This function determines if the Koszul complex of a ring R admits a trivial Massey operation. If one exists, then R is Golod.
i1 : R = ZZ/101[a,b,c,d]/ideal{a^4+b^4+c^4+d^4}
o1 = R
o1 : QuotientRing
|
i2 : isGolod(R)
Computing generators in degree 1 : -- used 0.00770852 seconds
Computing generators in degree 2 : -- used 0.00675673 seconds
Computing generators in degree 3 : -- used 0.00651502 seconds
Computing generators in degree 4 : -- used 0.00609528 seconds
o2 = true
|
Hypersurfaces are Golod, but
i3 : R = ZZ/101[a,b,c,d]/ideal{a^4,b^4,c^4,d^4}
o3 = R
o3 : QuotientRing
|
i4 : isGolod(R)
Computing generators in degree 1 : -- used 0.00820933 seconds
Computing generators in degree 2 : -- used 0.0317974 seconds
Computing generators in degree 3 : -- used 0.0177971 seconds
Computing generators in degree 4 : -- used 0.015587 seconds
o4 = false
|
complete intersections of higher codimension are not. Here is another example:
i5 : Q = ZZ/101[a,b,c,d]
o5 = Q
o5 : PolynomialRing
|
i6 : R = Q/(ideal vars Q)^2
o6 = R
o6 : QuotientRing
|
i7 : isGolod(R)
Computing generators in degree 1 : -- used 0.0102672 seconds
Computing generators in degree 2 : -- used 0.0287147 seconds
Computing generators in degree 3 : -- used 0.0381643 seconds
Computing generators in degree 4 : -- used 0.0879046 seconds
o7 = true
|
The above is a (CM) ring minimal of minimal multiplicity, hence Golod.