E
E [module, in Coq.FSets.FSetInterface]
E [module, in Coq.FSets.FMapInterface]
E [module, in Coq.FSets.FSetBridge]
E [module, in Coq.FSets.FSetAVL]
E [module, in Coq.FSets.FMapWeakList]
E [module, in Coq.FSets.FSetInterface]
E [module, in Coq.FSets.FMapAVL]
E [module, in Coq.FSets.FSetInterface]
E [module, in Coq.FSets.FMapPositive]
E [module, in Coq.FSets.FSetBridge]
E [module, in Coq.FSets.FMapInterface]
E [module, in Coq.FSets.FMapFullAVL]
E [module, in Coq.FSets.FSetWeakList]
E [module, in Coq.FSets.FMapList]
E [module, in Coq.FSets.FSetFullAVL]
E [module, in Coq.FSets.FSetList]
Efficient_Rec [section, in Coq.ZArith.Wf_Z]
elim [projection, in Coq.Program.Equality]
elim_type [projection, in Coq.Program.Equality]
Elts [section, in Coq.Lists.List]
Elts.A [variable, in Coq.Lists.List]
Elts.eqA_dec [variable, in Coq.Lists.List]
Elts.Remove [section, in Coq.Lists.List]
Elts.Remove.eq_dec [variable, in Coq.Lists.List]
EmptyBag [definition, in Coq.Sets.Multiset]
emptyBag [definition, in Coq.Sorting.Heap]
emptyBag [definition, in Coq.Sorting.Permutation]
emptyBag [definition, in Coq.Sorting.Sorting]
Emptyset [definition, in Coq.Sets.Uniset]
EmptyString [constructor, in Coq.Strings.String]
Empty_is_finite [constructor, in Coq.Sets.Finite_sets]
Empty_set [inductive, in Coq.Init.Datatypes]
Empty_set [inductive, in Coq.Sets.Ensembles]
empty_set [definition, in Coq.Lists.ListSet]
Empty_set_is_Bottom [lemma, in Coq.Sets.Powerset]
Empty_set_minimal [lemma, in Coq.Sets.Powerset]
Empty_set_zero [lemma, in Coq.Sets.Powerset_facts]
Empty_set_zero' [lemma, in Coq.Sets.Powerset_facts]
ENCODING_VALUE [section, in Coq.ZArith.Zbinary]
end_of_section [inductive, in Coq.Program.Equality]
Ensemble [definition, in Coq.Sets.Ensembles]
Ensembles [section, in Coq.Sets.Ensembles]
Ensembles [library]
Ensembles.U [variable, in Coq.Sets.Ensembles]
Ensembles_classical [section, in Coq.Sets.Classical_sets]
Ensembles_classical.U [variable, in Coq.Sets.Classical_sets]
Ensembles_facts [section, in Coq.Sets.Constructive_sets]
Ensembles_facts.U [variable, in Coq.Sets.Constructive_sets]
Ensembles_finis [section, in Coq.Sets.Finite_sets]
Ensembles_finis.U [variable, in Coq.Sets.Finite_sets]
Ensembles_finis_facts [section, in Coq.Sets.Finite_sets]
Ensembles_finis_facts.U [variable, in Coq.Sets.Finite_sets]
epic [projection, in Coq.Classes.Functions]
epic [constructor, in Coq.Classes.Functions]
epimorphism [projection, in Coq.Classes.Functions]
EpiMorphism [record, in Coq.Classes.Functions]
EpiMorphism [inductive, in Coq.Classes.Functions]
eps [abbreviation, in Coq.Logic.Diaconescu]
epsilon [definition, in Coq.Logic.Epsilon]
epsilon [definition, in Coq.Logic.ClassicalEpsilon]
Epsilon [library]
EpsilonStatement [abbreviation, in Coq.Logic.ChoiceFacts]
EpsilonStatement_on [definition, in Coq.Logic.ChoiceFacts]
epsilon_imp_constructive_indefinite_description [lemma, in Coq.Logic.ChoiceFacts]
epsilon_imp_small_drinker [lemma, in Coq.Logic.ChoiceFacts]
epsilon_inh_irrelevance [lemma, in Coq.Logic.ClassicalEpsilon]
epsilon_spec [definition, in Coq.Logic.ClassicalEpsilon]
epsilon_spec [definition, in Coq.Logic.Epsilon]
epsilon_statement [axiom, in Coq.Logic.Epsilon]
eps2 [lemma, in Coq.Reals.Rlimit]
eps2_Rgt_R0 [lemma, in Coq.Reals.Rlimit]
eps4 [lemma, in Coq.Reals.Rlimit]
Eq [constructor, in Coq.Init.Datatypes]
eq [inductive, in Coq.Init.Logic]
EQ [constructor, in Coq.FSets.OrderedType]
eqb [definition, in Coq.Bool.Bool]
eqb_eq [lemma, in Coq.Bool.Bool]
eqb_negb1 [lemma, in Coq.Bool.Bool]
eqb_negb2 [lemma, in Coq.Bool.Bool]
eqb_prop [lemma, in Coq.Bool.Bool]
eqb_refl [lemma, in Coq.Bool.Bool]
eqb_reflx [lemma, in Coq.Bool.Bool]
eqb_subst [lemma, in Coq.Bool.Bool]
EqDec [record, in Coq.Classes.SetoidDec]
EqDec [inductive, in Coq.Classes.SetoidDec]
EqDec [record, in Coq.Classes.EquivDec]
EqDec [inductive, in Coq.Classes.EquivDec]
Eqdep [library]
EqdepDec [section, in Coq.Logic.Eqdep_dec]
EqdepDec.A [variable, in Coq.Logic.Eqdep_dec]
EqdepDec.eq_dec [variable, in Coq.Logic.Eqdep_dec]
EqdepDec.x [variable, in Coq.Logic.Eqdep_dec]
EqdepElimination [module, in Coq.Logic.EqdepFacts]
EqdepElimination.eq_rect_eq [axiom, in Coq.Logic.EqdepFacts]
EqdepFacts [library]
EqdepTheory [module, in Coq.Logic.Classical_Prop]
EqdepTheory [module, in Coq.Logic.Eqdep]
EqdepTheory [module, in Coq.Logic.ProofIrrelevanceFacts]
EqdepTheory [module, in Coq.Logic.EqdepFacts]
EqdepTheory.Axioms [section, in Coq.Logic.EqdepFacts]
EqdepTheory.Axioms.U [variable, in Coq.Logic.EqdepFacts]
EqdepTheory.eq_dep_eq [lemma, in Coq.Logic.EqdepFacts]
EqdepTheory.eq_rect_eq [lemma, in Coq.Logic.EqdepFacts]
EqdepTheory.eq_rec_eq [lemma, in Coq.Logic.EqdepFacts]
EqdepTheory.inj_pairT2 [abbreviation, in Coq.Logic.EqdepFacts]
EqdepTheory.inj_pair2 [lemma, in Coq.Logic.EqdepFacts]
EqdepTheory.Streicher_K [lemma, in Coq.Logic.EqdepFacts]
EqdepTheory.UIP [lemma, in Coq.Logic.EqdepFacts]
EqdepTheory.UIP_refl [lemma, in Coq.Logic.EqdepFacts]
Eqdep_dec [library]
eqf [definition, in Coq.NArith.Ndigits]
eqf_refl [lemma, in Coq.NArith.Ndigits]
eqf_sym [lemma, in Coq.NArith.Ndigits]
eqf_trans [lemma, in Coq.NArith.Ndigits]
eqf_xorf [lemma, in Coq.NArith.Ndigits]
eqlistA [inductive, in Coq.Lists.SetoidList]
eqlistA_app [lemma, in Coq.Lists.SetoidList]
eqlistA_cons [constructor, in Coq.Lists.SetoidList]
eqlistA_length [lemma, in Coq.Lists.SetoidList]
eqlistA_nil [constructor, in Coq.Lists.SetoidList]
eqlistA_rev [lemma, in Coq.Lists.SetoidList]
eqlistA_rev_app [lemma, in Coq.Lists.SetoidList]
eqm [definition, in Coq.ZArith.Zdiv]
eqm_refl [lemma, in Coq.ZArith.Zdiv]
eqm_sym [lemma, in Coq.ZArith.Zdiv]
eqm_trans [lemma, in Coq.ZArith.Zdiv]
EqNat [library]
EqProperties [module, in Coq.FSets.FSetEqProperties]
eqR_Qeq [lemma, in Coq.QArith.Qreals]
EqShiftL [definition, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_firstr [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_incr [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_incrbis [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_i2l [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_le [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_shiftr [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_size [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_twice [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_twice_plus_one [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqShiftL_zero [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
EqSt [inductive, in Coq.Lists.Streams]
eqst [constructor, in Coq.Lists.Streams]
eqst_ntheq [lemma, in Coq.Lists.Streams]
EqSt_reflex [lemma, in Coq.Lists.Streams]
Equality [library]
EqualityType [module, in Coq.Logic.DecidableType]
EqualityType.eq [axiom, in Coq.Logic.DecidableType]
EqualityType.eq_refl [axiom, in Coq.Logic.DecidableType]
EqualityType.eq_sym [axiom, in Coq.Logic.DecidableType]
EqualityType.eq_trans [axiom, in Coq.Logic.DecidableType]
EqualityType.t [axiom, in Coq.Logic.DecidableType]
equal_f [lemma, in Coq.Logic.FunctionalExtensionality]
equiv [definition, in Coq.Relations.Relation_Definitions]
equiv [definition, in Coq.Classes.Equivalence]
equiv [projection, in Coq.Classes.SetoidClass]
Equivalence [section, in Coq.Init.Logic]
equivalence [record, in Coq.Relations.Relation_Definitions]
Equivalence [record, in Coq.Classes.RelationClasses]
Equivalence [inductive, in Coq.Sets.Relations_1]
Equivalence [library]
Equivalences [section, in Coq.Logic.EqdepFacts]
Equivalences.U [variable, in Coq.Logic.EqdepFacts]
equivalence_default [instance, in Coq.Classes.SetoidTactics]
Equivalence_PER [instance, in Coq.Classes.RelationClasses]
Equivalence_Reflexive [projection, in Coq.Classes.RelationClasses]
Equivalence_Symmetric [projection, in Coq.Classes.RelationClasses]
Equivalence_Transitive [projection, in Coq.Classes.RelationClasses]
EquivDec [library]
equivlistA [definition, in Coq.Lists.SetoidList]
equivlistA_NoDupA_split [lemma, in Coq.Lists.SetoidList]
equiv_dec [projection, in Coq.Classes.SetoidDec]
equiv_dec [constructor, in Coq.Classes.SetoidDec]
equiv_dec [projection, in Coq.Classes.EquivDec]
equiv_dec [constructor, in Coq.Classes.EquivDec]
equiv_decb [definition, in Coq.Classes.EquivDec]
equiv_decb [definition, in Coq.Classes.SetoidDec]
equiv_eqex_eqdep [lemma, in Coq.Logic.EqdepFacts]
Equiv_from_order [lemma, in Coq.Sets.Relations_1_facts]
Equiv_from_preorder [lemma, in Coq.Sets.Relations_1_facts]
equiv_nequiv_trans [lemma, in Coq.Classes.SetoidClass]
equiv_refl [projection, in Coq.Relations.Relation_Definitions]
equiv_reflexive [instance, in Coq.Classes.Equivalence]
equiv_sym [projection, in Coq.Relations.Relation_Definitions]
equiv_symmetric [instance, in Coq.Classes.Equivalence]
equiv_trans [projection, in Coq.Relations.Relation_Definitions]
equiv_transitive [instance, in Coq.Classes.Equivalence]
equiv_Tree [definition, in Coq.Sorting.Heap]
eq0 [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleCyclic]
eq_add_S [lemma, in Coq.Init.Peano]
eq_bool_prop_elim [lemma, in Coq.Bool.Bool]
eq_bool_prop_intro [lemma, in Coq.Bool.Bool]
eq_dec [definition, in Coq.Bool.BoolEq]
eq_dep [inductive, in Coq.Logic.EqdepFacts]
eq_dep1 [inductive, in Coq.Logic.EqdepFacts]
eq_dep1_dep [lemma, in Coq.Logic.EqdepFacts]
eq_dep1_intro [constructor, in Coq.Logic.EqdepFacts]
eq_dep_dep1 [lemma, in Coq.Logic.EqdepFacts]
Eq_dep_eq [definition, in Coq.Logic.EqdepFacts]
eq_dep_eq_dec [lemma, in Coq.Logic.Eqdep_dec]
eq_dep_eq_positive [lemma, in Coq.NArith.BinPos]
eq_dep_eq_sigT [lemma, in Coq.Logic.EqdepFacts]
eq_dep_eq__inj_pairT2 [abbreviation, in Coq.Logic.EqdepFacts]
eq_dep_eq__inj_pair2 [lemma, in Coq.Logic.EqdepFacts]
eq_dep_eq__UIP [lemma, in Coq.Logic.EqdepFacts]
eq_dep_id_JMeq [lemma, in Coq.Logic.JMeq]
eq_dep_intro [constructor, in Coq.Logic.EqdepFacts]
eq_dep_JMeq [lemma, in Coq.Logic.JMeq]
eq_dep_refl [lemma, in Coq.Logic.EqdepFacts]
eq_dep_strictly_stronger_JMeq [lemma, in Coq.Logic.JMeq]
eq_dep_sym [lemma, in Coq.Logic.EqdepFacts]
eq_dep_trans [lemma, in Coq.Logic.EqdepFacts]
eq_Dom [definition, in Coq.Reals.Rtopology]
eq_equiv [lemma, in Coq.Numbers.NumPrelude]
eq_equivalence [instance, in Coq.Classes.RelationClasses]
eq_eq_nat [lemma, in Coq.Arith.EqNat]
eq_Fix_measure_F_sub [lemma, in Coq.Program.Wf]
eq_ind_r [definition, in Coq.Init.Logic]
eq_IZR [lemma, in Coq.Reals.RIneq]
eq_IZR_R0 [lemma, in Coq.Reals.RIneq]
eq_nat [definition, in Coq.Arith.EqNat]
eq_nat_dec [lemma, in Coq.Arith.Peano_dec]
eq_nat_decide [lemma, in Coq.Arith.EqNat]
eq_nat_elim [lemma, in Coq.Arith.EqNat]
eq_nat_eq [lemma, in Coq.Arith.EqNat]
eq_nat_is_eq [lemma, in Coq.Arith.EqNat]
eq_nat_refl [lemma, in Coq.Arith.EqNat]
eq_proofs_unicity [lemma, in Coq.Logic.Eqdep_dec]
Eq_rect_eq [module, in Coq.Logic.Eqdep]
Eq_rect_eq [definition, in Coq.Logic.EqdepFacts]
Eq_rect_eq [module, in Coq.Logic.ProofIrrelevanceFacts]
Eq_rect_eq [module, in Coq.Logic.Classical_Prop]
Eq_rect_eq.eq_rect_eq [lemma, in Coq.Logic.Classical_Prop]
Eq_rect_eq.eq_rect_eq [axiom, in Coq.Logic.Eqdep]
eq_rect_eq_dec [lemma, in Coq.Logic.Eqdep_dec]
eq_rect_eq__eq_dep1_eq [lemma, in Coq.Logic.EqdepFacts]
eq_rect_eq__eq_dep_eq [lemma, in Coq.Logic.EqdepFacts]
eq_rect_r [definition, in Coq.Init.Logic]
eq_rec_r [definition, in Coq.Init.Logic]
eq_Reflexive [instance, in Coq.Classes.RelationClasses]
eq_S [definition, in Coq.Init.Peano]
eq_setoid [instance, in Coq.Classes.SetoidDec]
eq_sigS_eq_dep [abbreviation, in Coq.Logic.EqdepFacts]
eq_sigT_eq_dep [lemma, in Coq.Logic.EqdepFacts]
eq_stepl [lemma, in Coq.Init.Logic]
eq_Symmetric [instance, in Coq.Classes.RelationClasses]
eq_Transitive [instance, in Coq.Classes.RelationClasses]
eq_true [inductive, in Coq.Init.Datatypes]
eq_true_false_abs [lemma, in Coq.Bool.Bool]
eq_true_iff_eq [lemma, in Coq.Bool.Bool]
eq_true_ind_r [lemma, in Coq.Init.Datatypes]
eq_true_negb_classical [lemma, in Coq.Bool.Bool]
eq_true_not_negb [lemma, in Coq.Bool.Bool]
eq_true_rect_r [lemma, in Coq.Init.Datatypes]
eq_true_rec_r [lemma, in Coq.Init.Datatypes]
error [definition, in Coq.Init.Specif]
eta_expansion [lemma, in Coq.Logic.FunctionalExtensionality]
eta_expansion_dep [lemma, in Coq.Logic.FunctionalExtensionality]
Euclid [inductive, in Coq.ZArith.Znumtheory]
euclid [lemma, in Coq.ZArith.Znumtheory]
Euclid [library]
euclidian_division [lemma, in Coq.Reals.ArithProp]
Euclid_intro [constructor, in Coq.ZArith.Znumtheory]
euclid_rec [lemma, in Coq.ZArith.Znumtheory]
eucl_dev [lemma, in Coq.Arith.Euclid]
EUn [definition, in Coq.Reals.Rseries]
EUn_noempty [lemma, in Coq.Reals.Rseries]
even [inductive, in Coq.Arith.Even]
Even [library]
eventually [definition, in Coq.Arith.Between]
event_O [lemma, in Coq.Arith.Between]
even_div2 [lemma, in Coq.Arith.Div2]
even_double [lemma, in Coq.Arith.Div2]
even_even_plus [lemma, in Coq.Arith.Even]
even_mult_aux [lemma, in Coq.Arith.Even]
even_mult_inv_l [lemma, in Coq.Arith.Even]
even_mult_inv_r [lemma, in Coq.Arith.Even]
even_mult_l [lemma, in Coq.Arith.Even]
even_mult_r [lemma, in Coq.Arith.Even]
even_O [constructor, in Coq.Arith.Even]
even_odd_cor [lemma, in Coq.Reals.ArithProp]
even_odd_dec [lemma, in Coq.Arith.Even]
even_odd_div2 [lemma, in Coq.Arith.Div2]
even_odd_double [lemma, in Coq.Arith.Div2]
even_or_odd [lemma, in Coq.Arith.Even]
even_plus_aux [lemma, in Coq.Arith.Even]
even_plus_even_inv_l [lemma, in Coq.Arith.Even]
even_plus_even_inv_r [lemma, in Coq.Arith.Even]
even_plus_odd_inv_l [lemma, in Coq.Arith.Even]
even_plus_odd_inv_r [lemma, in Coq.Arith.Even]
even_plus_split [lemma, in Coq.Arith.Even]
even_S [constructor, in Coq.Arith.Even]
even_2n [lemma, in Coq.Arith.Div2]
ex [inductive, in Coq.Init.Logic]
Examples [section, in Coq.QArith.Qfield]
Examples [section, in Coq.Numbers.Rational.BigQ.BigQ]
Exc [definition, in Coq.Init.Specif]
except [definition, in Coq.Init.Specif]
excluded_middle [definition, in Coq.Logic.ClassicalFacts]
excluded_middle_Godel_Dummett [lemma, in Coq.Logic.ClassicalFacts]
excluded_middle_independence_general_premises [lemma, in Coq.Logic.ClassicalFacts]
excluded_middle_informative [lemma, in Coq.Logic.ClassicalDescription]
excluded_middle_informative [lemma, in Coq.Logic.ClassicalEpsilon]
exist [constructor, in Coq.Init.Specif]
Exists [inductive, in Coq.Lists.Streams]
existS [abbreviation, in Coq.Init.Specif]
existsb [definition, in Coq.Lists.List]
existsb_exists [lemma, in Coq.Lists.List]
existsb_nth [lemma, in Coq.Lists.List]
existS2 [abbreviation, in Coq.Init.Specif]
exists_beq_eq [definition, in Coq.Bool.BoolEq]
exists_between [inductive, in Coq.Arith.Between]
exists_inhabited [lemma, in Coq.Init.Logic]
exists_in_int [lemma, in Coq.Arith.Between]
exists_last [lemma, in Coq.Lists.List]
exists_le [constructor, in Coq.Arith.Between]
exists_le_S [lemma, in Coq.Arith.Between]
exists_lt [lemma, in Coq.Arith.Between]
Exists_map [lemma, in Coq.Lists.Streams]
exists_S [constructor, in Coq.Arith.Between]
exists_S_le [lemma, in Coq.Arith.Between]
existT [constructor, in Coq.Init.Specif]
existT2 [constructor, in Coq.Init.Specif]
exist2 [constructor, in Coq.Init.Specif]
exist_cos [lemma, in Coq.Reals.Rtrigo_def]
exist_cos0 [lemma, in Coq.Reals.Rtrigo_def]
exist_exp [lemma, in Coq.Reals.Rtrigo_def]
exist_exp0 [lemma, in Coq.Reals.Rtrigo_def]
exist_PI [lemma, in Coq.Reals.AltSeries]
exist_sin [lemma, in Coq.Reals.Rtrigo_def]
exp [definition, in Coq.Reals.Rtrigo_def]
exp_cof_no_R0 [lemma, in Coq.Reals.Rtrigo_def]
exp_form [lemma, in Coq.Reals.Exp_prop]
exp_in [definition, in Coq.Reals.Rtrigo_def]
exp_increasing [lemma, in Coq.Reals.Rpower]
exp_ineq1 [lemma, in Coq.Reals.Rpower]
exp_inv [lemma, in Coq.Reals.Rpower]
exp_le_3 [lemma, in Coq.Reals.Rpower]
exp_ln [lemma, in Coq.Reals.Rpower]
exp_lt_inv [lemma, in Coq.Reals.Rpower]
exp_plus [lemma, in Coq.Reals.Exp_prop]
exp_pos [lemma, in Coq.Reals.Exp_prop]
exp_pos_pos [lemma, in Coq.Reals.Exp_prop]
Exp_prop [library]
exp_Ropp [lemma, in Coq.Reals.Rpower]
exp_0 [lemma, in Coq.Reals.Rtrigo_def]
extend [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
extend [definition, in Coq.Numbers.Natural.BigN.Nbasic]
extended_euclid_algorithm [section, in Coq.ZArith.Znumtheory]
extended_euclid_algorithm.a [variable, in Coq.ZArith.Znumtheory]
extended_euclid_algorithm.b [variable, in Coq.ZArith.Znumtheory]
ExtendMax [section, in Coq.Numbers.Natural.BigN.Nbasic]
ExtendMax.m [variable, in Coq.Numbers.Natural.BigN.Nbasic]
ExtendMax.v [variable, in Coq.Numbers.Natural.BigN.Nbasic]
ExtendMax.w [variable, in Coq.Numbers.Natural.BigN.Nbasic]
extend_aux [definition, in Coq.Numbers.Cyclic.DoubleCyclic.DoubleBase]
extend_tr [definition, in Coq.Numbers.Natural.BigN.Nbasic]
Extension [lemma, in Coq.Sets.Constructive_sets]
ExtensionalEpsilon_imp_EM [section, in Coq.Logic.Diaconescu]
ExtensionalEpsilon_imp_EM.epsilon [variable, in Coq.Logic.Diaconescu]
ExtensionalEpsilon_imp_EM.epsilon_extensionality [variable, in Coq.Logic.Diaconescu]
ExtensionalEpsilon_imp_EM.epsilon_spec [variable, in Coq.Logic.Diaconescu]
Extensionality_Ensembles [axiom, in Coq.Sets.Ensembles]
ExtensionalProperties [section, in Coq.Numbers.NumPrelude]
ExtensionalProperties.A [variable, in Coq.Numbers.NumPrelude]
ExtensionalProperties.Aeq [variable, in Coq.Numbers.NumPrelude]
ExtensionalProperties.B [variable, in Coq.Numbers.NumPrelude]
ExtensionalProperties.Beq [variable, in Coq.Numbers.NumPrelude]
ExtensionalProperties.C [variable, in Coq.Numbers.NumPrelude]
ExtensionalProperties.Ceq [variable, in Coq.Numbers.NumPrelude]
extensional_epsilon_imp_EM [lemma, in Coq.Logic.Diaconescu]
ext_prop_dep_proof_irrel_cc [lemma, in Coq.Logic.ClassicalFacts]
ext_prop_dep_proof_irrel_cic [lemma, in Coq.Logic.ClassicalFacts]
ext_prop_dep_proof_irrel_gen [lemma, in Coq.Logic.ClassicalFacts]
ext_prop_fixpoint [lemma, in Coq.Logic.ClassicalFacts]
ex1 [definition, in Coq.Numbers.Rational.BigQ.BigQ]
ex1 [definition, in Coq.QArith.Qfield]
ex1 [definition, in Coq.QArith.Qreals]
ex10 [definition, in Coq.Numbers.Rational.BigQ.BigQ]
ex10 [definition, in Coq.QArith.Qfield]
ex2 [definition, in Coq.QArith.Qfield]
ex2 [definition, in Coq.QArith.Qreals]
ex2 [inductive, in Coq.Init.Logic]
ex3 [definition, in Coq.QArith.Qfield]
ex4 [definition, in Coq.QArith.Qfield]
ex5 [definition, in Coq.QArith.Qfield]
ex6 [definition, in Coq.QArith.Qfield]
ex7 [definition, in Coq.QArith.Qfield]
ex8 [definition, in Coq.QArith.Qfield]
ex8 [definition, in Coq.Numbers.Rational.BigQ.BigQ]
ex9 [definition, in Coq.QArith.Qfield]
ex_iff_morphism [instance, in Coq.Classes.Morphisms_Prop]
ex_impl_morphism [instance, in Coq.Classes.Morphisms_Prop]
ex_intro [constructor, in Coq.Init.Logic]
ex_intro2 [constructor, in Coq.Init.Logic]
ex_inverse_impl_morphism [instance, in Coq.Classes.Morphisms_Prop]
ex_not_not_all [lemma, in Coq.Logic.Classical_Pred_Set]
ex_not_not_all [lemma, in Coq.Logic.Classical_Pred_Type]
E1 [definition, in Coq.Reals.Exp_prop]
E1_cvg [lemma, in Coq.Reals.Exp_prop]