next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
SymbolicPowers :: symbolicPowerMonomialCurve

symbolicPowerMonomialCurve -- computes the symbolic powers of ideals defining monomial curves.

Synopsis

Description

Finds the m-th symbolic power of I, where I is the defining ideal for the monomial curve defined by ta1, ..., tan. If no field is provided, the ideal is defined over .

i1 : symbolicPowerMonomialCurve({3,4,5},3)

             6       4      2 2 2    3 3   2 5     3 3     4   2    4 2  
o1 = ideal (c  - 3b*c d + 3b c d  - b d , b c  - 2b c d + b c*d  - c d  +
     ------------------------------------------------------------------------
         2 3    2 4   3 4     4 2     5 2    5        3 2    2   3   5 2  
     2b*c d  - b d , b c  - 2b c d + b d  - c d + 2b*c d  - b c*d , b c  -
     ------------------------------------------------------------------------
      6       5     2 3      3   2    2 3      4   7     4 2      5 2    5   
     b d + b*c  - 4b c d + 3b c*d  + c d  - b*d , b c - b c d - 2b d  + c d -
     ------------------------------------------------------------------------
         3 2     2   3    5   8    4 3     5         4      2 2 2    3 3  
     3b*c d  + 5b c*d  - d , b  + b c  - 4b c*d - b*c d + 3b c d  + b d  -
     ------------------------------------------------------------------------
        4
     c*d )

o1 : Ideal of QQ[b, c, d]

See also

Ways to use symbolicPowerMonomialCurve :