
  

Xdd 

User’s Guide 
 

  Version 6.5.091706 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
I/O Performance, Inc. 
Copyright © 1992-2006, I/O Performance, Inc. 
 



xdd  Version 6.5 

9/17/2006  Page 2 

 
 
 
 

 
 
 
 

 
 
 
 

 
Change History: 
The revision numbers have the following meaning. The “number” such as 5.7, 5.8, 5.9, …etc. represent 
major release changes such as the addition of new options or sections to xdd. The letter following the 
number represents a maintenance release (such as 5.9z is maintenance release z). A number appended to the 
maintenance release letter  (such as z7) is a site specific fix to a particular maintenance release.  
 
Revision Date Author Description of Changes 
5.9b 2/1//2002 Thomas M. Ruwart  
5.9z4 4/1/2002 Thomas M. Ruwart Updated minor parts 
5.9z7 3/1/2003 Thomas M. Ruwart Updated the sysinfo output 
5.9z7e 4/24/2003 Thomas M. Ruwart -queue-depth and –seek interleave work 
5.9z7f 5/20/2003 Thomas M. Ruwart Fixed problems with trace output on 

Windows 
5.9z7g 6/19/2003 Thomas M. Ruwart Fixed problem random I/O using –quedepth 

Fixed 4GB limit problem on Windows 
6.0 6/25/2003 Thomas M. Ruwart Added the following options 

    –throttle <MB/sec> 
    –runtime <seconds> 
    –ts wrap 
    –rwratio <percent> 
 
The “-procoffset” option has been removed. 
The functionality has been replaced with the 
–startoffset target <target#> <offset> 
 
Modified the syntax for the following options 
to take the “target <target#>” argument 
    –op target <target#> <operation> 
    –reqsize target <target#> <reqsize> 
    –timelimit target <target#> <seconds> 
    –throttle target <target#> <MB/sec> 
 
 
Fixed some bugs with saving seek lists 

6.1 10/1/2003 Thomas M. Ruwart Added the –starttrigger, -stoptrigger, and        
-lockstep options 

Author: Thomas M. Ruwart 
Date: December 16, 2005 
Phone: 612-850-2918 
Email: tmruwart@ioperformance.com 
  



xdd  Version 6.5 

9/17/2006  Page 3 

6.2 3/31/04 Thomas M. Ruwart Added –deskew option 
Added –sharedmemory option for AIX 
Added –verify location/content option 
Removed the old –verify option 
Fixed problem with  semop error on exit 
Revised the way semaphore resources are 
allocated and removed.  

6.2c 1/16/05 Guess. Added support for Mac OS X - Darwin 
6.3 1/23/05 Guess again… Restructuring the code 

Added shared memory buffer support for 
linux, solaris, and AIX 
Added support for zone specification 
   -zone start 
   -zone size 
   -zone map 
   -zone bins 
Added the –profile option that will 
automatically perform request-size profiles 
Enabled Read-After-Write for all platforms 
Added the “Under the Hood” section to this 
manual  
Added more examples to this manual 
 

6.4 12/15/2005 Thomas M. Ruwart Added IOType and Request Size to the 
output line. 
Restructured the code as follows:  

• Added parse.c file for all the 
commands 

• Added barrier.c file that contains the 
barrier management code  

• Added initialization.c to handle all 
the initialization stuff that happens 
when xdd is started 

• Added results.c that contains all the 
routines that manage and display 
results. 

• Added sg.c that contains all the 
routines to do I/O to the SCSI 
Generic devices in Linux 

• Added access_pattern.c that contains 
all the code that comes up with the 
seek list for xdd to run 

• Added time_stamp.c that contains all 
the time stamp management 
functions 

• Changed globtim.c to global_time.c 
to be more descriptive 

• Added hpss.c that contains all the 
hpss access methods – not yet 
actually implemented 



xdd  Version 6.5 

9/17/2006  Page 4 

• Added read_after_write.c that 
manages read_after_write operations 
whenever that option is specified. 

Added the following options: 
–miall  
–nomemlock  
–noproclock  
–version  
–report_threshold  
–sgio  

 
6.5    -maxerrors was causing a segmentation fault 

 
-randomize was requiring a target number to 
be specified 

 
-sgio write operations gave a false error 
message 

 
-id ‘commandline’ did not work 

 
-seek random was not generating a random 
pattern due to a problem with the linux 
random number generator 

 
Added -reopen, -recreate, and -createnewfiles 
command line options 

 
Added the “open time” to the output line if 
any of the aforementioned options are 
specified 
 
Added the –targetstartdelay option 
 
Changed the syntax of the –timeserver option 
 
Removed the –port option – now included in 
the –timeserver option 

    



xdd  Version 6.5 

9/17/2006  Page 5 

  

11 INTRODUCTION .................................................................................................................................. 7 
1.1 ABOUT THIS DOCUMENT................................................................................................................... 7 
1.2 ABOUT XDD ...................................................................................................................................... 7 
1.3 LICENSE AGREEMENT....................................................................................................................... 7 
1.4 DISTRIBUTION OF XDD...................................................................................................................... 7 
1.5 SYSTEM REQUIREMENTS .................................................................................................................. 7 

22 WHAT’S NEW ....................................................................................................................................... 8 
2.1 IN XDD 6.5......................................................................................................................................... 8 
2.2 IN XDD 6.4......................................................................................................................................... 8 
2.3 IN XDD 6.3......................................................................................................................................... 8 
2.4 IN XDD6.2 ......................................................................................................................................... 9 
2.5 IN XDD6.1 ......................................................................................................................................... 9 
2.6 IN XDD6.0 ......................................................................................................................................... 9 

33 COMPILING AND INSTALLING XDD............................................................................................. 9 
3.1 XDD SOURCE CODE OVERVIEW ..................................................................................................... 10 

3.1.1 xdd.c and xdd.h....................................................................................................................... 10 
3.1.2 timeserver.c ............................................................................................................................ 10 
3.1.3 gettime.c.................................................................................................................................. 10 
3.1.4 access_pattern.c ..................................................................................................................... 10 
3.1.5 barrier.c.................................................................................................................................. 10 
3.1.6 global_time.c .......................................................................................................................... 11 
3.1.7 initialization.c......................................................................................................................... 11 
3.1.8 parse.c .................................................................................................................................... 11 
3.1.9 pclk.c  and pclk.h .................................................................................................................... 11 
3.1.10 read_after_write.c .................................................................................................................. 11 
3.1.11 results.c................................................................................................................................... 11 
3.1.12 ticker.c and ticker.h ................................................................................................................ 11 
3.1.13 time_stamp.c........................................................................................................................... 11 
3.1.14 misc.h...................................................................................................................................... 11 
3.1.15 nt_unix_compat.c.................................................................................................................... 11 
3.1.16 Compile Notes ........................................................................................................................ 11 

3.2 WINDOWS™ NT™ , WINDOWS™ 2000™, AND WINDOWS™ XP™ ............................................. 12 
3.3 LINUX ............................................................................................................................................. 12 
3.4 SOLARIS™ FROM SUN (SPARC™ VERSION) ................................................................................. 12 
3.5 AIX™ FROM IBM........................................................................................................................... 13 
3.6 HPUX™ FROM HEWLETT-PACKARD ............................................................................................. 13 
3.7 IRIX™ FROM SGI........................................................................................................................... 13 
3.8 MAC OS X™ FROM APPLE ............................................................................................................. 13 

44 THEORY OF OPERATIONS............................................................................................................. 13 
4.1 BASIC OPERATION .......................................................................................................................... 13 
4.2 COMMAND LINE OPTIONS AND THE SETUP FILE ............................................................................ 14 
4.3 OPERATION SPECIFICATION AND REQUEST SIZES.......................................................................... 14 
4.4 TARGET SPECIFICATION AND MULTIPLE TARGET SYNCHRONIZATION ......................................... 14 
4.5 TIME SYNCHRONIZATION ACROSS MULTIPLE COMPUTER SYSTEMS............................................. 16 
4.6 XDD RUN TIME OR RUN LENGTH ................................................................................................... 17 
4.7 I/O RANGE ...................................................................................................................................... 17 



xdd  Version 6.5 

9/17/2006  Page 6 

4.8 ACCESS PATTERNS ......................................................................................................................... 17 
4.9 READING AND WRITING DEVICES AND FILES ................................................................................ 18 
4.10 PROCESSOR ALLOCATION AND PRIORITY ASSIGNMENT ................................................................ 20 
4.11 I/O TIME STAMPING........................................................................................................................ 20 

55 RUNNING XDD PROGRAMS ........................................................................................................... 20 
5.1 XDD COMMAND LINE ARGUMENTS SYNOPSIS............................................................................... 21 
5.2 TARGET-SPECIFIC OPTIONS............................................................................................................. 30 
5.3 LOCKSTEP OPERATIONS ................................................................................................................. 31 
5.4 TIMESERVER AND GETTIME ............................................................................................................ 31 
5.5 DESKEW.......................................................................................................................................... 32 

66 RUNTIME HINTS ............................................................................................................................... 32 
6.1 WINDOWS ....................................................................................................................................... 32 
6.2 IRIX................................................................................................................................................ 32 
6.3 AIX................................................................................................................................................. 32 
6.4 SOLARIS .......................................................................................................................................... 33 
6.5 LINUX ............................................................................................................................................. 33 
6.6 HPUX ............................................................................................................................................. 33 

77 OUTPUT AND REPORTS.................................................................................................................. 34 
7.1 REPORTING OPTIONS ...................................................................................................................... 34 
7.2 WHAT THE NUMBERS REALLY MEAN.............................................................................................. 36 

88 PERFORMANCE TUNING HINTS .................................................................................................. 36 
8.1 CACHES AND WRITE PERFORMANCE............................................................................................... 36 
8.2 FIBRE CHANNEL FRAME SIZES ....................................................................................................... 36 

99 EXAMPLES.......................................................................................................................................... 36 
9.1 EXAMPLE DISPLAY OUTPUT........................................................................................................... 38 
9.2 EXAMPLE TIME STAMP OUTPUT..................................................................................................... 39 

1100 UNDER THE HOOD ....................................................................................................................... 42 
10.1 XDD GENERAL OPERATION ............................................................................................................. 42 
10.2 THE XDD BUFFER MEMORY LAYOUT .............................................................................................. 43 
10.3 THE XDD THREAD STRUCTURE ....................................................................................................... 43 
10.4 XDD BARRIERS................................................................................................................................ 44 

1111 THE GNU PUBLIC LICENSE ....................................................................................................... 45 
11.1 PREAMBLE ...................................................................................................................................... 45 
11.2 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION........ 45 
11.3 NO WARRANTY .......................................................................................................................... 46 

1122 ACKNOWLEDGEMENTS ............................................................................................................. 46 



xdd  Version 6.5 

9/17/2006  Page 7 

11  Introduction 
1.1 About this document 
This document is a user’s guide to compiling, installing, and running the xdd program. It also has a variety 
of examples and hints for understanding the use and results of xdd measurements. 

1.2 About xdd 
Xdd is a tool for measuring and characterizing disk subsystem I/O on single systems and clusters of 
systems. It is a command-line based tool that grew out of the UNIX world and has been ported to run in 
Window’s environments as well. It is designed to provide consistent and reproducible performance 
measurements of disk I/O traffic.  There are three basic components to xdd that include the xdd program 
itself, a timeserver program, and a gettime program. The timeserver and gettime programs are used to 
synchronize the clocks of xdd programs simultaneously running across multiple computer systems.  

1.3 License Agreement 
It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the 
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
General Public License for more details. You should have received a copy of the GNU General Public 
License along with this program/document in a file named 'Copying' or ‘gpl.txt’ or in the section entitled 
The GNU Public License in this document; if not, write to the Free Software Foundation, Inc., 675 Mass 
Ave, Cambridge, MA 02139 or visit their web site at http://www.gnu.org/licenses/gpl.html.  

1.4 Distribution of xdd 
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General 
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your 
option) any later version. 

1.5 System Requirements 
Xdd can run on a relatively minimally configured system but it is recommended that adequate main memory 
capacity and processor speed be available when using some of the more advanced features of xdd. The xdd 
program itself is not CPU intensive but the faster the processor and the less loaded a system is, the more 
accurate and consistent the results will be. As a rule, a minimum of 128MB of main memory is 
recommended. All other system parameters are left to the discretion of the user.   



xdd  Version 6.5 

9/17/2006  Page 8 

 

22  What’s new  
2.1 In xdd 6.5 

• Added shared memory buffer support for linux, solaris, and AIX 
• Added command-line options –createnewfiles, –reopenfiles, and –recreatefiles along with reporting 

the time required to perform these functions from pass to pass.  
• Enabled Read-After-Write for all platforms 
• Fixed a bunch of bugs – Thanks to all of you who reported these bugs to me. 
• Changed the –timeserver option to include the operators “host”, “port”, and “bounce” to 

specify the host name of the time server, the port number to use to contact the time server, and the 
bounce count to use in order to resolve the time delta between the time server and the client 
machine. 

• The –datapattern option now has an “ascii” operator that allows specification of an ascii 
string to be included at the beginning of the I/O buffer.  

 
Also, the format of this manual and the xdd usage is now arranged alphabetically rather than by functional 
group which became too difficult to maintain. The xdd source file “parse.c” contains all the subroutines that 
parse the command line options and those are all alphabetical. This was going to be done when the number 
of xdd command line options passed the 1000 point but I decided to do it now because I am getting to old to 
keep all this in my head.  

2.2 In xdd 6.4 
Added IOType and Request Size to the output line. This information is also included in the target 
information that is reported before the results but it was always a pain to have to look back through all that 
to figure out where that information was. So it is now in each output line. 
Of course there cannot be a new release of xdd without new options. Thus, the following options have been 
added to this release: 

–nomemlock – do not lock memory buffers 
–noproclock – do not lock process into memory 
–miall – essentially does a –nomemlock and a –noproclock to get rid of annoying messages that 
get generated if you are running xdd as a normal user and not super user. 
–version – Display the xdd version number 
–report_threshold – display I/O operations that exceed a certain time threshold – great for 
identifying those operations that take much longer than others 
–sgio – My personal favorite – do I/O to the SCSI Generic devices in a Linux system 

2.3 In xdd 6.3 
The xdd source file was getting way too large so in an attempt to get some sanity back into the source tree 
the source code files were restructured. The restructured the code as follows:  

• Added parse.c file for all the commands 
• Added barrier.c file that contains the barrier management code  
• Added initialization.c to handle all the initialization stuff that happens when xdd is started 
• Added results.c that contains all the routines that manage and display results. 
• Added sg.c that contains all the routines to do I/O to the SCSI Generic devices in Linux 
• Added access_pattern.c that contains all the code that comes up with the seek list for xdd to run 



xdd  Version 6.5 

9/17/2006  Page 9 

• Added time_stamp.c that contains all the time stamp management functions 
• Changed globtim.c to global_time.c to be more descriptive 
• Added hpss.c that contains all the hpss access methods – not yet actually implemented 
• Added read_after_write.c that manages read_after_write operations whenever that option is 

specified. 
 
Added the “Under the Hood” section to this manual  
Added more examples to this manual 
Added support for Mac OS X a.k.a. Darwin. The direct I/O and multi-processor support is not yet 
implemented but should be by release 6.3. 

2.4 In xdd6.2 
Xdd6.2 includes the –deskew option that is useful when testing a large number of targets. Deskew will 
measure the I/O performance when all targets are actually running rather than from the time the first one 
starts to the time when the last one ends. There is also a new option called –sharedmemory that currently 
only works with AIX. This option causes xdd to allocate the I/O buffer in a shared memory segment using 
shmget() and shmat() rather than the normal valloc/malloc. There are performance reasons for doing this in 
AIX and it is useful to try it if testing peak bandwidth on an AIX system. Finally, there were several 
annoying little bugs that have been squashed. 
 

2.5 In xdd6.1 
New stuff includes the –starttrigger, -stoptrigger, and -lockstep options that allow for targets to control the 
operation of other targets.  

2.6 In xdd6.0 
There are several new options in version 6.2 of xdd that allow for the specification of the parent directory of 
targets (-targetdir), specify the total transfer size in kilobytes (-kbytes), mixing read and write operations 
within a single run (-rwratio), to run the xdd program for a specific amount of time rather than a number of 
bytes or operations (-runtime), and the ability to throttle the transfer rate (-throttle).  The most notable 
change to this release however is the ability to set many of the options for specific targets rather than having 
all targets use the same options (see section on Target Specific Options). This allows for tailoring the I/O 
behavior of each target to meet specific I/O performance/behavior requirements.  
 
 

33  Compiling and Installing xdd 
This section describes how to compile and install xdd on the following systems: 

• Windows™ NT™ and Windows™ 2000™ 
• Linux  
• Solaris™ from Sun on both SPARC™ and Intel platforms 
• AIX™ from IBM 
• HPUX™ from Hewlett-Packard 
• IRIX™ from SGI 
• Mac OS X - Darwin 



xdd  Version 6.5 

9/17/2006  Page 10 

3.1 Xdd Source Code Overview 
The xdd distribution comes with all the source code necessary to install xdd and the companion programs 
for the timeserver and the gettime utility programs. For UNIX systems, a make file is included to build any 
of these programs. This release of xdd comes with the following source files: 

Program files Header files 
xdd.c xdd.h 
timeserver.c  
gettime.c 
  
Subroutine files Subroutine header files 
access_pattern.c   
barrier.c  
global_time.c  
initialization.c  
parse.c  
pclk.c pclk.h 
read_after_write.c  
results.c  
ticker.c ticker.h 
time_stamp.c  
 misc.h 
nt_unix_compat.c  

Table 2. The xdd source code tree. 

3.1.1 xdd.c and xdd.h 
xdd.c contains all the program routines that are specific to running xdd. The xdd.h header file is common to 
xdd.c and to all the other programs that use xdd subroutine files.  

3.1.2 timeserver.c 
timeserver is the master time server that runs on a single machine and is used as a reference clock by xdd 
programs running on other machines. This program does not have to be compiled in order to compile/run 
xdd on a single machine. 

3.1.3 gettime.c 
gettime is a program that is used in conjunction with the time server functions when running xdd on 
multiple machines (see section on Timeserver Functions on Multiple Machines). This program does not 
have to be compiled in order to compile/run xdd on a single machine. 
 

3.1.4 access_pattern.c 
These subroutines generate the seek list used by xdd to access a target. 
 

3.1.5 barrier.c  
This contains all the barrier subroutines that are used to control the execution and timing of I/O operations. 



xdd  Version 6.5 

9/17/2006  Page 11 

3.1.6 global_time.c  
global_time.c contains all the functions necessary to contact the master time server machine and establish 
the Global Time. 

3.1.7 initialization.c  
This file contains most of the subroutines used during program and target thread initialization. 

3.1.8 parse.c 
This file contains the subroutines that parse the command-line options and the setup file if it is specified. 
The help and usage functions are also located in this file. 

3.1.9 pclk.c  and pclk.h 
pclk.c contains all the subroutines provide pico-second clock values to the calling function. It calls the ticker 
functions that read the actual clock values specific to a particular architecture.  

3.1.10 read_after_write.c 
This file contains the subroutines that control a read-after-write operation. 

3.1.11 results.c 
results.c contains all the routines that process and display the results information. 

3.1.12 ticker.c and ticker.h 
ticker.c contains all the subroutines that are specific to a specific machine architecture that are required to 
access that’s machine’s high resolution clock.  

3.1.13 time_stamp.c  
This contains the time stamp subroutines. 

3.1.14 misc.h 
misc.h contains all the miscellaneous definitions that are common to all the programs.  

3.1.15 nt_unix_compat.c 
nt_unix_compat.c contains all the UNIX subroutines that are not supported in a standard Windows™ NT™ 
or Windows™ 2000™ environment. These subroutines provide a mapping from the UNIX system call (i.e. 
sleep, getpid, pthread_create, …etc.) to the equivalent Windows™ system call (i.e. Sleep, 
GetCurrentThreadID, CreateThread, …etc.). This file is only used when compiling in a Windows™ 
environment.  It is not part of a UNIX compile.  

3.1.16 Compile Notes 
Before building xdd on any of the UNIX-based systems, it may be necessary to “clean” the files first. Since 
the xdd distribution is built on a Windows platform, certain Windows artifacts may contaminate the source, 
header, and make files. More specifically, any text file (such as make files, .c and .h files) may contain hex 
characters “0D”  (ctl-M) at the end of each line. This is not interpreted correctly in most UNIX 
environments and makes it impossible to compile any of the xdd source code. Therefore, these hex “0D” 
characters must first be removed before any compilation can be done. 
 



xdd  Version 6.5 

9/17/2006  Page 12 

A simple program and script is provided to perform this removal operation automatically. The program is 
called stripm.c and the associated script is stripm.csh. Simply run the stripm.csh script and it will compile 
the strip.c program and run it on all affected files. At the UNIX command prompt, use the following 
command to execute stripm.csh: 
 

root#   csh stripm.csh 
Found 32 instances of 0x0d 
Found  0 instances of 0x0d 
… 
Found 12 instances of 0x0d 
root# 

 
There will be a number of the “Found…” messages that can be ignored.  After has been run, it is safe to 
make xdd, the timeserver, and the gettime programs.  

3.2 Windows™ NT™ , Windows™ 2000™, and Windows™ XP™ 
The distribution directory hierarchy includes the source files and header files as well as a “debug” directory. 
The debug directory contains the executable xdd file (xdd.exe) that is sufficient to run on any Windows™ 
platform. The source directory contains the .dsw files necessary to compile xdd using Microsoft’s Visual 
C++™ compiler. This is the only compiler that has been used to build the xdd executable in the Windows™ 
environment. Use of any other compiler can produce unpredictable results.  

3.3 Linux  
To make xdd, timeserver, and gettime in a uni-processor Linux environment, use the following command: 
  make –f linuxup.makefile  
 
or for an SMP version use the following:  
  make –f linuxsmp.makefile  
 
This uses the gcc compiler and associated libraries. Insure that the pthreads libraries are installed for correct 
compilation and linking. 

3.4 Solaris™ from Sun (SPARC™ version) 
To make xdd, timeserver, and gettime in a Solaris™ environment, use the following command: 
  make –f solaris.makefile all   (for Solaris™ on a SPARC™ platform) 

make –f isolaris.makefile all  (for Solaris™ on an Intel platform) 
This uses the gcc compiler and associated libraries. Insure that the pthreads libraries are installed for correct 
compilation and linking.  
 
There is an issue with running xdd on Solaris that involves the default number of semaphores that Solaris 
allows each process to use. It is normally too low for xdd to run and xdd generates errors that say things like 
“cannot allocate barrier for …, not enough space”. The following parameters can be put in /etc/system on a 
solaris system and a reboot will take care of this problem: 

 
set semsys:seminfo_semmni=4096 
set semsys:seminfo_semmns=8192 
set semsys:seminfo_semmap=4098 
set shmsys:shminfo_shmmni=512 
set shmsys:shminfo_shmseg=32 

 
These settings may be a little high and can be adjusted to meet the local system constraints.  



xdd  Version 6.5 

9/17/2006  Page 13 

3.5 AIX™ from IBM 
To make xdd, timeserver, and gettime in a AIX™ environment, use the following command: 
  make –f aix.makefile all 
This uses the xlc compiler and associated libraries. Insure that the pthreads libraries are installed for correct 
compilation and linking. 

3.6 HPUX™ from Hewlett-Packard 
To make xdd, timeserver, and gettime in a HPUX™ environment, use the following command: 
  make –f hpux.makefile all 
This uses the gcc compiler and associated libraries. Insure that the pthreads libraries are installed for correct 
compilation and linking. 

3.7 IRIX™ from SGI 
To make xdd, timeserver, and gettime in an IRIX™ environment, use the following command: 
  make –f irix.makefile all 
This uses the IRIX™ compiler and associated libraries. Insure that the pthreads libraries are installed for 
correct compilation and linking. 

3.8 Mac OS X™ from Apple  
To make xdd, timeserver, and gettime in a Mac OS X™ environment, use the following command: 
  make –f macosx.makefile all 
This uses the gcc compiler and associated libraries. Make sure these are installed on your Mac because even 
though they come with the Mac, they are not installed by default.  
 
 

44  Theory of Operations 
4.1 Basic Operation 
Xdd is a program that performs data transfer operations between memory and a disk device or file 
(or multiple disk devices / files) and collects and displays performance information about these I/O 
operations. Xdd creates one or more threads for every device or file under test. Each xdd thread 
issues I/O operations to a "target" which is either a disk storage device or a file. Each I/O operation 
is either a read or a write operation of a fixed size known as the "request size". An xdd “run” 
consists of several “passes”, the number of which is specified by the “–passes” option. Each pass 
will execute some number of I/O requests on the specified target(s) at the given request size. In 
general, each pass is identical to the previous passes in a run with respect to the request size, 
number of requests to issue, and the access pattern unless certain options are used to alter these 
parameters between passes. Passes are run one after another with no delays between passes unless 
a pass delay is specified with the “–delay” option. 
 
Multiple passes within an xdd run are used to determine the reproducibility of the results. In 
theory, the results from each pass in an xdd run should be the same or at least very close to the 
same given the same set of run-time parameters.  
 



xdd  Version 6.5 

9/17/2006  Page 14 

4.2 Command Line Options and the Setup File 
This version of xdd has a command-line interface that requires al the run-time parameters to be 
specified either on the xdd invocation command line or in a “setup” file. The format of the setup 
file is similar to the xdd command-line in that the options can be simply entered into the setup file 
the same as they would be seen on the command line. The following example shows an xdd 
invocation using just the command-line and the same invocation using the setup file along with the 
contents of the setup file. 
 
Command line: 

xdd –op read –targets 1 /dev/scsi/disk1 –reqsize 8 –numreqs 128  
–verbose 

Using a Setup file: 
 xdd –setup xddrun.txt 
Where the setup file xddrun.txt is an ASCII text file that contains the following: 

4.3 Operation Specification and Request Sizes 
The operation to perform is specified by the “–op” option. This can be either “read” or “write”. 
This version of xdd will mix read and write operations within an xdd run according to the 
read/write ratio set using the –rwratio option. Each r/w operation will transfer a given amount of 
data known as the “request size”.  The request size is specified by the “–reqsize” option in units of 
“blocks”. A block is, by default, 1024 bytes but can be specified to be any positive integer value by 
using the “–blocksize” option. The “block” is used as the basic unit for all other options requiring a 
data size unless otherwise noted. It is recommended that the block size be specified as numbers that 
are integer multiples of 512 bytes (i.e. 1024, 2048, 5120, …etc.) since this tends to be the 
predominant sector size for most storage devices at the current time. 

4.4 Target Specification and Multiple Target Synchronization 
All requests are sent to a “target” which can be either a disk device or a file. A single xdd run can 
operate on a single target or multiple targets simultaneously. Target names are specified using the  
“–targets” option. It is always necessary to specify the number of targets followed by the 
individual target names. In order to simplify the list of target names, the “-targetdir” option can be 
used to specify the directory where the target devices or files reside.  
  
The execution of the xdd threads on multiple targets is synchronized through the use of "barriers". 
Each xdd I/O thread initializes itself and waits for all the other xdd I/O threads to "reach at starting 
point". Once all the xdd threads reach this point, they are all released simultaneously. Each xdd 
thread will run independently until it has either completed all of its requested I/O operations or 
reached its time limit (as specified by the –timelimit input parameter). At this point the xdd 
threads resynchronize with one another and begin another pass.  
 

–op read –targets 1 /dev/scsi/disk1  
–reqsize 8  
–numreqs 128  
–verbose



xdd  Version 6.5 

9/17/2006  Page 15 

It is also possible to resynchronize the threads at specific points within a pass by using the “–
syncio” and/or “-syncwrite” options. The  -syncio option instructs each of the I/O threads to 
synchronize after some number of I/O operations specified as an argument to this option. The 
default is to sychnronize only at the beginning of each pass.  The –syncwrite option is used to 
synchronize “buffered” write operations at the end of each pass by flushing all the file system data 
buffers to the physical media. This option is not able to flush and cache buffers on the disk 
controllers or disk drives themselves.  
 
Synchronizing the xdd I/O threads is done to insure that all the xdd I/O threads start at precisely 
the same time in order to avoid misleading results due to skewing the start times. It is possible to 
eliminate synchronization by specifying the -nobarrier parameter. The result is that many of the 
I/O start times can be significantly skewed from one another for all participating xdd I/O threads. 
However, that may in fact be the desired effect.  



xdd  Version 6.5 

9/17/2006  Page 16 

 

4.5 Time Synchronization Across Multiple Computer Systems 
Synchronization can also be done across multiple machines each running xdd. This is 
accomplished by using the timeserver and gettime programs. The timeserver program provides a 
single global reference clock that is used by the time stamping in order to be able to more 
accurately correlate events in time from multiple computer systems. The timeserver program 
should be run on a single machine as a background task. This machine must be accessible via a 
LAN to all the machines that will be running xdd. This LAN should preferably be a lightly used 
LAN for optimum results.  

The preferred way to make this work is to use “rsh” to start the xdd programs on each of the nodes 
using the “-starttime” and “-timeserver” options.  The “-timeserver” option tells the xdd program 
the host name or IP address of the time server machine. The xdd program will contact this machine 
to determine the “global” time that all the other xdd programs will use as a frame of reference. The 
“-starttime” option specifies the time to start in “global time” units.  
 
Before running the “rsh xdd” command line in a script, it is necessary to determine a global time 
sometime in the future at which all the xdd program will start. The way to do this is to use the 
“gettime” program to contact the time server, determine the global time, add a specified number of 
seconds, and display the result on standard out. This global start time can then be used as the 
argument to the “-starttime” option for each of the “rsh xdd” commands.  An example script would 
look like so: 

…. 
set g=`gettime –timeserver 192.10.11.12 –add 20` 
# At this point ${g} will be the current global time plus 
# 20 seconds. 
foreach i ( 1 2 3 4 ) 

rsh host${i} xdd –starttime ${g} –op read –targets 1      
/dev/dsk/c1d2s0 –mbytes 5 …& 

end 
wait 
… 

Timeserver 

Fibre Channel Switch 
For the SAN 

Xdd 2 Xdd 1 Xdd n 

Ethernet LAN 



xdd  Version 6.5 

9/17/2006  Page 17 

This example scriptlet will set the local variable “${g}” to the global time plus 20 seconds. This 
value is then passed to each of the xdd programs that are started on host1, host2, host3, and host4. 
This will result in each xdd program starting at exactly the same time. However, if any or all of the 
host machines running xdd are in the presence of a black hole, neutron star, or other extremely 
massive body (such as Oprah), the relativistic effects on the space-time continuum may produce 
unpredictable results.  

4.6 Xdd Run Time or Run Length 
It is necessary to specify a limit on how long xdd will run. There are several ways to do this. First, 
it is possible to explicitly specify the number of transfers to perform using the “–numreqs” option. 
This specifies the number of read or write calls to make for a single “pass”. It is also possible to 
simply specify the number of MegaBytes to transfer using the “–mbytes”  option. It is important to 
note that a MegaByte in this context is 1048576 bytes.  Finally, it is possible to specify a time limit 
for each xdd pass using the –timelimit option. This will cause each pass to terminate after the 
specified number of seconds has elapsed or after executing the specified number of requests or 
transferring the specified number of megabytes whichever occurs first. 

4.7 I/O Range 
For random I/O operations, each xdd I/O thread performs its I/O operations within a certain 
consecutive “range” of blocks on the target (see Figure 1). The range is either implicitly specified 
as the number of MegaBytes to transfer or explicitly specified using the “–range” option. For 
example, if the user specifies 2048 purely sequential data transfers at a request size of 128 blocks 
each, then the range will be implied as 262144 blocks (2048 * 128). However, if the user wants to 
transfer the same 2048 requests randomly over a 2 GigaByte area (or range) on the target then the 
range needs to be explicitly specified as 268435456 blocks or 2 GigaBytes. 
 
The beginning of the I/O range defaults to the beginning of the target whether it is a device or a 
file. It is possible to specify a “starting offset” such that the I/O range begins at some distance into 
the target (see Figure 1). This can be done several ways. First, the “–startoffset” option can be 
used to start I/O operations at some distance into the target for an xdd run. The “–passoffset” can 
be used to incrementally move the starting offset further into the target device on subsequent 
passes within an xdd run by some specified number of blocks. Finally, the “–targetoffset” can be 
used to move the starting offset into the target device by a number of blocks that is determined by 
the target offset value times the target’s ordinal number.  For example, given an xdd run on 4 
targets with a target offset of 1024 and a starting offset of 0, I/O will start at block 0 on target 0, 
block 1024 on target 1, block 2048 on target 2, and block 3072 on target 3. 

4.8 Access Patterns 
The range can be specified to start anywhere within the target so long as care is taken to insure that 
the end of the range is still within the confines of the target. This is particularly true when 
randomly accessing blocks within a target that is a regular file. Within the I/O range, data access 
patterns can be either 

1) purely sequential 
2) staggered sequential 
3) purely random 



xdd  Version 6.5 

9/17/2006  Page 18 

 

 
Figure 1. Example of the I/O range and the offset. 

 
Purely sequential I/O is the default access pattern. This access pattern accesses consecutive data 
blocks starting at the beginning of the range to the end of the range. 
 
A Staggered Sequential access pattern also starts at the beginning of the range and ends at the end 
of the range but only transfers every Nth  data block. This access pattern is specified by the "-seek 
staggered" parameter. For example, if reading 256 MegaBytes within a 2 GigaByte range, the 256 
MegaBytes is spread evenly over the entire 2GB range. Therefore, for a given request size, every 
8th data block is read with gaps of unread data in between since 256 MegaBytes is 1/8th of 2 
GigaBytes.  
 
A purely Random access pattern is one that accesses data blocks at the specified request size 
randomly throughout the specified range. It is important to note that for a given range and given 
request size, the same random pattern is generated for each successive pass/run in order to yield 
*reproducible* results. The random access pattern used for each pass within a run can be changed 
by using the “-randomize” parameter. The random access pattern used for each run can be changed 
by using the “-seek seed” parameter. 
 
It should be noted that when running xdd on a regular file especially in “random” mode, the Direct 
IO option (-dio) should be used to avoid using the file system buffer cache. The file system data 
caching mechanisms will produce misleading (and non-reproducible) results. See the section on 
Reading and Writing Devices and Files for more information. 
 
Finally, it is possible to specify a “null” access pattern whereby the first block in the range is 
continually accessed. This is accomplished by specifying the “–seek none” option. This is useful 
for testing the effectiveness of caching algorithms and/or the speed of the cache on the target 
device or file. 

4.9 Reading and Writing Devices and Files 
Xdd read or writes devices or files. When running xdd on regular “files”, the target files tend to be 
large and can “accidentally” be left behind after the testing. The –deletefile option will remove a 
target file at the conclusion of the xdd run. This option is not recommended when running xdd on 
device files for obvious reasons.  
 
As previously implied, sequentially reading data is relatively straight forward: start at the 
beginning of the device or file plus the starting offset and read data until the end of the data range 
is reached or the time limit expires. When reading a file it is assumed that the file is at least as large 

Starting offset I/O Range 

Entire disk 
or file



xdd  Version 6.5 

9/17/2006  Page 19 

as the desired data range so that the read does not go past the end of the file. If the file is smaller 
than the desired or specified data range then a warning message is displayed regarding this 
condition.  
 
Reading a file on most systems uses a file system buffer cache. In this mode, data is read into a file 
system buffer and then copied into the xdd I/O buffer by the CPU. This can cause two different 
problems with respect to the performance results. First, the maximum bandwidth for reading data 
into the machine for the first time is limited to the memory copy speed of the processor that can be 
much lower than the true bandwidth of the disk I/O subsystem under evaluation. Secondly, if all 
the data from the file fits into the file system buffer then subsequent reads to the same file will be 
satisfied by copying the data from the file system buffer cache and not from the actual disk 
subsystem. In this case, xdd is reporting the memory copy performance rather than the speed of the 
disk subsystem. To avoid this problem the Direct I/O, (“–dio”), option can be used to bypass the 
use of the file system buffer cache and forcing all read requests to access the disks. There are 
certain I/O request size and alignment restrictions that must be observed in order to use Direct I/O 
and these restrictions are Operating System dependent. These restrictions essentially state that the 
I/O requests must start on a “page-size” boundary and must be in units of the native block size of 
the underlying file system.  
 
Writing devices is very similar to read files except for the data transfer direction. However, writing 
“files” has additional complexities that can affect the performance results. This is due primarily to 
the allocation mechanisms used by the file system manager to allocate disk space when writing a 
file for the first time. Generally speaking, each write operation will cause the file system manager 
to allocate space on the disk to accommodate the data being written. These allocation operations 
can require additional accesses to the disk that are “invisible” to xdd but do show up in the 
performance results as essentially slower write operations. In order to minimize the effects of this 
allocation process, the “–preallocate” option can be used to do the entire allocation operation 
before the file write operations take place. The argument to this option specifies the number of 
blocks to pre-allocate before the write operations start. This number should be greater than or equal 
to the number of blocks that will be in the file. 
 
File write performance results can also be affected by the file system buffer cache. When writing a 
file the data is first copied into the file system buffer and later actually written to the physical disk 
subsystem. As in the case of the read operation, it is possible to use the “–dio” option to avoid this 
data copy operation. The same request size and alignment restrictions apply Direct I/O in this case 
as in the read case. 
 
One last note about writing to a target device or file. The data pattern to be written to the target can 
be specified by the “–pattern” option. This will fill the data buffer with a single character data 
pattern or with a random data pattern depending on the argument to this option. No data 
verification is done with the data that is written out using this pattern. It is simply an option to use 
in case it is necessary to find out where xdd has written to. 
 
Finally, there is an option to re-align the internal data buffer within memory if necessary. This is 
used more for testing computer system memory performance rather than I/O performance of a 
target and therefore may have limited usefulness. It is only mentioned here for completeness. 



xdd  Version 6.5 

9/17/2006  Page 20 

4.10 Processor Allocation and Priority Assignment 
On multi-processor systems it is possible to assign xdd threads to specific processors. This is 
accomplished with the –processor, –singleproc , and –roundrobin options.  The –processor option 
allows the explicit assignment of a processor to a specific xdd thread.  
 
The –singleproc option will assign all xdd threads to a single processor specified as an argument to 
this option. The –roundrobin option will distribute the xdd threads across M processors where M is 
the number of processors. M should be less than or equal to the number of processors in the 
system. The processor-numbering scheme used is 0 to N-1 where N is the number of processors in 
the system. For example, if there are five xdd threads running on a computer with eight processors, 
then the round robin processor assignment will assign threads 0 thru 4 on processors 0 thru 4. 
However, if there were only two processors on the computer, then xdd threads 0, 2, and 4 will be 
assigned to processor 0 and threads 1 and 3 will be assigned to processor 1. 
 
The priority of each thread defaults to the “normal” priority on the system. It is possible to increase 
the priority to a maximum level by using the “–maxpri” option.  Maximizing the runtime priority 
of the xdd threads decreases the effects on the I/O performance of other processes running on the 
system. It is also possible to lock the xdd process and I/O buffers using the “–plock” option. This is 
done to prevent the xdd process or any of its I/O buffers from being paged or swapped out of the 
system. The “–maxall” option is a shortcut for specifying both “–maxpri” and “–plock.”  

4.11 I/O Time Stamping 
While running, each xdd thread has the option to enter time stamp information into a table that is 
later written to a file for further analysis. Each I/O operation is time stamped before the operation 
starts and just after the operation ends. The time stamp table contains all the information necessary 
to understand when I/O operations started, ended, the block location being accessed, and the 
amount of data transferred. The time stamps themselves are taken from the system's high-
resolution timer and re-normalized in units of picoseconds so that this data can easily be correlated 
with time stamp data from the other associated xdd output files.  
 
The format of the Time Stamp binary output file contains a header followed by the time stamp 
data.  
 
In addition to a binary output file, the time stamp table information can be dumped in ASCII 
readable text. There are several options for ASCII output including a summarized and a detailed 
output specified by the  “–output summary” and “–output detailed” options.  Appendix A includes 
examples of the summarized and detailed outputs of the Time Stamp table. The time stamp ASCII 
output file names have a “.csv” file extension so that it can more easily be read by a spreadsheet 
program such as Excel®. 
 

55  Running xdd Programs 
Xdd programs include xdd itself, the timeserver program, and the gettime program. (New options are 
highlighted in blue). Example command lines are given in Appendix B and are also contained in a file called 
tests.txt in the distribution bin directory. 



xdd  Version 6.5 

9/17/2006  Page 21 

5.1 Xdd Command Line Arguments Synopsis 
xdd   
-align [target <target#>] alignment_value_in_bytes 
-blocksize [target <target#>] number_of_bytes_per_block 
-combined filename 
-createnewfiles [target #] 
-csvout filename 
-datapattern [target <target#>]  

character_pattern –or- 
“random” –or- 
“sequenced” –or- 
 “ascii” 

-delay seconds 
-deletefile [target <target#>] 
-deskew 
-dio [target <target#>] 
-errout filename 
-fullhelp 
-heartbeat #seconds 
-id commandline - or - “id_string”  
-kbytes [target <target#>] number_of_kilobytes_to_transfer 
-lockstep <master_target> <slave_target> 

 <when> <howlong>  
<what> <howmuch>  
<startup> <completion> 

 
-maxall  
-maxerrors number_of_errors 
-maxpri 
-mbytes [target <target#>] number_of_megabytes_to_transfer 
-minall 
-nobarrier 
-nomemlock 
-noproclock 
-numreqs [target <target#>] number_of_requests_to_perform 
-op [target <target#>] read|write 
-output filename  
-passes number_of_passes 
-passoffset [target <target#>] offset_in_blocks 
-preallocate [target <target#>] number_of_blocks 
-processlock 
-processor processor_number target_number -rwratio [target <target#>] %read 
-queuedepth [target <target#>] number_of_commands_per_target  
-qthreadinfo 
-randomize [target <target#>] 
-readafterwrite [target <target#>] 



xdd  Version 6.5 

9/17/2006  Page 22 

-reallyverbose 
-recreatefiles [target #] 
-reopen [target #] 
-report_threshold [target #] <#.#> 
-reqsize [target <target#>] number_of_blocks 
-roundrobin # 
-runtime seconds 
-rwratio [target #] <readwriteratio> 
-seek  [target <target#>]  

save filename 
load filename 
disthist # 
seekhist # 
random 
range # 
stagger 
interleave # 
seed # 
none 

-setup setup_filename 
-sgio 
-sharedmemory [target <target#>] 
-singleproc processor_number 
-startdelay #seconds 
-startoffset [target <target#>] starting_block_number 
-starttime #seconds 
-starttrigger targetA  target> time|op|percent|mbytes|kbytes  # 
-stoptrigger targetA  target> time|op|percent|mbytes|kbytes  # 
-syncio number 
-syncwrite [target <target#>] number 
-targets  filename 
-targetdir [target <target#>] directoryname pass 
-targetoffset [target <target#>] offset_in_blocks 
-targets N filename1 filename2 … filenameN 
-targetstartdelay #seconds_multiplier 
-throttle [target <target#>]  
 ops operations/sec 
 bw megabytes/second 
-timelimit [target <target#>] seconds_per_pass  
-timerinfo 
-timeserver  

host hostname 
port  port#  
bounce  bounce_count 

-timestamps  [target <target#>]  
output output_filename_prefix 



xdd  Version 6.5 

9/17/2006  Page 23 

summary 
detailed  
normalize 
summary 
wrap 
oneshot 
size # 
triggertime #seconds 
triggerop operation# 
append  
dump dump_filename_prefix 

 
-verify [target <target#>]  

 location 
contents  

-verbose 
-version 
 

Where: 
-align memory_alignment_value_in_bytes will cause the internal memory address alignment of the 
I/O buffer to be offset by the number of bytes specified as memory_alignment_value_in_bytes. The 
I/O buffer is normally page aligned. 
 
-blocksize specifies the number of bytes per block. This defaults to 1024 bytes per block. Block 
sizes must be powers of 2 or the results are unpredictable.  
 
-combined filename will append just the “Combined” results output to the file specified by 
filename.  This allows for collecting the Combined performance data from multiple runs in a single 
file. This does not include error messages. See the –errout option for more information on 
redirecting error output.  
 
-createnewfiles will cause new target files to be created for each pass in an xdd run. Each new file 
has the file name that was given as the target file name but it is appended with a number that 
represents the pass in which it was created. It is not a good idea to run this on a target “device” file 
because the new target will get recreated as regular files and not a special device files. 
 
-csvout filename will send all the results output to the file specified by filename similar to the –
output option. The difference between -csv output and the normal output is that this is a Comma 
Separated Values file that is directly importable into MS Excel. This does not include error 
messages. See the –errout option for more information on redirecting error output.  
 
-datapattern specifies either a single byte data pattern character or a special operator as described 
below. (Note: This option was formerly called –pattern) 

• If the operator “random” is specified then a random data pattern is generated in the entire 
I/O buffer.  



xdd  Version 6.5 

9/17/2006  Page 24 

• If the operator “sequenced” is specified, then the data pattern will be sequential 64-bit 
integers starting with the current block address times the size of a 64-bit integer. It should 
be noted that writing this sequenced pattern to the device will result in additional CPU 
overhead that may affect overall performance. Similarly, for read operations, if the 
“sequenced” data pattern is specified, the data is checked to see if the data read is in fact 
what was expected.  

• If the word “ascii” is used as the data pattern, then the data pattern will be the string 
specified after the “ascii” operator. The string is only written once at the beginning of the 
I/O buffer and is not repeatedly copied throughout the I/O buffer. 

 
-delay # where # is the number seconds to delay between passes. 
 
-deletefile will cause the target file to be deleted at the end of a run. To have files deleted and 
recreated between passes, see the –recreatefiles option. 
 
-deskew will adjust the performance calculations to deskew the results. See section on Deskew for 
more information.  
 
-dio will turn on the DIRECT IO option when accessing a regular file. This option cannot be used 
when accessing special device files. Certain blocksize, request size, and alignment restrictions 
apply and will cause problems if the wrong combination of block size, request size, and offsets are 
chosen.  
 
-errout filename will send all the error message output to the file specified by filename. This does 
not include normal results output. See the –output option for more information on redirecting 
results output. 
 
-fullhelp will display a list of these options and a one line explanation of each. 
 
-heartbeat #seconds will display the current operation and pass number for each target I/O thread 
every N seconds where N is specified as #seconds. 
 
-id allows the user to specify an ASCII string to be displayed in the output in order to identify the 
run. If the word commandline is used as the character string then the input command line is used 
as the id. Multiple instances of the -id option will concatenate each specified id to the previous one.  
 
-kbytes specifies the integer number of kilobytes to transfer on each pass. In this case, one kilobyte 
is equal to 1024 bytes. If the –numreqs option is also specified, –numreqs takes precedence. See 
also: -mbytes.  
 
-lockstep <master_target> <slave_target> <when> <howlong> <what> <howmuch> <startup> 
<completion> 
Where 



xdd  Version 6.5 

9/17/2006  Page 25 

"master_target" is the target that tells the slave when to do something. 
        "slave_target" is the target that responds to requests from the master. 
        "when" specifies when the master should tell the slave to do something. 

The word "when" should be replaced with the word:  
            "time"  
            "op" 
            "percent" 
            "mbytes" 
            "kbytes" 
"howlong" is either the number of seconds, number of operations, ...etc. 

• The interval time in seconds (a floating point number) between task requests from 
the master to the slave. i.e. if this number were 2.3 then at every 2.3-second interval 
the master would request the slave to perform its task. 

• The operation number that defines the interval on which the master will request the 
slave to perform its task. i.e. if the operation number is set to 8 then upon 
completion of every 8 (master) operations, the master will request the slave to 
perform its task. 

• The percentage of operations that must be completed by the master before 
requesting the slave to perform a task 

• The number of megabytes (1024*1024 bytes) or the number of kilobytes (1024 
bytes 

 "what" is the type of task the slave should perform each time it is requested to perform 
                    a task by the master. The word "what" should be replaced by: 
               "time"  
                "op" 
                "mbytes" 
               "kbytes"  
       "howmuch" is either the number of seconds, number of operations, ...etc. 

• The amount of time in seconds (a floating point number) the slave should run before 
pausing and waiting for further requests from the master. 

• The number of operations the slave should perform before pausing and waiting for 
further requests from the master. 

• The number of megabytes (1024*1024 bytes) or the number of kilobytes (1024 
bytes) the slave should transfer before pausing and waiting for further requests from 
the master 

"startup" is either "wait" or "run" depending on whether the slave should start running 
               upon invocation and perform a single task or if it should simply wait for the 
               master to request it to perform its first task.  
"completion" - in the event that the master finishes before the slave, then the slave will 
               have the option to complete all of its remaining operations or to just stop at 
               this point. This should be specified as either "complete" or "stop". 

 
 
-maxall will set the -maxpri and -plock options. 
 



xdd  Version 6.5 

9/17/2006  Page 26 

-maxerrors number_of_errors will limit the number of errors to number_of_errors so as not to 
clutter up the output with endless lines of errors. 
 
-maxpri will set the priority of all xdd threads to maximum. NOTE: Use of this option can result in 
system hangs due to deadlocks with other system functions. 
 
-mbytes specifies the integer number of megabytes to transfer on each pass. In this case, one 
megabyte is equal to 1024*1024 or 1048576 bytes. If the –numreqs option is also specified,  
   –numreqs takes precedence. See also: -kbytes.  
 
-minall will set the –noproclock and -nomemlock options 
 
-nobarrier will cause the passes to run asynchronously.  
 
-nomemlock will prevent the xdd memory buffers from being locked so that they can be paged or 
swapped out.  
 
-noproclock will prevent xdd process from being locked in memory so that it can be paged or 
swapped out. 
 
-numreqs specifies the integer number of “reqsize” requests to perform on each pass.   
If the –mbytes or –kbytes option is also specified, –numreqs takes precedence.  
 
-op specifies the operation to perform: either read or write may be specified.  
 
-output filename will send all the results output to the file specified by filename. This does not 
include error messages. See the –errout option for more information on redirecting error output. 
 
-passes # where # the number of passes to perform.  
 
-passoffset # where # is the number of blocks to offset for each pass.  
 
-preallocate # will preallocate # 1024-byte blocks. This is used when writing to a target that is a 
regular file. This option has no effect when reading or when the target is a real device. 
 
-processor procesor_number   target_number This option allows an xdd thread for a specific 
target to run on a specific processor. The xdd thread for target target_number is assigned to 
processor processor_number.  
 
-processlock will lock the xdd process in memory so that it cannot be paged or swapped out. This 
is useful on a crowded system. 
 
-queuedepth specifies the number of commands to send to each target at one time.  This exercises 
the command queuing capabilities of a storage device or, if I/O if to a file, it will mimic parallel 
I/O – multiple readers/writers to a single file. 
 



xdd  Version 6.5 

9/17/2006  Page 27 

-randomize will cause the seek locations to be randomized between passes.  
 
-recreatefiles will cause the target files to be closed, deleted, and re-created for each pass in an 
xdd run. It is not a good idea to run this on a target “device” file because the target will get 
recreated as a regular file and not a special device file. 
 
-reopen will cause the target file to be closed and re-opened for each pass in an xdd run. 
 
-report_threshold will report the byte location of the operation that exceeded the specified 
threshold time. 
 
-reqsize specifies the number of blocks to transfer where the size of the block is specified by the –
blocksize parameter.  
 
-roundrobin  #  will assign successive xdd threads to processors in a "roundrobin" fashion across 
# processors. 
  
-runtime #seconds will cause xdd to terminate completely after it has run for the specified number 
of seconds. It is important to note that if the timestamp option is also specified the timestamp 
buffer wrap option is automatically enabled so that the internal timestamp buffer is not overrun. .  
 
-rwratio (or –rw) specifies the percentage of operations that should be read operations. The 
remaining operations will be write operations. For example, specifying a value of 30.2 (i.e. –rwatio 
30.2) will cause 30.2% of the total number of operations being performed on the target to be read 
operations and 69.8% of the operations will be write operations. Values less than 0 or greater than 
100 are not allowed.  
 
-seek specifies a number of parameters that are specific to the access pattern used on each target. 
The default access pattern is purely sequential. These parameters are: 

• save filename - will save the list of seek locations in an ASCII text file specified by 
filename. This file can later be used by the –seek load option. See Appendix B for the  
format of this file. 

• load filename - will load the list of seek locations from an ASCII text file specified by 
filename. 

• range #blocks - will specify the range in blocks over which to perform random seek 
operations. 

• random will generate a random list of locations to access over the “range” 
• seed seed_value specifies a seed value to use when generating random locations  
• stagger will stagger the requests sequentially and evenly over the “range” 
• interleave factor where “factor” is the interleave factor to used (see section on parallel I/O 

and seek interleave). 
• none will cause xdd to continuously read the starting block on a target until for a total of –

mbytes or –numreqs of data transfers completes. 
• disthist #categories – will display an ASCII readable histogram of the seek “distances”. 
• seekhist #categories – will display an ASCII readable histogram of the seek “locations”. 



xdd  Version 6.5 

9/17/2006  Page 28 

 
 
-setup specifies a file that contains commonly used xdd options. This file is read in and the options 
contained within the file will be inserted into the command line.  
 
-sgio will perform I/O operations to the specified target using the SCSI Generic protocol rather 
than the normal read/write system calls. This is only valid on Linux systems and is used to provide 
raw-like access to a device. 
 
-sharedmemory tells xdd to use a shared memory segment (via shmget/shmat) for the I/O buffer 
rather than using the normal valloc()/malloc() system calls. 
 
-singleproc processor_number will assign all xdd threads to the specified processor.  
 
-startdelay #seconds will cause the target I/O threads to all start after a specific startup delay 
specified in seconds. 
 
-startoffset specifies the starting block number. This defaults to block 0. The value must be a 
positive integer.  
 
-starttime global_time will cause the target I/O threads to all start at the specified time. The global 
time is the time value returned by the time server and is consistent for all systems using the time 
server. See the –timeserver for more information. 

 
-syncio number   will cause each of the xdd I/O threads to synchronize every nth I/O operation 
where N is specified as “number”. .  
 
-syncwrite will cause each of the xdd I/O threads to synchronize write operations at the end of 
each pass flushing all data to the physical media. 
 
-targetdir specifies the name of the directory to be pre-pended to the target(s). For example, 
specifying a parent directory of /dev/rdsk/ (i.e. –targetdir /dev/rdsk/ ) and target names of 
“dks1d2s0 dks7d3s0”  will cause I/O to be directed to /dev/rdsk/dks1d2s0 and /dev/rdsk/dks7d3s0 
respectively. It is important to remember to put the trailing slash (“/”) at the end of the parent 
directory name.  
 
-targetoffset specifies the offset in blocks that is used by each xdd process to determine their 
respective starting locations. The purpose of this is to be able to run multiple xdd threads on a 
single device but to have each thread start at a different location. (Note: This option was formerly 
called –procoffset) 
 
-targets must first specify the number of targets (N) followed by the target device names or file 
names of each of the N targets.  For example, “-targets   2   dks1d2s0   dks7d3s” will perform I/O 
to the target devices dks1d2s0 and dks7d3s0 respectively.  In the output reports, these two targets 
will also be identified as targets 0 and 1 respectively.  
 



xdd  Version 6.5 

9/17/2006  Page 29 

-targetstartdelay #.#seconds will cause each target I/O thread to all start after the specified 
number of seconds has elapsed from when the previous target started. For example, a value of      

“-targetstartdelay 1.2”  
would allow target 0 to start immediately, target 1 to start 1.2 seconds after target 0, target 2 to start 
1.2 seconds after target 1 and so on.  
 
-throttle specifies the I/O Operations per second (ops) or bandwidth (bw) limit for the target(s) 
depending on which of the two parameters are specified. Valid values are positive real numbers 
greater than 0.000.  The parameters ops and bw are mutually exclusive and the last one specified 
for a targets takes precedence.  Example usages:  

• “-throttle ops 7.8”  will limit all targets to running at 7.8 I/O operations per second.  
• “-throttle bw 87.2”  will limit all targets to running at 87.2 megabytes per second.  
• “-throttle target 2 ops 7.8”  will limit only target 2 to running at 7.8 I/O operations per 

second and all other targets will have no throttle limit unless specified with another –
throttle option. 

 
-timelimit # will impose a time limit of # seconds on each pass. This value must be a positive 
integer.  
 
-timerinfo will display internal timer information. 
 
-timeserver is used to specify the hostname of the time server that acts as the ‘master clock’ for all 
timing information when running xdd across multiple machines. This option takes one of three 
operators as described below. These operators take the place of previous options such as –port and 
–bounce. See the –starttime option for additional information.  

• If the operator “host” is specified then the specified hostname is used as the time server. 
• If the operator “port” is specified then the specified port_number  is used to connect to the 

time server.  
• If the operator “bounce” is specified then the specified bounce_count specifies the number 

of times to access the time server in order to resolve the time delta between the time server 
and the client. 

 
 
-ts or  -timestamps specifies a number of parameters that are specific to the time stamping 
capabilities. These are: 

● summary will generate a summary of all the I/O operations in the time stamp trace (see 
figure 4 for details). 

● detailed will generate a detailed report of each I/O operation in the time stamp trace and a 
summary report. It is recommended that the output filename be specified when using 
detailed reporting since the trace data can be exceedingly verbose (see figure 4 for details). 

● normalize will cause all the time stamp values to be normalized to the global clock. This is 
useful when running xdd on multiple machines so that the events in the time stamp file can 
be correlated in time. 

● output output_filename will cause the detailed and/or summary reports to be written to a 
file of “output_filename”. The output defaults to standard out.  



xdd  Version 6.5 

9/17/2006  Page 30 

● append will cause the detailed and/or summary reports to be appended to the specified 
output file. 

● dump dump_filename_prefix will dump a binary file that contains all the time stamp data. 
The following structure contains the format of that file. 

● wrap  will cause the internal timestamp buffer to wrap around to the beginning of the 
buffer if/when the end is reached. This is used in conjunction with the “size” option 
described below. The reason for wrapping the timestamp buffer is to essentially capture the 
most recent I/O operations in a timestamp buffer that is smaller than required for the 
number of operations being processed by xdd. 

● oneshot specifies that time stamping will stop once the internal timestamp buffer is full.  
● size # specifies the size of the internal timestamp buffer in terms of the number of 

operations that will fit into the buffer.  If the size specified is smaller than the number of 
operations to be performed, the timestamp buffer will be “wrapped” after the last timestamp 
buffer entry is used.  

● triggertime #seconds will cause timestamping to start at the specified time as measured in 
global-time seconds.  

● triggerop operation# will cause timestamping to start when the specified operation number 
is reached.  

 
-verify specifies a number of parameters that are specific to the time stamping capabilities. These 
are: 

● immediate will verify all data written at then end of each write operation rather than on a 
per-pass basis. 

● compare will compare the data read with the expected data pattern for data integrity.  
 
-verbose will display performance information for each pass.  
 
-version will display the version number for this xdd program. 
 

5.2 Target-specific options 
Many of the options can be target-specific. These options are listed with the optional [target <target#] 
arguments that immediately follow the option name. The word “target” indicates that the associated option 
is to be set for the target with a target number of <target#>. Target numbers are from 0 to N-1 where N is 
the number of targets being accessed in this run. For example,  specifying “–op   target   3   read” will cause 
target 3 to issue read operations regardless of what the other targets are doing.  This capability is useful for 
tailoring the behavior of each target in a run to meet specific I/O requirements. For example, it is possible to 
have a single xdd run accessing several targets using different throttle values so that one target does not 
overwhelm the others.  
 
It is important to note that the options are evaluated from left to right on the command line or from top to 
bottom in a setup file and that latter options (to the right) take precedence over prior options (to the left). 
Take the following command line for example: 
 

xdd –op read –op target 1 write –targets 3 s1 s2 s3 –reqsize 1 –numreqs 7 
 



xdd  Version 6.5 

9/17/2006  Page 31 

The “–op read” option will cause all three targets (s1, s2, and s3) to perform read operations.   However, 
the “–op target 1 write” option will override the read operation for target number 1 (target s2) causing it to 
perform write operations.  
 

5.3 Lockstep Operations 
Lockstep operations are used to simulate the I/O interaction between multiple applications running 
on a system. For example, one application may be creating files that a second application will use 
just after their creation – aka the “read-after-write” scenario where a file is being ingested from a 
source, written to a file and another application is reading blocks just after they are written in order 
to process the data as quickly as possible. An example of this is as follows: 
 
xdd -targets 2 /dev/disk1 /dev/disk1 \ 
   -op target 0 write \ 
   -op target 1 read \ 
   -reqsize 1024 -mbytes 2048 \ 
   -lockstep 0 1 op 1 op 1 wait complete 
 
This will cause target 0 to write a block and then signal target 1 to start reading. Since they are the 
same target starting at the same locations, target 1 will be exactly 1 operation behind target 0 all 
the time. Essentially this tells target 0 to do 1 operation, signal target 1 which will do 1 operation 
and then wait for target 0 to signal it again and so on. 

The current version of xdd only supports lockstep operations on a single computer system. The 
next version of xdd will enable lockstep operations across physically separate computer systems. 

5.4 Timeserver and gettime 
Command synopsis of the timeserver command is 

timeserrver   
-port #  

Where 
-port # specifies the port number to use for the time serving function.  
 
The gettime command is used to obtain the global clock value from the timeserver computer. The 
command synopsis is: 
  gettime  

-timeserver hostname  
-port #  
-add seconds 
-bounce times 
-verbose 
-waitfortime milliseconds 

Where: 
-timeserver hostname specifies the name of the computer running the timeserver. This may be 
either a host name or an IP address.  



xdd  Version 6.5 

9/17/2006  Page 32 

-port # specifies the port number to use when contacting the timeserver.  
-add seconds specifies number of seconds to add to the global time that is displayed as the output 
of this program. 
-bounce times specifies the number of times to ping  the timeserver in order to get a minimum 
round trip time. The higher the bounce count, the more accurate the global time will be. 
-verbose will cause gettime to display more information than simply the global clock value.  
-waitfortime will cause gettime to wait until the specified global time in milliseconds is reached at 
which time gettime will complete. This is useful when running it in a script to block the execution 
of a script until a particular global time.  
 

5.5 Deskew 
De-skewing the performance results becomes particularly necessary when testing a large number 
of targets on a single system. The reason is that when all devices are started there can be a 
significant amount of time lag between the time the first targets starts and the last target starts its 
data transfer. Furthermore, there may be a long lag time between the time the first target finishes 
and the last target finishes particularly if there is one device that is unusually slow. This causes the 
overall results to be skewed and does not represent the true “cross sectional” bandwidth of the 
system as a whole.  
 
The deskew option will report the bandwidth during the time in which all the targets are 
transferring data. This is effectively from the time the last target starts to the time the first target 
finishes. During that time period all targets are transferring data. This “deskewed” bandwidth is a 
more accurate representation of the bandwidth of the system. 
 

66  Runtime Hints 
6.1 Windows 
The Windows physical drive is the equivalent of the raw volume in a Unix environment. The physical drive 
can be specified by using the following xdd command line: 
 
    xdd –op read –targets 1 \\.\\PhysicalDrive0 –reqsize 1 –mbytes 1 
 
xdd may complain about an incorrect function but that message can be ignored. It will be fixed in a future 
release.  If a cygwin shell window is being used then the syntax must include extra “\” characters like so: 
 
    xdd –op read –targets 1 \\\\.\\\\PhysicalDrive0 –reqsize 1 –mbytes 1 
 

6.2 IRIX 
IRIX is reasonably well behaved and has no known idiosyncrasies.  

6.3 AIX  
 



xdd  Version 6.5 

9/17/2006  Page 33 

AIX can use very large page sizes (on the order of 16Mbytes per page) but it is still necessary to “pin” all 
the pages in memory for every I/O operation. For most I/O performance testing this is not a problem unless 
the number of targets gets large and/or the bandwidth is very high. In this case the page pinning operation 
takes a significant percentage of the I/O time and can have a negative affect on the results.  
 
To avoid the page pinning penalty, the “-sharedmemory” operation can be used to allocate the I/O buffer in 
a shared memory segment which causes the system to bypass the page pining since shared memory pages 
are already pinned by default.  
 

6.4 Solaris 
There is an issue with running xdd on Solaris that involves the default number of semaphores that Solaris 
allows each process to use. It is normally too low for xdd to run and xdd generates errors that say things like 
“cannot allocate barrier for …, not enough space”. The following parameters can be put in /etc/system on a 
solaris system and a reboot will take care of this problem: 

 
set semsys:seminfo_semmni=4096 
set semsys:seminfo_semmns=8192 
set semsys:seminfo_semmap=4098 
set shmsys:shminfo_shmmni=512 
set shmsys:shminfo_shmseg=32 

 
Another change that is sometimes necessary is 
         set maxphys = 0x1000000 
  
This will change the maximum request size to 16 MB that is useful when doing really large request sizes for 
raw device tests. 
 
These settings may be a little high and can be adjusted to meet the local system constraints.  
 

6.5 Linux 
Raw I/O is only supported using the “raw” command to create the “raw” device associates and then doing 
I/O to those devices. The Linux “raw” devices are only an approximation of real raw devices on most other 
Unix systems. It should also be mentioned that request sizes larger than about 256Kbytes may not actually 
be issued to the device but rather be split into multiple requests by the “raw” device driver.  
 
In this release of xdd there is no support for assigning targets to processors in Linux. Apparently this 
functionality is only supported in Linux kernels 2.5.8 and above. This will be supported in the next release 
of xdd. 

6.6 HPUX 
None. 
 
 
 
 
 



xdd  Version 6.5 

9/17/2006  Page 34 

 
 
 

77  Output and Reports 
7.1 Reporting Options 
The –verbose option will display performance information for each pass within an xdd run along 
with per-target totals and combined averages. There is also an “id” option (–id) that will display a 
specified string of identification information along with the normal output of the run. If the id 
string is specified to be “commandline” then the entire xdd command line plus all the options will 
be display. This is useful when running xdd from a shell script to get more qualitative information 
about the run into the output file.  
 
Since xdd I/O operations can fail due to device failures or option specifications it is possible to 
generate tremendous numbers of error messages. To avoid filling up output files with too many 
error messages, the –maxerrors option can be used to limit the number of error messages to display 
to some small, finite number. Once this number of errors has been reached, I/O operations to that 
target are halted for that pass.  
 
The output of xdd comes in several sections. The first section describes the state of options 
selected for the run that apply to all the targets being tested. The second section of output describes 
the options that apply to each of the individual targets. The third section contains information about 
the system that xdd is being run on. The fourth section describes the rate information. 
 
IOIOIOIOIOIOIOIOIOIOI XDD IOIOIOIOIOIOIOIOIOIOIOI 
xdd - Version, 6.5.091706.1430CDT, I/O Performance Inc. 
Run Time, Sun Sept 17 14:24:13 2006 
 
ID for this run, 'Test_using_4096K_Ops' 
Maximum Process Priority, enabled 
Passes, 3 
Pass Delay in seconds, 0 
Maximum Error Threshold, 3 
I/O Synchronization, 0 
Target Offset, 0 
Total run-time limit in seconds, 0 
Output file name, ./results/txt/Test.4096.txt 
CSV output file name, ./results/csv/Test.4096.csv 
Error output file name, ./results/txt/errors.4096.txt 
Combined output file name, ./results/csv/Test.combined.csv 
Pass seek randomization, disabled 
File write synchronization, disabled 
Pass synchronization barriers, enabled 
Timeserver hostname, mp-1 
Timeserver port number, 2000 
Global start time, 186719 
Number of Targets, 2 
Number of I/O Threads, 2 
 
Computer Name, testsgi, User Name, george 
OS release and version, IRIX64 6.5 04100803 
Machine hardware type, IP35 
Number of processors on this system, 16 
Page size in bytes, 16384 
Number of physical pages, 524288 



xdd  Version 6.5 

9/17/2006  Page 35 

Megabytes of physical memory, 8192 
Seconds before starting, 9 
 
Target information, 
 target[0] Q[0], /scratch/testfile1 
  target directory, "./" 
  Processor, 0 
  Read/write ratio, 100.00,  0.00 
  Throttle in MB/sec,   0.00 
  Per-pass time limit in seconds, 30 
  Blocksize in bytes, 1024 
  Request size, 4096, blocks, 4194304, bytes 
  Start offset, 0 
  Number of MegaBytes, 8192 
  Pass Offset in blocks, 0 
  I/O memory buffer alignment in bytes, 16384 
  Data pattern in buffer, 0x0 
  Direct I/O, disabled 
  Seek pattern, sequential 
  Seek range, 1048576 
  Preallocation, 0 
  Queue Depth, 1 
  Timestamping, enabled for DETAILED SUMMARY 
  Timestamp ASCII output file name,./results/ts/Test.4096.target.0.csv 
  Delete file, disabled 
 target[1] Q[0], /scratch/testfile2 
  target directory, "./" 
  Processor, 0 
  Read/write ratio, 100.00,  0.00 
  Throttle in MB/sec,   0.00 
  Per-pass time limit in seconds, 30 
  Blocksize in bytes, 1024 
  Request size, 4096, blocks, 4194304, bytes 
  Start offset, 0 
  Number of MegaBytes, 8192 
  Pass Offset in blocks, 0 
  I/O memory buffer alignment in bytes, 16384 
  Data pattern in buffer, 0x0 
  Direct I/O, disabled 
  Seek pattern, sequential 
  Seek range, 1048576 
  Preallocation, 0 
  Queue Depth, 1 
  Timestamping, enabled for DETAILED SUMMARY 
  Timestamp ASCII output file name,./results/ts/Test.4096.target.1.csv 
  Delete file, disabled 
 
            T  Q         Bytes      Ops     Time     Rate       IOPS   Latency     %CPU IOtype ReqSize 
T PASS0001  1  1    1333788672      318    30.01    44.44      10.60    0.0944     1.27 read   4096 
T PASS0001  0  1    2864709632      683    30.19    94.89      22.62    0.0442     1.46 read   4096 
T PASS0002  0  1    2944401408      702    30.03    98.06      23.38    0.0428     1.30 read   4096 
T PASS0002  1  1    1283457024      306    30.03    42.74      10.19    0.0981     1.32 read   4096 
T PASS0003  0  1    2583691264      616    30.02    86.06      20.52    0.0487     1.20 read   4096 
T Average   0  1    8392802304     2001    90.24    93.01      22.17    0.0451     1.32 read   4096 
T PASS0003  1  1    1296039936      309    30.14    43.01      10.25    0.0975     1.19 read   4096 
T Average   1  1    3913285632      933    90.18    43.39      10.35    0.0967     1.26 read   4096 
Combined    2  2   12306087936     2934    90.24   136.37      32.51    0.0308     2.58 read   4096  

 
The rate information output of xdd is a line of text with the following format: 
 
 T  Q         Bytes      Ops     Time     Rate       IOPS   Latency    %CPU  IOtype    Reqsize  
 
Where these fields have the following meanings: 
T This is the target number, relative to 0 (zero). A list of the targets and the associated numbers 
precedes this line of output. 
Q This is the Queue Thread number, relative to 0 (zero) for this target. This is only used if the –
queuedepth option is specified and –qthreadinfo is requested. 



xdd  Version 6.5 

9/17/2006  Page 36 

Bytes Is the total number of bytes that were transferred during the xdd run for this target. 
Ops is the total number of read or write operations performed on this target. 
Time is the number of seconds that elapsed for the current pass in a multi-pass run.  
Rate is the average I/O rate in Mega Bytes per Second where one Mega Byte is 1,000,000 bytes. 
IOPS is the Average number of I/O operations per second for this pass in a multi-pas run.  
Latency is the Average time it takes to perform each operation. 
%CPU is the percentage of the CPU that was used by this xdd thread. 
IOtype is either read, write, or mixed.  
Reqsize is the *average* request size in block-size blocks that was used for that target 
 
If the –verbose option is specified then each line has a pass number associated with it and the final 
output lines report overall averaged values for the Average Rate and Elapsed time. For a Multi-
Target run, the sum total of all the targets is presented as the Combined average. For example, if 
two targets are being tested and each target performs at an average of 75MB/sec, the Combined 
average is 150 MB/sec. 
 

7.2 What the numbers really mean 
There are several performance values reported. These include the per-pass target results, the individual 
queue results, the target averages over all passes, and the combined average of all targets over all passes.  
 

88  Performance Tuning Hints 
This section describes various hints about performance tuning. 

8.1 Caches and write performance  
When writing to a storage device whether it is a single disk drive or a disk array it is important to know the 
status of the caches on each of the devices that have cache. For maximum performance for write operations, 
it is necessary to enable the write caches on a disk array controller as well as the write caches on the disk 
drives themselves. 

8.2 Fibre Channel Frame Sizes 
Fibre Channel host bus adapters (HBA), switches, and target devices all have frame sizes defined and 
negotiated when any two FC devices are connected together. For maximum bandwidth performance it is 
important to make certain that the FC frame size is set to 2048-bytes. For maximum transaction performance 
for small transaction sizes (i.e. around 512 bytes per transaction) a smaller frame size of 512 or 1024 bytes 
can be used.  

99  Examples 
The following is a list of examples on how to run xdd. 
 
Example 1. 

xdd –op read –targets 1 /dev/rdsk/dsk10d2s0 –reqsize 128 
-mbytes 64 –passes 3 –verbose 

 



xdd  Version 6.5 

9/17/2006  Page 37 

This is a very basic test that will read sequentially from target device /dev/rdsk/dks10d2s0 
starting at block 0 using a fixed request size of 128 blocks until it has read 64 MegaBytes (64 * 
1024*1024 bytes). It will do this 3 times and display performance information for each pass. The 
default block size is 1024 bytes per block so the request size in bytes is 128 Kbytes (128 * 1024 
bytes). Please note that all these options need to be on a single command line unless they are in the 
setup file where they can be on separate lines. 
 
Example 2. 

xdd –op write –targets 2 /raid/BIGFILE1 /raid/BIGFILE2 
-blocksize 512 –reqsize 128 -mbytes 64 –verbose 
–pass count 3 -timelimit 10 

 
This test will write sequentially from 2 target files /raid/BIGFILE1 and 
/raid/BIGFILE2 starting at the beginning of each file using a fixed request size of 128 blocks 
of 512 bytes per block until it has read 64 MegaBytes (64 * 1024*1024 bytes) – or – until it has 
reached a time limit of 10 seconds at which time it will end the current pass and proceed to the next 
pass. It will do this 3 times and display performance information for each pass. The combined 
performance of both devices is calculated and displayed at the end of the run. 
 
Example 3. 

xdd –op write –targets 2 /dev/rdsk/dks10d2s0 
/dev/rdsk/dks10d2s0 
-setup xdd.setup –ts detailed –ts output ts.write 

 
This test that will read sequentially from 2 targets that are actually a single device: 
/dev/rdsk/dks10d2s0. The request size of 128 blocks at 2048 bytes per block, read limit of 
4096 MegaBytes (4096 * 1024*1024 bytes), the time limit of 10 seconds for each pass, verbose 
output, and pass count of 3 are all specified in the xdd.setup file which looks like so: 

-blocksize 2048 
–reqsize 128 
-mbytes 4096 
–verbose 
–passes 3 -timelimit 10 

The time stamp option is also used in this example to dump an ASCII output file called ts.write. It 
should be noted that these time stamp file names are appended with a t# where # is the number of 
the target that belongs to the particular time stamp file. In this example, since there are two targets, 
the time stamp files will be ts.write.t0 and ts.write.t1. 
 
Example 4. 

xdd –op read –targets 1 /dev/rdsk/dsk10d2s0 –reqsize 8 
-mbytes 16 –passes 3 –verbose –seek random –seek range 
4000000 

 
This is a very basic random I/O test that will read from target device /dev/rdsk/dks10d2s0 
starting at some random location using a fixed request size of 8 blocks until it has read 16 
MegaBytes (16 * 1024*1024 bytes). It will do this 3 times and display performance information 
for each pass. The default block size is 1024 bytes per block so the request size in bytes is 8 Kbytes 
(8 * 1024 bytes). The number of requests that need to be generated to read 16 MegaBytes in 8192 



xdd  Version 6.5 

9/17/2006  Page 38 

byte chunks is 2048. Since this is a purely random I/O pattern, these 2048 requests are distributed 
over a range of 4,000,000 blocks (again 1024 bytes per block). This is useful in constraining the 
area over which the random locations are chosen from. The same seek locations are used for each 
pass in order to generate reproducible results. In fact, upon each invocation of xdd using the same 
parameters, the same random locations are generated each time. This allows the user to change the 
disk or starting offset or some such thing and observe the effects. The random locations may be 
changed from pass to pass within an xdd run by using the "-randomize" option in which case a 
new set of locations is generated for each pass. Furthermore, the random locations may be changed 
from run to run using the –seek seed option to specify a different random number generation seed 
value for each invocation of xdd. 

9.1 Example Display Output 
The command line used to generate this output was 

C:\Users\tmr\Program Source Files\xdd\xdd62c\Debug>xdd -op write -
targets 2 targetfile1 targetfile2 -reqsize 64 -numreqs 10 -verbose 
–dio -maxpri -passes 3 -cvs csvoutput.csv -output output.txt –
errout erroroutput.txt -ts output timestamp.csv -ts detailed -
starttime 355390 -timeserver gigabits -syncwrite –deletefile 

 
The output file called output.txt is: 
 
IOIOIOIOIOIOIOIOIOIOI XDD IOIOIOIOIOIOIOIOIOIOIOI 
xdd - Version, 6.5.091706.1430CDT, I/O Performance Inc. 
Run Time, Sun Sept 17 14:24:13 2006 
 
ID for this run, 'Test_using_4096K_Ops' 
Maximum Process Priority, enabled 
Passes, 3 
Pass Delay in seconds, 0 
Maximum Error Threshold, 3 
I/O Synchronization, 0 
Target Offset, 0 
Total run-time limit in seconds, 0 
Output file name, ./results/txt/Test.4096.txt 
CSV output file name, ./results/csv/Test.4096.csv 
Error output file name, ./results/txt/errors.4096.txt 
Combined output file name, ./results/csv/Test.combined.csv 
Pass seek randomization, disabled 
File write synchronization, disabled 
Pass synchronization barriers, enabled 
Timeserver hostname, mp-1 
Timeserver port number, 2000 
Global start time, 186719 
Number of Targets, 2 
Number of I/O Threads, 2 
 
Computer Name, testsgi, User Name, george 
OS release and version, IRIX64 6.5 04100803 
Machine hardware type, IP35 
Number of processors on this system, 12 
Page size in bytes, 16384 
Number of physical pages, 524288 
Megabytes of physical memory, 8192 
Seconds before starting, 9 
 
 
Target information, 
 target[0] Q[0], /scratch/testfile1 
  target directory, "./" 
  Processor, 0 
  Read/write ratio, 100.00,  0.00 
  Throttle in MB/sec,   0.00 
  Per-pass time limit in seconds, 30 
  Blocksize in bytes, 1024 



xdd  Version 6.5 

9/17/2006  Page 39 

  Request size, 4096, blocks, 4194304, bytes 
  Start offset, 0 
  Number of MegaBytes, 8192 
  Pass Offset in blocks, 0 
  I/O memory buffer alignment in bytes, 16384 
  Data pattern in buffer, 0x0 
  Direct I/O, disabled 
  Seek pattern, sequential 
  Seek range, 1048576 
  Preallocation, 0 
  Queue Depth, 1 
  Timestamping, enabled for DETAILED SUMMARY 
  Timestamp ASCII output file name,./results/ts/Test.4096.target.0.csv 
  Delete file, disabled 
 target[1] Q[0], /scratch/testfile2 
  target directory, "./" 
  Processor, 0 
  Read/write ratio, 100.00,  0.00 
  Throttle in MB/sec,   0.00 
  Per-pass time limit in seconds, 30 
  Blocksize in bytes, 1024 
  Request size, 4096, blocks, 4194304, bytes 
  Start offset, 0 
  Number of MegaBytes, 8192 
  Pass Offset in blocks, 0 
  I/O memory buffer alignment in bytes, 16384 
  Data pattern in buffer, 0x0 
  Direct I/O, disabled 
  Seek pattern, sequential 
  Seek range, 1048576 
  Preallocation, 0 
  Queue Depth, 1 
  Timestamping, enabled for DETAILED SUMMARY 
  Timestamp ASCII output file name,./results/ts/Test.4096.target.1.csv 
  Delete file, disabled 
 
            T  Q         Bytes      Ops     Time     Rate       IOPS   Latency     %CPU IOtype ReqSize 
T PASS0001  1  1    1333788672      318    30.01    44.44      10.60    0.0944     1.27 read   4096 
T PASS0001  0  1    2864709632      683    30.19    94.89      22.62    0.0442     1.46 read   4096 
T PASS0002  0  1    2944401408      702    30.03    98.06      23.38    0.0428     1.30 read   4096 
T PASS0002  1  1    1283457024      306    30.03    42.74      10.19    0.0981     1.32 read   4096 
T PASS0003  0  1    2583691264      616    30.02    86.06      20.52    0.0487     1.20 read   4096 
T Average   0  1    8392802304     2001    90.24    93.01      22.17    0.0451     1.32 read   4096 
T PASS0003  1  1    1296039936      309    30.14    43.01      10.25    0.0975     1.19 read   4096 
T Average   1  1    3913285632      933    90.18    43.39      10.35    0.0967     1.26 read   4096 
Combined    2  2   12306087936     2934    90.24   136.37      32.51    0.0308     2.58 read   4096  

9.2 Example Time Stamp Output 
An example of the Time Stamp output file.  
IOIOIOIOIOIOIOIOIOIOI XDD IOIOIOIOIOIOIOIOIOIOIOI 
xdd - Version, 6.5.091706.1430CDT, I/O Performance Inc. 
Run Time, Sun Sept 17 14:24:13 2006 
 
ID for this run, 'Test_using_4096K_Ops' 
Maximum Process Priority, enabled 
Passes, 3 
Pass Delay in seconds, 0 
Maximum Error Threshold, 3 
I/O Synchronization, 0 
Target Offset, 0 
Total run-time limit in seconds, 0 
Output file name, ./results/txt/Test.4096.txt 
CSV output file name, ./results/csv/Test.4096.csv 
Error output file name, ./results/txt/errors.4096.txt 
Combined output file name, ./results/csv/Test.combined.csv 
Pass seek randomization, disabled 
File write synchronization, disabled 
Pass synchronization barriers, enabled 
Timeserver hostname, mp-1 
Timeserver port number, 2000 
Global start time, 186719 
Number of Targets, 2 
Number of I/O Threads, 2 
 



xdd  Version 6.5 

9/17/2006  Page 40 

Computer Name, testsgi, User Name, george 
OS release and version, IRIX64 6.5 04100803 
Machine hardware type, IP35 
Number of processors on this system, 12 
Page size in bytes, 16384 
Number of physical pages, 524288 
Megabytes of physical memory, 8192 
Seconds before starting, 9 
 
Target information, 
 target[0] Q[0], /scratch/testfile1 
  target directory, "./" 
  Processor, 0 
  Read/write ratio, 100.00,  0.00 
  Throttle in MB/sec,   0.00 
  Per-pass time limit in seconds, 30 
  Blocksize in bytes, 1024 
  Request size, 4096, blocks, 4194304, bytes 
  Start offset, 0 
  Number of MegaBytes, 8192 
  Pass Offset in blocks, 0 
  I/O memory buffer alignment in bytes, 16384 
  Data pattern in buffer, 0x0 
  Direct I/O, disabled 
  Seek pattern, sequential 
  Seek range, 1048576 
  Preallocation, 0 
  Queue Depth, 1 
  Timestamping, enabled for DETAILED SUMMARY 
  Timestamp ASCII output file name,./results/ts/Test.4096.target.0.csv 
  Delete file, disabled 
 target[1] Q[0], /scratch/testfile2 
  target directory, "./" 
  Processor, 0 
  Read/write ratio, 100.00,  0.00 
  Throttle in MB/sec,   0.00 
  Per-pass time limit in seconds, 30 
  Blocksize in bytes, 1024 
  Request size, 4096, blocks, 4194304, bytes 
  Start offset, 0 
  Number of MegaBytes, 8192 
  Pass Offset in blocks, 0 
  I/O memory buffer alignment in bytes, 16384 
  Data pattern in buffer, 0x0 
  Direct I/O, disabled 
  Seek pattern, sequential 
  Seek range, 1048576 
  Preallocation, 0 
  Queue Depth, 1 
  Timestamping, enabled for DETAILED SUMMARY 
  Timestamp ASCII output file name,./results/ts/Test.4096.target.1.csv 
  Delete file, disabled 
Start of DETAILED Time Stamp Report, Number of entries, 933, Picoseconds per clock tick, 800000, delta, -69635263638800000 
Target, RWV Op, Pass,OP Number, Location, Distance, StartTS, EndTS, IO_Time_ms, Relative_ms, Delta_us, Loop_ms, Inst MB/sec 
  1, r, 1, 0, 0, 0, 186719046303600000, 186719073271600000,         26.96800,         0.00000,         0.00000,         0.00000,      155.529 
  1, r, 1, 1, 4096, 0, 186719073274800000, 186719112520400000,         39.24560,        26.97120,         3.20000,        39.24880,      106.873 
  1, r, 1, 2, 8192, 0, 186719112522800000, 186719138750000000,         26.22720,        66.21920,         2.40000,        26.22960,      159.922 
  1, r, 1, 3, 12288, 0, 186719138752400000, 186719149326800000,         10.57440,        92.44880,         2.40000,        10.57680,      396.647 
  1, r, 1, 4, 16384, 0, 186719149329200000, 186719161278800000,         11.94960,       103.02560,         2.40000,        11.95200,      351.000 
  1, r, 1, 5, 20480, 0, 186719161280400000, 186719173628400000,         12.34800,       114.97680,         1.60000,        12.34960,      339.675 
  1, r, 1, 6, 24576, 0, 186719173630800000, 186719184995600000,         11.36480,       127.32720,         2.40000,        11.36720,      369.061 
  1, r, 1, 7, 28672, 0, 186719184998000000, 186719200485200000,         15.48720,       138.69440,         2.40000,        15.48960,      270.824 
  1, r, 1, 8, 32768, 0, 186719200487600000, 186719220920400000,         20.43280,       154.18400,         2.40000,        20.43520,      205.273 
  1, r, 1, 9, 36864, 0, 186719220922800000, 186719233371600000,         12.44880,       174.61920,         2.40000,        12.45120,      336.924 
…. 
  1, r, 2, 0, 0, 1302528, 186749238667600000, 186749453195600000,        214.52800,     30192.36400,    181588.80000,       396.11680,       19.551 
  1, r, 2, 1, 4096, 0, 186749453198000000, 186749612834000000,        159.63600,     30406.89440,         2.40000,       159.63840,       26.274 
  1, r, 2, 2, 8192, 0, 186749612836400000, 186749888624400000,        275.78800,     30566.53280,         2.40000,       275.79040,       15.208 
  1, r, 2, 3, 12288, 0, 186749888626800000, 186750000690000000,        112.06320,     30842.32320,         2.40000,       112.06560,       37.428 
  1, r, 2, 4, 16384, 0, 186750000693200000, 186750443415600000,        442.72240,     30954.38960,         3.20000,       442.72560,        9.474 
  1, r, 2, 5, 20480, 0, 186750443418000000, 186750457882000000,         14.46400,     31397.11440,         2.40000,        14.46640,      289.982 
  1, r, 2, 6, 24576, 0, 186750457884400000, 186750485603600000,         27.71920,     31411.58080,         2.40000,        27.72160,      151.314 
  1, r, 2, 7, 28672, 0, 186750485605200000, 186750531927600000,         46.32240,     31439.30160,         1.60000,        46.32400,       90.546 
  1, r, 2, 8, 32768, 0, 186750531929200000, 186750582370800000,         50.44160,     31485.62560,         1.60000,        50.44320,       83.152 
  1, r, 2, 9, 36864, 0, 186750582373200000, 186750612604400000,         30.23120,     31536.06960,         2.40000,        30.23360,      138.741 
…. 
  1, r, 3, 0, 0, 1253376, 186779270792400000, 186779500199600000,        229.40720,     60224.48880,       260.00000,       229.66720,       18.283 
  1, r, 3, 1, 4096, 0, 186779500202000000, 186779625757200000,        125.55520,     60453.89840,         2.40000,       125.55760,       33.406 
  1, r, 3, 2, 8192, 0, 186779625759600000, 186779759854000000,        134.09440,     60579.45600,         2.40000,       134.09680,       31.279 
  1, r, 3, 3, 12288, 0, 186779759856400000, 186779807430000000,         47.57360,     60713.55280,         2.40000,        47.57600,       88.165 
  1, r, 3, 4, 16384, 0, 186779807432400000, 186779815630000000,          8.19760,     60761.12880,         2.40000,         8.20000,      511.650 
  1, r, 3, 5, 20480, 0, 186779815632400000, 186779828606000000,         12.97360,     60769.32880,         2.40000,        12.97600,      323.295 
  1, r, 3, 6, 24576, 0, 186779828608400000, 186779840301200000,         11.69280,     60782.30480,         2.40000,        11.69520,      358.708 
  1, r, 3, 7, 28672, 0, 186779840302800000, 186780022676400000,        182.37360,     60793.99920,         1.60000,       182.37520,       22.998 
End of DETAILED Time Stamp Report 
Start of SUMMARY Time Stamp Report 
Average seek distance in 1024 byte blocks, 0, request size in blocks, 4096 
Range:  Longest seek distance in blocks, 0, shortest seek distance in blocks, 0 
Average I/O time in milliseconds,        96.14740, average dead time in microseconds,         2.35193 



xdd  Version 6.5 

9/17/2006  Page 41 

I/O Time Range:  Longest I/O time in milliseconds,       515.83040, shortest I/O time in milliseconds,         8.19760 
Dead Time Range:  Longest dead time in microseconds,         5.60000, shortest dead time in microseconds,         1.60000 
End of SUMMARY Time Stamp Report 

 
 



xdd  Version 6.5 

9/17/2006  Page 42 

1100  Under the Hood 
This section is a look at xdd program organization and data structures. This section is primarily here for the 
author’s benefit because his brain is getting old and forgetful. 
 
Starting with xdd6.3 the source code files have been separated out into several categories of source files. 
The process of moving functions around within the files is mostly complete but further changes may be 
made in future releases. The rationale behind this change is that some of the source files were getting too 
large. The categories currently defined are: 
Initialization: initialization.c, parse.c  
Reporting: results.c and timestamp.c 
Core functions: access_patterns.c, barrier.c, global_time.c, pclk.c, read_after_write.c, ticker.c, and of course, 
xdd.c 
Special functions: nt_compat.c and hpss.c 
Other programs: timeserver: timeserver.c, gettime: gettime.c, strip: strip.c  
 
The restructuring of the source code files did not affect the structure of the xdd program itself. 
 

10.1 Xdd general operation 
Xdd is a command-line driven program. The first thing it does upon invoking it is to parse the command 
line. If the command line contains the “-setup” option, it will parse the command line options from left to 
right up to the –setup option. It will then parse the setup file options followed by parsing the remaining 
command line options.  
After the all the requested options have been set, the main xdd program will start all the appropriate threads 
one at a time. Each thread will go through it initialization phase which includes the following: 

• Open the target and prepare it for access 
• Generate the list of locations to access and the associated access pattern and operations 
• Allocate I/O buffer 
• Perform timestamp setup if necessary 
• Display target-specific information as requested 

 
After the thread has completed its setup process, it will enter a serialization barrier that will release the main 
xdd parent thread which will in turn start the next thread. The target thread that has just completed 
initialization will enter the main barrier waiting for all the other target threads to complete initialization. 
Once all the threads have been started, the last thread to start will enter the starting barrier and cause all the 
threads to be released and the fun begins. 
 
All the threads will do their respective I/O operations for a single pass and then enter the pass barrier. The 
pass barrier causes threads to wait until all threads have completed a pass before starting the next pass. If 
this is the last pass, then upon being released from this barrier, all the threads will perform any clean-up 
operations and exit.  
 
Another function of the pass barrier is to hold all the threads dormant whilst thread 0 gathers all the results 
information from each of the threads and generates the appropriate intermediate results and displays them if 
requested. This is also the case when all threads have completed all passes and thread 0 needs to process 
summary information as well.  
 



xdd  Version 6.5 

9/17/2006  Page 43 

10.2 The xdd buffer memory layout 
Xdd uses several buffers during a normal run. All buffers are page aligned. These buffers include: 

• The Read/Write I/O buffer. This buffer is simply the size of a single I/O request and there is one of 
these buffers per target being tested. This buffer is normally allocated from user space memory but 
if the “-sharedmemory” option is specified the buffer will be allocated from a shared memory 
segment. The use of a shared memory segment can have a significant impact on bandwidth 
performance in some cases. 

• Access location / operation buffer (aka seeklist). This buffer is variable in size and depends on the 
number of I/O operations that need to be performed. There is one access location/operation buffer 
for each target being tested. This buffer contains the following information: 

o The block location to access  
o The operation to be performed (read or write)  
o The amount of data to transfer for that operation 
o The time to issue the I/O request 

• Time stamp buffer if time stamping is enabled. This buffer can get very large because there is one 
time stamp entry for every I/O operation to be performed for the entire xdd run (which includes all 
passes). For example, if there are three targets and each target will perform 8192 operations per pass 
and there are 4 passes, then there will be three time stamp buffers (one for each target) with 32768 
entries in each buffer (4 passes times 8192 entries per pass). Each time stamp entry contains the 
following information: 

o Start time stamp (64-bit) 
o End time stamp (64-bit) 
o Operation (read or write) 
o Amount of data transferred 
o Pass number 
o Operation number 

• Per Thread Data Structure (ptds). This data structure contains all the information related to a single 
target during an xdd run. This is explained in more detail in the section on the xdd thread structure.  

10.3 The xdd thread structure 
Xdd uses POSIX threads for all processes that it controls. There are one or more threads per target. Each 
target will have a primary thread and potentially some number of Q threads. The Q threads are used to 
perform parallel, asynchronous I/O on a particular target. The concept of Q threads is essentially “aio” but 
since “aio” is different from system to system, it was easier to simply implement one within xdd.  
 
Each thread (primary or Q thread) has a PTDS (per thread data structure) data structure associated with it. 
The PTDS contains all the information related to a thread running at any given time. This structure is passed 
to the various routines within xdd. The PTDS’s are allocated on an as-needed basis. The layout of the PTDS 
structures is shown in Figure 1.  



xdd  Version 6.5 

9/17/2006  Page 44 

 
Figure 1 The Per Target Data Structure (PTDS) layout including the QThreads. 
 
In the above diagram there are N targets each with some number of QThreads. The number of QThreads is 
equal to the Queue Depth specified for each target (using the –queuedepth option). The number of QThreads 
can be different for each target as is shown in this diagram but in practice the number of QThreads is the 
same for all targets during a run. The primary PTDS for each target is, in fact, QThread 0. If there is more 
than one QThread for a target, the subsequent QThreads are chained together as shown in the diagram. The 
last QThread in the chain is identified by the fact that its “next QThread” point is null.  
 

10.4 Xdd barriers 
Xdd uses a number of synchronization barriers in order to provide precise control and certain functionality 
such as lock-stepping. The primary barriers cause all the threads to begin execution at precisely the same 
time for each pass of a run. The barriers are implemented using mutexes and semaphores. The amount of 
time required to process a semaphore request is significantly less than the time scales of an I/O operation 
and has no measurable effect on the results.  
 
 

PTDS 
Target 0 

QThread 0 

PTDS 
Target 1 

QThread 0 

PTDS 
Target N 

QThread 0 

PTDS 
QThread 1 

PTDS 
QThread 2 

PTDS 
QThread X 

PTDS 
QThread 1 

PTDS 
QThread 2 

PTDS 
QThread Y 

PTDS 
QThread 1 

PTDS 
QThread 2 

PTDS 
QThread Z 



xdd  Version 6.5 

9/17/2006  Page 45 

 

1111  The GNU Public License 
 

Version 2, June 1991  

Copyright (C) 1989, 1991 Free Software Foundation, Inc.   
59 Temple Place - Suite 330, Boston, MA  02111-1307, USA 
 
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. 

11.1 Preamble 
The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--
to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other 
Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too.  
When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this 
service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.  
To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute 
copies of the software, or if you modify it.  
For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. 
And you must show them these terms so they know their rights.  
We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.  
Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its 
recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations.  
Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program 
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all.  
The precise terms and conditions for copying, distribution and modification follow.  

11.2 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 
0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers 
to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either 
verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you".  
Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered 
only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.  
1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright 
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program.  
You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.  
2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, 
provided that you also meet all of these conditions:  

a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.  

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties 
under the terms of this License.  

c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an 
announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these 
conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program 
is not required to print an announcement.)  

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, 
then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the 
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.  
Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based 
on the Program.  
In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under 
the scope of this License.  
3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:  

• a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used 
for software interchange; or,  

• b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete 
machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,  

• c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if 
you received the program in object code or executable form with such an offer, in accord with Subsection b above.)  

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any 
associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is 
normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the 
executable.  
If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source 
code, even though third parties are not compelled to copy the source along with the object code.  
4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will 
automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full 
compliance.  



xdd  Version 6.5 

9/17/2006  Page 46 

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by 
law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions 
for copying, distributing or modifying the Program or works based on it.  
6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms 
and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.  
7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) 
that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other 
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies 
directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.  
If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances.  
It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free 
software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent 
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.  
This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.  
8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an 
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written 
in the body of this License.  
9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail 
to address new problems or concerns.  
Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions 
either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free 
Software Foundation.  
10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free 
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software 
and of promoting the sharing and reuse of software generally.  

11.3 NO WARRANTY 
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN 
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR 
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY 
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR 
CORRECTION.  
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR 
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES 
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED 
BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGES.  
End of TERMS AND CONDITIONS 

1122  Acknowledgements 
HPUX is a registered trademark of Hewlett-Packard, Inc. 
AIX is a registered trademark of IBM Corporation. 
IRIX is a registered trademark of SGI. 
Solaris and SPARC are registered trademarks of Sun Microsystems, Inc. 
Windows, Windows NT, and Windows 2000 are registered trademarks of Microsoft, Inc. 
 
The author would like to acknowledge and thank all those people who have helped with adding various 
functions and bug fixes to xdd over the years. 
 
  


