LexIdeals : Index
- cancelAll -- make all potentially possible cancellations in the graded free resolution of an ideal
- cancelAll(Ideal) -- make all potentially possible cancellations in the graded free resolution of an ideal
- generateLPPs -- return all LPP ideals corresponding to a given Hilbert function
- generateLPPs(..., PrintIdeals => ...) -- print LPP ideals nicely on the screen
- generateLPPs(PolynomialRing,List) -- return all LPP ideals corresponding to a given Hilbert function
- hilbertFunct -- return the Hilbert function of a polynomial ring mod a homogeneous ideal as a list
- hilbertFunct(..., MaxDegree => ...) -- bound degree through which Hilbert function is computed
- hilbertFunct(Ideal) -- return the Hilbert function of a polynomial ring mod a homogeneous ideal as a list
- isCM -- test whether a polynomial ring modulo a homogeneous ideal is Cohen-Macaulay
- isCM(Ideal) -- test whether a polynomial ring modulo a homogeneous ideal is Cohen-Macaulay
- isHF -- is a finite list a Hilbert function of a polynomial ring mod a homogeneous ideal
- isHF(List) -- is a finite list a Hilbert function of a polynomial ring mod a homogeneous ideal
- isLexIdeal -- determine whether an ideal is a lexicographic ideal
- isLexIdeal(Ideal) -- determine whether an ideal is a lexicographic ideal
- isLPP -- determine whether an ideal is an LPP ideal
- isLPP(Ideal) -- determine whether an ideal is an LPP ideal
- isPurePower -- determine whether a ring element is a pure power of a variable
- isPurePower(RingElement) -- determine whether a ring element is a pure power of a variable
- lexIdeal -- produce a lexicographic ideal
- lexIdeal(Ideal) -- produce a lexicographic ideal
- lexIdeal(PolynomialRing,List) -- produce a lexicographic ideal
- lexIdeal(QuotientRing,List) -- produce a lexicographic ideal
- LexIdeals -- a package for working with lex ideals
- LPP -- return the lex-plus-powers (LPP) ideal corresponding to a given Hilbert function and power sequence
- LPP(PolynomialRing,List,List) -- return the lex-plus-powers (LPP) ideal corresponding to a given Hilbert function and power sequence
- macaulayBound -- the bound on the growth of a Hilbert function from Macaulay's Theorem
- macaulayBound(ZZ,ZZ) -- the bound on the growth of a Hilbert function from Macaulay's Theorem
- macaulayLowerOperator -- the a_<d> operator used in Green's proof of Macaulay's Theorem
- macaulayLowerOperator(ZZ,ZZ) -- the a_<d> operator used in Green's proof of Macaulay's Theorem
- macaulayRep -- the Macaulay representation of an integer
- macaulayRep(ZZ,ZZ) -- the Macaulay representation of an integer
- MaxDegree -- optional argument for hilbertFunct
- multBounds -- determine whether an ideal satisfies the upper and lower bounds of the multiplicity conjecture
- multBounds(Ideal) -- determine whether an ideal satisfies the upper and lower bounds of the multiplicity conjecture
- multLowerBound -- determine whether an ideal satisfies the lower bound of the multiplicity conjecture
- multLowerBound(Ideal) -- determine whether an ideal satisfies the lower bound of the multiplicity conjecture
- multUpperBound -- determine whether an ideal satisfies the upper bound of the multiplicity conjecture
- multUpperBound(Ideal) -- determine whether an ideal satisfies the upper bound of the multiplicity conjecture
- multUpperHF -- test a sufficient condition for the upper bound of the multiplicity conjecture
- multUpperHF(PolynomialRing,List) -- test a sufficient condition for the upper bound of the multiplicity conjecture
- PrintIdeals -- optional argument for generateLPPs