This method allows one to easily access the normal toric variety on which the torus-invariant Weil divisor is defined.
i1 : PP2 = projectiveSpace 2;
|
i2 : D = 2*PP2_0 - 7*PP2_1 + 3*PP2_2
o2 = 2*D - 7*D + 3*D
0 1 2
o2 : ToricDivisor on PP2
|
i3 : variety D
o3 = PP2
o3 : NormalToricVariety
|
i4 : normalToricVariety D
o4 = PP2
o4 : NormalToricVariety
|
i5 : X = normalToricVariety(id_(ZZ^3) | - id_(ZZ^3));
|
i6 : E = X_0-5*X_3
o6 = D - 5*D
0 3
o6 : ToricDivisor on X
|
i7 : X === variety E
o7 = true
|
i8 : X === normalToricVariety E
o8 = true
|