We randomly choose an r × n matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .0049343, .00187779) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .0144313, .0696158) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.0163602, .0240649}, {.0164901, .00893085}, {.031447, .0137163}, ------------------------------------------------------------------------ {.0163368, .0197681}, {.0165113, .0263745}, {.0173618, .0247507}, ------------------------------------------------------------------------ {.0158046, .0164999}, {.0317045, .0154846}, {.0147879, .0114739}, ------------------------------------------------------------------------ {.018956, .0164008}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .0195760108000001 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .0177464640000001 o7 : RR (of precision 53) |