
T-76.115 Technical Specification

TEXlipse project

Group TeXlapse

ID: TEXLIPSE-TECH-1
Version: 1.4
Modified: February 7, 2005

Author:
Oskar Ojala (omojala@cc.hut.fi)

Table 1: Version history
Version Date Editor Change

0.1 14.11.2004 Oskar Basic structure
0.2 22.11.2004 Kimmo File output and building
0.3 22.11.2004 Esa Templates and preview
0.4 25.11.2004 Taavi Viewing the outline, Basic outline

navigation
0.5 25.11.2004 Oskar Some architecture and technical de-

scriptions added
0.6 25.11.2004 Esa Added template syntax
0.7 26.11.2004 Esa Modified template sections and ap-

pendix
0.8 28.11.2004 Oskar Made corrections based on inspec-

tion, added some technical details
0.9 29.11.2004 Oskar Added more technical detail in tasks

and did some corrections
1.0 29.11.2004 Kimmo Added some more explanations

about the builder
1.1 4.1.2005 Kimmo Updated the builder diagram and

explanation of it
1.2 29.1.2005 Oskar Added folding support and made

some adjustments
1.3 1.2.2005 Kimmo Added previewer explanation and

diagram
1.4 7.2.2005 Oskar Updated most of the document,

made new architectural diagrams

ii

Contents

1 Purpose and scope of the document 1

1.1 Prerequisites . 1
1.2 Document structure . 1

2 Main domain concepts 2

3 System overview 4

4 Architectural overview 4

4.1 About plugins . 4

4.2 External interfaces . 5
4.3 Document model . 7
4.4 System architecture . 8

5 Technical overview 10

5.1 Packages . 10

5.2 Document model . 10
5.2.1 Parsing . 11
5.2.2 Outline . 12

5.3 External interfaces . 13
5.3.1 The Builder . 13

5.3.2 The Previewer . 15
5.4 Editor functions . 16
5.5 Code reuse . 17

6 Technical specification per implementation task 17

6.1 Make LATEX parser (T0.1) . 17

6.2 Syntax highlighting, basic case (T1.1) 19
6.3 Code folding (T1.2) . 19
6.4 Automatic indentation (T1.3) 20

6.5 Make BibTEX parser (T1.4) 20
6.6 Code completion (content assist, T1.5) 21
6.7 Template mechanism (T1.6) 21

6.8 User defined templates (T1.7) 22
6.9 Commenting blocks (T1.8) . 22

6.10 Annotations for errors (T1.9) 23
6.11 Matching parens (T1.10) . 23
6.12 Word counter (T1.11) . 23

6.13 View the outline (T2.1) . 23
6.14 Basic outline navigation (T2.2) 24
6.15 Copy/paste in outline (T2.3) 24

6.16 Drag’n’drop in outline (T2.4) 24
6.17 File output/building (T3.1) 25

iii

6.18 Displaying build errors (T3.2) 25
6.19 Linking errors to source (T3.3) 25
6.20 Preview support (T3.4) . 26
6.21 Linking preview to source (T3.5) 26
6.22 Support for a LaTeX project (T4.1) 26
6.23 Support for partial building (T4.2) 27
6.24 BibTEX editing (T5.1) . 27

iv

1 Purpose and scope of the document

The purpose of this document is to define the technical specification and
architecture of the TEXlipse system. This is intended to complement the
TEXlipse requirements documentation. Thus, this document focuses primar-
ily on specifying how features are to be implemented and why they are
implemented in the specified way. Secondarily, this document focuses on
defining feature behavior more specifically than done in the requirements
document when that is necessary for implementing the requirement.

1.1 Prerequisites

The intended audience of this document is people interested in the architec-
ture and implementation of TEXlipse and have some degree of programming
background.

To fully comprehend the contents of this document, knowledge of the Eclipse
plugin architecture, the TEX typesetting system and of compiler techniques
is required. These topics are so broad that it’s impossible to summarize
them here, however compiler and TEX -resources are referred to when ap-
propriate and Eclipse documentation can be found at the Eclipse www-site
(http://www.eclipse.org.)

This document can be read with only knowledge of the requirements (see
document TEXLIPSE-REQ-1) and Eclipse with the help of the domain con-
cept descriptions, but in some places technical descriptions that require more
in-depth knowledge are required and these should thus be skipped.

1.2 Document structure

The rest of this document is organized as follows; Section 2 introduces the
key concept in the architecture and technical design of TEXlipse. Section 3
makes a fairly detailed architectural overview of the key concepts of TEXlipse
and the software structure chosen. Section 5 expands on the architecture de-
scription and explains in more detail how the different parts are implemented
and, most importantly, how they work together. Section 6 explains more de-
tailed implementation-level issues and techniques used per implementation
tasks (the tasks correspond fairly well to the functional requirements of
TEXlipse.)

1

2 Main domain concepts

Main domain concepts:

AST Abstract Syntax Tree, a tree representation of the parsed stream. In
contrast to CST, only selected tokens are represented and superfluous
tokens (such as expression terminators and parentheses) are ignored
in the tree.

BibTEX A bibliography citation inclusion system for LATEX, developed by
Oren Patashnik. Uses a bibliography file and a style file to make a
bibliography list to the LATEXdocument and to include only the cited
bibliographies. See [Lam85] and [Pat03].

CST Concrete Syntax Tree, a tree representation of the parsed stream as
recognized by the parser. Each token have their appropriate place in
the tree dictated by the grammar.

DFA Deterministic Finite Automaton, an automaton that has determin-
istic state transitions, useful for representing regular expressions in
computer-executable form, thus used for building lexers.

EBNF Extended Backus Naur Form, the common way of describing context-
free grammars.

Eclipse IDE A free Integrated Development Environment sponsored by
IBM. Intended originally for Java development, but currently empha-
sizes plugins for adding functionality beyond the original requirements.

Eclipse plugin A piece of Java software that integrates with the Eclipse
plugin architecture and provides some additional feature for the Eclipse
environment.

Eclipse plugin framework The Eclipse platform offers a rich framework
for plugins, complete with interfaces and classes for implementing
many common functions more easily.

Editor In Eclipse the editor view, or editor for short (as it’s used throughout
this document) is a view where the documents can be edited as in a
normal text editor. The editor can be extended with many kinds of
functionality, such as syntax highlighting.

GUI widget A component in the GUI (Graphical User Interface); can be
a button, a window, a checkbox, a menu etc.

2

LALR Look-ahead LR, a LR parsing method that is more powerful than
the SLR method, but easier than the LR-method without sacrificing
too much in recognized languages. See LR.

LATEX A popular typesetting language, based on TEX. Is written as a plain
text file with a series of commands. See [Lam85].

Lexer A program for reading a stream and recognizing predefined tokens
in the stream, then returning found tokens or an error if the stream
doesn’t correspond to the specified format.

LL Left to right, leftmost derivation parsing, an easy to understand top-
down family of parsing methods. Refer to [ASU86] for details.

LR Left to right, rightmost derivation parsing, a family of bottom-up pars-
ing methods. Refer to [ASU86] and see also [Knu65].

MVC Model-View-Controller, a design pattern where the date is held in a
model, the data is presented through views and the mapping of data
to views and vice versa is done by the controller.

Outline In Eclipse the outline view, or outline for short (as it’s used through-
out this document) is a view where the currently edited document’s
(the document that is currently shown in the editor) struture is shown.
In the case of a Java class this would include eg. all the fields and meth-
ods, in a LATEX-document it would eg. include the sections.

Parser A program for checking that tokens match a predefined grammar,
ie. to check that the given stream is of the right form.

Parser generator A software for automatically generating a lexer and a
parser from a given grammar specification.

Singleton A design pattern where the singleton class only has one existing
object instance at any time, which is then shared among other runtime
objects.

TEX A powerful typesetting system that permits the user to typeset doc-
uments in professional quality by using a flexible command language.
See [Knu84] for a description of the language, [Knu86] for a description
of how TEX works.

View In Eclipse, there are several views: the editor view, the outline view,
the problems view etc. These are different views on the document
or project being edited and appear visually as separate areas in the
Eclipse GUI.

3

Visitor A design pattern where an object, which is the visitor, visits an-
other object, thereby performing a number of operations on the visited
object. The visitor implements a certain interface, so that it can be
applied to the visited object. In TEXlipse visitors are used for trees,
so that the visited object calls a method defined in the visitor inter-
face when a node corresponding to the method is visited in the tree.
See [Gag98] for a more thorough explanation.

3 System overview

TEXlipse is to be a plugin for the Eclipse IDE. It is to provide a LATEX-mode
for editing of LATEX-documents.

Briefly, it provides code completion of references, syntax highlighting, user
defined templates, automatic building, previewing, error reporting and an
outline view. It does not re-implement LATEX, rather, it is intended to serve as
a powerful editing tool for LATEX documents. It does not implement WYSI-
WYG editing of the document, as it is intended to be a poweruser-tool. Refer
to the TeXlipse requirements document (document ID TEXLIPSE-REQ-1)
for more information about the intended use and features of the system.

4 Architectural overview

4.1 About plugins

The Eclipse plugin architecture places many constraints on the structure of
the plugin. Essentially, the Eclipse platform provides much infrastructure for
building an editing environment, eg. the plugin developer does not need to
program GUI widgets and basic editing functions such as copy and paste by
himself. On the other hand, the Eclipse platform and the ready-made infras-
tructure places certain constraints on the architecture, eg. how documents
are handled. In general, the wins provided by the (extensive) ready-made
functionality far outweigh the disadvantages.

The plugin is not a standalone piece of software; it integrates tightly with
Eclipse. Figure 1 depicts this and also shows three central components of
TEXlipse: the editor, representing the editor view, the outline, represent-
ing the outline view and the builder, which handles interfacing to external
programs (eg. LATEX) that are needed to build the document. The editor
and outline directly represent the Eclipse views of the same names and thus

4

Eclipse plugin framework

Outline Extension

TeXlipse plugin

TexEditorTexlipseBuilder TexOutlinePage

Builder Extension Editor Extension

Extension point

Software component

Software package

Implemented extension

Legend:

Figure 1: The plugin structure: TEXlipse extends Eclipse on certain extension
points

build on the Eclipse plugin framework. The builder is the core component in
a set of components handling interfacing to external programs that handle
building and previewing LATEX-documents.

4.2 External interfaces

To see how the TEXlipse plugin fits in in the user’s programming environ-
ment, see Figure 2, which presents the external interfaces of the plugin and
the control flow. In order to work, the plugin requires (besides Eclipse) tools
for actually compiling the created documents into vector representations,
ie. postscript, dvi, and/or pdf. Thus, a LATEX-distribution is required to be
installed separately, which TEXlipse then calls to parse the document. For
implementation details, see Section 6.17.

For previewing the created document, an external previewer is called. The
TEXlipse plugin permits the previewer to send messages back to the plu-
gin, enabling bidirectional communication which makes synchronizing the
Eclipse document view and the previewer view possible. For implementa-
tion details, see Section 6.20.

Due to the fact that TEXlipse is designed to run on three different operating
systems, all having somewhat different facilities, preferred distributions of
LATEX and different previewers, the external interfaces to programs must be
able to handle all of these fairly invisibly to the user (the user is naturally
required to set up the system, but setting up TEXlipse shouldn’t differ much
on different platforms.)

5

Previewer

LaTeX BibTeX

User

TeXlipse

Control flow

External program

Legend

Figure 2: External interfaces with control flows depicted

6

Beside program interfaces such as calling LATEX or a previewer, Figure 2
includes the user. The user mostly works with the editor, which provides
the direct editing view of the document source. The user also works with
the document outline, the file system browser (provided automatically by
Eclipse) and the problems view in the Eclipse GUI. The user can activate
the builder and the previewer. Finally, the user can specify templates and
use templates, which speed up editing by inserting ready-made code to fill
out.

4.3 Document model

The core concepts in TEXlipse are focused around the editor view and its
functions. TEXlipse provides a LATEX-editor and useful views on the docu-
ment being edited, the central one being the document outline view (there
is also the problems-view for build errors.) The outline view shows a doc-
ument outline as described in requirement R2.1 (requirement document ID
TEXLIPSE-REQ-1.) In order to implement some editor and outline func-
tions, parsers for BibTEX and LATEX are made (these are described in more
detail later in this document.)

In order to facilitate the necessary communication between the outline, the
editor and the document parser(s), the MVC (Model-View-Controller) pat-
tern is applied in an adapted form. In this pattern, we have the model
representing the data, the view representing a view on the data (typically a
GUI) and the controller representing the logic for mapping different data to
different views. This pattern is particularly useful in GUIs, since the order
of user interaction cannot be known in advance, enabling the data to be
edited from different views and it provides an order of abstraction between
the GUI and the data model.

In an Eclipse plugin one doesn’t need to implement the GUI from scratch
— in fact, the GUI comes largely ready from the existing plugin infrastruc-
ture, so the “view” part is a quite thin. Also, the Eclipse plugin structure
places some constraints on the document model and object hierarchy, so the
MVC pattern is adapted to our needs. Figure 3 shows the coupling of the
central editing views; Model keeps abstract representations of the document
(autocomplete data and outline data), asking the parsers to return updated
versions of the data structures when the data itself is updated. The editor
essentially provides with information on editing updates as well as fetching
new data structures, as does the outline.

It’s worth to note that in Figure 3, IDocument is an Eclipse class, which
contains the document being edited. The plugin architecture automatically

7

Texparser

Model

Bibparser Outline

Editor
TeXlipse component

IDocument

Eclipse component

Data flow

Legend

Figure 3: Editor-Model-Outline-Parser MVC-style coupling

provides for this, but IDocument is not alone sufficient in holding all the data
required (eg. the outline structure), so we augment it with the model that
contains somewhat more abstract representations of the document, in con-
trast to the concrete representation of IDocument. Thus, IDocument holds
the model of the concrete file-based document, while our model holds the
model for LATEX-specific abstractions.

The reader might ask why use the MVC paradigm in such a way that the
controller is distributed into several classes and there are essentially two
models? First, the Eclipse plugin platform provides the basic way of opera-
tion for the editor and outline, as well as the IDocument, so the developer
doesn’t have too much leeway. Second, our model can be thought of as a
controller, except that there are circumstances where it’s more efficient and
simple for the editor and the outline to go directly to IDocument. Third, this
behavior is much better than a casual glance would suggest, since IDocu-

ment-class changes only when Eclipse changes and such a major change that
would require a major rewrite of TEXlipse would require a major rewrite
of a significant number of plugins, making the change unlikely. Fourth, the
pattern described already provides a good degree of abstraction; the parsers
may be changed at will, without having any effect on other components than
model, since the data interfaces to it are standardized.

4.4 System architecture

Figure 4 presents the TEXlipse architecture, with external software/documents
shown dashed. As can be expected, the editor is a central piece in the plu-
gin. In Figure 4, the Eclipse plugin infrastructure is not shown for reasons of
clarity. Thus, the builder appears not to be connected to anything else than
the editor, even though it most certainly is — the Eclipse plugin architecture

8

handles calling it. This situation is depicted in Figure 1; the central parts of
TEXlipse interface with the Eclipse plugin architecture, which provides the
connecting framework.

Editor

Outline

Actions

mechanism
Template

Model

Texparser

Bibparser

Preview
adapter

Builder

assist

Content

Code folderHighlighter

Association

Component

Legend

Figure 4: TEXlipse architecture shown as a component view

The architecture, as shown in Figure 4, introduces some new parts — the
template mechanism, the actions, content assist, the highlighter and the code
folder. The actions are the simplest — they simply contain editor actions
for error messages and eventually menu options. The template mechanism
is also closely associated with the editor and provides the mechanism for
retrieving templates (both pre-made and user defined) as well as enabling the
use of templates while editing. There are two kinds of templates: document
templates and editing templates. The former can be applied to the entire
document/project when starting a new project. The latter can be used via
hotkeys and/or typed abbreviations during editing and insert a template into
the document being edited. Due to this difference, both implement entirely
separate mechanisms. The actual template completions, along with reference
and command completions are handled by the content assistant –framework.

The code folder handles folding away parts of the LATEX-source from the
editing view and the highlighter is a major component handling the syntax
highlighting in the editor.

The external interfaces were already discussed and they consist of two ma-
jor parts: the previewing facilities and the building facilities The preview
adapter interfaces the document preview with the editor so that both views
can be synchronized when a previewer that supports this functionality is
used. The builder handles the building of the document and thus interfacing
to the LATEXand BibTEX-programs installed. It calls them and they in turn
produce the document in the desired format.

9

5 Technical overview

Based on the architecture described in Section 4 we have developed a techni-
cal design. The technical design encompasses the package and class structure
of TEXlipse, as well as the interaction between the different components.

5.1 Packages

Table 2 summarizes the package structure of the plugin and briefly describes
what each package does. Note that the base package is fi.hut.soberit.texlipse,
which has been omitted from the table for brewity.

package function

plugin Plugin base functionality
actions Editor actions (eg. code commenting)
bibeditor BibTEX editor functionality
bibparse BibTEX parser
builder Builder functionality
editor Editor and associated functionality
editor.scanner Syntax highlighting and partitioning scanners and rules
model Abstract document model
outline Outline view
properties Project property pages
templates Template functionality
texparser LATEX parser
viewer Previewer functionality
wizards Wizards (eg. project creation)

Table 2: Package structure; the base package is fi.hut.soberit.texlipse

It must be noted that Table 2 omits automatically generated parser packages
(lexer, parser, node and analysis) under both parser packages — most of the
automatically generated code is not meant to be human-readable and is
abstracted neatly through the classes in the base parser packages.

5.2 Document model

The architecture behind the TEXlipse document model was described in
Section 4.3. Here we proceed to define how we process the document and
what classes are involved in some of the basic document-handling functions.

10

5.2.1 Parsing

(this section will be updated in the 4th iteration)

Figure 5 depicts the key classes in parsing the LATEX-document being edited
and constructing an outline from it. Many classes are omitted for clarity; the
automatically generated classes alone constitute tens of classes and Figure 5
contains all the key classes anyway. The central class is TexParser, which
contains the lexer and parser objects and provides an interface for retrieving
abstract structures of the document (eg. all the labels, the outline.) Thus,
TexParser is the class that is used by other packages in the system.

fi.hut.soberit.texlipse

texparser

TexParser

+ast: Start

+Lexer: lexer

+parser: Parser

+parseDocument(docStream:InputStream)

+getOutlineTree(): ArrayList

OutlineBuilder

analysis

parser lexer

<<Analysis>>AnalysisAdapter

DepthFirstAdapter

Parser Lexer

outline

OutlineNode
1*

Figure 5: LATEXparser and a depiction of the use of visitors (To be updated)

The inner workings of the parser-package can be explained by looking at the
specific case of building an outline tree. TexParser in Figure 5 receives a re-
quest from the model to parse the document and receives a document stream
to parse. It invokes its lexer and parser on the stream, building an AST in
the process. The AST can now be transformed using the visitor pattern —
applying a visitor object on the AST so that the AST calls the appropriate
visitor methods of the visitor object when the nodes corresponding to the
methods are visited. The visitor construction is shown in Figure 5, as is the
OutlineBuilder -visitor and its inheritance hierarchy (the visitor methods
are quite numerous and not depicted.) When the model now needs to update
the outline, it asks its TexParser for the outline, which leads to TexParser

invoking the OutlineBuilder -visitor that constructs the outline, storing
the result in OutlineNodes forming a tree. The resulting tree is returned to

11

the model and can be directly used in the outline.

This visitor pattern model is employed successfully in parsing BibTEX doc-
uments, but for LATEX documents we use a more traditional one-pass pars-
ing approach, mainly due to the lack of benefits in the visitor approach
(BibTEX has a stricter structure.) The issue is addressed more specifically
in Section 6.1.

It’s worth noting that the analysis, lexer and parser -packages are gen-
erated by SableCC and are SableCC-specific; SableCC automatically con-
structs a visitor interface and a visitor skeleton implementing that interfaces
based on the AST structure specified in the grammar. The choice of using
SableCC, its advantages and disadvantages are discussed in more detail in
Section 6.1.

The BibTEX-parser is practically identical conceptually — it merely provides
different data structures and methods outward and internally it implements
a different parser. Hence, it forms a separate package.

The use of visitors and an AST enables easy programming and a relatively
clean abstraction of functionality — our experience thus far has been that
the visitors are fairly easy to program and the automatically generated
grammars provide a lot of convenient abstraction, eg. changing the gram-
mar doesn’t most of the time imply refactoring everything. Abstracting the
parsers serves to decrease module coupling and to easily distribute the imple-
mentation tasks. Also, it makes the system easier to understand. However,
note the specific requirements of LATEX, discussed in Section 6.1.

The Eclipse plugin framework provides for document scanners implementing
a relatively easy way to do basic lexing of the document (see section 6.2
for a use of this.) However, while easy to use, these scanners are extremely
tedious for more complicated grammars and they don’t offer the performance
and syntactical checking advantages of a dedicated parser. One problem
with simpler parsing would be that the user writes a subsection without a
preceding section — it might be valid, but how is the outline supposed to
show it? Errors such as this are easy to catch with a dedicated parser. We
can also check the validity of labels and make similar things not possible
with simple lexing applications or one-pass compiling.

5.2.2 Outline

The conceptual process of parsing the LATEX-document in order to create an
outline tree was detailed in the previous section. Figure 6 now shows how
the outline view is associated with the rest of the system.

12

Figure 6: Outline

The way the outline works is described in more detail in Section 6.13. What
is important to note here is how the TexDocumentModel handles calling the
parser and holds the tree of OutlineNodes representing the outline. The task
of the outline-package, in turn, is fetching the outline from the model and
taking care of all tasks in displaying it (this includes displaying the actual
tree as well as doing such things as choosing the correct icons for each type
of node in the outline tree to display.)

5.3 External interfaces

External interfaces used by the TEXlipse plugin include builder and viewer.
The builder is the module that invokes the external LATEX program (or the
likes) and creates a previewable document.

5.3.1 The Builder

Figure 7 shows the class structure of the builder package and builder’s con-
nection to the Eclipse API.

The builder starts when the user selects Project → Build Project from

13

builder eclipse

TexlipseBuilder

+fullBuild()

IncrementalBuilder

+build()

AbstractBuilder

+buildResource()

DviBuilder

MarkerUtils

+createMarker()

PdfBuilder

PsBuilder

<<interface>>

Builder

+build()

<<interface>>

IProject

<<interface>>

ProgramRunner

+run()

AbstractProgramRunner

+createErrorMarker()

+parseErrors()

LatexRunner

BibtexRunner

DvipsRunner

DvipdfRunner

BuilderRegistry

+getBuilder(format)

MakeindexRunner

Figure 7: Builder

Eclipse’s menu. Eclipse then instantiates the class TexlipseBuilder, be-
cause it’s defined in the plugin’s descriptor file. TexlipseBuilder does some
run-time checks and then consults BuilderRegistry for an instantiation of
the actual builder class (one of the realizations of AbstractBuilder). Each
builder class is capable of building the input LATEX-file to one output format.
To do this, a builder uses one or more program runner classes.

A program runner is an abstract representation of an external program.
These classes are implemented as realizations of the class AbstractProgram-
Runner. Program runner classes contain methods for running the program,
stopping the program and parsing errors from the output of the program.
To display errors, the program runners utilize MarkerUtils class from the
Eclipse API.

The paths of the external programs are defined in the TEXlipse preferences
page, as well as the default output format. The output format can be over-
riden per project - the same output format setting can be found on the
project properties page. Not all supported external programs need to be
found from the operating system. The user needs to configure only those
that are required for the chosen output format.

At the center of this all is the BuilderRegistry, which holds all the ac-
tual instances of the builder and program runner classes. The BuilderReg-

istry class itself is implemented using the Singleton desing pattern. This

14

way, all the builder classes can utilize it, and it can still hold an internal
global state. The BuilderRegistry class provides a method for looking up
a builder classes for the given output format, and methods to configure pro-
gram runners. The TexlipseBuilder class uses the registry at the start of
a build process to gain a reference to the correct builder class. The builder
classes, in turn, use the registry to gain a reference to the correct program
runner.

5.3.2 The Previewer

Figure 8 shows the class structure of the viewer package and viewer’s con-
nection to the Eclipse API.

viewer

util

FileLocationClient

FileLocationServer

<<interface>>

FileLocationListener

ViewerManagerViewerAttributeRegistry

ViewerOutputScanner

action

eclipse

PreviewAction

<<interface>>

IWindowActionDelegate

IDE

+openEditor(page,marker)

MarkerUtils

Figure 8: Viewer

The viewer can be started by choosing Preview Document from the Eclipse
menu. This causes Eclipse to instantiate the PreviewAction class and call
its run method, which calls ViewerManager to run the configured external
viewer program. The ViewerManager gets the viewer program configuration
from ViewerAttributeRegistry class, which in turn gets it from the plugin
preferences. The ViewerManager also reads some configuration from the
current project, like the file name to view. ViewerManager creates a running
process of the external viewer program and, depending on the configuration,
instantiates either a ViewerOutputScanner or a FileLocationServer or
neither of them.

15

The ViewerOutputScanner runs in its own thread and reads the output of
an external program as long as the program is running. The ViewerOut-

putScanner scans the output for “filename:linenumber” -strings, which tell
that the user wants to navigate to the specified location in the source file.
The ViewerOutputScanner then creates an IMarker object to that location,
using MarkerUtils as helper, and then calls the Eclipse’s IDE class to open
the specified file at the given marker. This method is supported in Unix
systems using the external xdvi program.

The FileLocationServer runs its own thread listening to a certain socket.
The input for FileLocationServer is similar to that of ViewerOutputScan-
ner, “filename:linenumber” -strings. This method is used in Microsoft Win-
dows systems, where the yap dvi viewer is used to preview the documents.
Yap can be configured to invoke an external program, when the user wants to
navigate from a dvi file to its source TEX file. The TEXlipse plugin provides a
client program to invoke, namely the FileLocationClient. The FileLoca-
tionClient outputs a filename and a line number, given as its command line
arguments, to the socket that the FileLocationServer listens to. When the
FileLocationServer receives a valid “filename:linenumber” -string, it calls
the FileLocationListener to navigate to that location. This call propa-
gates to the same method in the ViewerOutputScanner as described above.

5.4 Editor functions

The editor is a central part in TEXlipse and many of the user requirements
are related to it. Many of these do not affect other packages or functions,
but some use the facilities in TEXlipse already presented in this section.

Document and source code editing are key functions in Eclipse and thus
the Eclipse plugin architecture offers rich functions for supporting many
desirable editor functions. An example of a feature implemented within the
editor framework is syntax highlighting. Syntax highlighting is achieved by
using existing Eclipse document scanners by giving them rules to match and
using the syntax highlighting framework. Essentially this is making a lexer
which recognizes certain tokens. These document scanners can be used for
other editor functions too, such as code folding. However, the expressive
power of the scanners is limited, so we perform code folding using our own
LATEX-parser.

Not all functions can be completely made using the classes and interfaces of
the Eclipse framework. One such function is code completion. The mechanics
of code completion is done using the Eclipse framework, but fetching and
storing the actual completions must be done by hand — in this case using our

16

TexParser and BibParser -parser classes, which can parse the documents
and construct the completion information.

5.5 Code reuse

Since TEXlipse is a plugin, it’s already based on a large degree of reuse, as
can be noted from the previous sections. Basic menus and widgets, syntax
highlighting, code completion drawing etc. is eased considerably by ready-
made components. However, this reuse focus on common editing tasks and
it would be desirable to reuse LATEX-specific functionality, too.

The possibility of reusing large amounts (or even some amount) of code
is highly desirable, since it would shorten development and testing times.
Indeed, there exists and Eclipse plugin for LATEX, namely eTex. However,
after studying it, we have found the documentation to be practically nil
and the code to be buggy and of dubious technical quality. Thus, it was
not chosen as a basis for implementation. Other LATEX-editors for Eclipse
suffered from being very limited in scope - TEXlipsehas considerably more
features planned for implementation, several of them being fairly complex.

There are several practical tools for solving parts of TEXlipse’s problem do-
main, one of them being JabRef, which is a program for managing references,
mainly BibTEX-databases. However, JabRef uses a hand-coded parser, which
is a potential software engineering and performance problem, the internal
data structures are so different than ours that refactoring would be signif-
icant and on top of it all its license (GPL) doesn’t comply well with an
Eclipse plugin. Due to these reasons, no code from JabRef is be used.

For aiding the construction of some LATEX-code, some good sources exist.
For BibTEX, prof. Nelson Beebe’s articles (see [Bee93]) are highly useful and
there are many good books about TEX and LATEX, which make designing
significantly easier. So while we don’t have the opportunity to reuse code,
we have many ideas to reuse.

6 Technical specification per implementation task

6.1 Make LATEX parser (T0.1)

Package: texparser.*

Define a parser (in EBNF) for a subset of LATEX. Specifically, we want to

17

recognize sections, references (cite and ref and \begin ... end –constructs.
The preamble should be handled separately, so we can reuse the same parser
for TEX–files intended only for inclusion, ie. files not containing a preamble
and a \begin{document} ... end{document} –block.

An easy way to achieve this is to recognize command words and their struc-
ture (ie. we don’t have a subsection without a preceding section) using a
parser. For generating the lexer and parser from an EBNF description, the
tool SableCC is used (see http://www.sablecc.org.)

SableCC was chosen over JavaCC and ANTLR primarily because it doesn’t
require entering action code into the grammar specification and the CST
to AST transformation syntax is concise and clear. In contrast, JavaCC
and ANTLR require extensive action and tree transformation code to be
embedded into the grammar, resulting in messy, difficult to debug, difficult
to maintain and hard to read code. SableCC solves this problem with clean
grammar files and encouraging the use of a visitor pattern to transform the
generated AST for different uses. In TEXlipse, one such use is to extract all
the data necessary to make an outline and present it in a tree structure.

There is, however, one disadvantage with this approach: TEX and BibTEX
contain constructs of type A → {A}, which are not recognizable by regular
expressions but are with context-free languages. Beebe [Bee93] solves this
with action code in the Lex-definition. This would be possible in eg. ANTLR,
but not directly in SableCC. The SableCC object-oriented framework does,
however, offer the possibility to subclass the lexer and implement the fil-

ter() method, where such action code can be embedded. There are other
ways to solve the problem; the constructs can be recognized in the parsing
phase and then concatenated (in practice, we want to handle BibTEX-strings
of the form { ... { ... } ... } as one string) by visiting the AST. In practice,
subclassing the lexer is very performance efficient and makes the later stages
much simpler. The only drawback is that the lexer is not fully understand-
able from the SableCC-definitions alone.

Other reasons for choosing SableCC was the support for unicode lexers
(which can be useful in the future) and the fact that it makes an LALR-
parser, not LL(k) as does JavaCC and ANTLR. The latter suffer practically
no penalty in terms of expressive power by the use of predicates, but these
come with significant penalties in maintainability and debuggability. Also,
they don’t have mechanisms to check for the validity of the formed AST,
leaving this to the programmer unlike SableCC. For further comparison and
details of SableCC, refer to [Gag98].

In practice, however, further study of the syntax and possibilities of TEX and
LATEX and the requirements of making TEXlipse, it became clear that the

18

fancy AST generation with visitors is not that advantageous for LATEX as it
is for BibTEX or programming languages. We could perform all the necessary
functions (outline building, label and command extraction etc.) in a single
pass, making the parsing simpler and faster. In particular, LATEX doesn’t
have strict semantics in the way that programming languages have, so we
would simply have had a grammar defining word interspersed by commands.
Also, the possibility to define own commands and the bad-but-not-forbidden
–constructs make LR parsers less useful. The eonly drawback with hand-
coding the parser (the lexer is naturally automatically generated) was the
somewhat massive parser class. However, due to the relative simplicity of
the parsing task and the fact that the visitor would be equally complex but
just have more methods, this approach was pursued.

See [ASU86] and [Knu65] for basic information on parsing and particularly
LR-parsing. See [Knu86] for information on how the original TEX parses its
syntax.

6.2 Syntax highlighting, basic case (T1.1)

Package: editor

Syntax highlighting can be made easily by using a simple lexer/DFA that
recognizes TEX’s keywords and colorizes them. This can conveniently be
done using Eclipse’s built-in scanner-facilities, which can be given rules and
then lex the document automatically. The highlighting itself is easy, but the
expressivity of the premade rules is limited, so we need to make our own
rule-classes.

6.3 Code folding (T1.2)

Package: editor (outline handling in model, parsing in texparser)

Eclipse provides a framework for code folding and the foldable sections can
be recognized either with the document scanners (as in Section 6.2) or the
outline tree made by TexParser can be used. For the foldable sections, their
positions in the document must be stored. We do this in the LATEX-parser
by simply reusing the document outline tree that we need to create for the
outline. The same positions needed in the outline are used as positions for
code folds.

The actual code folding is largely done by Eclipse-classes, but we need to
create the folding annotations, which means traversing the outline tree and

19

making suitable annotations from each node to be placed into the code
folder. This is somewhat tricky, since the folder has a flat datastructure,
which makes it somewhat difficult to determine which annotation in the
folder corresponds to which node in the tree (eg. for maintaining folding
across a save.)

6.4 Automatic indentation (T1.3)

Package: editor

Classes for supporting automatic indentation are provided with Eclipse. The
indentation strategy can be determined by using the document scanners
mentioned in Section 6.2. In addition to this, an entirely own logic of when
and how much to indent is made. It bases it’s decisions on the previous lines,
as do practically all other Eclipse editor plugins.

6.5 Make BibTEX parser (T1.4)

Package: bibeditor

The BibTEX grammar is more strict than TEX and merely defines an entry
format to specify bibliography entries. Due to this, it is fairly well suited to
LALR-parsing.

The grammar is made using SableCC, which creates an AST automatically.
Section 6.1 explains the rationale behind using SableCC. The framework
for parsers in TEXlipse is explained in Section 5.2.1. It is worth noting that
the framework permits elegantly adding support to TEXlipse for some other
bibliography format, which might be desirable due to the problems with
BibTEX(problems recognizing string literals, somewhat badly defined com-
ment syntax among others.)

The BibTEX grammar is not very well defined (or designed), so some .bib files
using uncommon syntax might not parse correctly (use prof. Nelson Beebe’s
tools for pretty printing them.) However, the TEXlipse bib-parser recognizes
all the common BibTEX-conventions. The grammar is based pretty much on
Beebe’s observations in [Bee93].

It should be noted that LR-parsing is considered significantly harder to
debug than LL, but having done extensive testing with SableCC for use in
Eclipse we have not found this to be a problem, in part due to the excellent
automation and error-detection of SableCC.

20

See [ASU86] and [Knu65] for basic information on parsing and particularly
LR-parsing.

See [Lam85] and [Pat03] for further information about the BibTEX format.

6.6 Code completion (content assist, T1.5)

Package: editor (completion handling in model, generation in tex-

parser and bibparser)

For code completion we need both the user’s BibTEX-file’s contents and the
labels defined in the document. The .bib -files are parsed at startup and when
saving the bib-files. What bib-files to parse are read from the document’s
\bibliography -command. The labels are retrieved whenever the project
documents are parsed. They are stored into two similar datastructures (one
for completing ref and the other for cite commands) in the model, from
which the editor’s code completion classes can fetch them. The data struc-
ture containing the completions is stored so that every model in the project
can access it and it supports partial compilation so that recompiling one bib-
file doesn’t require recompiling all the others to enable completion. Thus,
performance can be increased by splitting the bib-files.

The Eclipse plugin framework provides a number of classes and interfaces
for supporting code completion in the editor view.

Storing the completions in a linear structure (array) and searching it takes
O(n ·m) time, where n is the size of the array and m is the time for partial
matching a string. With a B-tree, the time is O(log n), but constructing
it is more difficult and the constant terms dimnish the advantage. A third
approach is to make a sorted array and use modified binary search to fetch
the entries. The modified binary search (to fetch a range of values) is still
O(log n) and sorting can be done in O(n log n) time, but this is only done
after a modification on the reference source document. The constant terms
are smaller than with a B-tree and the implementation is much simpler, in
part since we can use Java’s built-in mergesort.

Performance must be evaluated to make hard conclusions. In practice, the
third option was implemented based on theoretical merits and seems to
provide very good performance.

6.7 Template mechanism (T1.6)

Package: templates, editor

21

There are two different types of templates – project templates and LATEX
templates. The former ones are whole LATEX documents (they can be com-
piled directly), which may be used when a new LATEX project is created
(i.e. selected template is copied to the main project file as it is). The latter
templates are smaller pieces of LATEX code (for example lists or theorem &
proof structures), that can be inserted anywhere into the document.

The user can define her own templates, both project and LATEX. The sys-
tem has two directories, one for each template type (namely, <TeXlipse plu-
gin>/templates/project/ and <TeXlipse plugin>/templates/latex/), in which
the templates reside. New templates are added simply by copying them to
the corresponding template directory. In addition, the user may specify her
own template directories and copy her own templates there (this is for mul-
tiuser environment, where the user may not be ably to modify the system’s
template directories due to insufficient rights – i.e. the user is not the root
user).

Where as the project templates are simply copied when they are used, the
LATEX templates are a bit more flexible. The template handling is really a
special case of using content assist. Thus, editor templates can be used as
content assist is used and they can be edited, exported and imported in the
Eclipse Preferences.

6.8 User defined templates (T1.7)

Package: templates

The user can freely add her own templates and add them to the system’s
LATEX template directory (or define her own LATEX template directory via
preferences, if the user does not have sufficient rights). Editor templates may
be added on the Templates-page on the TEXlipse –page of the the Eclipse
Preferences.

6.9 Commenting blocks (T1.8)

Package: actions

Blocks (region in emacs-parlance) can be commented by inserting a % -sign
at the start of each line in the block. They can be removed by reversing the
process and ignoring leading whitespace.

Alternatively, \begin{comment} and \end{comment} -commands can be
used, but noticing them is not as obvious (especially if one has to use a

22

non-highlighting editor due to some reason), so using the % -syntax was
chosen.

6.10 Annotations for errors (T1.9)

We use the built-in annotation facility and place markers on offending lines.
Offending lines can be recognized by parsing the document and examining
the document references’ symbol tables.

Offending lines are also recognized from the output of the build process. The
builder parses the output of LATEX , BibTEX , and such document builder
programs, which report errors about the source documents.

6.11 Matching parens (T1.10)

See Section 6.2; essentially this is done with the same tools and it uses
facilities provided by Eclipse.

6.12 Word counter (T1.11)

Package: actions

The word counter action enables counting the number of words in the se-
lected region, taking into account the special characteristics of LATEX-source.
Due to this, this is most conveniently performed by making a simple parser
that gets its input from the LATEX-parser (see Section 6.1) and the deter-
mines how to count based on the token encountered.

6.13 View the outline (T2.1)

Package: outline

The outline is displayed in a tree structure similar to that of the Java editor
of Eclipse. For creating the tree structure, a TreeViewer viewer will be used.
The viewer allows us to avoid working directly with SWT widgets and their
event handling. Instead we can concentrate on providing the model of the
outline. The outline shows the outline of the document being edited. See
also Section 4.3 for an overview of the document model.

The TreeViewer itself does not know much about the contents of the outline.

23

It retrieves the elements of the outline from ITreeContentProvider and
uses a LabelProvider to get a presentation (text and icon) for each element.
Thus we need to implement a TexContentProviderand a TexLabelProvider.

Parsing the document to find the elements is handled by the TexModel and
the underlying TexParser. The TexModel then provides a tree structure for
the TexContentProvider. The elements of this tree contain name, type,
begin line number and end line number of the element.

When the user changes the document, the TexModel is changed too. And if
needed the Model triggers the outline to be updated. Thus the outline itself
does not actively monitor whether the document is changed or not.

Filtering the elements of the outline can be implemented using ViewerFilters.

6.14 Basic outline navigation (T2.2)

Package: outline

When the user selects an element in the outline view, the editor is focused on
that element. Correspondingly the selection in the outline follows the move-
ment of the cursor in the editor. Moving the cursor and selecting elements
in the outline are functions that do not change the actual content of the
document. Events for these kinds of functions are communicated directly
between the TexOutlinePage and IDocument.

Catching the selection event in the TreeViewer and focusing the editor is
quite straightforward. Finding out the right element after moving the cursor
is a bit more complicated. It can be done either with the Partitions of the
IDocument or with some kind of search structure living in the TexModel.

6.15 Copy/paste in outline (T2.3)

Package: outline

Can be done by by similar techniques such as code folding, ie. storing line
numbers and moving the affected sections in the document.

6.16 Drag’n’drop in outline (T2.4)

Package: outline

24

See Section 6.15. The technique is the same, but drag and drop is enabled
in the Eclipse plugin framework.

6.17 File output/building (T3.1)

Package: builder

Output files are produced by LATEX. The builder is an implementation of
Eclipse’s IncrementalBuilder-interface. The builder will run the external
LATEX process when the user chooses Build Project from the Eclipse’s
Project-menu. The output files will be saved to a special output directory
defined in the project properties. The temporary files may also be saved
under a dedicated temporary files -directory, if the user wishes so. This may
clarify the view on Eclipse’s directory navigator, if the project has plenty of
source files.

If necessary, the builder will also run BibTEX and LATEX automatically so
that the references are resolved in the document (this means running LATEX,
then BibTEX and then LATEX twice in the worst case.)

Depending on the configured output format, the builder process will also
run other external programs to convert the LATEX -generated dvi file to
other formats.

6.18 Displaying build errors (T3.2)

Package: builder

If a build fails because of invalid syntax in the LATEX input file, the plugin
will record the output of the LATEX process and parse errors from it. Er-
rors reported by LATEX will be displayed in annotated form using Eclipse’s
Problems-log.

6.19 Linking errors to source (T3.3)

Package: builder

The builder will add IMarkers to the lines of source files which were reported
to have errors by LATEX. Markers are automatically linked to the error mes-
sages by Eclipse’s API. User can jump directly to source by double-clicking
the error message in the Problems-log.

25

6.20 Preview support (T3.4)

Package: builder, viewer

Previewing of the LATEX document is done with an external viewer (dvi or
pdf.) Depending on the capabilities of the viewer, different options (like line
number and refresh notification) can be provided for the previewer via free
form command line arguments.

The reason for not making internal (dvi or pdf) previewer is rather straight-
forward: firstly, the user can use the previewer she is accustomed to (instead
of a predefined and, quite possibly, inferior one), and it greatly reduces the
effort needed to keep the internal previewer up to date.

6.21 Linking preview to source (T3.5)

Package: viewer

A previewer can be linked back to the source as long as the previewer can
pass the neccessary information – a filename, a line number and possibly
a column number – either via printing to standard output (lines formatted
as filename:line or filename:line:column) or run an external program (using
arguments to pass information).

For the latter case: a small client program is provided with TeXlipse distri-
bution, which send the information it receives via command line arguments
to a port. Then the port is listened by TeXlipse plugin.

Naturally the previewer must also be able to extract the source information
from the output (dvi or pdf) file. There are no restrictions about how this
source information was originally included into the output file. The default
way (if not configured otherwise) is to build the LATEX source with –src-
specials option — most previewers, like Yap (Windows, MikTeX) and Xdvi
(Unix/Linux) are compatible with this source information.

6.22 Support for a LaTeX project (T4.1)

Package: wizards, properties

A possibility to start a LATEX project will be provided in Eclipse’s New

Project-menu. Choosing New Latex Project will start the new project
wizard, which is an implementation of Eclipse’s wizard interface. The new
project wizard will perform basic project creation tasks like creating a project

26

directory and the project’s main file using an optionally specified template.

The LATEX-project will also include a property page to handle such things
as keeping track where the main file of the project is.

6.23 Support for partial building (T4.2)

Package: builder

Partial building refers to the process of creating a preview of some part of
the document. If the document consists of a main file and many sub-files
which are all included to the main file, the document can be built partially
so that only the contents of one of the sub-files is visible in the preview.
This is done by extracting the header (“premeable section”) and footer from
the main file and creating a temporary file by concatenating the header, the
chosen sub-file and the footer. This temporary file is then built like normal
LATEX-document. Building partially is obviously much faster than building
the full document, provided that the sub-files are all much smaller than the
full document. Partial building can be enabled from Eclipse’s menu.

6.24 BibTEX editing (T5.1)

Package: bibeditor

Implement an editor mode for .bib-files. Essentially, this uses some of the
techniques described here for LATEX-documents, only that editing BibTEX-
files is simpler. Due to this, we try to reuse code from the LATEX editor part
as far as possible, eg. the search algorithm for code completions is shared by
both editors. Generally, the bibeditor is a simpler case than the LATEX-parser
and lacks external tool interfaces (such as building), since they don’t make
much sense for BibTEX.

References

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, Reading, MA,
USA, 1986.

[Bee93] Nelson H. F. Beebe. Bibliography prettyprinting and syntax check-
ing. TUGBoat, 14(4):395–419, 1993. December.

27

[Gag98] Etienne Gagnon. SableCC, an object-oriented compiler framework.
Master’s thesis, School of Computer Science, McGill University,
Montreal, 1998.

[Knu65] Donald E. Knuth. On the translation of languages from left to
right. Information and Control, 8(6):607–639, 1965. This is the
original paper on the theory of LR(k) parsing.

[Knu84] Donald Knuth. The TEXbook. Addison–Wesley, Reading, Mas-
sachusetts, 1984.

[Knu86] Donald Knuth. TEX: The Program. Addison–Wesley, Reading,
Massachusetts, 1986.

[Lam85] Leslie Lamport. LATEX – A Document Preparation System —
User’s Guide and Reference Manual. Addison-Wesley, Reading,
MA, USA, 1985.

[Pat03] Oren Patashnik. Bibtex yesterday, today and tomorrow. TUGBoat,
24(1):25–30, 2003.

28

