CARDPEEK 0.7 Reference Manual

L1L1@gmax.com - September 2011

Table of Contents

Chapter 1 PreSentation.......cocceeierierienieeieeceeteeeeetee ettt e sttt satesat e st e s seesseesneens 6
Chapter 2 INStallation........ccccuiieciiecieecieceeeecteeee e eete e rae e e ste e e e aeesbeessvaeessaesssaeesssnennns 8
2.1 Compiling and installing under LiNUX.........ccccceeevieriieeiieieieeeieeeceeeceeeeeeeeeeeecvee e 8
2.2 Installing under Windows XP......ccccuiiiriiiiiiiieecieeeecieeeeeveeessene s s caeessseaeesseveesssnnes 9
2.3 Related files and initial SELUP......cceeevieeiiieeeieeeitecceeee e 9
2.4 Choosing a smartcard reader...........ceevueerieriiriiiriienienieeeeceteeee et 10
Chapter 3 UsSINg CardpPeek.......ccccueeiecuiiiieiieecciiecetee et e e e s eete e e e eeae e e s aae e e seaeessaaaesnnnnas 11
3.1 QUICK SEATT....eiiieeieececeee ettt ee e e e ste e e e aee e e aree e e asae e e nsaeesensaeeeensaaeeennens 11
IO LSTC) o 1 011 2 (¢TSS 12
3.3 CATA VIEW..ooiiiiriieeecectttee ettt ettt e e eeabe e e e e eesabsaeeeeesssssseeseessssseeeseessssseeessssnnnns 12
3.4 The TEAAET TAD.....uvveeiieeeeeeee ettt ee e e e e e esasse e e e eesnsaseeeeeennns 13
3.5 The 10ZS taD.....eiiicieece et e e e e s e e e s e ae e e s ae e e s eaaeeeans 14
3.6 The one-line command input field..........cceeoieriiieeeiieiiieeeeeeceeece e 14
3.7 Card-reader selection UPON StATt-UP......cccceerierriierriieiniieeriiessreeseeesseeeesreeesreeesaeessnes 14
Chapter 4 Card analysis t00IS......ccuiiieiiiieciieeccieeccte et cae e e s eae e e e aaeeeans 15
7% I 1 n (U P T U SRR PPPPPPPTTN 16
411 OVEIVIEW......ueiiiieeeieeeitteeeeeeeitteeeeeeeeseteeeeeaessseeesasasssaeesessssssesssssassssssssssssssssessesnnns 16
4.1.2 GENETAL NOTES.....uvvriiieiieiiieee ettt eert e e e e eesabeeeeeeesassseeesesssssseeeesesnnnns 16

B 071 o 1T o TS USRS 16
4.2.1 OVEIVIEW.....ueuerririerreeeeeeeeeeeeeeeesssssssssssssseseeeseeeeeeessssssssssssssssssssssssseesesessssssssnsnns 16
4.2.2 Implementation NOtES.........ccocviiiiiiiiiiieiieeete e e eeeae e e ae e s e seaeesaes 16

4.3 EIMNV..urieeureeeeeeeiseeeeseeeeseeesseeassaeessseessaeaasaeaasaseassaeasssesasseeassaeassaeesaeesasenssaeenseeesaaenees 17
4.3.1 OVEIVIEW.....uuuuurrrrrrrrrreeeeeeeeeeeeeseeeesssssssssssssseseesssesesesssssssssssssssssssessssesesssesesssnsssssnes 17
4.3.2 IMplementation NOTES.......cceeeieiriiieriieecieeeie et eeseeseteeeaeesseeeesraeesseesssaeesssaennns 17

R 0T R ES] 010) o PP 18
.41 OVEIVIEW.....ceeeuererirreereereeeeeeeeeeeessssssssssssssssseseeeeeseesssssssssssssssssssssssssesesssssssssssssssnes 18
4.4.2 Implementation NOTES........cceeecieeeiieeiieecieeee et e eereeeee e e e e e sree e eeesaeeesvaeesaneas 18

4.5 TTMOTIEO. ... eeerrrrnnneeeeererssnneeeessssssnneeeessssssnneeessssssssnnsesssssssnnnsessssssssnnseesssssssnnesesssssnnnnsessnns 18
.51 OVEIVIEW..uuvvirieieeeeieeeieieieeieiiansserereeeeeeeeeeesesesessssssssssssssessssssesesesesssssssssssssssesesseeens 18
4.5.2 IMplementation NOTES........cceviiiriiiriieirieerieeet et s st sreesseessaeessreesssneenns 18

A0 VITALE 2.ttt e e et e e e e e e be e e e e e e naaa e e e ee e nraareeeeenraraeaeeennnnes 19
4.6.1 OVETVIEW....ceeeieeeeiireeeeeeeciteeeeeeeeitteeeeeeessraaeeeassssssssesassssssssessssssssssseessssssseseesnnnnnes 19
6.2 NOTES....iiiiiiirieteeee ettt eeeee e e rrrtreae et e e e eeesesessssssssssassasesaaaeeessesesssssssssssssssssanasaees 19

4.7 AAdINg YOUT OWI SCIIPES...ccvieieiieeiieeitieeiteesteeete e et e e see e aeesaeeesasesesaesssseessseesnsaennnes 19

Chapter 5 Programming Cardpeek SCIiptS.......cecueeereeeiieieiieenieeeriieeceeeeeeeeseeeeceeeeseeeeeneens 20

[o35 B 5 21 (0 TR0 o) [FO SRR 20
5.2 Basic communication with a sSmart Card.........ccceeeeeeeeeeiiiiiiiiiiireeeeeeeeeeeeeeeeeeene 21
5.3 Representing card data in a tree Structure.........ccoeecvveeeecieeiecieeecceeeccree e 22
Chapter 6 Development LIDrary.........ccccceeieeiieriirnienieeeeeteeeeet ettt 24
6.1 the DIt HIDTATY...coeiiiiiiiee ettt 24
(T U o) 1 902N\ O TSRS 24
6.1.2 DILLOR ...ttt et e e e e e et e e e et a e e e ba e e e nae e e e naeeeesaaeeensraeeannns 24

6. 1.3 DILXOR...ceieiiieieeiee ettt eertre e e e e eseareee e e eesasbeeessesssasaeeeeeessssseeesennnsaeeas 24
6.1.4 DIE.SHL(A,B) oot iieteieeee ettt cettte e ceearte e e e eesarteeeeeessssseeeseessssssseessessssseesessnns 25
6.1.5 DIE.SHR . ..coiiiireeee ettt eetre e e e e e raee e e e e e sraeee e e e sssaseeeeeenssaneeeeeennnnneeas 25
6.2 The DYtes HIDTaATYccieiiiieciieeccteecctee ettt sre e s ae e e e ae e e s aa e s s aaaeeenes 25
6.2.1 Operators 0N DYteStriNgS.....ccceeverrierrirriirrieeieeeeeeee ettt 26
6.2.2 DYLES.APPEINA. ..ccuuiiiiieiiiiieiteeteete ettt ettt sttt et et sa e eae s 26
6.2.3 DYLES.ASSIZN .uueiiiiiieeieeieeiterteeteet ettt et e st e st e e bt et e st e st e st e e st e s st e st e s seeneas 27
6.2.4 DYLES.CIOME.etiiiiecieeeteetecctt ettt et se et e e s te s e be e s sae e e sae s saeessseaessaennns 27
6.2.5 DYLES.COMNCAL....ccuriieiieeiieeiieecteeeteee it e e teeesee e ee e e saeeeteeesseeessaeeenseeessaeessesnnsesnnees 27
6.2.6 DYLES.CONMVETT...cccurieiiieeiiieeeteeeieeeiteeeceeesteeeaeessteeessseeesaeessseesseessssessssessssssssssannns 28
6.2.7 DYLES.fOTINAL....ccuiiieiiiriiieiececee ettt et s e e s b e 28
(SIP IR T o) A 1IN | 4 1<) o SRR 29
6.2.0 DYLESATNIVET L ... eiiiiieieiiieciieecieete ettt e ste e ste e s te e st e e s te s s baessaaessseessssaeenseasnssens 29
6.2.10 bytes.is_Printable.......c.ccooiiiiiiiiiiiiiiee e 30
6.2.11 DYEESIMAXI..c.utiiiiiiieiieeieeteeee ettt ettt ettt e s e e s te s ae s bt e saeesate st e sseeseenees 30
6.2.12 DYTES.TIEW....cnuiiiieiieieeiteeteet ettt ettt et at et e st e st e s beesaeesat e s st e sasesneas 30
6.2.13 bytes.new_from_ CharS........ccccueeeiieriiecieeeece et 31
6.2.14 DyteS.paAd_Left...ccuviieiieeieeeeeeeee et 31
6.2.15 bytes. PaAd_TIZht...cccuiiiiiiiieiieieerteete ettt 31
6.2.16 DYLES.TEITIOVE. ...cecuvreeieiieeieiteeeeiteeeeeteeeestteeessaeeesssseessssseeesssssssssssaessssssessnsseens 32
6.2.17 DYTES.SUD....eiiiieeitectect ettt et a e s a e et e s ae e s ae e e ane s 32
6.2.18 4.3.17 tONUIMDET.....ccoieiiiieieeccteeeeee et cte e e eae e e e aa e e e aae e e aaeas 33
6.2.19 bytes.toprintable.........cooiiriiriiiiiiie e 33
6.2.20 DYtES.WIAth....ciciiiiiiiiieeeecteceee e sa e s as 33
6.3 The aSNT HIDTATY.....oiiiiiecieeieeeeecee ettt e e e et e e s rve e s sbe e e aae e saeeeaaeens 34
6.3.1 asni.enable_single_byte_length..........cccccoeeiiiiriiiiiiinciieecceeceeee e, 34

(SR T F: 1530 b 0 [0 1 o OSSR 34

(SR TR I 153 0 5 1] o) § 1 S USSR UTRRRIPRRN 35
6.3.4 asN1.SPlit_length.......ccociiiiiiiiiiiiee e 35
6.3.5 ASNT.SPLE TG ..viiiciiiieieiiieeceeetee ettt e re e e ae e s st e s ae s ae e e aae s 36

6.4 The Card HDTATY......ccccuiieieecieeceeeeeee ettt e e rtr e e eate e s saeeesbeessaae e saeeesaeens 36

6.4.1 CATA.COMIECE. .. uuvvrreeeieeitiieeeeeeiirreeeeeeiareeeeceesarreeeeeessrereeeeesssssseeeeessansseeesessnnsses 37
6.4.2 CATA.AISCOMIECT....uuueeieeiieeeeeiiiiieieitrerree e eeeeeeeeeeeessssssssssssssseereeeeeesesesessssssnssnns 37
6.4.3 card.get_data.......cc.eeiiiiiieiiiecc e e ae e e aaeean 37
6.4.4 CATAANTO...cccciiieeeiieeceeecee ettt e e e ree e e e rre e e e ae e e e naaeeenns 38
6.4.5 CATA.AST_ALT...cccciiieiceeeceee e e e e rae e e 38
6.4.6 card.make_file_path.......cccceeeiiiiiiiriieeeecee e 38
6.4.7 CATd.T€AA__DINATY....cccuiiiiieeeieieiteeereeecteeeteeete e et eesaeeeteesaeeestaesssaeessseessseessseens 40
6.4.8 CArd.T€AA_TECOTA.....uvveeiiiieiieeieeieeieeeee ettt e e eesaar e e e e e esaareeeeeessassseeseens 40
6.4.9 CATA.SEIECL.....uvvveeiieeiereeee ettt e e eee e e e e e e eesabbseeeeeessssassesesssssseeseenns 41
6.4.10 CATA.SEII......cceiiiiiiiiiiitteeeeeeeeee e ceceeee e e e e e e eeeeeeessssssssssssssrseeeeeeeesesessnnns 42
6.4.11 CATA.WATTIL_TESEL..eeviiiiiiiiiiiiiiiittitetteee e eeeeeeeeeeaaraarrerreeeeeeeeeesesesessnssssssssnes 42
6.5 The Crypto LIDrary...cooeieiiieee ettt 42
6.5.1 Crypto.create_ CONTEXT....cociuiiiiiiiiiiiieeeectteeee et e e e s enee e e e e e 42
6.5.2 CIYPLO.AECTYPL. eeeeieieiieeiieeieeeteeete ettt es e e s te e e tee s teeesaeeesaeeessaesssaessnsasnssaeas 44
6.5.3 CIYPLO.AIZEST.cnevieiiieiiiecteeeceeecte ettt sre et e e s ee e s ae e e sae e s aaeessneesssaeenns 44
6.5.4 CTYPLO.EINICTYPE. ceiiiieieieeeeerrrreee et eeeeeerrrreeeeeeee s e s e s s e s s sssasnsnnnneeeeaaeeeens 44
0.5.5 CTYPLOIIIAC ceeeteeeeeiiiiierereeeeeeeeeeeeeeeesaennnnnrrrereeeeeesssesssssssssnsnsnssssneeesessessssnsassnnns 45
6.6 The Ul LIDTATY..ccccueiiiieiieecceeeee ettt e e e e s rre e s e te e e s va e e e raeesessaaaennns 45
6.6.1 UL QUESTION....eieieiieieeiieeeciteeeecteeeeeteeeeetteesestreeessaaeesessaaeessssaeessssaessnssssessssseessnnns 45
6.6.2 UL.TEAALINE.eeeieiiieeceeeceeeccte et ee e e e te e e e aee e s e raeesesaee s e saae s e naaeannns 46
6.6.3 Ui.tree_add_NOAE.....ueeieeeeirieeeeeeeteeee et erraaeeeeeas 46
6.6.4 Ui.tree_Child_NOAE......cccoeiueiiieiiiiiieeecceeee e e e 47
6.6.5 ui.tree_delete_NOdE.......ccccuuieeeeiiieeieeeccieeecee e e e e e e eans 47
6.6.6 ui.tree_find_all NOAES.......cciiievriiiiiiiieeeccceteec e saaa e e e eenaes 47
6.6.7 ULIree_ fINA_ NOAC....ccciiiieriiiiiiieiiiieecccetteee ettt eearr e e e eessraeeeeeeennns 48
6.6.8 ui.tree_get_alt_ Valle........ceeeciiiiiiiiecceeccceece e rae e 48
6.6.9 ui.tree_get attribUte.......cciceiieiiiiiecceeee e 48
6.6.10 UL.ree_Zet_NOAE.....uiiiiieeiiieiieeie ettt se e e sae e s sae e s aaessaaessaeaas 49
6.6.11 Ui.tree_ get VAlUC......covvuiiiiiiiieiieceecctccte ettt et e aa s 49
6.6.12 ULETEE_L0AM......cccutriieiieeiiieee ettt ceerre e e eeeaare e e e eeeasraeeeeeeesnsaeeeeenns 50
6.6.13 Ui.tree_NEXt_ NOAE......cceceiueieeeirieeeeieeeeceeeeecteeeeeteeeeeaeeeeeseeeeeseeeeesseesssssaesnnns 50
6.6.14 Ui.tree_parent_NOAE.......ccccueeeeiieeeiieeeieeciieecie et e eeee e ae e s reeesaaeesraeesaeeennas 50
6.60.15 ULEITEE__SAVE....uueereerieiiieeeeeeeeeiiiieieeirtrrrreeeeeeeeeeeeeesesssssssssssssssssesseeeesesesssssssssssssns 51
6.6.16 ULITEE SEL At VAU ceue ettt e e e eetaeeeeseeeaaanneaaees 51
6.6.17 Ul.tree_Sel attTIDULE.....ccciiiiiiieteeteeee e aaaaneees 51
6.6.18 ULLTEE _SEL VAIUC...uueeeeiiiieiiiiiiieeeeeeeeeeeeeeeee e e e e e e e e e e e e sanas 52
6.6.10 UI.ITEE_TO_XIM.ueiiiiiiiiiiiiiiieeiiiieee ettt e eeerree e e e eearaeeeeeeesnseeeeeeennnneeas 52

6.7 The 10Z LIDTATYccciiiiieeieeceeete ettt re e ve e e e e s saae e s sbe e s saeesae e saaennnaas 52

(325 B (0 T-38 o) v 1 1 USROS 53

6.8 Other LIDTATIES. ...ceeeieeeiriieeeeeeiteeee et e e eeeetre e e e eeeeareeeeeeeessaseeeesssssasesesesssssnsessnnnnns 53
6.8.1 The treeflex LIDTary.....cccuiiieciiieeiieecte et re e e eae e e ae e 53
6.8.2 The country_codes and currency_codes libraries........ccccceceeeveerveernenncencennen. 53
6.8.3 The €N1545 lIDTaTy....cccveiiviiiiieiieceecceectece ettt sae e s ae s b e 53
6.8.4 The StriCt IIDIary.....cccveeeieieiieeieecteeeeeeeceee e re e saae s aae e s 54
6.8.5 The tIv LIDTary......coieeieeiieeeeeeeee ettt sa e e ee e e sae e 54
Chapter 7 File fOrmat........cocciiieiiiiieciecceeeeeeee ettt et e ee e aeesae e e sra e e rae s saeesnnaens 55
CRAPLET 8 LICEIISE. ...uuveieuieeeiieeiieeeteeecieeeette ettt e s teeestaeesseessseessaesssaesssseesseesssaesssseessesnsssennns 57

Chapter 1

Presentation

CARDPEEK is a program that reads the contents of smartcards. This open-source tool has
a GTK GUI and can be extended with the LUA programming language. It requires a
PCSC card reader to communicate with a smartcard.

Smartcards are becoming ubiquitous in our everyday life. We use them for payment,
transport, in mobile telephones and many other applications. These cards often contain a
lot of personal information such as, for example, our last purchases or our last journeys
in public transport.

CARDPEEK’S goal is to allow you to access all this personal information. As such, you
can be better informed about the data that is collected about you.

CARDPEEK explores ISO 7816 compliant smartcards and represents their content in an
organized tree format that roughly follows the structure it has inside the card, which is
also similar to a classical file-system structure.

In this version, this tool is capable of reading the contents of the following types of
cards:

 EMYV "chip and PIN" bank cards used in many countries throughout the world;

» Electronic/Biometric passports, which have an embedded contactless chip (a
contactless reader is required);

» Navigo transport cards used in Paris and other Calypso cards used elsewhere;
» Vitale 2, the French health card.
It can also read the following cards with limited interpretation of data:

* Some Mifare cards (such as the Thalys card);

Chapter 1 Presentation 6

* Moneo, the French electronic purse;

e GSM SIM cards.

Some important card types are missing or need further development, however, this
application can be modified and extended easily to your needs with the embedded LUA
scripting language. For more information on the LUA project see
http://ww. | ua. org/.

This software has been tested with traditional PCSC card readers (such as the
Gemalto™PC TWIN) as well as contactless or dual-interface PCSC readers (such as the
Omnikey™5321). Support for the ACG™Multi-ISO contactless card reader is still
experimental but has been reported to work well for traditional ISO 7816 compliant
cards.

Chapter 1 Presentation 7

Chapter 2

Installation

CARDPEEK is designed to work under GNU/Linux with GTK+ and has been successfully
ported under Windows XP.

CARDPEEK can be compiled from source using confi gur e and nake. It has currently
been tested under Linux Debian version 5 and 6 (both i386 and amd64), Ubuntu 11.4
and Fedora 15. It has been reported to compile and work under FreeBSD as well.

The Windows XP version is distributed as a self installing binary package. It can also
be compiled under MinGW/MSYS with the custom Makefile provided in the source code
(Makefile.win32).

Of course, you will need a smartcard reader to take full advantage of this software!

2.1 Compiling and installing under Linux

Instructions:

1. Make sure you have the following development packages installed:
o libgtk+ 2.0, version 2.12 or above (ht t p: / / www. gt k. or g)
o libluas.1(http://ww. | ua. org)
o libpesclite (http://pcsclite. alioth. debian.org/)
o libssl (htt p://ww. openssl . org/)
2. Unpack the source if needed and change directory to the source directory.
3. Type‘./configure’
4. Type ‘make’

Chapter 2 Installation 8

5. Type ‘make install’ (usually as root) to install install CARDPEEK in the proper
system directories.

Notes:

1. On a Debian/Ubuntu system, these necessary packages are all available through
package management tools such as apt / apt i t ude.

2. The last step (make i nstall) is optional, as you can run CARDPEEK directly from
the source directory.

2.2 Installing under Windows XP

Instructions:

1. Download the self installing binary setup program (cardpeek- x. xx-w n32-
set up. exe where x. xx is the version number of CARDPEEK).

2. Follow the instructions.

CARDPEEK can also be compiled from source with MinGW/MSYS, but this is a more
complicated approach due to some current shortcomings of the windows port. You
should use the dedicated Makefile (nake -f Makefile.w n32) and manually copy the
contents of the dot _car dpeek_di r/ from the source into the directory %JSERPROFI LE
% . car dpeek directory).

2.3 Related files and initial setup

In the following discussion, the terms “home directory” will refer to the traditional home
directory on a Linux system (as indicated by the $HOME environment variable) or the
9ASERPROFI LE%directory on a MS-Windows systems.

The first time CARDPEEK is run it will attempt to create the . car dpeek/ directory in your
home directory. This is normal. For Windows XP users this directory will be created
during installation.

The . car dpeek/ directory will contain 4 elements: confi g. | ua, the scripts/ and
| og/ directories and a versi on file. The config.lua allows you to run commands
automatically when the program starts (it should become a full fledged ‘config file’ in the
future). The scri pt s/ directory contains all the scripts that allow to explore smartcards.
These scripts are LUA files (such as “env. | ua” or “cal ypso. | ua”) and all show up in the
‘analyzer’ menu of CARDPEEK (without their extension ‘.| ua’). If you add any LUA file to
this directory, it will therefore also appear in the menu. The scri pt s/ directory contains
three subdirectories: |i b/, etc/ and cal ypso. |ib/ and etc/ hold a few LUA files
containing frequently used commands or data items that are shared among the card

Chapter 2 Installation 9

processing scripts. cal ypso holds country and region specific scripts for calypso cards.
The | og/ directory is used to save data for card emulation purposes.

Each time the program runs, it creates a file . car dpeek. | og in your home directory.
This file contains a copy of the messages displayed in the “log” tab of the application (see
next chapter).

2.4 Choosing a smartcard reader

There are many smartcard readers available on the market, and their compatibility with
different contact or contactless cards, will depend on many parameters, such as:

* The OS you are using (Linux, Windows, 32bit or 64bit, etc.)

* The smartcard driver on the OS.

» The firmware of the smartcard reader.

* The smartcard itself.

As an example, the OMNIKEY 5321USB dual-interface reader comes into at least 2
firmware versions. Under MS Windows, a reader with firmware 5.10 fails to connect with
some Calypso e-ticketing cards through the contact interface, but works under Linux
with default PCSC drivers. Under linux, the contactless interface only seems to work with
the OMNIKEY drivers and fail to operate with the PCSC standard drivers.

Because of all these reasons, to our best knowledge there is no perfect smartcard
reader.

The following smartcard readers have been used during the development of CARDPEEK
and are provided here as an indication (without any guaranty):

¢ The OMNIKEY 5321USB, with firmware 5,10.
» The BRoADCOM BCM5880 reader (only MS Windows).

 The GEMALTO PC Twin USB reader (with poor EMV card support under MS
Windows).

Chapter 2 Installation 10

Chapter 3

Using CARDPEEK

cardpeek + - 0O X

i reader | logs
@ & & e

Analyzer Clear Open Save About Quit
Items Size Interpreted value 3
< @B ATR

-0 cold ATR 9 3FE5250846046C9000h

#2 cornmand;
0017 INFO Disconnected reader

Figure 1: Main window of CARDPEEK.

3.1 Quick start

To experiment with CARDPEEK, your may start with your EMV “PIN and chip” smartcard
for example, by following these steps:

1. Start car dpeek.

2. Select your PCSC card reader in the first dialog box.

Chapter 3 Using Cardpeek 11

3. Insert your EMV “PIN and chip” card in the card reader.
4. Select emv in the analyzer menu. This will run the default emv script.

5. View the results in the “card data” tab.

On many bank cards, you will discover a surprising amount of transaction log data (scroll
down to the “log data” in the card view).

3.2 User interface

The user interface is divided in four main parts: 3 tabs and a one-line command input
field.

Figure 2: The 3 main tabs of CARDPEEK

Each one of the 3 tabs proposes a different view of card related information:

» Card view: shows card data extracted from a card in a structured tree form.

* Reader: shows raw binary data exchanged between the host PC and the card
reader.

* Logs: displays a journal of application events, mainly useful for debugging
purposes.

3.3 Card view

The card view tab is the central user interface component of CARDPEEK.

It represents the data extracted from a card in a structured tree from. This tree
structure is initially blank and is entirely constructed by the LUA scripts that are
executed (see Chapter 4). This tree can be saved and loaded in XML format (see Chapter
7) using the buttons in the toolbar.

The card view tab offers the following toolbar buttons:

Anal Clicking on this button spawns a menu from which an card
Hayze analysis script can be chosen (see next chapter).
Clear This button clears the card view.
0 This button allows to load a previously saved card view from an
pen XML file.
Save As This button allows to save the current card view into an XML file.
About This button displays a very brief message about CARDPEEK.
Quit This button quits the application.

The card view data is represented in 3 columns. The first column displays the nodes of

Chapter 3 Using Cardpeek 12

the card tree view in a hierarchical structure similar to a typical file directory tree
browser, where each node has a name, composed of a label and an ID. The second
column displays the size of the node data, most frequently expressed in bytes. Finally, the
third column displays the node data itself. The node data can either be represented in
“raw” (hexadecimal) form or in a more user friendly interpreted “alternative” form, such
as a text, or a date for example. By default, the card view will display node data in an
interpreted “alternative” format if it exists. By clicking on the third column title, it is
possible to switch between both“raw”and interpreted “alternative” data representations.
The card view tab has a right-click activated context menu featuring two commands:

This expands the contents of the tree structure starting
expand all . 11
from the currently highlighted node.
show raw value This is equivalent to clicking on on the third column title to
or switch between both “raw” and interpreted” data
show interpreted value |representations.

3.4 The reader tab

The reader tab displays the raw binary data exchanges between the card reader and the
card itself. This data is composed of card command APDUs", card response APDUs and
card reset indicators. Command APDUs are represented by a single block of data, while
card responses contain two elements: a card status word and card response data.

One interesting feature of the card reader tab is the ability to save the APDU
exchanges between the card reader and the smartcard in a file that can later be used to
emulate the card. Once this data is saved in a file (with the . cl f extension) and placed in
the . car dpeek/ | og/ folder, it will appear as a choice in the smartcard reader selection
window that appears when CARDPEEK is launched. The name of the file will be prefixed by
“emul at or: //” in the card selection window. Selecting such a card data file allows to re-
run the script on the previously recorded APDU/response data instead of a real
smartcard inserted in the reader. This is very useful for testing and debugging card
scripts without relying on a real smartcard inserted in the reader.

The reader tab offers the following toolbar buttons:

This button establishes a connexion between the card and the card
Connect
reader.
Reset This button performs a warm reset of the card.
) This button closes the connexion between the card and the card
Disconnect reader

1 APDU: Application Protocol Data Unit, a sequence of bytes describing a message exchanged between
the smartcard and the reader.

Chapter 3 Using Cardpeek 13

Clear This button clears the APDU/response data displayed in the window.
This button allows to save the displayed APDU/response data, either

Save as for future examination or to be replayed as an emulation of a real
card.

“Connect”, “Reset” and “Disconnect” operations are usually automatically done by the
card scripts. However, it is occasionally useful to manually force the execution of these
commands.

3.5 The logs tab

The logs tab keeps track of messages emitted by the application or the script being run.
These messages are useful for monitoring and for debugging purposes. The last message
also appears at the bottom of the screen in the status bar.

3.6 The one-line command input field

The one-line command input field at the bottom of the window allows to type LUA
commands that will be directly executed by the application. This is useful for testing
some ideas quickly or for debugging purposes.

3.7 Card-reader selection upon start-up

When the program starts, you’'ll be asked to choose a card reader. This will give you 3
main choices :

1. Select a PCSC card reader to use: You may have several of PCSC card readers
attached to your computer. Card-readers are usually identified by their name,
preceded by pcsc://.

2. Select a file containing previously recorded smartcard APDU/response data:
This allows to emulate a smartcard that was previously in the reader, and is quite
convenient for script debugging purposes. Each time an APDU is sent to the
emulated card, CARDPEEK will answer with the previously recorded response data
(or return an error if the query is new). Files containing previously recorded
APDU/response data are identified by a file name, preceded by enul ator://.

3. Select “none”: Selecting none is useful if you do not wish to use a card reader at all,
for example if you only want to load and examine card data that was previously
saved in XML format.

Chapter 3 Using Cardpeek 14

Chapter 4

Card analysis tools

i

Analyzer

E?j atr

i calypso

Eil emy

ETEI e-passport
7 gsm (beta)
i) mifare reader

Eil moneo
i) vitale 2

[Load a script Ctrl+0

Figure 3: The Analyzer
menu

As shown on Figure 3, CARDPEEK provides several card analysis tools, which all appear in
the "Analyzer" menu. These tools are actually “scripts” written in the LUA language, and
CARDPEEK allows you to add your own scripts easily. Though you are unlikely to damage a
smartcard with these tools, these scripts are provided WITHOUT ANY WARRANTY.

Chapter 4 Card analysis tools 15

4.1 atr

4.1.1 Overview

This script simply prints the ATR (Answer To Reset) of the card.

4.1.2 General notes

This is a very basic script that should always work.
In the future this script will be enhanced with a detailed analysis of the ATR.

4.2 Calypso

cardpesk 4+ - 0O X
reader | logs
® & B i
Analyzer Clear Open Save About Quit
ltems Size Interpreted value &3 (<
~ @] Event logs, parsed 2010
= [record 1 29 4BOA4FIOOOEEAZO019120A08A000B82000000000OOCCOOORA0
Lo EventDate 0 = 24.02.2010
Lo EventTime 1 = 19:42:00
< Lo Event 2
Lo (EventBitmap) 0010000000000000110100010100b
Lo EventCode 2 =Train - Exit
Lo EventServiceProvider 4 > RATP
Lo EventLocationid 8 > secteur 17 - station La Défense (Grande Arche)
Lo EventDevice 10 = 0x4114
La EvrantDantabhlnmbar 11 =17 |E|
| I [»]
command:
0139 INFO Disconnected reader

Figure 4: Reading a Navigo card (Paris)

4.2.1 Overview

This script provides an analysis of Calypso public transport cards used in many cities.

4.2.2 Implementation notes

The following calypso cards have been reported to work with this script: Navigo/Paris,
MOBIB/Brussels (partial support), and Korrigo/Rennes.

You will notice that these transport cards keep a “event log” describing at least 3 of the
last stations/stops you have been through. This “event log”, which could pose a privacy

Chapter 4 Card analysis tools 16

risk, is not protected by any access control means and is freely readable.

For Navigo cards, this script provides enhanced “event log” analysis notably with
subway/train station names, as illustrated in Figure 4. It has been successfully tested on
Navigo Découverte, Navigo and Navigo Intégrale cards.

You must use the contact interface to read a Navigo card, because they cannot be read
with a normal contactless card reader (these cards use a specific protocol that is not fully
compatible with ISO 14443 B).

The script also reads MOBIB cards used in Brussels, with enhanced “event log”
analysis. One unusual feature of the MOBIB card is the possibility to access the name and
date of birth of the card holder. MOBIB cards are fully compatible with ISO 14443 card
readers.

The calypso script reads all the files it can find on the card and extracts the raw binary
data it finds. The interpretation of that binary data varies from country to country, and
even from region to region.

Once the data is loaded, the script attempts to automatically detect the country and
region the card comes from. The country is identified by a number following ISO 3166-1,
but without leading zeros. The region code is also a numerical value. The script will then
look into the cal ypso directory for a script called “cXXX. | ua” where XXX represents the
country code. If found, this extra script will be executed. Next the main script will look
again in the cal ypso directory for a script called “cXXXnYYY. | ua” where XXX represents
the country code and YYY the region code. If found, this script will also be executed.

Currently country/region detection is based on some simple heuristics and does not
work for all calypso cards.

Programmers wishing to tailor the behavior of the calypso script to their own country
or region can thus add their own file in the cal ypso directory.

4.3 emv

4.3.1 Overview

This script provides an analysis of EMV banking cards used across the world.

4.3.2 Implementation notes

This script will ask you if you want to issue a Get Processing Option (GPO) command for
each application on the card. Since some cards have several applications (e.g. a national
and an international application), this question may be asked twice or more. This
command is needed to allow full access to all freely readable information in the card. As a
side effect, issuing this command will increase an internal counter inside the card called

Chapter 4 Card analysis tools 17

ATC (Application Transaction Counter).

You will notice that many of these bank cards keep a “transaction log” of the last
transactions you have made with your card. Some banks cards keep way over a hundred
transactions that are freely readable, which brings up some privacy issues.

4.4 e-passport

4.4.1 Overview

This script provides an analysis of data in a electronic/biometric passport, through a
contactless interface.

You will need to enter the second lower line of the MRZ (Machine Readable Zone)
data on the passport, as underlined in red in the example below.

B P<CZ ESPECIHEN<<VZOR<<<<<<<(<<<<<<<-€<<‘<<<<<<<
99006000<8£2E 11 02299F160906§1 1 52291 1 1 1 <<<%2

Flgure 5: The MRZ ofa passport (source: Wikipedia)

4.4.2 Implementation notes

This script implements the BAC (Basic Access Control) secure access algorithm to access
data in the passport. It will not be able to access data protected with the EAC (Enhances
Access Control) algorithm. When the script starts, you will be required to input a
minimum of 28 characters from the beginning of the second lower line of the MRZ
(Machine Readable Zone) data on the passport. This data is needed to compute the
cryptographic keys used in the BAC algorithm.

This scripts attempts to parse biometric facial and fingerprint image data. Normally
however, fingerprint data is not accessible through BAC and requires EAC.

4.5 moneo

4.5.1 Overview

This scripts provide a (limited) analysis of MONEO electronic purse cards used in
France.

4.5.2 Implementation notes

The provided output is very "raw".

Chapter 4 Card analysis tools 18

4.6 vitale 2

4.6.1 Overview

This script provides an analysis of the second generation French health card called
“Vitale 2”.

4.6.2 Notes

This analysis is based on a lot of guesswork and needs further testing. Some zones,
notably the one containing the cardholder’s photography, seem protected: this is a good
design choice in terms of privacy protection.

4.7 Adding your own scripts

Adding or modifying a script in CARDPEEK is easy: simply add or modify a script in the
$HOME/ . car dpeek/ scri pts/ directory (or %JSERPROFI LEY . car dpeek/ scri pts/ for
Windows XP users).

On Linux systems, if you want to go further and make a script permanently part of the
source code of CARDPEEK for further distribution, you should follow these additional
steps:

1. Go to the directory containing the source code of CARDPEEK.
2. Execute the updat e_dot _car dpeek_di r. sh script

(e.g. type “. updat e_do_car dpeek. sh”)
3. Run make to rebuild CARDPEEK.

4. The new created binary “car dpeek” will now contain your new scripts.

On MS Windows systems, you will need to manually copy your scripts form
94JSERPROFI LE% . car dpeek/ scri pts/ to the dot_cardpeek_dir directory in the
source code, before recompiling CARDPEEK.

Chapter 4 Card analysis tools 19

Chapter 5

Programming CARDPEEK scripts

The individual scripts that allow to process different types of smartcards are located in
your $HOVE/ . car dpeek/ scri pt s/ directory or %JSERPROFI LEY% . car dpeek/ scri pt s/
for MS Windows. These scripts are written in LUA, a programming language that shares
some similarities with Pascal and Javascript. To allow LUA scripts to communicate with
smartcards and to manipulate card data, the LUA language was extended with custom
libraries. This section provides an introduction to the CARDPEEK scripting facilities.

5.1 Helloworld

The simplest CARDPEEK script is probably this one:

ui.tree_add _node(nil, "item', “Hello world")

You can directly type it in the “Command:” input zone at the bottom of the CARDPEEK
GUI. Alternatively you can create a hell o_world.lua file in the script directory
(indicated above), and copy that one line of script in that file. Once the file is saved, if you
start CARDPEEK, “hello world” should appear in the “Analyzer” menu. One click on “hello
world” in the menu will execute the script, providing the result shown in Figure 6.

The above script is very simple, it creates a node in the tree view area of CARDPEEK and
assigns the label “Hello world” to it. The first nil value that is passed to the
ui . tree_add_node() function describes the parent node to which we add a new node.
Since we are actually creating the first node in the tree, there's no parent, so we simply
put ni | . The second value “i t enf that is passed to the ui . tree_add_node() function
describes the class of the node. You can replace that value by the strings “card” or
“bl ock” : this will change the icon that is used to display the node.

Chapter 5 Programming Cardpeek scripts 20

q-

card view | reader | logs

@ —
B = B H
Analyzer Clear Open Save

lterms Size Interpreted Valu

Lo Hello world

Figure 6 Hello world.

5.2 Basic communication with a smart card

Here’s a short LUA script that demonstrates how to get and print the ATR (Answer To
Reset) of a card in the card view.

card. connect ()
atr = card.last_atr()

if atr then
mycard = ui.tree_add_node(nil,"card","My card")
ref = ui.tree_add_node(nycard, "bl ock","Cold ATR',nil, #atr)
ui.tree_set _value(ref,atr)

end

card. di sconnect ()

The fist command card. connect () powers-up the card in the card reader and
prepares the card for communication. Next card. | ast _atr() returns the ATR of the
card. If the value of the ATR is non-nil, the script creates a node called “ATR”, with a call
to ui.tree_add_node(). This node will appear at the root of the card data tree-view. A
child node called “cold ATR” is added to the root “ATR” node. The hexadecimal value of
the ATR is associated with the child node. Finally, the card is powered down with the
card. di sconnect () function.

The final output of the script should have roughly the following structure (though the
value of the ATR will likely be different):

< g8 My card

-0 Cold ATR S 3FE5250846046C90000
Figure 7: Displaying the ATR

Chapter 5 Programming Cardpeek scripts 21

The example above is equivalent to the “atr” script provided with CARDPEEK. The LUA
language is easy to learn and we refer the reader t o htt p: // wwv. | ua. or g/ for more
information.

5.3 Representing card data in a tree structure

The data displayed in the card view of CARDPEEK follows a tree structure, as illustrated in
Figure 8.

[Cessname] [Label] [Id] [5=2] [Val] [Alt] [
| | | | | | |

e s e s

e o e e f =

| s o e s

e s [e e f s

e e e Y s

e e o

| s e s

Figure 8: The tree structure of the card view

Each node has the following attributes that influence the display of data in the card view:

* A classname: describes the icon that will be associated with the node in the first
column of the card view.

e A label: describes the name of the node, in bold, in the first column of the card
view.

* An Id: describes the Id associated with the node, following the label, in the first
column of the card view.

» A size: the size of the data associated to the node, displayed in the second column

Chapter 5 Programming Cardpeek scripts 22

of the card view.
* A value (val): the data associated to the node in raw binary format, displayed in
the third column of the card view.
* An alternative value (alt): the data associated to the node in an interpreted
format, displayed in the third column of the card view.
All these attributes are optional. Moreover, script programmers can create new attributes
as they wish for their own use, though only the ones above influence the display of
CARDPEEK. Attributes are set through functions such as ui . tree_set _attri bute() and
ui .tree_set _val ue() as described in section 6.6 .
The tree itself is built with functions such as ui . t ree_add_node() already described
in the previous examples in this chapter.
CARDPEEK provides many other functions to create, remove, alter and find nodes in a
tree, all described in section 6.6 .

Chapter 5 Programming Cardpeek scripts 23

Chapter 6

Development library

This chapter describes the LUA libraries of functions that are used in CARDPEEK scripts.

6.1 the bi t library

Since LUA does not have native bit manipulation functions, the following functions have
been added. They all operate on integer numbers.

6.1.1 bit. AND

SYNOPSIS
bi t . AND(A, B)
DESCRIPTION

Compute the binary operation A and B.

6.1.2 bit.OR

SYNOPSIS
bit. OR(A B)
DESCRIPTION

Compute the binary operation A or B.

6.1.3 bit.XOR

SYNOPSIS
bi t . XOR(A, B)

Chapter 6 Development library 24

DESCRIPTION

Compute the binary operation A xor B.
6.1.4 bit.SHL(A,B)

SYNOPSIS
bit. SHL(A, B)
DESCRIPTION

Shift the bits of A by B positions to the left. This is equivalent to computing A*25,
6.1.5 bit.SHR

SYNOPSIS
bit. SHR(A, B)
DESCRIPTION

Shift the bits of A by B positions to the right. This is equivalent to computing A/2°®

6.2 The byt es library

The byt es library provides a new opaque type to LUA: a bytestring, which is used to
represent an array of binary elements.

A bytestring is mainly used to represent binary data exchanged with the card reader in
the application.

The elements in a bytestring array are most commonly bytes (8 bits), but it is also
possible to construct arrays of (4 bit) half-bytes or arrays of individual bits. All elements
in a bytestring have the same size (8, 4 or 1), which is referred as the “width” of the
bytestring. The width of each element is specified when the array is created with the
function bytes.new() described in this section. A function to convert between
bytestrings of different widths is also provided.

Individual elements in a bytestring array can be accessed the same way traditional
arrays are accessed in LUA. Thus, if BS is a bytestring the following expressions are valid:

BS[0] =1
print(BS[0])

Contrary to the LUA tradition, the first index in a bytestring is 0 instead of 1. The number
of elements in a bytestring is indicated by prefixing the bytestring with the “#” operator,

Chapter 6 Development library 25

just as with an array (e.g. #BS).

A bytestring cannot be copied like an array with a simple assignment using the “="
operator, the byt es. assi gn() function or the byt es. cl one() function must be used
instead.

The functions of the byt es library are described hereafter.

6.2.1 Operators on bytestrings

9 _

The operators that can be used on bytestrings are “. . 7, “==", “~=" and “#”

SYNOPSIS
A .B
==B
A~=B
#HA
DESCRIPTION

The “. . ” operator creates a new bytestring by concatenating two bytestrings together.
The concatenation operator also works if one of the operands is a string or a number, by
converting it to a bytestring first, following the rules described in the byt es. assi gn()
function. Writing A. . Bis equivalent to calling the function byt es. concat (A, B).

The “==" and “~=” operators allow to compare two bytestrings for equality or non-
equality respectively. To be equal, two bytestrings must have the same width and the
same elements in the same order.

Finally the “#” operator returns the number of elements in a bytestring.

6.2.2 bytes.append

SYNOPSIS
byt es. append(BS, value, [, value,, ..., valuey])
DESCRIPTION

Append a value to BS.

The appended value is composed of value,, optionally concatenated with any
additional values value,, ..., valuey (from left to right).

This function is equivalent to byt es. assi gn(BS, BS, value, [, value,, ..., valuey]) .
See byt es. assi gn() for further details.

This function modifies its main argument BS.

Chapter 6 Development library 26

RETURN VALUE

This function returns t r ue upon success and f al se otherwise.
6.2.3 bytes.assign

SYNOPSIS
byt es. assi gn(BS, value, [, value,, ..., valuey])
DESCRIPTION

Assigns a value to BS.

The assigned value is composed of val ue, optionally concatenated with any additional
values value,, ..., valuey (from left to right).

Each val ue can be either a bytestring, a string or a number. If val ue is a bytestring,
each element of val ue is appended to BS, without any conversion.

If val ue is a string, it is interpreted as a text representation of the digits of a bytestring
(as returned by the t ostri ng() operator). This string representation is interpreted by
taking into consideration the width of elements of BS and is appended to BS.

If val ue is a number, it is converted into a single bytestring element and appended to
BS.

This function modifies its main argument BS.
RETURN VALUE

This function returns t r ue upon success and f al se otherwise.

6.2.4 bytes.clone

SYNOPSIS
byt es. cl one(BS)

DESCRIPTION
Creates and returns a copy of BS.
RETURN VALUE

This function returns a bytestring upon success or ni | if it fails.

6.2.5 bytes.concat
SYNOPSIS
byt es. concat (value,, value,, ..., valuey)

Chapter 6 Development library 27

DESCRIPTION

Returns the concatenation of value, , value,, ..., valuey (from left to right).
For the rules governing the processing of value, [, value,, ..., valuey], see the
byt es. assi gn() function above.

RETURN VALUE

This function returns a bytestring upon success and ni | otherwise.

6.2.6 bytes.convert

SYNOPSIS
byt es. convert (w, BS)

DESCRIPTION

Converts BS to a new bytestring where each element has a width w.

Depending on the value of w, the elements in the converted bytestring are obtained by
either splitting elements of BS into several smaller elements in the new bytestring or by
grouping several elements of BS into a single element in the new bytestring.

If the conversion requires splitting elements of BS, then the original elements will be
split with the most significant bit(s) first: the most significant bits of each original
element of BS will have a lower index than the least significant bits.

If the conversion requires grouping elements together, BS is will first be right-padded
with zeros to a size that is a multiple of w. Next, new elements are formed by considering
elements of BS with a lower index as more significant than elements with a higher index.

RETURN VALUE

This function returns a new bytestring upon success and ni | otherwise.

6.2.7 bytes.format

SYNOPSIS
byt es. f ormat (f or mat, BS)

DESCRIPTION

Converts the bytestring BS to various printable formats according to the format
character string.

This f or mat string can be composed of plain characters, which are simply copied to
the resulting string, and format specifications which are replaced by the designated
representation of BS.

Chapter 6 Development library 28

As in printf() functions found in many programming languages, each format
specification starts with the character “% and has the following meaning:
* 9% represent BS as an unsigned decimal integer.
* oD represent BS as the concatenation of each of its elements represented in
hexadecimal or binary, starting from BS[0] to BS[N- 1] .
* 98is equivalent to “%w %D
* o® represent BS where each element is converted to a printable character (in 7 bit
ascii format).
» owrepresents the width of BS, that is 8, 4 or 1.
* % represents the number of elements in BS, in decimal form (the length of BS).
* 9®erepresent the “% character.

RETURN VALUE

This function returns the resulting character string.

6.2.8 bytes.insert

SYNOPSIS
byt es. i nsert (BS, pos, value, [, value,, ..., valuey])
DESCRIPTION

Inserts a value in BS at index pos.

The elements in BS of index 0 to (pos—1) will remain untouched. The elements in BS of
index pos to #BS are pushed to the right to make room for the inserted value.

The inserted value is composed of wvalue,, optionally concatenated with any
additional value value,, ..., valuey (from left to right).

For the rules governing the processing of wvalue, [, value,, ..., valuey], see the
byt es. assi gn() function above.

This function modifies its main argument BS.

RETURN VALUE

This function returns t r ue upon success and f al se otherwise.

6.2.9 bytes.invert

SYNOPSIS
byt es. i nvert (BS)

Chapter 6 Development library 29

DESCRIPTION

Reverses the order of elements in BS.

If BS has N elements then BS[0] is swapped with BS[N- 1], BS[1] is swapped with
BS[N- 2] and so forth until all elements are in reverse order in BS.

This function modifies its main argument.

RETURN VALUE

This function returns t r ue upon success and f al se otherwise.
6.2.10 bytes.is_printable

SYNOPSIS
byt es. i s_print abl e(BS)

DESCRIPTION

Returns t r ue if all elements in BS can be converted to printable 7 bit ascii characters, and
f al se otherwise.

RETURN VALUE
This function always returns f al se if the width of BS is not 8 (elements of width 4 or 1
are not printable ascii values).

6.2.11 bytes.maxn

SYNOPSIS
byt es. maxn(BS)

DESCRIPTION
Returns the last index in BS (equivalent to #BS-1).
RETURN VALUE

This function returns ni | if BS is empty.
6.2.12 bytes.new

SYNOPSIS
byt es. new(wi dt h [, value,, ..., valuey])
DESCRIPTION

Creates a new bytestring, where each element is wi dt h bits. wi dt h can be either 8, 4 or 1.

Chapter 6 Development library 30

A value can optionally be assigned to the bytestring by specifying one or several values
value,, ..., valuey that will be concatenated together to form the content of the bytestring.
See the function byt es. assi gn() for more details.

RETURN VALUE

This function returns a bytestring upon success and ni | otherwise.

6.2.13 bytes.new_ from_ chars

SYNOPSIS
byt es. new from chars(string)
DESCRIPTION

Creates a new 8 bit width bytestring from stri ng. Each ascii character in string is
converted directly to an element of the resulting bytestring (e.g. “A” is converted to 65).

RETURN VALUE

This function returns a bytestring upon success and ni | otherwise.

6.2.14 bytes.pad_left

SYNOPSIS
byt es. pad_l eft (BS, | ength, val ue)
DESCRIPTION

Pads BS on the left with the element val ue until the number of elements of BS reaches a
multiple of | engt h.

If the size of BSis already a multiple of | engt h, BS is left untouched.

This function modifies its main argument BS.

RETURN VALUE

This function returns t r ue upon success and f al se otherwise.
6.2.15 bytes.pad_right

SYNOPSIS
byt es. pad_ri ght (BS, | ength, val ue)
DESCRIPTION

Pads BS on the right with the element val ue until the number of elements of BS reaches

Chapter 6 Development library 31

a multiple of | engt h.
If the size of BS is already a multiple of | engt h, BSis left untouched.
This function modifies its main argument BS.

RETURN VALUE

This function returns t r ue upon success and f al se otherwise.
6.2.16 bytes.remove

SYNOPSIS
byt es.renove(BS, start [, end])
DESCRIPTION

Deletes elements in BS between positions st art and end.

Removes all elements of BS that have an index that verifies index > st art and index <
end.

The elements in BS are re-indexed: BS[end+1] becomes BS[start], BS[end+2]
becomes BS[st art +1] , and so forth.

If end is not specified it will default to the last index of BS. start and end may be
negative to refer to the position of an element by starting from the end of the bytestring
as described in byt es. sub() .

This function modifies its main argument BS.

RETURN VALUE

This function returns t r ue upon success and f al se otherwise.

6.2.17 bytes.sub

SYNOPSIS
byt es. sub(BS, start [, end])

DESCRIPTION

Returns a copy of a substring from BS containing all elements between st art and end.

The returned value represents a bytestring containing a copy of all the elements of BS
that have an index that verifies index > st art and index < end. If end is not specified it
will default to the last index of BS. If start (or end) is negative, it will be replaced by
#BS+st art (or #BS+end respectively).

RETURN VALUE

This function returns a bytestring upon success and ni | otherwise.

Chapter 6 Development library 32

6.2.18 4.3.17 tonumber

SYNOPSIS
byt es. t onunber (BS)

DESCRIPTION

Converts the bytestring BS to a the unsigned decimal value of BS.
This conversion considers BS[0] as the most significant element of BS, and BS[#BS-
1] as the least significant.

RETURN VALUE

This function returns a number.
6.2.19 bytes.toprintable

SYNOPSIS

byt es. t opri nt abl e(BS)
This function is OBSOLETE, use byt es. f or mat () instead.

DESCRIPTION

Converts each element in BS into an ascii character and returns the resulting string.

If an element in BS cannot be converted to a printable character it is replaced by the
character “?”.

If BS is empty, the resulting string is also empty.

RETURN VALUE

A string.
6.2.20 bytes.width

SYNOPSIS

byt es. wi dt h(BS)
DESCRIPTION
Return the width of the elements in BS.
RETURN VALUE

This function may return the number 1, 4 or 8.

Chapter 6 Development library 33

6.3 The asnl library

The ASN1 library? allows to manipulate bytestrings containing ASN1 TLV? data encoded
in DER/BER#* format. These bytestrings must be 8 bit wide.

When CARDPEEK reads TLV data from a card, it comes as a bytestring where the tag is
encoded, followed by the length, and finally the value itself. For example CARDPEEK may
receive the following string: 4F07A0000000031010, where 4F is actually the tag, 07 the
length, and A0000000031010 is the value. In some cases, the tag or the length follow
more complex encodings, and some TLVs may be contained within other TLVs. The asn1
library provides facilities to decode and encode TLV data.

Normally, TLV values are composed of 3 elements: a tag number, a length, and the
value itself. In LUA, we only need 2 items to represent a TLV: a tag number and a value
represented as a bytestring. The length of the value is implicit and can computed by
applying the # operator on the value.

The library provides the following functions.

6.3.1 asni.enable_single_byte_length

SYNOPSIS

asnl. enabl e_si ngl e_byte_| engt h(enabl e)
DESCRIPTION

This function is only used in rare cases with erroneous card implementations. If
enabl e=true the behavior of TLV decoding functions (such as bytes.tlv_split()) are
modified by forcing the ASN1 length to be 1 byte long. This means that even if the first
byte of the encoded length is greater than 0x80 it will be interpreted as the length of the
TLV value.

RETURN VALUE

None.

6.3.2 asnit.join
SYNOPSIS

asnl.join(tag, val [,extral)

2 For a quick tutorial on ASN1 see “A Layman's Guide to a Subset of ASN.1, BER, and DER” by Burton S.
Kaliski J.

3 TLV = Tag,Length,Value

4DER/BER = Distinguished/Basic Encoding Rules

Chapter 6 Development library 34

DESCRIPTION

This function performs the opposite of asnl. split() (describedin 6.3.3): creates a
bytestring representing the ASN1 DER encoding of the TLV {t ag, len, val } where
len=#val and appends ext r a to the result.

t ag is positive integer number, val is a bytestring and ext r a is a bytestring or ni | .

RETURN VALUE

This function returns a bytestring.
6.3.3 asni.split

SYNOPSIS
asnl.split(str)
DESCRIPTION

Parses the beginning of the bytestring st r according to ASN1 BER TLV encoding rules,
and extracts a tag number T and a bytestring value V.

RETURN VALUE

The function returns 3 elements {T, V, extra}, where extra is an optional bytestring
representing the remaining part of st r that was not parsed or ni | if no data remains.
If this function fails it returns a triplet of ni | values.

6.3.4 asni.split_length

SYNOPSIS
asnl.split_length(str)
DESCRIPTION

Parses the beginning of the bytestring st r according to ASN1 BER and extracts a length
L.

RETURN VALUE

The function returns {L, extra}, where extra is an optional bytestring representing the
remaining part of st r that was not parsed or ni | if no data remains.
If this function fails it returns a pair of ni | values.

Chapter 6 Development library 35

6.3.5 asni.split_tag

SYNOPSIS
asnl.split_tag(str)

DESCRIPTION
Parses the beginning of the bytestring st r according to ASN1 BER and extracts a tag T.
RETURN VALUE

The function returns {L, extra}, where extra is an optional bytestring representing the
remaining part of st r that was not parsed or ni | if no data remains.
If this function fails it returns a pair of ni | values.

6.4 The card library

The car d library is used to communicate with a smartcard in a card reader.

CARDPEEK internally defines a minimal set of card functions in the car d library. Some
additional extensions to the car d library are written in LUA and can be found in the file
$HOVE/ . car dpeek/ scri pts/|i b/ apdu.lua, which should be loaded automatically
when CARDPEEK starts.

According to ISO 7816-4, smartcard command APDUs are composed as a series of
bytes generally organized as follows:

Code |Length |Name

CLA |1 Class

INS 1 Instruction

P1 1 Parameter 1

P2 1 Parameter 2

Lc 1(or 3) Length of following data

Data |Variable |Data

Le 1(or 3) Maximum expected length of response

The card library defines a global value car d. CLA, which is the value that most card
commands will use as CLA when they exchange data with the card-reader (unless you use
card.send() directly).

This library contains the following functions.

Chapter 6 Development library 36

6.4.1 card.connect

SYNOPSIS

card. connect ()
DESCRIPTION

Connect to the card currently inserted in the selected smartcard reader or in proximity of
a contactless smartcard reader. This function will block until card is connected.
This command is used at the start of most smartcard scripts.

RETURN VALUE

This function returns t r ue upon success, and f al se otherwise.
6.4.2 card.disconnect

SYNOPSIS
card. di sconnect ()
DESCRIPTION

Disconnect the card currently inserted in the selected smartcard reader.
This command concludes most smartcard scripts.

RETURN VALUE

This function returns t r ue upon success, and f al se otherwise.

6.4.3 card.get_data

SYNOPSIS
card.get _data(id [, |ength_expected])

DESCRIPTION

Execute the GET_DATA command from ISO 7816-4 where:

* idisthe tag number of the value to read from the card.

* length_expected is an optional value specifying the length of the resulting
expected result (defaults to 0, which means 256 bytes).
The value of “CLA” in the command sent to the card is defined by by the variable
card. CLA.
This function is implemented in apdu. | ua.

Chapter 6 Development library 37

RETURN VALUE

The card status word and response data, as described in car d. send (section 6.4.10).
6.4.4 card.info

SYNOPSIS
card. i nfo()
DESCRIPTION
Return detailed information about the state of the card reader.
RETURN VALUE

This function returns an associative array of (name [J value) pairs.

6.4.5 card.last_atr

SYNOPSIS

card.last _atr()
DESCRIPTION
Returns a bytestring representing the last ATR (Answer To Reset) returned by the card.
RETURN VALUE

This function returns a bytestring.
6.4.6 card.make_ file_path

SYNOPSIS
card. make fil e path(path)

DESCRIPTION

This function is designed to be a helper function for the implementation of car d. sel ect .
It converts a human readable path string (representing a file location in a smartcard) into
a format that is compatible with the SELECT_FI LE command from ISO 7816-4.

This function parses the string pat h and returns a pair of values {pat h_bi nary,
pat h_t ype} where:

* pat h_bi nary is a bytestring representing the encoded binary value of pat h, and

* pat h_t ype is a number describing the path type (i.e. a relative path, an AID, ...)

Chapter 6 Development library 38

The general rules needed to form a path string can be summarized as follows:

» Afile ID is represented by 4 hexadecimal digits (however, there is an exception for
ADFs that can also be represented by their AID, which requires 10 to 32
hexadecimal digits, or in other words 5 to 16 bytes).

» If pat h starts with the ‘#’ character, the file is selected directly by its unique ID or
AID.

« If pat h starts with the ‘. ’ character, the file is selected relatively to the current DF
or EF.

» Files can also be selected by specifying a relative or absolute path, where each
element in the path is represented by a 4 digit file ID separated by the ‘/’
character:

o If pat h starts with “/ ’ the file is selected by its full path (excluding the MF).

o If pat h starts with *. /’ the file is selected by its relative path (excluding the
current DF).
The next table describes the format of the string pat h and how it is interpreted more
precisely. In this table, as a convention, hexadecimal characters are represented with the
character ‘h’ and repeated elements are summarized by writing “[...]".

pat h format interpretation path_ type
Directly select the MF (equivalent to #3F00) o)
#hhhh Directly select the file with ID=hhhh 0
#hhhhhh[.]hh Directly select the DF with AID=hhhhhh[..] hh 4
. hhhh Under the current DF, select the file with ID=hhhh 1
. hhhh/ Under the current DF, select the DF with ID=hhhh 2
- Select the parent of the current EF or DF. 3
- /'hhhh/'hhhh/ hh[] [Select a file using a relative path from the current 9

DF. All intermediary DF’s are represented by their

file ID separated by the ‘/ ’ character.
/'hhhh/ hhhh/ hh .] Select a file with an absolute path from the MF (the 8

MF is omitted) All intermediary DF’s are
represented by their file ID separated by the ‘/’
character.

The resulting bytestring pat h_bi nary is simply produced from the concatenation of
the hexadecimal values in pat h (represented by ‘h’ in the table above.)

RETURN VALUE

Upon success this function returns a pair of values consisting of a bytestring and a

Chapter 6 Development library 39

number. Upon failure, this functions returns a pair of ni | values.
6.4.7 card.read_binary

SYNOPSIS

card.read binary(sfi [, address [, |ength_expected]])
DESCRIPTION
Execute the READ BI NARY command from ISO 7816-4 where:

« sfi is a number representing a short file identifier (1 <sfi <30) or the string ‘.’
to refer to the currently selected file.

* address is an optional start address to read data (defaults to 0).

* length_expected is an optional value specifying the length of the resulting
expected result (defaults to 0, which means 256 bytes).

The value of “CLA” in the command sent to the card is defined by the LUA variable
card. CLA.
This function is implemented in apdu. | ua.

RETURN VALUE

The card status word and response data, as described in car d. send (section 6.4.10).

6.4.8 card.read_record

SYNOPSIS

card.read_record(sfi, r, [, length_expected])
DESCRIPTION
Execute the READ RECORD command from ISO 7816-4 where:

» sfi is a number representing a short file identifier (1 <sfi < 30) or the string ‘.’
to refer to the currently selected file.

e r isthe record number to read.

* length_expected is an optional value specifying the length of the resulting
expected result (defaults to 0, which means 256 bytes).

The value of “CLA” in the command sent to the card is defined by the LUA variable
card. CLA.
This function is implemented in apdu. | ua.

Chapter 6 Development library 40

RETURN VALUE

The card status word and response data, as described in car d. send (section 6.4.10).

6.4.9 card.select

SYNOPSIS
card.select(file_path [, return_what [, length]])

DESCRIPTION

Execute the SELECT_FI LE command from ISO 7816-4 where:
» file_pat his string describing the file to select, according to the format described
incard. nake file_path.
* return_what is an optional value describing the expected result, as described in
the table below (defaults to 0).
* | ength is an optional value specifying the length of the resulting expected result
(defaults to nil).
The following constants have been defined for ret urn_what (some can be combined
together by addition):

Constant value
card. SELECT _RETURN_FI RST 0

car d. SELECT_RETURN_LAST

car d. SELECT_RETURN_NEXT

car d. SELECT_RETURN_PREVI OUS
car d. SELECT_RETURN_FCl

car d. SELECT_RETURN_FCP

car d. SELECT_RETURN_FMD

o OWN R

The value of “CLA” in the command sent to the card is defined by by the variable
car d. CLA. The value of “P1” in the command sent to the card corresponds to the file
type computed by car d. nake_fi | e_pat h. The value of “P2” in the command sent to the
card corresponds to r et ur n_what .

This function is implemented in apdu. | ua.

RETURN VALUE

The card status word and response data, as described in car d. send (section 6.4.10).

Chapter 6 Development library 41

6.4.10 card.send

SYNOPSIS
car d. send(APDU)

DESCRIPTION
Sends the command APDU to the card.
RETURN VALUE

The function returns a pair of values: a number representing the status word returned by
the card (ex. 0x9000) and the response data returned by the card.

Both the command APDU and the response data are bytestrings (see the byt es
library).

6.4.11 card.warm_ reset

SYNOPSIS

card. warm reset ()
DESCRIPTION

Performs a warm reset of the card (reconnects the card currently inserted in the selected
smartcard reader).

RETURN VALUE

None

6.5 Thecrypto library

This library proposes a limited number of cryptographic functions. Currently these
functions offer mainly DES, Triple-DES, and SHA1 based transformations.

6.5.1 crypto.create__context

SYNOPSIS

crypto.create_context(al gorithm], key])
DESCRIPTION

This function creates a cryptographic “context” that holds a description of a
cryptographic algorithm, along with a (optional) key. The created context is later used as
a parameter to other generic functions in the crypto library, such as

Chapter 6 Development library 42

crypto.encrypt(),crypto. mac(),crypto.digest(),..
The first parameter al gori t hmallows to describe the cryptographic algorithm to be
used. It can currently take the following values :

Algorithm Description

crypto. ALG DES_ECB Simple DES in ECB mode (so no IV).

crypto. ALG DES_CBC Simple DES is CBC mode.

crypto. ALG DES2 EDE ECB |Triple DES with a double length 112 bit key
in ECB mode (no IV).

crypto. ALG DES2_EDE CBC |Triple DES with a double length 112 bit key
in CBC mode.

crypto. ALG | SO9797_M3 ISO 9797 MAC method 3 with a 112 bit key:
a simple DES CBC MAC iteration with
triple DES on the final block.

crypto. ALG_SHAL The SHA1 digest algorithm.

Some of the previous algorithms only operate on data that has been padded to a reach a
proper size, which is usually a multiple of a defined “block size”. The value of al gorit hm
can be used to specify the padding method that is used, by combining (with the ‘+’
operator) one of the following values to the algorithm previously specified:

Padding method Description
crypto. PAD_ZERO Add 0’s if needed to reach block size.
crypto. PAD_OPT_80_ZERO |If the size of cleartext is not already a

multiple of block size then add one byte
0x 80 and then 0’s, if needed, to reach block

size.
crypto. PAD_| SG9797_P2 ISO 9797 padding method 2 (add a

mandatory byte Ox80 and pad with
optional 0’s to reach block size).

The optional bytestring key must be used to specify the value of the cryptographic key
used for encryption or MAC algorithms (but is ignored for hash algorithms).

RETURN VALUE

This function returns a bytestring representing the created context. Programmers should
consider the result as an opaque value and should not modify its content.

Chapter 6 Development library 43

6.5.2 crypto.decrypt

SYNOPSIS
crypto.decrypt(context, data [, iVv])

DESCRIPTION

Decrypt the bytestring dat a, using the key and algorithm provided in cont ext .
When the decryption algorithm requires a initial vector, it must be specified in i v. All
parameters and the return value are 8 bit wide bytestrings.

RETURN VALUE

This function returns the decrypted data as a bytestring.
6.5.3 crypto.digest

SYNOPSIS
crypto. di gest (context, data)

DESCRIPTION

Compute the digest (also often called a hash) of dat a, using the algorithm provided in
cont ext .
All parameters and the return value are 8 bit wide bytestrings.

RETURN VALUE

This function returns the digest value as a bytestring.

6.5.4 crypto.encrypt
SYNOPSIS

crypto.encrypt(context, data [, iV])
DESCRIPTION

Encrypt the bytestring dat a, using the key and algorithm provided in cont ext .
When the encryption algorithm requires a initial vector, it must be specified in i v. All
parameters and the return value are 8 bit wide bytestrings.

RETURN VALUE

This function returns the encrypted data as a bytestring.

Chapter 6 Development library 44

6.5.5 crypto.mac

SYNOPSIS

crypto. mac(context, data)
DESCRIPTION

Computes the MAC (Message Authentication Code) of dat a, using the key and algorithm
provided in cont ext .
All parameters and the return value are 8 bit wide bytestrings.

RETURN VALUE

This function returns the MAC as a bytestring. The resulting MAC is not truncated.

6.6 The ui library

The ui library allows to control some elements of the user interface of CARDPEEK, and in
particular the tree structure representing the data extracted from the card.

The tree structure representing card data is composed of nodes, each represented on
one row in the card tree view. Some function in the ui library are used to manipulate
these nodes (or rows), allowing to add, remove or edit them. These functions identify
each node by a node reference, which is an internal opaque type.

The ui library functions are described in the following paragraphs.

6.6.1 ui.question

SYNOPSIS

ui . question(text, buttons)
DESCRIPTION

Asks the user a question requesting him to answer by selecting a response.

The question is described in the string t ext, while the set of possible answers
described in the LUA array buttons. Each element in the array buttons is string
representing a possible answer.

RETURN VALUE

Upon success, the function returns the index of the answer selected by the user in the
table but t ons (LUA table indices are usually numbers greater or equal to 1).
Upon failure the function returns o.

Chapter 6 Development library 45

EXAMPLE

ui . question(“Qit the script?’, { “yes”, “no” })

6.6.2 ui.readline

SYNOPSIS

ui.readline(text [,len [,default _value]])
DESCRIPTION

Request the user to enter a text string.
The user’s input can optionally be limited to | en characters and can also optionally
hold a predefined value def aul t _val ue.

RETURN VALUE
The function returns the user’s input upon success and f al se otherwise.

EXAMPLE
ui.readline(“Enter PIN code:”, 4, “0000")

6.6.3 ui.tree_add_node

SYNOPSIS
ui .tree_add_node(parent _ref, classnane ,label ,id ,size)
DESCRIPTION

Adds a node in the card tree structure.

The new node will be appended to the children of the node identified by the node
reference par ent _ref . If parent _ref isni | the new node will be added at the top level.

cl assnane is an optional string that provides additional information describing the
type of data represented by the node. This value will affect the choice of the icon that is
associated with the node in the displayed card tree structure. The following cl assnane
values are associated with a distinct icon: “application”, “block”, “card”, “file”, “record”
and “item”. If cl assname is ni | or unrecognized, it will be set to the default value “item”.

| abel is an optional string that describes the data that is represented by the node in
human readable form (such as a “file” or a “date of birth” for example).

i d is an optional string that identifies the node uniquely within a context (such as an
number or a unique name).

si ze is an optional value number describing the length of the data element associated
to the node. If set, it will be displayed in the second column of the card view.

Chapter 6 Development library 46

RETURN VALUE

Upon success the function returns a node reference to the newly created node. If the
function fails, it returns ni | . Once the node is created with this function, data can be
associated to it with the ui.tree_set value()or the ui.tree set_attribute()
functions.

6.6.4 ui.tree_child_node

SYNOPSIS
ui.tree_child_node(node_ref)
DESCRIPTION

Returns the first child node of the node referenced by node_ref. If node_ref isnil, it
returns the first root node in the tree. This function can be combined with subsequent
calls to ui . tree_next _node() to iterate through all the children of node_r ef .

RETURN VALUE

Return a node reference upon success or ni | otherwise.
6.6.5 ui.tree_delete _node

SYNOPSIS

ui .tree_del et e_node(node_ref)
DESCRIPTION
Deletes the node identified by node_r ef as well as all its children.
RETURN VALUE

The function returns t r ue upon success and f al se otherwise.

6.6.6 ui.tree_find_all nodes
SYNOPSIS

ui.tree_find_all_nodes(origin_ref, |abel, id)
DESCRIPTION

Searches inside the sub-tree that has a root identified by ori gi n_ref for all the nodes
that have the label | abel and/or theidi d:
 Iflabel # nil andid # nil then the search will return the nodes matching

Chapter 6 Development library 47

exactly both the provided label and the id.
e Iflabel = nil andid #nil then the search will only be on the id.
 Iflabel # nil andid =nil then the search will only be on the label.
« Iflabel

nil andid =nil then the search will always fail.
RETURN VALUE

This function returns an array containing all node references that match the search
criteria. If no node is found the function returns an empty array.

6.6.7 ui.tree_find_node
SYNOPSIS

ui.tree_find_node(origin_ref, Iabel, id)
DESCRIPTION

Searches inside the sub-tree that has a root identified by ori gi n_ref for the first node
that has the label |abel and/or the id id following the same rules as for
ui.tree_find_all_nodes() described in section 6.6.6 .

RETURN VALUE
If a node is found, the function returns the reference to that node otherwise it returns
nil.

6.6.8 ui.tree_get_alt_value

SYNOPSIS

ui.tree_get _alt_val ue(node_ref)
DESCRIPTION

Returns the alternative string value associated with the node identified by node_r ef, or
ni | if no value is associated with the node or if the function fails. This is the value
displayed in the third column of the card view.

RETURN VALUE

This function returns a string or ni | .

6.6.9 ui.tree_get_ attribute

SYNOPSIS

iu.tree_get_attribute(node_ref, attr_nane)

Chapter 6 Development library 48

DESCRIPTION

Gets the value of an attribute in the node identified by node_r ef . The name of the
attribute to retrieve is identified by the string at t r _nane.

The attributes named “classname”, “label”, “id” and “size” refer to the parameters
passed to the function ui . t ree_add_node() as described in section 6.6.3 .

The attributes “val” and “alt” should preferably be accessed with the dedicated
functions ui.tree get value() and ui.tree get_alt _value() instead of this
function.

Attribute names that start with a minus sign are considered temporary and will not
be saved to XML format with a function such ui . t ree_save().

13 2

RETURN VALUE

This function returns a string upon success and ni | otherwise.

6.6.10 ui.tree_get_node

SYNOPSIS

ui .tree_get _node(node_ref)
DESCRIPTION

Returns an associative array containing all attributes associated to the node
referenced by node_r ef .

RETURN VALUE

Upon success, this function returns an array. If the function fails, it returns ni | .

6.6.11 ui.tree_get_value

SYNOPSIS

ui .tree_get val ue(node_ref)
DESCRIPTION

Returns the bytestring value associated with the node identified by node_ref, or ni | if
no value is associated with the node or if the function fails. This is the value displayed in
the third column of the card view.

RETURN VALUE

This function returns a bytestring or ni | .

Chapter 6 Development library 49

6.6.12 ui.tree_ load

SYNOPSIS

ui.tree_l oad(fil e_nane)
DESCRIPTION

Loads the tree from the XML file named fi | e_name. See Chapter 7 for a description of
the file format.

RETURN VALUE

The function returns t r ue upon success and f al se otherwise.
6.6.13 ui.tree_next node

SYNOPSIS
ui .tree_chil d_node(node_ref)
DESCRIPTION

Returns the next node that follows the node referenced by node_ref (under the same
parent node). If no node follows the one referenced by node_r ef, the function return
nil.

RETURN VALUE

Return a node reference upon success or ni | otherwise.
6.6.14 ui.tree_parent_node

SYNOPSIS
ui .tree_parent_node(node_ref)
DESCRIPTION

Returns the parent node of the node referenced by node_r ef . If the node referenced by
node_ref has no parent the function return ni | .

RETURN VALUE

Return a node reference upon success or ni | otherwise.

Chapter 6 Development library 50

SYNOPSIS
DESCRIPTION

RETURN VALUE

6.6.15 ul.tree_save

SYNOPSIS

ui .tree_save(fil e_nane)
DESCRIPTION

Saves the tree in XML format inside the file named fil e_name. See Chapter 7 for a
description of the file format.

RETURN VALUE

The function returns t r ue upon success and f al se otherwise.

6.6.16 ui.tree_set_alt value

SYNOPSIS

ui.tree_set _alt_val ue(node_ref, val)
DESCRIPTION

Associate the alternative string data val to the node identified by node_r ef .
The value val is a string (not a bytestring) and should be used to provide a more
“human friendly” alternative representation of data associated with the node.

RETURN VALUE

The function returns t r ue upon success and f al se otherwise.
6.6.17 ui.tree_set_attribute

SYNOPSIS

iu.tree_set _attribute(node ref, attr_nane, attr_val ue)

DESCRIPTION

Sets an attribute in the node identified by node_r ef . The attribute to set is identified by
the string at t r _nane and takes the value indicated by the string at t r _val ue.
The attributes named “classname”, “label”, “id” and “size” refer to the parameters

Chapter 6 Development library 51

passed to the function ui . t ree_add_node() as described in section 6.6.3 .

The attributes “val” and “alt” should preferably be set with ui.tree_set val ue()
andui .tree_set_alt_val ue().

The programmer can associate any arbitrary attribute with a node.

Attribute names that start with a minus sign “- ” are considered temporary and will not
be saved to XML format with a function such ui . tree_save().
RETURN VALUE

This function returns t r ue upon success and f al se otherwise.

6.6.18 ul.tree_set_value

SYNOPSIS

ui .tree_set val ue(node_ref, val)
DESCRIPTION

Associate the bytestring data val to the node identified by node_r ef . The value val is a
bytestring as constructed by the byt es library functions.

RETURN VALUE

The function returns t r ue upon success and f al se otherwise.
6.6.19 ui.tree_to_xml

SYNOPSIS

ui .tree_to_xm (node_ref)
DESCRIPTION

Returns an XML representation of the sub-tree that has node_ref as a root. If
node_ref isni | the representation of the whole tree is returned.

RETURN VALUE

This function returns a string upon success. If the function fails, it returns ni | .

6.7 The | og library

The | og library contains just one function described below, which allows to print
messages in the “log” tab of the application.

Chapter 6 Development library 52

6.7.1 log.print

SYNOPSIS
[og. print(level, text)
DESCRIPTION

Prints a message t ext in the console window.

| evel describes the type of message that is printed. | evel can take the following
values: | og. | NFO, | og. DEBUG, | og. WARNI NG or | og. ERROR.

All messages printed on the screen with this function are also saved in the file
“$HOVE/ . car dpeek. | og”.

RETURN VALUE

None.

6.8 Other libraries

6.8.1 The t r eef | ex library

The treeflex library implements the same functions as the tree manipulation
functions in the ui library (e.g. function named ui . tree_. ..), in a much more flexible
object oriented and concise format. This library was loosely developed in the same spirit
as jQuery for the web.

Please see the source code for further details.

EXAMPLE

To delete all the children of a node with the label “record” and the id “12” we can write
the following expression in LUA using the t r eef | ex library:

_(“record#12”):children():renove()

6.8.2 Thecountry codes and currency_codes libraries

These library provide convenience functions to translate currency and country codes in
human readable names.

6.8.3 The enl1545 library

This library provides tools to manipulate data used in Calypso cards that follow
CEN/ISO 1545.

Chapter 6 Development library 53

6.8.4 The stri ct library

This library forces LUA variables to be explicitly declared, and thus reduces
programming errors.

6.8.5 Thet | v library

This library is built upon the asn1 library and provides automated tools to analyze and
display complex ASN1 TLV data objects in CARDPEEK.

Chapter 6 Development library 54

Chapter 7

File format

The card view presented in CARDPEEK can be save or imported in XML format. This
format is quite straightforward, as shown in the following example, which was created
with the at r script:

<?xm version="1.0"7?7>
<cardtree>
<node>
<attr nanme="cl assnane" >card</attr>
<attr name="| abel ">ATR</ attr>
<node>
<attr nane="cl assnane" >bl ock</attr>
<attr nanme="|abel ">cold ATR</ attr>
<attr nanme="size">18</attr>
<attr name="val ">8:; 3B6EO0000031C071C66501B0010337839000</ attr >
</ node>
</ node>
</ cardtree>

The format of the XML card view file is constructed according to the following rules:
* The root element of the XML structure is <car dt r ee>, which contains one or
more <node> elements.

* A <node> element may contain both <node> and <at t r > elements.

» A <attr> element has one mandatory XML attribute “nane” which describes the
name of an “node attribute” associated with a node in the tree view, while the text
inside the <attr> element describes the value associated with that “node
attribute”.

A node can have any number of “node attributes” defined by an <attr> element.
However, some “node attributes” have a specific meaning for CARDPEEK:

* <attr nanme="cl assnane” > describes the type of node (a file, an application, a

Chapter 7 File format 55

data block, a data item, etc.) and its value will determine the icon used to
represent the node on the screen in the application.

e <attr nanme="1|abel "> is the label given to the node on the screen (first column).
e <attr nane="id">is theid of the node displayed on the screen (first column).
e <attr nanme="size” > is the size that is displayed on the screen (second column).

 <attr name="val "> is the value of the bytestring associated with a node (and
represented in the third column on the screen). This bytestring is represented as a

width value followed by “:” and the digits representing the bytestring (this is
equivalent to the %S output format of the byt es. f or mat () function).

e <attr name="alt”>is an alternative representation of the value associated with
a node and represented in simple text format.

Node attribute names stating with a minus sign (example: “- makup- val ”) are considered
as temporary attributes and are not exported or saved in XML format. They are used
internally by CARDPEEK or script programs.

Note: the CARDPEEK XML format has changed in CARDPEEK version 0.7 and is not
compatible with previous versions.

Chapter 7 File format 56

Chapter 8

License

CARDPEEK is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

CARDPEEK is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see ht t p: / / wwv. gnu. org/ | i censes/.

Chapter 8 License 57

http://www.gnu.org/licenses/

	Chapter 1 Presentation
	Chapter 2 Installation
	2.1 Compiling and installing under Linux
	2.2 Installing under Windows XP
	2.3 Related files and initial setup
	2.4 Choosing a smartcard reader

	Chapter 3 Using Cardpeek
	3.1 Quick start
	3.2 User interface
	3.3 Card view
	3.4 The reader tab
	3.5 The logs tab
	3.6 The one-line command input field
	3.7 Card-reader selection upon start-up

	Chapter 4 Card analysis tools
	4.1 atr
	4.1.1 Overview
	4.1.2 General notes

	4.2 Calypso
	4.2.1 Overview
	4.2.2 Implementation notes

	4.3 emv
	4.3.1 Overview
	4.3.2 Implementation notes

	4.4 e-passport
	4.4.1 Overview
	4.4.2 Implementation notes

	4.5 moneo
	4.5.1 Overview
	4.5.2 Implementation notes

	4.6 vitale 2
	4.6.1 Overview
	4.6.2 Notes

	4.7 Adding your own scripts

	Chapter 5 Programming Cardpeek scripts
	5.1 Hello world
	5.2 Basic communication with a smart card
	5.3 Representing card data in a tree structure

	Chapter 6 Development library
	6.1 the bit library
	6.1.1 bit.AND
	6.1.2 bit.OR
	6.1.3 bit.XOR
	6.1.4 bit.SHL(A,B)
	6.1.5 bit.SHR

	6.2 The bytes library
	6.2.1 Operators on bytestrings
	6.2.2 bytes.append
	6.2.3 bytes.assign
	6.2.4 bytes.clone
	6.2.5 bytes.concat
	6.2.6 bytes.convert
	6.2.7 bytes.format
	6.2.8 bytes.insert
	6.2.9 bytes.invert
	6.2.10 bytes.is_printable
	6.2.11 bytes.maxn
	6.2.12 bytes.new
	6.2.13 bytes.new_from_chars
	6.2.14 bytes.pad_left
	6.2.15 bytes.pad_right
	6.2.16 bytes.remove
	6.2.17 bytes.sub
	6.2.18 4.3.17 tonumber
	6.2.19 bytes.toprintable
	6.2.20 bytes.width

	6.3 The asn1 library
	6.3.1 asn1.enable_single_byte_length
	6.3.2 asn1.join
	6.3.3 asn1.split
	6.3.4 asn1.split_length
	6.3.5 asn1.split_tag

	6.4 The card library
	6.4.1 card.connect
	6.4.2 card.disconnect
	6.4.3 card.get_data
	6.4.4 card.info
	6.4.5 card.last_atr
	6.4.6 card.make_file_path
	6.4.7 card.read_binary
	6.4.8 card.read_record
	6.4.9 card.select
	6.4.10 card.send
	6.4.11 card.warm_reset

	6.5 The crypto library
	6.5.1 crypto.create_context
	6.5.2 crypto.decrypt
	6.5.3 crypto.digest
	6.5.4 crypto.encrypt
	6.5.5 crypto.mac

	6.6 The ui library
	6.6.1 ui.question
	6.6.2 ui.readline
	6.6.3 ui.tree_add_node
	6.6.4 ui.tree_child_node
	6.6.5 ui.tree_delete_node
	6.6.6 ui.tree_find_all_nodes
	6.6.7 ui.tree_find_node
	6.6.8 ui.tree_get_alt_value
	6.6.9 ui.tree_get_attribute
	6.6.10 ui.tree_get_node
	6.6.11 ui.tree_get_value
	6.6.12 ui.tree_load
	6.6.13 ui.tree_next_node
	6.6.14 ui.tree_parent_node
	6.6.15 ui.tree_save
	6.6.16 ui.tree_set_alt_value
	6.6.17 ui.tree_set_attribute
	6.6.18 ui.tree_set_value
	6.6.19 ui.tree_to_xml

	6.7 The log library
	6.7.1 log.print

	6.8 Other libraries
	6.8.1 The treeflex library
	6.8.2 The country_codes and currency_codes libraries
	6.8.3 The en1545 library
	6.8.4 The strict library
	6.8.5 The tlv library

	Chapter 7 File format
	Chapter 8 License

