Cook

Tutorial

Aryeh M. Friedman
aryeh@m-net.arbornet.org

This document describes Cook version 2.34
and was prepared 21 February 2011.

This document describing the Cook program is
Copyright © 2002 Aryeh M. Friedman

Cook itself is
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your optionydater version.

This program is distributed in the hope that it will be usefut, WITHOUT ANY
WARRANTY; without esen the implied warranty of MERCHANABILITY or FITNESS
FOR A FRARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should hae receved a mpy of the GNU General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

Cook

1. Building Programs

If you write simple programs (aviehundred lines
of code at most) compiling the program is often
no more then something ékhis:

gcc foo.c -0 foo
If you have a w files in your program you just
do:

gcc foo.c ack.c -o foo
But what happens if some file that is being
compiled is the output of an other programglik
using yacc/lge to construct a command line
parser)? Otously f 00. ¢ does not exist before
f 0o.y is processed by yacc. Thus yowéadp
do:

yacc foo.y

cc foo.c ack.c -0 foo
What happens if say you modifck. ¢ but do
not modifyf 0o. y? You can skip the yacc step.
For a gnall program lile the one abee it is
possible to remember what order you need to do
stuff in and what needs to be done depending on
what file you modify.

Let's add one more complication Ist'say you
have a Ibrary that also needs to be "built" before
the eecutable(s) is bilt. You need to not only
remember what steps are needed to construct the
library object file but you also need to remember
that it needs to be done you reakyour
executables. Nw add to this you also need to
keep track of different ersions as well figuring
out hav to huild different versions for diérent
platforms and/or customers (say you support
Windows, Unix and hee a ient, Server and
trial, desktop and enterprisergions of each and
you need to produce wprand all combination of
things... thas 24 dfferent versions of the same
set of aecutables). Itnow becomes almost
impossible to to remember Wwoeach on is hilt.

On top all this if you hild it differently esery
time you need to recompile the program there is
no guarantee you will not introduceids due to
only the order stdifvas built in.

And the abwe example is for a "small"
applications (maybe 10 to 20 files) what happens
if you have a nedium or lage project (100s or
1000s of files) and 10+ or 100xeeutables with
each one having 10+ different configurations.

is clearly the number of possible ways to mak
this approaches infinityery rapidly (in algorithm
designer term®(n!)). Therehas to be a easier
way! Traditionally people h&e wsed a tool called
make to handle this compkity, but male has

Aryeh M. Friedman

Tutorial

some major flaws such that it is very hard if not
impossible to ma& know how to build the entire
project without some super nasty andwéd
"hacks". Inthe last fev years a program called
Cook has gined a small but growing popularity
as a extremely "intelligent" replacement for make.

2. Dependency Graphs

Clearly, for ary build process the uld
management utility (e.gcook or make) needs to
know that for eent Y to occur gent X has to
happen first. This kmndledge is called a
dependengc In smple programs it is possible to
just tell the build manager that X depends on Y
This has a f& problems:

« You can not define generic dependencies
for example you can not say that .adl files
depend on c files of the same name.

« Often there are intermediate files created
during the build process for xample
foo.y - foo.c - foo.o - foo.
This means that each intermediate file
needs to be made before the final program
is built.

+ In almost all projects there is no singlaw
of producing aw given file type. For
example ack.c does not need to be
created from theack.y file but f 0o. c
does need to be created from theo. y
file.

« Many times maw things depend orvent X
but X can not happen until Y happenBor
example if you need to compile all the
files into. o files before you can combine
them into a library then once the library is
made then andnly then can you build all
the &ecutables that need that library.

- Depending on whatariant of an gecutable
you are hilding you may hee a otal
different set of dependencies for that
executable. Br example the Microsoft
version of your program may be totally
different than the Unix one.

Thus one of the most fundamental things/ an
build manager needs to kwois create a "graph"

of all the dependencies (i.e. what depends on
what and what order sfuieeds to be built in).

Obviously if you modify only a file or tew and
retuild the project you only need to recreate those
files that depend on the ones you changéd.

Page 1

Cook Tutorial

example if I modifyf 0o. y but not ack. ¢ then « A list of other recipes that need to be
ack.c does not need to be recompiledtb "cooked" before this recipe can be
foo.c after it is recreated doesAll build processed. Thbest way to think of this is
managers kne how to do tis. to use the metaphor that cook is based on.
That being in order to makmeal at a fine
restaurant you need to makach dish.For
3. Cook vs. Make each dish you need to combine the
Many times the contents of entire directories ingredients in the right order at the right
depend on the ilding of everything in other time. You keep dividing up the task until
directories. Mak has traditionally done this with you get to a task that does not depend on
"recursive make". Thereis a basic fla with this something else lik seing if you hae
method though: if you "blindly" mak each enough eggs to mek the bread. A
directory in some preset order you are doingf stuf dependeng graph for building a softare
that is either unneeded and/or may cause project is almost identical except the
problems in the build process down the ro&odr ingredients are source code not food.

a more complete explanation, see Recwgdviake

Considered Harmfl « A list of actions to perform once all the

ingredient are ready Agan using the

Cook tales the opposite approach. It makes a cooking example, in order to mak Fench
complete dependeng graph of your entire project cream sauce youather all the ingredients
then does the entire "cook" at the root directory of (in cooks cases the output from other
your project. recipes) and then andnly then put the
butter in the pan with the the flour and
4. Teaching COOk abOUt brown it, then slowly mix the milk in, and

finally add in the cheese.

DependenCIes So in summary we e the following parts of a
Eachnode in a dependencgraph has tw basic recipe:

attributes. Thdirst is what other nodes (if any) it
depends on, and the second is a list of actions
needed to be performed to bring the nogeto « A list of ingredients needed to cook the
date (bring it to a state in which gmodes that recipe

depend on it can usedtiroducts safely).

« The name of the recipehode in the graph

« Alist of steps performed to cook the recipe
One issue we ha right off the bat is which node
do we start at. While by ceantion this node is
usually calledal | ’ it does not hee © be, as we

From the top ledl view in order to mak a
hypothetical project we do the following recipes:

will see later it might notven havea hard coded + We repeatedly process dependgngraph
name at all. Once we kmowhere to start we nodes until we get &af node (one that
need somsay of linking nodes together in the does not hee any ngredients). Namelwe
dependengcgraph. go from the general to the specific not the

In cook all this functionality is handled by other way.

recipes. In basic terms a recipe is: . Visit theal | recipe which hagr ogr ani

- The name of the node so other nodesakno andpr ogr an? as its ingredients

howv to link to it (this name can be « Visit the programl node which has
dynamic). Thisname is usually the name programl.o and libutils.a as its
of a file, but not avays. ingredients

« Visit programl. o which has
programl. c and programl. h as its

ingredients
« Visit progr ani. c to discwer that it is a
L. Miler, PA. (1998). Recursive Make Considered leaf node, because the file alreadists we
Harmful, AUUGN Journal of AJUG Inc., 19(1), pp.

need to do nothing to create it.
14-25,

http://aegis.sourceforge.net/auug97.pdf

Aryeh M. Friedman Page 2

Cook Tutorial

« Visit progr ani. h to discwer that it is a « Now that we hsge dl the ingredients for
leaf node, because the file alreadises we progran? we can cook it with a
need to do nothing to create it. command something like

gcc progranmR.o libutils.a \

« Now that we hse dl the ingredients for

programl. o we can cook it with a -0 programg
command something like » Return to theal | recipe and find that we
gcc -c programl.c \ have @moked all the ingredients and there
-0 progrant. o are no other actions for it\e ae done and

other actions for |
. Visit the | i butils.a node which has our entire project is built

i bl. o as its only ingredient. Now what happens if | say modifyr ogr an?. c

all we hae o do is walk to the entire graph from
al I and we find thapr ogr an®. ¢ has changed,
and do ap node which depends on
progran?. ¢ needs to be brought up to date,

« Visit | i bl. c to discwer that it is a leaf
node, because the file already exists we
need to do nothing to create it.

« Now that we hsge dl the ingredients for and ay nodes which depend dhem, and so on.
[ibl. o we can cook it with a command In this example, this auld bepr ogran?. c -
something like progranm?. o - progran? - all.

gcc -c libl.c -o libl.o
- Now that we hae dl the ingredients for 5. Recipe Syntax

libutils.a we can cook it with a

L All statements, recipes and otherwise, are in the
command something like

. . form of
rmlibutils.a)
ar cq libutils.a libl.o statem_ent,_ -
Note the terminating simicolon . An example
« Now that we hsge dl the ingredients for statement is
programl we can cook it with a echo aryeh;
command something like The only time the the simicolon) is not needed
gcc programl.o libutils.a \ isincompound statements surrounded kgurly
-0 prograntl braces} . In general the corention is to follav

the same general form that C uses, as it is with
most modern programming languageghis
means that for the main part almosergthing

« Visit the progranm? node which has
progran?.o0 and libutils.a as its

ingredients you have learned about writing ¢ statements

« Visit progran?. o which has works just fine in cook. The only exception are
progran?.c and programl. h as its the [square brackts | used instead of(
ingredients parenthesek in most cases.

« Visit progr an?. c to discwer that it is a The general form of a recipe, there are some
leaf node, because the file already exists we adwanced options that do not fit well into this
need to do nothing to create it. format, is:

« Visit progr an®. h to discwer that it is a name: - ingredients
leaf node, because the file already exists we { :

. . actions
need to do nothing to create it. }

« Now that we hsge dl the ingredients for

program®. o we can cook it with a Note: the actions and ingredients are optional.

command something like Here is a recipe from the amexample:
gcc -c progran?.c \ programl. o: progranl.c programdl.h
-0 progranf.o {

gcc -c programl.c

- There is no need to visit the butil s. a .
-0 progrant. o;

node, or ap of its ingredient nodes, }
because Cook remembers thatytheave
been brought up to date already. The only thing to remember here is that

Aryeh M. Friedman Page 3

Cook

programl. ¢ either has to exist or Cook needs
to knov how to cook it. If you reference an
ingredient that Cook does not kmdwow to cook
you get the following error:
cook: progranil: don’'t know how
cook: cookfile: 1: "programl"
not derived due to errors
deriving "programl. o"

All this says is there is no algorithmic way to
build exanpl el. o that Cook can find.

A cookbook file can contain zero or more recipes.

If there is nadefault recipe (the first recipe whose

name is hard coded) you get the following error:
cook: no default target

Most of the time this just means that Cook cannot
figure out what the "concrete" name of a recipe is
based solely by reading the cookbook. Byaaf
cook looks for the cookbook in "kdo.cook”
[note 1].

6. A Sample Project

For the remainder of the tutorial we will be using
the following sample project source tree:

=5 Project
J=—How 0. cook

=—Lib

1bl.c
T=Tib.h
ogl

srcl.
Src2.

nal n.

srcl.
Src2.

nail n.

F=——progl
- F=—manual
S5—prog2
- “=—manual

The final output of the wld process will be
completely working and installedkecutables of
progl and prog2 installed in /usr/local/bin and the
documentation being placed in
{usr/local/share/doc/myproj.

7. Our First Cookbook

The first step in making a cookbook is teth

I AL

lfl

o0

I AL

LA
i
o
«Q
N
O

o0

YT

(¢

k

Aryeh M. Friedman

Tutorial

out the decencies in our sample project the graph
would be:

Now we know enough to write the first version of
our cookbook. The cookbook which folis
doesnt actually cook anything, because it
contains ingredients and no action&’e will add
the actions needed in a later section. Here it is:
/* top level target */
all: /usr/local/bin/progl
/usr/ 1 ocal / bin/prog2

/usr/ 1 ocal / share/ doc/ progl/ manual
[usr/ 1 ocal / share/ doc/ prog2/ manual

/[* where to install stuff */
[usr/ 1 ocal /bin/progl:

bi n/ progl ;
[usr /1 ocal / bi n/ prog2:

bi n/ prog2 ;

[usr/ 1 ocal / share/ doc/ progl/ manual :

doc/ progl/ manual ;

[usr/ 1 ocal / share/ doc/ prog2/ manual :

doc/ prog2/ manual ;

/[* how to |ink

bi n/ progl:
progl/ mai n.
progl/srcl.
progl/src2.
[ib/liblib.

bi n/ prog2:
prog2/ mai n.
prog2/srcl.
prog2/src2.
[ib/liblib.

each program */

©®Q O O O

©®Q O O O

Page 4

Cook

/* how to use yacc */
prog2/src2.c: prog2/src2.y ;

/* how to conpile sources */

progl/ mai n.o: progl/min.c ;
progl/srcl.o: progl/srcl.c ;
progl/src2.o0: progl/src2.c ;
prog2/ mai n.o: prog2/main.c ;
prog2/srcl.o: prog2/srcl.c ;
prog2/src2.0: prog2/src2.c ;
lib/srcl.o: lib/srcl.c ;
lib/src2.0: lib/src2.c ;
/* include file dependencies */
progl/main.o: lib/lib.h ;
progl/srcl.o: lib/lib.h ;
progl/src2.0: lib/lib.h ;
prog2/main.o: lib/lib.h ;
prog2/srcl.o: lib/lib.h ;
prog2/src2.0: lib/lib.h ;
lib/srcl.o: lib/lib.h;
[ib/src2.0: lib/lib.h;
/* how to build the library */
[ib/liblib.a:

lib/srcl.o

lib/src2.0 ;

In order to cook this cookbook just type the

cook
command in the same directory as the cookbook
is in.

8. Soft coding Recipes

One of the most glaring problems with this first
version of our cookbook is it hard codes
evaything. Thishas two problems:

« We have to be super verbose in \wowe
describe stdf since we hse © ecify
evay single recipe by hand.

. If we add ne files (maybe we add a third
executable to the project) we &
rewrite the cookbook foevery file we add.

Fortunately Cook has a way of automating the
build with implicit recipes. It has a ay of saying
how to move from ary arbitrary . ¢ file to its. o
file.

Cook provides seral methods for being able to
soft code these relationships. This section
discusses file "patterns” that can be used to do
pattern matching on what recipe to cook for a
given file.

Note on pattern matching notation used in this

Aryeh M. Friedman

Tutorial

section:
[string] means the matched pattern.

The first thing to kep in mind about cook’
pattern matching is once a pattern is matched it
will have the same value for the remainder of the
recipe. So for example if we matched
prog/[srcl].c then an other reference to that
pattern will also return srclFor example:

prog/ [srcl]. o: prog/[srcl]. o ;
if we matched srcl on the first match
(progl/ [srcl]. o) then we will alvays match
srclin this recipe ifr ogl/ [srcl]. c).

Cook uses the percen®(character to denote
matches of the relag fle name (no path)Thus
the abwe recipe would be written:

prog/ % o: prog/ %c ;

Cook also lets you match the full path of a file, or
parts of the path to a file. This done wim
wheren is a part numberFor example

/usr/ 1 ocal /bin/progl
could match the pattern

[/ 92/ Y8/ %
with the parts be assigned

%1 usr

%2 local

%3 bin
% progl

Note that the final component of the path has no
(there is no% for progl). If we want to
reference the whole path, Cook uses %0 as a
special pattern to do this.

/usr/ 1 ocal /bin/progl
could match the pattern

%%
with the parts be assigned

%0
%

lusr/local/bin/
progl

Paterns are connected together tB@9 c will
match any c file in ary pattern.

Let's rewrite the cookbook for our sample project
using pattern matching. The redat portions of
our cookbook are replaced by

/* how to use yacc */

W% c: %W%y;

/[* include file dependencies */
%W%c: lib/lib.h;

/* how to conpile sources */
%% o: %% c;

Page 5

Cook Tutorial

When constructing the dependgngraph Cook why then do we need twdifferent operations to
will match the the first recipe it sees that meets all do the same thing, this violates the principle of
the requirements to meet avgi pattern. l.e.if ary given operation it should only occur in one
we hae a pttern forprogl/ % c and one for place. Inreality all we need to do is)& me
%% o and it needs to find the right recipe for way of changing the just theaviable name and
progl/ src. o it will match the one that appears not the values it produces. In cook we do this

first in the cookbook. So if the first one%®% c with something lile [[dir_name]_obj]. Theactual
then it does that recipeven if we meant for it to procedure for getting the list of files will be
matchpr ogl/ % c. covered in the "control structures” section.

) Let's revise some sections of our sample progct’
0. Arbltrary Statements cookbook to tak advantage of variables:

. * i *
and Variables / Whersto |nstall.stuff /
prefix = /usr/local;

Any statement that is not a recipe, and not a idoc_dir = [prefix]/share/doc;
statment inseide a recipe, ieeuted as soon as it ibin_dir = [prefix]/bin;

is seen.For example | can hae aHowt 0. cook
file that only contains the following line:

echo Aryeh;
and when eer | ise thecook command it will
print my name.

/* top level target */
all:
[ibin_dir]/progl
[ibin_dir]/prog2
[idoc_dir]/progl/ manual
This in and upon it self is quite pointless but it [idoc_dir]/prog2/ manual ;
does gie a due about hev we can set some
cookbook-wide alues. Nwov the question is hw
do we symbolically represent those variables.

/* where to install each program */
[ibin_dir]/% bin/%;

[idoc_dir]/% manual : doc/ % manual ;
Cook has only one type of variable and that is a
list of string literals, i.e* ack","foo","bar",

etc. There are no restrictions onvagyou name
variables, &cept thg can not be reservedaords,
this is pretty close to the restrictions most
programming languagesve There is one major
difference though: variables can start with
numbers and contain punctuation characters.
Additionally you can vary ariable names, i.e. the
name of the actualaviable can use aaviable . . .
expression (this is hard to explain but easy to 10. USIng Built-in
shav which we will do in a fev paragraphs). Fun Cti ons

As you can see we didmhake the cookbook an
simpler because we do not kmohow to
intelligently set stuffbased on what the actual file
structure of our projectThe only thing we gin
here is the ability to change where we installfstuf
very quickly be just changing install_dikVe dso
gan a little flexibility in how we rame the
directories in our source tree.

All variables, when queried for theiale, arg
in square braaks] for example if the "name"
variable contains "Aryeh" then:

echo [name];
Has exactly the same result as the vimes
example. \Ariables are simply set by usingr
= val ue; For example:

nane = Aryeh;

echo [name];
Let's @ay | need to hae two variables called
'progl_obj’ and 'prog2_obj’ that contain a list of
all the .o ingredients in the progl and prog2
directories respecttly. Obviously the same
operation that produces thalwe of progl_obj is
identical to the one that produces prog2_obj
except it operates on a different directorieSo

If all you could do was setaviables to static
values and do pattern matching cook would not be
very useful, i.e. eery time we add a e source
file to our project we need to wete the
cookbook. V¢ reed some way tox&act useful
data from ariables and lee aut what we do not
want. For example if we want to kmowhat all
the .c files in the progl directory are we just ask
for all files that match prog1/%.dMe @uld use
the match_mask built-in function to extract the
needed sublist of files. Built-in functions can do
mary other manipulations of our source tree
contents and he to process them. In general |
will introduce a g¥en huilt-in function as we
encounter them.

Aryeh M. Friedman Page 6

Cook

As far as cook is concerned, for the most part,
functions and variables are treated identically

Tutorial

For this reason we really do not needsac
variable at all. Remember | mentioned that a

This means anywhere where you would use a function call can be used anywhere a variable can.

variable you can use a functionn general a
function is called lil this:

[func argl arg2 ... argN

For example:
nane = [foobar aryeh];

11. Source Tree Scanning

The first thing we need to do to automate the
process of handling mefiles is to collect the list
of source files.In order to do this we need to ask
the operating system tovgi s a ist of all files in
a drectory and all it5 aubdirectories. Irnix the
best way to do this is with the find(1) command.
Thus to get a complete list of all files in say the
current directory we do:

find . -print
or ary variation thereof.

Great, nav how do we et the output of find into
a variable so cook can use WVell, thecol | ect
function does thisWe then just assign the results
of col | ect to a list of files, build experts kkto
call this the manifest. So here isvhave get the
manifest:

mani fest = [stripdot

[collect find . -print]];

That is all nice and wellld hav do we et the list
of source files inprogl only, for example.
There is a function calledrat ch_nask that
does this. Themat ch_nask function returns all
"words" that match some pattern in our lior
example to get a list of allc files in our project
we do:
src = [match_mask %% c
[mani fest]];
It is fine to knev what files are already in our
source tree but what we really want to do is find
the list of files that need to be caak We wse the
fronto function to do this. The fronto
function takes all the words in our list and
transforms all the names which match to some
other name For example to get a list of all theo
files we need to cook we do:
obj = [fronto %% c Y9©% o
[src]l;
It is rare that we need to knabout the gistence
of . ¢ files since in most cases, unlessytlaee
derived from cooking something else, theither
exist or the do ot exist. Inthe case of them not
existing the. o target for that source shoul@if.

Aryeh M. Friedman

This means that we can do tmet ch_nask call
in the same line that we do the fromto. Thus the
new statement is:
obj = [fronto %% c Y9% o
[mat ch_mask %% c
[mani fest]]];
Time to update some sections of our sample
projects amokbook one more time:
/[* info about our files */
mani fest =
[collect find . -print];
= [fromo W% c W% o0
[mat ch_mask %% c
[mani fest]]];

obj

/* how to build each program */
progl _obj = [match_mask
progl/ %o [obj]];
prog2_obj = [match_mask
prog2/ %o [obj]];
bin/f% [%obj] lib/lib.a;

/* how to build the library */
lib_obj = [match_mask lib/ %o
[obj]];

lib/lib.a: [lib_obj];

The important thing to obsezvtere is that it is
now possible to add a source file to one of the
probram or library directories and Cook will
automagically notice, without gmeed to modify
the cookbook. It doeshmatter whether there are
3 files or 300 in these directories, the cookbook is
the same.

12. Flow Control

If there was no conditional logic in programming
would be rather pointless, whoawts to write |
program that can only do something once, the
same is true in cookEven though the sttifve
need to conditional in a build is ofteery trivial

as fr as conditional logic goes, namely there are
if statements and the egglient of while loops
and thats all.

If statements are pretty straight fard. If you
are used to C, C+etc, the only surprise is the
need for the hen keyword. Hereis a example if
statement:
if [not [count [file]]] then
echo no file provided,;
The count function returns the number ofrds

Page 7

Cook

in the "file" list and the not function is true if the
argument is 0. Other then that the if statement
works much the way you would expect it to.

Cook has only one type of loop that being the
| oop statement and it takes no conditionA.
loop is terminated by theoopst op statement
(like a Cbreak statement). Othethen that loops
pretty much werk the way you expect them to.
Here is an example loop:

/* set the | oop "counter" */

list = [kirk spock 70f9

j aneway worf];

/* do the loop */

l oop word = [list]

{
[* print the word */
echo [word];

}
13. Special Variables

Like most scripting languages Cook has a set of
predefined ariables. Whilemost of them are
used internally by Cook and not by the yusere

of them deserves special mention and that is
target. Thet ar get variable has no meaning
out side of recipesub inside recipes it refers to
the current recips’ targets "real" name, i.e. the
one that Cook "thinks" it is currentlyulding, not

the soft coded name we pided in the
cookbook. Br example in our sample projest’
cook book if we where compilingi b/ srcl. c
intolib/src.othe¥®% o: %% c; recipe
would, as far as Cook is concerned, actually be
lib/srcl.o: lib/srcl.c; The recipe
name, and thus thiet ar get], of this is set to
thel i b/ src. o string.

There are other speciahnables described in the
Cook User Guide.You may want to look them up
and use them when you start writing more
advanced cookbooks.

14. Super Soft coding

Now we know enough so we can makCook
handle lilding an arbitrary number of programs
in our sample project. Note the follaving
example assumes that all program directories
contain amai n. ¢ file and no other directory
contains it. The best way to understand what is
needed it to look at the sample cookbook for this
line by line. So here are the rewritten sections of
our sample cookbook:

Aryeh M. Friedman

Tutorial

/* names of the prograns */
progs = [fromo Y main.c %
[mat ch_mask % mai n. c
[mani fest]]];

/* top level target */
all:
[addprefix [ibin_dir]/
[progs]]
[prepost [idoc_dir]/ [/ manual
[progs]];
/* how to build each program */
| oop prog = [progs]
{
[prog] _obj = [match_nask
[prog]/%o [obj]];
}
binf% [%obj] lib/lib.a;

The basic idea is that we use a loop to create the
list of . o files for all programs and then we use
variable \ariable names to reference the right one
in the recipe.

15. Scanning for Hidden
Decencies

In most real programs mostc files hae a
different set of#i ncl ude lines in them. For
example progl/srcl.c might include
progl/ hdr 1. h but progl/src2. c does not.
So far we hee mrnveniently avoided this fact on
the assumption that once madé files dont
change. Awg experience with a non-trial project
shaw this is not true. So hedo we aitomatically
scan for these dependencies? It would not only
defeat the purpose of soft codingttwould be a
pain in the butt to he& © encode this in the
cookbook.

One way of doing it is to scan eactc for

#i ncl ude lines and say anthat are found
represent "hidden" dependencies. It would be
fairly trivial to create a shell script or small C
program that does thisCook though has been
nice enough to include program that does this for
us in most cases that are not insanely natatri
There are seral methods of using_i ncl we

will only cover the "trivial" method here, if you
need higher performance refer to the Cook User
Guide, it has a whole chapter on include
dependencies.

Thec_i ncl program essentially just prints a list
of #i ncl ude files it finds in its agument. do

Page 8

Cook

this just do:

c_incl prog.c

Now al we have © do is fave Cook col | ect
this output on the ingredients list of our recipe
and boom we he a Ist of our hidden
dependencies. Herg the rewritten portion of our
sample cookbook for that:
/* how to build each program and
i nclude file dependencies */

%% o: %% c
[collect c_incl -api %% c];
The c_incl -api option means if the file

doesnt exist, just ignore it.

16. Recipe Actions

Now that we hae dl the decencies soft coded all
we hae © do atually build our project is to tell
each recipe he to actually cook the target from
the ingredients. This is done by adding actions to
a recipe. Theactions are nothing more "simple"
statements that are bound to a reciféis is
done by leging off the trailing semicolon;() on
the recipe and putting the actions ins{deurly
braces}. This is best shown byxample. So
here is our final cookbook for our sample project:
/[* where to install stuff */
prefix = /usr/local;

idoc_dir = [prefix]/share/doc;
ibin_dir = [prefix]/bin;
/[* info about our files */

mani f est
[collect find . -print];
= [fromo W% c W% o
[mat ch_mask %% c
[mani fest]]];

obj

/* names of the prograns */
progs = [fromo Y main.c %
[mat ch_mask % mai n. c
[mani fest]]];

/* top |level */
all:
[addprefix [ibin_dir]/
[progs]]
[prepost [idoc_dir]/ [/ manual
[progs]];
/* how to build each program */
| oop prog = [progs]
{

t ar get

[prog] _obj = [match_mask
[prog]/ %o [obj]];

Aryeh M. Friedman

Tutorial

}
bin/% [% obj]
{
gcc [%obj] -o [target];
}

/* how to build the library */

lib_obj = [match_mask lib/ %o

[obj]];
[ib/lib.a: [Iib_obj]
{

rm[target];

ar cq [target] [lib_obj];
}
/* howto "install" stuff */
[ibin_dir]/% bin/%
{

cp bin/%[target];
}
[idoc_dir]/% manual : doc/ % manual
{

cp doc/ % manual [target];
}
/* how to compile sources*/
%% o: %% c

[collect c_incl -api %% c]
{

gcc -c Y% c -o [target];
}

17. Advanced Features

Even though the tutorial part of this document is
done, | feel it is important to just mention some
adwanced features not wered in the tutorial.
Except for just stating the basic nature of these
features | will not go into detail on pgiven one.

« Platform polymorphism. This is where
Cook can automatically detect what
platform you are on and do some file
juggling so that you build for that platform.

« Support for priate work areas.If you are
working within a change management
system, Cook knows koto query it for
only the files you need to work orirhis
includes the automatic check-out and in of
private copies of those files.

Paallel huilds. For large projects it is
possible to spread theuibd over seveal
processors or machines.

Conditional recipes. It is possible to
execute a recipe one ay if certain
Page 9

Cook

conditions are met and an otheayif they
are not.

Many more that are not directly supported by
Cook hut can easily be integrated using shell
scripts.

18. Contacts

If you find ary bugs in this tutorial please send a
bug report to Aryeh M. Friedmarar yeh@n
net . ar bor net. or g>.

The Cook web site is http:-
[Imller.emu.id. au/pmller/cook/

If you want to contact Cook’author, send email
to Peter Miller
<pmi | | er @pensour ce. or g. au>.

Aryeh M. Friedman

Tutorial

Page 10

