Table 4.2.
Name | Description |
---|---|
abs(x) | absolute value of x |
acos(x) | inverse cosinus |
acosh(x) | inverse hyperbolic cosinus |
asin(x) | inverse sinus |
asinh(x) | inverse hyperbolic sinus |
atan(x) | inverse tangent |
atanh(x) | inverse hyperbolic tangent |
avg(x1,x2,x3,...) | average value, this command accept a list of arguments separated by commas |
bessel_j0(x) | Regular cylindrical Bessel function of zeroth order, J0(x). |
bessel_j1(x) | Regular cylindrical Bessel function of first order, J1(x). |
bessel_jn(x,n) | Regular cylindrical Bessel function of nth order, Jn(x). |
bessel_jn_zero(n, s) | sth zero of regular cylindrical Bessel function of nth order, Jn(bessel_jn_zero(n,s))=0 |
bessel_y0(x) | Irregular cylindrical Bessel function of zeroth order, Y0(x) for x>0. |
bessel_y1(x) | Irregular cylindrical Bessel function of first order, Y1(x) for x>0. |
bessel_yn(x,n) | Irregular cylindrical Bessel function of nth order, Yn(x) for x>0. |
beta (a,b) | Computes the Beta Function, B(a,b) = Gamma(a)*Gamma(b)/Gamma(a+b) for a > 0 and b > 0. |
ceil(x) | ceiling; smallest integer greater or equal to x |
cos(x) | cosinus of x |
cosh(x) | hyperbolic cosinus of x |
erf(x) | error function of x |
erfc(x) | Complementary error function erfc(x) = 1 - erf(x). |
erfz(x) | The Gaussian probability density function Z(x). |
erfq(x) | The upper tail of the Gaussian probability function Q(x). |
exp(x) | Exponential function: e raised to the power of x. |
floor(x) | floor; largest integer less than or equal to x |
gamma(x) | Computes the Gamma function, subject to x not being a negative integer |
gammaln(x) | Computes the logarithm of the Gamma function, subject to x not a being negative integer. For x<0, log(|Gamma(x)|) is returned. |
hazard(x) | Computes the hazard function for the normal distribution h(x) = erfz(x)/erfq(x). |
ln(x) | natural logarythm of x |
log(x) | decimal logarythm of x |
log2(x) | base 2 logarythm of x |
w0(x) | Principal branch of Lambert's W function, W0(x). W0 is defined as a solution to the equation W0(x)*exp(W0(x))=x. For x<0, there are tow real-valued branches; this function computes the one where W>-1 for x<0 (compare w1(x)). |
w1(x) | Secondary branch of Lambert's W function, W-1(x). W-1 is defined as a solution to the equation W-1(x)*exp(W-1(x))=x. For x<0, there are tow real-valued branches; this function computes the one where W<-1 for x<0 (compare w0(x)). |
min(x1,x2,x3,...) | Minimum of the list of arguments |
max(x1,x2,x3,...) | Maximum of the list of arguments |
mod(x,y) | x modulo y; remainder of integer division x/y |
pow(x,y) | x to the power of y, x^y |
rint(x) | Round to nearest integer. |
sign(x) | Sign function: -1 if x<0; 1 if x>0. |
sin(x) | sinus of x |
sinh(x) | hyperblic sinus of x |
sqrt(x) | square root of x |
tan(x) | tangent of x |
tanh(x) | hyperbolic tangent of x |