This function currently just finds the elements whose boundary give the product of every pair of cycles that are chosen as generators. Eventually, all higher Massey operations will also be computed. The maximum degree of a generating cycle is specified in the option GenDegreeLimit, if needed.
This is an example of a Golod ring. It is Golod since it is the Stanley-Reisner ideal of a flag complex whose 1-skeleton is chordal [Jollenbeck-Berglund].
i1 : Q = ZZ/101[x_1..x_6]
o1 = Q
o1 : PolynomialRing
|
i2 : I = ideal (x_3*x_5,x_4*x_5,x_1*x_6,x_3*x_6,x_4*x_6)
o2 = ideal (x x , x x , x x , x x , x x )
3 5 4 5 1 6 3 6 4 6
o2 : Ideal of Q
|
i3 : R = Q/I
o3 = R
o3 : QuotientRing
|
i4 : A = koszulComplexDGA(R)
o4 = {Ring => R }
Underlying algebra => R[T , T , T , T , T , T ]
1 2 3 4 5 6
Differential => {x , x , x , x , x , x }
1 2 3 4 5 6
isHomogeneous => true
o4 : DGAlgebra
|
i5 : isHomologyAlgebraTrivial(A,GenDegreeLimit=>3)
Computing generators in degree 1 : -- used 0.0112146 seconds
Computing generators in degree 2 : -- used 0.0252731 seconds
Computing generators in degree 3 : -- used 0.0243711 seconds
o5 = true
|
i6 : cycleList = getGenerators(A)
Computing generators in degree 1 : -- used 0.00181763 seconds
Computing generators in degree 2 : -- used 0.0159196 seconds
Computing generators in degree 3 : -- used 0.0159486 seconds
Computing generators in degree 4 : -- used 0.0079329 seconds
Computing generators in degree 5 : -- used 0.00706339 seconds
Computing generators in degree 6 : -- used 0.0065938 seconds
o6 = {x T , x T , x T , x T , x T , -x T T , -x T T , -x T T , -x T T , -
5 4 5 3 6 4 6 3 6 1 6 1 3 5 3 4 6 3 4 6 1 4
------------------------------------------------------------------------
x T T + x T T , - x T T + x T T , x T T T , x T T T - x T T T }
6 4 5 5 4 6 6 3 5 5 3 6 6 1 3 4 6 3 4 5 5 3 4 6
o6 : List
|
i7 : tmo = findTrivialMasseyOperation(A)
Computing generators in degree 1 : -- used 0.0018087 seconds
Computing generators in degree 2 : -- used 0.0157181 seconds
Computing generators in degree 3 : -- used 0.0160203 seconds
Computing generators in degree 4 : -- used 0.00152547 seconds
Computing generators in degree 5 : -- used 0.00150575 seconds
Computing generators in degree 6 : -- used 0.0015185 seconds
o7 = {{3} | 0 0 0 0 0 0 0 0 0 0 |, {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 -x_6 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 -x_6 | {4} | x_6 0 0 0 0
{3} | 0 0 0 0 0 0 -x_6 0 0 0 | {4} | 0 0 x_6 0 0
{3} | 0 0 0 0 0 0 0 0 -x_6 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 |
{3} | -x_5 0 x_6 -x_6 0 0 0 0 0 0 |
{3} | 0 0 0 0 0 -x_6 0 0 0 0 |
{3} | 0 0 0 0 0 0 0 0 0 0 |
{3} | 0 0 0 0 0 0 0 0 0 0 |
------------------------------------------------------------------------
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 x_6 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_6 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_5 0 x_6 0 -x_5 0 -x_6 0
------------------------------------------------------------------------
0 |, {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |,
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 | {5} | 0 0 0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 x_6 |
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 |
0 |
x_6 |
0 |
0 |
0 |
0 |
0 |
0 |
------------------------------------------------------------------------
0, 0}
o7 : List
|
i8 : assert(tmo =!= null)
|
Below is an example of a Teter ring (Artinian Gorenstein ring modulo its socle), and the computation in Avramov and Levin’s paper shows that H(A) does not have trivial multiplication, hence no trivial Massey operation can exist.
i9 : Q = ZZ/101[x,y,z]
o9 = Q
o9 : PolynomialRing
|
i10 : I = ideal (x^3,y^3,z^3,x^2*y^2*z^2)
3 3 3 2 2 2
o10 = ideal (x , y , z , x y z )
o10 : Ideal of Q
|
i11 : R = Q/I
o11 = R
o11 : QuotientRing
|
i12 : A = koszulComplexDGA(R)
o12 = {Ring => R }
Underlying algebra => R[T , T , T ]
1 2 3
Differential => {x, y, z}
isHomogeneous => true
o12 : DGAlgebra
|
i13 : isHomologyAlgebraTrivial(A)
Computing generators in degree 1 : -- used 0.0081891 seconds
Computing generators in degree 2 : -- used 0.0182355 seconds
Computing generators in degree 3 : -- used 0.0173531 seconds
o13 = false
|
i14 : cycleList = getGenerators(A)
Computing generators in degree 1 : -- used 0.00152035 seconds
Computing generators in degree 2 : -- used 0.0117484 seconds
Computing generators in degree 3 : -- used 0.0110197 seconds
2 2 2 2 2 2 2 2 2 2 2
o14 = {x T , y T , z T , x*y z T , x*y z T T , x y*z T T , x*y z T T ,
1 2 3 1 1 2 1 2 1 3
-----------------------------------------------------------------------
2 2 2 2 2 2
x*y z T T T , x y*z T T T , x y z*T T T }
1 2 3 1 2 3 1 2 3
o14 : List
|
i15 : assert(findTrivialMasseyOperation(A) === null)
Computing generators in degree 1 : -- used 0.00148241 seconds
Computing generators in degree 2 : -- used 0.0110126 seconds
Computing generators in degree 3 : -- used 0.0109334 seconds
|