next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                          2         2 2         2 2     2   2   2       2 2 
o2 = ideal (k*l*s - q, f*g  - u*x, k v  - e*p, d e u - b , d p*t  - a, a j m
     ------------------------------------------------------------------------
           2     2
     - n, i j*k*s  - 1)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3 4 4 3    2 4   4      4 4     3   4    2 4 4   4   3 3 4 2   
o3 = ideal (b g i j  - c d e*h n*o, c f g*t*u w*x  - b d o , b h*j l q t v -
     ------------------------------------------------------------------------
      3 2 3   4 3 4   3 4 3    3 4 3
     d o s , b c e f*i k p  - a m n )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.