next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Divisor :: toWDiv

toWDiv -- Turn a rational/real divisor with integer coefficients into to a Weil Divisor

Synopsis

Description

Given a divisor with rational or real coefficients, but whose coefficients are actually integers, we first check if all coefficients are integers. If so we make this divisor to a Weil divisor. Otherwise, an error is thrown.

i1 : R=QQ[x]

o1 = R

o1 : PolynomialRing
i2 : D=rationalDivisor({3/2}, {ideal(x)})

o2 = 3/2*Div(x) of R

o2 : QDiv
i3 : E=realDivisor({1.5}, {ideal(x)})

o3 = 1.5*Div(x) of R

o3 : RDiv
i4 : toWDiv(2*D)

o4 = 3*Div(x) of R

o4 : WDiv
i5 : toWDiv(2*E)

o5 = 3*Div(x) of R

o5 : WDiv
i6 : try toWDiv(D) then print "converted to a WDiv" else print "can't be converted to a WDiv"
can't be converted to a WDiv

See also

Ways to use toWDiv :