next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
GraphicalModels :: inverseMarginMap

inverseMarginMap -- computes the inverse of the marginMap

Synopsis

Description

This method computes the inverse of the marginMap.

i1 : R = markovRing (3,2)

o1 = R

o1 : PolynomialRing
i2 : F = marginMap(1,R)

o2 = map(R,R,{p    - p    - p   , p    - p    - p   , p   , p   , p   , p   })
               1,1    2,1    3,1   1,2    2,2    3,2   2,1   2,2   3,1   3,2

o2 : RingMap R <--- R
i3 : G = inverseMarginMap(1,R)

o3 = map(R,R,{p    + p    + p   , p    + p    + p   , p   , p   , p   , p   })
               1,1    2,1    3,1   1,2    2,2    3,2   2,1   2,2   3,1   3,2

o3 : RingMap R <--- R
i4 : gens R

o4 = {p   , p   , p   , p   , p   , p   }
       1,1   1,2   2,1   2,2   3,1   3,2

o4 : List
i5 : F*G -- we see that the composition is the identity map:

o5 = map(R,R,{p   , p   , p   , p   , p   , p   })
               1,1   1,2   2,1   2,2   3,1   3,2

o5 : RingMap R <--- R

See also

  • hiddenMap -- linear map between the ring of a model with one hidden variable and the ring of the corresponding fully observed model
  • marginMap -- generates a linear map on joint distributions for discrete random variables replacing marginals for indeterminates

Ways to use inverseMarginMap :

  • inverseMarginMap(ZZ,Ring)