We randomly choose an r × n matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00145938, .00105347) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .00415631, .0755781) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.00461632, .0212012}, {.00447069, .00613342}, {.0046604, .0104701}, ------------------------------------------------------------------------ {.019216, .0164891}, {.00461912, .0246921}, {.00557035, .0244245}, ------------------------------------------------------------------------ {.00453358, .0128577}, {.00471786, .0116368}, {.00371731, .00800005}, ------------------------------------------------------------------------ {.00573663, .014288}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .00618582719999998 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .0150192884 o7 : RR (of precision 53) |