FastLinAlg : Index
-
chooseGoodMinors -- returns an ideal generated by interesting minors in a matrix
-
chooseGoodMinors(..., DetStrategy => ...) -- DetStrateg is a strategy for allowing the user to choose how determinants (or rank), is computed
-
chooseGoodMinors(..., PeriodicCheckFunction => ...) -- returns an ideal generated by interesting minors in a matrix
-
chooseGoodMinors(..., Strategy => ...) -- strategies for choosing submatrices
-
chooseGoodMinors(..., Verbose => ...) -- returns an ideal generated by interesting minors in a matrix
-
chooseGoodMinors(ZZ,ZZ,Matrix) -- returns an ideal generated by interesting minors in a matrix
-
chooseRandomSubmatrix -- returns coordinates for a random submatrix
-
chooseRandomSubmatrix(ZZ,Matrix) -- returns coordinates for a random submatrix
-
chooseSubmatrixLargestDegree -- returns coordinates for higher degree submatrix of a matrix
-
chooseSubmatrixLargestDegree(ZZ,Matrix) -- returns coordinates for higher degree submatrix of a matrix
-
chooseSubmatrixSmallestDegree -- returns coordinates for low degree submatrix of a matrix
-
chooseSubmatrixSmallestDegree(ZZ,Matrix) -- returns coordinates for low degree submatrix of a matrix
-
CodimCheckFunction -- attempts to show that the ring is regular in codimension n
-
DetStrategy -- DetStrateg is a strategy for allowing the user to choose how determinants (or rank), is computed
-
FastLinAlg -- faster linear algebra in certain cases
-
getSubmatrixOfRank -- tries to find a submatrix of the given rank
-
getSubmatrixOfRank(..., DetStrategy => ...) -- DetStrateg is a strategy for allowing the user to choose how determinants (or rank), is computed
-
getSubmatrixOfRank(..., MaxMinors => ...) -- an option to control depth of search
-
getSubmatrixOfRank(..., Strategy => ...) -- strategies for choosing submatrices
-
getSubmatrixOfRank(..., Threads => ...) -- tries to find a submatrix of the given rank
-
getSubmatrixOfRank(..., Verbose => ...) -- tries to find a submatrix of the given rank
-
getSubmatrixOfRank(ZZ,Matrix) -- tries to find a submatrix of the given rank
-
GRevLexLargest -- strategies for choosing submatrices
-
GRevLexSmallest -- strategies for choosing submatrices
-
GRevLexSmallestTerm -- strategies for choosing submatrices
-
isCodimAtLeast -- returns true if we can quickly see whether the codim is at least a given number
-
isCodimAtLeast(..., PairLimit => ...) -- returns true if we can quickly see whether the codim is at least a given number
-
isCodimAtLeast(..., SPairsFunction => ...) -- returns true if we can quickly see whether the codim is at least a given number
-
isCodimAtLeast(..., Verbose => ...) -- returns true if we can quickly see whether the codim is at least a given number
-
isCodimAtLeast(ZZ,Ideal) -- returns true if we can quickly see whether the codim is at least a given number
-
isDimAtMost -- returns true if we can quickly see if the dim is at most a given number
-
isDimAtMost(..., PairLimit => ...) -- returns true if we can quickly see if the dim is at most a given number
-
isDimAtMost(..., SPairsFunction => ...) -- returns true if we can quickly see if the dim is at most a given number
-
isDimAtMost(..., Verbose => ...) -- returns true if we can quickly see if the dim is at most a given number
-
isDimAtMost(ZZ,Ideal) -- returns true if we can quickly see if the dim is at most a given number
-
isRankAtLeast -- determines if the matrix has rank at least a number
-
isRankAtLeast(..., DetStrategy => ...) -- DetStrateg is a strategy for allowing the user to choose how determinants (or rank), is computed
-
isRankAtLeast(..., MaxMinors => ...) -- an option to control depth of search
-
isRankAtLeast(..., Strategy => ...) -- strategies for choosing submatrices
-
isRankAtLeast(..., Threads => ...) -- determines if the matrix has rank at least a number
-
isRankAtLeast(..., Verbose => ...) -- determines if the matrix has rank at least a number
-
isRankAtLeast(ZZ,Matrix) -- determines if the matrix has rank at least a number
-
LexLargest -- strategies for choosing submatrices
-
LexSmallest -- strategies for choosing submatrices
-
LexSmallestTerm -- strategies for choosing submatrices
-
MaxMinors -- an option to control depth of search
-
MinDimension -- an option for projDim
-
MinMinorsFunction -- attempts to show that the ring is regular in codimension n
-
MinorsCache -- uses a recursive cofactor algorithm to compute the ideal of minors of a matrix
-
ModP -- an option for regularInCodimension
-
PeriodicCheckFunction -- returns an ideal generated by interesting minors in a matrix
-
projDim -- finds an upper bound for the projective dimension of a module
-
projDim(..., DetStrategy => ...) -- DetStrateg is a strategy for allowing the user to choose how determinants (or rank), is computed
-
projDim(..., MaxMinors => ...) -- an option to control depth of search
-
projDim(..., MinDimension => ...) -- finds an upper bound for the projective dimension of a module
-
projDim(..., Strategy => ...) -- strategies for choosing submatrices
-
projDim(..., Verbose => ...) -- finds an upper bound for the projective dimension of a module
-
projDim(Module) -- finds an upper bound for the projective dimension of a module
-
Random -- strategies for choosing submatrices
-
RandomNonzero -- strategies for choosing submatrices
-
Rank -- DetStrateg is a strategy for allowing the user to choose how determinants (or rank), is computed
-
Recursive -- DetStrateg is a strategy for allowing the user to choose how determinants (or rank), is computed
-
recursiveMinors -- uses a recursive cofactor algorithm to compute the ideal of minors of a matrix
-
recursiveMinors(..., MinorsCache => ...) -- uses a recursive cofactor algorithm to compute the ideal of minors of a matrix
-
recursiveMinors(..., Threads => ...) -- uses a recursive cofactor algorithm to compute the ideal of minors of a matrix
-
recursiveMinors(..., Verbose => ...) -- uses a recursive cofactor algorithm to compute the ideal of minors of a matrix
-
recursiveMinors(ZZ,Matrix) -- uses a recursive cofactor algorithm to compute the ideal of minors of a matrix
-
regularInCodimension -- attempts to show that the ring is regular in codimension n
-
regularInCodimension(..., CodimCheckFunction => ...) -- attempts to show that the ring is regular in codimension n
-
regularInCodimension(..., DetStrategy => ...) -- DetStrateg is a strategy for allowing the user to choose how determinants (or rank), is computed
-
regularInCodimension(..., MaxMinors => ...) -- an option to control depth of search
-
regularInCodimension(..., MinMinorsFunction => ...) -- attempts to show that the ring is regular in codimension n
-
regularInCodimension(..., ModP => ...) -- attempts to show that the ring is regular in codimension n
-
regularInCodimension(..., PairLimit => ...) -- attempts to show that the ring is regular in codimension n
-
regularInCodimension(..., SPairsFunction => ...) -- attempts to show that the ring is regular in codimension n
-
regularInCodimension(..., Strategy => ...) -- strategies for choosing submatrices
-
regularInCodimension(..., UseOnlyFastCodim => ...) -- attempts to show that the ring is regular in codimension n
-
regularInCodimension(..., Verbose => ...) -- attempts to show that the ring is regular in codimension n
-
regularInCodimension(ZZ,Ring) -- attempts to show that the ring is regular in codimension n
-
reorderPolynomialRing -- produces an isomorphic polynomial ring with a different, randomized, monomial order
-
reorderPolynomialRing(Symbol,Ring) -- produces an isomorphic polynomial ring with a different, randomized, monomial order
-
SPairsFunction -- returns true if we can quickly see whether the codim is at least a given number
-
StrategyCurrent -- strategies for choosing submatrices
-
StrategyDefault -- strategies for choosing submatrices
-
StrategyDefaultNonRandom -- strategies for choosing submatrices
-
StrategyGRevLexSmallest -- strategies for choosing submatrices
-
StrategyLexSmallest -- strategies for choosing submatrices
-
StrategyRandom -- strategies for choosing submatrices
-
Threads -- an option for various functions
-
UseOnlyFastCodim -- attempts to show that the ring is regular in codimension n