Main MRPT website > C++ reference
MRPT logo
Namespaces | Functions

scan_matching.h File Reference

#include <mrpt/math.h>
#include <mrpt/poses.h>
#include <mrpt/utils/TMatchingPair.h>
#include <mrpt/scanmatching/link_pragmas.h>
#include <mrpt/scanmatching/link_pragmas.h>
Include dependency graph for scanmatching/scan_matching.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Namespaces

namespace  mrpt
 

This is the global namespace for all Mobile Robot Programming Toolkit (MRPT) libraries.


namespace  mrpt::poses
 

Classes for 2D/3D geometry representation, both of single values and probability density distributions (PDFs) in many forms.


namespace  mrpt::scanmatching
 

A set of scan matching-related static functions.


Functions

double SCANMATCHING_IMPEXP mrpt::scanmatching::HornMethod (const vector_double &inPoints, vector_double &outQuat, bool forceScaleToUnity=false)
 This function implements the Horn method for computing the change in pose between two coordinate systems.
double SCANMATCHING_IMPEXP mrpt::scanmatching::HornMethod (const vector_double &inPoints, mrpt::poses::CPose3DQuat &outQuat, bool forceScaleToUnity=false)
bool SCANMATCHING_IMPEXP mrpt::scanmatching::leastSquareErrorRigidTransformation6D (const TMatchingPairList &in_correspondences, CPose3DQuat &out_transformation, double &out_scale, const bool forceScaleToUnity=false)
 This method provides the closed-form solution of absolute orientation using unit quaternions to a set of over-constrained correspondences for finding the 6D rigid transformation between two cloud of 3D points.
bool SCANMATCHING_IMPEXP mrpt::scanmatching::leastSquareErrorRigidTransformation6D (const TMatchingPairList &in_correspondences, CPose3D &out_transformation, double &out_scale, const bool forceScaleToUnity=false)
 This method provides the closed-form solution of absolute orientation using unit quaternions to a set of over-constrained correspondences for finding the 6D rigid transformation between two cloud of 3D points.
bool SCANMATCHING_IMPEXP mrpt::scanmatching::leastSquareErrorRigidTransformation6DRANSAC (const TMatchingPairList &in_correspondences, CPose3D &out_transformation, double &out_scale, vector_int &out_inliers_idx, const unsigned int ransac_minSetSize=5, const unsigned int ransac_nmaxSimulations=50, const double ransac_maxSetSizePct=0.7, const bool forceScaleToUnity=false)
 This method provides the closed-form solution of absolute orientation using unit quaternions to a set of over-constrained correspondences for finding the 6D rigid transformation between two cloud of 3D points using RANSAC.
bool SCANMATCHING_IMPEXP mrpt::scanmatching::leastSquareErrorRigidTransformation (TMatchingPairList &in_correspondences, CPose2D &out_transformation, CMatrixDouble33 *out_estimateCovariance=NULL)
 This method provides the basic least-square-error solution to a set of over-constrained correspondences for finding the (x,y,phi) rigid transformation between two planes.
bool SCANMATCHING_IMPEXP mrpt::scanmatching::leastSquareErrorRigidTransformation (TMatchingPairList &in_correspondences, CPosePDFGaussian &out_transformation)
 This method provides the basic least-square-error solution to a set of over-constrained correspondences for finding the (x,y,phi) rigid transformation between two planes.
void SCANMATCHING_IMPEXP mrpt::scanmatching::robustRigidTransformation (TMatchingPairList &in_correspondences, poses::CPosePDFSOG &out_transformation, float normalizationStd, unsigned int ransac_minSetSize=3, unsigned int ransac_maxSetSize=20, float ransac_mahalanobisDistanceThreshold=3.0f, unsigned int ransac_nSimulations=0, TMatchingPairList *out_largestSubSet=NULL, bool ransac_fuseByCorrsMatch=true, float ransac_fuseMaxDiffXY=0.01f, float ransac_fuseMaxDiffPhi=DEG2RAD(0.1f), bool ransac_algorithmForLandmarks=true, double probability_find_good_model=0.999, unsigned int ransac_min_nSimulations=1500)
 This method implements a RANSAC-based robust estimation of the rigid transformation between two planes, returning a probability distribution over all the posibilities as a Sum of Gaussians.



Page generated by Doxygen 1.7.3 for MRPT 0.9.4 SVN: at Sat Mar 26 06:40:17 UTC 2011