next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
FiniteFittingIdeals :: nextDegree

nextDegree -- Lifts the kernel to the next degree

Synopsis

Description

Let S be a polynomial ring and consider a quotient Q=Sp/N where N is a submodule generated in degrees at most d. If the graded component Qd is free, then Nd is free as well, and Nd⊗S1 →Spd+1 →Qd+1→0 gives a free resolution of Qd+1. The function nextDegree takes the matrix corresponding to the map Nd→Spd and gives the matrix corresponding to the map Nd⊗S1→Spd+1.

i1 : S=ZZ[x_0,x_1];
i2 : R=S[a_1..a_4];
i3 : K=gens ker matrix{{1,a_2,a_3,a_4}}

o3 = {0, 0} | a_2 a_3 a_4 |
     {1, 0} | -1  0   0   |
     {1, 0} | 0   -1  0   |
     {1, 0} | 0   0   -1  |

             4       3
o3 : Matrix R  <--- R
i4 : nextDegree(K,1,S)

o4 = {-1, 0} | a_2 0   a_3 0   a_4 0   |
     {-1, 0} | -1  a_2 0   a_3 0   a_4 |
     {0, 0}  | 0   -1  0   0   0   0   |
     {0, 0}  | 0   0   -1  0   0   0   |
     {0, 0}  | 0   0   0   -1  -1  0   |
     {0, 0}  | 0   0   0   0   0   -1  |

             6       6
o4 : Matrix R  <--- R

See also

Ways to use nextDegree :