Main MRPT website > C++ reference
MRPT logo

SparseMatrixBase.h

Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 //
00006 // Eigen is free software; you can redistribute it and/or
00007 // modify it under the terms of the GNU Lesser General Public
00008 // License as published by the Free Software Foundation; either
00009 // version 3 of the License, or (at your option) any later version.
00010 //
00011 // Alternatively, you can redistribute it and/or
00012 // modify it under the terms of the GNU General Public License as
00013 // published by the Free Software Foundation; either version 2 of
00014 // the License, or (at your option) any later version.
00015 //
00016 // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
00017 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00018 // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
00019 // GNU General Public License for more details.
00020 //
00021 // You should have received a copy of the GNU Lesser General Public
00022 // License and a copy of the GNU General Public License along with
00023 // Eigen. If not, see <http://www.gnu.org/licenses/>.
00024 
00025 #ifndef EIGEN_SPARSEMATRIXBASE_H
00026 #define EIGEN_SPARSEMATRIXBASE_H
00027 
00028 /** \ingroup Sparse_Module
00029   *
00030   * \class SparseMatrixBase
00031   *
00032   * \brief Base class of any sparse matrices or sparse expressions
00033   *
00034   * \param Derived
00035   *
00036   *
00037   *
00038   */
00039 template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
00040 {
00041   public:
00042 
00043     typedef typename internal::traits<Derived>::Scalar Scalar;
00044     typedef typename internal::packet_traits<Scalar>::type PacketScalar;
00045     typedef typename internal::traits<Derived>::StorageKind StorageKind;
00046     typedef typename internal::traits<Derived>::Index Index;
00047 
00048     typedef SparseMatrixBase StorageBaseType;
00049     typedef EigenBase<Derived> Base;
00050     
00051     template<typename OtherDerived>
00052     Derived& operator=(const EigenBase<OtherDerived> &other)
00053     {
00054       other.derived().evalTo(derived());
00055       return derived();
00056     }
00057     
00058 //     using Base::operator=;
00059 
00060     enum {
00061 
00062       RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
00063         /**< The number of rows at compile-time. This is just a copy of the value provided
00064           * by the \a Derived type. If a value is not known at compile-time,
00065           * it is set to the \a Dynamic constant.
00066           * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
00067 
00068       ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
00069         /**< The number of columns at compile-time. This is just a copy of the value provided
00070           * by the \a Derived type. If a value is not known at compile-time,
00071           * it is set to the \a Dynamic constant.
00072           * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
00073 
00074 
00075       SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
00076                                                    internal::traits<Derived>::ColsAtCompileTime>::ret),
00077         /**< This is equal to the number of coefficients, i.e. the number of
00078           * rows times the number of columns, or to \a Dynamic if this is not
00079           * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
00080 
00081       MaxRowsAtCompileTime = RowsAtCompileTime,
00082       MaxColsAtCompileTime = ColsAtCompileTime,
00083 
00084       MaxSizeAtCompileTime = (internal::size_at_compile_time<MaxRowsAtCompileTime,
00085                                                       MaxColsAtCompileTime>::ret),
00086 
00087       IsVectorAtCompileTime = RowsAtCompileTime == 1 || ColsAtCompileTime == 1,
00088         /**< This is set to true if either the number of rows or the number of
00089           * columns is known at compile-time to be equal to 1. Indeed, in that case,
00090           * we are dealing with a column-vector (if there is only one column) or with
00091           * a row-vector (if there is only one row). */
00092 
00093       Flags = internal::traits<Derived>::Flags,
00094         /**< This stores expression \ref flags flags which may or may not be inherited by new expressions
00095           * constructed from this one. See the \ref flags "list of flags".
00096           */
00097 
00098       CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
00099         /**< This is a rough measure of how expensive it is to read one coefficient from
00100           * this expression.
00101           */
00102 
00103       IsRowMajor = Flags&RowMajorBit ? 1 : 0,
00104 
00105       #ifndef EIGEN_PARSED_BY_DOXYGEN
00106       _HasDirectAccess = (int(Flags)&DirectAccessBit) ? 1 : 0 // workaround sunCC
00107       #endif
00108     };
00109 
00110     /* \internal the return type of MatrixBase::conjugate() */
00111 //     typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
00112 //                         const SparseCwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Derived>,
00113 //                         const Derived&
00114 //                      >::type ConjugateReturnType;
00115     /* \internal the return type of MatrixBase::real() */
00116 //     typedef SparseCwiseUnaryOp<internal::scalar_real_op<Scalar>, Derived> RealReturnType;
00117     /* \internal the return type of MatrixBase::imag() */
00118 //     typedef SparseCwiseUnaryOp<internal::scalar_imag_op<Scalar>, Derived> ImagReturnType;
00119     /** \internal the return type of MatrixBase::adjoint() */
00120     typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
00121                         CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Eigen::Transpose<Derived> >,
00122                         Transpose<Derived>
00123                      >::type AdjointReturnType;
00124 
00125     typedef SparseMatrix<Scalar, Flags&RowMajorBit ? RowMajor : ColMajor> PlainObject;
00126 
00127     #define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::SparseMatrixBase
00128     #include "../plugins/CommonCwiseUnaryOps.h"
00129     #include "../plugins/CommonCwiseBinaryOps.h"
00130     #include "../plugins/MatrixCwiseUnaryOps.h"
00131     #include "../plugins/MatrixCwiseBinaryOps.h"
00132     #undef EIGEN_CURRENT_STORAGE_BASE_CLASS
00133 
00134 #ifndef EIGEN_PARSED_BY_DOXYGEN
00135     /** This is the "real scalar" type; if the \a Scalar type is already real numbers
00136       * (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
00137       * \a Scalar is \a std::complex<T> then RealScalar is \a T.
00138       *
00139       * \sa class NumTraits
00140       */
00141     typedef typename NumTraits<Scalar>::Real RealScalar;
00142 
00143     /** \internal the return type of coeff()
00144       */
00145     typedef typename internal::conditional<_HasDirectAccess, const Scalar&, Scalar>::type CoeffReturnType;
00146 
00147     /** \internal Represents a matrix with all coefficients equal to one another*/
00148     typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Matrix<Scalar,Dynamic,Dynamic> > ConstantReturnType;
00149 
00150     /** type of the equivalent square matrix */
00151     typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime),
00152                           EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType;
00153 
00154     inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
00155     inline Derived& derived() { return *static_cast<Derived*>(this); }
00156     inline Derived& const_cast_derived() const
00157     { return *static_cast<Derived*>(const_cast<SparseMatrixBase*>(this)); }
00158 #endif // not EIGEN_PARSED_BY_DOXYGEN
00159 
00160     /** \returns the number of rows. \sa cols(), RowsAtCompileTime */
00161     inline Index rows() const { return derived().rows(); }
00162     /** \returns the number of columns. \sa rows(), ColsAtCompileTime*/
00163     inline Index cols() const { return derived().cols(); }
00164     /** \returns the number of coefficients, which is \a rows()*cols().
00165       * \sa rows(), cols(), SizeAtCompileTime. */
00166     inline Index size() const { return rows() * cols(); }
00167     /** \returns the number of nonzero coefficients which is in practice the number
00168       * of stored coefficients. */
00169     inline Index nonZeros() const { return derived().nonZeros(); }
00170     /** \returns true if either the number of rows or the number of columns is equal to 1.
00171       * In other words, this function returns
00172       * \code rows()==1 || cols()==1 \endcode
00173       * \sa rows(), cols(), IsVectorAtCompileTime. */
00174     inline bool isVector() const { return rows()==1 || cols()==1; }
00175     /** \returns the size of the storage major dimension,
00176       * i.e., the number of columns for a columns major matrix, and the number of rows otherwise */
00177     Index outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); }
00178     /** \returns the size of the inner dimension according to the storage order,
00179       * i.e., the number of rows for a columns major matrix, and the number of cols otherwise */
00180     Index innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); }
00181 
00182     bool isRValue() const { return m_isRValue; }
00183     Derived& markAsRValue() { m_isRValue = true; return derived(); }
00184 
00185     SparseMatrixBase() : m_isRValue(false) { /* TODO check flags */ }
00186     
00187     inline Derived& operator=(const Derived& other)
00188     {
00189 //       std::cout << "Derived& operator=(const Derived& other)\n";
00190 //       if (other.isRValue())
00191 //         derived().swap(other.const_cast_derived());
00192 //       else
00193         this->operator=<Derived>(other);
00194       return derived();
00195     }
00196     
00197     template<typename OtherDerived>
00198     Derived& operator=(const ReturnByValue<OtherDerived>& other)
00199     {
00200       other.evalTo(derived());
00201       return derived();
00202     }
00203 
00204 
00205     template<typename OtherDerived>
00206     inline void assignGeneric(const OtherDerived& other)
00207     {
00208 //       std::cout << "Derived& operator=(const MatrixBase<OtherDerived>& other)\n";
00209       //const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
00210       eigen_assert(( ((internal::traits<Derived>::SupportedAccessPatterns&OuterRandomAccessPattern)==OuterRandomAccessPattern) ||
00211                   (!((Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit)))) &&
00212                   "the transpose operation is supposed to be handled in SparseMatrix::operator=");
00213 
00214       enum { Flip = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit) };
00215 
00216       const Index outerSize = other.outerSize();
00217       //typedef typename internal::conditional<transpose, LinkedVectorMatrix<Scalar,Flags&RowMajorBit>, Derived>::type TempType;
00218       // thanks to shallow copies, we always eval to a tempary
00219       Derived temp(other.rows(), other.cols());
00220 
00221       temp.reserve(std::max(this->rows(),this->cols())*2);
00222       for (Index j=0; j<outerSize; ++j)
00223       {
00224         temp.startVec(j);
00225         for (typename OtherDerived::InnerIterator it(other.derived(), j); it; ++it)
00226         {
00227           Scalar v = it.value();
00228           if (v!=Scalar(0))
00229             temp.insertBackByOuterInner(Flip?it.index():j,Flip?j:it.index()) = v;
00230         }
00231       }
00232       temp.finalize();
00233 
00234       derived() = temp.markAsRValue();
00235     }
00236 
00237 
00238     template<typename OtherDerived>
00239     inline Derived& operator=(const SparseMatrixBase<OtherDerived>& other)
00240     {
00241 //       std::cout << typeid(OtherDerived).name() << "\n";
00242 //       std::cout << Flags << " " << OtherDerived::Flags << "\n";
00243       const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
00244 //       std::cout << "eval transpose = " << transpose << "\n";
00245       const Index outerSize = (int(OtherDerived::Flags) & RowMajorBit) ? other.rows() : other.cols();
00246       if ((!transpose) && other.isRValue())
00247       {
00248         // eval without temporary
00249         derived().resize(other.rows(), other.cols());
00250         derived().setZero();
00251         derived().reserve(std::max(this->rows(),this->cols())*2);
00252         for (Index j=0; j<outerSize; ++j)
00253         {
00254           derived().startVec(j);
00255           for (typename OtherDerived::InnerIterator it(other.derived(), j); it; ++it)
00256           {
00257             Scalar v = it.value();
00258             if (v!=Scalar(0))
00259               derived().insertBackByOuterInner(j,it.index()) = v;
00260           }
00261         }
00262         derived().finalize();
00263       }
00264       else
00265       {
00266         assignGeneric(other.derived());
00267       }
00268       return derived();
00269     }
00270 
00271     template<typename Lhs, typename Rhs>
00272     inline Derived& operator=(const SparseSparseProduct<Lhs,Rhs>& product);
00273 
00274     template<typename Lhs, typename Rhs>
00275     inline void _experimentalNewProduct(const Lhs& lhs, const Rhs& rhs);
00276 
00277     friend std::ostream & operator << (std::ostream & s, const SparseMatrixBase& m)
00278     {
00279       if (Flags&RowMajorBit)
00280       {
00281         for (Index row=0; row<m.outerSize(); ++row)
00282         {
00283           Index col = 0;
00284           for (typename Derived::InnerIterator it(m.derived(), row); it; ++it)
00285           {
00286             for ( ; col<it.index(); ++col)
00287               s << "0 ";
00288             s << it.value() << " ";
00289             ++col;
00290           }
00291           for ( ; col<m.cols(); ++col)
00292             s << "0 ";
00293           s << std::endl;
00294         }
00295       }
00296       else
00297       {
00298         if (m.cols() == 1) {
00299           Index row = 0;
00300           for (typename Derived::InnerIterator it(m.derived(), 0); it; ++it)
00301           {
00302             for ( ; row<it.index(); ++row)
00303               s << "0" << std::endl;
00304             s << it.value() << std::endl;
00305             ++row;
00306           }
00307           for ( ; row<m.rows(); ++row)
00308             s << "0" << std::endl;
00309         }
00310         else
00311         {
00312           SparseMatrix<Scalar, RowMajorBit> trans = m.derived();
00313           s << trans;
00314         }
00315       }
00316       return s;
00317     }
00318 
00319 //     const SparseCwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<Derived>::Scalar>,Derived> operator-() const;
00320 
00321 //     template<typename OtherDerived>
00322 //     const CwiseBinaryOp<internal::scalar_sum_op<typename internal::traits<Derived>::Scalar>, Derived, OtherDerived>
00323 //     operator+(const SparseMatrixBase<OtherDerived> &other) const;
00324 
00325 //     template<typename OtherDerived>
00326 //     const CwiseBinaryOp<internal::scalar_difference_op<typename internal::traits<Derived>::Scalar>, Derived, OtherDerived>
00327 //     operator-(const SparseMatrixBase<OtherDerived> &other) const;
00328 
00329     template<typename OtherDerived>
00330     Derived& operator+=(const SparseMatrixBase<OtherDerived>& other);
00331     template<typename OtherDerived>
00332     Derived& operator-=(const SparseMatrixBase<OtherDerived>& other);
00333 
00334 //     template<typename Lhs,typename Rhs>
00335 //     Derived& operator+=(const Flagged<Product<Lhs,Rhs,CacheFriendlyProduct>, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit>& other);
00336 
00337     Derived& operator*=(const Scalar& other);
00338     Derived& operator/=(const Scalar& other);
00339 
00340     #define EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE \
00341       CwiseBinaryOp< \
00342         internal::scalar_product_op< \
00343           typename internal::scalar_product_traits< \
00344             typename internal::traits<Derived>::Scalar, \
00345             typename internal::traits<OtherDerived>::Scalar \
00346           >::ReturnType \
00347         >, \
00348         Derived, \
00349         OtherDerived \
00350       >
00351 
00352     template<typename OtherDerived>
00353     EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE
00354     cwiseProduct(const MatrixBase<OtherDerived> &other) const;
00355 
00356 //     const SparseCwiseUnaryOp<internal::scalar_multiple_op<typename internal::traits<Derived>::Scalar>, Derived>
00357 //     operator*(const Scalar& scalar) const;
00358 //     const SparseCwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>, Derived>
00359 //     operator/(const Scalar& scalar) const;
00360 
00361 //     inline friend const SparseCwiseUnaryOp<internal::scalar_multiple_op<typename internal::traits<Derived>::Scalar>, Derived>
00362 //     operator*(const Scalar& scalar, const SparseMatrixBase& matrix)
00363 //     { return matrix*scalar; }
00364 
00365 
00366     // sparse * sparse
00367     template<typename OtherDerived>
00368     const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type
00369     operator*(const SparseMatrixBase<OtherDerived> &other) const;
00370 
00371     // sparse * diagonal
00372     template<typename OtherDerived>
00373     const SparseDiagonalProduct<Derived,OtherDerived>
00374     operator*(const DiagonalBase<OtherDerived> &other) const;
00375 
00376     // diagonal * sparse
00377     template<typename OtherDerived> friend
00378     const SparseDiagonalProduct<OtherDerived,Derived>
00379     operator*(const DiagonalBase<OtherDerived> &lhs, const SparseMatrixBase& rhs)
00380     { return SparseDiagonalProduct<OtherDerived,Derived>(lhs.derived(), rhs.derived()); }
00381 
00382     /** dense * sparse (return a dense object unless it is an outer product) */
00383     template<typename OtherDerived> friend
00384     const typename DenseSparseProductReturnType<OtherDerived,Derived>::Type
00385     operator*(const MatrixBase<OtherDerived>& lhs, const Derived& rhs)
00386     { return typename DenseSparseProductReturnType<OtherDerived,Derived>::Type(lhs.derived(),rhs); }
00387 
00388     /** sparse * dense (returns a dense object unless it is an outer product) */
00389     template<typename OtherDerived>
00390     const typename SparseDenseProductReturnType<Derived,OtherDerived>::Type
00391     operator*(const MatrixBase<OtherDerived> &other) const;
00392 
00393     template<typename OtherDerived>
00394     Derived& operator*=(const SparseMatrixBase<OtherDerived>& other);
00395 
00396     #ifdef EIGEN2_SUPPORT
00397     // deprecated
00398     template<typename OtherDerived>
00399     typename internal::plain_matrix_type_column_major<OtherDerived>::type
00400     solveTriangular(const MatrixBase<OtherDerived>& other) const;
00401 
00402     // deprecated
00403     template<typename OtherDerived>
00404     void solveTriangularInPlace(MatrixBase<OtherDerived>& other) const;
00405 //     template<typename OtherDerived>
00406 //     void solveTriangularInPlace(SparseMatrixBase<OtherDerived>& other) const;
00407     #endif // EIGEN2_SUPPORT
00408 
00409     template<int Mode>
00410     inline const SparseTriangularView<Derived, Mode> triangularView() const;
00411 
00412     template<unsigned int UpLo> inline const SparseSelfAdjointView<Derived, UpLo> selfadjointView() const;
00413     template<unsigned int UpLo> inline SparseSelfAdjointView<Derived, UpLo> selfadjointView();
00414 
00415     template<typename OtherDerived> Scalar dot(const MatrixBase<OtherDerived>& other) const;
00416     template<typename OtherDerived> Scalar dot(const SparseMatrixBase<OtherDerived>& other) const;
00417     RealScalar squaredNorm() const;
00418     RealScalar norm()  const;
00419 //     const PlainObject normalized() const;
00420 //     void normalize();
00421 
00422     Transpose<Derived> transpose() { return derived(); }
00423     const Transpose<Derived> transpose() const { return derived(); }
00424     // void transposeInPlace();
00425     const AdjointReturnType adjoint() const { return transpose(); }
00426 
00427     // sub-vector
00428     SparseInnerVectorSet<Derived,1> row(Index i);
00429     const SparseInnerVectorSet<Derived,1> row(Index i) const;
00430     SparseInnerVectorSet<Derived,1> col(Index j);
00431     const SparseInnerVectorSet<Derived,1> col(Index j) const;
00432     SparseInnerVectorSet<Derived,1> innerVector(Index outer);
00433     const SparseInnerVectorSet<Derived,1> innerVector(Index outer) const;
00434 
00435     // set of sub-vectors
00436     SparseInnerVectorSet<Derived,Dynamic> subrows(Index start, Index size);
00437     const SparseInnerVectorSet<Derived,Dynamic> subrows(Index start, Index size) const;
00438     SparseInnerVectorSet<Derived,Dynamic> subcols(Index start, Index size);
00439     const SparseInnerVectorSet<Derived,Dynamic> subcols(Index start, Index size) const;
00440     SparseInnerVectorSet<Derived,Dynamic> innerVectors(Index outerStart, Index outerSize);
00441     const SparseInnerVectorSet<Derived,Dynamic> innerVectors(Index outerStart, Index outerSize) const;
00442 
00443 //     typename BlockReturnType<Derived>::Type block(int startRow, int startCol, int blockRows, int blockCols);
00444 //     const typename BlockReturnType<Derived>::Type
00445 //     block(int startRow, int startCol, int blockRows, int blockCols) const;
00446 //
00447 //     typename BlockReturnType<Derived>::SubVectorType segment(int start, int size);
00448 //     const typename BlockReturnType<Derived>::SubVectorType segment(int start, int size) const;
00449 //
00450 //     typename BlockReturnType<Derived,Dynamic>::SubVectorType start(int size);
00451 //     const typename BlockReturnType<Derived,Dynamic>::SubVectorType start(int size) const;
00452 //
00453 //     typename BlockReturnType<Derived,Dynamic>::SubVectorType end(int size);
00454 //     const typename BlockReturnType<Derived,Dynamic>::SubVectorType end(int size) const;
00455 //
00456 //     template<int BlockRows, int BlockCols>
00457 //     typename BlockReturnType<Derived, BlockRows, BlockCols>::Type block(int startRow, int startCol);
00458 //     template<int BlockRows, int BlockCols>
00459 //     const typename BlockReturnType<Derived, BlockRows, BlockCols>::Type block(int startRow, int startCol) const;
00460 
00461 //     template<int Size> typename BlockReturnType<Derived,Size>::SubVectorType start(void);
00462 //     template<int Size> const typename BlockReturnType<Derived,Size>::SubVectorType start() const;
00463 
00464 //     template<int Size> typename BlockReturnType<Derived,Size>::SubVectorType end();
00465 //     template<int Size> const typename BlockReturnType<Derived,Size>::SubVectorType end() const;
00466 
00467 //     template<int Size> typename BlockReturnType<Derived,Size>::SubVectorType segment(int start);
00468 //     template<int Size> const typename BlockReturnType<Derived,Size>::SubVectorType segment(int start) const;
00469 
00470 //     Diagonal<Derived> diagonal();
00471 //     const Diagonal<Derived> diagonal() const;
00472 
00473 //     template<unsigned int Mode> Part<Derived, Mode> part();
00474 //     template<unsigned int Mode> const Part<Derived, Mode> part() const;
00475 
00476 
00477 //     static const ConstantReturnType Constant(int rows, int cols, const Scalar& value);
00478 //     static const ConstantReturnType Constant(int size, const Scalar& value);
00479 //     static const ConstantReturnType Constant(const Scalar& value);
00480 
00481 //     template<typename CustomNullaryOp>
00482 //     static const CwiseNullaryOp<CustomNullaryOp, Derived> NullaryExpr(int rows, int cols, const CustomNullaryOp& func);
00483 //     template<typename CustomNullaryOp>
00484 //     static const CwiseNullaryOp<CustomNullaryOp, Derived> NullaryExpr(int size, const CustomNullaryOp& func);
00485 //     template<typename CustomNullaryOp>
00486 //     static const CwiseNullaryOp<CustomNullaryOp, Derived> NullaryExpr(const CustomNullaryOp& func);
00487 
00488 //     static const ConstantReturnType Zero(int rows, int cols);
00489 //     static const ConstantReturnType Zero(int size);
00490 //     static const ConstantReturnType Zero();
00491 //     static const ConstantReturnType Ones(int rows, int cols);
00492 //     static const ConstantReturnType Ones(int size);
00493 //     static const ConstantReturnType Ones();
00494 //     static const IdentityReturnType Identity();
00495 //     static const IdentityReturnType Identity(int rows, int cols);
00496 //     static const BasisReturnType Unit(int size, int i);
00497 //     static const BasisReturnType Unit(int i);
00498 //     static const BasisReturnType UnitX();
00499 //     static const BasisReturnType UnitY();
00500 //     static const BasisReturnType UnitZ();
00501 //     static const BasisReturnType UnitW();
00502 
00503 //     const DiagonalMatrix<Derived> asDiagonal() const;
00504 
00505 //     Derived& setConstant(const Scalar& value);
00506 //     Derived& setZero();
00507 //     Derived& setOnes();
00508 //     Derived& setRandom();
00509 //     Derived& setIdentity();
00510 
00511       /** \internal use operator= */
00512       template<typename DenseDerived>
00513       void evalTo(MatrixBase<DenseDerived>& dst) const
00514       {
00515         dst.setZero();
00516         for (Index j=0; j<outerSize(); ++j)
00517           for (typename Derived::InnerIterator i(derived(),j); i; ++i)
00518             dst.coeffRef(i.row(),i.col()) = i.value();
00519       }
00520 
00521       Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> toDense() const
00522       {
00523         return derived();
00524       }
00525 
00526     template<typename OtherDerived>
00527     bool isApprox(const SparseMatrixBase<OtherDerived>& other,
00528                   RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
00529     { return toDense().isApprox(other.toDense(),prec); }
00530 
00531     template<typename OtherDerived>
00532     bool isApprox(const MatrixBase<OtherDerived>& other,
00533                   RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
00534     { return toDense().isApprox(other,prec); }
00535 //     bool isMuchSmallerThan(const RealScalar& other,
00536 //                            RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
00537 //     template<typename OtherDerived>
00538 //     bool isMuchSmallerThan(const MatrixBase<OtherDerived>& other,
00539 //                            RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
00540 
00541 //     bool isApproxToConstant(const Scalar& value, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
00542 //     bool isZero(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
00543 //     bool isOnes(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
00544 //     bool isIdentity(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
00545 //     bool isDiagonal(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
00546 
00547 //     bool isUpper(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
00548 //     bool isLower(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
00549 
00550 //     template<typename OtherDerived>
00551 //     bool isOrthogonal(const MatrixBase<OtherDerived>& other,
00552 //                       RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
00553 //     bool isUnitary(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
00554 
00555 //     template<typename OtherDerived>
00556 //     inline bool operator==(const MatrixBase<OtherDerived>& other) const
00557 //     { return (cwise() == other).all(); }
00558 
00559 //     template<typename OtherDerived>
00560 //     inline bool operator!=(const MatrixBase<OtherDerived>& other) const
00561 //     { return (cwise() != other).any(); }
00562 
00563 
00564 //     template<typename NewType>
00565 //     const SparseCwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<Derived>::Scalar, NewType>, Derived> cast() const;
00566 
00567     /** \returns the matrix or vector obtained by evaluating this expression.
00568       *
00569       * Notice that in the case of a plain matrix or vector (not an expression) this function just returns
00570       * a const reference, in order to avoid a useless copy.
00571       */
00572     inline const typename internal::eval<Derived>::type eval() const
00573     { return typename internal::eval<Derived>::type(derived()); }
00574 
00575 //     template<typename OtherDerived>
00576 //     void swap(MatrixBase<OtherDerived> const & other);
00577 
00578 //     template<unsigned int Added>
00579 //     const SparseFlagged<Derived, Added, 0> marked() const;
00580 //     const Flagged<Derived, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit> lazy() const;
00581 
00582     /** \returns number of elements to skip to pass from one row (resp. column) to another
00583       * for a row-major (resp. column-major) matrix.
00584       * Combined with coeffRef() and the \ref flags flags, it allows a direct access to the data
00585       * of the underlying matrix.
00586       */
00587 //     inline int stride(void) const { return derived().stride(); }
00588 
00589 // FIXME
00590 //     ConjugateReturnType conjugate() const;
00591 //     const RealReturnType real() const;
00592 //     const ImagReturnType imag() const;
00593 
00594 //     template<typename CustomUnaryOp>
00595 //     const SparseCwiseUnaryOp<CustomUnaryOp, Derived> unaryExpr(const CustomUnaryOp& func = CustomUnaryOp()) const;
00596 
00597 //     template<typename CustomBinaryOp, typename OtherDerived>
00598 //     const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
00599 //     binaryExpr(const MatrixBase<OtherDerived> &other, const CustomBinaryOp& func = CustomBinaryOp()) const;
00600 
00601 
00602     Scalar sum() const;
00603 //     Scalar trace() const;
00604 
00605 //     typename internal::traits<Derived>::Scalar minCoeff() const;
00606 //     typename internal::traits<Derived>::Scalar maxCoeff() const;
00607 
00608 //     typename internal::traits<Derived>::Scalar minCoeff(int* row, int* col = 0) const;
00609 //     typename internal::traits<Derived>::Scalar maxCoeff(int* row, int* col = 0) const;
00610 
00611 //     template<typename BinaryOp>
00612 //     typename internal::result_of<BinaryOp(typename internal::traits<Derived>::Scalar)>::type
00613 //     redux(const BinaryOp& func) const;
00614 
00615 //     template<typename Visitor>
00616 //     void visit(Visitor& func) const;
00617 
00618 
00619 //     const SparseCwise<Derived> cwise() const;
00620 //     SparseCwise<Derived> cwise();
00621 
00622 //     inline const WithFormat<Derived> format(const IOFormat& fmt) const;
00623 
00624 /////////// Array module ///////////
00625     /*
00626     bool all(void) const;
00627     bool any(void) const;
00628 
00629     const VectorwiseOp<Derived,Horizontal> rowwise() const;
00630     const VectorwiseOp<Derived,Vertical> colwise() const;
00631 
00632     static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(int rows, int cols);
00633     static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(int size);
00634     static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random();
00635 
00636     template<typename ThenDerived,typename ElseDerived>
00637     const Select<Derived,ThenDerived,ElseDerived>
00638     select(const MatrixBase<ThenDerived>& thenMatrix,
00639            const MatrixBase<ElseDerived>& elseMatrix) const;
00640 
00641     template<typename ThenDerived>
00642     inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
00643     select(const MatrixBase<ThenDerived>& thenMatrix, typename ThenDerived::Scalar elseScalar) const;
00644 
00645     template<typename ElseDerived>
00646     inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
00647     select(typename ElseDerived::Scalar thenScalar, const MatrixBase<ElseDerived>& elseMatrix) const;
00648 
00649     template<int p> RealScalar lpNorm() const;
00650     */
00651 
00652 
00653 //     template<typename OtherDerived>
00654 //     Scalar dot(const MatrixBase<OtherDerived>& other) const
00655 //     {
00656 //       EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
00657 //       EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
00658 //       EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
00659 //         YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
00660 //
00661 //       eigen_assert(derived().size() == other.size());
00662 //       // short version, but the assembly looks more complicated because
00663 //       // of the CwiseBinaryOp iterator complexity
00664 //       // return res = (derived().cwise() * other.derived().conjugate()).sum();
00665 //
00666 //       // optimized, generic version
00667 //       typename Derived::InnerIterator i(derived(),0);
00668 //       typename OtherDerived::InnerIterator j(other.derived(),0);
00669 //       Scalar res = 0;
00670 //       while (i && j)
00671 //       {
00672 //         if (i.index()==j.index())
00673 //         {
00674 // //           std::cerr << i.value() << " * " << j.value() << "\n";
00675 //           res += i.value() * internal::conj(j.value());
00676 //           ++i; ++j;
00677 //         }
00678 //         else if (i.index()<j.index())
00679 //           ++i;
00680 //         else
00681 //           ++j;
00682 //       }
00683 //       return res;
00684 //     }
00685 //
00686 //     Scalar sum() const
00687 //     {
00688 //       Scalar res = 0;
00689 //       for (typename Derived::InnerIterator iter(*this,0); iter; ++iter)
00690 //       {
00691 //         res += iter.value();
00692 //       }
00693 //       return res;
00694 //     }
00695 
00696   protected:
00697 
00698     bool m_isRValue;
00699 };
00700 
00701 #endif // EIGEN_SPARSEMATRIXBASE_H



Page generated by Doxygen 1.7.3 for MRPT 0.9.4 SVN: at Sat Mar 26 06:16:28 UTC 2011