Given a Lie homomorphism f, the dimensions are given for the kernel up to the specified degree n.
i1 : L=lieAlgebra({a,b,c,r3,r4,r42}, {{{1,-1},{[b,c],[a,c]}},[a,b],{{1,-1},{[b,r4],[a,r4]}}}, genWeights => {{1,0},{1,0},{2,0},{3,1},{4,1},{4,2}}, genDiffs=>{[],[],[],[a,c],[a,a,c],{{1,-1},{[r4],[a,r3]}}}, genSigns=>{0,0,0,1,1,0}) o1 = L o1 : LieAlgebra |
i2 : M=minmodelLie 5 o2 = M o2 : LieAlgebra |
i3 : f=M.modelmap o3 = f o3 : MapLie |
i4 : kernelLie(5,f) o4 = | 0 1 3 6 14 | | 0 1 3 7 18 | | 0 0 0 1 4 | | 0 0 0 0 0 | | 0 0 0 0 0 | 5 5 o4 : Matrix ZZ <--- ZZ |