
Appendix A

Subroutine Descriptions

A.1 Introduction

This appendix includes a list of all the PGPLOT subroutines, and then gives
detailed instructions for the use of each routine in Fortran programs. The
subroutine descriptions are in alphabetical order.

A.2 Arguments

The subroutine descriptions indicate the data type of each argument. When
arguments are described as “input”, they may be replaced with constants or
expressions in the CALL statement, but make sure that the constant or expression
has the correct data type.

INTEGER arguments should be declared INTEGER or INTEGER*4 in the calling
program, not INTEGER*2.

REAL arguments should be declared REAL or REAL*4 in the calling program,
not REAL*8 or DOUBLE PRECISION.

LOGICAL arguments these should be declared LOGICAL or LOGICAL*4 in the
calling program.

CHARACTER arguments may be any valid Fortran CHARACTER variable (declared
CHARACTER*n for some integer n).

A.3 Index of Routines

PGARRO – draw an arrow

1

2 APPENDIX A. SUBROUTINE DESCRIPTIONS

PGASK – control new page prompting

PGAXIS – draw an axis

PGBAND – read cursor position, with anchor

PGBBUF – begin batch of output (buffer)

PGBEG – open a graphics device

PGBIN – histogram of binned data

PGBOX – draw labeled frame around viewport

PGCIRC – draw a circle, using fill-area attributes

PGCLOS – close the selected graphics device

PGCONB – contour map of a 2D data array, with blanking

PGCONF – fill between two contours

PGCONL – label contour map of a 2D data array

PGCONS – contour map of a 2D data array (fast algorithm)

PGCONT – contour map of a 2D data array (contour-following)

PGCONX – contour map of a 2D data array (non rectangular)

PGCTAB – install the color table to be used by PGIMAG

PGCURS – read cursor position

PGDRAW – draw a line from the current pen position to a point

PGEBUF – end batch of output (buffer)

PGEND – close all open graphics devices

PGENV – set window and viewport and draw labeled frame

PGERAS – erase all graphics from current page

PGERR1 – horizontal or vertical error bar

PGERRB – horizontal or vertical error bar

PGERRX – horizontal error bar

PGERRY – vertical error bar

PGETXT – erase text from graphics display

A.3. INDEX OF ROUTINES 3

PGFUNT – function defined by X = F(T), Y = G(T)

PGFUNX – function defined by Y = F(X)

PGFUNY – function defined by X = F(Y)

PGGRAY – gray-scale map of a 2D data array

PGHI2D – cross-sections through a 2D data array

PGHIST – histogram of unbinned data

PGIDEN – write username, date, and time at bottom of plot

PGIMAG – color image from a 2D data array

PGLAB – write labels for x-axis, y-axis, and top of plot

PGLCUR – draw a line using the cursor

PGLDEV – list available device types on standard output

PGLEN – find length of a string in a variety of units

PGLINE – draw a polyline (curve defined by line-segments)

PGMOVE – move pen (change current pen position)

PGMTXT – write text at position relative to viewport

PGNCUR – mark a set of points using the cursor

PGNUMB – convert a number into a plottable character string

PGOLIN – mark a set of points using the cursor

PGOPEN – open a graphics device

PGPAGE – advance to new page

PGPANL – switch to a different panel on the view surface

PGPAP – change the size of the view surface

PGPIXL – draw pixels

PGPNTS – draw several graph markers, not all the same

PGPOLY – draw a polygon, using fill-area attributes

PGPT – draw several graph markers

PGPT1 – draw one graph marker

4 APPENDIX A. SUBROUTINE DESCRIPTIONS

PGPTXT – write text at arbitrary position and angle

PGQAH – inquire arrow-head style

PGQCF – inquire character font

PGQCH – inquire character height

PGQCI – inquire color index

PGQCIR – inquire color index range

PGQCLP – inquire clipping status

PGQCOL – inquire color capability

PGQCR – inquire color representation

PGQCS – inquire character height in a variety of units

PGQDT – inquire name of nth available device type

PGQFS – inquire fill-area style

PGQHS – inquire hatching style

PGQID – inquire current device identifier

PGQINF – inquire PGPLOT general information

PGQITF – inquire image transfer function

PGQLS – inquire line style

PGQLW – inquire line width

PGQNDT – inquire number of available device types

PGQPOS – inquire current pen position

PGQTBG – inquire text background color index

PGQTXT – find bounding box of text string

PGQVP – inquire viewport size and position

PGQVSZ – inquire size of view surface

PGQWIN – inquire window boundary coordinates

PGRECT – draw a rectangle, using fill-area attributes

PGRND – find the smallest ‘round’ number greater than x

A.3. INDEX OF ROUTINES 5

PGRNGE – choose axis limits

PGSAH – set arrow-head style

PGSAVE – save PGPLOT attributes

PGUNSA – restore PGPLOT attributes

PGSCF – set character font

PGSCH – set character height

PGSCI – set color index

PGSCIR – set color index range

PGSCLP – enable or disable clipping at edge of viewport

PGSCR – set color representation

PGSCRL – scroll window

PGSCRN – set color representation by name

PGSFS – set fill-area style

PGSHLS – set color representation using HLS system

PGSHS – set hatching style

PGSITF – set image transfer function

PGSLCT – select an open graphics device

PGSLS – set line style

PGSLW – set line width

PGSTBG – set text background color index

PGSUBP – subdivide view surface into panels

PGSVP – set viewport (normalized device coordinates)

PGSWIN – set window

PGTBOX – draw frame and write (DD) HH MM SS.S labelling

PGTEXT – write text (horizontal, left-justified)

PGTICK – draw a single tick mark on an axis

PGUPDT – update display

6 APPENDIX A. SUBROUTINE DESCRIPTIONS

PGVECT – vector map of a 2D data array, with blanking

PGVSIZ – set viewport (inches)

PGVSTD – set standard (default) viewport

PGWEDG – annotate an image plot with a wedge

PGWNAD – set window and adjust viewport to same aspect ratio

PGADVANCE – non-standard alias for PGPAGE

PGBEGIN – non-standard alias for PGBEG

PGCURSE – non-standard alias for PGCURS

PGLABEL – non-standard alias for PGLAB

PGMTEXT – non-standard alias for PGMTXT

PGNCURSE – non-standard alias for PGNCUR

PGPAPER – non-standard alias for PGPAP

PGPOINT – non-standard alias for PGPT

PGPTEXT – non-standard alias for PGPTXT

PGVPORT – non-standard alias for PGSVP

PGVSIZE – non-standard alias for PGVSIZ

PGVSTAND – non-standard alias for PGVSTD

PGWINDOW – non-standard alias for PGSWIN

PGARRO – draw an arrow

SUBROUTINE PGARRO (X1, Y1, X2, Y2)

REAL X1, Y1, X2, Y2

Draw an arrow from the point with world-coordinates (X1,Y1) to

(X2,Y2). The size of the arrowhead at (X2,Y2) is determined by

the current character size set by routine PGSCH. The default size

is 1/40th of the smaller of the width or height of the view surface.

The appearance of the arrowhead (shape and solid or open) is

controlled by routine PGSAH.

Arguments:

X1, Y1 (input) : world coordinates of the tail of the arrow.

X2, Y2 (input) : world coordinates of the head of the arrow.

A.3. INDEX OF ROUTINES 7

PGASK – control new page prompting

SUBROUTINE PGASK (FLAG)

LOGICAL FLAG

Change the ‘‘prompt state’’ of PGPLOT. If the prompt state is

ON, PGPAGE will type ‘‘Type RETURN for next page:’’ and will wait

for the user to type a carriage-return before starting a new page.

The initial prompt state (after the device has been opened) is ON

for interactive devices. Prompt state is always OFF for

non-interactive devices.

Arguments:

FLAG (input) : if .TRUE., and if the device is an interactive

device, the prompt state will be set to ON. If

.FALSE., the prompt state will be set to OFF.

PGAXIS – draw an axis

SUBROUTINE PGAXIS (OPT, X1, Y1, X2, Y2, V1, V2, STEP, NSUB,

: DMAJL, DMAJR, FMIN, DISP, ORIENT)

CHARACTER*(*) OPT

REAL X1, Y1, X2, Y2, V1, V2, STEP, DMAJL, DMAJR, FMIN, DISP

REAL ORIENT

INTEGER NSUB

Draw a labelled graph axis from world-coordinate position (X1,Y1) to

(X2,Y2).

Normally, this routine draws a standard LINEAR axis with equal

subdivisions. The quantity described by the axis runs from V1 to V2;

this may be, but need not be, the same as X or Y.

If the ’L’ option is specified, the routine draws a LOGARITHMIC axis.

In this case, the quantity described by the axis runs from 10**V1 to

10**V2. A logarithmic axis always has major, labeled, tick marks

spaced by one or more decades. If the major tick marks are spaced

by one decade (as specified by the STEP argument), then minor

tick marks are placed at 2, 3, .., 9 times each power of 10;

otherwise minor tick marks are spaced by one decade. If the axis

spans less than two decades, numeric labels are placed at 1, 2, and

5 times each power of ten.

If the axis spans less than one decade, or if it spans many decades,

it is preferable to use a linear axis labeled with the logarithm of

the quantity of interest.

Arguments:

8 APPENDIX A. SUBROUTINE DESCRIPTIONS

OPT (input) : a string containing single-letter codes for

various options. The options currently

recognized are:

L : draw a logarithmic axis

N : write numeric labels

1 : force decimal labelling, instead of automatic

choice (see PGNUMB).

2 : force exponential labelling, instead of

automatic.

X1, Y1 (input) : world coordinates of one endpoint of the axis.

X2, Y2 (input) : world coordinates of the other endpoint of the axis.

V1 (input) : axis value at first endpoint.

V2 (input) : axis value at second endpoint.

STEP (input) : major tick marks are drawn at axis value 0.0 plus

or minus integer multiples of STEP. If STEP=0.0,

a value is chosen automatically.

NSUB (input) : minor tick marks are drawn to divide the major

divisions into NSUB equal subdivisions (ignored if

STEP=0.0). If NSUB <= 1, no minor tick marks are

drawn. NSUB is ignored for a logarithmic axis.

DMAJL (input) : length of major tick marks drawn to left of axis

(as seen looking from first endpoint to second), in

units of the character height.

DMAJR (input) : length of major tick marks drawn to right of axis,

in units of the character height.

FMIN (input) : length of minor tick marks, as fraction of major.

DISP (input) : displacement of baseline of tick labels to

right of axis, in units of the character height.

ORIENT (input) : orientation of label text, in degrees; angle between

baseline of text and direction of axis (0-360).

PGBAND – read cursor position, with anchor

INTEGER FUNCTION PGBAND (MODE, POSN, XREF, YREF, X, Y, CH)

INTEGER MODE, POSN

REAL XREF, YREF, X, Y

CHARACTER*(*) CH

Read the cursor position and a character typed by the user.

The position is returned in world coordinates. PGBAND positions

the cursor at the position specified (if POSN=1), allows the user to

move the cursor using the mouse or arrow keys or whatever is available

on the device. When he has positioned the cursor, the user types a

single character on the keyboard; PGBAND then returns this

character and the new cursor position (in world coordinates).

Some interactive devices offer a selection of cursor types,

A.3. INDEX OF ROUTINES 9

implemented as thin lines that move with the cursor, but without

erasing underlying graphics. Of these types, some extend between

a stationary anchor-point at XREF,YREF, and the position of the

cursor, while others simply follow the cursor without changing shape

or size. The cursor type is specified with one of the following MODE

values. Cursor types that are not supported by a given device, are

treated as MODE=0.

-- If MODE=0, the anchor point is ignored and the routine behaves

like PGCURS.

-- If MODE=1, a straight line is drawn joining the anchor point

and the cursor position.

-- If MODE=2, a hollow rectangle is extended as the cursor is moved,

with one vertex at the anchor point and the opposite vertex at the

current cursor position; the edges of the rectangle are horizontal

and vertical.

-- If MODE=3, two horizontal lines are extended across the width of

the display, one drawn through the anchor point and the other

through the moving cursor position. This could be used to select

a Y-axis range when one end of the range is known.

-- If MODE=4, two vertical lines are extended over the height of

the display, one drawn through the anchor point and the other

through the moving cursor position. This could be used to select an

X-axis range when one end of the range is known.

-- If MODE=5, a horizontal line is extended through the cursor

position over the width of the display. This could be used to select

an X-axis value such as the start of an X-axis range. The anchor point

is ignored.

-- If MODE=6, a vertical line is extended through the cursor

position over the height of the display. This could be used to select

a Y-axis value such as the start of a Y-axis range. The anchor point

is ignored.

-- If MODE=7, a cross-hair, centered on the cursor, is extended over

the width and height of the display. The anchor point is ignored.

Returns:

PGBAND : 1 if the call was successful; 0 if the device

has no cursor or some other error occurs.

Arguments:

MODE (input) : display mode (0, 1, ..7: see above).

POSN (input) : if POSN=1, PGBAND attempts to place the cursor

at point (X,Y); if POSN=0, it leaves the cursor

at its current position. (On some devices this

request may be ignored.)

XREF (input) : the world x-coordinate of the anchor point.

YREF (input) : the world y-coordinate of the anchor point.

X (in/out) : the world x-coordinate of the cursor.

10 APPENDIX A. SUBROUTINE DESCRIPTIONS

Y (in/out) : the world y-coordinate of the cursor.

CH (output) : the character typed by the user; if the device has

no cursor or if some other error occurs, the value

CHAR(0) [ASCII NUL character] is returned.

Note: The cursor coordinates (X,Y) may be changed by PGBAND even if

the device has no cursor or if the user does not move the cursor.

Under these circumstances, the position returned in (X,Y) is that of

the pixel nearest to the requested position.

PGBBUF – begin batch of output (buffer)

SUBROUTINE PGBBUF

Begin saving graphical output commands in an internal buffer; the

commands are held until a matching PGEBUF call (or until the buffer

is emptied by PGUPDT). This can greatly improve the efficiency of

PGPLOT. PGBBUF increments an internal counter, while PGEBUF

decrements this counter and flushes the buffer to the output

device when the counter drops to zero. PGBBUF and PGEBUF calls

should always be paired.

Arguments: none

PGBEG – open a graphics device

INTEGER FUNCTION PGBEG (UNIT, FILE, NXSUB, NYSUB)

INTEGER UNIT

CHARACTER*(*) FILE

INTEGER NXSUB, NYSUB

Note: new programs should use PGOPEN rather than PGBEG. PGOPEN

is retained for compatibility with existing programs. Unlike PGOPEN,

PGBEG closes any graphics devices that are already open, so it

cannot be used to open devices to be used in parallel.

PGBEG opens a graphical device or file and prepares it for

subsequent plotting. A device must be opened with PGBEG or PGOPEN

before any other calls to PGPLOT subroutines for the device.

If any device is already open for PGPLOT output, it is closed before

the new device is opened.

Returns:

PGBEG : a status return value. A value of 1 indicates

successful completion, any other value indicates

an error. In the event of error a message is

A.3. INDEX OF ROUTINES 11

written on the standard error unit.

To test the return value, call

PGBEG as a function, eg IER=PGBEG(...); note

that PGBEG must be declared INTEGER in the

calling program. Some Fortran compilers allow

you to use CALL PGBEG(...) and discard the

return value, but this is not standard Fortran.

Arguments:

UNIT (input) : this argument is ignored by PGBEG (use zero).

FILE (input) : the "device specification" for the plot device.

(For explanation, see description of PGOPEN.)

NXSUB (input) : the number of subdivisions of the view surface in

X (>0 or <0).

NYSUB (input) : the number of subdivisions of the view surface in

Y (>0).

PGPLOT puts NXSUB x NYSUB graphs on each plot

page or screen; when the view surface is sub-

divided in this way, PGPAGE moves to the next

panel, not the next physical page. If

NXSUB > 0, PGPLOT uses the panels in row

order; if <0, PGPLOT uses them in column order.

PGBIN – histogram of binned data

SUBROUTINE PGBIN (NBIN, X, DATA, CENTER)

INTEGER NBIN

REAL X(*), DATA(*)

LOGICAL CENTER

Plot a histogram of NBIN values with X(1..NBIN) values along

the ordinate, and DATA(1...NBIN) along the abscissa. Bin width is

spacing between X values.

Arguments:

NBIN (input) : number of values.

X (input) : abscissae of bins.

DATA (input) : data values of bins.

CENTER (input) : if .TRUE., the X values denote the center of the

bin; if .FALSE., the X values denote the lower

edge (in X) of the bin.

PGBOX – draw labeled frame around viewport

SUBROUTINE PGBOX (XOPT, XTICK, NXSUB, YOPT, YTICK, NYSUB)

CHARACTER*(*) XOPT, YOPT

REAL XTICK, YTICK

INTEGER NXSUB, NYSUB

12 APPENDIX A. SUBROUTINE DESCRIPTIONS

Annotate the viewport with frame, axes, numeric labels, etc.

PGBOX is called by on the user’s behalf by PGENV, but may also be

called explicitly.

Arguments:

XOPT (input) : string of options for X (horizontal) axis of

plot. Options are single letters, and may be in

any order (see below).

XTICK (input) : world coordinate interval between major tick marks

on X axis. If XTICK=0.0, the interval is chosen by

PGBOX, so that there will be at least 3 major tick

marks along the axis.

NXSUB (input) : the number of subintervals to divide the major

coordinate interval into. If XTICK=0.0 or NXSUB=0,

the number is chosen by PGBOX.

YOPT (input) : string of options for Y (vertical) axis of plot.

Coding is the same as for XOPT.

YTICK (input) : like XTICK for the Y axis.

NYSUB (input) : like NXSUB for the Y axis.

Options (for parameters XOPT and YOPT):

A : draw Axis (X axis is horizontal line Y=0, Y axis is vertical

line X=0).

B : draw bottom (X) or left (Y) edge of frame.

C : draw top (X) or right (Y) edge of frame.

G : draw Grid of vertical (X) or horizontal (Y) lines.

I : Invert the tick marks; ie draw them outside the viewport

instead of inside.

L : label axis Logarithmically (see below).

N : write Numeric labels in the conventional location below the

viewport (X) or to the left of the viewport (Y).

P : extend ("Project") major tick marks outside the box (ignored if

option I is specified).

M : write numeric labels in the unconventional location above the

viewport (X) or to the right of the viewport (Y).

T : draw major Tick marks at the major coordinate interval.

S : draw minor tick marks (Subticks).

V : orient numeric labels Vertically. This is only applicable to Y.

The default is to write Y-labels parallel to the axis.

1 : force decimal labelling, instead of automatic choice (see PGNUMB).

2 : force exponential labelling, instead of automatic.

To get a complete frame, specify BC in both XOPT and YOPT.

Tick marks, if requested, are drawn on the axes or frame

or both, depending which are requested. If none of ABC is specified,

tick marks will not be drawn. When PGENV calls PGBOX, it sets both

A.3. INDEX OF ROUTINES 13

XOPT and YOPT according to the value of its parameter AXIS:

-1: ’BC’, 0: ’BCNST’, 1: ’ABCNST’, 2: ’ABCGNST’.

For a logarithmic axis, the major tick interval is always 1.0. The

numeric label is 10**(x) where x is the world coordinate at the

tick mark. If subticks are requested, 8 subticks are drawn between

each major tick at equal logarithmic intervals.

To label an axis with time (days, hours, minutes, seconds) or

angle (degrees, arcmin, arcsec), use routine PGTBOX.

PGCIRC – draw a circle, using fill-area attributes

SUBROUTINE PGCIRC (XCENT, YCENT, RADIUS)

REAL XCENT, YCENT, RADIUS

Draw a circle. The action of this routine depends

on the setting of the Fill-Area Style attribute. If Fill-Area Style

is SOLID (the default), the interior of the circle is solid-filled

using the current Color Index. If Fill-Area Style is HOLLOW, the

outline of the circle is drawn using the current line attributes

(color index, line-style, and line-width).

Arguments:

XCENT (input) : world x-coordinate of the center of the circle.

YCENT (input) : world y-coordinate of the center of the circle.

RADIUS (input) : radius of circle (world coordinates).

PGCLOS – close the selected graphics device

SUBROUTINE PGCLOS

Close the currently selected graphics device. After the device has

been closed, either another open device must be selected with PGSLCT

or another device must be opened with PGOPEN before any further

plotting can be done. If the call to PGCLOS is omitted, some or all

of the plot may be lost.

[This routine was added to PGPLOT in Version 5.1.0. Older programs

use PGEND instead.]

Arguments: none

PGCONB – contour map of a 2D data array, with blanking

SUBROUTINE PGCONB (A, IDIM, JDIM, I1, I2, J1, J2, C, NC, TR,

14 APPENDIX A. SUBROUTINE DESCRIPTIONS

1 BLANK)

INTEGER IDIM, JDIM, I1, I2, J1, J2, NC

REAL A(IDIM,JDIM), C(*), TR(6), BLANK

Draw a contour map of an array. This routine is the same as PGCONS,

except that array elements that have the "magic value" defined by

argument BLANK are ignored, making gaps in the contour map. The

routine may be useful for data measured on most but not all of the

points of a grid.

Arguments:

A (input) : data array.

IDIM (input) : first dimension of A.

JDIM (input) : second dimension of A.

I1,I2 (input) : range of first index to be contoured (inclusive).

J1,J2 (input) : range of second index to be contoured (inclusive).

C (input) : array of contour levels (in the same units as the

data in array A); dimension at least NC.

NC (input) : number of contour levels (less than or equal to

dimension of C). The absolute value of this

argument is used (for compatibility with PGCONT,

where the sign of NC is significant).

TR (input) : array defining a transformation between the I,J

grid of the array and the world coordinates. The

world coordinates of the array point A(I,J) are

given by:

X = TR(1) + TR(2)*I + TR(3)*J

Y = TR(4) + TR(5)*I + TR(6)*J

Usually TR(3) and TR(5) are zero - unless the

coordinate transformation involves a rotation

or shear.

BLANK (input) : elements of array A that are exactly equal to

this value are ignored (blanked).

PGCONF – fill between two contours

SUBROUTINE PGCONF (A, IDIM, JDIM, I1, I2, J1, J2, C1, C2, TR)

INTEGER IDIM, JDIM, I1, I2, J1, J2

REAL A(IDIM,JDIM), C1, C2, TR(6)

Shade the region between two contour levels of a function defined on

the nodes of a rectangular grid. The routine uses the current fill

attributes, hatching style (if appropriate), and color index.

If you want to both shade between contours and draw the contour

lines, call this routine first (once for each pair of levels) and

then CALL PGCONT (or PGCONS) to draw the contour lines on top of the

A.3. INDEX OF ROUTINES 15

shading.

Note 1: This routine is not very efficient: it generates a polygon

fill command for each cell of the mesh that intersects the desired

area, rather than consolidating adjacent cells into a single polygon.

Note 2: If both contours intersect all four edges of a particular

mesh cell, the program behaves badly and may consider some parts

of the cell to lie in more than one contour range.

Note 3: If a contour crosses all four edges of a cell, this

routine may not generate the same contours as PGCONT or PGCONS

(these two routines may not agree either). Such cases are always

ambiguous and the routines use different approaches to resolving

the ambiguity.

Arguments:

A (input) : data array.

IDIM (input) : first dimension of A.

JDIM (input) : second dimension of A.

I1,I2 (input) : range of first index to be contoured (inclusive).

J1,J2 (input) : range of second index to be contoured (inclusive).

C1, C2 (input) : contour levels; note that C1 must be less than C2.

TR (input) : array defining a transformation between the I,J

grid of the array and the world coordinates. The

world coordinates of the array point A(I,J) are

given by:

X = TR(1) + TR(2)*I + TR(3)*J

Y = TR(4) + TR(5)*I + TR(6)*J

Usually TR(3) and TR(5) are zero - unless the

coordinate transformation involves a rotation

or shear.

PGCONL – label contour map of a 2D data array

SUBROUTINE PGCONL (A, IDIM, JDIM, I1, I2, J1, J2, C, TR,

1 LABEL, INTVAL, MININT)

INTEGER IDIM, JDIM, I1, J1, I2, J2, INTVAL, MININT

REAL A(IDIM,JDIM), C, TR(6)

CHARACTER*(*) LABEL

Label a contour map drawn with routine PGCONT. Routine PGCONT should

be called first to draw the contour lines, then this routine should be

called to add the labels. Labels are written at intervals along the

contour lines, centered on the contour lines with lettering aligned

in the up-hill direction. Labels are opaque, so a part of the under-

lying contour line is obscured by the label. Labels use the current

16 APPENDIX A. SUBROUTINE DESCRIPTIONS

attributes (character height, line width, color index, character

font).

The first 9 arguments are the same as those supplied to PGCONT, and

should normally be identical to those used with PGCONT. Note that

only one contour level can be specified; tolabel more contours, call

PGCONL for each level.

The Label is supplied as a character string in argument LABEL.

The spacing of labels along the contour is specified by parameters

INTVAL and MININT. The routine follows the contour through the

array, counting the number of cells that the contour crosses. The

first label will be written in the MININT’th cell, and additional

labels will be written every INTVAL cells thereafter. A contour

that crosses less than MININT cells will not be labelled. Some

experimentation may be needed to get satisfactory results; a good

place to start is INTVAL=20, MININT=10.

Arguments:

A (input) : data array.

IDIM (input) : first dimension of A.

JDIM (input) : second dimension of A.

I1, I2 (input) : range of first index to be contoured (inclusive).

J1, J2 (input) : range of second index to be contoured (inclusive).

C (input) : the level of the contour to be labelled (one of the

values given to PGCONT).

TR (input) : array defining a transformation between the I,J

grid of the array and the world coordinates.

The world coordinates of the array point A(I,J)

are given by:

X = TR(1) + TR(2)*I + TR(3)*J

Y = TR(4) + TR(5)*I + TR(6)*J

Usually TR(3) and TR(5) are zero - unless the

coordinate transformation involves a rotation or

shear.

LABEL (input) : character strings to be used to label the specified

contour. Leading and trailing blank spaces are

ignored.

INTVAL (input) : spacing along the contour between labels, in

grid cells.

MININT (input) : contours that cross less than MININT cells

will not be labelled.

PGCONS – contour map of a 2D data array (fast algorithm)

SUBROUTINE PGCONS (A, IDIM, JDIM, I1, I2, J1, J2, C, NC, TR)

A.3. INDEX OF ROUTINES 17

INTEGER IDIM, JDIM, I1, I2, J1, J2, NC

REAL A(IDIM,JDIM), C(*), TR(6)

Draw a contour map of an array. The map is truncated if

necessary at the boundaries of the viewport. Each contour line is

drawn with the current line attributes (color index, style, and

width). This routine, unlike PGCONT, does not draw each contour as a

continuous line, but draws the straight line segments composing each

contour in a random order. It is thus not suitable for use on pen

plotters, and it usually gives unsatisfactory results with dashed or

dotted lines. It is, however, faster than PGCONT, especially if

several contour levels are drawn with one call of PGCONS.

Arguments:

A (input) : data array.

IDIM (input) : first dimension of A.

JDIM (input) : second dimension of A.

I1,I2 (input) : range of first index to be contoured (inclusive).

J1,J2 (input) : range of second index to be contoured (inclusive).

C (input) : array of contour levels (in the same units as the

data in array A); dimension at least NC.

NC (input) : number of contour levels (less than or equal to

dimension of C). The absolute value of this

argument is used (for compatibility with PGCONT,

where the sign of NC is significant).

TR (input) : array defining a transformation between the I,J

grid of the array and the world coordinates. The

world coordinates of the array point A(I,J) are

given by:

X = TR(1) + TR(2)*I + TR(3)*J

Y = TR(4) + TR(5)*I + TR(6)*J

Usually TR(3) and TR(5) are zero - unless the

coordinate transformation involves a rotation

or shear.

PGCONT – contour map of a 2D data array (contour-
following)

SUBROUTINE PGCONT (A, IDIM, JDIM, I1, I2, J1, J2, C, NC, TR)

INTEGER IDIM, JDIM, I1, J1, I2, J2, NC

REAL A(IDIM,JDIM), C(*), TR(6)

Draw a contour map of an array. The map is truncated if

necessary at the boundaries of the viewport. Each contour line

is drawn with the current line attributes (color index, style, and

width); except that if argument NC is positive (see below), the line

style is set by PGCONT to 1 (solid) for positive contours or 2

18 APPENDIX A. SUBROUTINE DESCRIPTIONS

(dashed) for negative contours.

Arguments:

A (input) : data array.

IDIM (input) : first dimension of A.

JDIM (input) : second dimension of A.

I1, I2 (input) : range of first index to be contoured (inclusive).

J1, J2 (input) : range of second index to be contoured (inclusive).

C (input) : array of NC contour levels; dimension at least NC.

NC (input) : +/- number of contour levels (less than or equal

to dimension of C). If NC is positive, it is the

number of contour levels, and the line-style is

chosen automatically as described above. If NC is

negative, it is minus the number of contour

levels, and the current setting of line-style is

used for all the contours.

TR (input) : array defining a transformation between the I,J

grid of the array and the world coordinates.

The world coordinates of the array point A(I,J)

are given by:

X = TR(1) + TR(2)*I + TR(3)*J

Y = TR(4) + TR(5)*I + TR(6)*J

Usually TR(3) and TR(5) are zero - unless the

coordinate transformation involves a rotation or

shear.

PGCONX – contour map of a 2D data array (non rectan-
gular)

SUBROUTINE PGCONX (A, IDIM, JDIM, I1, I2, J1, J2, C, NC, PLOT)

INTEGER IDIM, JDIM, I1, J1, I2, J2, NC

REAL A(IDIM,JDIM), C(*)

EXTERNAL PLOT

Draw a contour map of an array using a user-supplied plotting

routine. This routine should be used instead of PGCONT when the

data are defined on a non-rectangular grid. PGCONT permits only

a linear transformation between the (I,J) grid of the array

and the world coordinate system (x,y), but PGCONX permits any

transformation to be used, the transformation being defined by a

user-supplied subroutine. The nature of the contouring algorithm,

however, dictates that the transformation should maintain the

rectangular topology of the grid, although grid-points may be

allowed to coalesce. As an example of a deformed rectangular

grid, consider data given on the polar grid theta=0.1n(pi/2),

for n=0,1,...,10, and r=0.25m, for m=0,1,..,4. This grid

contains 55 points, of which 11 are coincident at the origin.

A.3. INDEX OF ROUTINES 19

The input array for PGCONX should be dimensioned (11,5), and

data values should be provided for all 55 elements. PGCONX can

also be used for special applications in which the height of the

contour affects its appearance, e.g., stereoscopic views.

The map is truncated if necessary at the boundaries of the viewport.

Each contour line is drawn with the current line attributes (color

index, style, and width); except that if argument NC is positive

(see below), the line style is set by PGCONX to 1 (solid) for

positive contours or 2 (dashed) for negative contours. Attributes

for the contour lines can also be set in the user-supplied

subroutine, if desired.

Arguments:

A (input) : data array.

IDIM (input) : first dimension of A.

JDIM (input) : second dimension of A.

I1, I2 (input) : range of first index to be contoured (inclusive).

J1, J2 (input) : range of second index to be contoured (inclusive).

C (input) : array of NC contour levels; dimension at least NC.

NC (input) : +/- number of contour levels (less than or equal

to dimension of C). If NC is positive, it is the

number of contour levels, and the line-style is

chosen automatically as described above. If NC is

negative, it is minus the number of contour

levels, and the current setting of line-style is

used for all the contours.

PLOT (input) : the address (name) of a subroutine supplied by

the user, which will be called by PGCONX to do

the actual plotting. This must be declared

EXTERNAL in the program unit calling PGCONX.

The subroutine PLOT will be called with four arguments:

CALL PLOT(VISBLE,X,Y,Z)

where X,Y (input) are real variables corresponding to

I,J indices of the array A. If VISBLE (input, integer) is 1,

PLOT should draw a visible line from the current pen

position to the world coordinate point corresponding to (X,Y);

if it is 0, it should move the pen to (X,Y). Z is the value

of the current contour level, and may be used by PLOT if desired.

Example:

SUBROUTINE PLOT (VISBLE,X,Y,Z)

REAL X, Y, Z, XWORLD, YWORLD

INTEGER VISBLE

XWORLD = X*COS(Y) ! this is the user-defined

YWORLD = X*SIN(Y) ! transformation

IF (VISBLE.EQ.0) THEN

20 APPENDIX A. SUBROUTINE DESCRIPTIONS

CALL PGMOVE (XWORLD, YWORLD)

ELSE

CALL PGDRAW (XWORLD, YWORLD)

END IF

END

PGCTAB – install the color table to be used by PGIMAG

SUBROUTINE PGCTAB(L, R, G, B, NC, CONTRA, BRIGHT)

INTEGER NC

REAL L(NC), R(NC), G(NC), B(NC), CONTRA, BRIGHT

Use the given color table to change the color representations of

all color indexes marked for use by PGIMAG. To change which

color indexes are thus marked, call PGSCIR before calling PGCTAB

or PGIMAG. On devices that can change the color representations

of previously plotted graphics, PGCTAB will also change the colors

of existing graphics that were plotted with the marked color

indexes. This feature can then be combined with PGBAND to

interactively manipulate the displayed colors of data previously

plotted with PGIMAG.

Limitations:

1. Some devices do not propagate color representation changes

to previously drawn graphics.

2. Some devices ignore requests to change color representations.

3. The appearance of specific color representations on grey-scale

devices is device-dependent.

Notes:

To reverse the sense of a color table, change the chosen contrast

and brightness to -CONTRA and 1-BRIGHT.

In the following, the term ’color table’ refers to the input

L,R,G,B arrays, whereas ’color ramp’ refers to the resulting

ramp of colors that would be seen with PGWEDG.

Arguments:

L (input) : An array of NC normalized ramp-intensity levels

corresponding to the RGB primary color intensities

in R(),G(),B(). Colors on the ramp are linearly

interpolated from neighbouring levels.

Levels must be sorted in increasing order.

0.0 places a color at the beginning of the ramp.

1.0 places a color at the end of the ramp.

Colors outside these limits are legal, but will

not be visible if CONTRA=1.0 and BRIGHT=0.5.

A.3. INDEX OF ROUTINES 21

R (input) : An array of NC normalized red intensities.

G (input) : An array of NC normalized green intensities.

B (input) : An array of NC normalized blue intensities.

NC (input) : The number of color table entries.

CONTRA (input) : The contrast of the color ramp (normally 1.0).

Negative values reverse the direction of the ramp.

BRIGHT (input) : The brightness of the color ramp. This is normally

0.5, but can sensibly hold any value between 0.0

and 1.0. Values at or beyond the latter two

extremes, saturate the color ramp with the colors

of the respective end of the color table.

PGCURS – read cursor position

INTEGER FUNCTION PGCURS (X, Y, CH)

REAL X, Y

CHARACTER*(*) CH

Read the cursor position and a character typed by the user.

The position is returned in world coordinates. PGCURS positions

the cursor at the position specified, allows the user to move the

cursor using the joystick or arrow keys or whatever is available on

the device. When he has positioned the cursor, the user types a

single character on the keyboard; PGCURS then returns this

character and the new cursor position (in world coordinates).

Returns:

PGCURS : 1 if the call was successful; 0 if the device

has no cursor or some other error occurs.

Arguments:

X (in/out) : the world x-coordinate of the cursor.

Y (in/out) : the world y-coordinate of the cursor.

CH (output) : the character typed by the user; if the device has

no cursor or if some other error occurs, the value

CHAR(0) [ASCII NUL character] is returned.

Note: The cursor coordinates (X,Y) may be changed by PGCURS even if

the device has no cursor or if the user does not move the cursor.

Under these circumstances, the position returned in (X,Y) is that of

the pixel nearest to the requested position.

PGDRAW – draw a line from the current pen position to
a point

SUBROUTINE PGDRAW (X, Y)

REAL X, Y

22 APPENDIX A. SUBROUTINE DESCRIPTIONS

Draw a line from the current pen position to the point

with world-coordinates (X,Y). The line is clipped at the edge of the

current window. The new pen position is (X,Y) in world coordinates.

Arguments:

X (input) : world x-coordinate of the end point of the line.

Y (input) : world y-coordinate of the end point of the line.

PGEBUF – end batch of output (buffer)

SUBROUTINE PGEBUF

A call to PGEBUF marks the end of a batch of graphical output begun

with the last call of PGBBUF. PGBBUF and PGEBUF calls should always

be paired. Each call to PGBBUF increments a counter, while each call

to PGEBUF decrements the counter. When the counter reaches 0, the

batch of output is written on the output device.

Arguments: none

PGEND – close all open graphics devices

SUBROUTINE PGEND

Close and release any open graphics devices. All devices must be

closed by calling either PGCLOS (for each device) or PGEND before

the program terminates. If a device is not closed properly, some

or all of the graphical output may be lost.

Arguments: none

PGENV – set window and viewport and draw labeled frame

SUBROUTINE PGENV (XMIN, XMAX, YMIN, YMAX, JUST, AXIS)

REAL XMIN, XMAX, YMIN, YMAX

INTEGER JUST, AXIS

Set PGPLOT "Plotter Environment". PGENV establishes the scaling

for subsequent calls to PGPT, PGLINE, etc. The plotter is

advanced to a new page or panel, clearing the screen if necessary.

If the "prompt state" is ON (see PGASK), confirmation

is requested from the user before clearing the screen.

If requested, a box, axes, labels, etc. are drawn according to

the setting of argument AXIS.

A.3. INDEX OF ROUTINES 23

Arguments:

XMIN (input) : the world x-coordinate at the bottom left corner

of the viewport.

XMAX (input) : the world x-coordinate at the top right corner

of the viewport (note XMAX may be less than XMIN).

YMIN (input) : the world y-coordinate at the bottom left corner

of the viewport.

YMAX (input) : the world y-coordinate at the top right corner

of the viewport (note YMAX may be less than YMIN).

JUST (input) : if JUST=1, the scales of the x and y axes (in

world coordinates per inch) will be equal,

otherwise they will be scaled independently.

AXIS (input) : controls the plotting of axes, tick marks, etc:

AXIS = -2 : draw no box, axes or labels;

AXIS = -1 : draw box only;

AXIS = 0 : draw box and label it with coordinates;

AXIS = 1 : same as AXIS=0, but also draw the

coordinate axes (X=0, Y=0);

AXIS = 2 : same as AXIS=1, but also draw grid lines

at major increments of the coordinates;

AXIS = 10 : draw box and label X-axis logarithmically;

AXIS = 20 : draw box and label Y-axis logarithmically;

AXIS = 30 : draw box and label both axes logarithmically.

For other axis options, use routine PGBOX. PGENV can be persuaded to

call PGBOX with additional axis options by defining an environment

parameter PGPLOT_ENVOPT containing the required option codes.

Examples:

PGPLOT_ENVOPT=P ! draw Projecting tick marks

PGPLOT_ENVOPT=I ! Invert the tick marks

PGPLOT_ENVOPT=IV ! Invert tick marks and label y Vertically

PGERAS – erase all graphics from current page

SUBROUTINE PGERAS

Erase all graphics from the current page (or current panel, if

the view surface has been divided into panels with PGSUBP).

Arguments: none

PGERR1 – horizontal or vertical error bar

SUBROUTINE PGERR1 (DIR, X, Y, E, T)

INTEGER DIR

REAL X, Y, E

REAL T

24 APPENDIX A. SUBROUTINE DESCRIPTIONS

Plot a single error bar in the direction specified by DIR.

This routine draws an error bar only; to mark the data point at

the start of the error bar, an additional call to PGPT is required.

To plot many error bars, use PGERRB.

Arguments:

DIR (input) : direction to plot the error bar relative to

the data point.

One-sided error bar:

DIR is 1 for +X (X to X+E);

2 for +Y (Y to Y+E);

3 for -X (X to X-E);

4 for -Y (Y to Y-E).

Two-sided error bar:

DIR is 5 for +/-X (X-E to X+E);

6 for +/-Y (Y-E to Y+E).

X (input) : world x-coordinate of the data.

Y (input) : world y-coordinate of the data.

E (input) : value of error bar distance to be added to the

data position in world coordinates.

T (input) : length of terminals to be drawn at the ends

of the error bar, as a multiple of the default

length; if T = 0.0, no terminals will be drawn.

PGERRB – horizontal or vertical error bar

SUBROUTINE PGERRB (DIR, N, X, Y, E, T)

INTEGER DIR, N

REAL X(*), Y(*), E(*)

REAL T

Plot error bars in the direction specified by DIR.

This routine draws an error bar only; to mark the data point at

the start of the error bar, an additional call to PGPT is required.

Arguments:

DIR (input) : direction to plot the error bar relative to

the data point.

One-sided error bar:

DIR is 1 for +X (X to X+E);

2 for +Y (Y to Y+E);

3 for -X (X to X-E);

4 for -Y (Y to Y-E).

Two-sided error bar:

DIR is 5 for +/-X (X-E to X+E);

6 for +/-Y (Y-E to Y+E).

A.3. INDEX OF ROUTINES 25

N (input) : number of error bars to plot.

X (input) : world x-coordinates of the data.

Y (input) : world y-coordinates of the data.

E (input) : value of error bar distance to be added to the

data position in world coordinates.

T (input) : length of terminals to be drawn at the ends

of the error bar, as a multiple of the default

length; if T = 0.0, no terminals will be drawn.

Note: the dimension of arrays X, Y, and E must be greater

than or equal to N. If N is 1, X, Y, and E may be scalar

variables, or expressions.

PGERRX – horizontal error bar

SUBROUTINE PGERRX (N, X1, X2, Y, T)

INTEGER N

REAL X1(*), X2(*), Y(*)

REAL T

Plot horizontal error bars.

This routine draws an error bar only; to mark the data point in

the middle of the error bar, an additional call to PGPT or

PGERRY is required.

Arguments:

N (input) : number of error bars to plot.

X1 (input) : world x-coordinates of lower end of the

error bars.

X2 (input) : world x-coordinates of upper end of the

error bars.

Y (input) : world y-coordinates of the data.

T (input) : length of terminals to be drawn at the ends

of the error bar, as a multiple of the default

length; if T = 0.0, no terminals will be drawn.

Note: the dimension of arrays X1, X2, and Y must be greater

than or equal to N. If N is 1, X1, X2, and Y may be scalar

variables, or expressions, eg:

CALL PGERRX(1,X-SIGMA,X+SIGMA,Y)

PGERRY – vertical error bar

SUBROUTINE PGERRY (N, X, Y1, Y2, T)

INTEGER N

REAL X(*), Y1(*), Y2(*)

REAL T

26 APPENDIX A. SUBROUTINE DESCRIPTIONS

Plot vertical error bars.

This routine draws an error bar only; to mark the data point in

the middle of the error bar, an additional call to PGPT or

PGERRX is required.

Arguments:

N (input) : number of error bars to plot.

X (input) : world x-coordinates of the data.

Y1 (input) : world y-coordinates of top end of the

error bars.

Y2 (input) : world y-coordinates of bottom end of the

error bars.

T (input) : length of terminals to be drawn at the ends

of the error bar, as a multiple of the default

length; if T = 0.0, no terminals will be drawn.

Note: the dimension of arrays X, Y1, and Y2 must be greater

than or equal to N. If N is 1, X, Y1, and Y2 may be scalar

variables or expressions, eg:

CALL PGERRY(1,X,Y+SIGMA,Y-SIGMA)

PGETXT – erase text from graphics display

SUBROUTINE PGETXT

Some graphics terminals display text (the normal interactive dialog)

on the same screen as graphics. This routine erases the text from the

view surface without affecting the graphics. It does nothing on

devices which do not display text on the graphics screen, and on

devices which do not have this capability.

Arguments:

None

PGFUNT – function defined by X = F(T), Y = G(T)

SUBROUTINE PGFUNT (FX, FY, N, TMIN, TMAX, PGFLAG)

REAL FX, FY

EXTERNAL FX, FY

INTEGER N

REAL TMIN, TMAX

INTEGER PGFLAG

Draw a curve defined by parametric equations X = FX(T), Y = FY(T).

Arguments:

A.3. INDEX OF ROUTINES 27

FX (external real function): supplied by the user, evaluates

X-coordinate.

FY (external real function): supplied by the user, evaluates

Y-coordinate.

N (input) : the number of points required to define the

curve. The functions FX and FY will each be

called N+1 times.

TMIN (input) : the minimum value for the parameter T.

TMAX (input) : the maximum value for the parameter T.

PGFLAG (input) : if PGFLAG = 1, the curve is plotted in the

current window and viewport; if PGFLAG = 0,

PGENV is called automatically by PGFUNT to

start a new plot with automatic scaling.

Note: The functions FX and FY must be declared EXTERNAL in the

Fortran program unit that calls PGFUNT.

PGFUNX – function defined by Y = F(X)

SUBROUTINE PGFUNX (FY, N, XMIN, XMAX, PGFLAG)

REAL FY

EXTERNAL FY

INTEGER N

REAL XMIN, XMAX

INTEGER PGFLAG

Draw a curve defined by the equation Y = FY(X), where FY is a

user-supplied subroutine.

Arguments:

FY (external real function): supplied by the user, evaluates

Y value at a given X-coordinate.

N (input) : the number of points required to define the

curve. The function FY will be called N+1 times.

If PGFLAG=0 and N is greater than 1000, 1000

will be used instead. If N is less than 1,

nothing will be drawn.

XMIN (input) : the minimum value of X.

XMAX (input) : the maximum value of X.

PGFLAG (input) : if PGFLAG = 1, the curve is plotted in the

current window and viewport; if PGFLAG = 0,

PGENV is called automatically by PGFUNX to

start a new plot with X limits (XMIN, XMAX)

and automatic scaling in Y.

Note: The function FY must be declared EXTERNAL in the Fortran

program unit that calls PGFUNX. It has one argument, the

28 APPENDIX A. SUBROUTINE DESCRIPTIONS

x-coordinate at which the y value is required, e.g.

REAL FUNCTION FY(X)

REAL X

FY =

END

PGFUNY – function defined by X = F(Y)

SUBROUTINE PGFUNY (FX, N, YMIN, YMAX, PGFLAG)

REAL FX

EXTERNAL FX

INTEGER N

REAL YMIN, YMAX

INTEGER PGFLAG

Draw a curve defined by the equation X = FX(Y), where FY is a

user-supplied subroutine.

Arguments:

FX (external real function): supplied by the user, evaluates

X value at a given Y-coordinate.

N (input) : the number of points required to define the

curve. The function FX will be called N+1 times.

If PGFLAG=0 and N is greater than 1000, 1000

will be used instead. If N is less than 1,

nothing will be drawn.

YMIN (input) : the minimum value of Y.

YMAX (input) : the maximum value of Y.

PGFLAG (input) : if PGFLAG = 1, the curve is plotted in the

current window and viewport; if PGFLAG = 0,

PGENV is called automatically by PGFUNY to

start a new plot with Y limits (YMIN, YMAX)

and automatic scaling in X.

Note: The function FX must be declared EXTERNAL in the Fortran

program unit that calls PGFUNY. It has one argument, the

y-coordinate at which the x value is required, e.g.

REAL FUNCTION FX(Y)

REAL Y

FX =

END

PGGRAY – gray-scale map of a 2D data array

SUBROUTINE PGGRAY (A, IDIM, JDIM, I1, I2, J1, J2,

1 FG, BG, TR)

INTEGER IDIM, JDIM, I1, I2, J1, J2

A.3. INDEX OF ROUTINES 29

REAL A(IDIM,JDIM), FG, BG, TR(6)

Draw gray-scale map of an array in current window. The subsection

of the array A defined by indices (I1:I2, J1:J2) is mapped onto

the view surface world-coordinate system by the transformation

matrix TR. The resulting quadrilateral region is clipped at the edge

of the window and shaded with the shade at each point determined

by the corresponding array value. The shade is a number in the

range 0 to 1 obtained by linear interpolation between the background

level (BG) and the foreground level (FG), i.e.,

shade = [A(i,j) - BG] / [FG - BG]

The background level BG can be either less than or greater than the

foreground level FG. Points in the array that are outside the range

BG to FG are assigned shade 0 or 1 as appropriate.

PGGRAY uses two different algorithms, depending how many color

indices are available in the color index range specified for images.

(This range is set with routine PGSCIR, and the current or default

range can be queried by calling routine PGQCIR).

If 16 or more color indices are available, PGGRAY first assigns

color representations to these color indices to give a linear ramp

between the background color (color index 0) and the foreground color

(color index 1), and then calls PGIMAG to draw the image using these

color indices. In this mode, the shaded region is "opaque": every

pixel is assigned a color.

If less than 16 color indices are available, PGGRAY uses only

color index 1, and uses a "dithering" algorithm to fill in pixels,

with the shade (computed as above) determining the faction of pixels

that are filled. In this mode the shaded region is "transparent" and

allows previously-drawn graphics to show through.

The transformation matrix TR is used to calculate the world

coordinates of the center of the "cell" that represents each

array element. The world coordinates of the center of the cell

corresponding to array element A(I,J) are given by:

X = TR(1) + TR(2)*I + TR(3)*J

Y = TR(4) + TR(5)*I + TR(6)*J

Usually TR(3) and TR(5) are zero -- unless the coordinate

transformation involves a rotation or shear. The corners of the

quadrilateral region that is shaded by PGGRAY are given by

applying this transformation to (I1-0.5,J1-0.5), (I2+0.5, J2+0.5).

30 APPENDIX A. SUBROUTINE DESCRIPTIONS

Arguments:

A (input) : the array to be plotted.

IDIM (input) : the first dimension of array A.

JDIM (input) : the second dimension of array A.

I1, I2 (input) : the inclusive range of the first index

(I) to be plotted.

J1, J2 (input) : the inclusive range of the second

index (J) to be plotted.

FG (input) : the array value which is to appear with the

foreground color (corresponding to color index 1).

BG (input) : the array value which is to appear with the

background color (corresponding to color index 0).

TR (input) : transformation matrix between array grid and

world coordinates.

PGHI2D – cross-sections through a 2D data array

SUBROUTINE PGHI2D (DATA, NXV, NYV, IX1, IX2, IY1, IY2, X, IOFF,

1 BIAS, CENTER, YLIMS)

INTEGER NXV, NYV, IX1, IX2, IY1, IY2

REAL DATA(NXV,NYV)

REAL X(IX2-IX1+1), YLIMS(IX2-IX1+1)

INTEGER IOFF

REAL BIAS

LOGICAL CENTER

Plot a series of cross-sections through a 2D data array.

Each cross-section is plotted as a hidden line histogram. The plot

can be slanted to give a pseudo-3D effect - if this is done, the

call to PGENV may have to be changed to allow for the increased X

range that will be needed.

Arguments:

DATA (input) : the data array to be plotted.

NXV (input) : the first dimension of DATA.

NYV (input) : the second dimension of DATA.

IX1 (input)

IX2 (input)

IY1 (input)

IY2 (input) : PGHI2D plots a subset of the input array DATA.

This subset is delimited in the first (x)

dimension by IX1 and IX2 and the 2nd (y) by IY1

and IY2, inclusively. Note: IY2 < IY1 is

permitted, resulting in a plot with the

cross-sections plotted in reverse Y order.

However, IX2 must be => IX1.

A.3. INDEX OF ROUTINES 31

X (input) : the abscissae of the bins to be plotted. That is,

X(1) should be the X value for DATA(IX1,IY1), and

X should have (IX2-IX1+1) elements. The program

has to assume that the X value for DATA(x,y) is

the same for all y.

IOFF (input) : an offset in array elements applied to successive

cross-sections to produce a slanted effect. A

plot with IOFF > 0 slants to the right, one with

IOFF < 0 slants left.

BIAS (input) : a bias value applied to each successive cross-

section in order to raise it above the previous

cross-section. This is in the same units as the

data.

CENTER (input) : if .true., the X values denote the center of the

bins; if .false. the X values denote the lower

edges (in X) of the bins.

YLIMS (input) : workspace. Should be an array of at least

(IX2-IX1+1) elements.

PGHIST – histogram of unbinned data

SUBROUTINE PGHIST(N, DATA, DATMIN, DATMAX, NBIN, PGFLAG)

INTEGER N

REAL DATA(*)

REAL DATMIN, DATMAX

INTEGER NBIN, PGFLAG

Draw a histogram of N values of a variable in array

DATA(1...N) in the range DATMIN to DATMAX using NBIN bins. Note

that array elements which fall exactly on the boundary between

two bins will be counted in the higher bin rather than the

lower one; and array elements whose value is less than DATMIN or

greater than or equal to DATMAX will not be counted at all.

Arguments:

N (input) : the number of data values.

DATA (input) : the data values. Note: the dimension of array

DATA must be greater than or equal to N. The

first N elements of the array are used.

DATMIN (input) : the minimum data value for the histogram.

DATMAX (input) : the maximum data value for the histogram.

NBIN (input) : the number of bins to use: the range DATMIN to

DATMAX is divided into NBIN equal bins and

the number of DATA values in each bin is

determined by PGHIST. NBIN may not exceed 200.

PGFLAG (input) : if PGFLAG = 1, the histogram is plotted in the

current window and viewport; if PGFLAG = 0,

32 APPENDIX A. SUBROUTINE DESCRIPTIONS

PGENV is called automatically by PGHIST to start

a new plot (the x-limits of the window will be

DATMIN and DATMAX; the y-limits will be chosen

automatically.

IF PGFLAG = 2,3 the histogram will be in the same

window and viewport but with a filled area style.

If pgflag=4,5 as for pgflag = 0,1, but simple

line drawn as for PGBIN

PGIDEN – write username, date, and time at bottom of
plot

SUBROUTINE PGIDEN

Write username, date, and time at bottom of plot.

Arguments: none.

PGIMAG – color image from a 2D data array

SUBROUTINE PGIMAG (A, IDIM, JDIM, I1, I2, J1, J2,

1 A1, A2, TR)

INTEGER IDIM, JDIM, I1, I2, J1, J2

REAL A(IDIM,JDIM), A1, A2, TR(6)

Draw a color image of an array in current window. The subsection

of the array A defined by indices (I1:I2, J1:J2) is mapped onto

the view surface world-coordinate system by the transformation

matrix TR. The resulting quadrilateral region is clipped at the edge

of the window. Each element of the array is represented in the image

by a small quadrilateral, which is filled with a color specified by

the corresponding array value.

The subroutine uses color indices in the range C1 to C2, which can

be specified by calling PGSCIR before PGIMAG. The default values

for C1 and C2 are device-dependent; these values can be determined by

calling PGQCIR. Note that color representations should be assigned to

color indices C1 to C2 by calling PGSCR before calling PGIMAG. On some

devices (but not all), the color representation can be changed after

the call to PGIMAG by calling PGSCR again.

Array values in the range A1 to A2 are mapped on to the range of

color indices C1 to C2, with array values <= A1 being given color

index C1 and values >= A2 being given color index C2. The mapping

function for intermediate array values can be specified by

calling routine PGSITF before PGIMAG; the default is linear.

A.3. INDEX OF ROUTINES 33

On devices which have no available color indices (C1 > C2),

PGIMAG will return without doing anything. On devices with only

one color index (C1=C2), all array values map to the same color

which is rather uninteresting. An image is always "opaque",

i.e., it obscures all graphical elements previously drawn in

the region.

The transformation matrix TR is used to calculate the world

coordinates of the center of the "cell" that represents each

array element. The world coordinates of the center of the cell

corresponding to array element A(I,J) are given by:

X = TR(1) + TR(2)*I + TR(3)*J

Y = TR(4) + TR(5)*I + TR(6)*J

Usually TR(3) and TR(5) are zero -- unless the coordinate

transformation involves a rotation or shear. The corners of the

quadrilateral region that is shaded by PGIMAG are given by

applying this transformation to (I1-0.5,J1-0.5), (I2+0.5, J2+0.5).

Arguments:

A (input) : the array to be plotted.

IDIM (input) : the first dimension of array A.

JDIM (input) : the second dimension of array A.

I1, I2 (input) : the inclusive range of the first index

(I) to be plotted.

J1, J2 (input) : the inclusive range of the second

index (J) to be plotted.

A1 (input) : the array value which is to appear with shade C1.

A2 (input) : the array value which is to appear with shade C2.

TR (input) : transformation matrix between array grid and

world coordinates.

PGLAB – write labels for x-axis, y-axis, and top of plot

SUBROUTINE PGLAB (XLBL, YLBL, TOPLBL)

CHARACTER*(*) XLBL, YLBL, TOPLBL

Write labels outside the viewport. This routine is a simple

interface to PGMTXT, which should be used if PGLAB is inadequate.

Arguments:

XLBL (input) : a label for the x-axis (centered below the

viewport).

YLBL (input) : a label for the y-axis (centered to the left

of the viewport, drawn vertically).

34 APPENDIX A. SUBROUTINE DESCRIPTIONS

TOPLBL (input) : a label for the entire plot (centered above the

viewport).

PGLCUR – draw a line using the cursor

SUBROUTINE PGLCUR (MAXPT, NPT, X, Y)

INTEGER MAXPT, NPT

REAL X(*), Y(*)

Interactive routine for user to enter a polyline by use of

the cursor. Routine allows user to Add and Delete vertices;

vertices are joined by straight-line segments.

Arguments:

MAXPT (input) : maximum number of points that may be accepted.

NPT (in/out) : number of points entered; should be zero on

first call.

X (in/out) : array of x-coordinates (dimension at least MAXPT).

Y (in/out) : array of y-coordinates (dimension at least MAXPT).

Notes:

(1) On return from the program, cursor points are returned in

the order they were entered. Routine may be (re-)called with points

already defined in X,Y (# in NPT), and they will be plotted

first, before editing.

(2) User commands: the user types single-character commands

after positioning the cursor: the following are accepted:

A (Add) - add point at current cursor location.

D (Delete) - delete last-entered point.

X (eXit) - leave subroutine.

PGLDEV – list available device types on standard output

SUBROUTINE PGLDEV

Writes (to standard output) a list of all device types available in

the current PGPLOT installation.

Arguments: none.

PGLEN – find length of a string in a variety of units

SUBROUTINE PGLEN (UNITS, STRING, XL, YL)

REAL XL, YL

A.3. INDEX OF ROUTINES 35

INTEGER UNITS

CHARACTER*(*) STRING

Work out length of a string in x and y directions

Input

UNITS : 0 => answer in normalized device coordinates

1 => answer in inches

2 => answer in mm

3 => answer in absolute device coordinates (dots)

4 => answer in world coordinates

5 => answer as a fraction of the current viewport size

STRING : String of interest

Output

XL : Length of string in x direction

YL : Length of string in y direction

PGLINE – draw a polyline (curve defined by line-segments)

SUBROUTINE PGLINE (N, XPTS, YPTS)

INTEGER N

REAL XPTS(*), YPTS(*)

Primitive routine to draw a Polyline. A polyline is one or more

connected straight-line segments. The polyline is drawn using

the current setting of attributes color-index, line-style, and

line-width. The polyline is clipped at the edge of the window.

Arguments:

N (input) : number of points defining the line; the line

consists of (N-1) straight-line segments.

N should be greater than 1 (if it is 1 or less,

nothing will be drawn).

XPTS (input) : world x-coordinates of the points.

YPTS (input) : world y-coordinates of the points.

The dimension of arrays X and Y must be greater than or equal to N.

The "pen position" is changed to (X(N),Y(N)) in world coordinates

(if N > 1).

PGMOVE – move pen (change current pen position)

SUBROUTINE PGMOVE (X, Y)

REAL X, Y

36 APPENDIX A. SUBROUTINE DESCRIPTIONS

Primitive routine to move the "pen" to the point with world

coordinates (X,Y). No line is drawn.

Arguments:

X (input) : world x-coordinate of the new pen position.

Y (input) : world y-coordinate of the new pen position.

PGMTXT – write text at position relative to viewport

SUBROUTINE PGMTXT (SIDE, DISP, COORD, FJUST, TEXT)

CHARACTER*(*) SIDE, TEXT

REAL DISP, COORD, FJUST

Write text at a position specified relative to the viewport (outside

or inside). This routine is useful for annotating graphs. It is used

by routine PGLAB. The text is written using the current values of

attributes color-index, line-width, character-height, and

character-font.

Arguments:

SIDE (input) : must include one of the characters ’B’, ’L’, ’T’,

or ’R’ signifying the Bottom, Left, Top, or Right

margin of the viewport. If it includes ’LV’ or

’RV’, the string is written perpendicular to the

frame rather than parallel to it.

DISP (input) : the displacement of the character string from the

specified edge of the viewport, measured outwards

from the viewport in units of the character

height. Use a negative value to write inside the

viewport, a positive value to write outside.

COORD (input) : the location of the character string along the

specified edge of the viewport, as a fraction of

the length of the edge.

FJUST (input) : controls justification of the string parallel to

the specified edge of the viewport. If

FJUST = 0.0, the left-hand end of the string will

be placed at COORD; if JUST = 0.5, the center of

the string will be placed at COORD; if JUST = 1.0,

the right-hand end of the string will be placed at

at COORD. Other values between 0 and 1 give inter-

mediate placing, but they are not very useful.

TEXT (input) : the text string to be plotted. Trailing spaces are

ignored when justifying the string, but leading

spaces are significant.

A.3. INDEX OF ROUTINES 37

PGNCUR – mark a set of points using the cursor

SUBROUTINE PGNCUR (MAXPT, NPT, X, Y, SYMBOL)

INTEGER MAXPT, NPT

REAL X(*), Y(*)

INTEGER SYMBOL

Interactive routine for user to enter data points by use of

the cursor. Routine allows user to Add and Delete points. The

points are returned in order of increasing x-coordinate, not in the

order they were entered.

Arguments:

MAXPT (input) : maximum number of points that may be accepted.

NPT (in/out) : number of points entered; should be zero on

first call.

X (in/out) : array of x-coordinates.

Y (in/out) : array of y-coordinates.

SYMBOL (input) : code number of symbol to use for marking

entered points (see PGPT).

Note (1): The dimension of arrays X and Y must be greater than or

equal to MAXPT.

Note (2): On return from the program, cursor points are returned in

increasing order of X. Routine may be (re-)called with points

already defined in X,Y (number in NPT), and they will be plotted

first, before editing.

Note (3): User commands: the user types single-character commands

after positioning the cursor: the following are accepted:

A (Add) - add point at current cursor location.

D (Delete) - delete nearest point to cursor.

X (eXit) - leave subroutine.

PGNUMB – convert a number into a plottable character
string

SUBROUTINE PGNUMB (MM, PP, FORM, STRING, NC)

INTEGER MM, PP, FORM

CHARACTER*(*) STRING

INTEGER NC

This routine converts a number into a decimal character

representation. To avoid problems of floating-point roundoff, the

number must be provided as an integer (MM) multiplied by a power of 10

(10**PP). The output string retains only significant digits of MM,

and will be in either integer format (123), decimal format (0.0123),

38 APPENDIX A. SUBROUTINE DESCRIPTIONS

or exponential format (1.23x10**5). Standard escape sequences \u, \d

raise the exponent and \x is used for the multiplication sign.

This routine is used by PGBOX to create numeric labels for a plot.

Formatting rules:

(a) Decimal notation (FORM=1):

- Trailing zeros to the right of the decimal sign are

omitted

- The decimal sign is omitted if there are no digits

to the right of it

- When the decimal sign is placed before the first digit

of the number, a zero is placed before the decimal sign

- The decimal sign is a period (.)

- No spaces are placed between digits (ie digits are not

grouped in threes as they should be)

- A leading minus (-) is added if the number is negative

(b) Exponential notation (FORM=2):

- The exponent is adjusted to put just one (non-zero)

digit before the decimal sign

- The mantissa is formatted as in (a), unless its value is

1 in which case it and the multiplication sign are omitted

- If the power of 10 is not zero and the mantissa is not

zero, an exponent of the form \x10\u[-]nnn is appended,

where \x is a multiplication sign (cross), \u is an escape

sequence to raise the exponent, and as many digits nnn

are used as needed

(c) Automatic choice (FORM=0):

Decimal notation is used if the absolute value of the

number is less than 10000 or greater than or equal to

0.01. Otherwise exponential notation is used.

Arguments:

MM (input)

PP (input) : the value to be formatted is MM*10**PP.

FORM (input) : controls how the number is formatted:

FORM = 0 -- use either decimal or exponential

FORM = 1 -- use decimal notation

FORM = 2 -- use exponential notation

STRING (output) : the formatted character string, left justified.

If the length of STRING is insufficient, a single

asterisk is returned, and NC=1.

NC (output) : the number of characters used in STRING:

the string to be printed is STRING(1:NC).

PGOLIN – mark a set of points using the cursor

SUBROUTINE PGOLIN (MAXPT, NPT, X, Y, SYMBOL)

A.3. INDEX OF ROUTINES 39

INTEGER MAXPT, NPT

REAL X(*), Y(*)

INTEGER SYMBOL

Interactive routine for user to enter data points by use of

the cursor. Routine allows user to Add and Delete points. The

points are returned in the order that they were entered (unlike

PGNCUR).

Arguments:

MAXPT (input) : maximum number of points that may be accepted.

NPT (in/out) : number of points entered; should be zero on

first call.

X (in/out) : array of x-coordinates.

Y (in/out) : array of y-coordinates.

SYMBOL (input) : code number of symbol to use for marking

entered points (see PGPT).

Note (1): The dimension of arrays X and Y must be greater than or

equal to MAXPT.

Note (2): On return from the program, cursor points are returned in

the order they were entered. Routine may be (re-)called with points

already defined in X,Y (number in NPT), and they will be plotted

first, before editing.

Note (3): User commands: the user types single-character commands

after positioning the cursor: the following are accepted:

A (Add) - add point at current cursor location.

D (Delete) - delete the last point entered.

X (eXit) - leave subroutine.

PGOPEN – open a graphics device

INTEGER FUNCTION PGOPEN (DEVICE)

CHARACTER*(*) DEVICE

Open a graphics device for PGPLOT output. If the device is

opened successfully, it becomes the selected device to which

graphics output is directed until another device is selected

with PGSLCT or the device is closed with PGCLOS.

The value returned by PGOPEN should be tested to ensure that

the device was opened successfully, e.g.,

ISTAT = PGOPEN(’plot.ps/PS’)

IF (ISTAT .LE. 0) STOP

40 APPENDIX A. SUBROUTINE DESCRIPTIONS

Note that PGOPEN must be declared INTEGER in the calling program.

The DEVICE argument is a character constant or variable; its value

should be one of the following:

(1) A complete device specification of the form ’device/type’ or

’file/type’, where ’type’ is one of the allowed PGPLOT device

types (installation-dependent) and ’device’ or ’file’ is the

name of a graphics device or disk file appropriate for this type.

The ’device’ or ’file’ may contain ’/’ characters; the final

’/’ delimits the ’type’. If necessary to avoid ambiguity,

the ’device’ part of the string may be enclosed in double

quotation marks.

(2) A device specification of the form ’/type’, where ’type’ is one

of the allowed PGPLOT device types. PGPLOT supplies a default

file or device name appropriate for this device type.

(3) A device specification with ’/type’ omitted; in this case

the type is taken from the environment variable PGPLOT_TYPE,

if defined (e.g., setenv PGPLOT_TYPE PS). Because of possible

confusion with ’/’ in file-names, omitting the device type

in this way is not recommended.

(4) A blank string (’ ’); in this case, PGOPEN will use the value

of environment variable PGPLOT_DEV as the device specification,

or ’/NULL’ if the environment variable is undefined.

(5) A single question mark, with optional trailing spaces (’?’); in

this case, PGPLOT will prompt the user to supply the device

specification, with a prompt string of the form

’Graphics device/type (? to see list, default XXX):’

where ’XXX’ is the default (value of environment variable

PGPLOT_DEV).

(6) A non-blank string in which the first character is a question

mark (e.g., ’?Device: ’); in this case, PGPLOT will prompt the

user to supply the device specification, using the supplied

string as the prompt (without the leading question mark but

including any trailing spaces).

In cases (5) and (6), the device specification is read from the

standard input. The user should respond to the prompt with a device

specification of the form (1), (2), or (3). If the user types a

question-mark in response to the prompt, a list of available device

types is displayed and the prompt is re-issued. If the user supplies

an invalid device specification, the prompt is re-issued. If the user

responds with an end-of-file character, e.g., ctrl-D in UNIX, program

execution is aborted; this avoids the possibility of an infinite

prompting loop. A programmer should avoid use of PGPLOT-prompting

if this behavior is not desirable.

A.3. INDEX OF ROUTINES 41

The device type is case-insensitive (e.g., ’/ps’ and ’/PS’ are

equivalent). The device or file name may be case-sensitive in some

operating systems.

Examples of valid DEVICE arguments:

(1) ’plot.ps/ps’, ’dir/plot.ps/ps’, ’"dir/plot.ps"/ps’,

’user:[tjp.plots]plot.ps/PS’

(2) ’/ps’ (PGPLOT interprets this as ’pgplot.ps/ps’)

(3) ’plot.ps’ (if PGPLOT_TYPE is defined as ’ps’, PGPLOT

interprets this as ’plot.ps/ps’)

(4) ’ ’ (if PGPLOT_DEV is defined)

(5) ’? ’

(6) ’?Device specification for PGPLOT: ’

[This routine was added to PGPLOT in Version 5.1.0. Older programs

use PGBEG instead.]

Returns:

PGOPEN : returns either a positive value, the

identifier of the graphics device for use with

PGSLCT, or a 0 or negative value indicating an

error. In the event of error a message is

written on the standard error unit.

Arguments:

DEVICE (input) : the ’device specification’ for the plot device

(see above).

PGPAGE – advance to new page

SUBROUTINE PGPAGE

Advance plotter to a new page or panel, clearing the screen if

necessary. If the "prompt state" is ON (see PGASK), confirmation is

requested from the user before clearing the screen. If the view

surface has been subdivided into panels with PGBEG or PGSUBP, then

PGPAGE advances to the next panel, and if the current panel is the

last on the page, PGPAGE clears the screen or starts a new sheet of

paper. PGPAGE does not change the PGPLOT window or the viewport

(in normalized device coordinates); but note that if the size of the

view-surface is changed externally (e.g., by a workstation window

manager) the size of the viewport is changed in proportion.

Arguments: none

42 APPENDIX A. SUBROUTINE DESCRIPTIONS

PGPANL – switch to a different panel on the view surface

SUBROUTINE PGPANL(IX, IY)

INTEGER IX, IY

Start plotting in a different panel. If the view surface has been

divided into panels by PGBEG or PGSUBP, this routine can be used to

move to a different panel. Note that PGPLOT does not remember what

viewport and window were in use in each panel; these should be reset

if necessary after calling PGPANL. Nor does PGPLOT clear the panel:

call PGERAS after calling PGPANL to do this.

Arguments:

IX (input) : the horizontal index of the panel (in the range

1 <= IX <= number of panels in horizontal

direction).

IY (input) : the vertical index of the panel (in the range

1 <= IY <= number of panels in horizontal

direction).

PGPAP – change the size of the view surface

SUBROUTINE PGPAP (WIDTH, ASPECT)

REAL WIDTH, ASPECT

This routine changes the size of the view surface ("paper size") to a

specified width and aspect ratio (height/width), in so far as this is

possible on the specific device. It is always possible to obtain a

view surface smaller than the default size; on some devices (e.g.,

printers that print on roll or fan-feed paper) it is possible to

obtain a view surface larger than the default.

This routine should be called either immediately after PGBEG or

immediately before PGPAGE. The new size applies to all subsequent

images until the next call to PGPAP.

Arguments:

WIDTH (input) : the requested width of the view surface in inches;

if WIDTH=0.0, PGPAP will obtain the largest view

surface available consistent with argument ASPECT.

(1 inch = 25.4 mm.)

ASPECT (input) : the aspect ratio (height/width) of the view

surface; e.g., ASPECT=1.0 gives a square view

surface, ASPECT=0.618 gives a horizontal

rectangle, ASPECT=1.618 gives a vertical rectangle.

A.3. INDEX OF ROUTINES 43

PGPIXL – draw pixels

SUBROUTINE PGPIXL (IA, IDIM, JDIM, I1, I2, J1, J2,

1 X1, X2, Y1, Y2)

INTEGER IDIM, JDIM, I1, I2, J1, J2

INTEGER IA(IDIM,JDIM)

REAL X1, X2, Y1, Y2

Draw lots of solid-filled (tiny) rectangles aligned with the

coordinate axes. Best performance is achieved when output is

directed to a pixel-oriented device and the rectangles coincide

with the pixels on the device. In other cases, pixel output is

emulated.

The subsection of the array IA defined by indices (I1:I2, J1:J2)

is mapped onto world-coordinate rectangle defined by X1, X2, Y1

and Y2. This rectangle is divided into (I2 - I1 + 1) * (J2 - J1 + 1)

small rectangles. Each of these small rectangles is solid-filled

with the color index specified by the corresponding element of

IA.

On most devices, the output region is "opaque", i.e., it obscures

all graphical elements previously drawn in the region. But on

devices that do not have erase capability, the background shade

is "transparent" and allows previously-drawn graphics to show

through.

Arguments:

IA (input) : the array to be plotted.

IDIM (input) : the first dimension of array A.

JDIM (input) : the second dimension of array A.

I1, I2 (input) : the inclusive range of the first index

(I) to be plotted.

J1, J2 (input) : the inclusive range of the second

index (J) to be plotted.

X1, Y1 (input) : world coordinates of one corner of the output

region

X2, Y2 (input) : world coordinates of the opposite corner of the

output region

PGPNTS – draw several graph markers, not all the same

SUBROUTINE PGPNTS (N, X, Y, SYMBOL, NS)

INTEGER N, NS

REAL X(*), Y(*)

INTEGER SYMBOL(*)

Draw Graph Markers. Unlike PGPT, this routine can draw a different

44 APPENDIX A. SUBROUTINE DESCRIPTIONS

symbol at each point. The markers are drawn using the current values

of attributes color-index, line-width, and character-height

(character-font applies if the symbol number is >31). If the point

to be marked lies outside the window, no marker is drawn. The "pen

position" is changed to (XPTS(N),YPTS(N)) in world coordinates

(if N > 0).

Arguments:

N (input) : number of points to mark.

X (input) : world x-coordinate of the points.

Y (input) : world y-coordinate of the points.

SYMBOL (input) : code number of the symbol to be plotted at each

point (see PGPT).

NS (input) : number of values in the SYMBOL array. If NS <= N,

then the first NS points are drawn using the value

of SYMBOL(I) at (X(I), Y(I)) and SYMBOL(1) for all

the values of (X(I), Y(I)) where I > NS.

Note: the dimension of arrays X and Y must be greater than or equal

to N and the dimension of the array SYMBOL must be greater than or

equal to NS. If N is 1, X and Y may be scalars (constants or

variables). If NS is 1, then SYMBOL may be a scalar. If N is

less than 1, nothing is drawn.

PGPOLY – draw a polygon, using fill-area attributes

SUBROUTINE PGPOLY (N, XPTS, YPTS)

INTEGER N

REAL XPTS(*), YPTS(*)

Fill-area primitive routine: shade the interior of a closed

polygon in the current window. The action of this routine depends

on the setting of the Fill-Area Style attribute (see PGSFS).

The polygon is clipped at the edge of the

window. The pen position is changed to (XPTS(1),YPTS(1)) in world

coordinates (if N > 1). If the polygon is not convex, a point is

assumed to lie inside the polygon if a straight line drawn to

infinity intersects and odd number of the polygon’s edges.

Arguments:

N (input) : number of points defining the polygon; the

line consists of N straight-line segments,

joining points 1 to 2, 2 to 3,... N-1 to N, N to 1.

N should be greater than 2 (if it is 2 or less,

nothing will be drawn).

XPTS (input) : world x-coordinates of the vertices.

YPTS (input) : world y-coordinates of the vertices.

A.3. INDEX OF ROUTINES 45

Note: the dimension of arrays XPTS and YPTS must be

greater than or equal to N.

PGPT – draw several graph markers

SUBROUTINE PGPT (N, XPTS, YPTS, SYMBOL)

INTEGER N

REAL XPTS(*), YPTS(*)

INTEGER SYMBOL

Primitive routine to draw Graph Markers (polymarker). The markers

are drawn using the current values of attributes color-index,

line-width, and character-height (character-font applies if the symbol

number is >31). If the point to be marked lies outside the window,

no marker is drawn. The "pen position" is changed to

(XPTS(N),YPTS(N)) in world coordinates (if N > 0).

Arguments:

N (input) : number of points to mark.

XPTS (input) : world x-coordinates of the points.

YPTS (input) : world y-coordinates of the points.

SYMBOL (input) : code number of the symbol to be drawn at each

point:

-1, -2 : a single dot (diameter = current

line width).

-3..-31 : a regular polygon with ABS(SYMBOL)

edges (style set by current fill style).

0..31 : standard marker symbols.

32..127 : ASCII characters (in current font).

e.g. to use letter F as a marker, let

SYMBOL = ICHAR(’F’).

> 127 : a Hershey symbol number.

Note: the dimension of arrays X and Y must be greater than or equal

to N. If N is 1, X and Y may be scalars (constants or variables). If

N is less than 1, nothing is drawn.

PGPT1 – draw one graph marker

SUBROUTINE PGPT1 (XPT, YPT, SYMBOL)

REAL XPT, YPT

INTEGER SYMBOL

Primitive routine to draw a single Graph Marker at a specified point.

The marker is drawn using the current values of attributes

color-index, line-width, and character-height (character-font applies

if the symbol number is >31). If the point to be marked lies outside

46 APPENDIX A. SUBROUTINE DESCRIPTIONS

the window, no marker is drawn. The "pen position" is changed to

(XPT,YPT) in world coordinates.

To draw several markers with coordinates specified by X and Y

arrays, use routine PGPT.

Arguments:

XPT (input) : world x-coordinate of the point.

YPT (input) : world y-coordinate of the point.

SYMBOL (input) : code number of the symbol to be drawn:

-1, -2 : a single dot (diameter = current

line width).

-3..-31 : a regular polygon with ABS(SYMBOL)

edges (style set by current fill style).

0..31 : standard marker symbols.

32..127 : ASCII characters (in current font).

e.g. to use letter F as a marker, let

SYMBOL = ICHAR(’F’).

> 127 : a Hershey symbol number.

PGPTXT – write text at arbitrary position and angle

SUBROUTINE PGPTXT (X, Y, ANGLE, FJUST, TEXT)

REAL X, Y, ANGLE, FJUST

CHARACTER*(*) TEXT

Primitive routine for drawing text. The text may be drawn at any

angle with the horizontal, and may be centered or left- or right-

justified at a specified position. Routine PGTEXT provides a

simple interface to PGPTXT for horizontal strings. Text is drawn

using the current values of attributes color-index, line-width,

character-height, and character-font. Text is NOT subject to

clipping at the edge of the window.

Arguments:

X (input) : world x-coordinate.

Y (input) : world y-coordinate. The string is drawn with the

baseline of all the characters passing through

point (X,Y); the positioning of the string along

this line is controlled by argument FJUST.

ANGLE (input) : angle, in degrees, that the baseline is to make

with the horizontal, increasing counter-clockwise

(0.0 is horizontal).

FJUST (input) : controls horizontal justification of the string.

If FJUST = 0.0, the string will be left-justified

at the point (X,Y); if FJUST = 0.5, it will be

centered, and if FJUST = 1.0, it will be right

A.3. INDEX OF ROUTINES 47

justified. [Other values of FJUST give other

justifications.]

TEXT (input) : the character string to be plotted.

PGQAH – inquire arrow-head style

SUBROUTINE PGQAH (FS, ANGLE, BARB)

INTEGER FS

REAL ANGLE, BARB

Query the style to be used for arrowheads drawn with routine PGARRO.

Argument:

FS (output) : FS = 1 => filled; FS = 2 => outline.

ANGLE (output) : the acute angle of the arrow point, in degrees.

BARB (output) : the fraction of the triangular arrow-head that

is cut away from the back.

PGQCF – inquire character font

SUBROUTINE PGQCF (FONT)

INTEGER FONT

Query the current Character Font (set by routine PGSCF).

Argument:

FONT (output) : the current font number (in range 1-4).

PGQCH – inquire character height

SUBROUTINE PGQCH (SIZE)

REAL SIZE

Query the Character Size attribute (set by routine PGSCH).

Argument:

SIZE (output) : current character size (dimensionless multiple of

the default size).

PGQCI – inquire color index

SUBROUTINE PGQCI (CI)

INTEGER CI

Query the Color Index attribute (set by routine PGSCI).

48 APPENDIX A. SUBROUTINE DESCRIPTIONS

Argument:

CI (output) : the current color index (in range 0-max). This is

the color index actually in use, and may differ

from the color index last requested by PGSCI if

that index is not available on the output device.

PGQCIR – inquire color index range

SUBROUTINE PGQCIR(ICILO, ICIHI)

INTEGER ICILO, ICIHI

Query the color index range to be used for producing images with

PGGRAY or PGIMAG, as set by routine PGSCIR or by device default.

Arguments:

ICILO (output) : the lowest color index to use for images

ICIHI (output) : the highest color index to use for images

PGQCLP – inquire clipping status

SUBROUTINE PGQCLP(STATE)

INTEGER STATE

Query the current clipping status (set by routine PGSCLP).

Argument:

STATE (output) : receives the clipping status (0 => disabled,

1 => enabled).

PGQCOL – inquire color capability

SUBROUTINE PGQCOL (CI1, CI2)

INTEGER CI1, CI2

Query the range of color indices available on the current device.

Argument:

CI1 (output) : the minimum available color index. This will be

either 0 if the device can write in the

background color, or 1 if not.

CI2 (output) : the maximum available color index. This will be

1 if the device has no color capability, or a

larger number (e.g., 3, 7, 15, 255).

A.3. INDEX OF ROUTINES 49

PGQCR – inquire color representation

SUBROUTINE PGQCR (CI, CR, CG, CB)

INTEGER CI

REAL CR, CG, CB

Query the RGB colors associated with a color index.

Arguments:

CI (input) : color index

CR (output) : red, green and blue intensities

CG (output) in the range 0.0 to 1.0

CB (output)

PGQCS – inquire character height in a variety of units

SUBROUTINE PGQCS(UNITS, XCH, YCH)

INTEGER UNITS

REAL XCH, YCH

Return the current PGPLOT character height in a variety of units.

This routine provides facilities that are not available via PGQCH.

Use PGQCS if the character height is required in units other than

those used in PGSCH.

The PGPLOT "character height" is a dimension that scales with the

size of the view surface and with the scale-factor specified with

routine PGSCH. The default value is 1/40th of the height or width

of the view surface (whichever is less); this value is then

multiplied by the scale-factor supplied with PGSCH. Note that it

is a nominal height only; the actual character size depends on the

font and is usually somewhat smaller.

Arguments:

UNITS (input) : Used to specify the units of the output value:

UNITS = 0 : normalized device coordinates

UNITS = 1 : inches

UNITS = 2 : millimeters

UNITS = 3 : pixels

UNITS = 4 : world coordinates

Other values give an error message, and are

treated as 0.

XCH (output) : The character height for text written with a

vertical baseline.

YCH (output) : The character height for text written with

a horizontal baseline (the usual case).

The character height is returned in both XCH and YCH.

50 APPENDIX A. SUBROUTINE DESCRIPTIONS

If UNITS=1 or UNITS=2, XCH and YCH both receive the same value.

If UNITS=3, XCH receives the height in horizontal pixel units, and YCH

receives the height in vertical pixel units; on devices for which the

pixels are not square, XCH and YCH will be different.

If UNITS=4, XCH receives the height in horizontal world coordinates

(as used for the x-axis), and YCH receives the height in vertical

world coordinates (as used for the y-axis). Unless special care has

been taken to achive equal world-coordinate scales on both axes, the

values of XCH and YCH will be different.

If UNITS=0, XCH receives the character height as a fraction of the

horizontal dimension of the view surface, and YCH receives the

character height as a fraction of the vertical dimension of the view

surface.

PGQDT – inquire name of nth available device type

SUBROUTINE PGQDT(N, TYPE, TLEN, DESCR, DLEN, INTER)

INTEGER N

CHARACTER*(*) TYPE, DESCR

INTEGER TLEN, DLEN, INTER

Return the name of the Nth available device type as a character

string. The number of available types can be determined by calling

PGQNDT. If the value of N supplied is outside the range from 1 to

the number of available types, the routine returns DLEN=TLEN=0.

Arguments:

N (input) : the number of the device type (1..maximum).

TYPE (output) : receives the character device-type code of the

Nth device type. The argument supplied should be

large enough for at least 8 characters. The first

character in the string is a ’/’ character.

TLEN (output) : receives the number of characters in TYPE,

excluding trailing blanks.

DESCR (output) : receives a description of the device type. The

argument supplied should be large enough for at

least 64 characters.

DLEN (output) : receives the number of characters in DESCR,

excluding trailing blanks.

INTER (output) : receives 1 if the device type is an interactive

one, 0 otherwise.

A.3. INDEX OF ROUTINES 51

PGQFS – inquire fill-area style

SUBROUTINE PGQFS (FS)

INTEGER FS

Query the current Fill-Area Style attribute (set by routine

PGSFS).

Argument:

FS (output) : the current fill-area style:

FS = 1 => solid (default)

FS = 2 => outline

FS = 3 => hatched

FS = 4 => cross-hatched

PGQHS – inquire hatching style

SUBROUTINE PGQHS (ANGLE, SEPN, PHASE)

REAL ANGLE, SEPN, PHASE

Query the style to be used hatching (fill area with fill-style 3).

Arguments:

ANGLE (output) : the angle the hatch lines make with the

horizontal, in degrees, increasing

counterclockwise (this is an angle on the

view surface, not in world-coordinate space).

SEPN (output) : the spacing of the hatch lines. The unit spacing

is 1 percent of the smaller of the height or

width of the view surface.

PHASE (output) : a real number between 0 and 1; the hatch lines

are displaced by this fraction of SEPN from a

fixed reference. Adjacent regions hatched with the

same PHASE have contiguous hatch lines.

PGQID – inquire current device identifier

SUBROUTINE PGQID (ID)

INTEGER ID

This subroutine returns the identifier of the currently

selected device, or 0 if no device is selected. The identifier is

assigned when PGOPEN is called to open the device, and may be used

as an argument to PGSLCT. Each open device has a different

identifier.

[This routine was added to PGPLOT in Version 5.1.0.]

52 APPENDIX A. SUBROUTINE DESCRIPTIONS

Argument:

ID (output) : the identifier of the current device, or 0 if

no device is currently selected.

PGQINF – inquire PGPLOT general information

SUBROUTINE PGQINF (ITEM, VALUE, LENGTH)

CHARACTER*(*) ITEM, VALUE

INTEGER LENGTH

This routine can be used to obtain miscellaneous information about

the PGPLOT environment. Input is a character string defining the

information required, and output is a character string containing the

requested information.

The following item codes are accepted (note that the strings must

match exactly, except for case, but only the first 8 characters are

significant). For items marked *, PGPLOT must be in the OPEN state

for the inquiry to succeed. If the inquiry is unsuccessful, either

because the item code is not recognized or because the information

is not available, a question mark (’?’) is returned.

’VERSION’ - version of PGPLOT software in use.

’STATE’ - status of PGPLOT (’OPEN’ if a graphics device

is open for output, ’CLOSED’ otherwise).

’USER’ - the username associated with the calling program.

’NOW’ - current date and time (e.g., ’17-FEB-1986 10:04’).

’DEVICE’ * - current PGPLOT device or file.

’FILE’ * - current PGPLOT device or file.

’TYPE’ * - device-type of the current PGPLOT device.

’DEV/TYPE’ * - current PGPLOT device and type, in a form which

is acceptable as an argument for PGBEG.

’HARDCOPY’ * - is the current device a hardcopy device? (’YES’ or

’NO’).

’TERMINAL’ * - is the current device the user’s interactive

terminal? (’YES’ or ’NO’).

’CURSOR’ * - does the current device have a graphics cursor?

(’YES’ or ’NO’).

’SCROLL’ * - does current device have rectangle-scroll

capability (’YES’ or ’NO’); see PGSCRL.

Arguments:

ITEM (input) : character string defining the information to

be returned; see above for a list of possible

values.

VALUE (output) : returns a character-string containing the

A.3. INDEX OF ROUTINES 53

requested information, truncated to the length

of the supplied string or padded on the right with

spaces if necessary.

LENGTH (output): the number of characters returned in VALUE

(excluding trailing blanks).

PGQITF – inquire image transfer function

SUBROUTINE PGQITF (ITF)

INTEGER ITF

Return the Image Transfer Function as set by default or by a previous

call to PGSITF. The Image Transfer Function is used by routines

PGIMAG, PGGRAY, and PGWEDG.

Argument:

ITF (output) : type of transfer function (see PGSITF)

PGQLS – inquire line style

SUBROUTINE PGQLS (LS)

INTEGER LS

Query the current Line Style attribute (set by routine PGSLS).

Argument:

LS (output) : the current line-style attribute (in range 1-5).

PGQLW – inquire line width

SUBROUTINE PGQLW (LW)

INTEGER LW

Query the current Line-Width attribute (set by routine PGSLW).

Argument:

LW (output) : the line-width (in range 1-201).

PGQNDT – inquire number of available device types

SUBROUTINE PGQNDT(N)

INTEGER N

Return the number of available device types. This routine is

usually used in conjunction with PGQDT to get a list of the

available device types.

54 APPENDIX A. SUBROUTINE DESCRIPTIONS

Arguments:

N (output) : the number of available device types.

PGQPOS – inquire current pen position

SUBROUTINE PGQPOS (X, Y)

REAL X, Y

Query the current "pen" position in world C coordinates (X,Y).

Arguments:

X (output) : world x-coordinate of the pen position.

Y (output) : world y-coordinate of the pen position.

PGQTBG – inquire text background color index

SUBROUTINE PGQTBG (TBCI)

INTEGER TBCI

Query the current Text Background Color Index (set by routine

PGSTBG).

Argument:

TBCI (output) : receives the current text background color index.

PGQTXT – find bounding box of text string

SUBROUTINE PGQTXT (X, Y, ANGLE, FJUST, TEXT, XBOX, YBOX)

REAL X, Y, ANGLE, FJUST

CHARACTER*(*) TEXT

REAL XBOX(4), YBOX(4)

This routine returns a bounding box for a text string. Instead

of drawing the string as routine PGPTXT does, it returns in XBOX

and YBOX the coordinates of the corners of a rectangle parallel

to the string baseline that just encloses the string. The four

corners are in the order: lower left, upper left, upper right,

lower right (where left and right refer to the first and last

characters in the string).

If the string is blank or contains no drawable characters, all

four elements of XBOX and YBOX are assigned the starting point

of the string, (X,Y).

Arguments:

A.3. INDEX OF ROUTINES 55

X, Y, ANGLE, FJUST, TEXT (input) : these arguments are the same as

the corrresponding arguments in PGPTXT.

XBOX, YBOX (output) : arrays of dimension 4; on output, they

contain the world coordinates of the bounding

box in (XBOX(1), YBOX(1)), ..., (XBOX(4), YBOX(4)).

PGQVP – inquire viewport size and position

SUBROUTINE PGQVP (UNITS, X1, X2, Y1, Y2)

INTEGER UNITS

REAL X1, X2, Y1, Y2

Inquiry routine to determine the current viewport setting.

The values returned may be normalized device coordinates, inches, mm,

or pixels, depending on the value of the input parameter CFLAG.

Arguments:

UNITS (input) : used to specify the units of the output parameters:

UNITS = 0 : normalized device coordinates

UNITS = 1 : inches

UNITS = 2 : millimeters

UNITS = 3 : pixels

Other values give an error message, and are

treated as 0.

X1 (output) : the x-coordinate of the bottom left corner of the

viewport.

X2 (output) : the x-coordinate of the top right corner of the

viewport.

Y1 (output) : the y-coordinate of the bottom left corner of the

viewport.

Y2 (output) : the y-coordinate of the top right corner of the

viewport.

PGQVSZ – inquire size of view surface

SUBROUTINE PGQVSZ (UNITS, X1, X2, Y1, Y2)

INTEGER UNITS

REAL X1, X2, Y1, Y2

This routine returns the dimensions of the view surface (the maximum

plottable area) of the currently selected graphics device, in

a variety of units. The size of the view surface is device-dependent

and is established when the graphics device is opened. On some

devices, it can be changed by calling PGPAP before starting a new

page with PGPAGE. On some devices, the size can be changed (e.g.,

by a workstation window manager) outside PGPLOT, and PGPLOT detects

the change when PGPAGE is used. Call this routine after PGPAGE to

56 APPENDIX A. SUBROUTINE DESCRIPTIONS

find the current size.

Note 1: the width and the height of the view surface in normalized

device coordinates are both always equal to 1.0.

Note 2: when the device is divided into panels (see PGSUBP), the

view surface is a single panel.

Arguments:

UNITS (input) : 0,1,2,3 for output in normalized device coords,

inches, mm, or device units (pixels)

X1 (output) : always returns 0.0

X2 (output) : width of view surface

Y1 (output) : always returns 0.0

Y2 (output) : height of view surface

PGQWIN – inquire window boundary coordinates

SUBROUTINE PGQWIN (X1, X2, Y1, Y2)

REAL X1, X2, Y1, Y2

Inquiry routine to determine the current window setting.

The values returned are world coordinates.

Arguments:

X1 (output) : the x-coordinate of the bottom left corner

of the window.

X2 (output) : the x-coordinate of the top right corner

of the window.

Y1 (output) : the y-coordinate of the bottom left corner

of the window.

Y2 (output) : the y-coordinate of the top right corner

of the window.

PGRECT – draw a rectangle, using fill-area attributes

SUBROUTINE PGRECT (X1, X2, Y1, Y2)

REAL X1, X2, Y1, Y2

This routine can be used instead of PGPOLY for the special case of

drawing a rectangle aligned with the coordinate axes; only two

vertices need be specified instead of four. On most devices, it is

faster to use PGRECT than PGPOLY for drawing rectangles. The

rectangle has vertices at (X1,Y1), (X1,Y2), (X2,Y2), and (X2,Y1).

Arguments:

X1, X2 (input) : the horizontal range of the rectangle.

A.3. INDEX OF ROUTINES 57

Y1, Y2 (input) : the vertical range of the rectangle.

PGRND – find the smallest ‘round’ number greater than x

REAL FUNCTION PGRND (X, NSUB)

REAL X

INTEGER NSUB

Routine to find the smallest "round" number larger than x, a

"round" number being 1, 2 or 5 times a power of 10. If X is negative,

PGRND(X) = -PGRND(ABS(X)). eg PGRND(8.7) = 10.0,

PGRND(-0.4) = -0.5. If X is zero, the value returned is zero.

This routine is used by PGBOX for choosing tick intervals.

Returns:

PGRND : the "round" number.

Arguments:

X (input) : the number to be rounded.

NSUB (output) : a suitable number of subdivisions for

subdividing the "nice" number: 2 or 5.

PGRNGE – choose axis limits

SUBROUTINE PGRNGE (X1, X2, XLO, XHI)

REAL X1, X2, XLO, XHI

Choose plotting limits XLO and XHI which encompass the data

range X1 to X2.

Arguments:

X1, X2 (input) : the data range (X1<X2), ie, the min and max values

to be plotted.

XLO, XHI (output) : suitable values to use as the extremes of a graph

axis (XLO <= X1, XHI >= X2).

PGSAH – set arrow-head style

SUBROUTINE PGSAH (FS, ANGLE, BARB)

INTEGER FS

REAL ANGLE, BARB

Set the style to be used for arrowheads drawn with routine PGARRO.

Argument:

FS (input) : FS = 1 => filled; FS = 2 => outline.

Other values are treated as 2. Default 1.

58 APPENDIX A. SUBROUTINE DESCRIPTIONS

ANGLE (input) : the acute angle of the arrow point, in degrees;

angles in the range 20.0 to 90.0 give reasonable

results. Default 45.0.

BARB (input) : the fraction of the triangular arrow-head that

is cut away from the back. 0.0 gives a triangular

wedge arrow-head; 1.0 gives an open >. Values 0.3

to 0.7 give reasonable results. Default 0.3.

PGSAVE – save PGPLOT attributes

SUBROUTINE PGSAVE

This routine saves the current PGPLOT attributes in a private storage

area. They can be restored by calling PGUNSA (unsave). Attributes

saved are: character font, character height, color index, fill-area

style, line style, line width, pen position, arrow-head style,

hatching style, and clipping state. Color representation is not saved.

Calls to PGSAVE and PGUNSA should always be paired. Up to 20 copies

of the attributes may be saved. PGUNSA always retrieves the last-saved

values (last-in first-out stack).

Note that when multiple devices are in use, PGUNSA retrieves the

values saved by the last PGSAVE call, even if they were for a

different device.

Arguments: none

PGUNSA – restore PGPLOT attributes

ENTRY PGUNSA

This routine restores the PGPLOT attributes saved in the last call to

PGSAVE. Usage: CALL PGUNSA (no arguments). See PGSAVE.

Arguments: none

PGSCF – set character font

SUBROUTINE PGSCF (FONT)

INTEGER FONT

Set the Character Font for subsequent text plotting. Four different

fonts are available:

1: (default) a simple single-stroke font ("normal" font)

2: roman font

A.3. INDEX OF ROUTINES 59

3: italic font

4: script font

This call determines which font is in effect at the beginning of

each text string. The font can be changed (temporarily) within a text

string by using the escape sequences \fn, \fr, \fi, and \fs for fonts

1, 2, 3, and 4, respectively.

Argument:

FONT (input) : the font number to be used for subsequent text

plotting (in range 1-4).

PGSCH – set character height

SUBROUTINE PGSCH (SIZE)

REAL SIZE

Set the character size attribute. The size affects all text and graph

markers drawn later in the program. The default character size is

1.0, corresponding to a character height about 1/40 the height of

the view surface. Changing the character size also scales the length

of tick marks drawn by PGBOX and terminals drawn by PGERRX and PGERRY.

Argument:

SIZE (input) : new character size (dimensionless multiple of

the default size).

PGSCI – set color index

SUBROUTINE PGSCI (CI)

INTEGER CI

Set the Color Index for subsequent plotting, if the output device

permits this. The default color index is 1, usually white on a black

background for video displays or black on a white background for

printer plots. The color index is an integer in the range 0 to a

device-dependent maximum. Color index 0 corresponds to the background

color; lines may be "erased" by overwriting them with color index 0

(if the device permits this).

If the requested color index is not available on the selected device,

color index 1 will be substituted.

The assignment of colors to color indices can be changed with

subroutine PGSCR (set color representation). Color indices 0-15

have predefined color representations (see the PGPLOT manual), but

these may be changed with PGSCR. Color indices above 15 have no

predefined representations: if these indices are used, PGSCR must

60 APPENDIX A. SUBROUTINE DESCRIPTIONS

be called to define the representation.

Argument:

CI (input) : the color index to be used for subsequent plotting

on the current device (in range 0-max). If the

index exceeds the device-dependent maximum, the

default color index (1) is used.

PGSCIR – set color index range

SUBROUTINE PGSCIR(ICILO, ICIHI)

INTEGER ICILO, ICIHI

Set the color index range to be used for producing images with

PGGRAY or PGIMAG. If the range is not all within the range supported

by the device, a smaller range will be used. The number of

different colors available for images is ICIHI-ICILO+1.

Arguments:

ICILO (input) : the lowest color index to use for images

ICIHI (input) : the highest color index to use for images

PGSCLP – enable or disable clipping at edge of viewport

SUBROUTINE PGSCLP(STATE)

INTEGER STATE

Normally all PGPLOT primitives except text are ‘‘clipped’’ at the

edge of the viewport: parts of the primitives that lie outside

the viewport are not drawn. If clipping is disabled by calling this

routine, primitives are visible wherever they lie on the view

surface. The default (clipping enabled) is appropriate for almost

all applications.

Argument:

STATE (input) : 0 to disable clipping, or 1 to enable clipping.

25-Feb-1997 [TJP] - new routine.

PGSCR – set color representation

SUBROUTINE PGSCR (CI, CR, CG, CB)

INTEGER CI

REAL CR, CG, CB

Set color representation: i.e., define the color to be

A.3. INDEX OF ROUTINES 61

associated with a color index. Ignored for devices which do not

support variable color or intensity. Color indices 0-15

have predefined color representations (see the PGPLOT manual), but

these may be changed with PGSCR. Color indices 16-maximum have no

predefined representations: if these indices are used, PGSCR must

be called to define the representation. On monochrome output

devices (e.g. VT125 terminals with monochrome monitors), the

monochrome intensity is computed from the specified Red, Green, Blue

intensities as 0.30*R + 0.59*G + 0.11*B, as in US color television

systems, NTSC encoding. Note that most devices do not have an

infinite range of colors or monochrome intensities available;

the nearest available color is used. Examples: for black,

set CR=CG=CB=0.0; for white, set CR=CG=CB=1.0; for medium gray,

set CR=CG=CB=0.5; for medium yellow, set CR=CG=0.5, CB=0.0.

Argument:

CI (input) : the color index to be defined, in the range 0-max.

If the color index greater than the device

maximum is specified, the call is ignored. Color

index 0 applies to the background color.

CR (input) : red, green, and blue intensities,

CG (input) in range 0.0 to 1.0.

CB (input)

PGSCRL – scroll window

SUBROUTINE PGSCRL (DX, DY)

REAL DX, DY

This routine moves the window in world-coordinate space while

leaving the viewport unchanged. On devices that have the

capability, the pixels within the viewport are scrolled

horizontally, vertically or both in such a way that graphics

previously drawn in the window are shifted so that their world

coordinates are unchanged.

If the old window coordinate range was (X1, X2, Y1, Y2), the new

coordinate range will be approximately (X1+DX, X2+DX, Y1+DY, Y2+DY).

The size and scale of the window are unchanged.

Thee window can only be shifted by a whole number of pixels

(device coordinates). If DX and DY do not correspond to integral

numbers of pixels, the shift will be slightly different from that

requested. The new window-coordinate range, and hence the exact

amount of the shift, can be determined by calling PGQWIN after this

routine.

62 APPENDIX A. SUBROUTINE DESCRIPTIONS

Pixels that are moved out of the viewport by this operation are

lost completely; they cannot be recovered by scrolling back.

Pixels that are ‘‘scrolled into’’ the viewport are filled with

the background color (color index 0).

If the absolute value of DX is bigger than the width of the window,

or the aboslute value of DY is bigger than the height of the window,

the effect will be the same as zeroing all the pixels in the

viewport.

Not all devices have the capability to support this routine.

It is only available on some interactive devices that have discrete

pixels. To determine whether the current device has scroll capability,

call PGQINF.

Arguments:

DX (input) : distance (in world coordinates) to shift the

window horizontally (positive shifts window to the

right and scrolls to the left).

DY (input) : distance (in world coordinates) to shift the

window vertically (positive shifts window up and

scrolls down).

PGSCRN – set color representation by name

SUBROUTINE PGSCRN(CI, NAME, IER)

INTEGER CI

CHARACTER*(*) NAME

INTEGER IER

Set color representation: i.e., define the color to be

associated with a color index. Ignored for devices which do not

support variable color or intensity. This is an alternative to

routine PGSCR. The color representation is defined by name instead

of (R,G,B) components.

Color names are defined in an external file which is read the first

time that PGSCRN is called. The name of the external file is

found as follows:

1. if environment variable (logical name) PGPLOT_RGB is defined,

its value is used as the file name;

2. otherwise, if environment variable PGPLOT_DIR is defined, a

file "rgb.txt" in the directory named by this environment

variable is used;

3. otherwise, file "rgb.txt" in the current directory is used.

If all of these fail to find a file, an error is reported and

the routine does nothing.

A.3. INDEX OF ROUTINES 63

Each line of the file

defines one color, with four blank- or tab-separated fields per

line. The first three fields are the R, G, B components, which

are integers in the range 0 (zero intensity) to 255 (maximum

intensity). The fourth field is the color name. The color name

may include embedded blanks. Example:

255 0 0 red

255 105 180 hot pink

255 255 255 white

0 0 0 black

Arguments:

CI (input) : the color index to be defined, in the range 0-max.

If the color index greater than the device

maximum is specified, the call is ignored. Color

index 0 applies to the background color.

NAME (input) : the name of the color to be associated with

this color index. This name must be in the

external file. The names are not case-sensitive.

If the color is not listed in the file, the

color representation is not changed.

IER (output) : returns 0 if the routine was successful, 1

if an error occurred (either the external file

could not be read, or the requested color was

not defined in the file).

PGSFS – set fill-area style

SUBROUTINE PGSFS (FS)

INTEGER FS

Set the Fill-Area Style attribute for subsequent area-fill by

PGPOLY, PGRECT, or PGCIRC. Four different styles are available:

solid (fill polygon with solid color of the current color-index),

outline (draw outline of polygon only, using current line attributes),

hatched (shade interior of polygon with parallel lines, using

current line attributes), or cross-hatched. The orientation and

spacing of hatch lines can be specified with routine PGSHS (set

hatch style).

Argument:

FS (input) : the fill-area style to be used for subsequent

plotting:

FS = 1 => solid (default)

FS = 2 => outline

64 APPENDIX A. SUBROUTINE DESCRIPTIONS

FS = 3 => hatched

FS = 4 => cross-hatched

Other values give an error message and are

treated as 2.

PGSHLS – set color representation using HLS system

SUBROUTINE PGSHLS (CI, CH, CL, CS)

INTEGER CI

REAL CH, CL, CS

Set color representation: i.e., define the color to be

associated with a color index. This routine is equivalent to

PGSCR, but the color is defined in the Hue-Lightness-Saturation

model instead of the Red-Green-Blue model. Hue is represented

by an angle in degrees, with red at 120, green at 240,

and blue at 0 (or 360). Lightness ranges from 0.0 to 1.0, with black

at lightness 0.0 and white at lightness 1.0. Saturation ranges from

0.0 (gray) to 1.0 (pure color). Hue is irrelevant when saturation

is 0.0.

Examples: H L S R G B

black any 0.0 0.0 0.0 0.0 0.0

white any 1.0 0.0 1.0 1.0 1.0

medium gray any 0.5 0.0 0.5 0.5 0.5

red 120 0.5 1.0 1.0 0.0 0.0

yellow 180 0.5 1.0 1.0 1.0 0.0

pink 120 0.7 0.8 0.94 0.46 0.46

Reference: SIGGRAPH Status Report of the Graphic Standards Planning

Committee, Computer Graphics, Vol.13, No.3, Association for

Computing Machinery, New York, NY, 1979. See also: J. D. Foley et al,

‘‘Computer Graphics: Principles and Practice’’, second edition,

Addison-Wesley, 1990, section 13.3.5.

Argument:

CI (input) : the color index to be defined, in the range 0-max.

If the color index greater than the device

maximum is specified, the call is ignored. Color

index 0 applies to the background color.

CH (input) : hue, in range 0.0 to 360.0.

CL (input) : lightness, in range 0.0 to 1.0.

CS (input) : saturation, in range 0.0 to 1.0.

PGSHS – set hatching style

SUBROUTINE PGSHS (ANGLE, SEPN, PHASE)

A.3. INDEX OF ROUTINES 65

REAL ANGLE, SEPN, PHASE

Set the style to be used for hatching (fill area with fill-style 3).

The default style is ANGLE=45.0, SEPN=1.0, PHASE=0.0.

Arguments:

ANGLE (input) : the angle the hatch lines make with the

horizontal, in degrees, increasing

counterclockwise (this is an angle on the

view surface, not in world-coordinate space).

SEPN (input) : the spacing of the hatch lines. The unit spacing

is 1 percent of the smaller of the height or

width of the view surface. This should not be

zero.

PHASE (input) : a real number between 0 and 1; the hatch lines

are displaced by this fraction of SEPN from a

fixed reference. Adjacent regions hatched with the

same PHASE have contiguous hatch lines. To hatch

a region with alternating lines of two colors,

fill the area twice, with PHASE=0.0 for one color

and PHASE=0.5 for the other color.

PGSITF – set image transfer function

SUBROUTINE PGSITF (ITF)

INTEGER ITF

Set the Image Transfer Function for subsequent images drawn by

PGIMAG, PGGRAY, or PGWEDG. The Image Transfer Function is used

to map array values into the available range of color indices

specified with routine PGSCIR or (for PGGRAY on some devices)

into dot density.

Argument:

ITF (input) : type of transfer function:

ITF = 0 : linear

ITF = 1 : logarithmic

ITF = 2 : square-root

PGSLCT – select an open graphics device

SUBROUTINE PGSLCT(ID)

INTEGER ID

Select one of the open graphics devices and direct subsequent

plotting to it. The argument is the device identifier returned by

PGOPEN when the device was opened. If the supplied argument is not a

66 APPENDIX A. SUBROUTINE DESCRIPTIONS

valid identifier of an open graphics device, a warning message is

issued and the current selection is unchanged.

[This routine was added to PGPLOT in Version 5.1.0.]

Arguments:

ID (input, integer): identifier of the device to be selected.

PGSLS – set line style

SUBROUTINE PGSLS (LS)

INTEGER LS

Set the line style attribute for subsequent plotting. This

attribute affects line primitives only; it does not affect graph

markers, text, or area fill.

Five different line styles are available, with the following codes:

1 (full line), 2 (dashed), 3 (dot-dash-dot-dash), 4 (dotted),

5 (dash-dot-dot-dot). The default is 1 (normal full line).

Argument:

LS (input) : the line-style code for subsequent plotting

(in range 1-5).

PGSLW – set line width

SUBROUTINE PGSLW (LW)

INTEGER LW

Set the line-width attribute. This attribute affects lines, graph

markers, and text. The line width is specified in units of 1/200

(0.005) inch (about 0.13 mm) and must be an integer in the range

1-201. On some devices, thick lines are generated by tracing each

line with multiple strokes offset in the direction perpendicular to

the line.

Argument:

LW (input) : width of line, in units of 0.005 inch (0.13 mm)

in range 1-201.

PGSTBG – set text background color index

SUBROUTINE PGSTBG (TBCI)

INTEGER TBCI

A.3. INDEX OF ROUTINES 67

Set the Text Background Color Index for subsequent text. By default

text does not obscure underlying graphics. If the text background

color index is positive, however, text is opaque: the bounding box

of the text is filled with the color specified by PGSTBG before

drawing the text characters in the current color index set by PGSCI.

Use color index 0 to erase underlying graphics before drawing text.

Argument:

TBCI (input) : the color index to be used for the background

for subsequent text plotting:

TBCI < 0 => transparent (default)

TBCI >= 0 => text will be drawn on an opaque

background with color index TBCI.

PGSUBP – subdivide view surface into panels

SUBROUTINE PGSUBP (NXSUB, NYSUB)

INTEGER NXSUB, NYSUB

PGPLOT divides the physical surface of the plotting device (screen,

window, or sheet of paper) into NXSUB x NYSUB ‘panels’. When the

view surface is sub-divided in this way, PGPAGE moves to the next

panel, not the next physical page. The initial subdivision of the

view surface is set in the call to PGBEG. When PGSUBP is called,

it forces the next call to PGPAGE to start a new physical page,

subdivided in the manner indicated. No plotting should be done

between a call of PGSUBP and a call of PGPAGE (or PGENV, which calls

PGPAGE).

If NXSUB > 0, PGPLOT uses the panels in row order; if <0,

PGPLOT uses them in column order, e.g.,

NXSUB=3, NYSUB=2 NXSUB=-3, NYSUB=2

+-----+-----+-----+ +-----+-----+-----+

| 1 | 2 | 3 | | 1 | 3 | 5 |

+-----+-----+-----+ +-----+-----+-----+

| 4 | 5 | 6 | | 2 | 4 | 6 |

+-----+-----+-----+ +-----+-----+-----+

PGPLOT advances from one panels to the next when PGPAGE is called,

clearing the screen or starting a new page when the last panel has

been used. It is also possible to jump from one panel to another

in random order by calling PGPANL.

Arguments:

NXSUB (input) : the number of subdivisions of the view surface in

68 APPENDIX A. SUBROUTINE DESCRIPTIONS

X (>0 or <0).

NYSUB (input) : the number of subdivisions of the view surface in

Y (>0).

PGSVP – set viewport (normalized device coordinates)

SUBROUTINE PGSVP (XLEFT, XRIGHT, YBOT, YTOP)

REAL XLEFT, XRIGHT, YBOT, YTOP

Change the size and position of the viewport, specifying

the viewport in normalized device coordinates. Normalized

device coordinates run from 0 to 1 in each dimension. The

viewport is the rectangle on the view surface "through"

which one views the graph. All the PG routines which plot lines

etc. plot them within the viewport, and lines are truncated at

the edge of the viewport (except for axes, labels etc drawn with

PGBOX or PGLAB). The region of world space (the coordinate

space of the graph) which is visible through the viewport is

specified by a call to PGSWIN. It is legal to request a

viewport larger than the view surface; only the part which

appears on the view surface will be plotted.

Arguments:

XLEFT (input) : x-coordinate of left hand edge of viewport, in NDC.

XRIGHT (input) : x-coordinate of right hand edge of viewport,

in NDC.

YBOT (input) : y-coordinate of bottom edge of viewport, in NDC.

YTOP (input) : y-coordinate of top edge of viewport, in NDC.

PGSWIN – set window

SUBROUTINE PGSWIN (X1, X2, Y1, Y2)

REAL X1, X2, Y1, Y2

Change the window in world coordinate space that is to be mapped on

to the viewport. Usually PGSWIN is called automatically by PGENV,

but it may be called directly by the user.

Arguments:

X1 (input) : the x-coordinate of the bottom left corner

of the viewport.

X2 (input) : the x-coordinate of the top right corner

of the viewport (note X2 may be less than X1).

Y1 (input) : the y-coordinate of the bottom left corner

of the viewport.

Y2 (input) : the y-coordinate of the top right corner

of the viewport (note Y2 may be less than Y1).

A.3. INDEX OF ROUTINES 69

PGTBOX – draw frame and write (DD) HH MM SS.S
labelling

SUBROUTINE PGTBOX (XOPT, XTICK, NXSUB, YOPT, YTICK, NYSUB)

REAL XTICK, YTICK

INTEGER NXSUB, NYSUB

CHARACTER XOPT*(*), YOPT*(*)

Draw a box and optionally label one or both axes with (DD) HH MM SS

style numeric labels (useful for time or RA - DEC plots). If this

style of labelling is desired, then PGSWIN should have been called

previously with the extrema in SECONDS of time.

In the seconds field, you can have at most 3 places after the decimal

point, so that 1 ms is the smallest time interval you can time label.

Large numbers are coped with by fields of 6 characters long. Thus

you could have times with days or hours as big as 999999. However,

in practice, you might have trouble with labels overwriting themselves

with such large numbers unless you a) use a small time INTERVAL,

b) use a small character size or c) choose your own sparse ticks in

the call to PGTBOX.

PGTBOX will attempt, when choosing its own ticks, not to overwrite

the labels, but this algorithm is not very bright and may fail.

Note that small intervals but large absolute times such as

TMIN = 200000.0 s and TMAX=200000.1 s will cause the algorithm

to fail. This is inherent in PGPLOT’s use of single precision

and cannot be avoided. In such cases, you should use relative

times if possible.

PGTBOX’s labelling philosophy is that the left-most or bottom tick of

the axis contains a full label. Thereafter, only changing fields are

labelled. Negative fields are given a ’-’ label, positive fields

have none. Axes that have the DD (or HH if the day field is not

used) field on each major tick carry the sign on each field. If the

axis crosses zero, the zero tick will carry a full label and sign.

This labelling style can cause a little confusion with some special

cases, but as long as you know its philosophy, the truth can be divined.

Consider an axis with TMIN=20s, TMAX=-20s. The labels will look like

+----------+----------+----------+----------+

0h0m20s 10s -0h0m0s 10s 20s

Knowing that the left field always has a full label and that

70 APPENDIX A. SUBROUTINE DESCRIPTIONS

positive fields are unsigned, informs that time is decreasing

from left to right, not vice versa. This can become very

unclear if you have used the ’F’ option, but that is your problem !

Exceptions to this labelling philosophy are when the finest time

increment being displayed is hours (with option ’Y’) or days.

Then all fields carry a label. For example,

+----------+----------+----------+----------+

-10h -8h -6h -4h -2h

PGTBOX can be used in place of PGBOX; it calls PGBOX and only invokes

time labelling if requested. Other options are passed intact to PGBOX.

Inputs:

XOPT : X-options for PGTBOX. Same as for PGBOX plus

’Z’ for (DD) HH MM SS.S time labelling

’Y’ means don’t include the day field so that labels

are HH MM SS.S rather than DD HH MM SS.S The hours

will accumulate beyond 24 if necessary in this case.

’X’ label the HH field as modulo 24. Thus, a label

such as 25h 10m would come out as 1h 10m

’H’ means superscript numbers with d, h, m, & s symbols

’D’ means superscript numbers with o, ’, & ’’ symbols

’F’ causes the first label (left- or bottom-most) to

be omitted. Useful for sub-panels that abut each other.

Care is needed because first label carries sign as well.

’O’ means omit leading zeros in numbers < 10

E.g. 3h 3m 1.2s rather than 03h 03m 01.2s Useful

to help save space on X-axes. The day field does not

use this facility.

YOPT : Y-options for PGTBOX. See above.

XTICK : X-axis major tick increment. 0.0 for default.

YTICK : Y-axis major tick increment. 0.0 for default.

If the ’Z’ option is used then XTICK and/or YTICK must

be in seconds.

NXSUB : Number of intervals for minor ticks on X-axis. 0 for default

NYSUB : Number of intervals for minor ticks on Y-axis. 0 for default

The regular XOPT and YOPT axis options for PGBOX are

A : draw Axis (X axis is horizontal line Y=0, Y axis is vertical

line X=0).

B : draw bottom (X) or left (Y) edge of frame.

A.3. INDEX OF ROUTINES 71

C : draw top (X) or right (Y) edge of frame.

G : draw Grid of vertical (X) or horizontal (Y) lines.

I : Invert the tick marks; ie draw them outside the viewport

instead of inside.

L : label axis Logarithmically (see below).

N : write Numeric labels in the conventional location below the

viewport (X) or to the left of the viewport (Y).

P : extend ("Project") major tick marks outside the box (ignored if

option I is specified).

M : write numeric labels in the unconventional location above the

viewport (X) or to the right of the viewport (Y).

T : draw major Tick marks at the major coordinate interval.

S : draw minor tick marks (Subticks).

V : orient numeric labels Vertically. This is only applicable to Y.

The default is to write Y-labels parallel to the axis.

1 : force decimal labelling, instead of automatic choice (see PGNUMB).

2 : force exponential labelling, instead of automatic.

The default is to write Y-labels parallel to the axis

****************** EXCEPTIONS *******************

Note that

1) PGBOX option ’L’ (log labels) is ignored with option ’Z’

2) The ’O’ option will be ignored for the ’V’ option as it

makes it impossible to align the labels nicely

3) Option ’Y’ is forced with option ’D’

PGTEXT – write text (horizontal, left-justified)

SUBROUTINE PGTEXT (X, Y, TEXT)

REAL X, Y

CHARACTER*(*) TEXT

Write text. The bottom left corner of the first character is placed

at the specified position, and the text is written horizontally.

This is a simplified interface to the primitive routine PGPTXT.

For non-horizontal text, use PGPTXT.

Arguments:

X (input) : world x-coordinate of start of string.

Y (input) : world y-coordinate of start of string.

72 APPENDIX A. SUBROUTINE DESCRIPTIONS

TEXT (input) : the character string to be plotted.

PGTICK – draw a single tick mark on an axis

SUBROUTINE PGTICK (X1, Y1, X2, Y2, V, TIKL, TIKR, DISP,

: ORIENT, STR)

REAL X1, Y1, X2, Y2, V, TIKL, TIKR, DISP, ORIENT

CHARACTER*(*) STR

Draw and label single tick mark on a graph axis. The tick mark is

a short line perpendicular to the direction of the axis (which is not

drawn by this routine). The optional text label is drawn with its

baseline parallel to the axis and reading in the same direction as

the axis (from point 1 to point 2). Current line and text attributes

are used.

Arguments:

X1, Y1 (input) : world coordinates of one endpoint of the axis.

X2, Y2 (input) : world coordinates of the other endpoint of the axis.

V (input) : draw the tick mark at fraction V (0<=V<=1) along

the line from (X1,Y1) to (X2,Y2).

TIKL (input) : length of tick mark drawn to left of axis

(as seen looking from first endpoint to second), in

units of the character height.

TIKR (input) : length of major tick marks drawn to right of axis,

in units of the character height.

DISP (input) : displacement of label text to

right of axis, in units of the character height.

ORIENT (input) : orientation of label text, in degrees; angle between

baseline of text and direction of axis (0-360).

STR (input) : text of label (may be blank).

PGUPDT – update display

SUBROUTINE PGUPDT

Update the graphics display: flush any pending commands to the

output device. This routine empties the buffer created by PGBBUF,

but it does not alter the PGBBUF/PGEBUF counter. The routine should

be called when it is essential that the display be completely up to

date (before interaction with the user, for example) but it is not

known if output is being buffered.

Arguments: none

A.3. INDEX OF ROUTINES 73

PGVECT – vector map of a 2D data array, with blanking

SUBROUTINE PGVECT (A, B, IDIM, JDIM, I1, I2, J1, J2, C, NC, TR,

1 BLANK)

INTEGER IDIM, JDIM, I1, I2, J1, J2, NC

REAL A(IDIM,JDIM), B(IDIM, JDIM), TR(6), BLANK, C

Draw a vector map of two arrays. This routine is similar to

PGCONB in that array elements that have the "magic value" defined by

the argument BLANK are ignored, making gaps in the vector map. The

routine may be useful for data measured on most but not all of the

points of a grid. Vectors are displayed as arrows; the style of the

arrowhead can be set with routine PGSAH, and the the size of the

arrowhead is determined by the current character size, set by PGSCH.

Arguments:

A (input) : horizontal component data array.

B (input) : vertical component data array.

IDIM (input) : first dimension of A and B.

JDIM (input) : second dimension of A and B.

I1,I2 (input) : range of first index to be mapped (inclusive).

J1,J2 (input) : range of second index to be mapped (inclusive).

C (input) : scale factor for vector lengths, if 0.0, C will be

set so that the longest vector is equal to the

smaller of TR(2)+TR(3) and TR(5)+TR(6).

NC (input) : vector positioning code.

<0 vector head positioned on coordinates

>0 vector base positioned on coordinates

=0 vector centered on the coordinates

TR (input) : array defining a transformation between the I,J

grid of the array and the world coordinates. The

world coordinates of the array point A(I,J) are

given by:

X = TR(1) + TR(2)*I + TR(3)*J

Y = TR(4) + TR(5)*I + TR(6)*J

Usually TR(3) and TR(5) are zero - unless the

coordinate transformation involves a rotation

or shear.

BLANK (input) : elements of arrays A or B that are exactly equal to

this value are ignored (blanked).

PGVSIZ – set viewport (inches)

SUBROUTINE PGVSIZ (XLEFT, XRIGHT, YBOT, YTOP)

REAL XLEFT, XRIGHT, YBOT, YTOP

Change the size and position of the viewport, specifying

the viewport in physical device coordinates (inches). The

74 APPENDIX A. SUBROUTINE DESCRIPTIONS

viewport is the rectangle on the view surface "through"

which one views the graph. All the PG routines which plot lines

etc. plot them within the viewport, and lines are truncated at

the edge of the viewport (except for axes, labels etc drawn with

PGBOX or PGLAB). The region of world space (the coordinate

space of the graph) which is visible through the viewport is

specified by a call to PGSWIN. It is legal to request a

viewport larger than the view surface; only the part which

appears on the view surface will be plotted.

Arguments:

XLEFT (input) : x-coordinate of left hand edge of viewport, in

inches from left edge of view surface.

XRIGHT (input) : x-coordinate of right hand edge of viewport, in

inches from left edge of view surface.

YBOT (input) : y-coordinate of bottom edge of viewport, in

inches from bottom of view surface.

YTOP (input) : y-coordinate of top edge of viewport, in inches

from bottom of view surface.

PGVSTD – set standard (default) viewport

SUBROUTINE PGVSTD

Define the viewport to be the standard viewport. The standard

viewport is the full area of the view surface (or panel),

less a margin of 4 character heights all round for labelling.

It thus depends on the current character size, set by PGSCH.

Arguments: none.

PGWEDG – annotate an image plot with a wedge

SUBROUTINE PGWEDG(SIDE, DISP, WIDTH, FG, BG, LABEL)

CHARACTER *(*) SIDE,LABEL

REAL DISP, WIDTH, FG, BG

Plot an annotated grey-scale or color wedge parallel to a given axis

of the the current viewport. This routine is designed to provide a

brightness/color scale for an image drawn with PGIMAG or PGGRAY.

The wedge will be drawn with the transfer function set by PGSITF

and using the color index range set by PGSCIR.

Arguments:

SIDE (input) : The first character must be one of the characters

’B’, ’L’, ’T’, or ’R’ signifying the Bottom, Left,

Top, or Right edge of the viewport.

A.3. INDEX OF ROUTINES 75

The second character should be ’I’ to use PGIMAG

to draw the wedge, or ’G’ to use PGGRAY.

DISP (input) : the displacement of the wedge from the specified

edge of the viewport, measured outwards from the

viewport in units of the character height. Use a

negative value to write inside the viewport, a

positive value to write outside.

WIDTH (input) : The total width of the wedge including annotation,

in units of the character height.

FG (input) : The value which is to appear with shade

1 ("foreground"). Use the values of FG and BG

that were supplied to PGGRAY or PGIMAG.

BG (input) : the value which is to appear with shade

0 ("background").

LABEL (input) : Optional units label. If no label is required

use ’ ’.

PGWNAD – set window and adjust viewport to same as-
pect ratio

SUBROUTINE PGWNAD (X1, X2, Y1, Y2)

REAL X1, X2, Y1, Y2

Change the window in world coordinate space that is to be mapped on

to the viewport, and simultaneously adjust the viewport so that the

world-coordinate scales are equal in x and y. The new viewport is

the largest one that can fit within the previously set viewport

while retaining the required aspect ratio.

Arguments:

X1 (input) : the x-coordinate of the bottom left corner

of the viewport.

X2 (input) : the x-coordinate of the top right corner

of the viewport (note X2 may be less than X1).

Y1 (input) : the y-coordinate of the bottom left corner

of the viewport.

Y2 (input) : the y-coordinate of the top right corner of the

viewport (note Y2 may be less than Y1).

PGADVANCE – non-standard alias for PGPAGE

SUBROUTINE PGADVANCE

See description of PGPAGE.

76 APPENDIX A. SUBROUTINE DESCRIPTIONS

PGBEGIN – non-standard alias for PGBEG

INTEGER FUNCTION PGBEGIN (UNIT, FILE, NXSUB, NYSUB)

INTEGER UNIT

CHARACTER*(*) FILE

INTEGER NXSUB, NYSUB

See description of PGBEG.

PGCURSE – non-standard alias for PGCURS

INTEGER FUNCTION PGCURSE (X, Y, CH)

REAL X, Y

CHARACTER*1 CH

See description of PGCURS.

PGLABEL – non-standard alias for PGLAB

SUBROUTINE PGLABEL (XLBL, YLBL, TOPLBL)

CHARACTER*(*) XLBL, YLBL, TOPLBL

See description of PGLAB.

PGMTEXT – non-standard alias for PGMTXT

SUBROUTINE PGMTEXT (SIDE, DISP, COORD, FJUST, TEXT)

CHARACTER*(*) SIDE, TEXT

REAL DISP, COORD, FJUST

See description of PGMTXT.

PGNCURSE – non-standard alias for PGNCUR

SUBROUTINE PGNCURSE (MAXPT, NPT, X, Y, SYMBOL)

INTEGER MAXPT, NPT

REAL X(*), Y(*)

INTEGER SYMBOL

See description of PGNCUR.

PGPAPER – non-standard alias for PGPAP

SUBROUTINE PGPAPER (WIDTH, ASPECT)

REAL WIDTH, ASPECT

See description of PGPAP.

A.3. INDEX OF ROUTINES 77

PGPOINT – non-standard alias for PGPT

SUBROUTINE PGPOINT (N, XPTS, YPTS, SYMBOL)

INTEGER N

REAL XPTS(*), YPTS(*)

INTEGER SYMBOL

See description of PGPT.

PGPTEXT – non-standard alias for PGPTXT

SUBROUTINE PGPTEXT (X, Y, ANGLE, FJUST, TEXT)

REAL X, Y, ANGLE, FJUST

CHARACTER*(*) TEXT

See description of PGPTXT.

PGVPORT – non-standard alias for PGSVP

SUBROUTINE PGVPORT (XLEFT, XRIGHT, YBOT, YTOP)

REAL XLEFT, XRIGHT, YBOT, YTOP

See description of PGSVP.

PGVSIZE – non-standard alias for PGVSIZ

SUBROUTINE PGVSIZE (XLEFT, XRIGHT, YBOT, YTOP)

REAL XLEFT, XRIGHT, YBOT, YTOP

See description of PGVSIZ.

PGVSTAND – non-standard alias for PGVSTD

SUBROUTINE PGVSTAND

See description of PGVSTD.

PGWINDOW – non-standard alias for PGSWIN

SUBROUTINE PGWINDOW (X1, X2, Y1, Y2)

REAL X1, X2, Y1, Y2

See description of PGSWIN.

