
Floating-point
numbers

Version 0.7.6

09/05/2017

Laurent Bartholdi

MPFR- and CXSC-based library for GAP

Laurent Bartholdi Email: laurent.bartholdi@gmail.com

Homepage: http://www.uni-math.gwdg.de/laurent/

Address: Mathematisches Institut

Bunsenstraße 3-5

D-37073 Göttingen

Germany

mailto:// laurent.bartholdi@gmail.com
http://www.uni-math.gwdg.de/laurent/

Floating-point numbers 2

Abstract

This document describes the package Float, which implements in GAP arbitrary-precision �oating-point num-

bers.

For comments or questions on Float please contact the author.

Copyright

© 2011-2016 by Laurent Bartholdi

Acknowledgements

Part of this work is supported by the "Swiss National Fund for Scienti�c Research (SNF)", the "German

National Science Foundation (DFG)", and the Courant Research Centre "Higher Order Structures" of the

University of Göttingen.

Contents

1 Licensing 4

2 Float package 5

2.1 A sample run . 5

3 Polynomials 7

3.1 The Floats pseudo-�eld . 7

3.2 Roots of polynomials . 7

3.3 Finding integer relations . 7

3.4 LLL lattice reduction . 8

4 Implemented packages 9

4.1 MPFR . 9

4.2 MPFI . 9

4.3 MPC . 9

4.4 CXSC . 10

4.5 FPLLL . 10

References 11

Index 12

3

Chapter 1

Licensing

This program is free software; you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation; either version 2 of the License,

or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANYWARRANTY;

without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program, in

the �le COPYING. If not, see http://www.gnu.org/licenses/.

4

http://www.gnu.org/licenses/

Chapter 2

Float package

2.1 A sample run

The extended �oating-point capabilities of GAP are installed by loading the package via

LoadPackage("float"); and selecting new �oating-point handlers via SetFloats(MPFR),

SetFloats(MPFI), SetFloats(MPC) orSetFloats(CXSC), depending on whether high-precision

real, interval or complex arithmetic are desired, or whether a fast package containing all four

real/complex element/interval arithmetic is desired:

Example
gap> LoadPackage("float");

Loading FLOAT 0.7.0 ...

true

gap> SetFloats(MPFR); # floating-point

gap> x := 4*Atan(1.0);

.314159e1

gap> Sin(x);

.169569e-30

gap> SetFloats(MPFR,1000); # 1000 bits

gap> x := 4*Atan(1.0);

.314159e1

gap> Sin(x);

.125154e-300

gap> String(x,300);

".3141592653589793238462643383279502884197169399375105820974944592307816406286\

208998628034825342117067982148086513282306647093844609550582231725359408128481\

117450284102701938521105559644622948954930381964428810975665933446128475648233\

78678316527120190914564856692346034861045432664821339360726024914127e1"

gap>

gap> SetFloats(MPFI); # intervals

gap> x := 4*Atan(1.0);

.314159e1(99)

gap> AbsoluteDiameter(x); Sup(x); Inf(x);

.100441e-29

.314159e1

.314159e1

gap> Sin(x);

-.140815e-29(97)

gap> 0.0 in last;

5

Floating-point numbers 6

true

gap> 1.0; # exact representation

.1e1(inf)

gap> IncreaseInterval(last,0.001); # now only 8 significant bits

.1e1(8)

gap> IncreaseInterval(last,-0.002); # now becomes empty

\emptyset

gap> MinimalPolynomial(Rationals,Sqrt(2.0));

-2*x_1^2+1

gap> Cyc(last);

E(8)-E(8)^3

gap>

gap> SetFloats(MPC); # complex numbers

gap> z := 5.0-1.0i;

.5e1-.1e1i

gap> (1+1.0i)*last^4*(239+1.0i);

.228488e6

gap> Exp(6.2835i);

.1e1+.314693e-3i

Chapter 3

Polynomials

3.1 The Floats pseudo-�eld

Polynomials with �oating-point coef�cients may be manipulated in GAP; though they behave, in

subtle ways, quite differently than polynomials over rings.

The "pseudo-�eld" of �oating-point numbers is an object in GAP, called FLOAT_PSEUDOFIELD.

(It is not really a �eld, e.g. because addition of �oating-point numbers in not associative). It may be

used to create indeterminates, for example as

Example
gap> x := Indeterminate(FLOAT_PSEUDOFIELD,"x");

x

gap> 2*x^2+3;

2.0*x^2+3.0

gap> Value(last,10);

203.0

3.2 Roots of polynomials

The Jenkins-Traub algorithm has been implemented, in arbitrary precision for MPFR and MPC.

Furthermore, CXSC can provide complex enclosures for the roots of a complex polynomial.

3.3 Finding integer relations

The PSLQ algorithm has been implemented by Steve A. Linton, as an external contribution to Float.

This algorithm receives as input a vector of �oats x and a required precision e , and seeks an integer

vector v such that jx � vj < e . The implementation follows quite closely the original article [BB01].

3.3.1 PSLQ

. PSLQ(x, epsilon[, gamma]) (function)

. PSLQ_MP(x, epsilon[, gamma[, beta]]) (function)

Returns: An integer vector v with jx � vj < e .

The PSLQ algorithm by Bailey and Broadhurst (see [BB01]) searches for an integer relation be-

tween the entries in x.

7

Floating-point numbers 8

b and g are algorithm tuning parameters, and default to 4=10 and 2=
p

(3) respectively.

The second form implements the "Multi-pair" variant of the algorithm, which is better suited to

parallelization.

Example
gap> PSLQ([1.0,(1+Sqrt(5.0))/2],1.e-2);

[55, -34] # Fibonacci numbers

gap> RootsFloat([1,-4,2]*1.0);

[0.292893, 1.70711] # roots of 2x^2-4x+1

gap> PSLQ(List([0..2],i->last[1]^i),1.e-7);

[1, -4, 2] # a degree-2 polynomial fitting well

3.4 LLL lattice reduction

A faster implementation of the LLL lattice reduction algorithm has also been implemented. It is

accessible via the commands FPLLLReducedBasis(m) and FPLLLShortestVector(m).

Chapter 4

Implemented packages

4.1 MPFR

4.1.1 IsMPFRFloat

. IsMPFRFloat (�lter)

. TYPE_MPFR (global variable)

The category of �oating-point numbers.

Note that they are treated as commutative and scalar, but are not necessarily associative.

4.2 MPFI

4.2.1 IsMPFIFloat

. IsMPFIFloat (�lter)

. TYPE_MPFI (global variable)

The category of intervals of �oating-point numbers.

Note that they are treated as commutative and scalar, but are not necessarily associative.

4.3 MPC

4.3.1 IsMPCFloat

. IsMPCFloat (�lter)

. TYPE_MPC (global variable)

The category of intervals of �oating-point numbers.

Note that they are treated as commutative and scalar, but are not necessarily associative.

9

Floating-point numbers 10

4.4 CXSC

4.4.1 IsCXSCReal

. IsCXSCReal (�lter)

. IsCXSCComplex (�lter)

. IsCXSCInterval (�lter)

. IsCXSCBox (�lter)

. TYPE_CXSC_RP (global variable)

. TYPE_CXSC_CP (global variable)

. TYPE_CXSC_RI (global variable)

. TYPE_CXSC_CI (global variable)

The category of �oating-point numbers.

Note that they are treated as commutative and scalar, but are not necessarily associative.

4.5 FPLLL

4.5.1 FPLLLReducedBasis

. FPLLLReducedBasis(m) (operation)

Returns: A matrix spanning the same lattice as m .

This function implements the LLL (Lenstra-Lenstra-Lovász) lattice reduction algorithm via the

external library fplll.

The result is guaranteed to be optimal up to 1%.

4.5.2 FPLLLShortestVector

. FPLLLShortestVector(m) (operation)

Returns: A short vector in the lattice spanned by m .

This function implements the LLL (Lenstra-Lenstra-Lovász) lattice reduction algorithm via the

external library fplll, and then computes a short vector in this lattice.

The result is guaranteed to be optimal up to 1%.

References

[BB01] D. H. Bailey and D. J. Broadhurst. Parallel integer relation detection: techniques and appli-

cations. Math. Comp., 70(236):1719�1736 (electronic), 2001. 7

11

Index

FPLLLReducedBasis, 10

FPLLLShortestVector, 10

IsCXSCBox, 10

IsCXSCComplex, 10

IsCXSCInterval, 10

IsCXSCReal, 10

IsMPCFloat, 9

IsMPFIFloat, 9

IsMPFRFloat, 9

PSLQ, 7

PSLQ_MP, 7

TYPE_CXSC_CI, 10

TYPE_CXSC_CP, 10

TYPE_CXSC_RI, 10

TYPE_CXSC_RP, 10

TYPE_MPC, 9

TYPE_MPFI, 9

TYPE_MPFR, 9

12

	Licensing
	Float package
	A sample run

	Polynomials
	The Floats pseudo-field
	Roots of polynomials
	Finding integer relations
	LLL lattice reduction

	Implemented packages
	MPFR
	MPFI
	MPC
	CXSC
	FPLLL

	References
	Index

