is accessible by the Page.firstLink
property.

There is a parent-child relationship between a link and its page. If the page object becomes unusable (closed document,
any document structure change, etc.), then so does every of its existing link objects – an exception is raised saying that
the object is “orphaned”, whenever a link property or method is accessed.

Attribute Short Description
Link.setBorder() modify border properties
Link.setColors() modify color properties
Link.border border characteristics
Link.colors border line color
Link.dest points to link destination details
Link.isExternal external link destination?
Link.next points to next link
Link.rect clickable area in untransformed coordinates.
Link.uri link destination
Link.xref xref number of the entry

Class API

class Link

setBorder(border=None, width=0, style=None, dashes=None)
PDF only: Change border width and dashing properties.

(Changed in version 1.16.9) Allow specification without using a dictionary. The direct parameters are
used if border is not a dictionary.

Parameters

• border (dict) – a dictionary as returned by the border property, with keys
“width” (float), “style” (str) and “dashes” (sequence). Omitted keys will leave the
resp. property unchanged. To e.g. remove dashing use: “dashes”: []. If dashes is not
an empty sequence, “style” will automatically be set to “D” (dashed).

• width (float) – see above.

• style (str) – see above.

• dashes (sequence) – see above.

setColors(colors=None, stroke=None, fill=None)
Changes the “stroke” and “fill” colors.

(Changed in version 1.16.9) Allow colors to be directly set. These parameters are used if colors is not a
dictionary.

Parameters

• colors (dict) – a dictionary containing color specifications. For accepted dictio-
nary keys and values see below. The most practical way should be to first make a copy
of the colors property and then modify this dictionary as required.

• stroke (sequence) – see above.

6.7. Link 113

PyMuPDF Documentation, Release 1.16.10

• fill (sequence) – see above.

colors
Meaningful for PDF only: A dictionary of two lists of floats in range 0 <= float <= 1 specifying the
stroke and the interior (fill) colors. If not a PDF, None is returned. The stroke color is used for borders and
everything that is actively painted or written (“stroked”). The lengths of these lists implicitely determine
the colorspaces used: 1 = GRAY, 3 = RGB, 4 = CMYK. So [1.0, 0.0, 0.0] stands for RGB color red. Both
lists can be [] if no color is specified. The value of each float f is mapped to the integer value i in range 0
to 255 via the computation f = i / 255.

Return type dict

border
Meaningful for PDF only: A dictionary containing border characteristics. It will be None for non-PDFs
and an empty dictionary if no border information exists. The following keys can occur:

• width – a float indicating the border thickness in points. The value is -1.0 if no width is specified.

• dashes – a sequence of integers specifying a line dash pattern. [] means no dashes, [n] means equal
on-off lengths of n points, longer lists will be interpreted as specifying alternating on-off length
values. See the Adobe PDF Reference 1.7 page 217 for more details.

• style – 1-byte border style: S (Solid) = solid rectangle surrounding the annotation, D (Dashed) =
dashed rectangle surrounding the link, the dash pattern is specified by the dashes entry, B (Beveled)
= a simulated embossed rectangle that appears to be raised above the surface of the page, I (In-
set) = a simulated engraved rectangle that appears to be recessed below the surface of the page, U
(Underline) = a single line along the bottom of the annotation rectangle.

Return type dict

rect
The area that can be clicked in untransformed coordinates.

Type Rect

isExternal
A bool specifying whether the link target is outside of the current document.

Type bool

uri
A string specifying the link target. The meaning of this property should be evaluated in conjunction with
property isExternal. The value may be None, in which case isExternal == False. If uri starts with file://,
mailto:, or an internet resource name, isExternal is True. In all other cases isExternal == False and uri
points to an internal location. In case of PDF documents, this should either be #nnnn to indicate a 1-based
(!) page number nnnn, or a named location. The format varies for other document types, e.g. uri =
‘../FixedDoc.fdoc#PG_2_LNK_1’ for page number 2 (1-based) in an XPS document.

Type str

xref
An integer specifying the PDF xref. Zero if not a PDF.

Type int

next
The next link or None.

Type Link

dest
The link destination details object.

114 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

Type linkDest

6.8 linkDest

Class representing the dest property of an outline entry or a link. Describes the destination to which such entries point.

Attribute Short Description
linkDest.dest destination
linkDest.fileSpec file specification (path, filename)
linkDest.flags descriptive flags
linkDest.isMap is this a MAP?
linkDest.isUri is this a URI?
linkDest.kind kind of destination
linkDest.lt top left coordinates
linkDest.named name if named destination
linkDest.newWindow name of new window
linkDest.page page number
linkDest.rb bottom right coordinates
linkDest.uri URI

Class API

class linkDest

dest
Target destination name if linkDest.kind is LINK_GOTOR and linkDest.page is -1.

Type str

fileSpec
Contains the filename and path this link points to, if linkDest.kind is LINK_GOTOR or
LINK_LAUNCH .

Type str

flags
A bitfield describing the validity and meaning of the different aspects of the destination. As far as possible,
link destinations are constructed such that e.g. linkDest.lt and linkDest.rb can be treated as
defining a bounding box. But the flags indicate which of the values were actually specified, see Link
Destination Flags.

Type int

isMap
This flag specifies whether to track the mouse position when the URI is resolved. Default value: False.

Type bool

isUri
Specifies whether this destination is an internet resource (as opposed to e.g. a local file specification in
URI format).

Type bool

6.8. linkDest 115

PyMuPDF Documentation, Release 1.16.10

kind
Indicates the type of this destination, like a place in this document, a URI, a file launch, an action or a
place in another file. Look at Link Destination Kinds to see the names and numerical values.

Type int

lt
The top left Point of the destination.

Type Point

named
This destination refers to some named action to perform (e.g. a javascript, see Adobe PDF Reference 1.7).
Standard actions provided are NextPage, PrevPage, FirstPage, and LastPage.

Type str

newWindow
If true, the destination should be launched in a new window.

Type bool

page
The page number (in this or the target document) this destination points to. Only set if linkDest.
kind is LINK_GOTOR or LINK_GOTO. May be -1 if linkDest.kind is LINK_GOTOR. In this case
linkDest.dest contains the name of a destination in the target document.

Type int

rb
The bottom right Point of this destination.

Type Point

uri
The name of the URI this destination points to.

Type str

6.9 Matrix

Matrix is a row-major 3x3 matrix used by image transformations in MuPDF (which complies with the respective
concepts laid down in the Adobe PDF Reference 1.7). With matrices you can manipulate the rendered image of a page
in a variety of ways: (parts of) the page can be rotated, zoomed, flipped, sheared and shifted by setting some or all of
just six float values.

Since all points or pixels live in a two-dimensional space, one column vector of that matrix is a constant unit vector,
and only the remaining six elements are used for manipulations. These six elements are usually represented by [a, b,
c, d, e, f]. Here is how they are positioned in the matrix:

116 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

Please note:

• the below methods are just convenience functions – everything they do, can also be achieved by directly manip-
ulating the six numerical values

• all manipulations can be combined – you can construct a matrix that rotates and shears and scales and shifts,
etc. in one go. If you however choose to do this, do have a look at the remarks further down or at the Adobe
PDF Reference 1.7.

Method / Attribute Description
Matrix.preRotate() perform a rotation
Matrix.preScale() perform a scaling
Matrix.preShear() perform a shearing (skewing)
Matrix.preTranslate() perform a translation (shifting)
Matrix.concat() perform a matrix multiplication
Matrix.invert() calculate the inverted matrix
Matrix.norm() the Euclidean norm
Matrix.a zoom factor X direction
Matrix.b shearing effect Y direction
Matrix.c shearing effect X direction
Matrix.d zoom factor Y direction
Matrix.e horizontal shift
Matrix.f vertical shift
Matrix.isRectilinear true if rect corners will remain rect corners

Class API

class Matrix

__init__(self)

__init__(self, zoom-x, zoom-y)

__init__(self, shear-x, shear-y, 1)

__init__(self, a, b, c, d, e, f)

__init__(self, matrix)

__init__(self, degree)

__init__(self, sequence)
Overloaded constructors.

Without parameters, the zero matrix Matrix(0.0, 0.0, 0.0, 0.0, 0.0, 0.0) will be created.

zoom-* and shear-* specify zoom or shear values (float) and create a zoom or shear matrix, respectively.

For “matrix” a new copy of another matrix will be made.

Float value “degree” specifies the creation of a rotation matrix which rotates anit-clockwise.

A “sequence” must be any Python sequence object with exactly 6 float entries (see Using Python Se-
quences as Arguments in PyMuPDF).

fitz.Matrix(1, 1), fitz.Matrix(0.0) and fitz.Matrix(fitz.Identity) create modifyable versions of the Identity
matrix, which looks like [1, 0, 0, 1, 0, 0].

norm()
(New in version 1.16.0)

6.9. Matrix 117

PyMuPDF Documentation, Release 1.16.10

Return the Euclidean norm of the matrix as a vector.

preRotate(deg)
Modify the matrix to perform a counter-clockwise rotation for positive deg degrees, else clockwise. The
matrix elements of an identity matrix will change in the following way:

[1, 0, 0, 1, 0, 0] -> [cos(deg), sin(deg), -sin(deg), cos(deg), 0, 0].

Parameters deg (float) – The rotation angle in degrees (use conventional notation based
on Pi = 180 degrees).

preScale(sx, sy)
Modify the matrix to scale by the zoom factors sx and sy. Has effects on attributes a thru d only: [a, b, c,
d, e, f] -> [a*sx, b*sx, c*sy, d*sy, e, f].

Parameters

• sx (float) – Zoom factor in X direction. For the effect see description of attribute
a.

• sy (float) – Zoom factor in Y direction. For the effect see description of attribute
d.

preShear(sx, sy)
Modify the matrix to perform a shearing, i.e. transformation of rectangles into parallelograms (rhom-
boids). Has effects on attributes a thru d only: [a, b, c, d, e, f] -> [c*sy, d*sy, a*sx, b*sx, e, f].

Parameters

• sx (float) – Shearing effect in X direction. See attribute c.

• sy (float) – Shearing effect in Y direction. See attribute b.

preTranslate(tx, ty)
Modify the matrix to perform a shifting / translation operation along the x and / or y axis. Has effects on
attributes e and f only: [a, b, c, d, e, f] -> [a, b, c, d, tx*a + ty*c, tx*b + ty*d].

Parameters

• tx (float) – Translation effect in X direction. See attribute e.

• ty (float) – Translation effect in Y direction. See attribute f.

concat(m1, m2)
Calculate the matrix product m1 * m2 and store the result in the current matrix. Any of m1 or m2 may be
the current matrix. Be aware that matrix multiplication is not commutative. So the sequence of m1, m2 is
important.

Parameters

• m1 (Matrix) – First (left) matrix.

• m2 (Matrix) – Second (right) matrix.

invert(m = None)
Calculate the matrix inverse of m and store the result in the current matrix. Returns 1 if m is not invertible
(“degenerate”). In this case the current matrix will not change. Returns 0 if m is invertible, and the
current matrix is replaced with the inverted m.

Parameters m (Matrix) – Matrix to be inverted. If not provided, the current matrix will be
used.

Return type int

118 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

a
Scaling in X-direction (width). For example, a value of 0.5 performs a shrink of the width by a factor of
2. If a < 0, a left-right flip will (additionally) occur.

Type float

b
Causes a shearing effect: each Point(x, y) will become Point(x, y - b*x). Therefore, looking from left to
right, e.g. horizontal lines will be “tilt” – downwards if b > 0, upwards otherwise (b is the tangens of the
tilting angle).

Type float

c
Causes a shearing effect: each Point(x, y) will become Point(x - c*y, y). Therefore, looking upwards,
vertical lines will be “tilt” – to the left if c > 0, to the right otherwise (c ist the tangens of the tilting angle).

Type float

d
Scaling in Y-direction (height). For example, a value of 1.5 performs a stretch of the height by 50%. If d
< 0, an up-down flip will (additionally) occur.

Type float

e
Causes a horizontal shift effect: Each Point(x, y) will become Point(x + e, y). Positive (negative) values
of e will shift right (left).

Type float

f
Causes a vertical shift effect: Each Point(x, y) will become Point(x, y - f). Positive (negative) values of f
will shift down (up).

Type float

isRectilinear
Rectilinear means that no shearing is present and that any rotations are integer multiples of 90 degrees.
Usually this is used to confirm that (axis-aligned) rectangles before the transformation are still axis-
aligned rectangles afterwards.

Type bool

Note:

• This class adheres to the Python sequence protocol, so components can be accessed via their index, too. Also
refer to Using Python Sequences as Arguments in PyMuPDF.

• A matrix can be used with arithmetic operators – see chapter Operator Algebra for Geometry Objects.

• Changes of matrix properties and execution of matrix methods can be executed consecutively. This is the same
as multiplying the respective matrices.

• Matrix multiplication is not commutative – changing the execution sequence in general changes the result. So
it can quickly become unclear which result a transformation will yield.

To keep results foreseeable for a series of matrix operations, Adobe recommends the following approach (Adobe PDF
Reference 1.7, page 206):

1. Shift (“translate”)

6.9. Matrix 119

PyMuPDF Documentation, Release 1.16.10

2. Rotate

3. Scale or shear (“skew”)

6.9.1 Examples

Here are examples to illustrate some of the effects achievable. The following pictures start with a page of the PDF
version of this help file. We show what happens when a matrix is being applied (though always full pages are created,
only parts are displayed here to save space).

This is the original page image:

6.9.2 Shifting

We transform it with a matrix where e = 100 (right shift by 100 pixels).

Next we do a down shift by 100 pixels: f = 100.

120 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

6.9.3 Flipping

Flip the page left-right (a = -1).

Flip up-down (d = -1).

6.9. Matrix 121

PyMuPDF Documentation, Release 1.16.10

6.9.4 Shearing

First a shear in Y direction (b = 0.5).

Second a shear in X direction (c = 0.5).

122 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

6.9.5 Rotating

Finally a rotation by 30 clockwise degrees (preRotate(-30)).

6.9. Matrix 123

PyMuPDF Documentation, Release 1.16.10

6.10 Outline

outline (or “bookmark”), is a property of Document. If not None, it stands for the first outline item of the document.
Its properties in turn define the characteristics of this item and also point to other outline items in “horizontal” or
downward direction. The full tree of all outline items for e.g. a conventional table of contents (TOC) can be recovered
by following these “pointers”.

124 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

Method / Attribute Short Description
Outline.down next item downwards
Outline.next next item same level
Outline.page page number (0-based)
Outline.title title
Outline.uri string further specifying the outline target
Outline.isExternal target is outside this document
Outline.is_open whether sub-outlines are open or collapsed
Outline.isOpen whether sub-outlines are open or collapsed
Outline.dest points to link destination details

Class API

class Outline

down
The next outline item on the next level down. Is None if the item has no kids.

Type Outline

next
The next outline item at the same level as this item. Is None if this is the last one in its level.

Type Outline

page
The page number (0-based) this bookmark points to.

Type int

title
The item’s title as a string or None.

Type str

is_open
Or isOpen – an indicator showing whether any sub-outlines should be expanded (True) or be collapsed
(False). This information should be interpreted by PDF display software accordingly.

Type bool

isExternal
A bool specifying whether the target is outside (True) of the current document.

Type bool

uri
A string specifying the link target. The meaning of this property should be evaluated in conjunction with
isExternal. The value may be None, in which case isExternal == False. If uri starts with file://, mailto:,
or an internet resource name, isExternal is True. In all other cases isExternal == False and uri points
to an internal location. In case of PDF documents, this should either be #nnnn to indicate a 1-based
(!) page number nnnn, or a named location. The format varies for other document types, e.g. uri =
‘../FixedDoc.fdoc#PG_21_LNK_84’ for page number 21 (1-based) in an XPS document.

Type str

dest
The link destination details object.

Type linkDest

6.10. Outline 125

PyMuPDF Documentation, Release 1.16.10

6.11 Page

Class representing a document page. A page object is created by Document.loadPage() or, equivalently, via
indexing the document like doc[n] - it has no independent constructor.

There is a parent-child relationship between a document and its pages. If the document is closed or deleted, all page
objects (and their respective children, too) in existence will become unusable (“orphaned”): If a page property or
method is being used, an exception is raised.

Several page methods have a Document counterpart for convenience. At the end of this chapter you will find a synopsis.

6.11.1 Adding Page Content

This is available for PDF documents only. There are basically two groups of methods:

1. Methods making permanent changes. This group contains insertText(), insertTextbox() and all draw*() meth-
ods. They provide “stand-alone”, shortcut versions for the same-named methods of the Shape class. For detailed
descriptions have a look in that chapter. Some remarks on the relationship between the Page and Shape methods:

• In contrast to Shape, the results of page methods are not interconnected: they do not share properties like colors,
line width / dashing, morphing, etc.

• Each page draw*() method invokes a Shape.finish() and then a Shape.commit() and consequently
accepts the combined arguments of both these methods.

• Text insertion methods (insertText() and insertTextbox()) do not need Shape.finish() and therefore only
invoke Shape.commit().

2. Methods adding annotations. Annotations can be added, modified and deleted without necessarily having full
document permissions. Their effect is not permanent in the sense, that manipulating them does not require to
rebuild the document. Adding and deleting annotations are page methods. Changing existing annotations is
possible via methods of the Annot class.

Method / Attribute Short Description
Page.addCaretAnnot() PDF only: add a caret annotation
Page.addCircleAnnot() PDF only: add a circle annotation
Page.addFileAnnot() PDF only: add a file attachment annotation
Page.addFreetextAnnot() PDF only: add a text annotation
Page.addHighlightAnnot() PDF only: add a “highlight” annotation
Page.addInkAnnot() PDF only: add an ink annotation
Page.addLineAnnot() PDF only: add a line annotation
Page.addPolygonAnnot() PDF only: add a polygon annotation
Page.addPolylineAnnot() PDF only: add a multi-line annotation
Page.addRectAnnot() PDF only: add a rectangle annotation
Page.addSquigglyAnnot() PDF only: add a “squiggly” annotation
Page.addStampAnnot() PDF only: add a “rubber stamp” annotation
Page.addStrikeoutAnnot() PDF only: add a “strike-out” annotation
Page.addTextAnnot() PDF only: add a comment
Page.addUnderlineAnnot() PDF only: add an “underline” annotation
Page.addWidget() PDF only: add a PDF Form field
Page.annot_names() PDF only: a list of annotation and widget names
Page.annots() return a generator over the annots on the page
Page.bound() rectangle of the page
Page.deleteAnnot() PDF only: delete an annotation

Continued on next page

126 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

Table 2 – continued from previous page
Method / Attribute Short Description
Page.deleteLink() PDF only: delete a link
Page.drawBezier() PDF only: draw a cubic Bezier curve
Page.drawCircle() PDF only: draw a circle
Page.drawCurve() PDF only: draw a special Bezier curve
Page.drawLine() PDF only: draw a line
Page.drawOval() PDF only: draw an oval / ellipse
Page.drawPolyline() PDF only: connect a point sequence
Page.drawRect() PDF only: draw a rectangle
Page.drawSector() PDF only: draw a circular sector
Page.drawSquiggle() PDF only: draw a squiggly line
Page.drawZigzag() PDF only: draw a zig-zagged line
Page.getFontList() PDF only: get list of used fonts
Page.getImageBbox() PDF only: get bbox of inserted image
Page.getImageList() PDF only: get list of used images
Page.getLinks() get all links
Page.getPixmap() create a Pixmap
Page.getSVGimage() create a page image in SVG format
Page.getText() extract the page’s text
Page.getTextPage() create a TextPage for the page
Page.insertFont() PDF only: insert a font for use by the page
Page.insertImage() PDF only: insert an image
Page.insertLink() PDF only: insert a link
Page.insertText() PDF only: insert text
Page.insertTextbox() PDF only: insert a text box
Page.links() return a generator of the links on the page
Page.load_annot() PDF only: load an annotation identified by its name
Page.loadLinks() return the first link on a page
Page.newShape() PDF only: start a new Shape
Page.searchFor() search for a string
Page.setCropBox() PDF only: modify the visible page
Page.setRotation() PDF only: set page rotation
Page.showPDFpage() PDF only: display PDF page image
Page.updateLink() PDF only: modify a link
Page.widgets() return a generator over the fields on the page
Page.CropBox the page’s /CropBox
Page.CropBoxPosition displacement of the /CropBox
Page.firstAnnot first Annot on the page
Page.firstLink first Link on the page
Page.firstWidget first widget (form field) on the page
Page.MediaBox the page’s /MediaBox
Page.MediaBoxSize bottom-right point of /MediaBox
Page.number page number
Page.parent owning document object
Page.rect rectangle (mediabox) of the page
Page.rotation PDF only: page rotation
Page.xref PDF xref

Class API

class Page

6.11. Page 127

PyMuPDF Documentation, Release 1.16.10

bound()
Determine the rectangle (before transformation) of the page. Same as property Page.rect below. For
PDF documents this usually also coincides with objects /MediaBox and /CropBox, but not always. The
best description hence is probably “/CropBox, transformed such that top-left coordinates are (0, 0)”. Also
see attributes Page.CropBox and Page.MediaBox.

Return type Rect

addCaretAnnot(point)
(New in version 1.16.0)

PDF only: Add a caret icon. A caret annotation is a visual symbol that indicates the presence of text edits.

Parameters point (point_like) – the top left point of a 20 x 20 rectangle containing the
MuPDF-provided icon.

Return type Annot

Returns the created annotation.

addTextAnnot(point, text, icon="Note")
PDF only: Add a comment icon (“sticky note”) with accompanying text.

Parameters

• point (point_like) – the top left point of a 20 x 20 rectangle containing the
MuPDF-provided “note” icon.

• text (str) – the commentary text. This will be shown on double clicking or hover-
ing over the icon. May contain any Latin characters.

• icon (str) – (new in version 1.16.0) choose one of “Note” (default), “Comment”,
“Help”, “Insert”, “Key”, “NewParagraph”, “Paragraph” as the visual symbol for the
embodied text79.

Return type Annot

Returns the created annotation.

addFreetextAnnot(rect, text, fontsize=12, fontname="helv", text_color=0, fill_color=1, rotate=0)
PDF only: Add text in a given rectangle.

Parameters

• rect (rect_like) – the rectangle into which the text should be inserted. Text is
automatically wrapped to a new line at box width. Lines not fitting into the box will
be invisible.

• text (str) – the text. May contain any Latin characters.

• fontsize (float) – the font size. Default is 12.

• fontname (str) – the font name. Default is “Helv”. Accepted alternatives are
“Cour”, “TiRo”, “ZaDb” and “Symb”. The name may be abbreviated to the first two
characters, like “Co” for “Cour”. Lower case is also accepted.

• text_color (sequence,float) – (new in version 1.16.0) the text color. Default
is black.

79 You are generally free to choose any of the Annotation Icons in MuPDF you consider adequate.

128 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

• fill_color (sequence,float) – (new in version 1.16.0) the fill color. Default
is white.

• rotate (int) – the text orientation. Accepted values are 0, 90, 270, invalid entries
are set to zero.

Return type Annot

Returns the created annotation. Color properties can only be changed using special parame-
ters of Annot.update(). There, you can also set a border color different from the text
color.

addFileAnnot(pos, buffer, filename, ufilename=None, desc=None, icon="PushPin")
PDF only: Add a file attachment annotation with a “PushPin” icon at the specified location.

Parameters

• pos (point_like) – the top-left point of a 18x18 rectangle containing the MuPDF-
provided “PushPin” icon.

• buffer (bytes,bytearray,BytesIO) – the data to be stored (actual file con-
tent, any data, etc.).

Changed in version 1.14.13 io.BytesIO is now also supported.

• filename (str) – the filename to associate with the data.

• ufilename (str) – the optional PDF unicode version of filename. Defaults to
filename.

• desc (str) – an optional description of the file. Defaults to filename.

• icon (str) – (new in version 1.16.0) choose one of “PushPin” (default), “Graph”,
“Paperclip”, “Tag” as the visual symbol for the attached data79.

Return type Annot

Returns the created annotation. Use methods of Annot to make any changes.

addInkAnnot(list)
PDF only: Add a “freehand” scribble annotation.

Parameters list (sequence) – a list of one or more lists, each containing point_like
items. Each item in these sublists is interpreted as a Point through which a connecting line
is drawn. Separate sublists thus represent separate drawing lines.

Return type Annot

Returns the created annotation in default appearance (black line of width 1). Use annotation
methods with a subsequent Annot.update() to modify.

addLineAnnot(p1, p2)
PDF only: Add a line annotation.

Parameters

• p1 (point_like) – the starting point of the line.

• p2 (point_like) – the end point of the line.

Return type Annot

Returns the created annotation. It is drawn with line color black and line width 1. To change,
or attach other information (like author, creation date, line properties, colors, line ends,
etc.) use methods of Annot. The rectangle is automatically created to contain both points,

6.11. Page 129

PyMuPDF Documentation, Release 1.16.10

each one surrounded by a circle of radius 3 (= 3 * line width) to make room for any line
end symbols. Use methods of Annot to make any changes.

addRectAnnot(rect)

addCircleAnnot(rect)
PDF only: Add a rectangle, resp. circle annotation.

Parameters rect (rect_like) – the rectangle in which the circle or rectangle is drawn,
must be finite and not empty. If the rectangle is not equal-sided, an ellipse is drawn.

Return type Annot

Returns the created annotation. It is drawn with line color black, no fill color and line width
1. Use methods of Annot to make any changes.

addPolylineAnnot(points)

addPolygonAnnot(points)
PDF only: Add an annotation consisting of lines which connect the given points. A Polygon’s first
and last points are automatically connected, which does not happen for a PolyLine. The rectangle is
automatically created as the smallest rectangle containing the points, each one surrounded by a circle of
radius 3 (= 3 * line width). The following shows a ‘PolyLine’ that has been modified with colors and line
ends.

Parameters points (list) – a list of point_like objects.

Return type Annot

Returns the created annotation. It is drawn with line color black, no fill color and line width
1. Use methods of Annot to make any changes to achieve something like this:

addUnderlineAnnot(quads)

addStrikeoutAnnot(quads)

addSquigglyAnnot(quads)

addHighlightAnnot(quads)
PDF only: These annotations are normally used for marking text which has previously been located (for
example via searchFor()). But the actual presence of text within the specified area(s) is neither
checked nor required. So you are free to “mark” anything.

Standard colors are chosen per annotation type: yellow for highlighting, red for strike out, green for
underlining, and magenta for wavy underlining.

The methods convert the argument into a list of Quad objects. The annotation rectangle is calculated to
envelop these quadrilaterals.

Note: searchFor() supports Quad objects as an output option. Hence the following two statements
are sufficient to locate and mark every occurrence of string “pymupdf” with one common annotation:

>>> quads = page.searchFor("pymupdf", hit_max=100, quads=True)
>>> page.addHighlightAnnot(quads)

130 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

Parameters quads (rect_like,quad_like,list,tuple) – Changed in version
1.14.20 the rectangles or quads containing the to-be-marked text (locations). A list or
tuple must consist of rect_like or quad_like items (or even a mixture of either).
You should prefer using quads, because this will automatically support non-horizontal text
and avoid rectangle-to-quad conversion effort.

Return type Annot

Returns the created annotation. To change colors, set the “stroke” color accordingly
(Annot.setColors()) and then perform an Annot.update().

addStampAnnot(rect, stamp=0)
PDF only: Add a “rubber stamp” like annotation to e.g. indicate the document’s intended use (“DRAFT”,
“CONFIDENTIAL”, etc.).

Parameters

• rect (rect_like) – rectangle where to place the annotation.

• stamp (int) – id number of the stamp text. For available stamps see Stamp Anno-
tation Icons.

Note:

• The stamp’s text (e.g. “APPROVED”) and its border line will automatically be sized and put centered
in the given rectangle. Annot.rect is automatically calculated to fit and will usually be smaller
than this parameter. The appearance can be changed using Annot.setOpacity() and by setting
the “stroke” color (no “fill” color supported).

• This can conveniently be used to create watermark images: on a temporary PDF page create a stamp
annotation with a low opacity value, make a pixmap from it with alpha=True (and potentially also
rotate it), discard the temporary PDF page and use the pixmap with insertImage() for your
target PDF.

addWidget(widget)
PDF only: Add a PDF Form field (“widget”) to a page. This also turns the PDF into a Form PDF.
Because of the large amount of different options available for widgets, we have developed a new class
Widget, which contains the possible PDF field attributes. It must be used for both, form field creation and
updates.

Parameters widget (Widget) – a Widget object which must have been created upfront.

6.11. Page 131

PyMuPDF Documentation, Release 1.16.10

Returns a widget annotation.

deleteAnnot(annot)
PDF only: Delete the specified annotation from the page and return the next one.

Changed in version 1.16.6 The removal will now include any bound ‘Popup’ or response annotations and
related objects.

Parameters annot (Annot) – the annotation to be deleted.

Return type Annot

Returns the annotation following the deleted one. Please remember that physical removal
will take place only with saving to a new file with a positive garbage collection option.

deleteLink(linkdict)
PDF only: Delete the specified link from the page. The parameter must be an original item of
getLinks() (see below). The reason for this is the dictionary’s “xref” key, which identifies the PDF
object to be deleted.

Parameters linkdict (dict) – the link to be deleted.

insertLink(linkdict)
PDF only: Insert a new link on this page. The parameter must be a dictionary of format as provided by
getLinks() (see below).

Parameters linkdict (dict) – the link to be inserted.

updateLink(linkdict)
PDF only: Modify the specified link. The parameter must be a (modified) original item of getLinks()
(see below). The reason for this is the dictionary’s “xref” key, which identifies the PDF object to be
changed.

Parameters linkdict (dict) – the link to be modified.

getLinks()
Retrieves all links of a page.

Return type list

Returns A list of dictionaries. For a description of the dictionary entries see below. Always
use this or the Page.links() method if you intend to make changes to the links of a
page.

links(kinds=None)
(New in version 1.16.4)

Return a generator over the page’s links. The results equal the entries of Page.getLinks().

Parameters kinds (sequence) – a sequence of integers to down-select to one or more link
kinds. Default is all links. Example: kinds=(fitz.LINK_GOTO,) will only return internal
links.

Return type generator

Returns an entry of Page.getLinks() for each iteration.

annots(types=None)
(New in version 1.16.4)

Return a generator over the page’s annotations.

Parameters types (sequence) – a sequence of integers to down-select to one or annota-
tion types. Default is all annotations. Example: types=(fitz.PDF_ANNOT_FREETEXT,
fitz.PDF_ANNOT_TEXT) will only return ‘FreeText’ and ‘Text’ annotations.

132 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

Return type generator

Returns an Annot for each iteration.

widgets(types=None)
(New in version 1.16.4)

Return a generator over the page’s form fields.

Parameters types (sequence) – a sequence of integers to down-select to one or more wid-
get types. Default is all form fields. Example: types=(fitz.PDF_WIDGET_TYPE_TEXT,)
will only return ‘Text’ fields.

Return type generator

Returns a Widget for each iteration.

insertText(point, text, fontsize=11, fontname="helv", fontfile=None, idx=0, color=None, fill=None,
render_mode=0, border_width=1, encoding=TEXT_ENCODING_LATIN, rotate=0,
morph=None, overlay=True)

PDF only: Insert text starting at point_like point. See Shape.insertText().

insertTextbox(rect, buffer, fontsize=11, fontname="helv", fontfile=None, idx=0,
color=None, fill=None, render_mode=0, border_width=1, encod-
ing=TEXT_ENCODING_LATIN, expandtabs=8, align=TEXT_ALIGN_LEFT,
charwidths=None, rotate=0, morph=None, overlay=True)

PDF only: Insert text into the specified rect_like rect. See Shape.insertTextbox().

drawLine(p1, p2, color=None, width=1, dashes=None, lineCap=0, lineJoin=0, overlay=True,
morph=None)

PDF only: Draw a line from p1 to p2 (point_like s). See Shape.drawLine().

drawZigzag(p1, p2, breadth=2, color=None, width=1, dashes=None, lineCap=0, lineJoin=0, over-
lay=True, morph=None)

PDF only: Draw a zigzag line from p1 to p2 (point_like s). See Shape.drawZigzag().

drawSquiggle(p1, p2, breadth=2, color=None, width=1, dashes=None, lineCap=0, lineJoin=0,
overlay=True, morph=None)

PDF only: Draw a squiggly (wavy, undulated) line from p1 to p2 (point_like s). See Shape.
drawSquiggle().

drawCircle(center, radius, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0,
overlay=True, morph=None)

PDF only: Draw a circle around center (point_like) with a radius of radius. See Shape.
drawCircle().

drawOval(quad, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0, over-
lay=True, morph=None)

PDF only: Draw an oval (ellipse) within the given rect_like or quad_like. See Shape.
drawOval().

drawSector(center, point, angle, color=None, fill=None, width=1, dashes=None, lineCap=0, line-
Join=0, fullSector=True, overlay=True, closePath=False, morph=None)

PDF only: Draw a circular sector, optionally connecting the arc to the circle’s center (like a piece of pie).
See Shape.drawSector().

drawPolyline(points, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0, over-
lay=True, closePath=False, morph=None)

PDF only: Draw several connected lines defined by a sequence of point_like s. See Shape.
drawPolyline().

drawBezier(p1, p2, p3, p4, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0,
overlay=True, closePath=False, morph=None)

PDF only: Draw a cubic BÃ©zier curve from p1 to p4 with the control points p2 and p3 (all are

6.11. Page 133

PyMuPDF Documentation, Release 1.16.10

:data‘point_like‘ s). See Shape.drawBezier().

drawCurve(p1, p2, p3, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0, over-
lay=True, closePath=False, morph=None)

PDF only: This is a special case of drawBezier(). See Shape.drawCurve().

drawRect(rect, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0, over-
lay=True, morph=None)

PDF only: Draw a rectangle. See Shape.drawRect().

Note: An efficient way to background-color a PDF page with the old Python paper color is

>>> col = fitz.utils.getColor("py_color")
>>> page.drawRect(page.rect, color=col, fill=col, overlay=False)

insertFont(fontname="helv", fontfile=None, fontbuffer=None, set_simple=False, encod-
ing=TEXT_ENCODING_LATIN)

PDF only: Add a new font to be used by text output methods and return its xref. If not already present
in the file, the font definition will be added. Supported are the built-in Base14_Fonts and the CJK
fonts via “reserved” fontnames. Fonts can also be provided as a file path or a memory area containing
the image of a font file.

Parameters fontname (str) – The name by which this font shall be referenced when out-
putting text on this page. In general, you have a “free” choice here (but consult the Adobe
PDF Reference 1.7, page 56, section 3.2.4 for a formal description of building legal PDF
names). However, if it matches one of the Base14_Fonts or one of the CJK fonts,
fontfile and fontbuffer are ignored.

In other words, you cannot insert a font via fontfile / fontbuffer and also give it a reserved fontname.

Note: A reserved fontname can be specified in any mixture of upper or lower case and still match the
right built-in font definition: fontnames “helv”, “Helv”, “HELV”, “Helvetica”, etc. all lead to the same
font definition “Helvetica”. But from a Page perspective, these are different references. You can exploit
this fact when using different encoding variants (Latin, Greek, Cyrillic) of the same font on a page.

Parameters

• fontfile (str) – a path to a font file. If used, fontname must be different from
all reserved names.

• fontbuffer (bytes/bytearray) – the memory image of a font file. If used,
fontname must be different from all reserved names. This parameter would typi-
cally be used to transfer fonts between different pages of the same or different PDFs.

• set_simple (int) – applicable for fontfile / fontbuffer cases only: enforce treat-
ment as a “simple” font, i.e. one that only uses character codes up to 255.

• encoding (int) – applicable for the “Helvetica”, “Courier” and “Times” sets of
Base14_Fonts only. Select one of the available encodings Latin (0), Cyrillic (2)
or Greek (1). Only use the default (0 = Latin) for “Symbol” and “ZapfDingBats”.

Rytpe int

Returns the xref of the installed font.

Note: Built-in fonts will not lead to the inclusion of a font file. So the resulting PDF file will remain

134 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

small. However, your PDF viewer software is responsible for generating an appropriate appearance – and
there exist differences on whether or how each one of them does this. This is especially true for the CJK
fonts. But also Symbol and ZapfDingbats are incorrectly handled in some cases. Following are the Font
Names and their correspondingly installed Base Font names:

Base-14 Fonts76

Font Name Installed Base Font Comments
helv Helvetica normal
heit Helvetica-Oblique italic
hebo Helvetica-Bold bold
hebi Helvetica-BoldOblique bold-italic
cour Courier normal
coit Courier-Oblique italic
cobo Courier-Bold bold
cobi Courier-BoldOblique bold-italic
tiro Times-Roman normal
tiit Times-Italic italic
tibo Times-Bold bold
tibi Times-BoldItalic bold-italic
symb Symbol 78

zadb ZapfDingbats 78

CJK Fonts77 (China, Japan, Korea)

Font Name Installed Base Font Comments
china-s Heiti simplified Chinese
china-ss Song simplified Chinese (serif)
china-t Fangti traditional Chinese
china-ts Ming traditional Chinese (serif)
japan Gothic Japanese
japan-s Mincho Japanese (serif)
korea Dotum Korean
korea-s Batang Korean (serif)

insertImage(rect, filename=None, pixmap=None, stream=None, rotate=0, keep_proportion=True,
overlay=True)

PDF only: Put an image inside the given rectangle. The image can be taken from a pixmap, a file or a
memory area - of these parameters exactly one must be specified.

Changed in version 1.14.11 By default, the image keeps its aspect ratio.

Parameters

• rect (rect_like) – where to put the image on the page. Only the rectangle part
which is inside the page is used. This intersection must be finite and not empty.

76 If your existing code already uses the installed base name as a font reference (as it was supported by PyMuPDF versions earlier than 1.14),
this will continue to work.

78 Not all PDF readers display these fonts at all. Some others do, but use a wrong character spacing, etc.
77 Not all PDF reader software (including internet browsers and office software) display all of these fonts. And if they do, the difference between

the serifed and the non-serifed version may hardly be noticable. But serifed and non-serifed versions lead to different installed base fonts, thus
providing an option to be displayable with your specific PDF viewer.

6.11. Page 135

PyMuPDF Documentation, Release 1.16.10

Changed in version 1.14.13 The image is now always placed centered in the rectan-
gle, i.e. the center of the image and the rectangle coincide.

• filename (str) – name of an image file (all formats supported by MuPDF – see
Supported Input Image Formats). If the same image is to be inserted multiple times,
choose one of the other two options to avoid some overhead.

• stream (bytes,bytearray,io.BytesIO) – image in memory (all formats
supported by MuPDF – see Supported Input Image Formats). This is the most efficient
option.

Changed in version 1.14.13 io.BytesIO is now also supported.

• pixmap (Pixmap) – a pixmap containing the image.

• rotate (int) – (new in version v1.14.11) rotate the image. Must be an integer mul-
tiple of 90 degrees. If you need a rotation by an arbitrary angle, consider converting
the image to a PDF (Document.convertToPDF()) first and then use Page.
showPDFpage() instead.

• keep_proportion (bool) – (new in version v1.14.11) maintain the aspect ratio
of the image.

For a description of overlay see Common Parameters.

This example puts the same image on every page of a document:

>>> doc = fitz.open(...)
>>> rect = fitz.Rect(0, 0, 50, 50) # put thumbnail in upper left corner
>>> img = open("some.jpg", "rb").read() # an image file
>>> for page in doc:

page.insertImage(rect, stream = img)
>>> doc.save(...)

Note:

1. If that same image had already been present in the PDF, then only a reference to it will be inserted.
This of course considerably saves disk space and processing time. But to detect this fact, existing
PDF images need to be compared with the new one. This is achieved by storing an MD5 code
for each image in a table and only compare the new image’s MD5 code against the table entries.
Generating this MD5 table, however, is done when the first image is inserted - which therefore may
have an extended response time.

2. You can use this method to provide a background or foreground image for the page, like a copyright,
a watermark. Please remember, that watermarks require a transparent image . . .

3. The image may be inserted uncompressed, e.g. if a Pixmap is used or if the image has an alpha
channel. Therefore, consider using deflate=True when saving the file.

4. The image is stored in the PDF in its original quality. This may be much better than you ever need
for your display. In this case consider decreasing the image size before inserting it – e.g. by using the
pixmap option and then shrinking it or scaling it down (see Pixmap chapter). The file size savings
can be very significant.

5. The most efficient way to display the same image on multiple pages is another method:
showPDFpage(). Consult Document.convertToPDF() for how to obtain intermediary
PDFs usable for that method. Demo script fitz-logo.py72 implements a fairly complete approach.

72 https://github.com/pymupdf/PyMuPDF/blob/master/demo/fitz-logo.py

136 Chapter 6. Classes

https://github.com/pymupdf/PyMuPDF/blob/master/demo/fitz-logo.py

PyMuPDF Documentation, Release 1.16.10

getText(opt="text", flags=None)
Retrieves the content of a page in a variety of formats. This is a wrapper for TextPage methods by choosing
the output option as follows:

• “text” – TextPage.extractTEXT(), default

• “blocks” – TextPage.extractBLOCKS()

• “words” – TextPage.extractWORDS()

• “html” – TextPage.extractHTML()

• “xhtml” – TextPage.extractXHTML()

• “xml” – TextPage.extractXML()

• “dict” – TextPage.extractDICT()

• “json” – TextPage.extractJSON()

• “rawdict” – TextPage.extractRAWDICT()

Parameters

• opt (str) – A string indicating the requested format, one of the above. A mixture
of upper and lower case is supported.

Changed in version 1.16.3 Values “words” and “blocks” are now also accepted.

• flags (int) – (new in version 1.16.2) indicator bits to control whether to include
images or how text should be handled with respect to white spaces and ligatures. See
Preserve Text Flags for available indicators and Text Extraction Flags Defaults for
default settings.

Return type str, list, dict

Returns The page’s content as a string, list or as a dictionary. Refer to the corresponding
TextPage method for details.

Note: You can use this method as a document conversion tool from any supported document type (not
only PDF!) to one of TEXT, HTML, XHTML or XML documents.

getTextPage(flags=3)
(New in version 1.16.5)

Create a TextPage for the page. This method avoids using an intermediate DisplayList.

Parameters flags (in) – indicator bits controlling the content available for subsequent ex-
traction – see the parameter of Page.getText().

Returns TextPage

getFontList(full=False)
PDF only: Return a list of fonts referenced by the page. Wrapper for Document.
getPageFontList().

getImageList(full=False)
PDF only: Return a list of images referenced by the page. Wrapper for Document.
getPageImageList().

getImageBbox(item)
(New in version 1.16.0)

6.11. Page 137

PyMuPDF Documentation, Release 1.16.10

PDF only: Return the boundary box of an image.

Parameters item (list) – an item of the list Page.getImageList() with full=True
specified.

Return type Rect

Returns the boundary box of the image. Changed in version 1.16.7 If the page in fact does
not display this image, an infinite rectangle is returned now. In previous versions, an
exception was raised.

Warning: The method internally cleans the page’s /Contents object(s) using Page.
_cleanContents(). Please consult its description for implications.

Note:

• Be aware that Page.getImageList() may contain “dead” entries, i.e. there may be image
references which – although present in the PDF – are not displayed by this page. In this case an
exception is raised.

• This function is still somewhat experimental: it does not yet cover all possibilities of how an image
location might have been coded, but instead makes some simplifying assumptions. As a result you
occasionally may find the bbox incorrectly calculated. In contrast, image blocks returned by Page.
getText() (“dict” or “rawdict” options) do contain a correct bbox on the one hand, but on the
other hand do not allow an (easy) identification of the image as a PDF object. There are however
ways to match these information pieces – please consult the recipes chapter.

getSVGimage(matrix=fitz.Identity)

Create an SVG image from the page. Only full page images are currently supported.

Parameters matrix (matrix_like) – a matrix, default is Identity.

Returns a UTF-8 encoded string that contains the image. Because SVG has XML syntax it
can be saved in a text file with extension .svg.

getPixmap(matrix=fitz.Identity, colorspace=fitz.csRGB, clip=None, alpha=False, annots=True)
Create a pixmap from the page. This is probably the most often used method to create a pixmap.

Parameters

• matrix (matrix_like) – default is Identity.

• colorspace (str or Colorspace) – Defines the required colorspace, one of “GRAY”,
“RGB” or “CMYK” (case insensitive). Or specify a Colorspace, ie. one of the prede-
fined ones: csGRAY , csRGB or csCMYK.

• clip (irect_like) – restrict rendering to this area.

• alpha (bool) – whether to add an alpha channel. Always accept the default False
if you do not really need transparency. This will save a lot of memory (25% in case
of RGB . . . and pixmaps are typically large!), and also processing time. Also note
an important difference in how the image will be rendered: with True the pixmap’s
samples area will be pre-cleared with 0x00. This results in transparent areas where
the page is empty. With False the pixmap’s samples will be pre-cleared with 0xff.
This results in white where the page has nothing to show.

Changed in version 1.14.17 The default alpha value is now False.

138 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

– Generated with alpha=True

– Generated with alpha=False

• annots (bool) – (new in vrsion 1.16.0) whether to also render any annotations on
the page. You can create pixmaps for annotations separately.

Return type Pixmap

Returns Pixmap of the page.

annot_names()
(New in version 1.16.10)

PDF only: return a list of the names of annotations or widgets.

Return type list

load_annot(annot_id)
(New in version 1.16.10)

PDF only: return the annotation identified by annot_id – its unique name (/NM).

Parameters annot_id (str) – the annotation name.

Return type Annot

Returns the annotation or None.

loadLinks()
Return the first link on a page. Synonym of property firstLink.

Return type Link

Returns first link on the page (or None).

setRotation(rotate)
PDF only: Sets the rotation of the page.

6.11. Page 139

PyMuPDF Documentation, Release 1.16.10

Parameters rotate (int) – An integer specifying the required rotation in degrees. Must
be an integer multiple of 90.

showPDFpage(rect, docsrc, pno=0, keep_proportion=True, overlay=True, rotate=0, clip=None)
PDF only: Display a page of another PDF as a vector image (otherwise similar to Page.
insertImage()). This is a multi-purpose method. For example, you can use it to

• create “n-up” versions of existing PDF files, combining several input pages into one output page
(see example 4-up.py73),

• create “posterized” PDF files, i.e. every input page is split up in parts which each create a separate
output page (see posterize.py74),

• include PDF-based vector images like company logos, watermarks, etc., see svg-logo.py75, which
puts an SVG-based logo on each page (requires additional packages to deal with SVG-to-PDF con-
versions).

Changed in version 1.14.11 Parameter reuse_xref has been deprecated.

Parameters

• rect (rect_like) – where to place the image on current page. Must be finite and
its intersection with the page must not be empty.

Changed in version 1.14.11 Position the source rectangle centered in this rectangle.

• docsrc (Document) – source PDF document containing the page. Must be a differ-
ent document object, but may be the same file.

• pno (int) – page number (0-based, in -inf < pno < docsrc.pageCount) to be shown.

• keep_proportion (bool) – whether to maintain the width-height-ratio (default).
If false, all 4 corners are always positioned on the border of the target rectangle
– whatever the rotation value. In general, this will deliver distorted and /or non-
rectangular images.

• overlay (bool) – put image in foreground (default) or background.

• rotate (float) – (new in version 1.14.10) show the source rectangle rotated by
some angle. Changed in version 1.14.11: Any angle is now supported.

• clip (rect_like) – choose which part of the source page to show. Default is the
full page, else must be finite and its intersection with the source page must not be
empty.

Note: In contrast to method Document.insertPDF(), this method does not copy annotations
or links, so they are not shown. But all its other resources (text, images, fonts, etc.) will be im-
ported into the current PDF. They will therefore appear in text extractions and in getFontList() and
getImageList() lists – even if they are not contained in the visible area given by clip.

Example: Show the same source page, rotated by 90 and by -90 degrees:

>>> doc = fitz.open() # new empty PDF
>>> page=doc.newPage() # new page in A4 format
>>>

(continues on next page)

73 https://github.com/pymupdf/PyMuPDF/blob/master/examples/4-up.py
74 https://github.com/pymupdf/PyMuPDF/blob/master/examples/posterize.py
75 https://github.com/pymupdf/PyMuPDF/blob/master/examples/svg-logo.py

140 Chapter 6. Classes

https://github.com/pymupdf/PyMuPDF/blob/master/examples/4-up.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/posterize.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/svg-logo.py

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

>>> # upper half page
>>> r1 = fitz.Rect(0, 0, page.rect.width, page.rect.height/2)
>>>
>>> # lower half page
>>> r2 = r1 + (0, page.rect.height/2, 0, page.rect.height/2)
>>>
>>> src = fitz.open("PyMuPDF.pdf") # show page 0 of this
>>>
>>> page.showPDFpage(r1, src, 0, rotate=90)
>>> page.showPDFpage(r2, src, 0, rotate=-90)
>>> doc.save("show.pdf")

newShape()
PDF only: Create a new Shape object for the page.

Return type Shape

Returns a new Shape to use for compound drawings. See description there.

searchFor(text, hit_max=16, quads=False, flags=None)
Searches for text on a page. Wrapper for TextPage.search().

Parameters

• text (str) – Text to search for. Upper / lower case is ignored. The string may
contain spaces.

• hit_max (int) – Maximum number of occurrences accepted.

• quads (bool) – Return Quad instead of Rect objects.

• flags (int) – Control the data extracted by the underlying TextPage. Default is 0

6.11. Page 141

PyMuPDF Documentation, Release 1.16.10

(ligatures are dissolved, white space is replaced with space and excessive spaces are
not suppressed).

Return type list

Returns

A list of Rect s (resp. Quad s) each of which – normally! – surrounds one occurrence
of text. However: if the search string spreads across more than one line, then a separate
item is recorded in the list for each part of the string per line. So, if you are looking for
“search string” and the two words happen to be located on separate lines, two entries will
be recorded in the list: one for “search” and one for “string”.

Note: In this way, the effect supports multi-line text marker annotations.

setCropBox(r)
PDF only: change the visible part of the page.

Parameters r (rect_like) – the new visible area of the page.

After execution, Page.rect will equal this rectangle, shifted to the top-left position (0, 0). Example
session:

>>> page = doc.newPage()
>>> page.rect
fitz.Rect(0.0, 0.0, 595.0, 842.0)
>>>
>>> page.CropBox # CropBox and MediaBox still equal
fitz.Rect(0.0, 0.0, 595.0, 842.0)
>>>
>>> # now set CropBox to a part of the page
>>> page.setCropBox(fitz.Rect(100, 100, 400, 400))
>>> # this will also change the "rect" property:
>>> page.rect
fitz.Rect(0.0, 0.0, 300.0, 300.0)
>>>
>>> # but MediaBox remains unaffected
>>> page.MediaBox
fitz.Rect(0.0, 0.0, 595.0, 842.0)
>>>
>>> # revert everything we did
>>> page.setCropBox(page.MediaBox)
>>> page.rect
fitz.Rect(0.0, 0.0, 595.0, 842.0)

rotation
PDF only: contains the rotation of the page in degrees and -1 for other document types.

Type int

CropBoxPosition
Contains the displacement of the page’s /CropBox for a PDF, otherwise the top-left coordinates of Page.
rect.

Type Point

CropBox
The page’s /CropBox for a PDF, else Page.rect.

Type Rect

142 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

MediaBoxSize
Contains the width and height of the page’s /MediaBox for a PDF, otherwise the bottom-right coordinates
of Page.rect.

Type Point

MediaBox
The page’s /MediaBox for a PDF, otherwise Page.rect.

Type Rect

Note: For most PDF documents and for all other types, page.rect == page.CropBox == page.MediaBox
is true. However, for some PDFs the visible page is a true subset of /MediaBox. In this case the above
attributes help to correctly locate page elements.

firstLink
Contains the first Link of a page (or None).

Type Link

firstAnnot
Contains the first Annot of a page (or None).

Type Annot

firstWidget
Contains the first Widget of a page (or None).

Type Widget

number
The page number.

Type int

parent
The owning document object.

Type Document

rect
Contains the rectangle of the page. Same as result of Page.bound().

Type Rect

xref
The page’s PDF xref. Zero if not a PDF.

Type Rect

6.11.2 Description of getLinks() Entries

Each entry of the getLinks() list is a dictionay with the following keys:

• kind: (required) an integer indicating the kind of link. This is one of LINK_NONE, LINK_GOTO,
LINK_GOTOR, LINK_LAUNCH, or LINK_URI. For values and meaning of these names refer to Link Desti-
nation Kinds.

6.11. Page 143

PyMuPDF Documentation, Release 1.16.10

• from: (required) a Rect describing the “hot spot” location on the page’s visible representation (where the cursor
changes to a hand image, usually).

• page: a 0-based integer indicating the destination page. Required for LINK_GOTO and LINK_GOTOR, else
ignored.

• to: either a fitz.Point, specifying the destination location on the provided page, default is fitz.Point(0, 0), or a
symbolic (indirect) name. If an indirect name is specified, page = -1 is required and the name must be defined
in the PDF in order for this to work. Required for LINK_GOTO and LINK_GOTOR, else ignored.

• file: a string specifying the destination file. Required for LINK_GOTOR and LINK_LAUNCH, else ignored.

• uri: a string specifying the destination internet resource. Required for LINK_URI, else ignored.

• xref : an integer specifying the PDF xref of the link object. Do not change this entry in any way. Required for
link deletion and update, otherwise ignored. For non-PDF documents, this entry contains -1. It is also -1 for all
entries in the getLinks() list, if any of the links is not supported by MuPDF - see the note below.

6.11.3 Notes on Supporting Links

MuPDF’s support for links has changed in v1.10a. These changes affect link types LINK_GOTO and LINK_GOTOR.

6.11.3.1 Reading (pertains to method getLinks() and the firstLink property chain)

If MuPDF detects a link to another file, it will supply either a LINK_GOTOR or a LINK_LAUNCH link kind. In case
of LINK_GOTOR destination details may either be given as page number (eventually including position information),
or as an indirect destination.

If an indirect destination is given, then this is indicated by page = -1, and link.dest.dest will contain this name. The
dictionaries in the getLinks() list will contain this information as the to value.

Internal links are always of kind LINK_GOTO. If an internal link specifies an indirect destination, it will always
be resolved and the resulting direct destination will be returned. Names are never returned for internal links, and
undefined destinations will cause the link to be ignored.

6.11.3.2 Writing

PyMuPDF writes (updates, inserts) links by constructing and writing the appropriate PDF object source. This makes
it possible to specify indirect destinations for LINK_GOTOR and LINK_GOTO link kinds (pre PDF 1.2 file formats
are not supported).

Warning: If a LINK_GOTO indirect destination specifies an undefined name, this link can later on not be found /
read again with MuPDF / PyMuPDF. Other readers however will detect it, but flag it as erroneous.

Indirect LINK_GOTOR destinations can in general of course not be checked for validity and are therefore always
accepted.

6.11.4 Homologous Methods of Document and Page

This is an overview of homologous methods on the Document and on the Page level.

144 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

Document Level Page Level
Document.getPageFontlist(pno) Page.getFontList()
Document.getPageImageList(pno) Page.getImageList()
Document.getPagePixmap(pno, . . .) Page.getPixmap()
Document.getPageText(pno, . . .) Page.getText()
Document.searchPageFor(pno, . . .) Page.searchFor()

The page number “pno”‘ is a 0-based integer -inf < pno < pageCount.

Note: Most document methods (left column) exist for convenience reasons, and are just wrappers for: Docu-
ment[pno].<page method>. So they load and discard the page on each execution.

However, the first two methods work differently. They only need a page’s object definition statement - the page itself
will not be loaded. So e.g. Page.getFontList() is a wrapper the other way round and defined as follows:
page.getFontList == page.parent.getPageFontList(page.number).

6.12 Pixmap

Pixmaps (“pixel maps”) are objects at the heart of MuPDF’s rendering capabilities. They represent plane rectangular
sets of pixels. Each pixel is described by a number of bytes (“components”) defining its color, plus an optional alpha
byte defining its transparency.

In PyMuPDF, there exist several ways to create a pixmap. Except the first one, all of them are available as overloaded
constructors. A pixmap can be created . . .

1. from a document page (method Page.getPixmap())

2. empty, based on Colorspace and IRect information

3. from a file

4. from an in-memory image

5. from a memory area of plain pixels

6. from an image inside a PDF document

7. as a copy of another pixmap

Note: A number of image formats is supported as input for points 3. and 4. above. See section Supported Input
Image Formats.

Have a look at the Collection of Recipes section to see some pixmap usage “at work”.

6.12. Pixmap 145

PyMuPDF Documentation, Release 1.16.10

Method / Attribute Short Description
Pixmap.clearWith() clear parts of a pixmap
Pixmap.copyPixmap() copy parts of another pixmap
Pixmap.gammaWith() apply a gamma factor to the pixmap
Pixmap.getImageData() return a memory area in a variety of formats
Pixmap.getPNGData() return a PNG as a memory area
Pixmap.invertIRect() invert the pixels of a given area
Pixmap.pixel() return the value of a pixel
Pixmap.setPixel() set the color of a pixel
Pixmap.setRect() set the color of a rectangle
Pixmap.setAlpha() set alpha values
Pixmap.shrink() reduce size keeping proportions
Pixmap.tintWith() tint a pixmap with a color
Pixmap.writeImage() save a pixmap in a variety of formats
Pixmap.writePNG() save a pixmap as a PNG file
Pixmap.alpha transparency indicator
Pixmap.colorspace pixmap’s Colorspace
Pixmap.height pixmap height
Pixmap.interpolate interpolation method indicator
Pixmap.irect IRect of the pixmap
Pixmap.n bytes per pixel
Pixmap.samples pixel area
Pixmap.size pixmap’s total length
Pixmap.stride size of one image row
Pixmap.width pixmap width
Pixmap.x X-coordinate of top-left corner
Pixmap.xres resolution in X-direction
Pixmap.y Y-coordinate of top-left corner
Pixmap.yres resolution in Y-direction

Class API

class Pixmap

__init__(self, colorspace, irect, alpha)
New empty pixmap: Create an empty pixmap of size and origin given by the rectangle. So, irect.top_left
designates the top left corner of the pixmap, and its width and height are irect.width resp. irect.height.
Note that the image area is not initialized and will contain crap data – use eg. clearWith() or
setRect() to be sure.

Parameters

• colorspace (Colorspace) – colorspace.

• irect (irect_like) – Tte pixmap’s position and dimension.

• alpha (bool) – Specifies whether transparency bytes should be included. Default
is False.

__init__(self, colorspace, source)
Copy and set colorspace: Copy source pixmap converting colorspace. Any colorspace combination is
possible, but source colorspace must not be None.

Parameters

146 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

• colorspace (Colorspace) – desired target colorspace. This may also be None. In
this case, a “masking” pixmap is created: its Pixmap.samples will consist of the
source’s alpha bytes only.

• source (Pixmap) – the source pixmap.

__init__(self, source, width, height[, clip])
Copy and scale: Copy source pixmap choosing new width and height values. Supports partial copying
and the source colorspace may be also None.

Parameters

• source (Pixmap) – the source pixmap.

• width (float) – desired target width.

• height (float) – desired target height.

• clip (irect_like) – a region of the source pixmap to take the copy from.

Note: If width or height are not de facto integers (meaning e.g. round(width) != width), then pixmap
will be created with alpha = 1.

__init__(self, source, alpha = 1)
Copy and add or drop alpha: Copy source and add or drop its alpha channel. Identical copy if alpha
equals source.alpha. If an alpha channel is added, its values will be set to 255.

Parameters

• source (Pixmap) – source pixmap.

• alpha (bool) – whether the target will have an alpha channel, default and manda-
tory if source colorspace is None.

Note: A typical use includes separation of color and transparency bytes in separate pixmaps. Some
applications require this like e.g. wx.Bitmap.FromBufferAndAlpha() of wxPython:

>>> # 'pix' is an RGBA pixmap
>>> pixcolors = fitz.Pixmap(pix, 0) # extract the RGB part (drop alpha)
>>> pixalpha = fitz.Pixmap(None, pix) # extract the alpha part
>>> bm = wx.Bitmap.FromBufferAndAlpha(pix.widht, pix.height, pixcolors.
→˓samples, pixalpha.samples)

__init__(self, filename)
From a file: Create a pixmap from filename. All properties are inferred from the input. The origin of the
resulting pixmap is (0, 0).

Parameters filename (str) – Path of the image file.

__init__(self, stream)
From memory: Create a pixmap from a memory area. All properties are inferred from the input. The
origin of the resulting pixmap is (0, 0).

Parameters stream (bytes,bytearray,BytesIO) – Data containing a complete,
valid image. Could have been created by e.g. stream = bytearray(open(‘image.file’,
‘rb’).read()). Type bytes is supported in Python 3 only, because bytes == str in Python 2
and the method will interpret the stream as a filename.

Changed in version 1.14.13: io.BytesIO is now also supported.

6.12. Pixmap 147

PyMuPDF Documentation, Release 1.16.10

__init__(self, colorspace, width, height, samples, alpha)
From plain pixels: Create a pixmap from samples. Each pixel must be represented by a number of bytes
as controlled by the colorspace and alpha parameters. The origin of the resulting pixmap is (0, 0). This
method is useful when raw image data are provided by some other program – see Collection of Recipes.

Parameters

• colorspace (Colorspace) – Colorspace of image.

• width (int) – image width

• height (int) – image height

• samples (bytes,bytearray,BytesIO) – an area containing all pixels of the
image. Must include alpha values if specified.

Changed in version 1.14.13: (1) io.BytesIO can now also be used. (2) Data are now
copied to the pixmap, so may safely be deleted or become unavailable.

• alpha (bool) – whether a transparency channel is included.

Note:

1. The following equation must be true: (colorspace.n + alpha) * width * height == len(samples).

2. Starting with version 1.14.13, the samples data are copied to the pixmap.

__init__(self, doc, xref)
From a PDF image: Create a pixmap from an image contained in PDF doc identified by its xref. All
pimap properties are set by the image. Have a look at extract-img1.py80 and extract-img2.py81 to see how
this can be used to recover all of a PDF’s images.

Parameters

• doc (Document) – an opened PDF document.

• xref (int) – the xref of an image object. For example, you can make a list
of images used on a particular page with Document.getPageImageList(),
which also shows the xref numbers of each image.

clearWith([value[, irect]])
Initialize the samples area.

Parameters

• value (int) – if specified, values from 0 to 255 are valid. Each color byte of
each pixel will be set to this value, while alpha will be set to 255 (non-transparent) if
present. If omitted, then all bytes (including any alpha) are cleared to 0x00.

• irect (irect_like) – the area to be cleared. Omit to clear the whole pixmap.
Can only be specified, if value is also specified.

tintWith(red, green, blue)
Colorize (tint) a pixmap with a color provided as an integer triple (red, green, blue). Only colorspaces
CS_GRAY and CS_RGB are supported, others are ignored with a warning.

If the colorspace is CS_GRAY , (red + green + blue)/3 will be taken as the tint value.

Parameters

• red (int) – red component.

80 https://github.com/pymupdf/PyMuPDF/tree/master/demo/extract-img1.py
81 https://github.com/pymupdf/PyMuPDF/tree/master/demo/extract-img2.py

148 Chapter 6. Classes

https://github.com/pymupdf/PyMuPDF/tree/master/demo/extract-img1.py
https://github.com/pymupdf/PyMuPDF/tree/master/demo/extract-img2.py

PyMuPDF Documentation, Release 1.16.10

• green (int) – green component.

• blue (int) – blue component.

gammaWith(gamma)
Apply a gamma factor to a pixmap, i.e. lighten or darken it. Pixmaps with colorspace None are ignored
with a warning.

Parameters gamma (float) – gamma = 1.0 does nothing, gamma < 1.0 lightens, gamma >
1.0 darkens the image.

shrink(n)
Shrink the pixmap by dividing both, its width and height by 2n.

Parameters n (int) – determines the new pixmap (samples) size. For example, a value of 2
divides width and height by 4 and thus results in a size of one 16th of the original. Values
less than 1 are ignored with a warning.

Note: Use this methods to reduce a pixmap’s size retaining its proportion. The pixmap is changed “in
place”. If you want to keep original and also have more granular choices, use the resp. copy constructor
above.

pixel(x, y)
New in version:: 1.14.5: Return the value of the pixel at location (x, y) (column, line).

Parameters

• x (int) – the column number of the pixel. Must be in range(pix.width).

• y (int) – the line number of the pixel, Must be in range(pix.height).

Return type list

Returns a list of color values and, potentially the alpha value. Its length and content depend
on the pixmap’s colorspace and the presence of an alpha. For RGBA pixmaps the result
would e.g. be [r, g, b, a]. All items are integers in range(256).

setPixel(x, y, color)
New in version 1.14.7: Set the color of the pixel at location (x, y) (column, line).

Parameters

• x (int) – the column number of the pixel. Must be in range(pix.width).

• y (int) – the line number of the pixel. Must be in range(pix.height).

• color (sequence) – the desired color given as a sequence of integers in
range(256). The length of the sequence must equal Pixmap.n, which includes any
alpha byte.

setRect(irect, color)
New in version 1.14.8: Set the pixels of a rectangle to a color.

Parameters

• irect (irect_like) – the rectangle to be filled with the color. The actual area
is the intersection of this parameter and Pixmap.irect. For an empty intersection
(or an invalid parameter), no change will happen.

• color (sequence) – the desired color given as a sequence of integers in
range(256). The length of the sequence must equal Pixmap.n, which includes any
alpha byte.

6.12. Pixmap 149

PyMuPDF Documentation, Release 1.16.10

Return type bool

Returns False if the rectangle was invalid or had an empty intersection with Pixmap.
irect, else True.

Note:

1. This method is equivalent to Pixmap.setPixel() executed for each pixel in the rectangle, but
is obviously very much faster if many pixels are involved.

2. This method can be used similar to Pixmap.clearWith() to initialize a pixmap with a certain
color like this: pix.setRect(pix.irect, (255, 255, 0)) (RGB example, colors the complete pixmap with
yellow).

setAlpha([alphavalues])
Change the alpha values. The pixmap must have an alpha channel.

Parameters alphavalues (bytes,bytearray,BytesIO) – the new alpha values. If
provided, its length must be at least width * height. If omitted, all alpha values are set to
255 (no transparency).

Changed in version 1.14.13: io.BytesIO is now also supported.

invertIRect([irect])
Invert the color of all pixels in IRect irect. Will have no effect if colorspace is None.

Parameters irect (irect_like) – The area to be inverted. Omit to invert everything.

copyPixmap(source, irect)
Copy the irect part of the source pixmap into the corresponding area of this one. The two pixmaps may
have different dimensions and can each have CS_GRAY or CS_RGB colorspaces, but they currently must
have the same alpha property87. The copy mechanism automatically adjusts discrepancies between source
and target like so:

If copying from CS_GRAY to CS_RGB, the source gray-shade value will be put into each of the three rgb
component bytes. If the other way round, (r + g + b) / 3 will be taken as the gray-shade value of the
target.

Between irect and the target pixmap’s rectangle, an “intersection” is calculated at first. This takes into
account the rectangle coordinates and the current attribute values source.x and source.y (which you are
free to modify for this purpose). Then the corresponding data of this intersection are copied. If the
intersection is empty, nothing will happen.

Parameters

• source (Pixmap) – source pixmap.

• irect (irect_like) – The area to be copied.

writeImage(filename, output=None)
Save pixmap as an image file. Depending on the output chosen, only some or all colorspaces are supported
and different file extensions can be chosen. Please see the table below. Since MuPDF v1.10a the savealpha
option is no longer supported and will be silently ignored.

Parameters

• filename (str) – The filename to save to. The filename’s extension determines
the image format, if not overriden by the output parameter.

87 To also set the alpha property, add an additional step to this method by dropping or adding an alpha channel to the result.

150 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

• output (str) – The requested image format. The default is the filename’s exten-
sion. If not recognized, png is assumed. For other possible values see Supported
Output Image Formats.

writePNG(filename)
Equal to pix.writeImage(filename, “png”).

getImageData(output="png")
New in version 1.14.5: Return the pixmap as a bytes memory object of the specified format – similar to
writeImage().

Parameters output (str) – The requested image format. The default is “png” for which
this function equals getPNGData(). For other possible values see Supported Output
Image Formats.

Return type bytes

getPNGdata()

getPNGData()
Equal to pix.getImageData(“png”).

Return type bytes

alpha
Indicates whether the pixmap contains transparency information.

Type bool

colorspace
The colorspace of the pixmap. This value may be None if the image is to be treated as a so-called image
mask or stencil mask (currently happens for extracted PDF document images only).

Type Colorspace

stride
Contains the length of one row of image data in Pixmap.samples. This is primarily used for calcula-
tion purposes. The following expressions are true:

• len(samples) == height * stride

• width * n == stride.

Type int

irect
Contains the IRect of the pixmap.

Type IRect

samples
The color and (if Pixmap.alpha is true) transparency values for all pixels. It is an area of width *
height * n bytes. Each n bytes define one pixel. Each successive n bytes yield another pixel in scanline
order. Subsequent scanlines follow each other with no padding. E.g. for an RGBA colorspace this means,
samples is a sequence of bytes like . . . , R, G, B, A, . . . , and the four byte values R, G, B, A define one
pixel.

This area can be passed to other graphics libraries like PIL (Python Imaging Library) to do additional
processing like saving the pixmap in other image formats.

Note:

6.12. Pixmap 151

PyMuPDF Documentation, Release 1.16.10

• The underlying data is a typically large memory area from which a bytes copy is made for this
attribute: for example an RGB-rendered letter page has a samples size of almost 1.4 MB. So consider
assigning a new variable if you repeatedly use it.

• Any changes to the underlying data are available only after again accessing this attribute.

Type bytes

size
Contains len(pixmap). This will generally equal len(pix.samples) plus some platform-specific value for
defining other attributes of the object.

Type int

width

w
Width of the region in pixels.

Type int

height

h
Height of the region in pixels.

Type int

x
X-coordinate of top-left corner

Type int

y
Y-coordinate of top-left corner

Type int

n
Number of components per pixel. This number depends on colorspace and alpha. If colorspace is not
None (stencil masks), then Pixmap.n - Pixmap.aslpha == pixmap.colorspace.n is true. If colorspace is
None, then n == alpha == 1.

Type int

xres
Horizontal resolution in dpi (dots per inch).

Type int

yres
Vertical resolution in dpi.

Type int

interpolate
An information-only boolean flag set to True if the image will be drawn using “linear interpolation”. If
False “nearest neighbour sampling” will be used.

Type bool

152 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

6.12.1 Supported Input Image Formats

The following file types are supported as input to construct pixmaps: BMP, JPEG, GIF, TIFF, JXR, JPX, PNG,
PAM and all of the Portable Anymap family (PBM, PGM, PNM, PPM). This support is two-fold:

1. Directly create a pixmap with Pixmap(filename) or Pixmap(byterray). The pixmap will then have properties as
determined by the image.

2. Open such files with fitz.open(. . .). The result will then appear as a document containing one single page.
Creating a pixmap of this page offers all the options available in this context: apply a matrix, choose colorspace
and alpha, confine the pixmap to a clip area, etc.

SVG images are only supported via method 2 above, not directly as pixmaps. But remember: the result of this is a
raster image as is always the case with pixmaps82.

6.12.2 Supported Output Image Formats

A number of image output formats are supported. You have the option to either write an image directly to a file
(Pixmap.writeImage()), or to generate a bytes object (Pixmap.getImageData()). Both methods accept a
3-letter string identifying the desired format (Format column below). Please note that not all combinations of pixmap
colorspace, transparency support (alpha) and image format are possible.

Format Colorspaces alpha Extensions Description
pam gray, rgb, cmyk yes .pam Portable Arbitrary Map
pbm gray, rgb no .pbm Portable Bitmap
pgm gray, rgb no .pgm Portable Graymap
png gray, rgb yes .png Portable Network Graphics
pnm gray, rgb no .pnm Portable Anymap
ppm gray, rgb no .ppm Portable Pixmap
ps gray, rgb, cmyk no .ps Adobe PostScript Image
psd gray, rgb, cmyk yes .psd Adobe Photoshop Document

Note:

• Not all image file types are supported (or at least common) on all OS platforms. E.g. PAM and the Portable
Anymap formats are rare or even unknown on Windows.

• Especially pertaining to CMYK colorspaces, you can always convert a CMYK pixmap to an RGB pixmap with
rgb_pix = fitz.Pixmap(fitz.csRGB, cmyk_pix) and then save that in the desired format.

• As can be seen, MuPDF’s image support range is different for input and output. Among those supported both
ways, PNG is probably the most popular. We recommend using Pillow whenever you face a support gap.

• We also recommend using “ppm” formats as input to tkinter’s PhotoImage method like this: tkimg = tkin-
ter.PhotoImage(data=pix.getImageData(“ppm”)) (also see the tutorial). This is very fast (60 times faster than
PNG) and will work under Python 2 or 3.

82 If you need a vector image from the SVG, you must first convert it to a PDF. Try Document.convertToPDF(). If this is not not good
enough, look for other SVG-to-PDF conversion tools like the Python packages svglib83, CairoSVG84, Uniconvertor85 or the Java solution Apache
Batik86. Have a look at our Wiki for more examples.

83 https://pypi.org/project/svglib
84 https://pypi.org/project/cairosvg
85 https://sk1project.net/modules.php?name=Products&product=uniconvertor&op=download
86 https://github.com/apache/batik

6.12. Pixmap 153

https://pypi.org/project/svglib
https://pypi.org/project/cairosvg
https://sk1project.net/modules.php?name=Products&product=uniconvertor&op=download
https://github.com/apache/batik
https://github.com/apache/batik

PyMuPDF Documentation, Release 1.16.10

6.13 Point

Point represents a point in the plane, defined by its x and y coordinates.

Attribute / Method Description
Point.distance_to() calculate distance to point or rect
Point.norm() the Euclidean norm
Point.transform() transform point with a matrix
Point.abs_unit same as unit, but positive coordinates
Point.unit point coordinates divided by abs(point)
Point.x the X-coordinate
Point.y the Y-coordinate

Class API

class Point

__init__(self)

__init__(self, x, y)

__init__(self, point)

__init__(self, sequence)

Overloaded constructors.

Without parameters, Point(0, 0) will be created.

With another point specified, a new copy will be crated, “sequence” is a Python sequence of 2
numbers (see Using Python Sequences as Arguments in PyMuPDF).

Parameters

• x (float) – x coordinate of the point

• y (float) – y coordinate of the point

distance_to(x[, unit])
Calculate the distance to x, which may be point_like or rect_like. The distance is
given in units of either pixels (default), inches, centimeters or millimeters.

Parameters

• x (point_like,rect_like) – to which to compute the distance.

• unit (str) – the unit to be measured in. One of “px”, “in”, “cm”, “mm”.

Return type float

Returns

the distance to x. If this is rect_like, then the distance

• is the length of the shortest line connecting to one of the rectangle sides

• is calculated to the finite version of it

• is zero if it contains the point

154 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

norm()
(New in version 1.16.0)

Return the Euclidean norm (the length) of the point as a vector. Equals result of function abs().

transform(m)

Apply a matrix to the point and replace it with the result.

Parameters m (matrix_like) – The matrix to be applied.

Return type Point

unit
Result of dividing each coordinate by norm(point), the distance of the point to (0,0). This is a vector of
length 1 pointing in the same direction as the point does. Its x, resp. y values are equal to the cosine, resp.
sine of the angle this vector (and the point itself) has with the x axis.

Type Point

abs_unit
Same as unit above, replacing the coordinates with their absolute values.

Type Point

x
The x coordinate

Type float

y
The y coordinate

Type float

Note:

• This class adheres to the Python sequence protocol, so components can be accessed via their index, too. Also
refer to Using Python Sequences as Arguments in PyMuPDF.

• Rectangles can be used with arithmetic operators – see chapter Operator Algebra for Geometry Objects.

6.13. Point 155

PyMuPDF Documentation, Release 1.16.10

6.14 Quad

Represents a four-sided mathematical shape (also called “quadrilateral” or “tetragon”) in the plane, defined as a se-
quence of four Point objects ul, ur, ll, lr (conveniently called upper left, upper right, lower left, lower right).

Quads can be obtained as results of text search methods (Page.searchFor()), and they are used to define
text marker annotations (see e.g. Page.addSquigglyAnnot() and friends), and in several draw methods (like
Page.drawQuad() / Shape.drawQuad(), Page.drawOval()/ :meth‘Shape.drawQuad‘).

Note:

• If the corners of a rectangle are transformed with a rotation, scale or translation Matrix, then the resulting quad
is rectangular, i.e. its corners again enclose angles of 90 degrees. Property Quad.isRectangular checks
whether a quad can be thought of being the result of such an operation. This is not true for all matrices: e.g.
shear matrices produce parallelograms, and non-invertible matrices deliver “degenerate” tetragons like triangles
or lines.

• Attribute Quad.rect obtains the envelopping rectangle. Vice versa, rectangles now have attributes Rect.
quad, resp. IRect.quad to obtain their respective tetragon versions.

Methods / Attributes Short Description
Quad.transform() transform with a matrix
Quad.ul upper left point
Quad.ur upper right point
Quad.ll lower left point
Quad.lr lower right point
Quad.isConvex true if quad is a convex set
Quad.isEmpty true if quad is an empty set
Quad.isRectangular true if quad is a (rotated) rectangle
Quad.rect smallest containing Rect
Quad.width the longest width value
Quad.height the longest height value

Class API

class Quad

__init__(self)

__init__(self, ul, ur, ll, lr)

__init__(self, quad)

__init__(self, sequence)
Overloaded constructors: “ul”, “ur”, “ll”, “lr” stand for point_like objects (the four corners), “se-
quence” is a Python sequence with four point_like objects.

If “quad” is specified, the constructor creates a new copy of it.

Without parameters, a quad consisting of 4 copies of Point(0, 0) is created.

156 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

transform(matrix)
Modify the quadrilateral by transforming each of its corners with a matrix.

Parameters matrix (matrix_like) – the matrix.

rect
The smallest rectangle containing the quad, represented by the blue area in the following picture.

Type Rect

ul
Upper left point.

Type Point

ur
Upper right point.

Type Point

ll
Lower left point.

Type Point

lr
Lower right point.

Type Point

isConvex
(New in version 1.16.1)

True if all lines are contained in the quad which connect two points of the quad.

Type bool

isEmpty
True if enclosed area is zero, which means that all four points are on the same line. If this is false, the
quad may still be degenerate or not look like a rectangle at all (triangles, parallelograms, trapezoids, . . .).

Type bool

6.14. Quad 157

PyMuPDF Documentation, Release 1.16.10

isRectangular
True if all angles are 90 degrees. This also implies that the area is not empty and convex.

Type bool

width
The maximum length of the top and the bottom side.

Type float

height
The maximum length of the left and the right side.

Type float

6.14.1 Remark

This class adheres to the sequence protocol, so components can be dealt with via their indices, too. Also refer to Using
Python Sequences as Arguments in PyMuPDF.

We are still in process to extend algebraic operations to quads. Multiplication and division with / by numbers and
matrices are already defined. Addition, subtraction and any unary operations may follow when we see an actual need.

6.15 Rect

Rect represents a rectangle defined by four floating point numbers x0, y0, x1, y1. They are treated as being coordinates
of two diagonally opposite points. The first two numbers are regarded as the “top left” corner Px0,y0 and Px1,y1 as the
“bottom right” one. However, these two properties need not coincide with their intuitive meanings – read on.

The following remarks are also valid for IRect objects:

• Rectangle borders are always parallel to the respective X- and Y-axes.

• The constructing points can be anywhere in the plane – they need not even be different, and e.g. “top left” need
not be the geometrical “north-western” point.

• For any given quadruple of numbers, the geometrically “same” rectangle can be defined in (up to) four different
ways: Rect(Px0,y0, Px1,y1), Rect(Px1,y1, Px0,y0), Rect(Px0,y1, Px1,y0), and Rect(Px1,y0, Px0,y1).

Hence some useful classification:

• A rectangle is called finite if x0 <= x1 and y0 <= y1 (i.e. the bottom right point is “south-eastern” to the top
left one), otherwise infinite. Of the four alternatives above, only one is finite (disregarding degenerate cases).
Please take into account, that in MuPDF’s coordinate system the y-axis is oriented from top to bottom.

• A rectangle is called empty if x0 = x1 or y0 = y1, i.e. if its area is zero.

Note: It sounds like a paradox: a rectangle can be both, infinite and empty . . .

158 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

Methods / Attributes Short Description
Rect.contains() checks containment of another object
Rect.getArea() calculate rectangle area
Rect.getRectArea() calculate rectangle area
Rect.includePoint() enlarge rectangle to also contain a point
Rect.includeRect() enlarge rectangle to also contain another one
Rect.intersect() common part with another rectangle
Rect.intersects() checks for non-empty intersections
Rect.norm() the Euclidean norm
Rect.normalize() makes a rectangle finite
Rect.round() create smallest IRect containing rectangle
Rect.transform() transform rectangle with a matrix
Rect.bottom_left bottom left point, synonym bl
Rect.bottom_right bottom right point, synonym br
Rect.height rectangle height
Rect.irect equals result of method round()
Rect.isEmpty whether rectangle is empty
Rect.isInfinite whether rectangle is infinite
Rect.top_left top left point, synonym tl
Rect.top_right top_right point, synonym tr
Rect.quad Quad made from rectangle corners
Rect.width rectangle width
Rect.x0 top left corner’s X-coordinate
Rect.x1 bottom right corner’s X-coordinate
Rect.y0 top left corner’s Y-coordinate
Rect.y1 bottom right corner’s Y-coordinate

Class API

class Rect

__init__(self)

__init__(self, x0, y0, x1, y1)

__init__(self, top_left, bottom_right)

__init__(self, top_left, x1, y1)

__init__(self, x0, y0, bottom_right)

__init__(self, rect)

__init__(self, sequence)
Overloaded constructors: top_left, bottom_right stand for point_like objects, “sequence” is a Python
sequence type of 4 numbers (see Using Python Sequences as Arguments in PyMuPDF), “rect” means
another rect_like, while the other parameters mean coordinates.

If “rect” is specified, the constructor creates a new copy of it.

Without parameters, the empty rectangle Rect(0.0, 0.0, 0.0, 0.0) is created.

round()
Creates the smallest containing IRect, This is not the same as simply rounding the rectangle’s edges: The
top left corner is rounded upwards and left while the bottom right corner is rounded downwards and to
the right.

6.15. Rect 159

PyMuPDF Documentation, Release 1.16.10

>>> fitz.Rect(0.5, -0.01, 123.88, 455.123456).round()
IRect(0, -1, 124, 456)

1. If the rectangle is infinite, the “normalized” (finite) version of it will be taken. The result of this
method is always a finite IRect.

2. If the rectangle is empty, the result is also empty.

3. Possible paradox: The result may be empty, even if the rectangle is not empty! In such cases, the
result obviously does not contain the rectangle. This is because MuPDF’s algorithm allows for a
small tolerance (1e-3). Example:

>>> r = fitz.Rect(100, 100, 200, 100.001)
>>> r.isEmpty # rect is NOT empty
False
>>> r.round() # but its irect IS empty!
fitz.IRect(100, 100, 200, 100)
>>> r.round().isEmpty
True

Return type IRect

transform(m)
Transforms the rectangle with a matrix and replaces the original. If the rectangle is empty or infinite,
this is a no-operation.

Parameters m (Matrix) – The matrix for the transformation.

Return type Rect

Returns the smallest rectangle that contains the transformed original.

intersect(r)
The intersection (common rectangular area) of the current rectangle and r is calculated and replaces
the current rectangle. If either rectangle is empty, the result is also empty. If r is infinite, this is a
no-operation.

Parameters r (Rect) – Second rectangle

includeRect(r)
The smallest rectangle containing the current one and r is calculated and replaces the current one. If
either rectangle is infinite, the result is also infinite. If one is empty, the other one will be taken as the
result.

Parameters r (Rect) – Second rectangle

includePoint(p)
The smallest rectangle containing the current one and point p is calculated and replaces the current one.
Infinite rectangles remain unchanged. To create a rectangle containing a series of points, start with (the
empty) fitz.Rect(p1, p1) and successively perform includePoint operations for the other points.

Parameters p (Point) – Point to include.

getRectArea([unit])
getArea([unit])

Calculate the area of the rectangle and, with no parameter, equals abs(rect). Like an empty rectangle, the
area of an infinite rectangle is also zero. So, at least one of fitz.Rect(p1, p2) and fitz.Rect(p2, p1) has a
zero area.

160 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

Parameters unit (str) – Specify required unit: respective squares of px (pixels, default),
in (inches), cm (centimeters), or mm (millimeters).

Return type float

contains(x)
Checks whether x is contained in the rectangle. It may be an IRect, Rect, Point or number. If x is an
empty rectangle, this is always true. If the rectangle is empty this is always False for all non-empty
rectangles and for all points. If x is a number, it will be checked against the four components. x in rect
and rect.contains(x) are equivalent.

Parameters x (IRect or Rect or Point or number) – the object to check.

Return type bool

intersects(r)
Checks whether the rectangle and a rect_like “r” contain a common non-empty Rect. This will always
be False if either is infinite or empty.

Parameters r (rect_like) – the rectangle to check.

Return type bool

norm()
(New in version 1.16.0)

Return the Euclidean norm of the rectangle treated as a vector of four numbers.

normalize()
Replace the rectangle with its finite version. This is done by shuffling the rectangle corners. After
completion of this method, the bottom right corner will indeed be south-eastern to the top left one.

irect
Equals result of method round().

top_left

tl
Equals Point(x0, y0).

Type Point

top_right

tr
Equals Point(x1, y0).

Type Point

bottom_left

bl
Equals Point(x0, y1).

Type Point

bottom_right

br
Equals Point(x1, y1).

Type Point

quad
The quadrilateral Quad(rect.tl, rect.tr, rect.bl, rect.br).

6.15. Rect 161

PyMuPDF Documentation, Release 1.16.10

Type Quad

width
Width of the rectangle. Equals abs(x1 - x0).

Return type float

height
Height of the rectangle. Equals abs(y1 - y0).

Return type float

x0
X-coordinate of the left corners.

Type float

y0
Y-coordinate of the top corners.

Type float

x1
X-coordinate of the right corners.

Type float

y1
Y-coordinate of the bottom corners.

Type float

isInfinite
True if rectangle is infinite, False otherwise.

Type bool

isEmpty
True if rectangle is empty, False otherwise.

Type bool

Note:

• This class adheres to the Python sequence protocol, so components can be accessed via their index, too. Also
refer to Using Python Sequences as Arguments in PyMuPDF.

• Rectangles can be used with arithmetic operators – see chapter Operator Algebra for Geometry Objects.

6.16 Shape

This class allows creating interconnected graphical elements on a PDF page. Its methods have the same meaning and
name as the corresponding Page methods.

In fact, each Page draw method is just a convenience wrapper for (1) one shape draw method, (2) the finish()
method, and (3) the commit() method. For page text insertion, only the commit() method is invoked. If many
draw and text operations are executed for a page, you should always consider using a Shape object.

Several draw methods can be executed in a row and each one of them will contribute to one drawing. Once the drawing
is complete, the finish() method must be invoked to apply color, dashing, width, morphing and other attributes.

162 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

Draw methods of this class (and insertTextbox()) are logging the area they are covering in a rectangle (Shape.
rect). This property can for instance be used to set Page.CropBox.

Text insertions insertText() and insertTextbox() implicitely execute a “finish” and therefore only require
commit() to become effective. As a consequence, both include parameters for controlling prperties like colors, etc.

Method / Attribute Description
Shape.commit() update the page’s contents
Shape.drawBezier() draw a cubic Bezier curve
Shape.drawCircle() draw a circle around a point
Shape.drawCurve() draw a cubic Bezier using one helper point
Shape.drawLine() draw a line
Shape.drawOval() draw an ellipse
Shape.drawPolyline() connect a sequence of points
Shape.drawQuad() draw a quadrilateral
Shape.drawRect() draw a rectangle
Shape.drawSector() draw a circular sector or piece of pie
Shape.drawSquiggle() draw a squiggly line
Shape.drawZigzag() draw a zigzag line
Shape.finish() finish a set of draw commands
Shape.insertText() insert text lines
Shape.insertTextbox() fit text into a rectangle
Shape.doc stores the page’s document
Shape.draw_cont draw commands since last finish()
Shape.height stores the page’s height
Shape.lastPoint stores the current point
Shape.page stores the owning page
Shape.rect rectangle surrounding drawings
Shape.text_cont accumulated text insertions
Shape.totalcont accumulated string to be stored in contents
Shape.width stores the page’s width

Class API

class Shape

__init__(self, page)
Create a new drawing. During importing PyMuPDF, the fitz.Page object is being given the convenience
method newShape() to construct a Shape object. During instantiation, a check will be made whether we
do have a PDF page. An exception is otherwise raised.

Parameters page (Page) – an existing page of a PDF document.

drawLine(p1, p2)
Draw a line from point_like objects p1 to p2.

Parameters

• p1 (point_like) – starting point

• p2 (point_like) – end point

Return type Point

Returns the end point, p2.

6.16. Shape 163

PyMuPDF Documentation, Release 1.16.10

drawSquiggle(p1, p2, breadth=2)
Draw a squiggly (wavy, undulated) line from point_like objects p1 to p2. An integer number of full
wave periods will always be drawn, one period having a length of 4 * breadth. The breadth parameter
will be adjusted as necessary to meet this condition. The drawn line will always turn “left” when leaving
p1 and always join p2 from the “right”.

Parameters

• p1 (point_like) – starting point

• p2 (point_like) – end point

• breadth (float) – the amplitude of each wave. The condition 2 * breadth <
abs(p2 - p1) must be true to fit in at least one wave. See the following picture, which
shows two points connected by one full period.

Return type Point

Returns the end point, p2.

Here is an example of three connected lines, forming a closed, filled triangle. Little arrows indicate the
stroking direction.

164 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

Note: Waves drawn are not trigonometric (sine / cosine). If you need that, have a look at draw-sines.py88.

drawZigzag(p1, p2, breadth=2)
Draw a zigzag line from point_like objects p1 to p2. An integer number of full zigzag periods will
always be drawn, one period having a length of 4 * breadth. The breadth parameter will be adjusted to
meet this condition. The drawn line will always turn “left” when leaving p1 and always join p2 from the
“right”.

Parameters

• p1 (point_like) – starting point

• p2 (point_like) – end point

• breadth (float) – the amplitude of the movement. The condition 2 * breadth <
abs(p2 - p1) must be true to fit in at least one period.

Return type Point

Returns the end point, p2.

drawPolyline(points)
Draw several connected lines between points contained in the sequence points. This can be used for
creating arbitrary polygons by setting the last item equal to the first one.

Parameters points (sequence) – a sequence of point_like objects. Its length must
at least be 2 (in which case it is equivalent to drawLine()).

Return type Point

Returns points[-1] – the last point in the argument sequence.

drawBezier(p1, p2, p3, p4)
Draw a standard cubic Bezier curve from p1 to p4, using p2 and p3 as control points.

All arguments are point_like s.

88 https://github.com/pymupdf/PyMuPDF/blob/master/demo/draw-sines.py

6.16. Shape 165

https://github.com/pymupdf/PyMuPDF/blob/master/demo/draw-sines.py

PyMuPDF Documentation, Release 1.16.10

Return type Point

Returns the end point, p4.

Note: The points do not need to be different – experiment a bit with some of them being equal!

Example:

drawOval(tetra)
Draw an “ellipse” inside the given tetragon (quadrilateral). If it is a square, a regular circle is drawn, a
general rectangle will result in an ellipse. If a quadrilateral is used instead, a plethora of shapes can be the
result.

The drawing starts and ends at the middle point of the line connecting bottom-left and top-left corners in
an anti-clockwise movement.

Parameters tetra (rect_like,quad_like) – rect_like or quad_like.

Changed in version 1.14.5: tetragons are now also supported.

Return type Point

Returns the middle point of line from rect.bl to rect.tl, or from quad.ll to quad.ul, respec-
tively. Look at just a few examples here, or at the quad-show?.py scripts in the PyMuPDF-
Utilities repository.

drawCircle(center, radius)
Draw a circle given its center and radius. The drawing starts and ends at point center - (radius, 0) in an
anti-clockwise movement. This corresponds to the middle point of the enclosing rectangle’s left side.

The method is a shortcut for drawSector(center, start, 360, fullSector=False). To draw a circle in a
clockwise movement, change the sign of the degree.

Parameters

• center (point_like) – the center of the circle.

166 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

• radius (float) – the radius of the circle. Must be positive.

Return type Point

Returns center - (radius, 0).

drawCurve(p1, p2, p3)
A special case of drawBezier(): Draw a cubic Bezier curve from p1 to p3. On each of the two lines from
p1 to p2 and from p2 to p3 one control point is generated. This guaranties that the curve’s curvature does
not change its sign. If these two connecting lines intersect with an angle of 90 degrees, then the resulting
curve is a quarter ellipse (or quarter circle, if of same length) circumference.

All arguments are point_like.

Return type Point

Returns the end point, p3.

Example: a filled quarter ellipse segment.

drawSector(center, point, angle, fullSector=True)
Draw a circular sector, optionally connecting the arc to the circle’s center (like a piece of pie).

Parameters

• center (point_like) – the center of the circle.

• point (point_like) – one of the two end points of the pie’s arc segment. The
other one is calculated from the angle.

• angle (float) – the angle of the sector in degrees. Used to calculate the other end
point of the arc. Depending on its sign, the arc is drawn anti-clockwise (postive) or
clockwise.

• fullSector (bool) – whether to draw connecting lines from the ends of the arc
to the circle center. If a fill color is specified, the full “pie” is colored, otherwise just
the sector.

Returns the other end point of the arc. Can be used as starting point for a following invocation
to create logically connected pies charts.

Return type Point

6.16. Shape 167

PyMuPDF Documentation, Release 1.16.10

Examples:

drawRect(rect)
Draw a rectangle. The drawing starts and ends at the top-left corner in an anti-clockwise movement.

Parameters rect (rect_like) – where to put the rectangle on the page.

Return type Point

Returns top-left corner of the rectangle.

drawQuad(quad)
Draw a quadrilateral. The drawing starts and ends at the top-left corner (Quad.ul) in an anti-clockwise
movement. It invokes drawPolyline() with the argument [ul, ll, lr, ur, ul].

Parameters quad (quad_like) – where to put the tetragon on the page.

Return type Point

Returns Quad.ul.

insertText(point, text, fontsize=11, fontname="helv", fontfile=None, set_simple=False, en-
coding=TEXT_ENCODING_LATIN, color=None, fill=None, render_mode=0, bor-
der_width=1, rotate=0, morph=None)

Insert text lines start at point.

Parameters

• point (point_like) – the bottom-left position of the first character of text in pix-
els. It is important to understand, how this works in conjunction with the rotate param-
eter. Please have a look at the following picture. The small red dots indicate the posi-

168 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

tions of point in each of the four possible cases.

• text (str/sequence) – the text to be inserted. May be specified as either a string
type or as a sequence type. For sequences, or strings containing line breaks n, several
lines will be inserted. No care will be taken if lines are too wide, but the number of
inserted lines will be limited by “vertical” space on the page (in the sense of reading
direction as established by the rotate parameter). Any rest of text is discarded – the
return code however contains the number of inserted lines.

• rotate (int) – determines whether to rotate the text. Acceptable values are multi-
ples of 90 degrees. Default is 0 (no rotation), meaning horizontal text lines oriented
from left to right. 180 means text is shown upside down from right to left. 90 means
anti-clockwise rotation, text running upwards. 270 (or -90) means clockwise rota-
tion, text running downwards. In any case, point specifies the bottom-left coordinates
of the first character’s rectangle. Multiple lines, if present, always follow the reading
direction established by this parameter. So line 2 is located above line 1 in case of
rotate = 180, etc.

Return type int

Returns number of lines inserted.

For a description of the other parameters see Common Parameters.

insertTextbox(rect, buffer, fontsize=11, fontname="helv", fontfile=None, set_simple=False, en-
coding=TEXT_ENCODING_LATIN, color=None, fill=None, render_mode=0, bor-
der_width=1, expandtabs=8, align=TEXT_ALIGN_LEFT, rotate=0, morph=None)

PDF only: Insert text into the specified rectangle. The text will be split into lines and words and then
filled into the available space, starting from one of the four rectangle corners, which depends on rotate.
Line feeds will be respected as well as multiple spaces will be.

Parameters

• rect (rect_like) – the area to use. It must be finite and not empty.

• buffer (str/sequence) – the text to be inserted. Must be specified as a string
or a sequence of strings. Line breaks are respected also when occurring in a sequence
entry.

• align (int) – align each text line. Default is 0 (left). Centered, right and justified
are the other supported options, see Text Alignment. Please note that the effect of
parameter value TEXT_ALIGN_JUSTIFY is only achievable with “simple” (single-
byte) fonts (including the PDF Base 14 Fonts). Refer to Adobe PDF Reference 1.7,
section 5.2.2, page 399.

6.16. Shape 169

PyMuPDF Documentation, Release 1.16.10

• expandtabs (int) – controls handling of tab characters t using the
string.expandtabs() method per each line.

• rotate (int) – requests text to be rotated in the rectangle. This value must be a
multiple of 90 degrees. Default is 0 (no rotation). Effectively, four different values
are processed: 0, 90, 180 and 270 (= -90), each causing the text to start in a different
rectangle corner. Bottom-left is 90, bottom-right is 180, and -90 / 270 is top-right.
See the example how text is filled in a rectangle. This argument takes precedence
over morphing. See the second example, which shows text first rotated left by 90
degrees and then the whole rectangle rotated clockwise around is lower left corner.

Return type float

Returns

If positive or zero: successful execution. The value returned is the unused rectangle line
space in pixels. This may safely be ignored – or be used to optimize the rectangle, position
subsequent items, etc.

If negative: no execution. The value returned is the space deficit to store text lines.
Enlarge rectangle, decrease fontsize, decrease text amount, etc.

For a description of the other parameters see Common Parameters.

finish(width=1, color=None, fill=None, lineCap=0, lineJoin=0, dashes=None, closePath=True,
even_odd=False, morph=(pivot, matrix))

Finish a set of draw*() methods by applying Common Parameters to all of them. This method also
supports morphing the resulting compound drawing using a pivotal Point.

Parameters

• morph (sequence) – morph the text or the compound drawing around some arbi-
trary pivotal Point pivot by applying Matrix matrix to it. This implies that pivot is a
fixed point of this operation. Default is no morphing (None). The matrix can contain
any values in its first 4 components, matrix.e == matrix.f == 0 must be true, how-
ever. This means that any combination of scaling, shearing, rotating, flipping, etc. is
possible, but translations are not.

170 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

• even_odd (bool) – request the “even-odd rule” for filling operations. Default is
False, so that the “nonzero winding number rule” is used. These rules are alter-
native methods to apply the fill color where areas overlap. Only with fairly complex
shapes a different behavior is to be expected with these rules. For an in-depth expla-
nation, see Adobe PDF Reference 1.7, pp. 232 ff. Here is an example to demonstrate
the difference.

Note: For each pixel in a drawing the following will happen:

1. Rule “even-odd” counts, how many areas are overlapping at a pixel. If this count is odd the pixel is
regarded inside, if it is even, the pixel is outside.

2. Default rule “nonzero winding” also looks at the orientation of overlapping areas: it adds 1 if an
area is drawn anit-clockwise and it subtracts 1 for clockwise areas. If the result is zero, the pixel is
regarded outside, pixels with a non-zero count are inside.

In the top two shapes, three circles are drawn in standard manner (anti-clockwise, look at the arrows).
The lower two shapes contain one (top-left) circle drawn clockwise. As can be seen, area orientation is

6.16. Shape 171

PyMuPDF Documentation, Release 1.16.10

irrelevant for the even-odd rule.

commit(overlay=True)
Update the page’s contents with the accumulated draw commands and text insertions. If a Shape is
not committed, the page will not be changed.

The method will reset attributes Shape.rect, lastPoint, draw_cont, text_cont and
totalcont. Afterwards, the shape object can be reused for the same page.

Parameters overlay (bool) – determine whether to put content in foreground (default) or
background. Relevant only, if the page already has a non-empty contents object.

doc
For reference only: the page’s document.

Type Document

page
For reference only: the owning page.

Type Page

height
Copy of the page’s height

Type float

width
Copy of the page’s width.

Type float

draw_cont
Accumulated command buffer for draw methods since last finish.

Type str

text_cont
Accumulated text buffer. All text insertions go here. On commit() this buffer will be appended to
totalcont, so that text will never be covered by drawings in the same Shape.

Type str

rect
Rectangle surrounding drawings. This attribute is at your disposal and may be changed at any time.
Its value is set to None when a shape is created or committed. Every draw* method, and Shape.
insertTextbox() update this property (i.e. enlarge the rectangle as needed). Morphing operations,
however (Shape.finish(), Shape.insertTextbox()) are ignored.

A typical use of this attribute would be setting Page.CropBox to this value, when you are creating
shapes for later or external use. If you have not manipulated the attribute yourself, it should reflect a
rectangle that contains all drawings so far.

If you have used morphing and need a rectangle containing the morphed objects, use the following code:

>>> # assuming ...
>>> morph = (point, matrix)
>>> # ... recalculate the shape rectangle like so:
>>> shape.rect = (shape.rect - fitz.Rect(point, point)) * ~matrix + fitz.
→˓Rect(point, point)

Type Rect

172 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

totalcont
Total accumulated command buffer for draws and text insertions. This will be used by Shape.
commit().

Type str

lastPoint
For reference only: the current point of the drawing path. It is None at Shape creation and after each
finish() and commit().

Type Point

6.16.1 Usage

A drawing object is constructed by shape = page.newShape(). After this, as many draw, finish and text insertions
methods as required may follow. Each sequence of draws must be finished before the drawing is committed. The
overall coding pattern looks like this:

>>> shape = page.newShape()
>>> shape.draw1(...)
>>> shape.draw2(...)
>>> ...
>>> shape.finish(width=..., color=..., fill=..., morph=...)
>>> shape.draw3(...)
>>> shape.draw4(...)
>>> ...
>>> shape.finish(width=..., color=..., fill=..., morph=...)
>>> ...
>>> shape.insertText*
>>> ...
>>> shape.commit()
>>>

Note:

1. Each finish() combines the preceding draws into one logical shape, giving it common colors, line width, morph-
ing, etc. If closePath is specified, it will also connect the end point of the last draw with the starting point of the
first one.

2. To successfully create compound graphics, let each draw method use the end point of the previous one as its
starting point. In the above pseudo code, draw2 should hence use the returned Point of draw1 as its starting
point. Failing to do so, would automatically start a new path and finish() may not work as expected (but it won’t
complain either).

3. Text insertions may occur anywhere before the commit (they neither touch Shape.draw_cont nor Shape.
lastPoint). They are appended to Shape.totalcont directly, whereas draws will be appended by Shape.finish.

4. Each commit takes all text insertions and shapes and places them in foreground or background on the page –
thus providing a way to control graphical layers.

5. Only commit will update the page’s contents, the other methods are basically string manipulations.

6.16.2 Examples

1. Create a full circle of pieces of pie in different colors:

6.16. Shape 173

PyMuPDF Documentation, Release 1.16.10

shape = page.newShape() # start a new shape
cols = (...) # a sequence of RGB color triples
pieces = len(cols) # number of pieces to draw
beta = 360. / pieces # angle of each piece of pie
center = fitz.Point(...) # center of the pie
p0 = fitz.Point(...) # starting point
for i in range(pieces):

p0 = shape.drawSector(center, p0, beta,
fullSector=True) # draw piece

now fill it but do not connect ends of the arc
shape.finish(fill=cols[i], closePath=False)

shape.commit() # update the page

Here is an example for 5 colors:

2. Create a regular n-edged polygon (fill yellow, red border). We use drawSector() only to calculate the points on
the circumference, and empty the draw command buffer again before drawing the polygon:

shape = page.newShape() # start a new shape
beta = -360.0 / n # our angle, drawn clockwise
center = fitz.Point(...) # center of circle
p0 = fitz.Point(...) # start here (1st edge)
points = [p0] # store polygon edges
for i in range(n): # calculate the edges

p0 = shape.drawSector(center, p0, beta)
points.append(p0)

shape.draw_cont = "" # do not draw the circle sectors
shape.drawPolyline(points) # draw the polygon
shape.finish(color=(1,0,0), fill=(1,1,0), closePath=False)
shape.commit()

Here is the polygon for n = 7:

174 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

6.16.3 Common Parameters

fontname (str)

In general, there are three options:

1. Use one of the standard PDF Base 14 Fonts. In this case, fontfile must not be specified and “Hel-
vetica” is used if this parameter is omitted, too.

2. Choose a font already in use by the page. Then specify its reference name prefixed with a slash
“/”, see example below.

3. Specify a font file present on your system. In this case choose an arbitrary, but new name for this
parameter (without “/” prefix).

If inserted text should re-use one of the page’s fonts, use its reference name appearing in
getFontList() like so:

Suppose the font list has the entry [1024, 0, ‘Type1’, ‘CJXQIC+NimbusMonL-Bold’, ‘R366’], then specify
fontname = “/R366”, fontfile = None to use font CJXQIC+NimbusMonL-Bold.

fontfile (str)

File path of a font existing on your computer. If you specify fontfile, make sure you use a fontname not
occurring in the above list. This new font will be embedded in the PDF upon doc.save(). Similar to new
images, a font file will be embedded only once. A table of MD5 codes for the binary font contents is used
to ensure this.

set_simple (bool)

Fonts installed from files are installed as Type0 fonts by default. If you want to use 1-byte characters
only, set this to true. This setting cannot be reverted. Subsequent changes are ignored.

fontsize (float)

Font size of text. This also determines the line height as fontsize * 1.2.

dashes (str)

6.16. Shape 175

PyMuPDF Documentation, Release 1.16.10

Causes lines to be dashed. A continuous line with no dashes is drawn with “[]0” or None. For (the rather
complex) details on how to achieve dashing effects, see Adobe PDF Reference 1.7, page 217. Simple
versions look like “[3 4]”, which means dashes of 3 and gaps of 4 pixels length follow each other. “[3
3]” and “[3]” do the same thing.

color / fill (list, tuple)

Line and fill colors can be specified as tuples or list of of floats from 0 to 1. These sequences must have a
length of 1 (GRAY), 3 (RGB) or 4 (CMYK). For GRAY colorspace, a single float instead of the unwieldy
(float,) tuple spec is also accepted.

To simplify color specification, method getColor() in fitz.utils may be used to get predefined RGB color
triples by name. It accepts a string as the name of the color and returns the corresponding triple. The
method knows over 540 color names – see section Color Database.

border_width (float)

Set the border width for text insertions. New in v1.14.9. Relevant only if the render mode argument is
used with a value greater zero.

render_mode (int)

New in version 1.14.9: Integer in range(8) which controls the text appearance (Shape.insertText()
and Shape.insertTextbox()). See page 398 in Adobe PDF Reference 1.7. New in v1.14.9. These
methods now also differentiate between fill and stroke colors.

• For default 0, only the text fill color is used to paint the text. For backward compatibility, using the
color parameter instead also works.

• For render mode 1, only the border of each glyph (i.e. text character) is drawn with a thickness
as set in argument border_width. The color chosen in the color argument is taken for this, the fill
parameter is ignored.

• For render mode 2, the glyphs are filled and stroked, using both color parameters and the specified
border width. You can use this value to simulate bold text without using another font: choose the
same value for fill and color and an appropriate value for border_width.

• For render mode 3, the glyphs are neither stroked nor filled: the text becomes invisible.

The following examples use border_width=0.3, together with a fontsize of 15. Stroke color is blue and
fill color is some yellow.

176 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

overlay (bool)

Causes the item to appear in foreground (default) or background.

morph (sequence)

Causes “morphing” of either a shape, created by the draw*() methods, or the text inserted by page methods
insertTextbox() / insertText(). If not None, it must be a pair (pivot, matrix), where pivot is a Point and
matrix is a Matrix. The matrix can be anything except translations, i.e. matrix.e == matrix.f == 0 must
be true. The point is used as a pivotal point for the matrix operation. For example, if matrix is a rotation
or scaling operation, then pivot is its center. Similarly, if matrix is a left-right or up-down flip, then the
mirroring axis will be the vertical, respectively horizontal line going through pivot, etc.

Note: Several methods contain checks whether the to be inserted items will actually fit into the page (like
Shape.insertText(), or Shape.drawRect()). For the result of a morphing operation there is
however no such guaranty: this is entirely the rpogrammer’s responsibility.

lineCap (deprecated: “roundCap”) (int)

Controls the look of line ends. The default value 0 lets each line end at exactly the given coordinate in a
sharp edge. A value of 1 adds a semi-circle to the ends, whose center is the end point and whose diameter
is the line width. Value 2 adds a semi-square with an edge length of line width and a center of the line
end.

Changed in version 1.14.15

lineJoin (int)

New in version 1.14.15: Controls the way how line connections look like. This may be either as a sharp
edge (0), a rounded join (1), or a cut-off edge (2, “butt”).

closePath (bool)

Causes the end point of a drawing to be automatically connected with the starting point (by a straight
line).

6.17 TextPage

This class represents text and images shown on a document page. All MuPDF document types are supported.

The usual ways to create a textpage are DisplayList.getTextPage() and Page.getTextPage(). Because
there is a limited set of methods in this class, there exist wrappers in the Page class, which incorporate creating an
intermediate text page and then invoke one of the following methods. The last column of this table shows these
corresponding Page methods.

For a description of what this class is all about, see Appendix 2.

6.17. TextPage 177

PyMuPDF Documentation, Release 1.16.10

Method Description page getText or search method
extractText() extract plain text “text”
extractTEXT() synonym of previous “text”
extractBLOCKS() plain text grouped in blocks “blocks”
extractWORDS() all words with their bbox “words”
extractHTML() page content in HTML format “html”
extractJSON() page content in JSON format “json”
extractXHTML() page content in XHTML format “xhtml”
extractXML() page text in XML format “xml”
extractDICT() page content in dict format “dict”
extractRAWDICT() page content in dict format “rawdict”
search() Search for a string in the page searchFor()

Class API

class TextPage

extractText()

extractTEXT()
Return a string of the page’s complete text. The text is UTF-8 unicode and in the same sequence as
specified at the time of document creation.

Return type str

extractBLOCKS()
Textpage content as a list of text lines grouped by block. Each list items looks like this:

(x0, y0, x1, y1, "lines in blocks", block_type, block_no)

The first four entries are the block’s bbox coordinates, block_type is 1 for an image block, 0 for text.
block_no is the block sequence number.

For an image block, its bbox and a text line with image meta information is included – not the image data
itself.

This is a high-speed method with enough information to rebuild a desired text sequence.

Return type list

extractWORDS()
Textpage content as a list of single words with bbox information. An item of this list looks like this:

(x0, y0, x1, y1, "word", block_no, line_no, word_no)

Everything wrapped in spaces is treated as a “word” with this method.

This is a high-speed method which e.g. allows extracting text from within a given rectangle.

Return type list

extractHTML()
Textpage content in HTML format. This version contains complete formatting and positioning informa-
tion. Images are included (encoded as base64 strings). You need an HTML package to interpret the
output in Python. Your internet browser should be able to adequately display this information, but see
Controlling Quality of HTML Output.

Return type str

178 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

extractDICT()
Textpage content as a Python dictionary. Provides same information detail as HTML. See below for the
structure.

Return type dict

extractJSON()
Textpage content in JSON format. Created by json.dumps(TextPage.extractDICT()). It is included for
backlevel compatibility. You will probably use this method ever only for outputting the result in some
file. The method detects binary image data, like bytearray and bytes (Python 3 only) and converts them
to base64 encoded strings on JSON output.

Return type str

extractXHTML()
Textpage content in XHTML format. Text information detail is comparable with extractTEXT(), but
also contains images (base64 encoded). This method makes no attempt to re-create the original visual
appearance.

Return type str

extractXML()
Textpage content in XML format. This contains complete formatting information about every single
character on the page: font, size, line, paragraph, location, color, etc. Contains no images. You probably
need an XML package to interpret the output in Python.

Return type str

extractRAWDICT()
Textpage content as a Python dictionary – technically similar to extractDICT(), and it contains that
information as a subset (including any images). It provides additional detail down to each character, which
makes using XML obsolete in many cases. See below for the structure.

Return type dict

search(string, hit_max = 16, quads = False)
Search for string and return a list of found locations.

Parameters

• string (str) – the string to search for. Upper / lower cases will all match.

• hit_max (int) – maximum number of returned hits (default 16).

• quads (bool) – return quadrilaterals instead of rectangles.

Return type list

Returns a list of Rect or Quad objects, each surrounding a found string occurrence. The
search string may contain spaces, it may therefore happen, that its parts are located on
different lines. In this case, more than one rectangle (resp. quadrilateral) are returned.
The method does not support hyphenation, so it will not find “meth-od” when searching
for “method”.

Example: If the search for string “pymupdf” contains a hit like shown, then the corresponding entry will
either be the blue rectangle, or, if quads was specified, Quad(ul, ur, ll, lr).

6.17. TextPage 179

PyMuPDF Documentation, Release 1.16.10

6.17.1 Dictionary Structure of extractDICT() and extractRAWDICT()

6.17.1.1 Page Dictionary

Key Value
width page width in pixels (float)
height page height in pixels (float)
blocks list of block dictionaries

180 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

6.17.1.2 Block Dictionaries

Blocks come in two different formats: image blocks and text blocks.

Image block:

Key Value
type 1 = image (int)
bbox block / image rectangle, formatted as tuple(fitz.Rect)
ext image type (str), as file extension, see below
width original image width (int)
height original image height (int)
colorspace colorspace.n (int)
xres resolution in x-direction (int)
yres resolution in y-direction (int)
bpc bits per component (int)
image image content (bytes or bytearray)

Possible values of key “ext” are “bmp”, “gif”, “jpeg”, “jpx” (JPEG 2000), “jxr” (JPEG XR), “png”, “pnm”, and “tiff”.

Note:

1. In some error situations, all of the above values may be zero or empty. So, please be prepared to digest items
like:

{"type": 1, "bbox": (0.0, 0.0, 0.0, 0.0), ..., "image": b""}

2. TextPage and corresponding method Page.getText() are available for all document types. Only for
PDF documents, methods Document.getPageImageList() / Page.getImageList() offer some
overlapping functionality as far as image lists are concerned. But both lists may or may not contain the same
items. Any differences are most probably caused by one of the following:

• “Inline” images (see page 352 of the Adobe PDF Reference 1.7) of a PDF page are contained in a textpage,
but not in Page.getImageList().

• Image blocks in a textpage are generated for every image location – whether or not there are any dupli-
cates. This is in contrast to Page.getImageList(), which will contain each image only once.

• Images mentioned in the page’s object definition will always appear in Page.getImageList()89.
But it may happen, that there is no “display” command in the page’s contents (erroneously or on
purpose). In this case the image will not appear in the textpage.

Text block:

Key Value
type 0 = text (int)
bbox block rectangle, formatted as tuple(fitz.Rect)
lines list of text line dictionaries

89 Image specifications for a PDF page are done in the page’s sub-dictionary /Resources. Being a text format specification, PDF does not prevent
one from having arbitrary image entries in this dictionary – whether actually in use by the page or not. On top of this, resource dictionaries can be
inherited from the page’s parent object – like a node of the PDF’s pagetree or the catalog object. So the PDF creator may e.g. define one file
level /Resources naming all images and fonts ever used by any page. In this case, Page.getImageList() and Page.getFontList() will
always return the same lists for all pages.

6.17. TextPage 181

PyMuPDF Documentation, Release 1.16.10

6.17.1.3 Line Dictionary

Key Value
bbox line rectangle, formatted as tuple(fitz.Rect)
wmode writing mode (int): 0 = horizontal, 1 = vertical
dir writing direction (list of floats): [x, y]
spans list of span dictionaries

The value of key “dir” is a unit vetor and should be interpreted as follows:

• x: positive = “left-right”, negative = “right-left”, 0 = neither

• y: positive = “top-bottom”, negative = “bottom-top”, 0 = neither

The values indicate the “relative writing speed” in each direction, such that x2 + y2 = 1. In other words dir = [cos(beta),
sin(beta)], where beta is the writing angle relative to the horizontal.

6.17.1.4 Span Dictionary

Spans contain the actual text. A line contains more than one span only, if it contains text with different font properties.

(Changed in version 1.14.17) Spans now also have a bbox key (again).

Key Value
bbox span rectangle, formatted as tuple(fitz.Rect)
font font name (str)
size font size (float)
flags font characteristics (int)
color text color in sRGB format (int)
text (only for extractDICT()) text (str)
chars (only for extractRAWDICT()) list of character dictionaries

(New in version 1.16.0)

“color” is the text color encoded in sRGB format, e.g. 0xFF0000 for red.

“flags” is an integer, encoding bools of font properties:

• bit 0: superscripted (20)

• bit 1: italic (21)

• bit 2: serifed (22)

• bit 3: monospaced (23)

• bit 4: bold (24)

Test these characteristics like so:

>>> if flags & 2**1: print("italic")
>>> # etc.

182 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

6.17.1.5 Character Dictionary for extractRAWDICT()

We are currently providing the bbox in rect_like format. In a future version, we might change that to quad_like.

This image shows the relationship between items in the following table:

Key Value
origin tuple coordinates of the character’s bottom left point
bbox character rectangle, formatted as tuple(fitz.Rect)
c the character (unicode)

6.18 Tools

This class is a collection of utility methods and attributes, mainly around memory management. To simplify and speed
up its use, it is automatically instantiated under the name TOOLS when PyMuPDF is imported.

Method / Attribute Description
Tools.gen_id() generate a unique identifyer
Tools.store_shrink() shrink the storables cache91

Tools.mupdf_warnings() return the accumulated MuPDF warnings
Tools.mupdf_display_errors() return the accumulated MuPDF warnings
Tools.reset_mupdf_warnings() empty MuPDF messages on STDOUT
Tools.fitz_config configuration settings of PyMuPDF
Tools.store_maxsize maximum storables cache size
Tools.store_size current storables cache size

Class API

class Tools

gen_id()
A convenience method returning a unique positive integer which will increase by 1 on every invocation.
Example usages include creating unique keys in databases - its creation should be faster than using times-
tamps by an order of magnitude.

Note: MuPDF has dropped support for this in v1.14.0, so we have re-implemented a similar function
with the following differences:

• It is not part of MuPDF’s global context and not threadsafe (because we do not support threads in
PyMuPDF yet).

91 This memory area is internally used by MuPDF, and it serves as a cache for objects that have already been read and interpreted, thus improving
performance. The most bulky object types are images and also fonts. When an application starts up the MuPDF library (in our case this happens
as part of import fitz), it must specify a maximum size for this area. PyMuPDF’s uses the default value (256 MB) to limit memory consumption.
Use the methods here to control or investigate store usage. For example: even after a document has been closed and all related objects have been
deleted, the store usage may still not drop down to zero. So you might want to enforce that before opening another document.

6.18. Tools 183

PyMuPDF Documentation, Release 1.16.10

• It is implemented as int. This means that the maximum number is sys.maxsize. Should this number
ever be exceeded, the counter is reset to 1.

Return type int

Returns a unique positive integer.

store_shrink(percent)
Reduce the storables cache by a percentage of its current size.

Parameters percent (int) – the percentage of current size to free. If 100+ the store will be
emptied, if zero, nothing will happen. MuPDF’s caching strategy is “least recently used”,
so low-usage elements get deleted first.

Return type int

Returns the new current store size. Depending on the situation, the size reduction may be
larger than the requested percentage.

reset_mupdf_warnings()
(New in version 1.16.0)

Empty MuPDF warnings message buffer.

reset_mupdf_display_errors(value=None)
(New in version 1.16.8)

Show and set whether MuPDF errors should be displayed.

Parameters value (bool) – if not a bool, the current setting is returned. If true, MuPDF
errors will be shown on sys.stderr, otherwise suppressed. In any case, messages continue
to be stored in the warnings store. Changes remain in effect. Upon import of PyMuPDF
this value is True.

Returns True or False

mupdf_warnings(reset=True)
(New in version 1.16.0)

Return all stored MuPDF messages as a string with interspersed n.

Parameters reset (bool) – (new in version 1.16.7) whether to automatically empty the
store.

fitz_config
A dictionary containing the actual values used for configuring PyMuPDF and MuPDF. Also refer to the
installation chapter. This is an overview of the keys, each of which describes the status of a support aspect.

184 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

Key Support included for . . .
plotter-g Gray colorspace rendering
plotter-rgb RGB colorspace rendering
plotter-cmyk CMYK colorspcae rendering
plotter-n overprint rendering
pdf PDF documents
xps XPS documents
svg SVG documents
cbz CBZ documents
img IMG documents
html HTML documents
epub EPUB documents
jpx JPEG2000 images
js JavaScript
tofu all TOFU fonts
tofu-cjk CJK font subset (China, Japan, Korea)
tofu-cjk-ext CJK font extensions
tofu-cjk-lang CJK font language extensions
tofu-emoji TOFU emoji fonts
tofu-historic TOFU historic fonts
tofu-symbol TOFU symbol fonts
tofu-sil TOFU SIL fonts
icc ICC profiles
py-memory using Python memory management92

base14 Base-14 fonts (should always be true)

For an explanation of the term “TOFU” see this Wikipedia article90.:

In [1]: import fitz
In [2]: TOOLS.fitz_config
Out[2]:
{'plotter-g': True,
'plotter-rgb': True,
'plotter-cmyk': True,
'plotter-n': True,
'pdf': True,
'xps': True,
'svg': True,
'cbz': True,
'img': True,
'html': True,
'epub': True,
'jpx': True,
'js': True,
'tofu': False,
'tofu-cjk': True,
'tofu-cjk-ext': False,
'tofu-cjk-lang': False,

(continues on next page)

92 Optionally, all dynamic management of memory can be done using Python C-level calls. MuPDF offers a hook to insert user-preferred memory
managers. We are using option this for Python version 3 since PyMuPDF v1.13.19. At the same time, all memory allocation in PyMuPDF itself is
also routed to Python (i.e. no more direct malloc() calls in the code). We have seen improved memory usage and slightly reduced runtimes with
this option set. If you want to change this, you can set #define JM_MEMORY 0 (uses standard C malloc, or 1 for Python allocation)in file fitz.i and
then generate PyMuPDF.

90 https://en.wikipedia.org/wiki/Noto_fonts

6.18. Tools 185

https://en.wikipedia.org/wiki/Noto_fonts

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

'tofu-emoji': False,
'tofu-historic': False,
'tofu-symbol': False,
'tofu-sil': False,
'icc': False,
'py-memory': True, # (False if Python 2)
'base14': True}

Return type dict

store_maxsize
Maximum storables cache size in bytes. PyMuPDF is generated with a value of 268‘435‘456 (256 MB,
the default value), which you should therefore always see here. If this value is zero, then an “unlimited”
growth is permitted.

Return type int

store_size
Current storables cache size in bytes. This value may change (and will usually increase) with every use
of a PyMuPDF function. It will (automatically) decrease only when Tools.store_maxize is going
to be exceeded: in this case, MuPDF will evict low-usage objects until the value is again in range.

Return type int

6.18.1 Example Session

::

>>> import fitz
print the maximum and current cache sizes
>>> fitz.TOOLS.store_maxsize
268435456
>>> fitz.TOOLS.store_size
0
>>> doc = fitz.open("demo1.pdf")
pixmap creation puts lots of object in cache (text, images, fonts),
apart from the pixmap itself
>>> pix = doc[0].getPixmap(alpha=False)
>>> fitz.TOOLS.store_size
454519
release (at least) 50% of the storage
>>> fitz.TOOLS.store_shrink(50)
13471
>>> fitz.TOOLS.store_size
13471
get a few unique numbers
>>> fitz.TOOLS.gen_id()
1
>>> fitz.TOOLS.gen_id()
2
>>> fitz.TOOLS.gen_id()
3
close document and see how much cache is still in use
>>> doc.close()
>>> fitz.TOOLS.store_size

(continues on next page)

186 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

0
>>>

6.19 Widget

This class represents a PDF Form field, also called “widget”. Fields are a special case of annotations, which allow
users with limited permissions to enter information in a PDF. This is primarily used for filling out forms.

Like annotations, widgets live on PDF pages. Similar to annotations, the first widget on a page is accessible via
Page.firstWidget and subsequent widgets can be accessed via the Widget.next property.

(Changed in version 1.16.0) Widgets are no longer mixed with annotations. Page.firstAnnot and Annot.
next() will deliver non-widget annotations exclusively, and be None if only form fields exist on a page. Vice versa,
Page.firstWidget and Widget.next() will only show widgets.

Class API

class Widget

next
Point to the next form field on the page.

update()
After any changes to a widget, this method must be used to store them in the PDF.

border_color
A list of up to 4 floats defining the field’s border. Default value is None which causes border style and
border width to be ignored.

border_style
A string defining the line style of the field’s border. See Annot.border. Default is “s” (“Solid”) – a
continuous line. Only the first character (upper or lower case) will be regarded when creating a widget.

border_width
A float defining the width of the border line. Default is 1.

border_dashes
A list of integers defining the dash properties of the border line. This is only meaningful if border_style
== “D” and border_color is provided.

choice_values
Python sequence of strings defining the valid choices of list boxes and combo boxes. For these widget
types the property is mandatory. Ignored for other types. The sequence must contain at least two items.
When updating the widget, this sequence will always the complete new list of values must be specified.

field_name
A mandatory string defining the field’s name. No checking for duplicates takes place.

field_label
An optional string containing an “alternate” field name. Typically used for any notes, help on field usage,
etc. Default is the field name.

field_value
The value of the field.

field_flags
An integer defining a large amount of proprties of a field. Handle this attribute with care.

6.19. Widget 187

PyMuPDF Documentation, Release 1.16.10

field_type
A mandatory integer defining the field type. This is a value in the range of 0 to 6. It cannot be changed
when updating the widget.

field_type_string
A string describing (and derived from) the field type.

fill_color
A list of up to 4 floats defining the field’s background color.

button_caption
The caption string of a button-type field.

is_signed
A bool indicating the status of a signature field, else None.

rect
The rectangle containing the field.

text_color
A list of 1, 3 or 4 floats defining the text color. Default value is black ([0, 0, 0]).

text_font
A string defining the font to be used. Default and replacement for invalid values is “Helv”. For valid font
reference names see the table below.

text_fontsize
A float defining the text fontsize. Default value is zero, which causes PDF viewer software to dynamically
choose a size suitable for the annotation’s rectangle and text amount.

text_maxlen
An integer defining the maximum number of text characters. PDF viewers will (should) not accept a
longer text.

text_type
An integer defining acceptable text types (e.g. numeric, date, time, etc.). For reference only for the time
being – will be ignored when creating or updating widgets.

xref
An integer defining the PDF cross reference number of the widget.

6.19.1 Standard Fonts for Widgets

Widgets use their own resources object /DR. A widget resources object must at least contain a /Font object. Widget
fonts are independent from page fonts. We currently support the 14 PDF base fonts using the following fixed reference
names, or any name of an already existing field font. When specifying a text font for new or changed widgets, either
choose one in the first table column (upper and lower case supported), or one of the already existing form fonts. In the
latter case, spelling must exactly match.

To find out already existing field fonts, inspect the list Document.FormFonts.

188 Chapter 6. Classes

PyMuPDF Documentation, Release 1.16.10

Reference Base14 Fontname
CoBI Courier-BoldOblique
CoBo Courier-Bold
CoIt Courier-Oblique
Cour Courier
HeBI Helvetica-BoldOblique
HeBo Helvetica-Bold
HeIt Helvetica-Oblique
Helv Helvetica (default)
Symb Symbol
TiBI Times-BoldItalic
TiBo Times-Bold
TiIt Times-Italic
TiRo Times-Roman
ZaDb ZapfDingbats

You are generally free to use any font for every widget. However, we recommend using ZaDb (“ZapfDingbats”)
and fontsize 0 for check boxes: typical viewers will put a correctly sized tickmark in the field’s rectangle, when it is
clicked.

6.19. Widget 189

PyMuPDF Documentation, Release 1.16.10

190 Chapter 6. Classes

CHAPTER

SEVEN

OPERATOR ALGEBRA FOR GEOMETRY OBJECTS

Instances of classes Point, IRect, Rect and Matrix are collectively also called “geometry” objects.

They all are special cases of Python sequences, see Using Python Sequences as Arguments in PyMuPDF for more
background.

We have defined operators for these classes that allow dealing with them (almost) like ordinary numbers in terms of
addition, subtraction, multiplication, division, and some others.

This chapter is a synopsis of what is possible.

7.1 General Remarks

1. Operators can be either binary (i.e. involving two objects) or unary.

2. The resulting type of binary operations is either a new object of the left operand’s class or a bool.

3. The result of unary operations is either a new object of the same class, a bool or a float.

4. The binary operators +, -, *, / are defined for all classes. They roughly do what you would expect – except, that
the second operand . . .

• may always be a number which then performs the operation on every component of the first one,

• may always be a numeric sequence of the same length (2, 4 or 6) – we call such sequences point_like,
rect_like or matrix_like, respectively.

5. Rectangles support additional binary operations: intersection (operator “&”), union (operator “|”) and con-
tainment checking.

6. Binary operators fully support in-place operations, so expressions like “a /= b” are valid if b is numeric or
“a_like”.

7.2 Unary Operations

Oper. Result
bool(OBJ) is false exactly if all components of OBJ are zero
abs(OBJ) the rectangle area – equal to norm(OBJ) for the other tyes
norm(OBJ) square root of the component squares (Euclidean norm)
+OBJ new copy of OBJ
-OBJ new copy of OBJ with negated components
~m inverse of matrix “m”, or the null matrix if not invertible

191

PyMuPDF Documentation, Release 1.16.10

7.3 Binary Operations

For every geometry object “a” and every number “b”, the operations “a ° b” and “a °= b” are always defined for the
operators +, -, *, /. The respective operation is simply executed for each component of “a”. If the second operand is
not a number, then the following is defined:

Oper. Result
a+b,
a-b

component-wise execution, “b” must be “a-like”.

a*m,
a/m

“a” can be a point, rectangle or matrix, but “m” must be matrix_like. “a/m” is treated as “a*~m” (see
note below for non-invertible matrices). If “a” is a point or a rectangle, then “a.transform(m)” is executed.
If “a” is a matrix, then matrix concatenation takes place.

a&b intersection rectangle: “a” must be a rectangle and “b” rect_like. Delivers the largest rectangle
contained in both operands.

a|b union rectangle: “a” must be a rectangle, and “b” may be point_like or rect_like. Delivers the
smallest rectangle containing both operands.

b in
a

if “b” is a number, then “b in tuple(a)” is returned. If “b” is point_like or rect_like, then “a” must
be a rectangle, and “a.contains(b)” is returned.

a
==
b

True if bool(a-b) is False (“b” may be “a-like”).

Note: Please note an important difference to usual arithmetics:

Matrix multiplication is not commutative, i.e. in general we have m*n != n*m for two matrices. Also, there are
non-zero matrices which have no inverse, for example m = Matrix(1, 0, 1, 0, 1, 0). If you try to divide by any of
these you will receive a ZeroDivisionError exception using operator “/”, e.g. for fitz.Identity / m. But if you formulate
fitz.Identity * ~m, the result will be fitz.Matrix() (the null matrix).

Admittedly, this represents an inconsistency, and we are considering to remove it. For the time being, you can choose
to avoid an exception and check whether ~m is the null matrix, or accept a potential ZeroDivisionError by using
fitz.Identity / m.

7.4 Some Examples

7.4.1 Manipulation with numbers

For the usual arithmetic operations, numbers are always allowed as second operand. In addition, you can formulate “x
in OBJ”, where x is a number. It is implemented as “x in tuple(OBJ)”:

>>> fitz.Rect(1, 2, 3, 4) + 5
fitz.Rect(6.0, 7.0, 8.0, 9.0)
>>> 3 in fitz.Rect(1, 2, 3, 4)
True
>>>

The following will create the upper left quarter of a document page rectangle:

>>> page.rect
Rect(0.0, 0.0, 595.0, 842.0)

(continues on next page)

192 Chapter 7. Operator Algebra for Geometry Objects

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

>>> page.rect / 2
Rect(0.0, 0.0, 297.5, 421.0)
>>>

The following will deliver the middle point of a line connecting two points p1 and p2:

>>> p1 = fitz.Point(1, 2)
>>> p2 = fitz.Point(4711, 3141)
>>> mp = p1 + (p2 - p1) / 2
>>> mp
Point(2356.0, 1571.5)
>>>

7.4.2 Manipulation with “like” Objects

The second operand of a binary operation can always be “like” the left operand. “Like” in this context means “a
sequence of numbers of the same length”. With the above examples:

>>> p1 + p2
Point(4712.0, 3143.0)
>>> p1 + (4711, 3141)
Point(4712.0, 3143.0)
>>> p1 += (4711, 3141)
>>> p1
Point(4712.0, 3143.0)
>>>

To shift a rectangle for 5 pixels to the right, do this:

>>> fitz.Rect(100, 100, 200, 200) + (5, 0, 5, 0) # add 5 to the x coordinates
Rect(105.0, 100.0, 205.0, 200.0)
>>>

Points, rectangles and matrices can be transformed with matrices. In PyMuPDF, we treat this like a “multiplication”
(or resp. “division”), where the second operand may be “like” a matrix. Division in this context means “multiplication
with the inverted matrix”:

>>> m = fitz.Matrix(1, 2, 3, 4, 5, 6)
>>> n = fitz.Matrix(6, 5, 4, 3, 2, 1)
>>> p = fitz.Point(1, 2)
>>> p * m
Point(12.0, 16.0)
>>> p * (1, 2, 3, 4, 5, 6)
Point(12.0, 16.0)
>>> p / m
Point(2.0, -2.0)
>>> p / (1, 2, 3, 4, 5, 6)
Point(2.0, -2.0)
>>>
>>> m * n # matrix multiplication
Matrix(14.0, 11.0, 34.0, 27.0, 56.0, 44.0)
>>> m / n # matrix division
Matrix(2.5, -3.5, 3.5, -4.5, 5.5, -7.5)
>>>

(continues on next page)

7.4. Some Examples 193

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

>>> m / m # result is equal to the Identity matrix
Matrix(1.0, 0.0, 0.0, 1.0, 0.0, 0.0)
>>>
>>> # look at this non-invertible matrix:
>>> m = fitz.Matrix(1, 0, 1, 0, 1, 0)
>>> ~m
Matrix(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
>>> # we try dividing by it in two ways:
>>> p = fitz.Point(1, 2)
>>> p * ~m # this delivers point (0, 0):
Point(0.0, 0.0)
>>> p / m # but this is an exception:
Traceback (most recent call last):

File "<pyshell#6>", line 1, in <module>
p / m

File "... /site-packages/fitz/fitz.py", line 869, in __truediv__
raise ZeroDivisionError("matrix not invertible")

ZeroDivisionError: matrix not invertible
>>>

As a specialty, rectangles support additional binary operations:

• intersection – the common area of rectangle-likes, operator “&”

• inclusion – enlarge to include a point-like or rect-like, operator “|”

• containment check – whether a point-like or rect-like is inside

Here is an example for creating the smallest rectangle enclosing given points:

>>> # first define some point-likes
>>> points = []
>>> for i in range(10):

for j in range(10):
points.append((i, j))

>>>
>>> # now create a rectangle containing all these 100 points
>>> # start with an empty rectangle
>>> r = fitz.Rect(points[0], points[0])
>>> for p in points[1:]: # and include remaining points one by one

r |= p
>>> r # here is the to be expected result:
Rect(0.0, 0.0, 9.0, 9.0)
>>> (4, 5) in r # this point-like lies inside the rectangle
True
>>> # and this rect-like is also inside
>>> (4, 4, 5, 5) in r
True
>>>

194 Chapter 7. Operator Algebra for Geometry Objects

CHAPTER

EIGHT

LOW LEVEL FUNCTIONS AND CLASSES

Contains a number of functions and classes for the experienced user. To be used for special needs or performance
requirements.

8.1 Functions

The following are miscellaneous functions on a fairly low-level technical detail.

Some functions provide detail access to PDF structures. Others are stripped-down, high performance versions of
functions providing more information.

Yet others are handy, general-purpose utilities.

Function Short Description
Document.FontInfos PDF only: information on inserted fonts
Annot._cleanContents() PDF only: clean the annot’s contents objects
ConversionHeader() return header string for getText methods
ConversionTrailer() return trailer string for getText methods
Document._delXmlMetadata() PDF only: remove XML metadata
Document._deleteObject() PDF only: delete an object
Document._getNewXref() PDF only: create and return a new xref entry
Document._getOLRootNumber() PDF only: return / create xref of /Outline
Document._getPDFroot() PDF only: return the xref of the catalog
Document._getPageObjNumber() PDF only: return xref and generation number of a page
Document._getPageXref() PDF only: same as _getPageObjNumber()
Document._getTrailerString() PDF only: return the PDF file trailer string
Document._getXmlMetadataXref() PDF only: return XML metadata xref number
Document._getXrefLength() PDF only: return length of xref table
Document._getXrefStream() PDF only: return content of a stream object
Document._getXrefString() PDF only: return object definition “source”
Document._make_page_map() PDF only: create a fast-access array of page numbers
Document._updateObject() PDF only: insert or update a PDF object
Document._updateStream() PDF only: replace the stream of an object
Document.extractFont() PDF only: extract embedded font
Document.extractImage() PDF only: extract embedded image
Document.getCharWidths() PDF only: return a list of glyph widths of a font
Document.isStream() PDF only: check whether an xref is a stream object
ImageProperties() return a dictionary of basic image properties
getPDFnow() return the current timestamp in PDF format

Continued on next page

195

PyMuPDF Documentation, Release 1.16.10

Table 1 – continued from previous page
Function Short Description
getPDFstr() return PDF-compatible string
getTextlength() return string length for a given font & fontsize
Page._cleanContents() PDF only: clean the page’s contents objects
Page._getContents() PDF only: return a list of content numbers
Page._setContents() PDF only: set page’s contents object to specified xref
Page.getDisplayList() create the page’s display list
Page.getTextBlocks() extract text blocks as a Python list
Page.getTextWords() extract text words as a Python list
Page.run() run a page through a device
Page._wrapContents() wrap contents with stacking commands
Page._isWrapped check whether contents wrapping is present
planishLine() matrix to map a line to the x-axis
PaperSize() return width, height for a known paper format
PaperRect() return rectangle for a known paper format
paperSizes dictionary of pre-defined paper formats

PaperSize(s)
Convenience function to return width and height of a known paper format code. These values are
given in pixels for the standard resolution 72 pixels = 1 inch.

Currently defined formats include ‘A0’ through ‘A10’, ‘B0’ through ‘B10’, ‘C0’ through ‘C10’,
‘Card-4x6’, ‘Card-5x7’, ‘Commercial’, ‘Executive’, ‘Invoice’, ‘Ledger’, ‘Legal’, ‘Legal-13’,
‘Letter’, ‘Monarch’ and ‘Tabloid-Extra’, each in either portrait or landscape format.

A format name must be supplied as a string (case in sensitive), optionally suffixed with “-L” (land-
scape) or “-P” (portrait). No suffix defaults to portrait.

Parameters s (str) – any format name from above (upper or lower case), like “A4”
or “letter-l”.

Return type tuple

Returns (width, height) of the paper format. For an unknown format (-1, -1) is returned.
Esamples: fitz.PaperSize(“A4”) returns (595, 842) and fitz.PaperSize(“letter-l”) de-
livers (792, 612).

PaperRect(s)
Convenience function to return a Rect for a known paper format.

Parameters s (str) – any format name supported by PaperSize().

Return type Rect

Returns fitz.Rect(0, 0, width, height) with width, height=fitz.PaperSize(s).

>>> import fitz
>>> fitz.PaperRect("letter-l")
fitz.Rect(0.0, 0.0, 792.0, 612.0)
>>>

planishLine(p1, p2)
(New in version 1.16.2)

Return a matrix which maps the line from p1 to p2 to the x-axis such that p1 will become (0,0) and
p2 a point with the same distance to (0,0).

196 Chapter 8. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.16.10

Parameters

• p1 (point_like) – starting point of the line.

• p2 (point_like) – end point of the line.

Return type Matrix

Returns

a matrix which combines a rotation and a translation:

p1 = fitz.Point(1, 1)
p2 = fitz.Point(4, 5)
abs(p2 - p1) # distance of points
5.0
m = fitz.planishLine(p1, p2)
p1 * m
Point(0.0, 0.0)
p2 * m
Point(5.0, -5.960464477539063e-08)
distance of the resulting points
abs(p2 * m - p1 * m)
5.0

paperSizes
A dictionary of pre-defines paper formats. Used as basis for PaperSize().

getPDFnow()
Convenience function to return the current local timestamp in PDF compatible format, e.g.
D:20170501121525-04‘00’ for local datetime May 1, 2017, 12:15:25 in a timezone 4 hours west-
ward of the UTC meridian.

Return type str

Returns current local PDF timestamp.

getTextlength(text, fontname="helv", fontsize=11, encoding=TEXT_ENCODING_LATIN)
(New in version 1.14.7)

Calculate the length of text on output with a given builtin font, fontsize and encoding.

Parameters

8.1. Functions 197

PyMuPDF Documentation, Release 1.16.10

• text (str) – the text string.

• fontname (str) – the fontname. Must be one of either the PDF Base 14
Fonts or the CJK fonts, identified by their “reserved” fontnames (see table in
:meth.‘Page.insertFont‘).

• fontsize (float) – size of the font.

• encoding (int) – the encoding to use. Besides 0 = Latin, 1 = Greek and
2 = Cyrillic (Russian) are available. Relevant for Base-14 fonts “Helvetica”,
“Courier” and “Times” and their variants only. Make sure to use the same
value as in the corresponding text insertion.

Return type float

Returns the length in points the string will have (e.g. when used in Page.
insertText()).

Note: This function will only do the calculation – it won’t insert font or text.

Warning: If you use this function to determine the required rectangle width for the (Page or
Shape) insertTextbox methods, be aware that they calculate on a by-character level. Because
of rounding effects, this will mostly lead to a slightly larger number: sum([fitz.getTextlength(c)
for c in text]) > fitz.getTextlength(text). So either (1) do the same, or (2) use something like
fitz.getTextlength(text + “’”) for your calculation.

getPDFstr(text)
Make a PDF-compatible string: if the text contains code points ord(c) > 255, then it will be con-
verted to UTF-16BE with BOM as a hexadecimal character string enclosed in “<>” brackets like
<feff. . . >. Otherwise, it will return the string enclosed in (round) brackets, replacing any characters
outside the ASCII range with some special code. Also, every “(“, “)” or backslash is escaped with
an additional backslash.

Parameters text (str) – the object to convert

Return type str

Returns PDF-compatible string enclosed in either () or <>.

ImageProperties(image)
(New in version 1.14.14)

Return a number of basic properties for an image.

Parameters image (bytes|bytearray|BytesIO|file) – an image either in
memory or an opened file. A memory resident image maybe any of the formats
bytes, bytearray or io.BytesIO.

Returns

a dictionary with the following keys (an empty dictionary for any error):

198 Chapter 8. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.16.10

Key Value
width (int) width in pixels
height (int) height in pixels
colorspace (int) colorspace.n (e.g. 3 = RGB)
bpc (int) bits per component (usually 8)
format (int) image format in range(15)
ext (str) suggested image file extension for the format
size (int) length of the image in bytes

Example:

>>> fitz.ImageProperties(open("img-clip.jpg","rb"))
{'bpc': 8, 'format': 9, 'colorspace': 3, 'height': 325, 'width': 244,
→˓'ext': 'jpeg', 'size': 14161}
>>>

ConversionHeader("text", filename="UNKNOWN")
Return the header string required to make a valid document out of page text outputs.

Parameters

• output (str) – type of document. Use the same as the output parameter of
getText().

• filename (str) – optional arbitrary name to use in output types “json” and
“xml”.

Return type str

ConversionTrailer(output)
Return the trailer string required to make a valid document out of page text outputs. See Page.
getText() for an example.

Parameters output (str) – type of document. Use the same as the output parameter
of getText().

Return type str

Document._deleteObject(xref)
PDF only: Delete an object given by its cross reference number.

Parameters xref (int) – the cross reference number. Must be within the document’s
valid xref range.

Warning: Only use with extreme care: this may make the PDF unreadable.

Document._delXmlMetadata()
Delete an object containing XML-based metadata from the PDF. (Py-) MuPDF does not support
XML-based metadata. Use this if you want to make sure that the conventional metadata dictionary
will be used exclusively. Many thirdparty PDF programs insert their own metadata in XML format

8.1. Functions 199

PyMuPDF Documentation, Release 1.16.10

and thus may override what you store in the conventional dictionary. This method deletes any such
reference, and the corresponding PDF object will be deleted during next garbage collection of the
file.

Document._getTrailerString(compressed=False)
(New in version 1.14.9)

Return the trailer of the PDF (UTF-8), which is usually located at the PDF file’s end. If not a PDF
or the PDF has no trailer (because of irrecoverable errors), None is returned.

Parameters compressed (bool) – (ew in version 1.14.14) whether to generate a
compressed output or one with nice indentations to ease reading (default).

Returns a string with the PDF trailer information. This is the analogous method
to Document._getXrefString() except that the trailer has no identifying
xref number. As can be seen here, the trailer object points to other important
objects:

>>> doc=fitz.open("adobe.pdf")
>>> # compressed output
>>> print(doc._getTrailerString(True))
<</Size 334093/Prev 25807185/XRefStm 186352/Root 333277 0 R/Info 109959
→˓0 R
/ID[(\\227\\366/gx\\016ds\\244\\207\\326\\261\\\\\\305\\376u)
(H\\323\\177\\346\\371pkF\\243\\262\\375\\346\\325\\002)]>>
>>> # non-compressed otput:
>>> print(doc._getTrailerString(False))
<<

/Size 334093
/Prev 25807185
/XRefStm 186352
/Root 333277 0 R
/Info 109959 0 R
/ID [(\227\366/gx\016ds\244\207\326\261\\\305\376u)

→˓(H\323\177\346\371pkF\243\262\375\346\325\002)]
>>

Note: MuPDF is capable of recovering from a number of damages a PDF may have. This includes
re-generating a trailer, where the end of a file has been lost (e.g. because of incomplete downloads).
If however None is returned for a PDF, then the recovery mechanisms were unsuccessful and you
should check for any error messages (Document.openErrCode, Document.openErrMsg,
Tools.fitz_stderr).

Document._make_page_map()
Create an internal array of page numbers, which significantly speeds up page lookup (Document.
loadPage()). If this array exists, finding a page object will be up to two times faster. Functions
which change the PDF’s page layout (copy, delete, move, select pages) will destroy this array again.

Document._getXmlMetadataXref()
Return the XML-based metadata xref of the PDF if present – also refer to Document.
_delXmlMetadata(). You can use it to retrieve the content via Document.
_getXrefStream() and then work with it using some XML software.

200 Chapter 8. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.16.10

Return type int

Returns xref of PDF file level XML metadata.

Document._getPageObjNumber(pno)
or

Document._getPageXref(pno)

Return the xref and generation number for a given page.

Parameters pno (int) – Page number (zero-based).

Return type list

Returns xref and generation number of page pno as a list [xref, gen].

Document._getPDFroot()

Return the xref of the PDF catalog.

Return type int

Returns xref of the PDF catalog – a central dictionary pointing to many other
PDF information.

Page.run(dev, transform)
Run a page through a device.

Parameters

• dev (Device) – Device, obtained from one of the Device constructors.

• transform (Matrix) – Transformation to apply to the page. Set it to Identity
if no transformation is desired.

Page._wrapContents()
Put string pair “q” / “Q” before, resp. after a page’s /Contents object(s) to ensure that any “geome-
try” changes are local only.

Use this method as an alternative, minimalistic version of Page._cleanContents(). Its ad-
vantage is a small footprint in terms of processing time and impact on incremental saves.

Page._isWrapped
Indicate whether Page._wrapContents() may be required for object insertions in standard
PDF geometry. Please note that this is a quick, basic check only: a value of False may still be a
false alarm.

Page.getTextBlocks(flags=None)
Deprecated wrapper for TextPage.extractBLOCKS().

8.1. Functions 201

PyMuPDF Documentation, Release 1.16.10

Page.getTextWords(flags=None)
Deprecated wrapper for TextPage.extractWORDS().

Page.getDisplayList()
Run a page through a list device and return its display list.

Return type DisplayList

Returns the display list of the page.

Page._getContents()
Return a list of xref numbers of contents objects belonging to the page.

Return type list

Returns a list of xref integers.

Each page may have zero to many associated contents objects (stream s) which contain some
operator syntax describing what appears where and how on the page (like text or images, etc.
See the Adobe PDF Reference 1.7, chapter “Operator Summary”, page 985). This function
only enumerates the number(s) of such objects. To get the actual stream source, use function
Document._getXrefStream() with one of the numbers in this list. Use Document.
_updateStream() to replace the content.

Page._setContents(xref)
PDF only: Set a given object (identified by its xref) as the page’s one and only contents object.
Useful for joining mutiple contents objects as in the following snippet:

>>> c = b""
>>> xreflist = page._getContents()
>>> for xref in xreflist:

c += doc._getXrefStream(xref)
>>> doc._updateStream(xreflist[0], c)
>>> page._setContents(xreflist[0])
>>> # doc.save(..., garbage=1) will remove the unused objects

Parameters xref (int) – the cross reference number of a contents object. An
exception is raised if outside the valid xref range or not a stream object.

Page._cleanContents()
Clean and concatenate all contents objects associated with this page. “Cleaning” includes
syntactical corrections, standardizations and “pretty printing” of the contents stream. Dis-
crepancies between contents and resources objects will also be corrected. See Page.
_getContents() for more details.

Changed in version 1.16.0 Annotations are no longer implicitely cleaned by this method. Use
Annot._cleanContents() separately.

Warning: This is a complex function which may generate large amounts of new data and
render other data unused. It is not recommended using it together with the incremental save
option. Also note that the resulting singleton new /Contents object is uncompressed. So you
should save to a new file using options “deflate=True, garbage=3”.

202 Chapter 8. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.16.10

Annot._cleanContents()
Clean the contents streams associated with the annotation. This is the same type of action which
Page._cleanContents() performs – just restricted to this annotation.

Document.getCharWidths(xref=0, limit=256)
Return a list of character glyphs and their widths for a font that is present in the document. A font
must be specified by its PDF cross reference number xref. This function is called automatically
from Page.insertText() and Page.insertTextbox(). So you should rarely need to do
this yourself.

Parameters

• xref (int) – cross reference number of a font embedded in the PDF. To find
a font xref, use e.g. doc.getPageFontList(pno) of page number pno and take
the first entry of one of the returned list entries.

• limit (int) – limits the number of returned entries. The default of 256 is
enforced for all fonts that only support 1-byte characters, so-called “simple
fonts” (checked by this method). All PDF Base 14 Fonts are simple fonts.

Return type list

Returns a list of limit tuples. Each character c has an entry (g, w) in this list with an
index of ord(c). Entry g (integer) of the tuple is the glyph id of the character, and
float w is its normalized width. The actual width for some fontsize can be calculated
as w * fontsize. For simple fonts, the g entry can always be safely ignored. In all
other cases g is the basis for graphically representing c.

This function calculates the pixel width of a string called text:

def pixlen(text, widthlist, fontsize):
try:

return sum([widthlist[ord(c)] for c in text]) * fontsize
except IndexError:

m = max([ord(c) for c in text])
raise ValueError:("max. code point found: %i, increase limit" % m)

Document._getXrefString(xref, compressed=False)
Return the string (“source code”) representing an arbitrary object. For stream objects, only the
non-stream part is returned. To get the stream data, use _getXrefStream().

Parameters

• xref (int) – xref number.

• compressed (bool) – (new in version 1.14.14) whether to generate a com-
pressed output or one with nice indentations to ease reading or parsing (default).

Return type string

Returns the string defining the object identified by xref. Example:

8.1. Functions 203

PyMuPDF Documentation, Release 1.16.10

>>> doc = fitz.open("Adobe PDF Reference 1-7.pdf") # the PDF
>>> page = doc[100] # some page in it
>>> print(doc._getXrefString(page.xref, compressed=True))
<</CropBox[0 0 531 666]/Annots[4795 0 R 4794 0 R 4793 0 R 4792 0 R 4797
→˓0 R 4796 0 R]
/Parent 109820 0 R/StructParents 941/Contents 229 0 R/Rotate 0/
→˓MediaBox[0 0 531 666]
/Resources<</Font<</T1_0 3914 0 R/T1_1 3912 0 R/T1_2 3957 0 R/T1_3 3913
→˓0 R/T1_4 4576 0 R
/T1_5 3931 0 R/T1_6 3944 0 R>>/ProcSet[/PDF/Text]/ExtGState<</GS0 333283
→˓0 R>>>>
/Type/Page>>
>>> print(doc._getXrefString(page.xref, compressed=False))
<<

/CropBox [0 0 531 666]
/Annots [4795 0 R 4794 0 R 4793 0 R 4792 0 R 4797 0 R 4796 0 R]
/Parent 109820 0 R
/StructParents 941
/Contents 229 0 R
/Rotate 0
/MediaBox [0 0 531 666]
/Resources <<

/Font <<
/T1_0 3914 0 R
/T1_1 3912 0 R
/T1_2 3957 0 R
/T1_3 3913 0 R
/T1_4 4576 0 R
/T1_5 3931 0 R
/T1_6 3944 0 R

>>
/ProcSet [/PDF /Text]
/ExtGState <<

/GS0 333283 0 R
>>

>>
/Type /Page

>>

Document.isStream(xref)
(New in version 1.14.14)

PDF only: Check whether the object represented by xref is a stream type. Return is False if
not a PDF or if the number is outside the valid xref range.

Parameters xref (int) – xref number.

Returns True if the object definition is followed by data wrapped in keyword pair
stream, endstream.

Document._getNewXref()
Increase the xref by one entry and return that number. This can then be used to insert a new
object.

Return type int

Returns the number of the new xref entry.

204 Chapter 8. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.16.10

Document._updateObject(xref, obj_str, page=None)
Associate the object identified by string obj_str with xref, which must already exist. If xref pointed
to an existing object, this will be replaced with the new object. If a page object is specified, links
and other annotations of this page will be reloaded after the object has been updated.

Parameters

• xref (int) – xref number.

• obj_str (str) – a string containing a valid PDF object definition.

• page (Page) – a page object. If provided, indicates, that annotations of this
page should be refreshed (reloaded) to reflect changes incurred with links and /
or annotations.

Return type int

Returns zero if successful, otherwise an exception will be raised.

Document._getXrefLength()
Return length of xref table.

Return type int

Returns the number of entries in the xref table.

Document._getXrefStream(xref)
Return the decompressed stream of the object referenced by xref. For non-stream objects None is
returned.

Parameters xref (int) – xref number.

Return type bytes

Returns the (decompressed) stream of the object.

Document._updateStream(xref, stream, new=False)
Replace the stream of an object identified by xref. If the object has no stream, an exception is raised
unless new=True is used. The function automatically performs a compress operation (“deflate”)
where beneficial.

Parameters

• xref (int) – xref number.

• stream (bytes|bytearray|BytesIO) – the new content of the stream.

(Changed in version 1.14.13:) io.BytesIO objects are now also supported.

• new (bool) – whether to force accepting the stream, and thus turning it into
a stream object.

This method is intended to manipulate streams containing PDF operator syntax (see pp. 985 of the
Adobe PDF Reference 1.7) as it is the case for e.g. page content streams.

If you update a contents stream, you should use save parameter clean=True. This ensures consis-
tency between PDF operator source and the object structure.

8.1. Functions 205

PyMuPDF Documentation, Release 1.16.10

Example: Let us assume that you no longer want a certain image appear on a page. This can be
achieved by deleting the respective reference in its contents source(s) – and indeed: the image will
be gone after reloading the page. But the page’s resources object would still show the image as
being referenced by the page. This save option will clean up any such mismatches.

Document._getOLRootNumber()

Return xref number of the /Outlines root object (this is not the first outline entry!). If
this object does not exist, a new one will be created.

Return type int

Returns xref number of the /Outlines root object.

Document.extractImage(xref=0)
PDF Only: Extract data and meta information of an image stored in the document. The output can
directly be used to be stored as an image file, as input for PIL, Pixmap creation, etc. This method
avoids using pixmaps wherever possible to present the image in its original format (e.g. as JPEG).

Parameters xref (int) – xref of an image object. Must be in range(1,
doc._getXrefLength()), else an exception is raised. If the object is no image or other
errors occur, an empty dictionary is returned and no exception occurs.

Return type dict

Returns

a dictionary with the following keys

• ext (str) image type (e.g. ‘jpeg’), usable as image file extension

• smask (int) xref number of a stencil (/SMask) image or zero

• width (int) image width

• height (int) image height

• colorspace (int) the image’s pixmap.n number (indicative only: depends on
whether internal pixmaps had to be used). Zero for JPX images.

• cs-name (str) the image’s colorspace.name.

• xres (int) resolution in x direction. Zero for JPX images.

• yres (int) resolution in y direction. Zero for JPX images.

• image (bytes) image data, usable as image file content

>>> d = doc.extractImage(25)
>>> d
{}
>>> d = doc.extractImage(1373)
>>> d
{'ext': 'png', 'smask': 2934, 'width': 5, 'height': 629, 'colorspace': 3,
→˓ 'xres': 96,
'yres': 96, 'cs-name': 'DeviceRGB',
'image': b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x05\ ...'}
>>> imgout = open("image." + d["ext"], "wb")
>>> imgout.write(d["image"])
102
>>> imgout.close()

206 Chapter 8. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.16.10

Note: There is a functional overlap with pix = fitz.Pixmap(doc, xref), followed by a
pix.getPNGData(). Main differences are that extractImage (1) does not only deliver PNG image
formats, (2) is very much faster with non-PNG images, (3) usually results in much less disk storage
for extracted images, (4) generates an empty dict for non-image xrefs (generates no exception).
Look at the following example images within the same PDF.

• xref 1268 is a PNG – Comparable execution time and identical output:

In [23]: %timeit pix = fitz.Pixmap(doc, 1268);pix.getPNGData()
10.8 ms ± 52.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops
→˓each)
In [24]: len(pix.getPNGData())
Out[24]: 21462

In [25]: %timeit img = doc.extractImage(1268)
10.8 ms ± 86 µs per loop (mean ± std. dev. of 7 runs, 100 loops
→˓each)
In [26]: len(img["image"])
Out[26]: 21462

• xref 1186 is a JPEG – Document.extractImage() is thousands of times faster and
produces a much smaller output (2.48 MB vs. 0.35 MB):

In [27]: %timeit pix = fitz.Pixmap(doc, 1186);pix.getPNGData()
341 ms ± 2.86 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [28]: len(pix.getPNGData())
Out[28]: 2599433

In [29]: %timeit img = doc.extractImage(1186)
15.7 µs ± 116 ns per loop (mean ± std. dev. of 7 runs, 100000 loops
→˓each)
In [30]: len(img["image"])
Out[30]: 371177

Document.extractFont(xref, info_only=False)
PDF Only: Return an embedded font file’s data and appropriate file extension. This can be used to
store the font as an external file. The method does not throw exceptions (other than via checking
for PDF and valid xref).

Parameters

• xref (int) – PDF object number of the font to extract.

• info_only (bool) – only return font information, not the buffer. To be used
for information-only purposes, avoids allocation of large buffer areas.

Return type tuple

Returns

a tuple (basename, ext, subtype, buffer), where ext is a 3-byte suggested file exten-
sion (str), basename is the font’s name (str), subtype is the font’s type (e.g. “Type1”)
and buffer is a bytes object containing the font file’s content (or b”“). For possi-
ble extension values and their meaning see Font File Extensions. Return details on
error:

• (“”, “”, “”, b”“) – invalid xref or xref is not a (valid) font object.

8.1. Functions 207

PyMuPDF Documentation, Release 1.16.10

• (basename, “n/a”, “Type1”, b”“) – basename is one of the PDF Base 14 Fonts,
which cannot be extracted.

Example:

>>> # store font as an external file
>>> name, ext, buffer = doc.extractFont(4711)
>>> # assuming buffer is not None:
>>> ofile = open(name + "." + ext, "wb")
>>> ofile.write(buffer)
>>> ofile.close()

Warning: The basename is returned unchanged from the PDF. So it may contain characters
(such as blanks) which may disqualify it as a filename for your operating system. Take appro-
priate action.

Document.FontInfos

Contains following information for any font inserted via Page.insertFont() in
this session of PyMuPDF:

• xref (int) – XREF number of the /Type/Font object.

• info (dict) – detail font information with the following keys:

– name (str) – name of the basefont

– idx (int) – index number for multi-font files

– type (str) – font type (like “TrueType”, “Type0”, etc.)

– ext (str) – extension to be used, when font is extracted to a file (see Font File
Extensions).

– glyphs (list) – list of glyph numbers and widths (filled by textinsertion meth-
ods).

Return type list

8.2 Device

The different format handlers (pdf, xps, etc.) interpret pages to a “device”. Devices are the basis for everything that
can be done with a page: rendering, text extraction and searching. The device type is determined by the selected
construction method.

Class API

class Device

__init__(self, object, clip)
Constructor for either a pixel map or a display list device.

Parameters

• object (Pixmap or DisplayList) – either a Pixmap or a DisplayList.

208 Chapter 8. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.16.10

• clip (IRect) – An optional IRect for Pixmap devices to restrict rendering to a certain
area of the page. If the complete page is required, specify None. For display list
devices, this parameter must be omitted.

__init__(self, textpage, flags=0)
Constructor for a text page device.

Parameters

• textpage (TextPage) – TextPage object

• flags (int) – control the way how text is parsed into the text page. Currently
3 options can be coded into this parameter, see Preserve Text Flags. To set these
options use something like flags=0 | TEXT_PRESERVE_LIGATURES |

Note: In higher level code (Page.getText(), Document.getPageText()), the following
decisions for creating text devices have been implemented: (1) TEXT_PRESERVE_LIGATURES and
TEXT_PRESERVE_WHITESPACES are always set, (2) TEXT_PRESERVE_IMAGES is set for JSON and HTML,
otherwise off.

8.3 Working together: DisplayList and TextPage

Here are some instructions on how to use these classes together.

In some situations, performance improvements may be achievable, when you fall back to the detail level explained
here.

8.3.1 Create a DisplayList

A DisplayList represents an interpreted document page. Methods for pixmap creation, text extraction and text search
are – behind the curtain – all using the page’s display list to perform their tasks. If a page must be rendered several
times (e.g. because of changed zoom levels), or if text search and text extraction should both be performed, overhead
can be saved, if the display list is created only once and then used for all other tasks.

>>> dl = page.getDisplayList() # create the display list

You can also create display lists for many pages “on stack” (in a list), may be during document open, during idling
times, or you store it when a page is visited for the first time (e.g. in GUI scripts).

Note, that for everything what follows, only the display list is needed – the corresponding Page object could have been
deleted.

8.3.2 Generate Pixmap

The following creates a Pixmap from a DisplayList. Parameters are the same as for Page.getPixmap().

>>> pix = dl.getPixmap() # create the page's pixmap

The execution time of this statement may be up to 50% shorter than that of Page.getPixMap().

8.3. Working together: DisplayList and TextPage 209

PyMuPDF Documentation, Release 1.16.10

8.3.3 Perform Text Search

With the display list from above, we can also search for text.

For this we need to create a TextPage.

>>> tp = dl.getTextPage() # display list from above
>>> rlist = tp.search("needle") # look up "needle" locations
>>> for r in rlist: # work with the found locations, e.g.

pix.invertIRect(r.irect) # invert colors in the rectangles

8.3.4 Extract Text

With the same TextPage object from above, we can now immediately use any or all of the 5 text extraction methods.

Note: Above, we have created our text page without argument. This leads to a default argument of 3 (ligatures and
white-space are preserved), IAW images will not be extracted – see below.

>>> txt = tp.extractText() # plain text format
>>> json = tp.extractJSON() # json format
>>> html = tp.extractHTML() # HTML format
>>> xml = tp.extractXML() # XML format
>>> xml = tp.extractXHTML() # XHTML format

8.3.5 Further Performance improvements

8.3.5.1 Pixmap

As explained in the Page chapter:

If you do not need transparency set alpha = 0 when creating pixmaps. This will save 25% memory (if RGB, the most
common case) and possibly 5% execution time (depending on the GUI software).

8.3.5.2 TextPage

If you do not need images extracted alongside the text of a page, you can set the following option:

>>> flags = fitz.TEXT_PRESERVE_LIGATURES | fitz.TEXT_PRESERVE_WHITESPACE
>>> tp = dl.getTextPage(flags)

This will save ca. 25% overall execution time for the HTML, XHTML and JSON text extractions and hugely reduce
the amount of storage (both, memory and disk space) if the document is graphics oriented.

If you however do need images, use a value of 7 for flags:

>>> flags = fitz.TEXT_PRESERVE_LIGATURES | fitz.TEXT_PRESERVE_WHITESPACE | fitz.TEXT_
→˓PRESERVE_IMAGES

210 Chapter 8. Low Level Functions and Classes

CHAPTER

NINE

GLOSSARY

matrix_like
A Python sequence of 6 numbers.

rect_like
A Python sequence of 4 numbers.

irect_like
A Python sequence of 4 integers.

point_like
A Python sequence of 2 numbers.

quad_like
A Python sequence of 4 point_like items.

catalog
A central PDF dictionary – also called “root” – containing pointers to many other information.

contents
“A content stream is a PDF stream object whose data consists of a sequence of instructions describing
the graphical elements to be painted on a page.” (Adobe PDF Reference 1.7 p. 151). For an overview of the
mini-language used in these streams see chapter “Operator Summary” on page 985 of the Adobe PDF Reference
1.7. A PDF page can have none to many contents objects. If it has none, the page is empty (but still may show
annotations). If it has several, they will be interpreted in sequence as if their instructions had been present in
one such object (i.e. like in a concatenated string). It should be noted that there are more stream object types
which use the same syntax: e.g. appearance dictionaries associated with annotations and Form XObjects.

resources
A dictionary containing references to any resources (like images or fonts) required by a PDF page (re-
quired, inheritable, Adobe PDF Reference 1.7 p. 145) and certain other objects (Form XObjects). This dictionary
appears as a sub-dictionary in the object definition under the key /Resources. Being an inheritable object type,
there may exist “parent” resources for all pages or certain subsets of pages.

dictionary
A PDF object type, which is somewhat comparable to the same-named Python notion: “A dictionary object
is an associative table containing pairs of objects, known as the dictionary’s entries. The first element of each
entry is the key and the second element is the value. The key must be a name (. . .). The value can be any kind
of object, including another dictionary. A dictionary entry whose value is null (. . .) is equivalent to an absent
entry.” (Adobe PDF Reference 1.7 p. 59).

Dictionaries are the most important object type in PDF. Here is an example (describing a page):

<<
/Contents 40 0 R % value: an indirect object
/Type/Page % value: a name object

(continues on next page)

211

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

/MediaBox[0 0 595.32 841.92] % value: an array object
/Rotate 0 % value: a number object
/Parent 12 0 R % value: an indirect object
/Resources<< % value: a dictionary object

/ExtGState<</R7 26 0 R>>
/Font<<

/R8 27 0 R/R10 21 0 R/R12 24 0 R/R14 15 0 R
/R17 4 0 R/R20 30 0 R/R23 7 0 R /R27 20 0 R
>>

/ProcSet[/PDF/Text] % value: array of two name objects
>>

/Annots[55 0 R] % value: array, one entry (indirect object)
>>

/Contents, /Type, /MediaBox, etc. are keys, 40 0 R, /Page, [0 0 595.32 841.92], etc. are the respective values.
The strings << and >> are used to enclose object definitions.

This example also shows the syntax of nested dictionary values: /Resources has an object as its value, which
in turn is a dictionary with keys like /ExtGState (with the value <</R7 26 0 R>>, which is another dictionary),
etc.

page
A PDF page is a dictionary object which defines one page in a PDF, see Adobe PDF Reference 1.7 p. 145.

pagetree
“The pages of a document are accessed through a structure known as the page tree, which defines the ordering
of pages in the document. The tree structure allows PDF consumer applications, using only limited memory,
to quickly open a document containing thousands of pages. The tree contains nodes of two types: intermediate
nodes, called page tree nodes, and leaf nodes, called page objects.” (Adobe PDF Reference 1.7 p. 143).

While it is possible to list all page references in just one array, PDFs with many pages are often created using
balanced tree structures (“page trees”) for faster access to any single page. In relation to the total number of
pages, this can reduce the average page access time by page number from a linear to some logarithmic order of
magnitude.

For fast page access, MuPDF can use its own array in memory – independently from what may or may not be
present in the document file. This array is indexed by page number and therefore much faster than even the
access via a perfectly balanced page tree.

object
Similar to Python, PDF supports the notion object, which can come in eight basic types: boolean values, integer
and real numbers, strings, names, arrays, dictionaries, streams, and the null object (Adobe PDF Reference
1.7 p. 51). Objects can be made identifyable by assigning a label. This label is then called indirect object.
PyMuPDF supports retrieving definitions of indirect objects via their cross reference number via Document.
xrefObject().

stream
A PDF object type which is a sequence of bytes, similar to a string. “However, a PDF application can read
a stream incrementally, while a string must be read in its entirety. Furthermore, a stream can be of unlimited
length, whereas a string is subject to an implementation limit. For this reason, objects with potentially large
amounts of data, such as images and page descriptions, are represented as streams.” “A stream consists of a
dictionary followed by zero or more bytes bracketed between the keywords stream and endstream”:

nnn 0 obj
<<

dictionary definition
>>

(continues on next page)

212 Chapter 9. Glossary

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

stream
(zero or more bytes)
endstream
endobj

See Adobe PDF Reference 1.7 p. 60. PyMuPDF supports retrieving stream content via Document.
xrefStream(). Use Document.isStream() to determine whether an object is of stream type.

unitvector
A mathematical notion meaning a vector of norm (“length”) 1 – usually the Euclidean norm is implied. In
PyMuPDF, this term is restricted to Point objects, see Point.unit.

xref
Abbreviation for cross-reference number: this is an integer unique identification for objects in a PDF. There
exists a cross-reference table (which may physically consist of several separate segments) in each PDF, which
stores the relative position of each object for quick lookup. The cross-reference table is one entry longer than
the number of existing object: item zero is reserved and must not be used in any way. Many PyMuPDF classes
have an xref attribute (which is zero for non-PDFs), and one can find out the total number of objects in a PDF
via Document.xrefLength() - 1.

213

PyMuPDF Documentation, Release 1.16.10

214 Chapter 9. Glossary

CHAPTER

TEN

CONSTANTS AND ENUMERATIONS

Constants and enumerations of MuPDF as implemented by PyMuPDF. Each of the following variables is accessible
as fitz.variable.

10.1 Constants

Base14_Fonts
Predefined Python list of valid PDF Base 14 Fonts.

Return type list

csRGB
Predefined RGB colorspace fitz.Colorspace(fitz.CS_RGB).

Return type Colorspace

csGRAY
Predefined GRAY colorspace fitz.Colorspace(fitz.CS_GRAY).

Return type Colorspace

csCMYK
Predefined CMYK colorspace fitz.Colorspace(fitz.CS_CMYK).

Return type Colorspace

CS_RGB
1 – Type of Colorspace is RGBA

Return type int

CS_GRAY
2 – Type of Colorspace is GRAY

Return type int

CS_CMYK
3 – Type of Colorspace is CMYK

Return type int

VersionBind
‘x.xx.x’ – version of PyMuPDF (these bindings)

Return type string

VersionFitz
‘x.xxx’ – version of MuPDF

215

PyMuPDF Documentation, Release 1.16.10

Return type string

VersionDate
ISO timestamp YYYY-MM-DD HH:MM:SS when these bindings were built.

Return type string

Note: The docstring of fitz contains information of the above which can be retrieved like so: print(fitz.__doc__), and
should look like: PyMuPDF 1.10.0: Python bindings for the MuPDF 1.10 library, built on 2016-11-30 13:09:13.

version
(VersionBind, VersionFitz, timestamp) – combined version information where timestamp is the generation point
in time formatted as “YYYYMMDDhhmmss”.

Return type tuple

10.2 Document Permissions

Code Permitted Action
PDF_PERM_PRINT Print the document
PDF_PERM_MODIFY Modify the document’s contents
PDF_PERM_COPY Copy or otherwise extract text and graphics
PDF_PERM_ANNOTATE Add or modify text annotations and interactive form fields
PDF_PERM_FORM Fill in forms and sign the document
PDF_PERM_ACCESSIBILITY Obsolete, always permitted
PDF_PERM_ASSEMBLE Insert, rotate, or delete pages, bookmarks, thumbnail images
PDF_PERM_PRINT_HQ High quality printing

10.3 PDF encryption method codes

Code Meaning
PDF_ENCRYPT_KEEP do not change
PDF_ENCRYPT_NONE remove any encryption
PDF_ENCRYPT_RC4_40 RC4 40 bit
PDF_ENCRYPT_RC4_128 RC4 128 bit
PDF_ENCRYPT_AES_128 Advanced Encryption Standard 128 bit
PDF_ENCRYPT_AES_256 Advanced Encryption Standard 256 bit
PDF_ENCRYPT_UNKNOWN unknown

10.4 Font File Extensions

The table show file extensions you should use when extracting fonts from a PDF file.

216 Chapter 10. Constants and Enumerations

PyMuPDF Documentation, Release 1.16.10

Ext Description
ttf TrueType font
pfa Postscript for ASCII font (various subtypes)
cff Type1C font (compressed font equivalent to Type1)
cid character identifier font (postscript format)
otf OpenType font
n/a built-in font (PDF Base 14 Fonts or CJK: cannot be extracted)

10.5 Text Alignment

TEXT_ALIGN_LEFT
0 – align left.

TEXT_ALIGN_CENTER
1 – align center.

TEXT_ALIGN_RIGHT
2 – align right.

TEXT_ALIGN_JUSTIFY
3 – align justify.

10.6 Preserve Text Flags

Options controlling the amount of data a text device parses into a TextPage.

TEXT_PRESERVE_LIGATURES
1 – If set, ligatures are passed through to the application in their original form. Otherwise ligatures are expanded
into their constituent parts, e.g. the ligature ffi is expanded into three eparate characters f, f and i.

TEXT_PRESERVE_WHITESPACE
2 – If set, whitespace is passed through to the application in its original form. Otherwise any type of horizontal
whitespace (including horizontal tabs) will be replaced with space characters of variable width.

TEXT_PRESERVE_IMAGES
4 – If set, then images will be stored in the structured text structure.

TEXT_INHIBIT_SPACES
8 – If set, we will not try to add missing space characters where there are large gaps between characters.

10.7 Link Destination Kinds

Possible values of linkDest.kind (link destination kind). For details consult Adobe PDF Reference 1.7, chapter
8.2 on pp. 581.

LINK_NONE
0 – No destination. Indicates a dummy link.

Return type int

LINK_GOTO
1 – Points to a place in this document.

10.5. Text Alignment 217

PyMuPDF Documentation, Release 1.16.10

Return type int

LINK_URI
2 – Points to a URI – typically a resource specified with internet syntax.

Return type int

LINK_LAUNCH
3 – Launch (open) another file (of any “executable” type).

Return type int

LINK_GOTOR
5 – Points to a place in another PDF document.

Return type int

10.8 Link Destination Flags

Note: The rightmost byte of this integer is a bit field, so test the truth of these bits with the & operator.

LINK_FLAG_L_VALID
1 (bit 0) Top left x value is valid

Return type bool

LINK_FLAG_T_VALID
2 (bit 1) Top left y value is valid

Return type bool

LINK_FLAG_R_VALID
4 (bit 2) Bottom right x value is valid

Return type bool

LINK_FLAG_B_VALID
8 (bit 3) Bottom right y value is valid

Return type bool

LINK_FLAG_FIT_H
16 (bit 4) Horizontal fit

Return type bool

LINK_FLAG_FIT_V
32 (bit 5) Vertical fit

Return type bool

LINK_FLAG_R_IS_ZOOM
64 (bit 6) Bottom right x is a zoom figure

Return type bool

218 Chapter 10. Constants and Enumerations

PyMuPDF Documentation, Release 1.16.10

10.9 Annotation Related Constants

See chapter 8.4.5, pp. 615 of the Adobe PDF Reference 1.7 for more details.

Annotation Types:

PDF_ANNOT_TEXT 0
PDF_ANNOT_LINK 1
PDF_ANNOT_FREETEXT 2
PDF_ANNOT_LINE 3
PDF_ANNOT_SQUARE 4
PDF_ANNOT_CIRCLE 5
PDF_ANNOT_POLYGON 6
PDF_ANNOT_POLYLINE 7
PDF_ANNOT_HIGHLIGHT 8
PDF_ANNOT_UNDERLINE 9
PDF_ANNOT_SQUIGGLY 10
PDF_ANNOT_STRIKEOUT 11
PDF_ANNOT_REDACT 12
PDF_ANNOT_STAMP 13
PDF_ANNOT_CARET 14
PDF_ANNOT_INK 15
PDF_ANNOT_POPUP 16
PDF_ANNOT_FILEATTACHMENT 17
PDF_ANNOT_SOUND 18
PDF_ANNOT_MOVIE 19
PDF_ANNOT_WIDGET 20
PDF_ANNOT_SCREEN 21
PDF_ANNOT_PRINTERMARK 22
PDF_ANNOT_TRAPNET 23
PDF_ANNOT_WATERMARK 24
PDF_ANNOT_3D 25

Annotation Flag Bits:

PDF_ANNOT_IS_Invisible 1 << (1-1)
PDF_ANNOT_IS_Hidden 1 << (2-1)
PDF_ANNOT_IS_Print 1 << (3-1)
PDF_ANNOT_IS_NoZoom 1 << (4-1)
PDF_ANNOT_IS_NoRotate 1 << (5-1)
PDF_ANNOT_IS_NoView 1 << (6-1)
PDF_ANNOT_IS_ReadOnly 1 << (7-1)
PDF_ANNOT_IS_Locked 1 << (8-1)
PDF_ANNOT_IS_ToggleNoView 1 << (9-1)
PDF_ANNOT_IS_LockedContents 1 << (10-1)

Annotation Line Ending Styles:

PDF_ANNOT_LE_NONE 0
PDF_ANNOT_LE_SQUARE 1
PDF_ANNOT_LE_CIRCLE 2
PDF_ANNOT_LE_DIAMOND 3
PDF_ANNOT_LE_OPEN_ARROW 4
PDF_ANNOT_LE_CLOSED_ARROW 5
PDF_ANNOT_LE_BUTT 6
PDF_ANNOT_LE_R_OPEN_ARROW 7
PDF_ANNOT_LE_R_CLOSED_ARROW 8
PDF_ANNOT_LE_SLASH 9

10.9. Annotation Related Constants 219

PyMuPDF Documentation, Release 1.16.10

10.10 Widget Constants

Widget types (field_type):

PDF_WIDGET_TYPE_UNKNOWN 0
PDF_WIDGET_TYPE_BUTTON 1
PDF_WIDGET_TYPE_CHECKBOX 2
PDF_WIDGET_TYPE_COMBOBOX 3
PDF_WIDGET_TYPE_LISTBOX 4
PDF_WIDGET_TYPE_RADIOBUTTON 5
PDF_WIDGET_TYPE_SIGNATURE 6
PDF_WIDGET_TYPE_TEXT 7

Text Widget Subtypes (text_format):

PDF_WIDGET_TX_FORMAT_NONE 0
PDF_WIDGET_TX_FORMAT_NUMBER 1
PDF_WIDGET_TX_FORMAT_SPECIAL 2
PDF_WIDGET_TX_FORMAT_DATE 3
PDF_WIDGET_TX_FORMAT_TIME 4

10.10.1 Widget flags (field_flags)

Common to all field types:

PDF_FIELD_IS_READ_ONLY 1
PDF_FIELD_IS_REQUIRED 1 << 1
PDF_FIELD_IS_NO_EXPORT 1 << 2

Text widgets:

PDF_TX_FIELD_IS_MULTILINE 1 << 12
PDF_TX_FIELD_IS_PASSWORD 1 << 13
PDF_TX_FIELD_IS_FILE_SELECT 1 << 20
PDF_TX_FIELD_IS_DO_NOT_SPELL_CHECK 1 << 22
PDF_TX_FIELD_IS_DO_NOT_SCROLL 1 << 23
PDF_TX_FIELD_IS_COMB 1 << 24
PDF_TX_FIELD_IS_RICH_TEXT 1 << 25

Button widgets:

PDF_BTN_FIELD_IS_NO_TOGGLE_TO_OFF 1 << 14
PDF_BTN_FIELD_IS_RADIO 1 << 15
PDF_BTN_FIELD_IS_PUSHBUTTON 1 << 16
PDF_BTN_FIELD_IS_RADIOS_IN_UNISON 1 << 25

Choice widgets:

PDF_CH_FIELD_IS_COMBO 1 << 17
PDF_CH_FIELD_IS_EDIT 1 << 18
PDF_CH_FIELD_IS_SORT 1 << 19
PDF_CH_FIELD_IS_MULTI_SELECT 1 << 21
PDF_CH_FIELD_IS_DO_NOT_SPELL_CHECK 1 << 22
PDF_CH_FIELD_IS_COMMIT_ON_SEL_CHANGE 1 << 26

220 Chapter 10. Constants and Enumerations

PyMuPDF Documentation, Release 1.16.10

10.11 Stamp Annotation Icons

MuPDF has defined the following icons for rubber stamp annotations:

STAMP_Approved 0
STAMP_AsIs 1
STAMP_Confidential 2
STAMP_Departmental 3
STAMP_Experimental 4
STAMP_Expired 5
STAMP_Final 6
STAMP_ForComment 7
STAMP_ForPublicRelease 8
STAMP_NotApproved 9
STAMP_NotForPublicRelease 10
STAMP_Sold 11
STAMP_TopSecret 12
STAMP_Draft 13

10.11. Stamp Annotation Icons 221

PyMuPDF Documentation, Release 1.16.10

222 Chapter 10. Constants and Enumerations

CHAPTER

ELEVEN

COLOR DATABASE

Since the introduction of methods involving colors (like Page.drawCircle()), a requirement may be to have
access to predefined colors.

The fabulous GUI package wxPython93 has a database of over 540 predefined RGB colors, which are given more
or less memorizable names. Among them are not only standard names like “green” or “blue”, but also “turquoise”,
“skyblue”, and 100 (not only 50 . . .) shades of “gray”, etc.

We have taken the liberty to copy this database (a list of tuples) modified into PyMuPDF and make its colors available
as PDF compatible float triples: for wxPython’s (“WHITE”, 255, 255, 255) we return (1, 1, 1), which can be directly
used in color and fill parameters. We also accept any mixed case of “wHiTe” to find a color.

11.1 Function getColor()

As the color database may not be needed very often, one additional import statement seems acceptable to get access
to it:

>>> # "getColor" is the only method you really need
>>> from fitz.utils import getColor
>>> getColor("aliceblue")
(0.9411764705882353, 0.9725490196078431, 1.0)
>>> #
>>> # to get a list of all existing names
>>> from fitz.utils import getColorList
>>> cl = getColorList()
>>> cl
['ALICEBLUE', 'ANTIQUEWHITE', 'ANTIQUEWHITE1', 'ANTIQUEWHITE2', 'ANTIQUEWHITE3',
'ANTIQUEWHITE4', 'AQUAMARINE', 'AQUAMARINE1'] ...
>>> #
>>> # to see the full integer color coding
>>> from fitz.utils import getColorInfoList
>>> il = getColorInfoList()
>>> il
[('ALICEBLUE', 240, 248, 255), ('ANTIQUEWHITE', 250, 235, 215),
('ANTIQUEWHITE1', 255, 239, 219), ('ANTIQUEWHITE2', 238, 223, 204),
('ANTIQUEWHITE3', 205, 192, 176), ('ANTIQUEWHITE4', 139, 131, 120),
('AQUAMARINE', 127, 255, 212), ('AQUAMARINE1', 127, 255, 212)] ...

93 https://wxpython.org/

223

https://wxpython.org/

PyMuPDF Documentation, Release 1.16.10

11.2 Printing the Color Database

If you want to actually see how the many available colors look like, use scripts colordbRGB.py94 or colordbHSV.py95

in the examples directory. They create PDFs (already existing in the same directory) with all these colors. Their only
difference is sorting order: one takes the RGB values, the other one the Hue-Saturation-Values as sort criteria. This is
a screen print of what these files look like.

94 https://github.com/pymupdf/PyMuPDF/blob/master/examples/colordbRGB.py
95 https://github.com/pymupdf/PyMuPDF/blob/master/examples/colordbHSV.py

224 Chapter 11. Color Database

https://github.com/pymupdf/PyMuPDF/blob/master/examples/colordbRGB.py
https://github.com/pymupdf/PyMuPDF/blob/master/examples/colordbHSV.py

CHAPTER

TWELVE

APPENDIX 1: PERFORMANCE

We have tried to get an impression on PyMuPDF’s performance. While we know this is very hard and a fair com-
parison is almost impossible, we feel that we at least should provide some quantitative information to justify our bold
comments on MuPDF’s top performance.

Following are three sections that deal with different aspects of performance:

• document parsing

• text extraction

• image rendering

In each section, the same fixed set of PDF files is being processed by a set of tools. The set of tools varies – for reasons
we will explain in the section.

Here is the list of files we are using. Each file name is accompanied by further information: size in bytes, num-
ber of pages, number of bookmarks (toc entries), number of links, text size as a percentage of file size, KB per
page, PDF version and remarks. text % and KB index are indicators for whether a file is text or graphics oriented.

E.g. Adobe.pdf and PyMuPDF.pdf are clearly text oriented, all other files contain many more images.

12.1 Part 1: Parsing

How fast is a PDF file read and its content parsed for further processing? The sheer parsing performance cannot
directly be compared, because batch utilities always execute a requested task completely, in one go, front to end.
pdfrw too, has a lazy strategy for parsing, meaning it only parses those parts of a document that are required in any
moment.

225

PyMuPDF Documentation, Release 1.16.10

To yet find an answer to the question, we therefore measure the time to copy a PDF file to an output file with each tool,
and doing nothing else.

These were the tools

All tools are either platform independent, or at least can run both, on Windows and Unix / Linux (pdftk).

Poppler is missing here, because it specifically is a Linux tool set, although we know there exist Windows ports
(created with considerable effort apparently). Technically, it is a C/C++ library, for which a Python binding exists – in
so far somewhat comparable to PyMuPDF. But Poppler in contrast is tightly coupled to Qt and Cairo. We may still
include it in future, when a more handy Windows installation is available. We have seen however some analysis96, that
hints at a much lower performance than MuPDF. Our comparison of text extraction speeds also show a much lower
performance of Poppler’s PDF code base Xpdf.

Image rendering of MuPDF also is about three times faster than the one of Xpdf when comparing the command line
tools mudraw of MuPDF and pdftopng of Xpdf – see part 3 of this chapter.

Tool Description
PyMuPDF tool of this manual, appearing as “fitz” in reports
pdfrw a pure Python tool, is being used by rst2pdf, has interface to ReportLab
PyPDF2 a pure Python tool with a very complete function set
pdftk a command line utility with numerous functions

This is how each of the tools was used:

PyMuPDF:

doc = fitz.open("input.pdf")
doc.save("output.pdf")

pdfrw:

doc = PdfReader("input.pdf")
writer = PdfWriter()
writer.trailer = doc
writer.write("output.pdf")

PyPDF2:

pdfmerge = PyPDF2.PdfFileMerger()
pdfmerge.append("input.pdf")
pdfmerge.write("output.pdf")
pdfmerge.close()

pdftk:

pdftk input.pdf output output.pdf

Observations

These are our run time findings (in seconds, please note the European number convention: meaning of decimal point
and comma is reversed):

96 http://hzqtc.github.io/2012/04/poppler-vs-mupdf.html

226 Chapter 12. Appendix 1: Performance

http://hzqtc.github.io/2012/04/poppler-vs-mupdf.html

PyMuPDF Documentation, Release 1.16.10

If we leave out the Adobe manual, this table looks like

12.1. Part 1: Parsing 227

PyMuPDF Documentation, Release 1.16.10

PyMuPDF is by far the fastest: on average 4.5 times faster than the second best (the pure Python tool pdfrw, chapeau
pdfrw!), and almost 20 times faster than the command line tool pdftk.

Where PyMuPDF only requires less than 13 seconds to process all files, pdftk affords itself almost 4 minutes.

By far the slowest tool is PyPDF2 – it is more than 66 times slower than PyMuPDF and 15 times slower than pdfrw!
The main reason for PyPDF2’s bad look comes from the Adobe manual. It obviously is slowed down by the linear file
structure and the immense amount of bookmarks of this file. If we take out this special case, then PyPDF2 is only 21.5
times slower than PyMuPDF, 4.5 times slower than pdfrw and 1.2 times slower than pdftk.

If we look at the output PDFs, there is one surprise:

Each tool created a PDF of similar size as the original. Apart from the Adobe case, PyMuPDF always created the
smallest output.

Adobe’s manual is an exception: The pure Python tools pdfrw and PyPDF2 reduced its size by more than 20% (and
yielded a document which is no longer linearized)!

PyMuPDF and pdftk in contrast drastically increased the size by 40% to about 50 MB (also no longer linearized).

So far, we have no explanation of what is happening here.

12.2 Part 2: Text Extraction

We also have compared text extraction speed with other tools.

228 Chapter 12. Appendix 1: Performance

PyMuPDF Documentation, Release 1.16.10

The following table shows a run time comparison. PyMuPDF’s methods appear as “fitz (TEXT)” and “fitz (JSON)”
respectively. The tool pdftotext.exe of the Xpdf97 toolset appears as “xpdf”.

• extractText(): basic text extraction without layout re-arrangement (using GetText(. . . , output = “text”))

• pdftotext: a command line tool of the Xpdf toolset (which also is the basis of Poppler’s library98)

• extractJSON(): text extraction with layout information (using GetText(. . . , output = “json”))

• pdfminer: a pure Python PDF tool specialized on text extraction tasks

All tools have been used with their most basic, fanciless functionality – no layout re-arrangements, etc.

For demonstration purposes, we have included a version of GetText(doc, output = “json”), that also re-arranges the
output according to occurrence on the page.

Here are the results using the same test files as above (again: decimal point and comma reversed):

Again, (Py-) MuPDF is the fastest around. It is 2.3 to 2.6 times faster than xpdf.

pdfminer, as a pure Python solution, of course is comparatively slow: MuPDF is 50 to 60 times faster and xpdf is 23
times faster. These observations in order of magnitude coincide with the statements on this web site99.

97 http://www.foolabs.com/xpdf/
98 http://poppler.freedesktop.org/
99 http://www.unixuser.org/~euske/python/pdfminer/

12.2. Part 2: Text Extraction 229

http://www.foolabs.com/xpdf/
http://poppler.freedesktop.org/
http://www.unixuser.org/~euske/python/pdfminer/

PyMuPDF Documentation, Release 1.16.10

12.3 Part 3: Image Rendering

We have tested rendering speed of MuPDF against the pdftopng.exe, a command lind tool of the Xpdf toolset (the
PDF code basis of Poppler).

MuPDF invocation using a resolution of 150 pixels (Xpdf default):

mutool draw -o t%d.png -r 150 file.pdf

PyMuPDF invocation:

zoom = 150.0 / 72.0
mat = fitz.Matrix(zoom, zoom)
def ProcessFile(datei):

print "processing:", datei
doc=fitz.open(datei)
for p in fitz.Pages(doc):

pix = p.getPixmap(matrix=mat, alpha = False)
pix.writePNG("t-%s.png" % p.number)
pix = None

doc.close()
return

Xpdf invocation:

pdftopng.exe file.pdf ./

The resulting runtimes can be found here (again: meaning of decimal point and comma reversed):

230 Chapter 12. Appendix 1: Performance

PyMuPDF Documentation, Release 1.16.10

• MuPDF and PyMuPDF are both about 3 times faster than Xpdf.

• The 2% speed difference between MuPDF (a utility written in C) and PyMuPDF is the Python overhead.

12.3. Part 3: Image Rendering 231

PyMuPDF Documentation, Release 1.16.10

232 Chapter 12. Appendix 1: Performance

CHAPTER

THIRTEEN

APPENDIX 2: DETAILS ON TEXT EXTRACTION

This chapter provides background on the text extraction methods of PyMuPDF.

Information of interest are

• what do they provide?

• what do they imply (processing time / data sizes)?

13.1 General structure of a TextPage

TextPage is one of PyMuPDF’s classes. It is normally created behind the curtain, when Page text extraction methods
are used, but it is also available directly. In any case, an intermediate class, DisplayList must be created first (display
lists contain interpreted pages, they also provide the input for Pixmap creation). Information contained in a TextPage
has the following hierarchy. Other than its name suggests, images may optionally also be part of a text page:

<page>
<text block>

<line>

<char>
<image block>

A text page consists of blocks (= roughly paragraphs).

A block consists of either lines and their characters, or an image.

A line consists of spans.

A span consists of adjacent characters with identical font properties: name, size, flags and color.

13.2 Plain Text

Function TextPage.extractText() (or Page.getText(“text”)) extracts a page’s plain text in original order as
specified by the creator of the document (which may not equal a natural reading order).

An example output:

>>> print(page.getText("text"))
Some text on first page.

233

PyMuPDF Documentation, Release 1.16.10

13.3 BLOCKS

Function TextPage.extractBLOCKS() (or Page.getText(“blocks”)) extracts a page’s text blocks as a list of
items like:

(x0, y0, x1, y1, "lines in block", block_type, block_no)

Where the first 4 items are the float coordinates of the block’s bbox. The lines within each block are concatenated by
a new-line character.

This is a high-speed method with enough information to re-arrange the page’s text in natural reading order where
required.

Example output:

>>> print(page.getText("blocks"))
[(50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375,
'Some text on first page.', 0, 0)]

13.4 WORDS

Function TextPage.extractWORDS() (or Page.getText(“words”)) extracts a page’s text words as a list of items
like:

(x0, y0, x1, y1, "word", block_no, line_no, word_no)

Where the first 4 items are the float coordinates of the words’s bbox. The last three integers provide some more
information on the word’s whereabouts.

This is a high-speed method with enough information to extract text contained in a given rectangle.

Example output:

>>> for word in page.getText("words"):
print(word)

(50.0, 88.17500305175781, 78.73200225830078, 103.28900146484375,
'Some', 0, 0, 0)
(81.79000091552734, 88.17500305175781, 99.5219955444336, 103.28900146484375,
'text', 0, 0, 1)
(102.57999420166016, 88.17500305175781, 114.8119888305664, 103.28900146484375,
'on', 0, 0, 2)
(117.86998748779297, 88.17500305175781, 135.5909881591797, 103.28900146484375,
'first', 0, 0, 3)
(138.64898681640625, 88.17500305175781, 166.1709747314453, 103.28900146484375,
'page.', 0, 0, 4)

13.5 HTML

TextPage.extractHTML() (or Page.getText(“html”) output fully reflects the structure of the page’s TextPage –
much like DICT / JSON below. This includes images, font information and text positions. If wrapped in HTML header
and trailer code, it can readily be displayed by an internate browser. Our above example:

234 Chapter 13. Appendix 2: Details on Text Extraction

PyMuPDF Documentation, Release 1.16.10

>>> for line in page.getText("html").splitlines():
print(line)

<div id="page0" style="position:relative;width:300pt;height:350pt;
background-color:white">
<p style="position:absolute;white-space:pre;margin:0;padding:0;top:88pt;
left:50pt"><span style="font-family:Helvetica,sans-serif;
font-size:11pt">Some text on first page.</p>
</div>

13.6 Controlling Quality of HTML Output

While HTML output has improved a lot in MuPDF v1.12.0, it is not yet bug-free: we have found problems in the areas
font support and image positioning.

• HTML text contains references to the fonts used of the original document. If these are not known to the browser
(a fat chance!), it will replace them with his assumptions, which probably will let the result look awkward. This
issue varies greatly by browser – on my Windows machine, MS Edge worked just fine, whereas Firefox looked
horrible.

• For PDFs with a complex structure, images may not be positioned and / or sized correctly. This seems to be the
case for rotated pages and pages, where the various possible page bbox variants do not coincide (e.g. MediaBox
!= CropBox). We do not know yet, how to address this – we filed a bug at MuPDF’s site.

To address the font issue, you can use a simple utility script to scan through the HTML file and replace font references.
Here is a little example that replaces all fonts with one of the PDF Base 14 Fonts: serifed fonts will become “Times”,
non-serifed “Helvetica” and monospaced will become “Courier”. Their respective variations for “bold”, “italic”, etc.
are hopefully done correctly by your browser:

import sys
filename = sys.argv[1]
otext = open(filename).read() # original html text string
pos1 = 0 # search start poition
font_serif = "font-family:Times" # enter ...
font_sans = "font-family:Helvetica" # ... your choices ...
font_mono = "font-family:Courier" # ... here
found_one = False # true if search successfull

while True:
pos0 = otext.find("font-family:", pos1) # start of a font spec
if pos0 < 0: # none found - we are done

break
pos1 = otext.find(";", pos0) # end of font spec
test = otext[pos0 : pos1] # complete font spec string
testn = "" # the new font spec string
if test.endswith(",serif"): # font with serifs?

testn = font_serif # use Times instead
elif test.endswith(",sans-serif"): # sans serifs font?

testn = font_sans # use Helvetica
elif test.endswith(",monospace"): # monospaced font?

testn = font_mono # becomes Courier

if testn != "": # any of the above found?
otext = otext.replace(test, testn) # change the source
found_one = True

(continues on next page)

13.6. Controlling Quality of HTML Output 235

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

pos1 = 0 # start over

if found_one:
ofile = open(filename + ".html", "w")
ofile.write(otext)
ofile.close()

else:
print("Warning: could not find any font specs!")

13.7 DICT (or JSON)

TextPage.extractDICT() (or Page.getText(“dict”)) output fully reflects the structure of a TextPage and pro-
vides image content and position details (bbox – boundary boxes in pixel units) for every block and line. This infor-
mation can be used to present text in another reading order if required (e.g. from top-left to bottom-right). Images are
stored as bytes (bytearray in Python 2) for DICT output and base64 encoded strings for JSON output.

For a visuallization of the dictionary structure have a look at Dictionary Structure of extractDICT() and extractRAW-
DICT().

Here is how this looks like:

{
"width": 300.0,
"height": 350.0,
"blocks": [{

"type": 0,
"bbox": [50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375],
"lines": [{

"wmode": 0,
"dir": [1.0, 0.0],
"bbox": [50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375],
"spans": [{

"size": 11.0,
"flags": 0,
"font": "Helvetica",
"color": 0,
"text": "Some text on first page.",
"bbox": [50.0, 88.17500305175781, 166.1709747314453, 103.

→˓28900146484375]
}]

}]
}]

}

13.8 RAWDICT

TextPage.extractRAWDICT() (or Page.getText(“rawdict”)) is an information superset of DICT and takes
the detail level one step deeper. It looks exactly like the above, except that the “text” items (string) are replaced by
“chars” items (list). Each “chars” entry is a character dict. For example, here is what you would see in place of item
“text”: “Text in black color.” above:

236 Chapter 13. Appendix 2: Details on Text Extraction

PyMuPDF Documentation, Release 1.16.10

"chars": [{
"origin": [50.0, 100.0],
"bbox": [50.0, 88.17500305175781, 57.336997985839844, 103.28900146484375],
"c": "S"

}, {
"origin": [57.33700180053711, 100.0],
"bbox": [57.33700180053711, 88.17500305175781, 63.4530029296875, 103.

→˓28900146484375],
"c": "o"

}, {
"origin": [63.4530029296875, 100.0],
"bbox": [63.4530029296875, 88.17500305175781, 72.61600494384766, 103.

→˓28900146484375],
"c": "m"

}, {
"origin": [72.61600494384766, 100.0],
"bbox": [72.61600494384766, 88.17500305175781, 78.73200225830078, 103.

→˓28900146484375],
"c": "e"

}, {
"origin": [78.73200225830078, 100.0],
"bbox": [78.73200225830078, 88.17500305175781, 81.79000091552734, 103.

→˓28900146484375],
"c": " "

< ... deleted ... >
}, {

"origin": [163.11297607421875, 100.0],
"bbox": [163.11297607421875, 88.17500305175781, 166.1709747314453, 103.

→˓28900146484375],
"c": "."

}],

13.9 XML

The TextPage.extractXML() (or Page.getText(“xml”)) version extracts text (no images) with the detail level of
RAWDICT:

>>> for line in page.getText("xml").splitlines():
print(line)

<page id="page0" width="300" height="350">
<block bbox="50 88.175 166.17098 103.289">
<line bbox="50 88.175 166.17098 103.289" wmode="0" dir="1 0">

<char quad="50 88.175 57.336999 88.175 50 103.289 57.336999 103.289" x="50"
y="100" color="#000000" c="S"/>
<char quad="57.337 88.175 63.453004 88.175 57.337 103.289 63.453004 103.289" x="57.337
→˓"
y="100" color="#000000" c="o"/>
<char quad="63.453004 88.175 72.616008 88.175 63.453004 103.289 72.616008 103.289" x=
→˓"63.453004"
y="100" color="#000000" c="m"/>
<char quad="72.616008 88.175 78.732 88.175 72.616008 103.289 78.732 103.289" x="72.
→˓616008"
y="100" color="#000000" c="e"/>

(continues on next page)

13.9. XML 237

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

<char quad="78.732 88.175 81.79 88.175 78.732 103.289 81.79 103.289" x="78.732"
y="100" color="#000000" c=" "/>

... deleted ...

<char quad="163.11298 88.175 166.17098 88.175 163.11298 103.289 166.17098 103.289" x=
→˓"163.11298"
y="100" color="#000000" c="."/>

</line>
</block>
</page>

Note: We have successfully tested lxml100 to interpret this output.

13.10 XHTML

TextPage.extractXHTML() (or Page.getText(“xhtml”)) is a variation of TEXT but in HTML format, containing
the bare text and images (“semantic” output):

<div id="page0">
<p>Some text on first page.</p>
</div>

13.11 Text Extraction Flags Defaults

(New in version 1.16.2) Method Page.getText() supports a keyword parameter flags (int) to control the amount
and the quality of extracted data. The following table shows the defaults settings (flags parameter omitted or None)
for each extraction variant. A description of the respective bit settings can be found in Preserve Text Flags.

Indicator text html xhtml xml dict rawdict words blocks
preserve ligatures 1 1 1 1 1 1 1 1
preserve whitespace 1 1 1 1 1 1 1 1
preserve images n/a 1 1 n/a 1 1 n/a 0
inhibit spaces 0 0 0 0 0 0 0 0

• “json” is handled exactly like “dict” and is hence left out.

• An “n/a” specification means a value of 0 and setting this bit never has any effect on the output (but an adverse
effect on performance).

• If you are not interested in images when using an output variant which includes them by default, then by all
means set the respective bit off: You will experience a better performance and much lower space requirements.

To show the effect of TEXT_INHIBIT_SPACES have a look at this example:

100 https://pypi.org/project/lxml/

238 Chapter 13. Appendix 2: Details on Text Extraction

https://pypi.org/project/lxml/

PyMuPDF Documentation, Release 1.16.10

>>> print(page.getText("text"))
H a l l o !
Mo r e t e x t
i s f o l l o w i n g
i n E n g l i s h
. . . l e t ' s s e e
w h a t h a p p e n s .
>>> print(page.getText("text", flags=fitz.TEXT_INHIBIT_SPACES))
Hallo!
More text
is following
in English
... let's see
what happens.
>>>

13.12 Performance

The text extraction methods differ significantly: in terms of information they supply, and in terms of resource require-
ments and runtimes. Generally, more information of course means that more processing is required and a higher data
volume is generated.

Note: Especially images have a very significant impact. Make sure to exclude them (via the flags parameter)
whenever you do not need them. To process the below mentioned 2‘700 total pages with default flags settings required
160 seconds across all extraction methods. When all images where excluded, less than 50% of that time (77 seconds)
were needed.

To begin with, all methods are very fast in relation to other products out there in the market. In terms of processing
speed, we are not aware of a faster (free) tool. Even the most detailed method, RAWDICT, processes all 1‘310 pages
of the Adobe PDF Reference 1.7 in less than 5 seconds (simple text needs less than 2 seconds here).

The following table shows average relative speeds (“RSpeed”, baseline 1.00 is TEXT), taken across ca. 1400 text-
heavy and 1300 image-heavy pages.

Method RSpeed Comments no images
TEXT 1.00 no images, plain text, line breaks 1.00
BLOCKS 1.00 image bboxes (only), block level text with bboxes, line breaks 1.00
WORDS 1.02 no images, word level text with bboxes 1.02
XML 2.72 no images, char level text, layout and font details 2.72
XHTML 3.32 base64 images, span level text, no layout info 1.00
HTML 3.54 base64 images, span level text, layout and font details 1.01
DICT 3.93 binary images, span level text, layout and font details 1.04
RAWDICT 4.50 binary images, char level text, layout and font details 1.68

As mentioned: when excluding all images (last column), the relative speeds are changing drastically: except RAW-
DICT and XML, the other methods are almost equally fast, and RAWDICT requires 40% less execution time than the
now slowest XML.

Look at chapter Appendix 1 for more performance information.

13.12. Performance 239

PyMuPDF Documentation, Release 1.16.10

240 Chapter 13. Appendix 2: Details on Text Extraction

CHAPTER

FOURTEEN

APPENDIX 3: CONSIDERATIONS ON EMBEDDED FILES

This chapter provides some background on embedded files support in PyMuPDF.

14.1 General

Starting with version 1.4, PDF supports embedding arbitrary files as part (“Embedded File Streams”) of a PDF docu-
ment file (see chapter 3.10.3, pp. 184 of the Adobe PDF Reference 1.7).

In many aspects, this is comparable to concepts also found in ZIP files or the OLE technique in MS Windows. PDF
embedded files do, however, not support directory structures as does the ZIP format. An embedded file can in turn
contain embedded files itself.

Advantages of this concept are that embedded files are under the PDF umbrella, benefitting from its permissions /
password protection and integrity aspects: all data, which a PDF may reference or even may be dependent on, can be
bundled into it and so form a single, consistent unit of information.

In addition to embedded files, PDF 1.7 adds collections to its support range. This is an advanced way of storing and
presenting meta information (i.e. arbitrary and extensible properties) of embedded files.

14.2 MuPDF Support

After adding initial support for collections (portfolios) and /EmbeddedFiles in MuPDF version 1.11, this support was
dropped again in version 1.15.

As a consequence, the cli utility mutool no longer offers access to embedded files.

PyMuPDF – having implemented an /EmbeddedFiles API in response in its version 1.11.0 – was therefore forced to
change gears starting with its version 1.16.0 (we never published a MuPDF v1.15.x compatible PyMuPDF).

We are now maintaining our own code basis supporting embedded files. This code makes use of basic MuPDF
dictionary and array functions only.

14.3 PyMuPDF Support

We continue to support the full old API with respect to embedded files – with only minor, cosmetic changes.

There even also is a new function, which delivers a list of all names under which embedded data are resgistered in a
PDF, Document.embeddedFileNames().

241

PyMuPDF Documentation, Release 1.16.10

242 Chapter 14. Appendix 3: Considerations on Embedded Files

CHAPTER

FIFTEEN

APPENDIX 4: ASSORTED TECHNICAL INFORMATION

15.1 PDF Base 14 Fonts

The following 14 builtin font names must be supported by every PDF viewer application. They are available as a
dictionary, which maps their full names amd their abbreviations in lower case to the full font basename. Whereever a
fontname must be provided in PyMuPDF, any key or value from the dictionary may be used:

In [2]: fitz.Base14_fontdict
Out[2]:
{'courier': 'Courier',
'courier-oblique': 'Courier-Oblique',
'courier-bold': 'Courier-Bold',
'courier-boldoblique': 'Courier-BoldOblique',
'helvetica': 'Helvetica',
'helvetica-oblique': 'Helvetica-Oblique',
'helvetica-bold': 'Helvetica-Bold',
'helvetica-boldoblique': 'Helvetica-BoldOblique',
'times-roman': 'Times-Roman',
'times-italic': 'Times-Italic',
'times-bold': 'Times-Bold',
'times-bolditalic': 'Times-BoldItalic',
'symbol': 'Symbol',
'zapfdingbats': 'ZapfDingbats',
'helv': 'Helvetica',
'heit': 'Helvetica-Oblique',
'hebo': 'Helvetica-Bold',
'hebi': 'Helvetica-BoldOblique',
'cour': 'Courier',
'coit': 'Courier-Oblique',
'cobo': 'Courier-Bold',
'cobi': 'Courier-BoldOblique',
'tiro': 'Times-Roman',
'tibo': 'Times-Bold',
'tiit': 'Times-Italic',
'tibi': 'Times-BoldItalic',
'symb': 'Symbol',
'zadb': 'ZapfDingbats'}

In contrast to their obligation, not all PDF viewers support these fonts correctly and completely – this is especially
true for Symbol and ZapfDingbats. Also, the glyph (visual) images will be specific to every reader.

To see how these fonts can be used – including the CJK built-in fonts – look at the table in Page.insertFont().

243

PyMuPDF Documentation, Release 1.16.10

15.2 Adobe PDF Reference 1.7

This PDF Reference manual published by Adobe is frequently quoted throughout this documentation. It can be viewed
and downloaded from here101.

15.3 Using Python Sequences as Arguments in PyMuPDF

When PyMuPDF objects and methods require a Python list of numerical values, other Python sequence types are also
allowed. Python classes are said to implement the sequence protocol, if they have a __getitem__() method.

This basically means, you can interchangeably use Python list or tuple or even array.array, numpy.array and bytearray
types in these cases.

For example, specifying a sequence “s” in any of the following ways

• s = [1, 2]

• s = (1, 2)

• s = array.array(“i”, (1, 2))

• s = numpy.array((1, 2))

• s = bytearray((1, 2))

will make it usable in the following example expressions:

• fitz.Point(s)

• fitz.Point(x, y) + s

• doc.select(s)

Similarly with all geometry objects Rect, IRect, Matrix and Point.

Because all PyMuPDF geometry classes themselves are special cases of sequences, they (with the exception of Quad
– see below) can be freely used where numerical sequences can be used, e.g. as arguments for functions like list(),
tuple(), array.array() or numpy.array(). Look at the following snippet to see this work.

>>> import fitz, array, numpy as np
>>> m = fitz.Matrix(1, 2, 3, 4, 5, 6)
>>>
>>> list(m)
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
>>>
>>> tuple(m)
(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)
>>>
>>> array.array("f", m)
array('f', [1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
>>>
>>> np.array(m)
array([1., 2., 3., 4., 5., 6.])

101 http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf

244 Chapter 15. Appendix 4: Assorted Technical Information

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf

PyMuPDF Documentation, Release 1.16.10

Note: Quad is a Python sequence object as well and has a length of 4. Its items however are point_like – not
numbers. Therefore, the above remarks do not apply.

15.4 Ensuring Consistency of Important Objects in PyMuPDF

PyMuPDF is a Python binding for the C library MuPDF. While a lot of effort has been invested by MuPDF’s creators
to approximate some sort of an object-oriented behavior, they certainly could not overcome basic shortcomings of the
C language in that respect.

Python on the other hand implements the OO-model in a very clean way. The interface code between PyMuPDF and
MuPDF consists of two basic files: fitz.py and fitz_wrap.c. They are created by the excellent SWIG tool for each new
version.

When you use one of PyMuPDF’s objects or methods, this will result in excution of some code in fitz.py, which in turn
will call some C code compiled with fitz_wrap.c.

Because SWIG goes a long way to keep the Python and the C level in sync, everything works fine, if a certain set of
rules is being strictly followed. For example: never access a Page object, after you have closed (or deleted or set to
None) the owning Document. Or, less obvious: never access a page or any of its children (links or annotations) after
you have executed one of the document methods select(), deletePage(), insertPage() . . . and more.

But just no longer accessing invalidated objects is actually not enough: They should rather be actively deleted entirely,
to also free C-level resources (meaning allocated memory).

The reason for these rules lies in the fact that there is a hierachical 2-level one-to-many relationship between a docu-
ment and its pages and also between a page and its links / annotations. To maintain a consistent situation, any of the
above actions must lead to a complete reset – in Python and, synchronously, in C.

SWIG cannot know about this and consequently does not do it.

The required logic has therefore been built into PyMuPDF itself in the following way.

1. If a page “loses” its owning document or is being deleted itself, all of its currently existing annotations and links
will be made unusable in Python, and their C-level counterparts will be deleted and deallocated.

2. If a document is closed (or deleted or set to None) or if its structure has changed, then similarly all currently
existing pages and their children will be made unusable, and corresponding C-level deletions will take place.
“Structure changes” include methods like select(), delePage(), insertPage(), insertPDF() and so on: all of these
will result in a cascade of object deletions.

The programmer will normally not realize any of this. If he, however, tries to access invalidated objects, exceptions
will be raised.

Invalidated objects cannot be directly deleted as with Python statements like del page or page = None, etc. Instead,
their __del__ method must be invoked.

All pages, links and annotations have the property parent, which points to the owning object. This is the property that
can be checked on the application level: if obj.parent == None then the object’s parent is gone, and any reference to
its properties or methods will raise an exception informing about this “orphaned” state.

A sample session:

>>> page = doc[n]
>>> annot = page.firstAnnot
>>> annot.type # everything works fine

(continues on next page)

15.4. Ensuring Consistency of Important Objects in PyMuPDF 245

PyMuPDF Documentation, Release 1.16.10

(continued from previous page)

[5, 'Circle']
>>> page = None # this turns 'annot' into an orphan
>>> annot.type
<... omitted lines ...>
RuntimeError: orphaned object: parent is None
>>>
>>> # same happens, if you do this:
>>> annot = doc[n].firstAnnot # deletes the page again immediately!
>>> annot.type # so, 'annot' is 'born' orphaned
<... omitted lines ...>
RuntimeError: orphaned object: parent is None

This shows the cascading effect:

>>> doc = fitz.open("some.pdf")
>>> page = doc[n]
>>> annot = page.firstAnnot
>>> page.rect
fitz.Rect(0.0, 0.0, 595.0, 842.0)
>>> annot.type
[5, 'Circle']
>>> del doc # or doc = None or doc.close()
>>> page.rect
<... omitted lines ...>
RuntimeError: orphaned object: parent is None
>>> annot.type
<... omitted lines ...>
RuntimeError: orphaned object: parent is None

Note: Objects outside the above relationship are not included in this mechanism. If you e.g. created a table of
contents by toc = doc.getToC(), and later close or change the document, then this cannot and does not change variable
toc in any way. It is your responsibility to refresh such variables as required.

15.5 Design of Method Page.showPDFpage()

15.5.1 Purpose and Capabilities

The method displays an image of a (“source”) page of another PDF document within a specified rectangle of the
current (“containing”, “target”) page.

• In contrast to Page.insertImage(), this display is vector-based and hence remains accurate across zoom-
ing levels.

• Just like Page.insertImage(), the size of the display is adjusted to the given rectangle.

The following variations of the display are currently supported:

• Bool parameter keep_proportion controls whether to maintain the aspect ratio (default) or not.

• Rectangle parameter clip restricts the visible part of the source page rectangle. Default is the full page.

• float rotation rotates the display by an arbitrary angle (degrees). If the angle is not an integer multiple of 90,
only 2 of the 4 corners may be positioned on the target border if also keep_proportion is true.

246 Chapter 15. Appendix 4: Assorted Technical Information

PyMuPDF Documentation, Release 1.16.10

• Bool parameter overlay controls whether to put the image on top (foreground, default) of current page content
or not (background).

Use cases include (but are not limited to) the following:

1. “Stamp” a series of pages of the current document with the same image, like a company logo or a watermark.

2. Combine arbitrary input pages into one output page to support “booklet” or double-sided printing (known as
“4-up”, “n-up”).

3. Split up (large) input pages into several arbitrary pieces. This is also called “posterization”, because you e.g.
can split an A4 page horizontally and vertically, print the 4 pieces enlarged to separate A4 pages, and end up
with an A2 version of your original page.

15.5.2 Technical Implementation

This is done using PDF “Form XObjects”, see section 4.9 on page 355 of Adobe PDF Reference 1.7. On execution
of a Page.showPDFpage(rect, src, pno, . . .), the following things happen:

1. The resources and contents objects of page pno in document src are copied over to the current document,
jointly creating a new Form XObject with the following properties. The PDF xref number of this object is
returned by the method.

a. /BBox equals /Mediabox of the source page

b. /Matrix equals the identity matrix [1 0 0 1 0 0]

c. /Resources equals that of the source page. This involves a “deep-copy” of hierarchically
nested other objects (including fonts, images, etc.). The complexity involved here is covered
by MuPDF’s grafting102 technique functions.

d. This is a stream object type, and its stream is an exact copy of the combined data of the source
page’s /Contents objects.

This step is only executed once per shown source page. Subsequent displays of the same page only
create pointers (done in next step) to this object.

2. A second Form XObject is then created which the target page uses to invoke the display. This object has the
following properties:

a. /BBox equals the /CropBox of the source page (or clip).

b. /Matrix represents the mapping of /BBox to the target rectangle.

c. /XObject references the previous XObject via the fixed name fullpage.

d. The stream of this object contains exactly one fixed statement: /fullpage Do.

3. The resources and contents objects of the target page are now modified as follows.

a. Add an entry to the /XObject dictionary of /Resources with the name fzFrm<n> (with n chosen such that
this entry is unique on the page).

b. Depending on overlay, prepend or append a new object to the page’s /Contents array, containing the
statement q /fzFrm<n> Do Q.

102 MuPDF supports “deep-copying” objects between PDF documents. To avoid duplicate data in the target, it uses so-called “graftmaps”, like
a form of scratchpad: for each object to be copied, its xref number is looked up in the graftmap. If found, copying is skipped. Otherwise, the
new xref is recorded and the copy takes place. PyMuPDF makes use of this technique in two places so far: Document.insertPDF() and
Page.showPDFpage(). This process is fast and very efficient, because it prevents multiple copies of typically large and frequently referenced
data, like images and fonts. However, you may still want to consider using garbage collection (option 4) in any of the following cases:

1. The target PDF is not new / empty: grafting does not check for resource types that already existed (e.g. images, fonts) in the target document
2. Using Page.showPDFpage() for more than one source document: each grafting occurs within one source PDF only, not across multiple.

15.5. Design of Method Page.showPDFpage() 247

PyMuPDF Documentation, Release 1.16.10

15.6 Redirecting Error and Warning Messages

Since MuPDF version 1.16 error and warning messages can be redirected via an official plugin.

PyMuPDF will put error messages to sys.stderr prefixed with the string “mupdf:”. Warnings are internally stored and
can be accessed via fitz.TOOLS.mupdf_warnings(). There also is a function to empty this store.

248 Chapter 15. Appendix 4: Assorted Technical Information

CHAPTER

SIXTEEN

CHANGE LOGS

16.1 Changes in Version 1.16.10

• Fixed issue #421 (“annot.setRect(rect) has no effect on text Annotation”)

• Fixed issue #417 (“Strange behavior for page.deleteAnnot on 1.16.9 compare to 1.13.20”)

• Fixed issue #415 (“Annot.setOpacity throws mupdf warnings”)

• Changed all “add annotation / widget” methods to store a unique name.

• Changed Annot.setInfo() to also accept direct parameters in addition to a dictionary.

• Changed Annot.info to now also show the annotation’s unique id (/NM key) if present.

• Added Page.annot_names() which returns a list of all annotation names (/NM keys).

• Added Page.load_annot() which loads an annotation given its unique id (/NM key).

• Added Document.reload_page() which provides a new copy of a page after finishing any pending up-
dates to it.

16.2 Changes in Version 1.16.9

• Fixed #412 (“Feature Request: Allow controlling whether TOC entries should be collapsed”)

• Fixed #411 (“Seg Fault with page.firstWidget”)

• Fixed #407 (“Annot.setOpacity trouble”)

• Changed methods Annot.setBorder(), Annot.setColors(), Link.setBorder(), and Link.
setColors() to also accept direct parameters, and not just cumbersome dictionaries.

16.3 Changes in Version 1.16.8

• Added several new methods to the Document class, which make dealing with PDF low-level structures
easier. I also decided to provide them as “normal” methods (as opposed to private ones starting with an
underscore “_”). These are Document.xrefObject(), Document.xrefStream(), Document.
xrefStreamRaw(), Document.PDFTrailer(), Document.PDFCatalog(), Document.
metadataXML(), Document.updateObject(), Document.updateStream().

• Added Tools.mupdf_disply_errors() which sets the display of mupdf errors on sys.stderr.

249

PyMuPDF Documentation, Release 1.16.10

• Added a commandline facility. This a major new feature: you can now invoke several utility functions via
“python -m fitz . . . ”. It should obsolete the need for many of the most trivial scripts. Please refer to Using fitz
as a Module.

16.4 Changes in Version 1.16.7

Minor changes to better synchronize the binary image streams of TextPage image blocks and Document.
extractImage() images.

• Fixed issue #394 (“PyMuPDF Segfaults when using TOOLS.mupdf_warnings()”).

• Changed redirection of MuPDF error messages: apart from writing them to Python sys.stderr, they are now
also stored with the MuPDF warnings.

• Changed Tools.mupdf_warnings() to automatically empty the store (if not deactivated via a parameter).

• Changed Page.getImageBbox() to return an infinite rectangle if the image could not be located on the
page – instead of raising an exception.

16.5 Changes in Version 1.16.6

• Fixed issue #390 (“Incomplete deletion of annotations”).

• Changed Page.searchFor() / Document.searchPageFor() to also support the flags parameter,
which controls the data included in a TextPage.

• Changed Document.getPageImageList(), Document.getPageFontList() and their Page
counterparts to support a new parameter full. If true, the returned items will contain the xref of the Form
XObject where the font or image is referenced.

16.6 Changes in Version 1.16.5

More performance improvements for text extraction.

• Fixed second part of issue #381 (see item in v1.16.4).

• Added Page.getTextPage(), so it is no longer required to create an intermediate display list for text
extractions. Page level wrappers for text extraction and text searching are now based on this, which should
improve performance by ca. 5%.

16.7 Changes in Version 1.16.4

• Fixed issue #381 (“TextPage.extractDICT . . . failed . . . after upgrading . . . to 1.16.3”)

• Added method Document.pages() which delivers a generator iterator over a page range.

• Added method Page.links() which delivers a generator iterator over the links of a page.

• Added method Page.annots() which delivers a generator iterator over the annotations of a page.

• Added method Page.widgets() which delivers a generator iterator over the form fields of a page.

• Changed Document.isFormPDF to now contain the number of widgets, and False if not a PDF or this
number is zero.

250 Chapter 16. Change Logs

PyMuPDF Documentation, Release 1.16.10

16.8 Changes in Version 1.16.3

Minor changes compared to version 1.16.2. The code of the “dict” and “rawdict” variants of Page.getText()
has been ported to C which has greatly improved their performance. This improvement is mostly noticeable with
text-oriented documents, where they now should execute almost two times faster.

• Fixed issue #369 (“mupdf: cmsCreateTransform failed”) by removing ICC colorspace support.

• Changed Page.getText() to accept additional keywords “blocks” and “words”. These will deliver the
results of Page.getTextBlocks() and Page.getTextWords(), respectively. So all text extraction
methods are now available via a uniform API. Correspondingly, there are now new methods TextPage.
extractBLOCKS() and TextPage.extractWords().

• Changed Page.getText() to default bit indicator TEXT_INHIBIT_SPACES to off. Insertion of additional
spaces is not suppressed by default.

16.9 Changes in Version 1.16.2

• Changed text extraction methods of Page to allow detail control of the amount of extracted data.

• Added planishLine() which maps a given line (defined as a pair of points) to the x-axis.

• Fixed an issue (w/o Github number) which brought down the interpreter when encountering certain non-UTF-8
encodable characters while using Page.getText() with te “dict” option.

• Fixed issue #362 (“Memory Leak with getText(‘rawDICT’)”).

16.10 Changes in Version 1.16.1

• Added property Quad.isConvex which checks whether a line is contained in the quad if it connects two
points of it.

• Changed Document.insertPDF() to now allow dropping or including links and annotations indepen-
dently during the copy. Fixes issue #352 (“Corrupt PDF data and . . . ”), which seemed to intermittently occur
when using the method for some problematic PDF files.

• Fixed a bug which, in matrix division using the syntax “m1/m2”, caused matrix “m1” to be replaced by the
result instead of delivering a new matrix.

• Fixed issue #354 (“SyntaxWarning with Python 3.8”). We now always use “==” for literals (instead of the “is”
Python keyword).

• Fixed issue #353 (“mupdf version check”), to no longer refuse the import when there are only patch level
deviations from MuPDF.

16.11 Changes in Version 1.16.0

This major new version of MuPDF comes with several nice new or changed features. Some of them imply program-
ming API changes, however. This is a synopsis of what has changed:

• PDF document encryption and decryption is now fully supported. This includes setting permissions, pass-
words (user and owner passwords) and the desired encryption method.

16.8. Changes in Version 1.16.3 251

PyMuPDF Documentation, Release 1.16.10

• In response to the new encryption features, PyMuPDF returns an integer (ie. a combination of bits) for document
permissions, and no longer a dictionary.

• Redirection of MuPDF errors and warnings is now natively supported. PyMuPDF redirects error messages from
MuPDF to sys.stderr and no longer buffers them. Warnings continue to be buffered and will not be displayed.
Functions exist to access and reset the warnings buffer.

• Annotations are now only supported for PDF.

• Annotations and widgets (form fields) are now separate object chains on a page (although widgets techni-
cally still are PDF annotations). This means, that you will never encounter widgets when using Page.
firstAnnot or Annot.next(). You must use Page.firstWidget and Widget.next() to access
form fields.

• As part of MuPDF’s changes regarding widgets, only the following four fonts are supported, when adding or
changing form fields: Courier, Helvetica, Times-Roman and ZapfDingBats.

List of change details:

• Added Document.can_save_incrementally() which checks conditions that are preventing use of
option incremental=True of Document.save().

• Added Page.firstWidget which points to the first field on a page.

• Added Page.getImageBbox() which returns the rectangle occupied by an image shown on the page.

• Added Annot.setName() which lets you change the (icon) name field.

• Added outputting the text color in Page.getText(): the “dict”, “rawdict” and “xml” options now also
show the color in sRGB format.

• Changed Document.permissions to now contain an integer of bool indicators – was a dictionary before.

• Changed Document.save(), Document.write(), which now fully support password-based decryption
and encryption of PDF files.

• Changed the names of all Python constants related to annotations and widgets. Please make sure to consult the
Constants and Enumerations chapter if your script is dealing with these two classes. This decision goes back
to the dropped support for non-PDF annotations. The old names (starting with “ANNOT_*” or “WIDGET_*”)
will be available as deprecated synonyms.

• Changed font support for widgets: only Cour (Courier), Helv (Helvetica, default), TiRo (Times-Roman) and
ZaDb (ZapfDingBats) are accepted when adding or changing form fields. Only the plain versions are possible
– not their italic or bold variations. Reading widgets, however will show its original font.

• Changed the name of the warnings buffer to Tools.mupdf_warnings() and the function to empty this
buffer is now called Tools.reset_mupdf_warnings().

• Changed Page.getPixmap(), Document.getPagePixmap(): a new bool argument annots can now
be used to suppress the rendering of annotations on the page.

• Changed Page.addFileAnnot() and Page.addTextAnnot() to enable setting an icon.

• Removed widget-related methods and attributes from the Annot object.

• Removed Document attributes openErrCode, openErrMsg, and Tools attributes / methods stderr, reset_stderr,
stdout, and reset_stdout.

• Removed thirdparty zlib dependency in PyMuPDF: there are now compression functions available in MuPDF.
Source installers of PyMuPDF may now omit this extra installation step.

252 Chapter 16. Change Logs

PyMuPDF Documentation, Release 1.16.10

16.12 No version published for MuPDF v1.15.0

16.13 Changes in Version 1.14.20 / 1.14.21

• Changed text marker annotations to support multiple rectangles / quadrilaterals. This fixes issue #341 (“Ques-
tion : How to addhighlight so that a string spread across more than a line is covered by one highlight?”) and
similar (#285).

• Fixed issue #331 (“Importing PyMuPDF changes warning filtering behaviour globally”).

16.14 Changes in Version 1.14.19

• Fixed issue #319 (“InsertText function error when use custom font”).

• Added new method Document.getSigFlags() which returns information on whether a PDF is signed.
Resolves issue #326 (“How to detect signature in a form pdf?”).

16.15 Changes in Version 1.14.17

• Added Document.fullcopyPage() to make full page copies within a PDF (not just copied references as
Document.copyPage() does).

• Changed Page.getPixmap(), Document.getPagePixmap() now use alpha=False as default.

• Changed text extraction: the span dictionary now (again) contains its rectangle under the bbox key.

• Changed Document.movePage() and Document.copyPage() to use direct functions instead of wrap-
ping Document.select() – similar to Document.deletePage() in v1.14.16.

16.16 Changes in Version 1.14.16

• Changed Document methods around PDF /EmbeddedFiles to no longer use MuPDF’s “portfolio” functions.
That support will be dropped in MuPDF v1.15 – therefore another solution was required.

• Changed Document.embeddedFileCount() to be a function (was an attribute).

• Added new method Document.embeddedFileNames() which returns a list of names of embedded files.

• Changed Document.deletePage() and Document.deletePageRange() to internally no longer
use Document.select(), but instead use functions to perform the deletion directly. As it has turned out,
the Document.select() method yields invalid outline trees (tables of content) for very complex PDFs and
sophisticated use of annotations.

16.17 Changes in Version 1.14.15

• Fixed issues #301 (“Line cap and Line join”), #300 (“How to draw a shape without outlines”) and #298
(“utils.updateRect exception”). These bugs pertain to drawing shapes with PyMuPDF. Drawing shapes without
any border is fully supported. Line cap styles and line line join style are now differentiated and support all
possible PDF values (0, 1, 2) instead of just being a bool. The previous parameter roundCap is deprecated in
favor of lineCap and lineJoin and will be deleted in the next release.

16.12. No version published for MuPDF v1.15.0 253

PyMuPDF Documentation, Release 1.16.10

• Fixed issue #290 (“Memory Leak with getText(‘rawDICT’)”). This bug caused memory not being (completely)
freed after invoking the “dict”, “rawdict” and “json” versions of Page.getText().

16.18 Changes in Version 1.14.14

• Added new low-level function ImageProperties() to determine a number of characteristics for an image.

• Added new low-level function Document.isStream(), which checks whether an object is of stream type.

• Changed low-level functions Document._getXrefString() and Document.
_getTrailerString() now by default return object definitions in a formatted form which makes
parsing easy.

16.19 Changes in Version 1.14.13

• Changed methods working with binary input: while ever supporting bytes and bytearray objects, they now also
accept io.BytesIO input, using their getvalue() method. This pertains to document creation, embedded files,
FileAttachment annotations, pixmap creation and others. Fixes issue #274 (“Segfault when using BytesIO as a
stream for insertImage”).

• Fixed issue #278 (“Is insertImage(keep_proportion=True) broken?”). Images are now correctly presented when
keeping aspect ratio.

16.20 Changes in Version 1.14.12

• Changed the draw methods of Page and Shape to support not only RGB, but also GRAY and CMYK col-
orspaces. This solves issue #270 (“Is there a way to use CMYK color to draw shapes?”). This change also
applies to text insertion methods of Shape, resp. Page.

• Fixed issue #269 (“AttributeError in Document.insertPage()”), which occurred when using Document.
insertPage() with text insertion.

16.21 Changes in Version 1.14.11

• Changed Page.showPDFpage() to always position the source rectangle centered in the target. This method
now also supports rotation by arbitrary angles. The argument reuse_xref has been deprecated: prevention of
duplicates is now handled internally.

• Changed Page.insertImage() to support rotated display of the image and keeping the aspect ratio. Only
rotations by multiples of 90 degrees are supported here.

• Fixed issue #265 (“TypeError: insertText() got an unexpected keyword argument ‘idx’”). This issue only oc-
curred when using Document.insertPage() with also inserting text.

16.22 Changes in Version 1.14.10

• Changed Page.showPDFpage() to support rotation of the source rectangle. Fixes #261 (“Cannot rotate
insterted pages”).

254 Chapter 16. Change Logs

PyMuPDF Documentation, Release 1.16.10

• Fixed a bug in Page.insertImage() which prevented insertion of multiple images provided as streams.

16.23 Changes in Version 1.14.9

• Added new low-level method Document._getTrailerString(), which returns the trailer object of a
PDF. This is much like Document._getXrefString() except that the PDF trailer has no / needs no
xref to identify it.

• Added new parameters for text insertion methods. You can now set stroke and fill colors of glyphs (text char-
acters) independently, as well as the thickness of the glyph border. A new parameter render_mode controls the
use of these colors, and whether the text should be visible at all.

• Fixed issue #258 (“Copying image streams to new PDF without size increase”): For JPX images embedded in
a PDF, Document.extractImage() will now return them in their original format. Previously, the MuPDF
base library was used, which returns them in PNG format (entailing a massive size increase).

• Fixed issue #259 (“Morphing text to fit inside rect”). Clarified use of getTextlength() and removed extra
line breaks for long words.

16.24 Changes in Version 1.14.8

• Added Pixmap.setRect() to change the pixel values in a rectangle. This is also an alternative to setting
the color of a complete pixmap (Pixmap.clearWith()).

• Fixed an image extraction issue with JBIG2 (monochrome) encoded PDF images. The issue occurred in Page.
getText() (parameters “dict” and “rawdict”) and in Document.extractImage() methods.

• Fixed an issue with not correctly clearing a non-alpha Pixmap (Pixmap.clearWith()).

• Fixed an issue with not correctly inverting colors of a non-alpha Pixmap (Pixmap.invertIRect()).

16.25 Changes in Version 1.14.7

• Added Pixmap.setPixel() to change one pixel value.

• Added documentation for image conversion in the Collection of Recipes.

• Added new function getTextlength() to determine the string length for a given font.

• Added Postscript image output (changed Pixmap.writeImage() and Pixmap.getImageData()).

• Changed Pixmap.writeImage() and Pixmap.getImageData() to ensure valid combinations of col-
orspace, alpha and output format.

• Changed Pixmap.writeImage(): the desired format is now inferred from the filename.

• Changed FreeText annotations can now have a transparent background - see Annot.update().

16.26 Changes in Version 1.14.5

• Changed: Shape methods now strictly use the transformation matrix of the Page – instead of “manually”
calculating locations.

• Added method Pixmap.pixel() which returns the pixel value (a list) for given pixel coordinates.

16.23. Changes in Version 1.14.9 255

PyMuPDF Documentation, Release 1.16.10

• Added method Pixmap.getImageData()which returns a bytes object representing the pixmap in a variety
of formats. Previously, this could be done for PNG outputs only (Pixmap.getPNGData()).

• Changed: output of methods Pixmap.writeImage() and (the new) Pixmap.getImageData() may
now also be PSD (Adobe Photoshop Document).

• Added method Shape.drawQuad() which draws a Quad. This actually is a shorthand for a Shape.
drawPolyline() with the edges of the quad.

• Changed method Shape.drawOval(): the argument can now be either a rectangle (rect_like) or a
quadrilateral (quad_like).

16.27 Changes in Version 1.14.4

• Fixes issue #239 “Annotation coordinate consistency”.

16.28 Changes in Version 1.14.3

This patch version contains minor bug fixes and CJK font output support.

• Added support for the four CJK fonts as PyMuPDF generated text output. This pertains to methods Page.
insertFont(), Shape.insertText(), Shape.insertTextbox(), and corresponding Page meth-
ods. The new fonts are available under “reserved” fontnames “china-t” (traditional Chinese), “china-s” (simpli-
fied Chinese), “japan” (Japanese), and “korea” (Korean).

• Added full support for the built-in fonts ‘Symbol’ and ‘Zapfdingbats’.

• Changed: The 14 standard fonts can now each be referenced by a 4-letter abbreviation.

16.29 Changes in Version 1.14.1

This patch version contains minor performance improvements.

• Added support for Document filenames given as pathlib object by using the Python str() function.

16.30 Changes in Version 1.14.0

To support MuPDF v1.14.0, massive changes were required in PyMuPDF – most of them purely technical, with little
visibility to developers. But there are also quite a lot of interesting new and improved features. Following are the
details:

• Added “ink” annotation.

• Added “rubber stamp” annotation.

• Added “squiggly” text marker annotation.

• Added new class Quad (quadrilateral or tetragon) – which represents a general four-sided shape in the plane.
The special subtype of rectangular, non-empty tetragons is used in text marker annotations and as returned
objects in text search methods.

• Added a new option “decrypt” to Document.save() and Document.write(). Now you can keep en-
cryption when saving a password protected PDF.

256 Chapter 16. Change Logs

PyMuPDF Documentation, Release 1.16.10

• Added suppression and redirection of unsolicited messages issued by the underlying C-library MuPDF. Consult
Redirecting Error and Warning Messages for details.

• Changed: Changes to annotations now always require Annot.update() to become effective.

• Changed free text annotations to support the full Latin character set and range of appearance options.

• Changed text searching, Page.searchFor(), to optionally return Quad instead Rect objects surrounding
each search hit.

• Changed plain text output: we now add a n to each line if it does not itself end with this character.

• Fixed issue 211 (“Something wrong in the doc”).

• Fixed issue 213 (“Rewritten outline is displayed only by mupdf-based applications”).

• Fixed issue 214 (“PDF decryption GONE!”).

• Fixed issue 215 (“Formatting of links added with pyMuPDF”).

• Fixed issue 217 (“extraction through json is failing for my pdf”).

Behind the curtain, we have changed the implementation of geometry objects: they now purely exist in Python and
no longer have “shadow” twins on the C-level (in MuPDF). This has improved processing speed in that area by more
than a factor of two.

Because of the same reason, most methods involving geometry parameters now also accept the corresponding Python
sequence. For example, in method “page.showPDFpage(rect, . . .)” parameter rect may now be any rect_like
sequence.

We also invested considerable effort to further extend and improve the Collection of Recipes chapter.

16.31 Changes in Version 1.13.19

This version contains some technical / performance improvements and bug fixes.

• Changed memory management: for Python 3 builds, Python memory management is exclusively used across
all C-level code (i.e. no more native malloc() in MuPDF code or PyMuPDF interface code). This leads to
improved memory usage profiles and also some runtime improvements: we have seen > 2% shorter runtimes for
text extractions and pixmap creations (on Windows machines only to date).

• Fixed an error occurring in Python 2.7, which crashed the interpreter when using TextPage.
extractRAWDICT() (= Page.getText(“rawdict”)).

• Fixed an error occurring in Python 2.7, when creating link destinations.

• Extended the Collection of Recipes chapter with more examples.

16.32 Changes in Version 1.13.18

• Added method TextPage.extractRAWDICT(), and a corresponding new string parameter “rawdict” to
method Page.getText(). It extracts text and images from a page in Python dict form like TextPage.
extractDICT(), but with the detail level of TextPage.extractXML(), which is position information
down to each single character.

16.31. Changes in Version 1.13.19 257

PyMuPDF Documentation, Release 1.16.10

16.33 Changes in Version 1.13.17

• Fixed an error that intermittently caused an exception in Page.showPDFpage(), when pages from many
different source PDFs were shown.

• Changed method Document.extractImage() to now return more meta information about the extracted
imgage. Also, its performance has been greatly improved. Several demo scripts have been changed to make use
of this method.

• Changed method Document._getXrefStream() to now return None if the object is no stream and no
longer raise an exception if otherwise.

• Added method Document._deleteObject() which deletes a PDF object identified by its xref. Only to
be used by the experienced PDF expert.

• Added a method PaperRect() which returns a Rect for a supplied paper format string. Example:
fitz.PaperRect(“letter”) = fitz.Rect(0.0, 0.0, 612.0, 792.0).

• Added a Collection of Recipes chapter to this document.

16.34 Changes in Version 1.13.16

• Added support for correctly setting transparency (opacity) for certain annotation types.

• Added a tool property (Tools.fitz_config) showing the configuration of this PyMuPDF version.

• Fixed issue #193 (‘insertText(overlay=False) gives “cannot resize a buffer with shared storage” error’) by avoid-
ing read-only buffers.

16.35 Changes in Version 1.13.15

• Fixed issue #189 (“cannot find builtin CJK font”), so we are supporting builtin CJK fonts now (CJK = China,
Japan, Korea). This should lead to correctly generated pixmaps for documents using these languages. This
change has consequences for our binary file size: it will now range between 8 and 10 MB, depending on the OS.

• Fixed issue #191 (“Jupyter notebook kernel dies after ca. 40 pages”), which occurred when modifying the
contents of an annotation.

16.36 Changes in Version 1.13.14

This patch version contains several improvements, mainly for annotations.

• Changed Annot.lineEnds is now a list of two integers representing the line end symbols. Previously was
a dict of strings.

• Added support of line end symbols for applicable annotations. PyMuPDF now can generate these annotations
including the line end symbols.

• Added Annot.setLineEnds() adds line end symbols to applicable annotation types (‘Line’, ‘PolyLine’,
‘Polygon’).

• Changed technical implementation of Page.insertImage() and Page.showPDFpage(): they now
create there own contents objects, thereby avoiding changes of potentially large streams with consequential
compression / decompression efforts and high change volumes with incremental updates.

258 Chapter 16. Change Logs

PyMuPDF Documentation, Release 1.16.10

16.37 Changes in Version 1.13.13

This patch version contains several improvements for embedded files and file attachment annotations.

• Added Document.embeddedFileUpd() which allows changing file content and metadata of an embed-
ded file. It supersedes the old method Document.embeddedFileSetInfo() (which will be deleted in a
future version). Content is automatically compressed and metadata may be unicode.

• Changed Document.embeddedFileAdd() to now automatically compress file content. Accompanying
metadata can now be unicode (had to be ASCII in the past).

• Changed Document.embeddedFileDel() to now automatically delete all entries having the supplied
identifying name. The return code is now an integer count of the removed entries (was None previously).

• Changed embedded file methods to now also accept or show the PDF unicode filename as additional parameter
ufilename.

• Added Page.addFileAnnot() which adds a new file attachment annotation.

• Changed Annot.fileUpd() (file attachment annot) to now also accept the PDF unicode ufilename param-
eter. The description parameter desc correctly works with unicode. Furthermore, all parameters are optional, so
metadata may be changed without also replacing the file content.

• Changed Annot.fileInfo() (file attachment annot) to now also show the PDF unicode filename as pa-
rameter ufilename.

• Fixed issue #180 (“page.getText(output=’dict’) return invalid bbox”) to now also work for vertical text.

• Fixed issue #185 (“Can’t render the annotations created by PyMuPDF”). The issue’s cause was the minimal-
istic MuPDF approach when creating annotations. Several annotation types have no /AP (“appearance”) object
when created by MuPDF functions. MuPDF, SumatraPDF and hence also PyMuPDF cannot render annotations
without such an object. This fix now ensures, that an appearance object is always created together with the
annotation itself. We still do not support line end styles.

16.38 Changes in Version 1.13.12

• Fixed issue #180 (“page.getText(output=’dict’) return invalid bbox”). Note that this is a circumvention of an
MuPDF error, which generates zero-height character rectangles in some cases. When this happens, this fix
ensures a bbox height of at least fontsize.

• Changed for ListBox and ComboBox widgets, the attribute list of selectable values has been renamed to
Widget.choice_values.

• Changed when adding widgets, any missing of the PDF Base 14 Fonts is automatically added to the PDF.
Widget text fonts can now also be chosen from existing widget fonts. Any specified field values are now
honored and lead to a field with a preset value.

• Added Annot.updateWidget() which allows changing existing form fields – including the field value.

16.39 Changes in Version 1.13.11

While the preceeding patch subversions only contained various fixes, this version again introduces major new features:

• Added basic support for PDF widget annotations. You can now add PDF form fields of types Text, CheckBox,
ListBox and ComboBox. Where necessary, the PDF is tranformed to a Form PDF with the first added widget.

16.37. Changes in Version 1.13.13 259

PyMuPDF Documentation, Release 1.16.10

• Fixed issues #176 (“wrong file embedding”), #177 (“segment fault when invoking page.getText()”)and #179
(“Segmentation fault using page.getLinks() on encrypted PDF”).

16.40 Changes in Version 1.13.7

• Added support of variable page sizes for reflowable documents (e-books, HTML, etc.): new parameters rect
and fontsize in Document creation (open), and as a separate method Document.layout().

• Added Annot creation of many annotations types: sticky notes, free text, circle, rectangle, line, polygon, poly-
line and text markers.

• Added support of annotation transparency (Annot.opacity , Annot.setOpacity()).

• Changed Annot.vertices: point coordinates are now grouped as pairs of floats (no longer as separate
floats).

• Changed annotation colors dictionary: the two keys are now named “stroke” (formerly “common”) and “fill”.

• Added Document.isDirty which is True if a PDF has been changed in this session. Reset to False on each
Document.save() or Document.write().

16.41 Changes in Version 1.13.6

• Fix #173: for memory-resident documents, ensure the stream object will not be garbage-collected by Python
before document is closed.

16.42 Changes in Version 1.13.5

• New low-level method Page._setContents() defines an object given by its xref to serve as the
contents object.

• Changed and extended PDF form field support: the attribute widget_text has been renamed to Annot.
widget_value. Values of all form field types (except signatures) are now supported. A new attribute
Annot.widget_choices contains the selectable values of listboxes and comboboxes. All these attributes
now contain None if no value is present.

16.43 Changes in Version 1.13.4

• Document.convertToPDF() now supports page ranges, reverted page sequences and page rotation. If the
document already is a PDF, an exception is raised.

• Fixed a bug (introduced with v1.13.0) that prevented Page.insertImage() for transparent images.

16.44 Changes in Version 1.13.3

Introduces a way to convert any MuPDF supported document to a PDF. If you ever wanted PDF versions of your
XPS, EPUB, CBZ or FB2 files – here is a way to do this.

• Document.convertToPDF() returns a Python bytes object in PDF format. Can be opened like normal in
PyMuPDF, or be written to disk with the “.pdf” extension.

260 Chapter 16. Change Logs

PyMuPDF Documentation, Release 1.16.10

16.45 Changes in Version 1.13.2

The major enhancement is PDF form field support. Form fields are annotations of type (19, ‘Widget’). There is a new
document method to check whether a PDF is a form. The Annot class has new properties describing field details.

• Document.isFormPDF is true if object type /AcroForm and at least one form field exists.

• Annot.widget_type, Annot.widget_text and Annot.widget_name contain the details of a form
field (i.e. a “Widget” annotation).

16.46 Changes in Version 1.13.1

• TextPage.extractDICT() is a new method to extract the contents of a document page (text and im-
ages). All document types are supported as with the other TextPage extract*() methods. The returned object
is a dictionary of nested lists and other dictionaries, and exactly equal to the JSON-deserialization of the old
TextPage.extractJSON(). The difference is that the result is created directly – no JSON module is used.
Because the user needs no JSON module to interpet the information, it should be easier to use, and also have
a better performance, because it contains images in their original binary format – they need not be base64-
decoded.

• Page.getText() correspondingly supports the new parameter value “dict” to invoke the above method.

• TextPage.extractJSON() (resp. Page.getText(“json”)) is still supported for convenience, but its use is
expected to decline.

16.47 Changes in Version 1.13.0

This version is based on MuPDF v1.13.0. This release is “primarily a bug fix release”.

In PyMuPDF, we are also doing some bug fixes while introducing minor enhancements. There only very minimal
changes to the user’s API.

• Document construction is more flexible: the new filetype parameter allows setting the document type. If spec-
ified, any extension in the filename will be ignored. More completely addresses issue #156103. As part of this,
the documentation has been reworked.

• Changes to Pixmap constructors:

– Colorspace conversion no longer allows dropping the alpha channel: source and target alpha will
now always be the same. We have seen exceptions and even interpreter crashes when using alpha
= 0.

– As a replacement, the simple pixmap copy lets you choose the target alpha.

• Document.save() again offers the full garbage collection range 0 thru 4. Because of a bug in xref main-
tenance, we had to temporarily enforce garbage > 1. Finally resolves issue #148104.

• Document.save() now offers to “prettify” PDF source via an additional argument.

• Page.insertImage() has the additional stream -parameter, specifying a memory area holding an image.

• Issue with garbled PNGs on Linux systems has been resolved (“Problem writing PNG” #133)105.

103 https://github.com/rk700/PyMuPDF/issues/156
104 https://github.com/rk700/PyMuPDF/issues/148
105 https://github.com/rk700/PyMuPDF/issues/133

16.45. Changes in Version 1.13.2 261

https://github.com/rk700/PyMuPDF/issues/156
https://github.com/rk700/PyMuPDF/issues/148
https://github.com/rk700/PyMuPDF/issues/133

PyMuPDF Documentation, Release 1.16.10

16.48 Changes in Version 1.12.4

This is an extension of 1.12.3.

• Fix of issue #147106: methods Document.getPageFontlist() and Document.
getPageImagelist() now also show fonts and images contained in resources nested via “Form
XObjects”.

• Temporary fix of issue #148107: Saving to new PDF files will now automatically use garbage = 2 if a lower value
is given. Final fix is to be expected with MuPDF’s next version. At that point we will remove this circumvention.

• Preventive fix of illegally using stencil / image mask pixmaps in some methods.

• Method Document.getPageFontlist() now includes the encoding name for each font in the list.

• Method Document.getPageImagelist() now includes the decode method name for each image in the
list.

16.49 Changes in Version 1.12.3

This is an extension of 1.12.2.

• Many functions now return None instead of 0, if the result has no other meaning than just indicating
successful execution (Document.close(), Document.save(), Document.select(), Pixmap.
writePNG() and many others).

16.50 Changes in Version 1.12.2

This is an extension of 1.12.1.

• Method Page.showPDFpage() now accepts the new clip argument. This specifies an area of the source
page to which the display should be restricted.

• New Page.CropBox and Page.MediaBox have been included for convenience.

16.51 Changes in Version 1.12.1

This is an extension of version 1.12.0.

• New method Page.showPDFpage() displays another’s PDF page. This is a vector image and therefore
remains precise across zooming. Both involved documents must be PDF.

• New method Page.getSVGimage() creates an SVG image from the page. In contrast to the raster image of
a pixmap, this is a vector image format. The return is a unicode text string, which can be saved in a .svg file.

• Method Page.getTextBlocks() now accepts an additional bool parameter “images”. If set to true (default
is false), image blocks (metadata only) are included in the produced list and thus allow detecting areas with
rendered images.

• Minor bug fixes.

• “text” result of Page.getText() concatenates all lines within a block using a single space character.
MuPDF’s original uses “\n” instead, producing a rather ragged output.

106 https://github.com/rk700/PyMuPDF/issues/147
107 https://github.com/rk700/PyMuPDF/issues/148

262 Chapter 16. Change Logs

https://github.com/rk700/PyMuPDF/issues/147
https://github.com/rk700/PyMuPDF/issues/148

PyMuPDF Documentation, Release 1.16.10

• New properties of Page objects Page.MediaBoxSize and Page.CropBoxPosition provide more in-
formation about a page’s dimensions. For non-PDF files (and for most PDF files, too) these will be equal to
Page.rect.bottom_right, resp. Page.rect.top_left. For example, class Shape makes use of
them to correctly position its items.

16.52 Changes in Version 1.12.0

This version is based on and requires MuPDF v1.12.0. The new MuPDF version contains quite a number of changes
– most of them around text extraction. Some of the changes impact the programmer’s API.

• Outline.saveText() and Outline.saveXML() have been deleted without replacement. You proba-
bly haven’t used them much anyway. But if you are looking for a replacement: the output of Document.
getToC() can easily be used to produce something equivalent.

• Class TextSheet does no longer exist.

• Text “spans” (one of the hierarchy levels of TextPage) no longer contain positioning information (i.e. no “bbox”
key). Instead, spans now provide the font information for its text. This impacts our JSON output variant.

• HTML output has improved very much: it now creates valid documents which can be displayed by browsers to
produce a similar view as the original document.

• There is a new output format XHTML, which provides text and images in a browser-readable format. The
difference to HTML output is, that no effort is made to reproduce the original layout.

• All output formats of Page.getText() now support creating complete, valid documents, by wrapping them
with appropriate header and trailer information. If you are interested in using the HTML output, please make
sure to read Controlling Quality of HTML Output.

• To support finding text positions, we have added special methods that don’t need detours like TextPage.
extractJSON() or TextPage.extractXML(): use Page.getTextBlocks() or resp. Page.
getTextWords() to create lists of text blocks or resp. words, which are accompanied by their rectangles.
This should be much faster than the standard text extraction methods and also avoids using additional packages
for interpreting their output.

16.53 Changes in Version 1.11.2

This is an extension of v1.11.1.

• New Page.insertFont() creates a PDF /Font object and returns its object number.

• New Document.extractFont() extracts the content of an embedded font given its object number.

• Methods FontList(. . .) items no longer contain the PDF generation number. This value never had any signifi-
cance. Instead, the font file extension is included (e.g. “pfa” for a “PostScript Font for ASCII”), which is more
valuable information.

• Fonts other than “simple fonts” (Type1) are now also supported.

• New options to change Pixmap size:

– Method Pixmap.shrink() reduces the pixmap proportionally in place.

– A new Pixmap copy constructor allows scaling via setting target width and height.

16.52. Changes in Version 1.12.0 263

PyMuPDF Documentation, Release 1.16.10

16.54 Changes in Version 1.11.1

This is an extension of v1.11.0.

• New class Shape. It facilitates and extends the creation of image shapes on PDF pages. It contains multiple
methods for creating elementary shapes like lines, rectangles or circles, which can be combined into more
complex ones and be given common properties like line width or colors. Combined shapes are handled as a
unit and e.g. be “morphed” together. The class can accumulate multiple complex shapes and put them all in the
page’s foreground or background – thus also reducing the number of updates to the page’s contents object.

• All Page draw methods now use the new Shape class.

• Text insertion methods insertText() and insertTextBox() now support morphing in addition to text rotation. They
have become part of the Shape class and thus allow text to be freely combined with graphics.

• A new Pixmap constructor allows creating pixmap copies with an added alpha channel. A new method also
allows directly manipulating alpha values.

• Binary algebraic operations with geometry objects (matrices, rectangles and points) now generally also support
lists or tuples as the second operand. You can add a tuple (x, y) of numbers to a Point. In this context, such
sequences are called “point_like” (resp. matrix_like, rect_like).

• Geometry objects now fully support in-place operators. For example, p /= m replaces point p with p * 1/m for
a number, or p * ~m for a matrix_like object m. Similarly, if r is a rectangle, then r |= (3, 4) is the new
rectangle that also includes fitz.Point(3, 4), and r &= (1, 2, 3, 4) is its intersection with fitz.Rect(1, 2, 3, 4).

16.55 Changes in Version 1.11.0

This version is based on and requires MuPDF v1.11.

Though MuPDF has declared it as being mostly a bug fix version, one major new feature is indeed contained: support
of embedded files – also called portfolios or collections. We have extended PyMuPDF functionality to embrace this
up to an extent just a little beyond the mutool utility as follows.

• The Document class now support embedded files with several new methods and one new property:

– embeddedFileInfo() returns metadata information about an entry in the list of embedded files. This is
more than mutool currently provides: it shows all the information that was used to embed the file (not just
the entry’s name).

– embeddedFileGet() retrieves the (decompressed) content of an entry into a bytes buffer.

– embeddedFileAdd(. . .) inserts new content into the PDF portfolio. We (in contrast to mutool) restrict this
to entries with a new name (no duplicate names allowed).

– embeddedFileDel(. . .) deletes an entry from the portfolio (function not offered in MuPDF).

– embeddedFileSetInfo() – changes filename or description of an embedded file.

– embeddedFileCount – contains the number of embedded files.

• Several enhancements deal with streamlining geometry objects. These are not connected to the new MuPDF
version and most of them are also reflected in PyMuPDF v1.10.0. Among them are new properties to identify
the corners of rectangles by name (e.g. Rect.bottom_right) and new methods to deal with set-theoretic questions
like Rect.contains(x) or IRect.intersects(x). Special effort focussed on supporting more “Pythonic” language
constructs: if x in rect . . . is equivalent to rect.contains(x).

• The Rect chapter now has more background on empty amd infinite rectangles and how we handle them. The
handling itself was also updated for more consistency in this area.

264 Chapter 16. Change Logs

PyMuPDF Documentation, Release 1.16.10

• We have started basic support for generation of PDF content:

– Document.insertPage() adds a new page into a PDF, optionally containing some text.

– Page.insertImage() places a new image on a PDF page.

– Page.insertText() puts new text on an existing page

• For FileAttachment annotations, content and name of the attached file can extracted and changed.

16.56 Changes in Version 1.10.0

16.56.1 MuPDF v1.10 Impact

MuPDF version 1.10 has a significant impact on our bindings. Some of the changes also affect the API – in other
words, you as a PyMuPDF user.

• Link destination information has been reduced. Several properties of the linkDest class no longer contain valu-
able information. In fact, this class as a whole has been deleted from MuPDF’s library and we in PyMuPDF
only maintain it to provide compatibilty to existing code.

• In an effort to minimize memory requirements, several improvements have been built into MuPDF v1.10:

– A new config.h file can be used to de-select unwanted features in the C base code. Using this feature we
have been able to reduce the size of our binary _fitz.o / _fitz.pyd by about 50% (from 9 MB to 4.5 MB).
When UPX-ing this, the size goes even further down to a very handy 2.3 MB.

– The alpha (transparency) channel for pixmaps is now optional. Letting alpha default to False significantly
reduces pixmap sizes (by 20% – CMYK, 25% – RGB, 50% – GRAY). Many Pixmap constructors there-
fore now accept an alpha boolean to control inclusion of this channel. Other pixmap constructors (e.g.
those for file and image input) create pixmaps with no alpha alltogether. On the downside, save methods
for pixmaps no longer accept a savealpha option: this channel will always be saved when present. To
minimize code breaks, we have left this parameter in the call patterns – it will just be ignored.

• DisplayList and TextPage class constructors now require the mediabox of the page they are referring to (i.e. the
page.bound() rectangle). There is no way to construct this information from other sources, therefore a source
code change cannot be avoided in these cases. We assume however, that not many users are actually employing
these rather low level classes explixitely. So the impact of that change should be minor.

16.56.2 Other Changes compared to Version 1.9.3

• The new Document method write() writes an opened PDF to memory (as opposed to a file, like save() does).

• An annotation can now be scaled and moved around on its page. This is done by modifying its rectangle.

• Annotations can now be deleted. Page contains the new method deleteAnnot().

• Various annotation attributes can now be modified, e.g. content, dates, title (= author), border, colors.

• Method Document.insertPDF() now also copies annotations of source pages.

• The Pages class has been deleted. As documents can now be accessed with page numbers as indices (like
doc[n] = doc.loadPage(n)), and document object can be used as iterators, the benefit of this class was too low
to maintain it. See the following comments.

• loadPage(n) / doc[n] now accept arbitrary integers to specify a page number, as long as n < pageCount. So, e.g.
doc[-500] is always valid and will load page (-500) % pageCount.

16.56. Changes in Version 1.10.0 265

PyMuPDF Documentation, Release 1.16.10

• A document can now also be used as an iterator like this: for page in doc: . . . <do something with “page”>
This will yield all pages of doc as page.

• The Pixmap method getSize() has been replaced with property size. As before Pixmap.size == len(Pixmap) is
true.

• In response to transparency (alpha) being optional, several new parameters and properties have been added to
Pixmap and Colorspace classes to support determining their characteristics.

• The Page class now contains new properties firstAnnot and firstLink to provide starting points to the respective
class chains, where firstLink is just a mnemonic synonym to method loadLinks() which continues to exist.
Similarly, the new property rect is a synonym for method bound(), which also continues to exist.

• Pixmap methods samplesRGB() and samplesAlpha() have been deleted because pixmaps can now be created
without transparency.

• Rect now has a property irect which is a synonym of method round(). Likewise, IRect now has property rect to
deliver a Rect which has the same coordinates as floats values.

• Document has the new method searchPageFor() to search for a text string. It works exactly like the correspond-
ing Page.searchFor() with page number as additional parameter.

16.57 Changes in Version 1.9.3

This version is also based on MuPDF v1.9a. Changes compared to version 1.9.2:

• As a major enhancement, annotations are now supported in a similar way as links. Annotations can be displayed
(as pixmaps) and their properties can be accessed.

• In addition to the document select() method, some simpler methods can now be used to manipulate a PDF:

– copyPage() copies a page within a document.

– movePage() is similar, but deletes the original.

– deletePage() deletes a page

– deletePageRange() deletes a page range

• rotation or setRotation() access or change a PDF page’s rotation, respectively.

• Available but undocumented before, IRect, Rect, Point and Matrix support the len() method and their coordinate
properties can be accessed via indices, e.g. IRect.x1 == IRect[2].

• For convenience, documents now support simple indexing: doc.loadPage(n) == doc[n]. The index may how-
ever be in range -pageCount < n < pageCount, such that doc[-1] is the last page of the document.

16.58 Changes in Version 1.9.2

This version is also based on MuPDF v1.9a. Changes compared to version 1.9.1:

• fitz.open() (no parameters) creates a new empty PDF document, i.e. if saved afterwards, it must be given a .pdf
extension.

• Document now accepts all of the following formats (Document and open are synonyms):

– open(),

– open(filename) (equivalent to open(filename, None)),

– open(filetype, area) (equivalent to open(filetype, stream = area)).

266 Chapter 16. Change Logs

PyMuPDF Documentation, Release 1.16.10

Type of memory area stream may be bytes or bytearray. Thus, e.g. area = open(“file.pdf”, “rb”).read() may
be used directly (without first converting it to bytearray).

• New method Document.insertPDF() (PDFs only) inserts a range of pages from another PDF.

• Document objects doc now support the len() function: len(doc) == doc.pageCount.

• New method Document.getPageImageList() creates a list of images used on a page.

• New method Document.getPageFontList() creates a list of fonts referenced by a page.

• New pixmap constructor fitz.Pixmap(doc, xref) creates a pixmap based on an opened PDF document and an
xref number of the image.

• New pixmap constructor fitz.Pixmap(cspace, spix) creates a pixmap as a copy of another one spix with the
colorspace converted to cspace. This works for all colorspace combinations.

• Pixmap constructor fitz.Pixmap(colorspace, width, height, samples) now allows samples to also be bytes, not
only bytearray.

16.59 Changes in Version 1.9.1

This version of PyMuPDF is based on MuPDF library source code version 1.9a published on April 21, 2016.

Please have a look at MuPDF’s website to see which changes and enhancements are contained herein.

Changes in version 1.9.1 compared to version 1.8.0 are the following:

• New methods getRectArea() for both fitz.Rect and fitz.IRect

• Pixmaps can now be created directly from files using the new constructor fitz.Pixmap(filename).

• The Pixmap constructor fitz.Pixmap(image) has been extended accordingly.

• fitz.Rect can now be created with all possible combinations of points and coordinates.

• PyMuPDF classes and methods now all contain __doc__ strings, most of them created by SWIG automatically.
While the PyMuPDF documentation certainly is more detailed, this feature should help a lot when programming
in Python-aware IDEs.

• A new document method of getPermits() returns the permissions associated with the current access to the docu-
ment (print, edit, annotate, copy), as a Python dictionary.

• The identity matrix fitz.Identity is now immutable.

• The new document method select(list) removes all pages from a document that are not contained in the list.
Pages can also be duplicated and re-arranged.

• Various improvements and new members in our demo and examples collections. Perhaps most prominently:
PDF_display now supports scrolling with the mouse wheel, and there is a new example program wxTableExtract
which allows to graphically identify and extract table data in documents.

• fitz.open() is now an alias of fitz.Document().

• New pixmap method getPNGData() which will return a bytearray formatted as a PNG image of the pixmap.

• New pixmap method samplesRGB() providing a samples version with alpha bytes stripped off (RGB colorspaces
only).

• New pixmap method samplesAlpha() providing the alpha bytes only of the samples area.

• New iterator fitz.Pages(doc) over a document’s set of pages.

16.59. Changes in Version 1.9.1 267

PyMuPDF Documentation, Release 1.16.10

• New matrix methods invert() (calculate inverted matrix), concat() (calculate matrix product), preTranslate()
(perform a shift operation).

• New IRect methods intersect() (intersection with another rectangle), translate() (perform a shift operation).

• New Rect methods intersect() (intersection with another rectangle), transform() (transformation with a matrix),
includePoint() (enlarge rectangle to also contain a point), includeRect() (enlarge rectangle to also contain another
one).

• Documented Point.transform() (transform a point with a matrix).

• Matrix, IRect, Rect and Point classes now support compact, algebraic formulations for manipulating such ob-
jects.

• Incremental saves for changes are possible now using the call pattern doc.save(doc.name, incremental=True).

• A PDF’s metadata can now be deleted, set or changed by document method setMetadata(). Supports incremental
saves.

• A PDF’s bookmarks (or table of contents) can now be deleted, set or changed with the entries of a list using
document method setToC(list). Supports incremental saves.

268 Chapter 16. Change Logs

INDEX

__init__()Colorspace method, 88
__init__()Device method, 208, 209
__init__()DisplayList method, 89
__init__()Document method, 91
__init__()IRect method, 110
__init__()Matrix method, 117
__init__()Pixmap method, 146–148
__init__()Point method, 154
__init__()Quad method, 156
__init__()Rect method, 159
__init__()Shape method, 163
_cleanContents()Annot method, 203
_cleanContents()Page method, 202
_delXmlMetadata()Document method, 199
_deleteObject()Document method, 199
_getContents()Page method, 202
_getNewXref()Document method, 204
_getOLRootNumber()Document method, 206
_getPDFroot()Document method, 201
_getPageObjNumber()Document method, 201
_getPageXref()Document method, 201
_getTrailerString()Document method, 200
_getXmlMetadataXref()Document method, 200
_getXrefLength()Document method, 205
_getXrefStream()Document method, 205
_getXrefString()Document method, 203
_isWrappedPage attribute, 201
_make_page_map()Document method, 200
_setContents()Page method, 202
_updateObject()Document method, 205
_updateStream()Document method, 205
_wrapContents()Page method, 201

aMatrix attribute, 119
abs_unitPoint attribute, 155
addCaretAnnot()Page method, 128
addCircleAnnot()Page method, 130
addFileAnnot

examples, 19
addFileAnnot()Page method, 129
addFreetextAnnot()Page method, 128
addHighlightAnnot()Page method, 130
addInkAnnot()Page method, 129

addLineAnnot()Page method, 129
addPolygonAnnot()Page method, 130
addPolylineAnnot()Page method, 130
addRectAnnot()Page method, 130
addSquigglyAnnot()Page method, 130
addStampAnnot()Page method, 131
addStrikeoutAnnot()Page method, 130
addTextAnnot()Page method, 128
addUnderlineAnnot()Page method, 130
addWidget()Page method, 131
align

Page.insertTextbox args, 133
Shape.insertTextbox args, 169

alpha
Annot.getPixmap args, 82
DisplayList.getPixmap args, 89
Page.getPixmap args, 138

alphaPixmap attribute, 151
Annotbuilt-in class, 81
Annot.fileUpd args

buffer, 84
desc, 84
filename, 84
ufilename, 84

Annot.getPixmap args
alpha, 82
colorspace, 82
matrix, 82

Annot.update args
border_color, 84
fill_color, 84
fontsize, 84
rotate, 84
text_color, 84

annots
Document.insertPDF args, 100
Page.getPixmap args, 138

annots()Page method, 132
attach

embed file, 54
authenticate()Document method, 92

bMatrix attribute, 119

269

PyMuPDF Documentation, Release 1.16.10

Base14_Fontsbuilt-in variable, 215
blIRect attribute, 111
blRect attribute, 161
blocks

Page.getText args, 137
borderAnnot attribute, 86
borderLink attribute, 114
border_color

Annot.update args, 84
border_colorWidget attribute, 187
border_dashesWidget attribute, 187
border_styleWidget attribute, 187
border_width

Page.insertText args, 133, 168
Page.insertTextbox args, 133, 169

border_widthWidget attribute, 187
bottom_leftIRect attribute, 111
bottom_leftRect attribute, 161
bottom_rightIRect attribute, 112
bottom_rightRect attribute, 161
bound()Page method, 128
brIRect attribute, 112
brRect attribute, 161
breadth

Shape.drawSquiggle args, 164
Shape.drawZigzag args, 165

buffer
Annot.fileUpd args, 84

button_captionWidget attribute, 188

cMatrix attribute, 119
can_save_incrementally()Document method, 99
catalogbuilt-in variable, 211
choice_valuesWidget attribute, 187
clearWith()Pixmap method, 148
clip

DisplayList.getPixmap args, 89
Page.getPixmap args, 138
Page.showPDFpage args, 139

close()Document method, 105
closePath

Page.drawBezier args, 134
Page.drawCircle args, 133
Page.drawCurve args, 134
Page.drawLine args, 133
Page.drawOval args, 133
Page.drawPolyline args, 134
Page.drawRect args, 134
Page.drawSector args, 133
Page.drawSquiggle args, 133
Page.drawZigzag args, 133
Shape.finish args, 170

color
Document.insertPage args, 101

Page.addFreetextAnnot args, 128
Page.drawBezier args, 134
Page.drawCircle args, 133
Page.drawCurve args, 134
Page.drawLine args, 133
Page.drawOval args, 133
Page.drawPolyline args, 134
Page.drawRect args, 134
Page.drawSector args, 133
Page.drawSquiggle args, 133
Page.drawZigzag args, 133
Page.insertText args, 133
Page.insertTextbox args, 133
Shape.finish args, 170
Shape.insertText args, 168
Shape.insertTextbox args, 169

colorsAnnot attribute, 86
colorsLink attribute, 114
colorspace

Annot.getPixmap args, 82
DisplayList.getPixmap args, 89
Page.getPixmap args, 138

Colorspacebuilt-in class, 88
colorspacePixmap attribute, 151
commit()Shape method, 172
concat()Matrix method, 118
contains()IRect method, 111
contains()Rect method, 161
contentsbuilt-in variable, 211
ConversionHeader(), 199
ConversionTrailer(), 199
convertToPDF

examples, 17
convertToPDF()Document method, 93
copyPage()Document method, 102
copyPixmap

examples, 24, 25
copyPixmap()Pixmap method, 150
CropBoxPage attribute, 142
CropBoxPositionPage attribute, 142
CS_CMYKbuilt-in variable, 215
CS_GRAYbuilt-in variable, 215
CS_RGBbuilt-in variable, 215
csCMYKbuilt-in variable, 215
csGRAYbuilt-in variable, 215
csRGBbuilt-in variable, 215

dMatrix attribute, 119
dashes

Page.drawBezier args, 134
Page.drawCircle args, 133
Page.drawCurve args, 134
Page.drawLine args, 133
Page.drawOval args, 133

270 Index

PyMuPDF Documentation, Release 1.16.10

Page.drawPolyline args, 134
Page.drawRect args, 134
Page.drawSector args, 133
Page.drawSquiggle args, 133
Page.drawZigzag args, 133
Shape.finish args, 170

delete
pages, 54

deleteAnnot()Page method, 132
deleteLink()Page method, 132
deletePage()Document method, 101
deletePageRange()Document method, 101
desc

Annot.fileUpd args, 84
Document.embeddedFileAdd args, 103
Document.embeddedFileUpd args, 104

destLink attribute, 114
destlinkDest attribute, 115
destOutline attribute, 125
Devicebuilt-in class, 208
dict

Page.getText args, 137
dictionarybuilt-in variable, 211
DisplayListbuilt-in class, 89
DisplayList.getPixmap args

alpha, 89
clip, 89
colorspace, 89
matrix, 89

distance_to()Point method, 154
docShape attribute, 172
Document

open, 91
Documentbuilt-in class, 91
Document args

filename, 91
filetype, 91
fontsize, 91
rect, 91
stream, 91

Document.convertToPDF args
from_page, 93
rotate, 93
to_page, 93

Document.embeddedFileAdd args
desc, 103
filename, 103
ufilename, 103

Document.embeddedFileUpd args
desc, 104
filename, 104
ufilename, 104

Document.insertPage args
color, 101

fontfile, 101
fontname, 101
fontsize, 101
height, 101
width, 101

Document.insertPDF args
annots, 100
from_page, 100
links, 100
rotate, 100
start_at, 100
to_page, 100

Document.layout args
fontsize, 97
height, 97
rect, 97
width, 97

Document.newPage args
height, 101
width, 101

downOutline attribute, 125
draw_contShape attribute, 172
drawBezier()Page method, 134
drawBezier()Shape method, 165
drawCircle()Page method, 133
drawCircle()Shape method, 166
drawCurve()Page method, 134
drawCurve()Shape method, 167
drawLine()Page method, 133
drawLine()Shape method, 163
drawOval()Page method, 133
drawOval()Shape method, 166
drawPolyline()Page method, 134
drawPolyline()Shape method, 165
drawQuad()Shape method, 168
drawRect()Page method, 134
drawRect()Shape method, 168
drawSector()Page method, 133
drawSector()Shape method, 167
drawSquiggle()Page method, 133
drawSquiggle()Shape method, 164
drawZigzag()Page method, 133
drawZigzag()Shape method, 165

eMatrix attribute, 119
embed

file, attach, 54
PDF, picture, 19

embeddedFileAdd
examples, 19, 22

embeddedFileAdd()Document method, 103
embeddedFileCount()Document method, 103
embeddedFileDel()Document method, 104
embeddedFileGet()Document method, 103

Index 271

PyMuPDF Documentation, Release 1.16.10

embeddedFileInfo()Document method, 104
embeddedFileNames()Document method, 104
embeddedFileSetInfo()Document method, 105
embeddedFileUpd()Document method, 104
encoding

Page.insertFont args, 134
Page.insertText args, 133
Page.insertTextbox args, 133
Shape.insertText args, 168
Shape.insertTextbox args, 169

even_odd
Shape.finish args, 170

examples
addFileAnnot, 19
convertToPDF, 17
copyPixmap, 24, 25
embeddedFileAdd, 19, 22
extractImage, 17
getImageData, 22
insertImage, 19, 22
invertIRect, 25
JPEG, 22
PhotoImage, 22
Photoshop, 22
Postscript, 22
setRect, 25
showPDFpage, 19, 22
writeImage, 22, 25

expandtabs
Page.insertTextbox args, 133
Shape.insertTextbox args, 169

extract
image non-PDF, 17
image PDF, 17
table, 32
text rectangle, 29

extractBLOCKS()TextPage method, 178
extractDICT()TextPage method, 178
extractFont()Document method, 207
extractHTML()TextPage method, 178
extractImage

examples, 17
extractImage()Document method, 206
extractJSON()TextPage method, 179
extractRAWDICT()TextPage method, 179
extractTEXT()TextPage method, 178
extractText()TextPage method, 178
extractWORDS()TextPage method, 178
extractXHTML()TextPage method, 179
extractXML()TextPage method, 179

fMatrix attribute, 119
field_flagsWidget attribute, 187
field_labelWidget attribute, 187

field_nameWidget attribute, 187
field_typeWidget attribute, 187
field_type_stringWidget attribute, 188
field_valueWidget attribute, 187
file

attach embed, 54
file extension

wrong, 53
fileGet()Annot method, 84
fileInfo()Annot method, 84
filename

Annot.fileUpd args, 84
Document args, 91
Document.embeddedFileAdd args, 103
Document.embeddedFileUpd args, 104
open args, 91
Page.insertImage args, 135

fileSpeclinkDest attribute, 115
filetype

Document args, 91
open args, 91

fileUpd()Annot method, 84
fill

Page.drawBezier args, 134
Page.drawCircle args, 133
Page.drawCurve args, 134
Page.drawLine args, 133
Page.drawOval args, 133
Page.drawPolyline args, 134
Page.drawRect args, 134
Page.drawSector args, 133
Page.drawSquiggle args, 133
Page.drawZigzag args, 133
Page.insertText args, 133, 168
Page.insertTextbox args, 133, 169
Shape.finish args, 170

fill_color
Annot.update args, 84

fill_colorWidget attribute, 188
finish()Shape method, 170
firstAnnotPage attribute, 143
firstLinkPage attribute, 143
firstWidgetPage attribute, 143
fitz_configTools attribute, 184
flags

Page.getText args, 137
Page.getTextPage args, 137
Page.searchFor args, 141

flagsAnnot attribute, 85
flagslinkDest attribute, 115
fontbuffer

Page.insertFont args, 134
fontfile

Document.insertPage args, 101

272 Index

PyMuPDF Documentation, Release 1.16.10

Page.insertFont args, 134
Page.insertText args, 133
Page.insertTextbox args, 133
Shape.insertText args, 168
Shape.insertTextbox args, 169

FontInfosDocument attribute, 208
fontname

Document.insertPage args, 101
Page.addFreetextAnnot args, 128
Page.insertFont args, 134
Page.insertText args, 133
Page.insertTextbox args, 133
Shape.insertText args, 168
Shape.insertTextbox args, 169

fontsize
Annot.update args, 84
Document args, 91
Document.insertPage args, 101
Document.layout args, 97
open args, 91
Page.addFreetextAnnot args, 128
Page.insertText args, 133
Page.insertTextbox args, 133
Shape.insertText args, 168
Shape.insertTextbox args, 169

FormFontsDocument attribute, 107
from_page

Document.convertToPDF args, 93
Document.insertPDF args, 100

fullcopyPage()Document method, 102
fullSector

Page.drawSector args, 133
Shape.drawSector args, 167

gammaWith()Pixmap method, 149
gen_id()Tools method, 183
getArea()IRect method, 111
getArea()Rect method, 160
getCharWidths()Document method, 203
getDisplayList()Page method, 202
getFontList()Page method, 137
getImageBbox()Page method, 138
getImageData

examples, 22
getImageData()Pixmap method, 151
getImageList()Page method, 138
getLinks()Page method, 132
getPageFontList()Document method, 96
getPageImageList()Document method, 95
getPagePixmap()Document method, 95
getPageText()Document method, 97
getPDFnow(), 197
getPDFstr(), 198
getPixmap()Annot method, 82

getPixmap()DisplayList method, 89
getPixmap()Page method, 138
getPNGData()Pixmap method, 151
getPNGdata()Pixmap method, 151
getRect()IRect method, 111
getRectArea()IRect method, 111
getRectArea()Rect method, 160
getSigFlags()Document method, 103
getSVGimage()Page method, 138
getText()Page method, 137
getTextBlocks()Page method, 201
getTextlength(), 197
getTextPage()DisplayList method, 90
getTextPage()Page method, 137
getTextWords()Page method, 202
getToC()Document method, 95

hPixmap attribute, 152
height

Document.insertPage args, 101
Document.layout args, 97
Document.newPage args, 101
open args, 91

heightIRect attribute, 112
heightPixmap attribute, 152
heightQuad attribute, 158
heightRect attribute, 162
heightShape attribute, 172
hit_max

Page.searchFor args, 141
html

Page.getText args, 137

image
non-PDF, extract, 17
PDF, extract, 17
resolution, 15
SVG, vector, 22

ImageProperties(), 198
includePoint()Rect method, 160
includeRect()Rect method, 160
infoAnnot attribute, 85
insertFont()Page method, 134
insertImage

examples, 19, 22
insertImage()Page method, 135
insertLink()Page method, 132
insertPage()Document method, 101
insertPDF()Document method, 100
insertText()Page method, 133
insertText()Shape method, 168
insertTextbox()Page method, 133
insertTextbox()Shape method, 169
interpolatePixmap attribute, 153

Index 273

PyMuPDF Documentation, Release 1.16.10

intersect()IRect method, 111
intersect()Rect method, 160
intersects()IRect method, 111
intersects()Rect method, 161
invert()Matrix method, 118
invertIRect

examples, 25
invertIRect()Pixmap method, 150
IRectbuilt-in class, 110
irectPixmap attribute, 151
irectRect attribute, 161
irect_likebuilt-in variable, 211
is_openOutline attribute, 125
is_signedWidget attribute, 188
isClosedDocument attribute, 106
isConvexQuad attribute, 157
isEmptyIRect attribute, 112
isEmptyQuad attribute, 158
isEmptyRect attribute, 162
isEncryptedDocument attribute, 106
isExternalLink attribute, 114
isExternalOutline attribute, 125
isFormPDFDocument attribute, 106
isInfiniteIRect attribute, 112
isInfiniteRect attribute, 162
isMaplinkDest attribute, 115
isPDFDocument attribute, 106
isRectangularQuad attribute, 158
isRectilinearMatrix attribute, 119
isReflowableDocument attribute, 106
isStream()Document method, 204
isUrilinkDest attribute, 115

JPEG
examples, 22

json
Page.getText args, 137

keep_proportion
Page.insertImage args, 135
Page.showPDFpage args, 139

kindlinkDest attribute, 115

lastPointShape attribute, 173
layout()Document method, 97
lineCap

Page.drawBezier args, 134
Page.drawCircle args, 133
Page.drawCurve args, 134
Page.drawLine args, 133
Page.drawOval args, 133
Page.drawPolyline args, 134
Page.drawRect args, 134
Page.drawSector args, 133
Page.drawSquiggle args, 133

Page.drawZigzag args, 133
Shape.finish args, 170

lineEndsAnnot attribute, 85
lineJoin

Page.drawBezier args, 134
Page.drawCircle args, 133
Page.drawCurve args, 134
Page.drawLine args, 133
Page.drawOval args, 133
Page.drawPolyline args, 134
Page.drawRect args, 134
Page.drawSector args, 133
Page.drawSquiggle args, 133
Page.drawZigZag args, 133
Shape.finish args, 170

Linkbuilt-in class, 113
LINK_FLAG_B_VALIDbuilt-in variable, 218
LINK_FLAG_FIT_Hbuilt-in variable, 218
LINK_FLAG_FIT_Vbuilt-in variable, 218
LINK_FLAG_L_VALIDbuilt-in variable, 218
LINK_FLAG_R_IS_ZOOMbuilt-in variable, 218
LINK_FLAG_R_VALIDbuilt-in variable, 218
LINK_FLAG_T_VALIDbuilt-in variable, 218
LINK_GOTObuilt-in variable, 217
LINK_GOTORbuilt-in variable, 218
LINK_LAUNCHbuilt-in variable, 218
LINK_NONEbuilt-in variable, 217
LINK_URIbuilt-in variable, 218
linkDestbuilt-in class, 115
links

Document.insertPDF args, 100
links()Page method, 132
llQuad attribute, 157
loadLinks()Page method, 139
loadPage()Document method, 93
lrQuad attribute, 157
ltlinkDest attribute, 116

matrix
Annot.getPixmap args, 82
DisplayList.getPixmap args, 89
Page.getPixmap args, 138
Page.getSVGimage args, 138

Matrixbuilt-in class, 117
matrix_likebuilt-in variable, 211
MediaBoxPage attribute, 143
MediaBoxSizePage attribute, 142
metadataDocument attribute, 107
metadataXML()Document method, 105
morph

Page.drawBezier args, 134
Page.drawCircle args, 133
Page.drawCurve args, 134
Page.drawLine args, 133

274 Index

PyMuPDF Documentation, Release 1.16.10

Page.drawOval args, 133
Page.drawPolyline args, 134
Page.drawRect args, 134
Page.drawSector args, 133
Page.drawSquiggle args, 133
Page.drawZigzag args, 133
Page.insertText args, 133
Page.insertTextbox args, 133
Shape.finish args, 170
Shape.insertText args, 168
Shape.insertTextbox args, 169

movePage()Document method, 103
mupdf_warnings()Tools method, 184

nColorspace attribute, 88
nPixmap attribute, 152
nameColorspace attribute, 88
nameDocument attribute, 107
namedlinkDest attribute, 116
needsPassDocument attribute, 106
newPage()Document method, 101
newShape()Page method, 141
newWindowlinkDest attribute, 116
nextAnnot attribute, 85
nextLink attribute, 114
nextOutline attribute, 125
nextWidget attribute, 187
non-PDF

extract image, 17
norm()IRect method, 111
norm()Matrix method, 117
norm()Point method, 155
norm()Rect method, 161
normalize()IRect method, 111
normalize()Rect method, 161
numberPage attribute, 143

objectbuilt-in variable, 212
opacityAnnot attribute, 85
open

Document, 91
open args

filename, 91
filetype, 91
fontsize, 91
height, 91
rect, 91
stream, 91
width, 91

Outlinebuilt-in class, 125
outlineDocument attribute, 106
overlay

Page.drawBezier args, 134
Page.drawCircle args, 133

Page.drawCurve args, 134
Page.drawLine args, 133
Page.drawOval args, 133
Page.drawPolyline args, 134
Page.drawRect args, 134
Page.drawSector args, 133
Page.drawSquiggle args, 133
Page.drawZigzag args, 133
Page.insertImage args, 135
Page.insertText args, 133
Page.insertTextbox args, 133
Page.showPDFpage args, 139
Shape.commit args, 172

Pagebuilt-in class, 127
pagebuilt-in variable, 212
pagelinkDest attribute, 116
pageOutline attribute, 125
pageShape attribute, 172
Page.addFreetextAnnot args

color, 128
fontname, 128
fontsize, 128
rect, 128
rotate, 128

Page.drawBezier args
closePath, 134
color, 134
dashes, 134
fill, 134
lineCap, 134
lineJoin, 134
morph, 134
overlay, 134
width, 134

Page.drawCircle args
closePath, 133
color, 133
dashes, 133
fill, 133
lineCap, 133
lineJoin, 133
morph, 133
overlay, 133
width, 133

Page.drawCurve args
closePath, 134
color, 134
dashes, 134
fill, 134
lineCap, 134
lineJoin, 134
morph, 134
overlay, 134

Index 275

PyMuPDF Documentation, Release 1.16.10

width, 134
Page.drawLine args

closePath, 133
color, 133
dashes, 133
fill, 133
lineCap, 133
lineJoin, 133
morph, 133
overlay, 133
width, 133

Page.drawOval args
closePath, 133
color, 133
dashes, 133
fill, 133
lineCap, 133
lineJoin, 133
morph, 133
overlay, 133
width, 133

Page.drawPolyline args
closePath, 134
color, 134
dashes, 134
fill, 134
lineCap, 134
lineJoin, 134
morph, 134
overlay, 134
width, 134

Page.drawRect args
closePath, 134
color, 134
dashes, 134
fill, 134
lineCap, 134
lineJoin, 134
morph, 134
overlay, 134
width, 134

Page.drawSector args
closePath, 133
color, 133
dashes, 133
fill, 133
fullSector, 133
lineCap, 133
lineJoin, 133
morph, 133
overlay, 133
width, 133

Page.drawSquiggle args
closePath, 133

color, 133
dashes, 133
fill, 133
lineCap, 133
lineJoin, 133
morph, 133
overlay, 133
width, 133

Page.drawZigZag args
lineJoin, 133

Page.drawZigzag args
closePath, 133
color, 133
dashes, 133
fill, 133
lineCap, 133
morph, 133
overlay, 133
width, 133

Page.getPixmap args
alpha, 138
annots, 138
clip, 138
colorspace, 138
matrix, 138

Page.getSVGimage args
matrix, 138

Page.getText args
blocks, 137
dict, 137
flags, 137
html, 137
json, 137
rawdict, 137
text, 137
words, 137
xhtml, 137
xml, 137

Page.getTextPage args
flags, 137

Page.insertFont args
encoding, 134
fontbuffer, 134
fontfile, 134
fontname, 134
set_simple, 134

Page.insertImage args
filename, 135
keep_proportion, 135
overlay, 135
pixmap, 135
rotate, 135
stream, 135

Page.insertText args

276 Index

PyMuPDF Documentation, Release 1.16.10

border_width, 133, 168
color, 133
encoding, 133
fill, 133, 168
fontfile, 133
fontname, 133
fontsize, 133
morph, 133
overlay, 133
render_mode, 133, 168
rotate, 133

Page.insertTextbox args
align, 133
border_width, 133, 169
color, 133
encoding, 133
expandtabs, 133
fill, 133, 169
fontfile, 133
fontname, 133
fontsize, 133
morph, 133
overlay, 133
render_mode, 133, 169
rotate, 133

Page.searchFor args
flags, 141
hit_max, 141
quads, 141

Page.setRotation args
rotate, 139

Page.showPDFpage args
clip, 139
keep_proportion, 139
overlay, 139
rotate, 139

pageCountDocument attribute, 107
pages

delete, 54
rearrange, 54

pages()Document method, 93
pagetreebuilt-in variable, 212
PaperRect(), 196
PaperSize(), 196
paperSizes, 197
parentAnnot attribute, 85
parentPage attribute, 143
Partial Pixmaps, 16
PDF

extract image, 17
picture embed, 19

PDFCatalog()Document method, 105
PDFTrailer()Document method, 105
permissionsDocument attribute, 106

PhotoImage
examples, 22

Photoshop
examples, 22

picture
embed PDF, 19

pixel()Pixmap method, 149
pixmap

Page.insertImage args, 135
Pixmapbuilt-in class, 146
planishLine(), 196
Pointbuilt-in class, 154
point_likebuilt-in variable, 211
Postscript

examples, 22
preRotate()Matrix method, 118
preScale()Matrix method, 118
preShear()Matrix method, 118
preTranslate()Matrix method, 118

Quadbuilt-in class, 156
quadIRect attribute, 112
quadRect attribute, 161
quad_likebuilt-in variable, 211
quads

Page.searchFor args, 141

rawdict
Page.getText args, 137

rblinkDest attribute, 116
reading order

text, 30
rearrange

pages, 54
rect

Document args, 91
Document.layout args, 97
open args, 91
Page.addFreetextAnnot args, 128

rectAnnot attribute, 85
Rectbuilt-in class, 159
rectDisplayList attribute, 90
rectLink attribute, 114
rectPage attribute, 143
rectQuad attribute, 157
rectShape attribute, 172
rectWidget attribute, 188
rect_likebuilt-in variable, 211
rectangle

extract text, 29
render_mode

Page.insertText args, 133, 168
Page.insertTextbox args, 133, 169

reset_mupdf_display_errors()Tools method, 184

Index 277

PyMuPDF Documentation, Release 1.16.10

reset_mupdf_warnings()Tools method, 184
resolution

image, 15
zoom, 16

resourcesbuilt-in variable, 211
rotate

Annot.update args, 84
Document.convertToPDF args, 93
Document.insertPDF args, 100
Page.addFreetextAnnot args, 128
Page.insertImage args, 135
Page.insertText args, 133
Page.insertTextbox args, 133
Page.setRotation args, 139
Page.showPDFpage args, 139
Shape.insertText args, 168
Shape.insertTextbox args, 169

rotationPage attribute, 142
round()Rect method, 159
run()DisplayList method, 89
run()Page method, 201

samplesPixmap attribute, 151
save()Document method, 99
saveIncr()Document method, 100
search()TextPage method, 179
searchFor()Page method, 141
searchPageFor()Document method, 100
select()Document method, 97
set_simple

Page.insertFont args, 134
setAlpha()Pixmap method, 150
setBorder()Annot method, 83
setBorder()Link method, 113
setColors()Annot method, 83
setColors()Link method, 113
setCropBox()Page method, 142
setFlags()Annot method, 83
setInfo()Annot method, 82
setLineEnds()Annot method, 82
setMetadata()Document method, 98
setName()Annot method, 83
setOpacity()Annot method, 82
setPixel()Pixmap method, 149
setRect

examples, 25
setRect()Annot method, 83
setRect()Pixmap method, 149
setRotation()Page method, 139
setToC()Document method, 98
Shapebuilt-in class, 163
Shape.commit args

overlay, 172
Shape.drawSector args

fullSector, 167
Shape.drawSquiggle args

breadth, 164
Shape.drawZigzag args

breadth, 165
Shape.finish args

closePath, 170
color, 170
dashes, 170
even_odd, 170
fill, 170
lineCap, 170
lineJoin, 170
morph, 170
width, 170

Shape.insertText args
color, 168
encoding, 168
fontfile, 168
fontname, 168
fontsize, 168
morph, 168
rotate, 168

Shape.insertTextbox args
align, 169
color, 169
encoding, 169
expandtabs, 169
fontfile, 169
fontname, 169
fontsize, 169
morph, 169
rotate, 169

showPDFpage
examples, 19, 22

showPDFpage()Page method, 139
shrink()Pixmap method, 149
sizePixmap attribute, 152
start_at

Document.insertPDF args, 100
store_maxsizeTools attribute, 186
store_shrink()Tools method, 184
store_sizeTools attribute, 186
stream

Document args, 91
open args, 91
Page.insertImage args, 135

streambuilt-in variable, 212
stridePixmap attribute, 151
SVG

vector image, 22

table
extract, 32

278 Index

PyMuPDF Documentation, Release 1.16.10

text
Page.getText args, 137
reading order, 30
rectangle, extract, 29

TEXT_ALIGN_CENTERbuilt-in variable, 217
TEXT_ALIGN_JUSTIFYbuilt-in variable, 217
TEXT_ALIGN_LEFTbuilt-in variable, 217
TEXT_ALIGN_RIGHTbuilt-in variable, 217
text_color

Annot.update args, 84
text_colorWidget attribute, 188
text_contShape attribute, 172
text_fontWidget attribute, 188
text_fontsizeWidget attribute, 188
TEXT_INHIBIT_SPACESbuilt-in variable, 217
text_maxlenWidget attribute, 188
TEXT_PRESERVE_IMAGESbuilt-in variable, 217
TEXT_PRESERVE_LIGATURESbuilt-in variable, 217
TEXT_PRESERVE_WHITESPACEbuilt-in variable, 217
text_typeWidget attribute, 188
TextPagebuilt-in class, 178
tintWith()Pixmap method, 148
titleOutline attribute, 125
tlIRect attribute, 111
tlRect attribute, 161
to_page

Document.convertToPDF args, 93
Document.insertPDF args, 100

Toolsbuilt-in class, 183
top_leftIRect attribute, 111
top_leftRect attribute, 161
top_rightIRect attribute, 111
top_rightRect attribute, 161
totalcontShape attribute, 173
trIRect attribute, 111
trRect attribute, 161
transform()Point method, 155
transform()Quad method, 157
transform()Rect method, 160
typeAnnot attribute, 85

ufilename
Annot.fileUpd args, 84
Document.embeddedFileAdd args, 103
Document.embeddedFileUpd args, 104

ulQuad attribute, 157
unitPoint attribute, 155
unitvectorbuilt-in variable, 213
update()Annot method, 84
update()Widget method, 187
updateLink()Page method, 132
updateObject()Document method, 105
updateStream()Document method, 106
urQuad attribute, 157

uriLink attribute, 114
urilinkDest attribute, 116
uriOutline attribute, 125

vector
image SVG, 22

versionbuilt-in variable, 216
VersionBindbuilt-in variable, 215
VersionDatebuilt-in variable, 216
VersionFitzbuilt-in variable, 215
verticesAnnot attribute, 86

wPixmap attribute, 152
Widgetbuilt-in class, 187
widgets()Page method, 133
width

Document.insertPage args, 101
Document.layout args, 97
Document.newPage args, 101
open args, 91
Page.drawBezier args, 134
Page.drawCircle args, 133
Page.drawCurve args, 134
Page.drawLine args, 133
Page.drawOval args, 133
Page.drawPolyline args, 134
Page.drawRect args, 134
Page.drawSector args, 133
Page.drawSquiggle args, 133
Page.drawZigzag args, 133
Shape.finish args, 170

widthIRect attribute, 112
widthPixmap attribute, 152
widthQuad attribute, 158
widthRect attribute, 162
widthShape attribute, 172
words

Page.getText args, 137
write()Document method, 100
writeImage

examples, 22, 25
writeImage()Pixmap method, 150
writePNG()Pixmap method, 151
wrong

file extension, 53

xPixmap attribute, 152
xPoint attribute, 155
x0IRect attribute, 112
x0Rect attribute, 162
x1IRect attribute, 112
x1Rect attribute, 162
xhtml

Page.getText args, 137
xml

Index 279

PyMuPDF Documentation, Release 1.16.10

Page.getText args, 137
xrefAnnot attribute, 86
xrefbuilt-in variable, 213
xrefLink attribute, 114
xrefPage attribute, 143
xrefWidget attribute, 188
xrefObject()Document method, 105
xrefStream()Document method, 105
xrefStreamRaw()Document method, 105
xresPixmap attribute, 152

yPixmap attribute, 152
yPoint attribute, 155
y0IRect attribute, 112
y0Rect attribute, 162
y1IRect attribute, 112
y1Rect attribute, 162
yresPixmap attribute, 152

zoom, 15
resolution, 16

280 Index

	PyMuPDF Documentation
	Introduction
	Note on the Name fitz
	License
	Covered Version

	Installation
	Option 1: Install from Sources
	Step 1: Download PyMuPDF
	Step 2: Download and Generate MuPDF
	Step 3: Build / Setup PyMuPDF

	Option 2: Install from Binaries

	Tutorial
	Importing the Bindings
	Opening a Document
	Some Document Methods and Attributes
	Accessing Meta Data
	Working with Outlines
	Working with Pages
	Inspecting the Links, Annotations or Form Fields of a Page
	Rendering a Page
	Saving the Page Image in a File
	Displaying the Image in GUIs
	wxPython
	Tkinter
	PyQt4, PyQt5, PySide

	Extracting Text and Images
	Searching for Text

	PDF Maintenance
	Modifying, Creating, Re-arranging and Deleting Pages
	Joining and Splitting PDF Documents
	Embedding Data
	Saving

	Closing
	Further Reading

	Collection of Recipes
	Images
	How to Make Images from Document Pages
	How to Increase Image Resolution
	How to Create Partial Pixmaps (Clips)
	How to Create or Suppress Annotation Images
	How to Extract Images: Non-PDF Documents
	How to Extract Images: PDF Documents
	How to Handle Stencil Masks
	How to Make one PDF of all your Pictures (or Files)
	How to Create Vector Images
	How to Convert Images
	How to Use Pixmaps: Glueing Images
	How to Use Pixmaps: Making a Fractal
	How to Interface with NumPy
	How to Add Images to a PDF Page

	Text
	How to Extract all Document Text
	How to Extract Text from within a Rectangle
	How to Extract Text in Natural Reading Order
	How to Extract Tables from Documents
	How to Search for and Mark Text
	How to Analyze Font Characteristics
	How to Insert Text
	How to Write Text Lines
	How to Fill a Text Box
	How to Use Non-Standard Encoding

	Annotations
	How to Add and Modify Annotations
	How to Mark Text
	How to Use FreeText
	How to Use Ink Annotations

	Drawing and Graphics
	Multiprocessing
	General
	How to Open with a Wrong File Extension
	How to Embed or Attach Files
	How to Delete and Re-Arrange Pages
	How to Join PDFs
	How to Add Pages
	How To Dynamically Clean Up Corrupt PDFs
	How to Split Single Pages
	How to Combine Single Pages
	How to Convert Any Document to PDF
	How to Deal with Messages Issued by MuPDF
	How to Deal with PDF Encryption

	Common Issues and their Solutions
	Changing Annotations: Unexpected Behaviour
	Problem
	Cause
	Solutions

	Misplaced Item Insertions on PDF Pages
	Problem
	Cause
	Solutions

	Low-Level Interfaces
	How to Iterate through the xref Table
	How to Handle Object Streams
	How to Handle Page Contents
	How to Access the PDF Catalog
	How to Access the PDF File Trailer
	How to Access XML Metadata

	Using fitz as a Module
	Invocation
	Cleaning and Copying
	Extracting Fonts and Images
	Joining PDF Documents
	Low Level Information
	Embedded Files Commands
	Information
	Extraction
	Deletion
	Insertion
	Updates
	Copying

	Classes
	Annot
	Annotation Icons in MuPDF
	Example

	Colorspace
	DisplayList
	Document
	setMetadata() Example
	setToC() Demonstration
	insertPDF() Examples
	Other Examples

	Identity
	IRect
	Link
	linkDest
	Matrix
	Examples
	Shifting
	Flipping
	Shearing
	Rotating

	Outline
	Page
	Adding Page Content
	Description of getLinks() Entries
	Notes on Supporting Links
	Reading (pertains to method getLinks() and the firstLink property chain)
	Writing

	Homologous Methods of Document and Page

	Pixmap
	Supported Input Image Formats
	Supported Output Image Formats

	Point
	Quad
	Remark

	Rect
	Shape
	Usage
	Examples
	Common Parameters

	TextPage
	Dictionary Structure of extractDICT() and extractRAWDICT()
	Page Dictionary
	Block Dictionaries
	Line Dictionary
	Span Dictionary
	Character Dictionary for extractRAWDICT()

	Tools
	Example Session

	Widget
	Standard Fonts for Widgets

	Operator Algebra for Geometry Objects
	General Remarks
	Unary Operations
	Binary Operations
	Some Examples
	Manipulation with numbers
	Manipulation with “like” Objects

	Low Level Functions and Classes
	Functions
	Device
	Working together: DisplayList and TextPage
	Create a DisplayList
	Generate Pixmap
	Perform Text Search
	Extract Text
	Further Performance improvements
	Pixmap
	TextPage

	Glossary
	Constants and Enumerations
	Constants
	Document Permissions
	PDF encryption method codes
	Font File Extensions
	Text Alignment
	Preserve Text Flags
	Link Destination Kinds
	Link Destination Flags
	Annotation Related Constants
	Widget Constants
	Widget flags (field_flags)

	Stamp Annotation Icons

	Color Database
	Function getColor()
	Printing the Color Database

	Appendix 1: Performance
	Part 1: Parsing
	Part 2: Text Extraction
	Part 3: Image Rendering

	Appendix 2: Details on Text Extraction
	General structure of a TextPage
	Plain Text
	BLOCKS
	WORDS
	HTML
	Controlling Quality of HTML Output
	DICT (or JSON)
	RAWDICT
	XML
	XHTML
	Text Extraction Flags Defaults
	Performance

	Appendix 3: Considerations on Embedded Files
	General
	MuPDF Support
	PyMuPDF Support

	Appendix 4: Assorted Technical Information
	PDF Base 14 Fonts
	Adobe PDF Reference 1.7
	Using Python Sequences as Arguments in PyMuPDF
	Ensuring Consistency of Important Objects in PyMuPDF
	Design of Method Page.showPDFpage()
	Purpose and Capabilities
	Technical Implementation

	Redirecting Error and Warning Messages

	Change Logs
	Changes in Version 1.16.10
	Changes in Version 1.16.9
	Changes in Version 1.16.8
	Changes in Version 1.16.7
	Changes in Version 1.16.6
	Changes in Version 1.16.5
	Changes in Version 1.16.4
	Changes in Version 1.16.3
	Changes in Version 1.16.2
	Changes in Version 1.16.1
	Changes in Version 1.16.0
	No version published for MuPDF v1.15.0
	Changes in Version 1.14.20 / 1.14.21
	Changes in Version 1.14.19
	Changes in Version 1.14.17
	Changes in Version 1.14.16
	Changes in Version 1.14.15
	Changes in Version 1.14.14
	Changes in Version 1.14.13
	Changes in Version 1.14.12
	Changes in Version 1.14.11
	Changes in Version 1.14.10
	Changes in Version 1.14.9
	Changes in Version 1.14.8
	Changes in Version 1.14.7
	Changes in Version 1.14.5
	Changes in Version 1.14.4
	Changes in Version 1.14.3
	Changes in Version 1.14.1
	Changes in Version 1.14.0
	Changes in Version 1.13.19
	Changes in Version 1.13.18
	Changes in Version 1.13.17
	Changes in Version 1.13.16
	Changes in Version 1.13.15
	Changes in Version 1.13.14
	Changes in Version 1.13.13
	Changes in Version 1.13.12
	Changes in Version 1.13.11
	Changes in Version 1.13.7
	Changes in Version 1.13.6
	Changes in Version 1.13.5
	Changes in Version 1.13.4
	Changes in Version 1.13.3
	Changes in Version 1.13.2
	Changes in Version 1.13.1
	Changes in Version 1.13.0
	Changes in Version 1.12.4
	Changes in Version 1.12.3
	Changes in Version 1.12.2
	Changes in Version 1.12.1
	Changes in Version 1.12.0
	Changes in Version 1.11.2
	Changes in Version 1.11.1
	Changes in Version 1.11.0
	Changes in Version 1.10.0
	MuPDF v1.10 Impact
	Other Changes compared to Version 1.9.3

	Changes in Version 1.9.3
	Changes in Version 1.9.2
	Changes in Version 1.9.1

	Cross Reference

