This function currently just finds the elements whose boundary give the product of every pair of cycles that are chosen as generators. Eventually, all higher Massey operations will also be computed. The maximum degree of a generating cycle is specified in the option GenDegreeLimit, if needed.
Golod rings are defined by being those rings whose Koszul complex KR has a trivial Massey operation. Also, the existence of a trivial Massey operation on a DG algebra A forces the multiplication on H(A) to be trivial. An example of a ring R such that H(KR) has trivial multiplication, yet KR does not admit a trivial Massey operation is unknown. Such an example cannot be monomially defined, by a result of Jollenbeck and Berglund.
This is an example of a Golod ring. It is Golod since it is the Stanley-Reisner ideal of a flag complex whose 1-skeleton is chordal [Jollenbeck-Berglund].
i1 : Q = ZZ/101[x_1..x_6] o1 = Q o1 : PolynomialRing |
i2 : I = ideal (x_3*x_5,x_4*x_5,x_1*x_6,x_3*x_6,x_4*x_6) o2 = ideal (x x , x x , x x , x x , x x ) 3 5 4 5 1 6 3 6 4 6 o2 : Ideal of Q |
i3 : R = Q/I o3 = R o3 : QuotientRing |
i4 : A = koszulComplexDGA(R) o4 = {Ring => R } Underlying algebra => R[T , T , T , T , T , T ] 1 2 3 4 5 6 Differential => {x , x , x , x , x , x } 1 2 3 4 5 6 isHomogeneous => true o4 : DGAlgebra |
i5 : isHomologyAlgebraTrivial(A,GenDegreeLimit=>3) Computing generators in degree 1 : -- used 0.0119617 seconds Computing generators in degree 2 : -- used 0.0739137 seconds Computing generators in degree 3 : -- used 0.028475 seconds o5 = true |
i6 : cycleList = getGenerators(A) Computing generators in degree 1 : -- used 0.00197081 seconds Computing generators in degree 2 : -- used 0.0177803 seconds Computing generators in degree 3 : -- used 0.0192465 seconds Computing generators in degree 4 : -- used 0.00920514 seconds Computing generators in degree 5 : -- used 0.00818028 seconds Computing generators in degree 6 : -- used 0.00807309 seconds o6 = {x T , x T , x T , x T , x T , -x T T , -x T T , -x T T , -x T T , - 5 4 5 3 6 4 6 3 6 1 6 1 3 5 3 4 6 3 4 6 1 4 ------------------------------------------------------------------------ x T T + x T T , - x T T + x T T , x T T T , x T T T - x T T T } 6 4 5 5 4 6 6 3 5 5 3 6 6 1 3 4 6 3 4 5 5 3 4 6 o6 : List |
i7 : tmo = findTrivialMasseyOperation(A) Computing generators in degree 1 : -- used 0.00223924 seconds Computing generators in degree 2 : -- used 0.018346 seconds Computing generators in degree 3 : -- used 0.0198896 seconds Computing generators in degree 4 : -- used 0.00185483 seconds Computing generators in degree 5 : -- used 0.00181353 seconds Computing generators in degree 6 : -- used 0.00183002 seconds o7 = {{3} | 0 0 0 0 0 0 0 0 0 0 |, {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 -x_6 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 -x_6 | {4} | x_6 0 0 0 0 {3} | 0 0 0 0 0 0 -x_6 0 0 0 | {4} | 0 0 x_6 0 0 {3} | 0 0 0 0 0 0 0 0 -x_6 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {3} | -x_5 0 x_6 -x_6 0 0 0 0 0 0 | {3} | 0 0 0 0 0 -x_6 0 0 0 0 | {3} | 0 0 0 0 0 0 0 0 0 0 | {3} | 0 0 0 0 0 0 0 0 0 0 | ------------------------------------------------------------------------ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_6 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_5 0 x_6 0 -x_5 0 -x_6 0 ------------------------------------------------------------------------ 0 |, {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |, 0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | {5} | 0 0 0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 x_6 | 0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | 0 | x_6 | 0 | 0 | 0 | 0 | 0 | 0 | ------------------------------------------------------------------------ 0, 0} o7 : List |
i8 : assert(tmo =!= null) |
Below is an example of a Teter ring (Artinian Gorenstein ring modulo its socle), and the computation in Avramov and Levin’s paper shows that H(A) does not have trivial multiplication, hence no trivial Massey operation can exist.
i9 : Q = ZZ/101[x,y,z] o9 = Q o9 : PolynomialRing |
i10 : I = ideal (x^3,y^3,z^3,x^2*y^2*z^2) 3 3 3 2 2 2 o10 = ideal (x , y , z , x y z ) o10 : Ideal of Q |
i11 : R = Q/I o11 = R o11 : QuotientRing |
i12 : A = koszulComplexDGA(R) o12 = {Ring => R } Underlying algebra => R[T , T , T ] 1 2 3 Differential => {x, y, z} isHomogeneous => true o12 : DGAlgebra |
i13 : isHomologyAlgebraTrivial(A) Computing generators in degree 1 : -- used 0.00829761 seconds Computing generators in degree 2 : -- used 0.0180411 seconds Computing generators in degree 3 : -- used 0.0168948 seconds o13 = false |
i14 : cycleList = getGenerators(A) Computing generators in degree 1 : -- used 0.00152889 seconds Computing generators in degree 2 : -- used 0.0114283 seconds Computing generators in degree 3 : -- used 0.0113782 seconds 2 2 2 2 2 2 2 2 2 2 2 o14 = {x T , y T , z T , x*y z T , x*y z T T , x y*z T T , x*y z T T , 1 2 3 1 1 2 1 2 1 3 ----------------------------------------------------------------------- 2 2 2 2 2 2 x*y z T T T , x y*z T T T , x y z*T T T } 1 2 3 1 2 3 1 2 3 o14 : List |
i15 : assert(findTrivialMasseyOperation(A) === null) Computing generators in degree 1 : -- used 0.00154154 seconds Computing generators in degree 2 : -- used 0.011439 seconds Computing generators in degree 3 : -- used 0.0113881 seconds |