Contents

Kerberos V5 application
programming library

MIT Information Systems

June 2, 2009

(1__Introduction|

[21

The purpose of Realms|

T2

Fundamental assumptions about the environment|.

1.3 Glossary of terms|.o

|2 Useful KDC parameters to know about|

3 _Error tables|

3.1

error_table krbd|

[3.2

error_table kdbd|

3.3

error_table kvbm|

3.4

error_table asnl|

4.1.1

The krbb_context|

4.1.2

The krb5_auth_context|

A13

Principal access functions| L.

!

The application tunctions|

U e N NN

11
11
12

1 INTRODUCTION 2

4.3 Replay cache functions| oL 47
4.4 Key table functions|.o Lo 51
A5 Free functiond 55
4.6 Operating-system specific functions|. 59
4.6.1 Operating specific context| 60
4.6.2 Configuration based functions|. 60
4.6.3 Disk based functions| o000 63
[46.4 Network based routined 63
4.6.5 Operating specific access functions| 65
4.6.6 Miscellaneous operating specific functions| 66

1 Introduction

This document describes the routines that make up the Kerberos V5 application pro-
gramming interface. It is geared towards programmers who already have a basic famil-
iarity with Kerberos and are in the process of including Kerberos authentication as part
of applications being developed.

The function descriptions included are up to date, even if the description of the
functions may be hard to understand for the novice Kerberos programmer.

1.1 Acknowledgments

The Kerberos model is based in part on Needham and Schroeder’s trusted third-party
authentication protocol and on modifications suggested by Denning and Sacco. The
original design and implementation of Kerberos Versions 1 through 4 was the work
of Steve Miller of Digital Equipment Corporation and Clifford Neuman (now at the
Information Sciences Institute of the University of Southern California), along with
Jerome Saltzer, Technical Director of Project Athena, and Jeffrey Schiller, MIT Campus
Network Manager. Many other members of Project Athena have also contributed to
the work on Kerberos. Version 4 is publicly available, and has seen wide use across the
Internet.

Version 5 (described in this document) has evolved from Version 4 based on new
requirements and desires for features not available in Version 4.

1.2 Kerberos Basics

Kerberos performs authentication as a trusted third-party authentication service by
using conventional (shared secret keyE[) cryptography. Kerberos provides a means of
verifying the identities of principals, without relying on authentication by the host
operating system, without basing trust on host addresses, without requiring physical

1 Secret and private are often used interchangeably in the literature. In our usage, it takes two (or
more) to share a secret, thus a shared DES key is a secret key. Something is only private when no one
but its owner knows it. Thus, in public key cryptosystems, one has a public and a private key.

1 INTRODUCTION 3

security of all the hosts on the network, and under the assumption that packets traveling
along the network can be read, modified, and inserted at will.

When integrating Kerberos into an application it is important to review how and
when Kerberos functions are used to ensure that the application’s design does not com-
promise the authentication. For instance, an application which uses Kerberos’ functions
only upon the initiation of a stream-based network connection, and assumes the absence
of any active attackers who might be able to “hijack” the stream connection.

The Kerberos protocol code libraries, whose API is described in this document, can
be used to provide encryption to any application. In order to add authentication to its
transactions, a typical network application adds one or two calls to the Kerberos library,
which results in the transmission of the necessary messages to achieve authentication.

The two methods for obtaining credentials, the initial ticket exchange and the
ticket granting ticket exchange, use slightly different protocols and require different API
routines. The basic difference an API programmer will see is that the initial request
does not require a ticket granting ticket (TGT) but does require the client’s secret key
because the reply is sent back encrypted in the client’s secret key. Usually this request
is for a TGT and TGT based exchanges are used from then on. In a TGT exchange the
TGT is sent as part of the request for tickets and the reply is encrypted in the session
key from the TGT. For example, once a user’s password is used to obtain a TGT, it is
not required for subsequent TGT exchanges.

The reply consists of a ticket and a session key, encrypted either in the user’s secret
key (i.e., password), or the TGT session key. The combination of a ticket and a session
key is known as a set of credentialsﬂ An application client can use these credentials to
authenticate to the application server by sending the ticket and an authenticator to the
server. The authenticator is encrypted in the session key of the ticket, and contains the
name of the client, the name of the server, the time the authenticator was created.

In order to verify the authentication, the application server decrypts the ticket
using its service key, which is only known by the application server and the Kerberos
server. Inside the ticket, the Kerberos server had placed the name of the client, the name
of the server, a DES key associated with this ticket, and some additional information.
The application server then uses the ticket session key to decrypt the authenticator,
and verifies that the information in the authenticator matches the information in the
ticket, and that the timestamp in the authenticator is recent (to prevent reply attacks).
Since the session key was generated randomly by the Kerberos server, and delivered
only encrypted in the service key, and in a key known only by the user, the application
server can be confident that user is really who he or she claims to be, by virtue of the
fact that the user was able to encrypt the authenticator in the correct key.

To provide detection of both replay attacks and message stream modification at-
tacks, the integrity of all the messages exchanged between principals can also be guaran-
teedﬁ by generating and transmitting a collision-proof checksunﬁ of the client’s message,
keyed with the session key. Privacy and integrity of the messages exchanged between
principals can be securedﬂ by encrypting the data to be passed using the session key.

2In Kerberos V4, the “ticket file” was a bit of a misnomer, since it contained both tickets and their
associated session keys. In Kerberos V5, the “ticket file” has been renamed to be the credentials cache.

3Using krb5_mk_safe() and krb5_rd_safe() to create and verify KRB5_SAFE messages

4aka cryptographic checksum, elsewhere this is called a hash or digest function

5Using krb5_mk_priv() and krb5_rd_priv() to create and verify KRB5_PRIV messages

1 INTRODUCTION 4

1.2.1 The purpose of Realms

The Kerberos protocol is designed to operate across organizational boundaries. Each
organization wishing to run a Kerberos server establishes its own realm. The name of
the realm in which a client is registered is part of the client’s name, and can be used by
the end-service to decide whether to honor a request.

By establishing inter-realm keys, the administrators of two realms can allow a client
authenticated in the local realm to use its credentials remotely. The exchange of inter-
realm keys (a separate key may be used for each direction) registers the ticket-granting
service of each realm as a principal in the other realm. A client is then able to obtain a
ticket-granting ticket for the remote realm’s ticket-granting service from its local realm.
When that ticket-granting ticket is used, the remote ticket-granting service uses the
inter-realm key (which usually differs from its own normal TGS key) to decrypt the
ticket-granting ticket, and is thus certain that it was issued by the client’s own TGS.
Tickets issued by the remote ticket-granting service will indicate to the end-service that
the client was authenticated from another realm.

This method can be repeated to authenticate throughout an organization across
multiple realms. To build a valid authentication pat}ﬁ to a distant realm, the local
realm must share an inter-realm key with an intermediate realm which communicatesﬂ
with either the distant remote realm or yet another intermediate realm.

Realms are typically organized hierarchically. Each realm shares a key with its
parent and a different key with each child. If an inter-realm key is not directly shared
by two realms, the hierarchical organization allows an authentication path to be easily
constructed. If a hierarchical organization is not used, it may be necessary to consult
some database in order to construct an authentication path between realms.

Although realms are typically hierarchical, intermediate realms may be bypassed
to achieve cross-realm authentication through alternate authentication path&ﬂ It is
important for the end-service to know which realms were transited when deciding how
much faith to place in the authentication process. To facilitate this decision, a field in
each ticket contains the names of the realms that were involved in authenticating the
client.

1.2.2 Fundamental assumptions about the environment

Kerberos has certain limitations that should be kept in mind when designing security
measures:

e Kerberos does not address “Denial of service” attacks. There are places in these
protocols where an intruder can prevent an application from participating in the
proper authentication steps. Detection and solution of such attacks (some of which
can appear to be not-uncommon “normal” failure modes for the system) is usually
best left to the human administrators and users.

e Principals must keep their secret keys secret. If an intruder somehow steals a
principal’s key, it will be able to masquerade as that principal or impersonate any
server to the legitimate principal.

6 An authentication path is the sequence of intermediate realms that are transited in communicating
from one realm to another.

7A realm is said to communicate with another realm if the two realms share an inter-realm key

8These might be established to make communication between two realms more efficient

1 INTRODUCTION)

e “Password guessing” attacks are not solved by Kerberos. If a user chooses a poor
password, it is possible for an attacker to successfully mount an offline dictionary
attack by repeatedly attempting to decrypt, with successive entries from a dictio-
nary, messages obtained which are encrypted under a key derived from the user’s
password.

1.3 Glossary of terms

Below is a list of terms used throughout this document.

Authentication Verifying the claimed identity of a principal.

Authentication header A record containing a Ticket and an Authenticator to be
presented to a server as part of the authentication process.

Authentication path A sequence of intermediate realms transited in the authentica-
tion process when communicating from one realm to another.

Authenticator A record containing information that can be shown to have been re-
cently generated using the session key known only by the client and server.

Authorization The process of determining whether a client may use a service, which
objects the client is allowed to access, and the type of access allowed for each.

Ciphertext The output of an encryption function. Encryption transforms plaintext
into ciphertext.

Client A process that makes use of a network service on behalf of a user. Note that in
some cases a Server may itself be a client of some other server (e.g. a print server
may be a client of a file server).

Credentials A ticket plus the secret session key necessary to successfully use that
ticket in an authentication exchange.

KDC Key Distribution Center, a network service that supplies tickets and temporary
session keys; or an instance of that service or the host on which it runs. The KDC
services both initial ticket and ticket-granting ticket requests. The initial ticket
portion is sometimes referred to as the Authentication Server (or service). The
ticket-granting ticket portion is sometimes referred to as the ticket-granting server
(or service).

Kerberos Aside from the 3-headed dog guarding Hades, the name given to Project
Athena’s authentication service, the protocol used by that service, or the code
used to implement the authentication service.

Plaintext The input to an encryption function or the output of a decryption function.
Decryption transforms ciphertext into plaintext.

Principal A uniquely named client or server instance that participates in a network
communication.

Principal identifier The name used to uniquely identify each different principal.

Seal To encipher a record containing several fields in such a way that the fields cannot
be individually replaced without either knowledge of the encryption key or leaving
evidence of tampering.

2 USEFUL KDC PARAMETERS TO KNOW ABOUT 6

Secret key An encryption key shared by a principal and the KDC, distributed outside
the bounds of the system, with a long lifetime. In the case of a human user’s
principal, the secret key is derived from a password.

Server A particular Principal which provides a resource to network clients.

Service A resource provided to network clients; often provided by more than one server
(for example, remote file service).

Session key A temporary encryption key used between two principals, with a lifetime
limited to the duration of a single login session.

Sub-session key A temporary encryption key used between two principals, selected
and exchanged by the principals using the session key, and with a lifetime limited
to the duration of a single association.

Ticket A record that helps a client authenticate itself to a server; it contains the client’s
identity, a session key, a timestamp, and other information, all sealed using the
server’s secret key. It only serves to authenticate a client when presented along
with a fresh Authenticator.

2 Useful KDC parameters to know about

The following is a list of options which can be passed to the Kerberos server (also known
as the Key Distribution Center or KDC). These options affect what sort of tickets the
KDC will return to the application program. The KDC options can be passed to krb5_
get_in_tkt(), krb5_get_in_tkt_with_password(), krb5_get_in_tkt_with_skey(),
and krb5_send_tgs().

Symbol RFC Valid for
section get_in_tkt?
KDC_OPT_FORWARDABLE 2.6 yes
KDC_OPT_FORWARDED 2.6
KDC_OPT_PROXIABLE 2.5 yes
KDC_OPT_PROXY 2.5
KDC_OPT_ALLOW_POSTDATE 2.4 yes
KDC_OPT_POSTDATED 2.4 yes
KDC_OPT_RENEWABLE 2.3 yes
KDC_OPT_RENEWABLE_OK 2.7 yes
KDC_OPT_ENC_TKT_IN_SKEY 2.7
KDC_OPT_RENEW 2.3
KDC_OPT_VALIDATE 2.2

The following is a list of preauthentication methods which are supported by Ker-
beros. Most preauthentication methods are used by krb5_get_in_tkt(), krb5_get_in_
tkt_with_password(), and krb5_get_in_tkt_with_skey(); at some sites, the Ker-
beros server can be configured so that during the initial ticket transation, it will only
return encrypted tickets after the user has proven his or her identity using a supported
preauthentication mechanism. This is done to make certain password guessing attacks
more difficult to carry out.

3 ERROR TABLES 7

Symbol In Valid for
RFC? get_in_tkt?
KRB5_PADATA_NONE yes yes
KRB5_PADATA_AP_REQ yes
KRB5_PADATA_TGS_REQ yes
KRB5_PADATA_PW_SALT yes
KRB5_PADATA_ENC_TIMESTAMP yes yes
KRB5_PADATA_ENC_SECURID yes

KRB5_PADATA_TGS_REQ is rarely used by a programmer; it is used to pass the
ticket granting ticket to the Ticket Granting Service (TGS) during a TGS transaction
(as opposed to an initial ticket transaction).

KRB5_PW_SALT is not really a preauthentication method at all. It is passed back
from the Kerberos server to application program, and it contains a hint to the proper
password salting algorithm which should be used during the initial ticket exchange.

3 Error tables

3.1 error_table krbj

The Kerberos v5 library error code table follows. Protocol error codes are ERROR_
TABLE_BASE_krb5 + the protocol error code number. Other error codes start at
ERROR_TABLE_BASE_krb5 + 128.

3 ERROR TABLES

KRB5KDC_ERR_NONE
KRBS5KDC_ERR_NAME_EXP
KRBS5KDC_ERR_SERVICE_EXP
KRBS5KDC_ERR_BAD_PVNO
KRBS5KDC_ERR_C_OLD_MAST_KVNO

KRBSKDC_ERR_S_OLD_MAST_KVNO

KRBSHKDC_ERR_C_PRINCIPAL_UNKNOWN
KRB5KDC_ERR_S_PRINCIPAL_UNKNOWN
KRBSKDC_ERR_PRINCIPAL_NOT_UNIQUE

KRBS5KDC_ERR_NULL_KEY
KRBS5KDC_ERR_CANNOT_POSTDATE
KRBSKDC_ERR_NEVER_VALID

KRBS5KDC_ERR_POLICY
KRBS5KDC_ERR_BADOPTION
KRB5KDC_ERR_ETYPE_NOSUPP
KRBSKDC_ERR_SUMTYPE_NOSUPP
KRBS5KDC_ERR_PADATA_TYPE_NOSUPP
KRBSKDC_ERR_TRTYPE_NOSUPP
KRBSKDC_ERR_CLIENT_REVOKED
KRBS5KDC_ERR_SERVICE_REVOKED
KRBSKDC_ERR_TGT_REVOKED
KRBSKDC_ERR_CLIENT_NOTYET
KRB5KDC_ERR_SERVICE_NOTYET
KRBSKDC_ERR_KEY_EXP
KRBSKDC_PREAUTH_FAILED
KRBS5KDC_ERR_PREAUTH_REQUIRE
KRBS5KDC_ERR_SERVER_NOMATCH
error codes 27-30

KRBS5KRB_AP_ERR_BAD_INTEGRITY
KRBSKRB_AP_ERR_TKT_EXPIRED
KRBS5KRB_AP_ERR_TKT_NYV
KRBS5KRB_AP_ERR_REPEAT
KRBSKRB_AP_ERR_NOT_US
KRBSKRB_AP_ERR_BADMATCH
KRBSKRB_AP_ERR_SKEW
KRBS5KRB_AP_ERR_BADADDR
KRB5KRB_AP_ERR_BADVERSION
KRBSKRB_AP_ERR_MSG_TYPE
KRBS5KRB_AP_ERR_MODIFIED
KRB5KRB_AP_ERR_BADORDER
KRBS5PLACEHOLD_43
KRB5KRB_AP_ERR_BADKEYVER
KRBS5KRB_AP_ERR_NOKEY
KRBS5KRB_AP_ERR_MUT_FAIL
KRBS5KRB_AP_ERR_BADDIRECTION
KRB5KRB_AP_ERR_METHOD
KRBS5KRB_AP_ERR_BADSEQ
KRBS5KRB_AP_ERR_INAPP_CKSUM
error codes 51-59 a
KRBS5KRB_ERR_GENERIC
KRBS5KRB_ERR_FIELD_TOOLONG

No error

Client’s entry in database has expired
Server’s entry in database has expired
Requested protocol version not supported
Client’s key is encrypted in an old

master key
Server’s key is encrypted in an old

master key
Client not found in Kerberos database

Server not found in Kerberos database
Principal has multiple entries in

Kerberos database
Client or server has a null key

Ticket is ineligible for postdating
Requested effective lifetime is nega-

tive or too short
KDC policy rejects request

KDC can’t fulfill requested option

KDC has no support for encryption type

KDC has no support for checksum type

KDC has no support for padata type

KDC has no support for transited type

Clients credentials have been revoked

Credentials for server have been revoked

TGT has been revoked

Client not yet valid - try again later

Server not yet valid - try again later

Password has expired

Preauthentication failed

Additional pre-authentication required

Requested server and ticket don’t match
are currently placeholders

Decrypt integrity check failed

Ticket expired

Ticket not yet valid

Request is a replay

The ticket isn’t for us
Ticket/authenticator don’t match

Clock skew too great

Incorrect net address

Protocol version mismatch

Invalid message type

Message stream modified

Message out of order

KRB5 error code 43

Key version is not available

Service key not available

Mutual authentication failed

Incorrect message direction

Alternative authentication method required
Incorrect sequence number in message
Inappropriate type of checksum in message
re currently placeholders

Generic error (see e-text)

Field is too long for this implementation

error codes 62-127 are currently placeholders

3 ERROR TABLES

KRB5_LIBOS_BADLOCKFLAG
KRB5_LIBOS_CANTREADPWD
KRB5_LIBOS_BADPWDMATCH
KRB5_LIBOS_PWDINTR
KRB5_PARSE_ILLCHAR
KRB5_PARSE_MALFORMED
KRB5_CONFIG_CANTOPEN
KRB5_CONFIG_BADFORMAT
KRB5_CONFIG_NOTENUFSPACE
KRB5_BADMSGTYPE
KRB5_CC_BADNAME
KRB5_CC_UNKNOWN_TYPE
KRB5_CC_NOTFOUND
KRB5_CC_END
KRB5_NO_TKT_SUPPLIED
KRBS5KRB_AP_WRONG_PRINC
KRB5KRB_AP_ERR_TKT_INVALID
KRB5_PRINC_NOMATCH
KRB5_KDCREP_MODIFIED
KRB5_KDCREP_SKEW
KRB5_IN_TKT_REALM_MISMATCH

KRB5_PROG_ETYPE_NOSUPP
KRB5_PROG_KEYTYPE_NOSUPP
KRB5_WRONG_ETYPE
KRB5_PROG_SUMTYPE_NOSUPP
KRB5_REALM_UNKNOWN
KRB5_SERVICE_UNKNOWN
KRB5_KDC_UNREACH
KRB5_NO_LOCALNAME

Invalid flag for file lock mode

Cannot read password

Password mismatch

Password read interrupted

Illegal character in component name
Malformed representation of principal
Can’t open/find configuration file
Improper format of configuration file
Insufficient space to return complete information
Invalid message type specified for encoding
Credential cache name malformed
Unknown credential cache type

Matching credential not found

End of credential cache reached

Request did not supply a ticket

Wrong principal in request

Ticket has invalid flag set

Requested principal and ticket don’t match
KDC reply did not match expectations
Clock skew too great in KDC reply
Client/server realm mismatch in initial ticket

requst
Program lacks support for encryption type

Program lacks support for key type

Requested encryption type not used in message
Program lacks support for checksum type
Cannot find KDC for requested realm
Kerberos service unknown

Cannot contact any KDC for requested realm
No local name found for principal name

3 ERROR TABLES

KRB5_RC_TYPE_EXISTS
KRB5_RC_MALLOC
KRB5_RC_TYPE_NOTFOUND
KRB5_RC_UNKNOWN
KRB5_RC_REPLAY
KRB5_RC_IO
KRB5_RC_NOIO

KRB5_RC_PARSE
KRB5_RC_IO_EOF
KRB5_RC_IO_MALLOC

KRB5_RC_IO_PERM
KRB5_RC_IO_IO
KRB5_RC_IO_UNKNOWN
KRB5_RC_IO_SPACE
KRB5_TRANS_CANTOPEN
KRB5_TRANS_BADFORMAT
KRB5_LNAME_CANTOPEN
KRB5_LNAME_NOTRANS
KRB5_LNAME_BADFORMAT
KRB5_CRYPTO_INTERNAL
KRBS5_KT_BADNAME
KRB5_KT_UNKNOWN_TYPE
KRB5_KT_NOTFOUND
KRBS5_KT_END
KRB5_KT_NOWRITE
KRB5_KT_IOERR
KRB5_NO_TKT_IN_RLM
KRBSDES_BAD_KEYPAR
KRBSDES_WEAK_KEY
KRB5_BAD_KEYTYPE
KRB5_BAD_KEYSIZE
KRB5_BAD_MSIZE
KRB5_CC_TYPE_EXISTS
KRB5_KT_TYPE_EXISTS
KRB5_CC_IO
KRB5_FCC_PERM
KRB5_FCC_NOFILE
KRB5_FCC_INTERNAL
KRB5_CC_NOMEM

10

Replay cache type is already registered

No more memory to allocate (in replay cache code)
Replay cache type is unknown

Generic unknown RC error

Message is a replay

Replay 1/O operation failed XXX

Replay cache type does not support non-volatile stor-
age

Replay cache name parse/format error

End-of-file on replay cache 1/0O

No more memory to allocate (in replay cache I/0O
code)

Permission denied in replay cache code

I/O error in replay cache i/o code

Generic unknown RC/IO error

Insufficient system space to store replay information
Can’t open/find realm translation file

Improper format of realm translation file

Can’t open/find Iname translation database

No translation available for requested principal
Improper format of translation database entry
Cryptosystem internal error

Key table name malformed

Unknown Key table type

Key table entry not found

End of key table reached

Cannot write to specified key table

Error writing to key table

Cannot find ticket for requested realm

DES key has bad parity

DES key is a weak key

Keytype is incompatible with encryption type

Key size is incompatible with encryption type
Message size is incompatible with encryption type
Credentials cache type is already registered.

Key table type is already registered.

Credentials cache I/O operation failed XXX
Credentials cache file permissions incorrect

No credentials cache file found

Internal file credentials cache error

No more memory to allocate (in credentials cache
code)

errors for dual TGT library calls

KRB5_INVALID_FLAGS
KRB5_NO_2ND_TKT
KRB5_NOCREDS_SUPPLIED

Invalid KDC option combination (library internal error)
Request missing second ticket
No credentials supplied to library routine

errors for sendauth and recvauth
KRBS5_SENDAUTH_BADAUTHVERS Bad sendauth version was sent
KRB5_SENDAUTH_BADAPPLVERS Bad application version was sent (via sendauth)
KRB5_SENDAUTH_BADRESPONSE Bad response (during sendauth exchange)
KRB5_SENDAUTH_REJECTED Server rejected authentication
(during sendauth exchange)
Mutual authentication failed
(during sendauth exchange)

KRB5_SENDAUTH_MUTUAL_FAILED

3 ERROR TABLES

3.2

11

errors for preauthentication

KRB5_PREAUTH_BAD_TYPE
KRB5_PREAUTH_NO_KEY
KRBS_PREAUTH_FAILED

Unsupported preauthentication type
Required preauthentication key not supplied
Generic preauthentication failure

version number errors

KRB5_RCACHE_BADVNO
KRB5_CCACHE_BADVNO
KRB5_KEYTAB_BADVNO

KRB5_PROG_ATYPE_NOSUPP
KRB5_RC_REQUIRED

KRB5_ERR_BAD_HOSTNAME

KRBS5_ERR_HOST_REALM_UNKNOWN

KRB5_SNAME_UNSUPP_NAMETYPE
KRBSKRB_AP_ERR_V4_REPLY

KRB5_REALM_CANT_RESOLVE
KRBS5_TKT_NOT_FORWARDABLE

error_table kdb5

Unsupported replay cache format version number
Unsupported credentials cache format version number
Unsupported key table format version number

other errors
Program lacks support for address type
Message replay detection requires
rcache parameter
Hostname cannot be canonicalized
Cannot determine realm for host
Conversion to service principal undefined
for name type
Initial Ticket Response appears to be
Version 4 error
Cannot resolve KDC for requested realm
Requesting ticket can’t get forwardable tickets

The Kerberos v5 database library error code table

3.3

From the server side routines

KRB5_KDB_INUSE
KRB5_KDB_UK_SERROR
KRB5_KDB_UK_RERROR
KRBS5_KDB_UNAUTH
KRB5_KDB_NOENTRY
KRB5_KDB_ILL_WILDCARD
KRB5_KDB_DB_INUSE
KRB5_KDB_DB_CHANGED
KRB5_KDB_TRUNCATED_RECORD
KRB5_KDB_RECURSIVELOCK
KRB5_KDB_NOTLOCKED
KRB5_KDB_BADLOCKMODE
KRB5_KDB_DBNOTINITED
KRB5_KDB_DBINITED
KRB5_KDB_ILLDIRECTION
KRB5_KDB_NOMASTERKEY
KRB5_KDB_BADMASTERKEY
KRB5_KDB_INVALIDKEYSIZE
KRB5_KDB_CANTREAD_STORED
KRB5_KDB_BADSTORED_MKEY
KRB5_KDB_CANTLOCK_DB
KRB5_KDB_DB_CORRUPT
KRB5_KDB_BAD_VERSION

error_table kvbm

Entry already exists in database

Database store error

Database read error

Insufficient access to perform requested operation
No such entry in the database

Illegal use of wildcard

Database is locked or in use-try again later
Database was modified during read
Database record is incomplete or corrupted
Attempt to lock database twice

Attempt to unlock database when not locked
Invalid kdb lock mode

Database has not been initialized

Database has already been initialized

Bad direction for converting keys

Cannot find master key record in database
Master key does not match database

Key size in database is invalid

Cannot find/read stored master key

Stored master key is corrupted

Insufficient access to lock database
Database format error

Unsupported version in database entry

The Kerberos v5 magic numbers errorcode table follows. These are used for the magic
numbers found in data structures.

3 ERROR TABLES

3.4

KV5M_NONE
KV5M_PRINCIPAL
KV5M_DATA
KVSM_KEYBLOCK
KVS5M_CHECKSUM
KV5M_ENCRYPT_BLOCK
KVSOM_ENC_DATA

12

Kerberos V5 magic number table

Bad magic number for krb5_principal structure

Bad magic number for krb5_data structure

Bad magic number for krb5_keyblock structure

Bad magic number for krb5_checksum structure
Bad magic number for krb5_encrypt_block structure
Bad magic number for krb5_enc_data structure

KV5M_CRYPTOSYSTEM_ENTRY Bad magic number for krb5_cryptosystem_entry

KV5M_CS_TABLE_ENTRY
KV5M_CHECKSUM_ENTRY
KVSM_AUTHDATA
KVS5M_TRANSITED
KVSOM_ENC_TKT_PART
KVS5M_TICKET
KVSM_AUTHENTICATOR
KVSOM_TKT_AUTHENT
KV5M_CREDS
KVSM_LAST_REQ_ENTRY
KV5M_PA_DATA
KVSHM_KDC_REQ
KVSM_ENC_KDC_REP_PART
KV5M_KDC_REP
KV5M_ERROR
KVBM_AP_REQ
KV5M_AP_REP
KVSOM_AP_REP_ENC_PART
KVHM_RESPONSE
KV5M_SAFE

KV5M_PRIV
KV5M_PRIV_ENC_PART
KV5M_CRED
KV5M_CRED_INFO
KVSHM_CRED_ENC_PART
KVSM_PWD_DATA
KV5M_ADDRESS
KVS5M_KEYTAB_ENTRY
KVSM_CONTEXT
KV5M_OS_CONTEXT

error_table asnl

structure

Bad magic number for krb5_cs_table_entry structure
Bad magic number for krb5_checksum_entry structure
Bad magic number for krb5_authdata structure

Bad magic number for krb5_transited structure

Bad magic number for krb5_enc_tkt_part structure
Bad magic number for krb5_ticket structure

Bad magic number for krb5_authenticator structure
Bad magic number for krb5_tkt_authent structure
Bad magic number for krb5_creds structure

Bad magic number for krb5_last_req_entry structure
Bad magic number for krb5_pa_data structure

Bad magic number for krb5_kdc_req structure

Bad magic number for krb5_enc_kdc_rep_part structure
Bad magic number for krb5_kdc_rep structure

Bad magic number for krb5_error structure

Bad magic number for krb5_ap_req structure

Bad magic number for krb5_ap_rep structure

Bad magic number for krb5_ap_rep_enc_part structure
Bad magic number for krb5_response structure

Bad magic number for krb5_safe structure

Bad magic number for krb5_priv structure

Bad magic number for krb5_priv_enc_part structure
Bad magic number for krb5_cred structure

Bad magic number for krb5_cred_info structure

Bad magic number for krb5_cred_enc_part structure
Bad magic number for krb5_pwd_data structure
Bad magic number for krb5_address structure

Bad magic number for krb5_keytab_entry structure
Bad magic number for krb5_context structure

Bad magic number for krb5_os_context structure

The Kerberos v5/ASN.1 error table mappings

ASN1_BAD_TIMEFORMAT
ASN1_MISSING_FIELD
ASN1_MISPLACED_FIELD
ASN1_TYPE_MISMATCH
ASN1_OVERFLOW
ASN1_OVERRUN
ASN1_BAD_ID
ASN1_BAD_LENGTH
ASN1_BAD_FORMAT
ASN1_PARSE_ERROR

ASN.1 failed call to system time library
ASN.1 structure is missing a required field
ASN.1 unexpected field number

ASN.1 type numbers are inconsistent

ASN.1 value too large

ASN.1 encoding ended unexpectedly

ASN.1 identifier doesn’t match expected value
ASN.1 length doesn’t match expected value
ASN.1 badly-formatted encoding

ASN.1 parse error

4 LIBKRB5.A FUNCTIONS 13

4 libkrb5.a functions

This section describes the functions provided in the libkrb5.a library. The library is
built from several pieces, mostly for convenience in programming, maintenance, and
porting.

4.1 Main functions

The main functions deal with the nitty-gritty details: verifying tickets, creating authen-
ticators, and the like.

4.1.1 The krb5_context

The krb5_context is designed to represent the per process state. When the library is
made thread-safe, the context will represent the per-thread state. Global parameters
which are “context” specific are stored in this structure, including default realm, default
encryption type, default configuration files and the like. Functions exist to provide full
access to the data structures stored in the context and should not be accessed directly
by developers.

krb5_error_code
krb5_init_context(/* OUT */
krb5_context * context)

Initializes the context *context for the application. Currently the context contains
the encryption types, a pointer to operating specific data and the default realm. In the
future, the context may be also contain thread specific data. The data in the context
should be freed with krb5_free_context().

Returns system errors.

void
krb5_free_context(/* IN/OUT */
krb5_context context)

Frees the context returned by krb5_init_context(). Internally calls krb5_os_
free_context().

krb5_error_code
krb5_set_default_in_tkt_etypes(/* IN/OUT */
krb5_context context,
/¥ IN %/
const krb5_enctype * etypes)

Sets the desired default encryption type etypes for the context if valid.

Returns ENOMEM, KRB5_PROG_ETYPE_NOSUPP.

init_context

free_context

set_default_in_tkt_etypes

4 LIBKRB5.A FUNCTIONS 14

krb5_error_code

krb5_get_default_in_tkt_etypes(/* IN/OUT */
krb5_context context,
/*ouT */
krb5_enctype ** etypes)

Retrieves the default encryption types from the context and stores them in etypes
which should be freed by the caller.

Returns ENOMEM.

4.1.2 The krb5_auth_context

While the krb5_context represents a per-process or per-thread context, the krb5_
auth_context represents a per-connection context are are used by the various functions
involved directly in client/server authentication. Some of the data stored in this context
include keyblocks, addresses, sequence numbers, authenticators, checksum type, and
replay cache pointer.

krb5_error_code
krb5_auth_con_init(/* IN/OUT */
krb5_context context,
/*ouT */
krb5_auth_context * auth_context)

The auth_context may be described as a per connection context. This context
contains all data pertinent to the the various authentication routines. This function
initializes the auth_context.

The default flags for the context are set to enable the use of the replay cache (KRB5_
AUTH_CONTEXT_DO_TIME) but no sequence numbers. The function krb5_auth_
con_setflags() allows the flags to be changed.

The default checksum type is set to CKSUMTYPE_RSA_MD4_DES. This may be
changed with krb5_auth_con_setcksumtype().

The auth_context structure should be freed with krb5_auth_con_free().

krb5_error_code

krb5_auth_con_free(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context)

Frees the auth_context auth_context returned by krb5_auth_con_init().

krb5_error_code

krb5_auth_con_setflags(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
J¥IN %/
krb5_int32 flags)

Sets the flags of auth_context to funcparamflags. Valid flags are:

get_default_in_tkt_etypes

auth_con_init

auth_con_free

auth_con_setflags

4 LIBKRB5.A FUNCTIONS 15

Symbol Meaning
KRB5_AUTH_CONTEXT_DO_TIME Use timestamps
KRB5_AUTH_CONTEXT_RET_TIME Save timestamps

to output structure
KRB5_AUTH_CONTEXT_DO_SEQUENCE Use sequence numbers
KRB5_AUTH_CONTEXT_RET_SEQUENCE Copy sequence numbers
to output structure

krb5_error_code
krb5_auth_con_getflags(/* IN/OUT */
krb5_context context,
JEIN %/
krb5_auth_context auth_context,
/*OoUuT */
krb5_int32 * flags)

Retrievs the flags of auth_context.

krbb_error_code

krb5_auth_con_setaddrs(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
J*IN */
krb5_address * local_addr,
krb5_address * remote_addr)

Copies the local_addr and remote_addr into the auth_context. If either address
is NULL, the previous address remains in place.

krb5_error_code

krb5_auth_con_getaddrs(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
/*ouT */
krb5_address ** local_addr,
krb5_address ** remote_addr)

Retrieves local_addr and remote_addr from the auth_context. If local_addr
or remote_addr is not NULL, the memory is first freed with krb5_free_address() and
then newly allocated. It is the callers responsibility to free the returned addresses in
this way.

krb5_error_code

krb5_auth_con_setports(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
/*IN */
krb5_address * local_port,
krb5_address * remote_port)

Copies the local_port and remote_port addresses into the auth_context. If
either address is NULL, the previous address remains in place. These addresses are set
by krb5_auth_con_genaddrs().

auth_con_getflags

auth_con_setaddrs

auth_con_getaddrs

auth_con_setports

4 LIBKRB5.A FUNCTIONS 16

krb5_error_code

krb5_auth_con_setuserkey(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
JEIN)
krb5_keyblock * keyblock)

This function overloads the keyblock field. It is only useful prior to a krb5_rd_
req_decode() call for user to user authentication where the server has the key and
needs to use it to decrypt the incoming request. Once decrypted this key is no longer
necessary and is then overwritten with the session key sent by the client.

krb5_error_code

krb5_auth_con_getkey(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
/*OoUuT */
krb5_keyblock ** keyblock)

Retrieves the keyblock stored in auth_context. The memory allocated in this
function should be freed with a call to krb5_free_keyblock().

krb5_error_code

krb5_auth_con_getrecvsubkey(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
/* OoUuT */
krb5_keyblock ** keyblock)

Retrieves the recv_subkey keyblock stored in auth_context. The memory allocated
in this function should be freed with a call to krb5_free_keyblock().

krb5_error_code

krb5_auth_con_getsendsubkey(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
/*OoUuT */
krb5_keyblock ** keyblock)

Retrieves the send_subkey keyblock stored in auth_context. The memory allo-
cated in this function should be freed with a call to krb5_free_keyblock().

krb5_error_code

krb5_auth_con_setrecvsubkey(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
/*OoUuT */
krb5_keyblock * keyblock)

Sets the recv_subkey keyblock stored in auth_context.

auth_con_setuserkey

auth_con_getkey

auth_con_getrecvsubkey

auth_con_getsendsubkey

auth_con_setrecvsubkey

4 LIBKRB5.A FUNCTIONS 17

krb5_error_code

krb5_auth_con_setsendsubkey(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
/*ouT */
krb5_keyblock * keyblock)

Sets the send_subkey keyblock stored in auth_context.

krb5_error_code

krb5_auth_setcksumtype(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
/¥ IN %/
krb5_cksumtype cksumtype)

Sets the checksum type used by the other functions in the library.

krb5_error_code

krb5_auth_getlocalseqnumber(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
/*IN %/
krb5_int32 * seqnumber)

Retrieves the local sequence number that was used during authentication and stores
it in seqnumber.

krb5_error_code

krb5_auth_getremoteseqnumber(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
/¥ IN %/
krb5_int32 * seqnumber)

Retrieves the remote sequence number that was used during authentication and
stores it in seqnumber.

krb5_error_code

krb5_auth_getauthenticator(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
/*OouT */

krb5_authenticator ** authenticator)

Retrieves the authenticator that was used during mutual authentication. It is the
callers responsibility to free the memory allocated to authenticator by calling krb5_
free_authenticator().

auth_con_setsendsubkey

auth_setcksumtype

auth_getlocalseqnumber

auth_getremoteseqnumber

auth_getauthenticator

4 LIBKRB5.A FUNCTIONS 18

krb5_error_code

krb5_auth_con_initivector(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context)

Allocates memory for and zeros the initial vector in the auth_context keyblock.

krb5_error_code

krb5_auth_con_setivector(/* IN/OUT */
krb5_context context,
krb5_auth_context * auth_context,
/¥ IN %/
krb5_pointer ivector)

Sets the i_vector portion of auth_context to ivector.

krb5_error_code

krb5_auth_con_setrcache(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
JEIN %/
krb5_rcache rcache)

Sets the replay cache that is used by the authentication routines to rcache.

4.1.3 Principal access functions

Principals define a uniquely named client or server instance that participates in a net-
work communication. The following functions allow one to create, modify and access
portions of the krb5_principal.

Other functions found in orther portions of the manual include krb5_sname_to_
principal(), krb5_free_principal(),

While it is possible to directly access the data structure in the structure, it is
recommended that the functions be used.

krb5_error_code
krb5_parse_name(/* IN/OUT */
krb5_context context,
/¥ IN %/
const char * name,
/*ouT */
krb5_principal * principal)

Converts a single-string representation name of the principal name to the multi-part
principal format used in the protocols.

A single-string representation of a Kerberos name consists of one or more principal
name components, separated by slashes, optionally followed by the “@” character and
a realm name. If the realm name is not specified, the local realm is used.

The slash and “@Q” characters may be quoted (i.e., included as part of a compo-

auth_con_initivector

auth_con_setivector

auth_con_setrcache

parse_name

4 LIBKRB5.A FUNCTIONS 19

nent rather than as a component separator or realm prefix) by preceding them with a
backslash (“\”) character. Similarly, newline, tab, backspace, and null characters may
be included in a component by using \n, \¢, \b or \0, respectively.

The realm in a Kerberos name may not contain the slash, colon or null characters.

xprincipal will point to allocated storage which should be freed by the caller
(using krb5_free_principal()) after use.

krb5_parse_name() returns KRB5_PARSE_MALFORMED if the string is badly
formatted, or ENOMEM if space for the return value can’t be allocated.

krb5_error_code
krb5_unparse_name(/* IN/OUT */
krb5_context context,
/¥ IN %/
krb5_const_principal principal,
/*ouT */

char ** name)

Converts the multi-part principal name principal from the format used in the pro-
tocols to a single-string representation of the name. The resulting single-string represen-
tation will use the format and quoting conventions described for krb5_parse_name()
above.

*name points to allocated storage and should be freed by the caller when finished.

krb5_unparse_name() returns KRB_PARSE_MALFORMED if the principal
does not contain at least 2 components, and system errors (ENOMEM if unable to
allocate memory).

krb5_error_code
krb5_unparse_name_ext(/* IN/OUT */
krb5_context context,
J*IN */
krb5_const_principal principal,
/*IN/OUT */
char ** name,
unsigned int * size)

krb5_unparse_name_ext() is designed for applications which must unparse a
large number of principals, and are concerned about the speed impact of needing to do
a lot of memory allocations and deallocations. It functions similarly to krb5_unparse_
name() except if *name is non-null, in which case, it is assumed to contain an allocated
buffer of size *size and this buffer will be resized with realloc() to hold the unparsed
name. Note that in this case, size must not be null.

If size is non-null (whether or not *name is null when the function is called), it
will be filled in with the size of the unparsed name upon successful return.

krb5_data *
krb5_princ_realm(/* IN/OUT */
krb5_contextcontext krb5_principalprincipal)

A macro which returns the realm of principal.

unparse_name

unparse_name_ext

princ_realm

4 LIBKRB5.A FUNCTIONS 20

void
krb5_princ_set_realm(/* IN/OUT */

krb5_contextcontext krb5_principalprincipal krb5_data *realm)

A macro which returns sets the realm of principal to realm.

void
krb5_princ_set_realm_data(/* IN/OUT */

krb5_contextcontext krb5_principalprincipal char *data)

NOTE: This is an internal function, which is not necessarily intended for use by
application programs. Its interface may change at any time.

A macro which returns sets the data portion of the realm of principal to data.

void
krb5_princ_set_realm_length(/* IN/OUT */

krb5_contextcontext krb5_principalprincipal intlength)

NOTE: This is an internal function, which is not necessarily intended for use by
application programs. Its interface may change at any time.

A macro which returns sets the length principal to length.
void

krb5_princ_size(/* IN/OUT */
krb5_contextcontext krb5_principalprincipal)

NOTE: This is an internal function, which is not necessarily intended for use by
application programs. Its interface may change at any time.

A macro which gives the number of elements in the principal. May also be used on

the left size of an assignment.

void
krb5_princ_type(/* IN/OUT */
krb5_contextcontext krb5_principalprincipal)

NOTE: This is an internal function, which is not necessarily intended for use by
application programs. Its interface may change at any time.

A macro which gives the type of the principal. May also be used on the left size of
an assignment.

krb5_princ_data(krb5_contextcontext krb5_principalprincipal)

NOTE: This is an internal function, which is not necessarily intended for use by
application programs. Its interface may change at any time.

A macro which gives the pointer to data portion of the principal. May also be used
on the left size of an assignment.

princ_set_realm

princ_set_realm_data

princ_set_realm_length

princ_size

princ_type

princ_data

4 LIBKRB5.A FUNCTIONS 21

princ_component
krb5_princ_component(krb5_contextcontext krb5_principalprincipal inti)

NOTE: This is an internal function, which is not necessarily intended for use by
application programs. Its interface may change at any time.

A macro which gives the pointer to ith element of the principal. May also be used
on the left size of an assignment.

krb5_error_code build_principal
krb5_build_principal(/* IN/OUT */

krb5_context context,

/*OoUuT */

krb5_principal * princ,

/*IN %/

unsigned int rlen,

const char * realm,

char *s1, *s2, ..., 0)

krb5_error_code build_principal _va
krb5_build_principal_va(/* IN/OUT */

krb5_context context,

/*OouT */

krb5_principal * princ,

JHIN ¥/

unsigned int rlen,

const char * realm,

va_list ap)

krb5_build_principal() and krb5_build_principal_va() perform the same
function; the former takes variadic arguments, while the latter takes a pre-computed
varargs pointer.

Both functions take a realm name realm, realm name length rlen, and a list of
null-terminated strings, and fill in a pointer to a principal structure princ, making it
point to a structure representing the named principal. The last string must be followed
in the argument list by a null pointer.

krb5_error_code build_principal _ext
krb5_build_principal_ext(/* IN/OUT */

krb5_context context,

/*ouT */

krb5_principal * princ,

J¥IN ¥/

unsigned int rlen,

const char * realm,

int lenl, char *s1, int len2, char *s2, ..., 0)

krb5_build_principal_ext() is similar to krb5_build_principal() but it takes
its components as a list of (length, contents) pairs rather than a list of null-terminated
strings. A length of zero indicates the end of the list.

4 LIBKRB5.A FUNCTIONS 22

krb5_error_code

krb5_copy_principal(/* IN/OUT */
krb5_context context,
/*IN ¥/
krb5_const_principal inprinc,
/*OoUT */
krb5_principal * outprinc)

Copy a principal structure, filling in *outprinc to point to the newly allocated
copy, which should be freed with krb5_free_principal().

krb5_boolean

krb5_principal_compare(/* IN/OUT */
krb5_context context,
J¥IN ¥/
krb5_const_principal princi,
krb5_const_principal princ2)

If the two principals are the same, return TRUE, else return FALSE.

krb5_boolean

krb5_realm_compare(/* IN/OUT */
krb5_context context,
J*IN */
krb5_const_principal princi,
krb5_const_principal princ2)

If the realms of the two principals are the same, return TRUE, else return FALSE.

krb5_error_code

krb5_425_conv_principal(/* IN/OUT */
krb5_context context,
/¥ IN %/
const char * name,
const char * instance,
const char * realm,
/*OouT */
krb5_principal * princ)

Build a principal princ from a V4 specification made up of name.instance@realm.
The routine is site-customized to convert the V4 naming scheme to a V5 one. For
instance, the V4 “rcmd” is changed to “host”.

The returned principal should be freed with krb5_free_principal().

4.1.4 The application functions

copy _principal

principal_compare

realm_compare

425_conv_principal

4 LIBKRB5.A FUNCTIONS 23

krb5_error_code
krb5_encode_kdc_rep(/* IN */
const krb5_msgtype type,
const krb5_enc_kdc_rep_part * encpart,
krb5_encrypt_block * eblock,
const krb5_keyblock * client_key,
/*IN/OUT */
krb5_kdc_rep * dec_rep,
/*ouT */
krb5_data ** enc_rep)

NOTE: This is an internal function, which is not necessarily intended for use by
application programs. Its interface may change at any time.

Takes KDC rep parts in *rep and *encpart, and formats it into *enc_rep, using
message type type and encryption key client_key and encryption block eblock.

enc_rep->data will point to allocated storage upon non-error return; the caller
should free it when finished.

Returns system errors.

krb5_error_code

krb5_decode_kdc_rep(/* IN/OUT */
krb5_context context,
J¥IN %/
krb5_data * enc_rep,
const krb5_keyblock * key,
const krbb_enctype etype,
/*ouT */
krb5_kdc_rep ** dec_rep)

NOTE: This is an internal function, which is not necessarily intended for use by
application programs. Its interface may change at any time.

Takes a KDC_REP message and decrypts encrypted part using etype and *key,
putting result in *dec_rep. The pointers in dec_rep are all set to allocated storage
which should be freed by the caller when finished with the response (by using krb5_
free_kdc_rep()).

If the response isn’t a KDC_REP (tgs or as), it returns an error from the decoding
routines.

Returns errors from encryption routines, system errors.

krb5_error_code

krb5_kdc_rep_decrypt_proc(/* IN/OUT */
krb5_context context,
/*IN %/
const krb5_keyblock * key,
krb5_const_pointer decryptarg,
/*IN/OUT */
krb5_kdc_rep * dec_rep)

Decrypt the encrypted portion of dec_rep, using the encryption key key. The

encode_kdc_rep

decode_kdc_rep

kdc_rep_decrypt_proc

4 LIBKRB5.A FUNCTIONS 24

parameter decryptarg is ignored.

The result is in allocated storage pointed to by dec_rep->enc_part2, unless some
€rTOor OCCUurs.

This function is suitable for use as the decrypt_proc argument to krb5_get_in_
tkt().

krb5_error_code

krb5_encrypt_tkt_part(/* IN/OUT */
krb5_context context,
/FINF/
const krb5_keyblock * srv_key,
/¥ IN/OUT */
krb5_ticket * dec_ticket)

NOTE: This is an internal function, which is not necessarily intended for use by
application programs. Its interface may change at any time.

Encrypts the unecrypted part of the ticket found in dec_ticket->enc_part?2 using
srv_key, and places result in dec_ticket->enc_part. The dec_ticket->enc_part
will be allocated by this function.

Returns errors from encryption routines, system errors

enc_part->data is allocated and filled in with encrypted stuff.

krb5_error_code
krb5_decrypt_tkt_part(/* IN/OUT */
krb5_context context,
J¥IN ¥/
const krb5_keyblock * srv_key,
/¥ IN/OUT */
krb5_ticket * dec_ticket)

NOTE: This is an internal function, which is not necessarily intended for use by
application programs. Its interface may change at any time.

Takes encrypted dec_ticket->enc_part, decrypts with dec_ticket->etype using
srv_key, and places result in dec_ticket->enc_part2. The storage of dec_ticket->
enc_part2 will be allocated before return.

Returns errors from encryption routines, system errors

encrypt_tkt_part

decrypt_tkt_part

4 LIBKRB5.A FUNCTIONS 25

krb5_error_code

krb5_send_tgs(/* IN/OUT */
krb5_context context,
/*IN %/
const krbb_flags kdcoptions,
const krb5_ticket_times * timestruct,
const krb5_enctype * etypes,
const krb5_cksumtype sumtype,
krb5_const_principal sname,
krb5_address * const * addrs,
krb5_authdata * const * authorization_data,
krb5_pa_data * const * padata,
const krb5_data * second_ticket,
/*IN/OUT */
krb5_creds * in_cred,
/*ouT */
krb5_response * rep)

NOTE: This is an internal function, which is not necessarily intended for use by
application programs. Its interface may change at any time.

Sends a request to the TGS and waits for a response. kdcoptions is used for the
options in the KRB_TGS_REQ. timestruct values are used for from, till, and rtime in
the KRB_TGS_REQ. etypes is a list of etypes used in the KRB_TGS_REQ. sumtype
is used for the checksum in the AP_REQ in the KRB_TGS_REQ. sname is used for
sname in the KRB_TGS_REQ. addrs, if non-NULL, is used for addresses in the KRB_
TGS_REQ. authorization_data, if non-NULL, is used for authorization_data in
the KRB_TGS_REQ. padata, if non-NULL, is combined with any other supplied pre-
authentication data for the KRB_TGS_REQ. second_ticket, if required by options,
is used for the 2nd ticket in the KRB_TGS_REQ. in_cred is used for the ticket and
session key in the KRB_AP_REQ header in the KRB_TGS_REQ.

The KDC realm is extracted from in_cred->server’s realm.

The response is placed into *rep. rep->response.data is set to point at allocated
storage which should be freed by the caller when finished.

Returns system errors.

krb5_error_code

krb5_get_cred_from_kdc(/* IN/OUT */
krb5_context context,
J*IN */
krb5_ccache ccache,
krb5_creds * in_cred,
/*ouT */
krb5_cred ** out_cred,
krb5_creds *** tgts)

Retrieve credentials for principal in_cred->client, server creds->server, possi-
bly creds->second_ticket if needed by the ticket flags.

ccache is used to fetch initial TGT’s to start the authentication path to the server.

Credentials are requested from the KDC for the server’s realm. Any TGT cre-
dentials obtained in the process of contacting the KDC are returned in an array of

send_tgs

get_cred_from_kdc

4 LIBKRB5.A FUNCTIONS 26

credentials; tgts is filled in to point to an array of pointers to credential structures (if
no TGT’s were used, the pointer is zeroed). TGT’s may be returned even if no useful
end ticket was obtained.

The returned credentials are NOT cached.

If credentials are obtained, creds is filled in with the results; creds->ticket and
creds->keyblock->key are set to allocated storage, which should be freed by the caller
when finished.

Returns errors, system errors.

krb5_error_code
krb5_get_cred_via_tkt(/* IN/OUT */
krb5_context context,
/¥ IN %/
krb5_creds * tkt,
const krb5_flags kdcoptions,
krb5_address *const * address,
krb5_creds * in_cred,
/*OouT */
krb5_creds ** out_cred)

Takes a ticket tkt and a target credential in_cred, attempts to fetch a TGS from
the KDC. Upon success the resulting is stored in out_cred. The memory allocated in
out_cred should be freed by the called when finished by using krb5_free_creds().

kdcoptions refers to the options as listed in Table The optional address is used
for addressed in the KRB_TGS_REQ (see krb5_send_tgs()).

Returns errors, system errors.

krb5_error_code

krb5_get_credentials(/* IN/OUT */
krb5_context context,
/*IN ¥/
const krbb_flags options,
krb5_ccache ccache,
krb5_creds * in_creds,
/*oUuT */

krb5_creds * out_creds)

This routine attempts to use the credentials cache ccache or a TGS exchange to
get an additional ticket for the client identified by in_creds->client, with following
information:

e The server identified by in_creds->server

e The options in options. Valid choices are KRB5_GC_USER_USER and KRB5_
GC_GC_CACHED

e The expiration date specified in in_creds->times.endtime

e The session key type specified in in_creds->keyblock.keytype if it is non-
Zero.

get_cred_via_tkt

get_credentials

4 LIBKRB5.A FUNCTIONS 27

If options specifies KRB5_GC_CACHED, then krb5_get_credentials() will only
search the credentials cache for a ticket.

If options specifies KRB5_GC_USER_USER, then krb5_get_credentials() will
get credentials for a user to user authentication. In a user to user authentication, the
secret key for the server is the session key from the server’s ticket-granting-ticket (TGT).
The TGT is passed from the server to the client over the network — this is safe since
the TGT is encrypted in a key known only by the Kerberos server — and the client
must pass this TGT to krb5_get_credentials() in in_creds->second_ticket. The
Kerberos server will use this TGT to construct a user to user ticket which can be verified
by the server by using the session key from its TGT.

The effective expiration date is the minimum of the following:

e The expiration date as specified in in_creds->times.endtime

e The requested start time plus the maximum lifetime of the server as specified by
the server’s entry in the Kerberos database.

e The requested start time plus the maximum lifetime of tickets allowed in the local
site, as specified by the KDC. This is currently a compile-time option, KRB5_
KDB_MAX_LIFE in config.h, and is by default 1 day.

If any special authorization data needs to be included in the ticket, — for example,
restrictions on how the ticket can be used — they should be specified in in_creds->

authdata. If there is no special authorization data to be passed, in_creds->authdata
should be NULL.

Any returned ticket and intermediate ticket-granting tickets are stored in ccache.

Returns errors from encryption routines, system errors.

krb5_error_code
krb5_get_in_tkt(/* IN/OUT */
krb5_context context,
/*IN %/
const krb5_flags options,
krb5_address * const * addrs,
const krb5_enctype * etypes,
const krb5_preauthtype * ptypes,
krb5_error_code (*key_proc) (krb5_context context,
const krbb_keytype type,
krb5_data * salt,
krb5_const_pointer keyseed,
krb5_keyblock ** key),
krb5_const_pointer keyseed,
krb5_error_code (*decrypt_proc) (krb5_context context,
const krb5_keyblock * key,

krbb_const_pointer decryptarg,

krb5_kdc_rep * dec_rep),
krb5_const_pointer decryptarg,
/*IN/OUT */
krb5_creds * creds,
krb5_ccache ccache,
krb5_kdc_rep ** ret_as_reply)

get_in_tkt

4 LIBKRB5.A FUNCTIONS 28

This all-purpose initial ticket routine, usually called via krb5_get_in_tkt_with_
skey() or krb5_get_in_tkt_with_password() or krb5_get_in_tkt_with_keytab().

Attempts to get an initial ticket for creds->client to use server creds->server,
using the following: the realm from creds->client; the options in options (listed in
Table ; and ptypes, the preauthentication method (valid preauthentication meth-
ods are listed in Table[2). krb5_get_in_tkt() requests encryption type etypes (valid
encryption types are ETYPE_DES_CBC_CRC and ETYPE_RAW_DES_CBC), us-
ing creds->times.starttime, creds->times.endtime, creds->times.renew_till as
from, till, and rtime. creds->times.renew_till is ignored unless the RENEWABLE
option is requested.

key_proc is called, with context, keytype, keyseed andpadata as arguments, to
fill in key to be used for decryption. The valid key types for keytype are KEYTYPE_
NULL[] and KEYTYPE_DES[| However, KEYTYPE_DES is the only key type sup-
ported by MIT kerberos. The content of keyseed depends on the key_proc being used.
The padata passed to key_proc is the preauthentication data returned by the KDC as
part of the reply to the initial ticket request. It may contain an element of type KRB5_
PADATA_PW_SALT, which key_proc should use to determine what salt to use when
generating the key. key_proc should fill in key with a key for the client, or return an
error code.

decrypt_proc is called to perform the decryption of the response (the encrypted
part is in dec_rep->enc_part; the decrypted part should be allocated and filled into
dec_rep->enc_part2. decryptarg is passed on to decrypt_proc, and its content de-
pends on the decrypt_proc being used.

If addrs is non-NULL, it is used for the addresses requested. If it is null, the system
standard addresses are used.

If ret_as_reply is non-NULL, it is filled in with a pointer to a structure containing
the reply packet from the KDC. Some programs may find it useful to have direct access
to this information. For example, it can be used to obtain the pre-authentication data
passed back from the KDC. The caller is responsible for freeing this structure by using
krb5_free_kdc_rep().

If etypes is non-NULL, the it is used as for the list of valid encyrption types.
Otherwise, the context default is used (as returned by krb5_get_default_in_tkt_

etypes().

A succesful call will place the ticket in the credentials cache ccache and fill in
creds with the ticket information used/returned.

Returns system errors, preauthentication errors, encryption errors.

9See RFC section 6.3.1
10See RFC section 6.3.4

4 LIBKRB5.A FUNCTIONS 29

krb5_error_code

krb5_get_in_tkt_with_password(/* IN/OUT */
krb5_context context,
/¥ IN %/
const krb5_flags options,
krb5_address * const * addrs,
const krb5_enctype * etypes,
const krb5_preauthtype * pre_auth_types,
const char * password,
krb5_ccache ccache,
/*IN/OUT */
krb5_creds * creds,
krb5_kdc_rep ** ret_as_reply)

Attempts to get an initial ticket using the null-terminated string password. If
password is NULL, the password is read from the terminal using as a prompt the
globalname krb5_default_pwd_promptl.

The password is converted into a key using the appropriate string-to-key conversion
function for the specified keytype, and using any salt data returned by the KDC in
response to the authentication request.

See krb5_get_in_tkt() for documentation of the options, addrs, pre_auth_type,
etype, keytype, ccache, creds and ret_as_reply arguments.

Returns system errors, preauthentication errors, encryption errors.

krb5_error_code

krb5_get_in_tkt_with_keytab(/* IN/OUT */
krb5_context context,
/¥ IN %/
const krb5_flags options,
krb5_address * const * addrs,
const krb5_enctype * etypes,
const krb5_preauthtype * pre_auth_types,
const krb5_keytab * keytab,
krb5_ccache ccache,
/*IN/OUT */
krb5_creds * creds,
krb5_kdc_rep ** ret_as_reply)

Attempts to get an initial ticket using keytab. If keytab is NULL, the default
keytab is used (e.g., /etc/vhsrvtab).

See krb5_get_in_tkt() for documentation of the options, addrs, pre_auth_type,
etype, ccache, creds and ret_as_reply arguments.

Returns system errors, preauthentication errors, encryption errors.

get_in_tkt_with_password

get_in_tkt_with_keytab

4 LIBKRB5.A FUNCTIONS 30

krb5_error_code

krb5_get_in_tkt_with_skey(/* IN/OUT */
krb5_context context,
/¥ IN %/
const krbb_flags options,
krb5_address * const * addrs,
const krb5_enctype * etypes,
const krb5_preauthtype * pre_auth_types,
const krb5_keyblock * key,
krb5_ccache ccache,
/*IN/OUT */
krb5_creds * creds,
krb5_kdc_rep ** ret_as_reply)

Attempts to get an initial ticket using key. If key is NULL, an appropriate key is
retrieved from the system key store (e.g., /etc/visrvtab).

See krb5_get_in_tkt() for documentation of the options, addrs, pre_auth_type,
etype, ccache, creds and ret_as_reply arguments.

Returns system errors, preauthentication errors, encryption errors.

krb5_error_code
krb5_mk_req(/* IN/OUT */
krb5_context context,
krb5_auth_context * auth_context,
/*IN %/
const krbb_flags ap_req_options,
char * service,
char * hostname,
krb5_data * in_data,
/¥ IN/OUT */
krb5_ccache ccache,
/*ouT */
krb5_data * outbuf)

Formats a KRB_AP_REQ message into outbuf.

The server to receive the message is specified by hostname. The principal of the
server to receive the message is specified by hostname and service. If credentials
are not present in the credentials cache ccache for this server, the TGS request with
default parameters is used in an attempt to obtain such credentials, and they are stored
in ccache.

ap_req_options specifies the KRB_AP_REQ options desired. Valid options are:

AP_OPTS_USE_SESSION_KEY
AP_OPTS_MUTUAL_REQUIRED

The checksum method to be used is as specified in auth_context.

outbuf should point to an existing krb5_data structure. outbuf->length and
outbuf->data will be filled in on success, and the latter should be freed by the caller
when it is no longer needed; if an error is returned, however, no storage is allocated and
outbuf->data does not need to be freed.

get_in_tkt_with_skey

mk_req

4 LIBKRB5.A FUNCTIONS 31

Returns system errors, error getting credentials for server.

krb5_error_code

krb5_mk_req_extended(/* IN/OUT */
krb5_context context,
krb5_auth_context * auth_context,
/*IN*/
const krbb_flags ap_req_options,
krb5_data * in_data,
krb5_creds * in_creds,
/*ouT */
krb5_data * outbuf)

Formats a KRB_AP_REQ message into outbuf, with more complete options than
krb5_mk_req().

outbuf, ap_req_options, auth_context, and ccache are used in the same fashion
as for krb5_mk_req().

in_creds is used to supply the credentials (ticket and session key) needed to form
the request.

If in_creds->ticket has no data (length == 0), then an error is returned.

During this call, the structure elements in in_creds may be freed and reallocated.
Hence all of the structure elements which are pointers should point to allocated memory,
and there should be no other pointers aliased to the same memory, since it may be
deallocated during this procedure call.

If ap_req_options specifies AP_OPTS_USE_SUBKEY, then a subkey will be gen-
erated if need be by krb5_generate_subkey().

A copy of the authenticator will be stored in the auth_context, with the principal
and checksum fields nulled out, unless an error is returned. (This is to prevent pointer
sharing problems; the caller shouldn’t need these fields anyway, since the caller supplied
them.)

Returns system errors, errors contacting the KDC, KDC errors getting a new ticket
for the authenticator.

krb5_error_code

krb5_generate_subkey(/* IN/OUT */
krb5_context context,
J¥IN ¥/
const krb5_keyblock * key,
/*ouT */
krb5_keyblock ** subkey)

Generates a pseudo-random sub-session key using the encryption system’s random
key functions, based on the input key.

subkey is filled in to point to the generated subkey, unless an error is returned.
The returned key (i.e., *subkey) is allocated and should be freed by the caller with
krb5_free_keyblock() when it is no longer needed.

mk_req_extended

generate_subkey

4 LIBKRB5.A FUNCTIONS 32

krb5_error_code

krb5_rd_req(/* IN/OUT */
krb5_context context,
krb5_auth_context * auth_context,
J¥IN %/
const krb5_data * inbuf,
krb5_const_principal server,
krb5_keytab keytab,
/*IN/OUT */
krb5_flags * ap_req_options,
/*ouT */
krb5_ticket ** ticket)

Parses a KRB_AP_REQ message, returning its contents. Upon successful return, if
ticket is non-NULL, *ticket will be modified to point to allocated storage containing
the ticket information. The caller is responsible for deallocating this space by using
krb5_free_ticket().

inbuf should contain the KRB_AP_REQ message to be parsed.

If auth_context is NULL, one will be generated and freed internally by the func-
tion.

server specifies the expected server’s name for the ticket. If server is NULL, then
any server name will be accepted if the appropriate key can be found, and the caller
should verify that the server principal matches some trust criterion.

If server is not NULL, and a replay detaction cache has not been established with
the auth_context, one will be generated.

keytab specifies a keytab containing generate a decryption key. If NULL, krb5_
kt_default will be used to find the default keytab and the key taken from therd™]

If a keyblock is present in the auth_context, it will be used to decrypt the ticket
request and the keyblock freed with krb5_free_keyblock(). This is useful for user to
user authentication. If no keyblock is specified, the keytab is consulted for an entry
matching the requested keytype, server and version number and used instead.

The authentcator in the request is decrypted and stored in the auth_context. The
client specified in the decrypted authenticator is compared to the client specified in the
decoded ticket to ensure that the compare.

If the remote_addr portion of the auth_context is set, then this routine checks if
the request came from the right client.

sender_addr specifies the address(es) expected to be present in the ticket.

The replay cache is checked to see if the ticket and authenticator have been seen
and if so, returns an error. If not, the ticket and authenticator are entered into the
cache.

Various other checks are made of the decoded data, including, cross-realm policy,
clockskew and ticket validation times.

The keyblock, subkey, and sequence number of the request are all stored in the
auth_context for future use.

Hje., srvtab file in Kerberos V4 parlance

rd_req

4 LIBKRB5.A FUNCTIONS 33

If the request has the AP_OPTS_MUTUAL_REQUIRED bit set, the local se-
quence number, which is stored in the auth_context, is XORed with the remote sequence
number in the request.

If ap_req_options is non-NULL, it will be set to contain the application request
flags.

Returns system errors, encryption errors, replay errors.

krb5_error_code rd_req_decoded
krb5_rd_req_decoded(/* IN/OUT */
krb5_context context,
krb5_auth_context * auth_context,
/¥ IN %/
const krb5_ap_req * req,
krb5_const_principal server,
/*IN/OUT */
krb5_keytab keytab,
/*OouT */
krb5_ticket ** ticket)

Essentially the same as krb5_rd_req(), but uses a decoded AP_REQ as the input
rather than an encoded input.

krb5_error_code mk_rep
krb5_mk_rep(/* IN/OUT */

krb5_context context,

krb5_auth_context auth_context,

/*ouT */

krb5_data * outbuf)

Formats and encrypts an AP_REP message, including in it the data in the authentp
portion of auth_context, encrypted using the keyblock portion of auth_context.

When successful, outbuf->length and outbuf->data are filled in with the length
of the AP_REQ message and allocated data holding it. outbuf->data should be freed
by the caller when it is no longer needed.

If the flags in auth_context indicate that a sequence number should be used (either
KRB5_AUTH_CONTEXT_DO_SEQUENCE or KRB5_AUTH_CONTEXT_RET_
SEQUENCE) and the local sequgnce number in the auth_context is 0, a new number
will be generated with krb5_generate_seq_number().

Returns system errors.

krb5_error_code rd_rep
krb5_rd_rep(/* IN/OUT */

krb5_context context,

krb5_auth_context auth_context,

J*IN*/

const krb5_data * inbuf,

/*ouT */

krb5_ap_rep_enc_part **

repl)

Parses and decrypts an AP_REP message from *inbuf, filling in *repl with a

4 LIBKRB5.A FUNCTIONS 34

pointer to allocated storage containing the values from the message. The caller is
responsible for freeing this structure with krb5_free_ap_rep_enc_part().

The keyblock stored in auth_context is used to decrypt the message after estab-
lishing any key pre-processing with krb5_process_key ().

Returns system errors, encryption errors, replay errors.

krb5_error_code

krb5_mk_error(/* IN/OUT */
krb5_context context,
/*IN %/
const krb5_error * dec_err,
/¥ ouT */
krb5_data * enc_err)

Formats the error structure *dec_err into an error buffer *enc_err.

The error buffer storage (enc_err->data) is allocated, and should be freed by the
caller when finished.

Returns system errors.

krb5_error_code
krb5_rd_error(/* IN/OUT */
krb5_context context,
J¥IN %/
const krb5_data * enc_errbuf,
/*ouT */

krb5_error ** dec_error)

Parses an error protocol message from enc_errbuf and fills in *dec_error with a
pointer to allocated storage containing the error message. The caller is reponsible for
freeing this structure by using krb5_free_error().

Returns system errors.

krb5_error_code

krb5_generate_seq_number(/* IN/OUT */
krb5_context context,
SAIN
const krb5_keyblock * key,
/*ouT */
krb5_int32 * seqgno)

Generates a pseudo-random sequence number suitable for use as an initial sequence
number for the KRB_SAFE and KRB_PRIV message processing routines.

key parameterizes the choice of the random sequence number, which is filled into
*seqno upon return.

mk_error

rd_error

generate_seq_number

4 LIBKRB5.A FUNCTIONS 35

krb5_error_code

krb5_sendauth(/* IN/OUT */
krb5_context context,
krb5_auth_context * auth_context,
J¥IN ¥/
krb5_pointer £d,
char * appl_version,
krb5_principal client,
krb5_principal server,
krb5_flags ap_req_options,
krb5_data * in_data,
krb5_creds * in_creds,
/*IN/OUT */
krb5_ccache ccache,
/*ouT */
krb5_error ** error,
krb5_ap_rep_enc_part ** rep_result,
krb5_creds ** out_creds)

krb5_sendauth() provides a convenient means for client and server programs
to send authenticated messages to one another through network connections. krb5_
sendauth() sends an authenticated ticket from the client program to the server pro-
gram using the network connection specified by £d. In the MIT Unix implementation,
fd should be a pointer to a file descriptor describing the network socket. This can
be changed in other implementations, however, if the routines krb5_read_message(),
krb5_write_message(), krb5_net_read(), and krb5_net_write() are changed.

The paramter appl_version is a string describing the application protocol version
which the client is expecting to use for this exchange. If the server is using a different
application protocol, an error will be returned.

The parameters client and server specify the kerberos principals for the client
and the server. They are ignored if in_creds is non-null. Otherwise, server must be
non-null; but client may be null, in which case the client principal used is the one in
the credential cache’s default principal.

The ap_req_options parameters specifies the options which should be passed to
krb5_mk_req(). Valid options are listed in Table If ap_req_options specifies
MUTUAL_REQUIRED, then krb5_sendauth() will perform a mutual authentication
exchange, and if rep_result is non-null, it will be filled in with the result of the mutual
authentication exchange; the caller should free *rep_result with krb5_free_ap_rep_
enc_part() when done with it.

If in_creds is non-null, then in_creds->client and in_creds->server must be
filled in, and either the other structure fields should be filled in with valid credentials, or
in_creds->ticket.length should be zero. If in_creds->ticket.length is non-zero,
then in_creds will be used as-is as the credentials to send to the server, and ccache is
ignored; otherwise, ccache is used as described below, and out_creds , if not NULL,
is filled in with the retrieved credentials.

ccache() specifies the credential cache to use when one is needed (i.e., when in_
creds() is null or in_creds->ticket.length is zero). When a credential cache is not
needed, ccache() is ignored. When a credential cache is needed and ccache() is null,
the default credential cache is used. Note that if the credential cache is needed and does
not contain the needed credentials, they will be retrieved from the KDC and stored in

sendauth

4 LIBKRB5.A FUNCTIONS 36

the credential cache.

If mutual authentication is used and rep_result is non-null, the sequence num-
ber for the server is available to the caller in *rep_result->seq_number. (If mutual
authentication is not used, there is no way to negotiate a sequence number for the
server.)

If an error occurs during the authenticated ticket exchange and error is non-null,
the error packet (if any) that was sent from the server will be placed in it. This error
should be freed with krb5_free_error().

krb5_error_code

krb5_recvauth(/* IN/JOUT */
krb5_context context,
krb5_auth_context * auth_context,
/¥ IN %/
krb5_pointer fd,
char * appl_version,
krb5_principal server,
char * rc_type,
krb5_int32 flags,
krb5_keytab keytab,
/*ouT */
krb5_ticket ** ticket)

krb5_recvauth() provides a convenient means for client and server programs
to send authenticated messages to one another through network connections. krb5_

sendauth() is the matching routine to krb5_recvauth() for the server. krb5_recvauth()
will engage in an authentication dialogue with the client program running krb5_sendauth()

to authenticate the client to the server. In addition, if requested by the client, krb5_
recvauth() will provide mutual authentication to prove to the client that the server
represented by krb5_recvauth() is legitimate.

fd is a pointer to the network connection. As in krb5_sendauth(), in the MIT
Unix implementation fd is a pointer to a file descriptor.

The parameter appl_version is a string describing the application protocol version
which the server is expecting to use for this exchange. If the client is using a different
application protocol, an error will be returned and the authentication exchange will be
aborted.

If server is non-null, then krb5_recvauth() verifies that the server principal re-
quested by the client matches server. If not, an error will be returned and the authen-
tication exchange will be aborted.

The parameters server, auth_context, and keytab are used by krb5_rd_req()
to obtain the server’s private key.

If server is non-null, the princicpal component of it is ysed to determine the replay
cache to use. Otherwise, krb5_recvauth() will use a default replay cache.

The flags argument allows the caller to modify the behavior of krb5_recvauth().
For non-library callers, flags should be 0.

ticket is optional and is only filled in if non-null. It is filled with the data from
the ticket sent by the client, and should be freed with krb5_free_ticket() when it is
no longer needed.

recvauth

4 LIBKRB5.A FUNCTIONS 37

krb5_error_code

krb5_mk_safe(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
J¥IN %/
const krb5_data * userdata,
/*OoUuT */
krb5_data * outbuf,
/*IN/OUT */
krb5_replay_data * outdata)

Formats a KRB_SAFE message into outbuf.

userdata is formatted as the user data in the message. Portions of auth_context
specify the checksum type; the keyblockm which might be used to seed the checksum;
full addresses (host and port) for the sender and receiver. The local_addr portion of
*xauth_context is used to form the addresses usedin the KRB_SAFE message. The
remote_addr is optional; if the receiver’s address is not known, it may be replaced by
NULL. local_addr, however, is mandatory.

The auth_context flags select whether sequence numbers or timestamps should be
used to identify the message. Valid flags are listed below.

Symbol Meaning
KRB5_AUTH_CONTEXT_DO_TIME Use timestamps
and replay cache
KRB5_AUTH_CONTEXT_RET_TIME Copy timestamp

to *outdata
KRB5_AUTH_CONTEXT_DO_SEQUENCE Use sequence numbers
KRB5_AUTH_CONTEXT_RET_SEQUENCE Copy sequence numbers
to *outdata

If timestamps are to be used (i.e., if KRB5_AUTH_CONTEXT_DO_TIME is set),
an entry describing the message will be entered in the replay cache so that the caller may
detect if this message is sent back to him by an attacker. If KRB5_AUTH_CONTEXT_
DO_TIME is not set, the auth_context replay cache is not used.

If sequence numbers are to be used (i.e., if either KRB5_AUTH_CONTEXT_
DO_SEQUENCE or KRB5_AUTH_CONTEXT_RET_SEQUENCE is set), then auth_
context local sequence number will be placed in the protected message as its sequence
number.

The outbuf buffer storage (i.e., outbuf->data) is allocated, and should be freed
by the caller when finished.

Returns system errors, encryption errors.

mk_safe

4 LIBKRB5.A FUNCTIONS 38

krb5_error_code
krb5_rd_safe(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
J¥IN %/
const krb5_data * inbuf,
/¥ ouT */
krb5_data * outbuf,
/¥ IN/OUT */
krb5_replay_data * outdata)

Parses a KRB_SAFE message from inbuf, placing the data in *outbuf after veri-
fying its integrity.

The keyblock used for verifying the integrity of the message is taken from the auth_
context recv_subkey or keyblock. The keyblock is chosen in the above order by the
first one which is not NULL.

The remote_addr and localaddr portions of the *auth_context specify the full ad-
dresses (host and port) of the sender and receiver, and must be of type ADDRTYPE_
ADDRPORT.

The remote_addr parameter is mandatory; it specifies the address of the sender.
If the address of the sender in the message does not match remote_addr, the error
KRB5KRB_AP_ERR_BADADDR will be returned.

If local_addr is non-NULL, then the address of the receiver in the message much
match it. If it is null, the receiver address in the message will be checked against the list
of local addresses as returned by krb5_os_localaddr(). If the check fails, KRBSKRB_
AP_ERR_BADARRD is returned.

The outbuf buffer storage (i.e., outbuf->data is allocated storage which the caller
should free when it is no longer needed.

If auth_context_flags portion of auth_context indicates that sequence numbers
are to be used (i.e., if KRB5_AUTH_CONTEXT_DOSEQUENCE is set in it), The
remote_seq_number portion of auth_context is compared to the sequence number for
the message, and KRB5_KRB_AP_ERR_BADORDER is returned if it does not match.
Otherwise, the sequence number is not used.

If timestamps are to be used (i.e., if KRB5_AUTH_CONTEXT_DO_TIME is set
in the auth_context), then two additional checks are performed:

e The timestamp in the message must be within the permitted clock skew (which
is usually five minutes), or KRBSKRB_AP_ERR_SKEW is returned.

e The message must not be a replayed message, according to rcache.

Returns system errors, integrity errors.

rd_safe

4 LIBKRB5.A FUNCTIONS 39

krb5_error_code

krb5_mk_priv(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
J¥IN #/
const krb5_data * userdata,
/*ouT */
krb5_data * outbuf,
krb5_replay_data * outdata)

Formats a KRB_PRIV message into outbuf. Behaves similarly to krb5_mk_
safe(), but the message is encrypted and integrity-protected rather than just integrity-
protected.

inbuf, auth_context, outdata and outbuf function as in krb5_mk_safe().

Asin krb5_mk_safe(), the remote_addr and remote_port part of the auth_context
is optional; if the receiver’s address is not known, it may be replaced by NULL. The
local_addr, however, is mandatory.

The encryption type is taken from the auth_context keyblock portion. If i_vector
portion of the auth_context is non-null, it is used as an initialization vector for the
encryption (if the chosen encryption type supports initialization vectors) and its contents
are replaced with the last block of encrypted data upon return.

The flags from the auth_context selects whether sequence numbers or timestamps
should be used to identify the message. Valid flags are listed below.

Symbol Meaning
KRB5_AUTH_CONTEXT_DO_TIME Use timestamps in replay cache
KRB5_AUTH_CONTEXT_RET_TIME Use timestamps in output data

KRB5_AUTH_CONTEXT_DO_SEQUENCE Use sequence numbers

in replay cache
KRB5_AUTH_CONTEXT_RET_SEQUENCE Use sequence numbers

in replay cache and output data

Returns system errors, encryption errors.

krb5_error_code

krb5_rd_priv(/* IN/OUT */
krb5_context context,
krb5_auth_context auth_context,
J¥IN %/
const krb5_data * inbuf,
/*OoUuT */
krb5_data * outbuf,
krb5_data * outdata)

Parses a KRB_PRIV message from inbuf, placing the data in *outbuf after de-
crypting it. Behaves similarly to krb5_rd_safe(), but the message is decrypted rather
than integrity-checked.

inbuf, auth_context, outdata and outbuf function as in krb5_rd_safe().

The remote_addr part of the auth_context as set by krb5_auth_con_setaddrs()
is mandatory; it specifies the address of the sender. If the address of the sender in the

mk_priv

rd_priv

4 LIBKRB5.A FUNCTIONS 40

message does not match the remote_addr, the error KRBSKRB_AP_ERR_BADADDR
will be returned.

If local_addr portion of the auth_context is non-NULL, then the address of the
receiver in the message much match it. If it is null, the receiver address in the message
will be checked against the list of local addresses as returned by krb5_os_localaddr().

The keyblock portion of auth_context specifies the key to be used for decryption
of the message. If the i_vector element, is non-null, it is used as an initialization vector
for the decryption (if the encryption type of the message supports initialization vectors)
and its contents are replaced with the last block of encrypted data in the message.

The auth_context flags specify whether timestamps (KRB5_AUTH_CONTEXT_
DO_TIME) and sequence numbers (KRB5_AUTH_CONTEXT_DO_SEQUENCE) are
to be used.

Returns system errors, integrity errors.

4.1.5 Miscellaneous main functions

krb5_boolean
krb5_address_search(/* IN/OUT */
krb5_context context,
¥ IN %/
const krb5_address * addr,
krb5_address * const * addrlist)

If addr is listed in addrlist, or addrlist is null, return TRUE. If not listed, return
FALSE.

krb5_boolean

krb5_address_compare(/* IN/OUT */
krb5_context context,
J¥IN %/
const krb5_address * addri,
const krb5_address * addr2)

If the two addresses are the same, return TRUE, else return FALSE.

int

krb5_fulladdr_order(/* IN/OUT */
krb5_context context,
J¥IN %/
const krb5_fulladdr * addri,
const krb5_fulladdr * addr2)

Return an ordering on the two full addresses: 0 if the same, < 0 if first is less than
2nd, > 0 if first is greater than 2nd.

address_search

address_compare

fulladdr_order

4 LIBKRB5.A FUNCTIONS 41

int

krb5_address_order(/* IN/OUT */
krb5_context context,
/*IN */
const krb5_address * addri,
const krb5_address * addr2)

Return an ordering on the two addresses: 0 if the same, < 0 if first is less than 2nd,
> 0 if first is greater than 2nd.

krb5_error_code

krb5_copy_addresses(/* IN/OUT */
krb5_context context,
J¥IN ¥/
krb5_address * const * inaddr,
/*ouT */
krb5_address *** outaddr)

Copy addresses in inaddr to *outaddr which is allocated memory and should be
freed with krb5_free_addresses().

krb5_error_code
krb5_copy_authdata(/* IN/OUT */
krb5_context context,
/¥ IN %/
krb5_authdata * const * inauthdat,
/*OoUuT */
krb5_authdata *** outauthdat)

Copy an authdata structure, filling in *outauthdat to point to the newly allocated
copy, which should be freed with krb5_free_authdata().

krb5_error_code
krb5_copy_authenticator(/* IN/OUT */
krb5_context context,
J¥IN %/
const krb5_authenticator * authfrom,
/*ouT */
krb5_authenticator ** authto)

Copy an authenticator structure, filling in *outauthdat to point to the newly
allocated copy, which should be freed with krb5_free_authenticator().

krb5_error_code

krb5_copy_keyblock(/* IN/OUT */
krb5_context context,
/¥ IN %/
const krb5_keyblock * from,
/*ouT */
krb5_keyblock ** to)

Copy a keyblock, filling in *to to point to the newly allocated copy, which should

address_order

copy_addresses

copy_authdata

copy_authenticator

copy _keyblock

4 LIBKRB5.A FUNCTIONS 42

be freed with krb5_free_keyblock().

krb5_error_code

krb5_copy_keyblock_contents(/* IN/OUT */
krb5_context context,
J¥IN %/
const krb5_keyblock * from,
/*oUuT */
krb5_keyblock * to)

Copy keyblock contents from from to to, including allocated storage. The allocated
storage in to should be freed by using free(to->contents).

krb5_error_code

krb5_copy_checksum(/* IN/OUT */
krb5_context context,
J¥IN %/
const krb5_checksum * ckfrom,
/*ouT */
krb5_checksum ** ckto)

Copy a checksum structure, filling in *ckto to point to the newly allocated copy,
which should be freed with krb5_free_checksum/().

krb5_error_code

krb5_copy_creds(/* IN/OUT */
krb5_context context,
/*IN ¥/
const krb5_creds * incred,
/*ouT */

krb5_creds ** outcred)

Copy a credentials structure, filling in *outcred to point to the newly allocated
copy, which should be freed with krb5_free_creds().

krb5_error_code

krb5_copy_data(/* IN/OUT */
krb5_context context,
J¥IN #/
const krb5_data * indata,
/*ouT */
krb5_data ** outdata)

Copy a data structure, filling in *outdata to point to the newly allocated copy,
which should be freed with krb5_free_datal().

copy _keyblock_contents

copy _checksum

copy_creds

copy_data

4 LIBKRB5.A FUNCTIONS 43

krb5_error_code

krb5_copy_ticket(/* IN/OUT */
krb5_context context,
J*IN %/
const krb5_ticket * from,
/*OouT */
krb5_ticket ** pto)

Copy a ticket structure, filling in *pto to point to the newly allocated copy, which
should be freed with krb5_free_ticket().

krb5_error_code

krb5_get_server_rcache(/* IN/OUT */
krb5_context context,
J¥IN ¥/
const krb5_data * piece,
/*ouT */
krb5_rcache * ret_rcache)

Generate a replay cache name, allocate space for its handle, and open it. piece
is used to distinguish this replay cache from others currently in use on the system.
Typically, piece is the first component of the principal name for the client or server
which is calling krb5_get_server_rcache().

Upon successful return, ret_rcache is filled in to contain a handle to an open
rcache, which should be closed with krb5_rc_close().

4.2 Credentials cache functions

The credentials cache functions (some of which are macros which call to specific types
of credentials caches) deal with storing credentials (tickets, session keys, and other
identifying information) in a semi-permanent store for later use by different programs.

krb5_error_code

krb5_cc_resolve(/* IN/OUT */
krb5_context context,
/*IN %/
char * string_name,
/*ouT */
krb5_ccache * id)

Fills in id with a ccache identifier which corresponds to the name in string_name.

Requires that string_name be of the form “type:residual” and “type” is a type
known to the library.

copy _ticket

get_server_rcache

cc_resolve

4 LIBKRB5.A FUNCTIONS 44

krb5_error_code cc_gen_new
krb5_cc_gen_new(/* IN/OUT */

krb5_context context,

/¥ IN %/

krb5_cc_ops * ops,

/*OoUuT */

krb5_ccache * id)

Fills in id with a unique ccache identifier of a type defined by ops. The cache is
left unopened.

krb5_error_code cc_register
krb5_cc_register(/* IN/OUT */

krb5_context context,

J¥IN %/

krb5_cc_ops * ops,

krb5_boolean override)

Adds a new cache type identified and implemented by ops to the set recognized by
krb5_cc_resolve(). If override is FALSE, a ticket cache type named ops->prefix
must not be known.

char * cc_get_name
krb5_cc_get_name(/* IN/OUT */

krb5_context context,

J¥IN ¥/

krb5_ccache id)

Returns the name of the ccache denoted by id.

char * cc_default_name
krb5_cc_default_name(/* IN/OUT */
krb5_context context)

Returns the name of the default credentials cache; this may be equivalent to
getenv("KRB5CCACHE") with an appropriate fallback.

krb5_error_code cc_default
krb5_cc_default(/* IN/OUT */

krb5_context context,

/*OouT */

krb5_ccache * ccache)

Equivalent to krb5_cc_resolve(context, krb5_cc_default_name(), ccache).

krb5_error_code cc_initialize
krb5_cc_initialize(/* IN/OUT */

krb5_context context,

krb5_ccache id,

/¥ IN %/

krb5_principal primary_principal)

4 LIBKRB5.A FUNCTIONS 45

Creates/refreshes a credentials cache identified by id with primary principal set to
primary_principal. If the credentials cache already exists, its contents are destroyed.

Errors: permission errors, system errors.

Modifies: cache identified by id.

krbb_error_code

krb5_cc_destroy(/* IN/OUT */
krb5_context context,
krb5_ccache id)

Destroys the credentials cache identified by id, invalidates id, and releases any
other resources acquired during use of the credentials cache. Requires that id identifies
a valid credentials cache. After return, id must not be used unless it is first reinitialized
using krb5_cc_resolve() or krb5_cc_gen_new().

Errors: permission errors.

krb5_error_code

krb5_cc_close(/* IN/OUT */
krb5_context context,
krb5_ccache id)

Closes the credentials cache id, invalidates id, and releases id and any other re-
sources acquired during use of the credentials cache. Requires that id identifies a valid
credentials cache. After return, id must not be used unless it is first reinitialized using
krb5_cc_resolve() or krb5_cc_gen_new().

krb5_error_code

krb5_cc_store_cred(/* IN/OUT */
krb5_context context,
J*IN %/
krb5_ccache id,
krb5_creds * creds)

Stores creds in the cache id, tagged with creds->client. Requires that id iden-
tifies a valid credentials cache.

Errors: permission errors, storage failure errors.

krb5_error_code

krb5_cc_retrieve_cred(/* IN/OUT */
krb5_context context,
¥ IN ¥/
krb5_ccache id,
krb5_flags whichfields,
krb5_creds * mcreds,
/*ouT */
krb5_creds * creds)

Searches the cache id for credentials matching mcreds. The fields which are to
be matched are specified by set bits in whichfields, and always include the principal
name mcreds->server. Requires that id identifies a valid credentials cache.

cc_destroy

cc_close

cc_store_cred

cc_retrieve_cred

4 LIBKRB5.A FUNCTIONS 46

If at least one match is found, one of the matching credentials is returned in *creds.
The credentials should be freed using krb5_free_credentials().

Errors: error code if no matches found.

krb5_error_code

krb5_cc_get_principal(/* IN/OUT */
krb5_context context,
J¥IN #/
krb5_ccache id,
krb5_principal * principal)

Retrieves the primary principal of the credentials cache (as set by the krb5_cc_
initialize() request) The primary principal is filled into *principal; the caller should
release this memory by calling krb5_free_principal() on *principal when finished.

Requires that id identifies a valid credentials cache.

krb5_error_code

krb5_cc_start_seq_get(/* IN/OUT */
krb5_context context,
krb5_ccache id,
/*OouT */

krb5_cc_cursor *

cursor)

Prepares to sequentially read every set of cached credentials. cursor is filled in
with a cursor to be used in calls to krb5_cc_next_cred().

krb5_error_code

krb5_cc_next_cred(/* IN/OUT */
krb5_context context,
krb5_ccache id,
/*ouT */
krb5_creds * creds,
/¥ IN/OUT */

krb5_cc_cursor * cursor)

Fetches the next entry from id, returning its values in *creds, and updates *cursor
for the next request. Requires that id identifies a valid credentials cache and *cursor
be a cursor returned by krb5_cc_start_seq_get() or a subsequent call to krb5_cc_
next_cred().

Errors: error code if no more cache entries.

krbb5_error_code

krb5_cc_end_seq_get(/* IN/OUT */
krb5_context context,
krb5_ccache id,
krb5_cc_cursor * cursor)

Finishes sequential processing mode and invalidates *cursor. *cursor must never
be re-used after this call.

Requires that id identifies a valid credentials cache and *cursor be a cursor re-

cc_get_principal

cc_start_seq_get

cc_next_cred

cc_end_seq_get

4 LIBKRB5.A FUNCTIONS 47

turned by krb5_cc_start_seq_get() or a subsequent call to krb5_cc_next_cred().

Errors: may return error code if *cursor is invalid.

krb5_error_code

krb5_cc_remove_cred(/* IN/OUT */
krb5_context context,
/*IN #/
krb5_ccache id,
krb5_flags which,
krb5_creds * cred)

Removes any credentials from id which match the principal name cred-;server and
the fields in cred masked by which. Requires that id identifies a valid credentials cache.

Errors: returns error code if nothing matches; returns error code if couldn’t delete.

krb5_error_code

krb5_cc_set_flags(/* IN/OUT */
krb5_context context,
krb5_ccache id,
/*IN ¥/
krb5_flags flags)

Sets the flags on the cache id to flags. Useful flags are defined in <krb5.h>.

unsigned int
krb5_get_notification_message()

Intended for use by Windows. Will register a unique message type using Regis-
terWindowMessage() which will be notified whenever the cache changes. This will
allow all processes to recheck their caches.

4.3 Replay cache functions

The replay cache functions deal with verifying that AP_REQ’s do not contain duplicate
authenticators; the storage must be non-volatile for the site-determined validity period
of authenticators.

Each replay cache has a string “name” associated with it. The use of this name is
dependent on the underlying caching strategy (for file-based things, it would be a cache
file name). The caching strategy uses non-volatile storage so that replay integrity can
be maintained across system failures.

krb5_error_code

krb5_auth_to_rep(/* IN/OUT */
krb5_context context,
J¥IN %/
krb5_tkt_authent * auth,
/*ouT */
krb5_donot_replay * rep)

cc_remove_cred

cc_set_flags

get_notification_message

auth_to_rep

4 LIBKRB5.A FUNCTIONS 48

Extract the relevant parts of auth and fill them into the structure pointed to by
rep. rep->client and rep->server are set to allocated storage and should be freed
when *rep is no longer needed.

krb5_error_code

krb5_rc_resolve_full(/* IN/OUT */
krb5_context context,
krb5_rcache * id,
/*IN %/
char * string_name)

id is filled in to identify a replay cache which corresponds to the name in
string_name. The cache is not opened. Requires that string_name be of the form
“type:residual” and that “type” is a type known to the library.

Before the cache can be used krb5_rc_initialize() or krb5_rc_recover() must
be called.

Errors: error if cannot resolve name.

krbb_error_code

krb5_rc_resolve_type(/* IN/OUT */
krb5_context context,
krb5_rcache * id,
/N %/
char * type)

NOTE: This is an internal function, which is not necessarily intended for use by
application programs. Its interface may change at any time.

Looks up type in the list of knows cache types and if found attaches the operations
to *id which must be previously allocated.

If type is not found, KRB5_RC_TYPE_NOTFOUND is returned.

krb5_error_code

krb5_rc_register_type(/* IN */
krb5_context context,
krb5_rc_ops * ops)

Adds a new replay cache type implemented and identified by ops to the set rec-
ognized by krb5_rc_resolve(). This function requires that a ticket cache of the type
named in ops->prefix has not been previously registered.

char *
krb5_rc_default_name(/* IN */
krb5_context context)

Returns the name of the default replay cache; this may be equivalent to
getenv("KRBSRCACHE") with an appropriate fallback.

rc_resolve_full

rc_resolve_type

rc_register_type

rc_default_name

4 LIBKRB5.A FUNCTIONS 49

char *
krb5_rc_default_type(/* IN */
krb5_context context)

Returns the type of the default replay cache.

krb5_error_code

krb5_rc_default(/* IN/OUT */
krb5_context context,
krb5_rcache * id)

This function returns an unopened replay cache of the default type and default name
(as would be returned by krb5_rc_default_type() and krb5_rc_default_name()).
Before the cache can be used krb5_rc_initialize() or krb5_rc_recover() must be
called.

krb5_error_code

krb5_rc_initialize(/* IN */
krb5_context context,
krb5_rcache id,
krb5_deltat auth_lifespan)

Creates/refreshes the replay cache identified by id and sets its authenticator lifes-
pan to auth_lifespan. If the replay cache already exists, its contents are destroyed.

Errors: permission errors, system errors

krb5_error_code

krb5_rc_recover(/* IN */
krb5_context context,
krb5_rcache id)

Attempts to recover the replay cache id, (presumably after a system crash or server
restart).

Errors: error indicating that no cache was found to recover

krb5_error_code

krb5_rc_destroy(/* IN */
krb5_context context,
krb5_rcache id)

Destroys the replay cache id. Requires that id identifies a valid replay cache.

Errors: permission errors.

krb5_error_code

krb5_rc_close(/* IN */
krb5_context context,
krb5_rcache id)

Closes the replay cache id, invalidates id, and releases any other resources acquired
during use of the replay cache. Requires that id identifies a valid replay cache.

rc_default_type

rc_default

rc_initialize

rc_recover

rc_destroy

rc_close

4 LIBKRB5.A FUNCTIONS 50

Errors: permission errors

krb5_error_code

krb5_rc_store(/* IN */
krb5_context context,
krb5_rcache id,
krb5_donot_replay * rep)

Stores rep in the replay cache id. Requires that id identifies a valid replay cache.

Returns KRB5SKRB_AP_ERR_REPEAT if rep is already in the cache. May also
return permission errors, storage failure errors.

krbb_error_code

krb5_rc_expunge(/* IN */
krb5_context context,
krb5_rcache id)

Removes all expired replay information (i.e. those entries which are older than then
authenticator lifespan of the cache) from the cache id. Requires that id identifies a
valid replay cache.

Errors: permission errors.

krb5_error_code
krb5_rc_get_lifespan(/* IN */
krb5_context context,
krb5_rcache id,
/*ouT */
krb5_deltat * auth_lifespan)

Fills in auth_lifespan with the lifespan of the cache id. Requires that id identifies
a valid replay cache.

krb5_error_code

krb5_rc_resolve(/* IN/OUT */
krb5_context context,
krb5_rcache id,
/¥IN*/
char * name)

Initializes private data attached to id. This function MUST be called before the
other per-replay cache functions.

Requires that id points to allocated space, with an initialized id->ops field.

Since krb5_rc_resolve() allocates memory, krb5_rc_close() must be called to
free the allocated memory, even if neither krb5_rc_initialize() or krb5_rc_recover()
were successfully called by the application.

Returns: allocation errors.

rc_store

rc_expunge

rc_get_lifespan

rc_resolve

4 LIBKRB5.A FUNCTIONS o1

char *

krb5_rc_get_name(/* IN */
krb5_context context,
krb5_rcache id)

Returns the name (excluding the type) of the rcache id. Requires that id identifies
a valid replay cache.

char *

krb5_rc_get_type(/* IN */
krb5_context context,
krb5_rcache id)

Returns the type (excluding the name) of the rcache id. Requires that id identifies
a valid replay cache.

4.4 Key table functions

The key table functions deal with storing and retrieving service keys for use by unat-
tended services which participate in authentication exchanges.

Keytab routines are all be atomic. Every routine that acquires a non-sharable
resource releases it before it returns.

All keytab types support multiple concurrent sequential scans.
The order of values returned from krb5_kt_next_entry() is unspecified.

Although the “right thing” should happen if the program aborts abnormally, a close
routine, krb5_kt_free_entry(), is provided for freeing resources, etc. People should
use the close routine when they are finished.

krb5_error_code

krb5_kt_register(/* IN/OUT */
krb5_context context,
/¥ IN %/
krb5_kt_ops * ops)

Adds a new ticket cache type to the set recognized by krb5_kt_resolve(). Requires
that a keytab type named ops->prefix is not yet known.

An error is returned if ops->prefix is already known.

krb5_error_code

krb5_kt_resolve(/* IN/OUT */
krb5_context context,
/¥ IN %/
const char * string_name,
/*OouT */
krb5_keytab * id)

Fills in *id with a handle identifying the keytab with name “string_name”. The
keytab is not opened. Requires that string_name be of the form “type:residual” and

rc_get_name

rc_get_type

kt_register

kt_resolve

4 LIBKRB5.A FUNCTIONS 92

“type” is a type known to the library.

Errors: badly formatted name.

krb5_error_code

krb5_kt_default_name(/* IN/JOUT */
krb5_context context,
/*IN %/
char * name,
int namesize)

name is filled in with the first namesize bytes of the name of the default keytab. If
the name is shorter than namesize, then the remainder of name will be zeroed.

krb5_error_code

krb5_kt_default(/* IN/OUT */
krb5_context context,
/*IN %/
krb5_keytab * id)

Fills in id with a handle identifying the default keytab.

krb5_error_code

krb5_kt_read_service_key(/* IN/OUT */
krb5_context context,
/¥ IN %/
krb5_pointer keyprocarg,
krb5_principal principal,
krb5_kvno vno,
krbb_keytype keytype,
/*OoUT */
krb5_keyblock ** key)

If keyprocarg() is not NULL, it is taken to be a char * denoting the name of a
keytab. Otherwise, the default keytab will be used. The keytab is opened and searched
for the entry identified by principal, keytype, and vno, returning the resulting key in
xkey or returning an error code if it is not found.

krb5_free_keyblock() should be called on *key when the caller is finished with
the key.

Returns an error code if the entry is not found.

krb5_error_code

krb5_kt_add_entry(/* IN/OUT */
krb5_context context,
/¥ IN %/
krb5_keytab id,
krb5_keytab_entry * entry)

Calls the keytab-specific add routine krb5_kt_add_internal() with the same func-
tion arguments. If this routine is not available, then KRB5_KT_NOWRITE is returned.

kt_default_name

kt_default

kt_read_service_key

kt_add_entry

4 LIBKRB5.A FUNCTIONS 33

krb5_error_code

krb5_kt_remove_entry(/* IN/OUT */
krb5_context context,
/*IN %/
krbb_keytab id,
krb5_keytab_entry * entry)

Calls the keytab-specific remove routine krb5_kt_remove_internal() with the
same function arguments. If this routine is not available, then KRB5_KT_NOWRITE
is returned.

krb5_error_code

krb5_kt_get_name(/* IN/OUT */
krb5_context context,
krb5_keytab id,
/*ouT */
char * name,
J*IN %/

unsigned int namesize)

name is filled in with the first namesize bytes of the name of the keytab identified by
id(). If the name is shorter than namesize, then ,
name will be null-terminated.

krb5_error_code

krb5_kt_close(/* IN/JOUT */
krb5_context context,
krb5_keytab id)

Closes the keytab identified by id and invalidates id, and releases any other re-
sources acquired during use of the key table.

Requires that id identifies a keytab.

krb5_error_code

krb5_kt_get_entry(/* IN/OUT */
krb5_context context,
krb5_keytab id,
J*IN #/
krb5_principal principal,
krb5_kvno vno,
krb5_keytype keytype,
/*OoUuT */
krb5_keytab_entry * entry)

Searches the keytab identified by id for an entry whose principal matches
principal, whose keytype matches keytype, and whose key version number matches
vno. If vno is zero, the first entry whose principal matches is returned.

Returns an error code if no suitable entry is found. If an entry is found, the entry is
returned in *entry; its contents should be deallocated by calling krb5_kt_free_entry/()
when no longer needed.

kt_remove_entry

kt_get_name

kt_close

kt_get_entry

4 LIBKRB5.A FUNCTIONS o4

krb5_error_code

krb5_kt_free_entry(/* IN/OUT */
krb5_context context,
krb5_keytab_entry * entry)

Releases all storage allocated for entry, which must point to a structure previously
filled in by krb5_kt_get_entry() or krb5_kt_next_entry().

krb5_error_code

krb5_kt_start_seq_get(/* IN/OUT */
krb5_context context,
krb5_keytab id,
/*OoUuT */

krb5_kt_cursor * cursor)

Prepares to read sequentially every key in the keytab identified by id. cursor is
filled in with a cursor to be used in calls to krb5_kt_next_entry/().

krb5_error_code

krb5_kt_next_entry(/* IN/OUT */
krb5_context context,
krb5_keytab id,
/*ouT */
krb5_keytab_entry * entry,
/* INJOUT */
krb5_kt_cursor * cursor)

Fetches the “next” entry in the keytab, returning it in *entry, and updates *cursor
for the next request. If the keytab changes during the sequential get, an error is guar-
anteed. *entry should be freed after use by calling krb5_kt_free_entry().

Requires that id identifies a valid keytab. and *cursor be a cursor returned by
krb5_kt_start_seq_get() or a subsequent call to krb5_kt_next_entry().

Errors: error code if no more cache entries or if the keytab changes.

krb5_error_code

krb5_kt_end_seq_get(/* IN/OUT */
krb5_context context,
krb5_keytab id,
krb5_kt_cursor * cursor)

Finishes sequential processing mode and invalidates cursor, which must never be
re-used after this call.

Requires that id identifies a valid keytab and *cursor be a cursor returned by
krb5_kt_start_seq_get() or a subsequent call to krb5_kt_next_entry().

May return error code if cursor is invalid.

kt_free_entry

kt_start_seq_get

kt_next_entry

kt_end_seq_get

4 LIBKRB5.A FUNCTIONS %)

4.5 Free functions

The free functions deal with deallocation of memory that has been allocated by various
routines. It is recommended that the developer use these routines as they will know
about the contents of the structures.

void xfree
krb5_xfree(/* IN/OUT */
void * ptr)

Frees the pointer ,
ptr .This is a wrapper macro to free() that is designed to keep lint “happy.”

void free_data
krb5_free_data(/* IN/OUT */

krb5_context context,

krb5_data * val)

Frees the data structure val, including the pointer val which has been allocate by
any of numerous routines.

void free_princial
krb5_free_princial(/* IN/OUT */

krb5_context context,

krb5_principal val)

Frees the pwd_data val that has been allocated from krb5_copy_principal().

void free_authenticator
krb5_free_authenticator(/* IN/OUT */

krb5_context context,

krb5_authenticator * val)

Frees the authenticator val, including the pointer val.

void free_authenticator_contents
krb5_free_authenticator_contents(/* IN/OUT */

krb5_context context,

krb5_authenticator * val)

Frees the authenticator contents of val. The pointer val is not freed.

void free_addresses
krb5_free_addresses(/* IN/OUT */

krb5_context context,

krb5_address ** val)

Frees the series of addresses *val that have been allocated from krb5_copy_
addresses().

4 LIBKRB5.A FUNCTIONS 96

void

krb5_free_address(/* IN/OUT */
krb5_context context,
krb5_address * val)

Frees the address val.

void

krb5_free_authdata(/* IN/OUT */
krb5_context context,
krb5_authdata ** val)

Frees the authdata structure pointed to by val that has been allocated from krb5_
copy_authdata().

void

krb5_free_enc_tkt_part(/* IN/OUT */
krb5_context context,
krb5_enc_tkt_part * val)

Frees val that has been allocated from krb5_enc_tkt_part() and krb5_decrypt_
tkt_part().

void

krb5_free_ticket(/* IN/OUT */
krb5_context context,
krb5_ticket * val)

Frees the ticket val that has been allocated from krb5_copy_ticket() and other
routines.

void

krb5_free_tickets(/* IN/OUT */
krb5_context context,
krb5_ticket ** val)

Frees the tickets pointed to by val.

void

krb5_free_kdc_req(/* IN/OUT */
krb5_context context,
krb5_kdc_req * val)

Frees the kdc_req val and all substructures. The pointer val is freed as well.

void

krb5_free_kdc_rep(/* IN/OUT */
krb5_context context,
krb5_kdc_rep * val)

Frees the kdc_rep val that has been allocated from krb5_get_in_tkt().

free_address

free_authdata

free_enc_tkt_part

free_ticket

free_tickets

free_kdc_req

free_kdc_rep

4 LIBKRB5.A FUNCTIONS o7

void

krb5_free_kdc_rep_part(/* IN/OUT */
krb5_context context,
krb5_enc_kdc_rep_part * val)

Frees the kdc_rep_part val.

void

krb5_free_error(/* IN/OUT */
krb5_context context,
krb5_error * val)

Frees the error val that has been allocated from krb5_read_error() or krb5_
sendauth().

void

krb5_free_ap_req(/* IN/OUT */
krb5_context context,
krb5_ap_req * val)

Frees the ap_req val.

void

krb5_free_ap_rep(/* IN/JOUT */
krb5_context context,
krb5_ap_rep * val)

Frees the ap_rep val.

void

krb5_free_safe(/* IN/OUT */
krb5_context context,
krb5_safe * val)

Frees the safe application data val that is allocated with decode_krb5_safe.

void

krb5_free_priv(/* IN/JOUT */
krb5_context context,
krb5_priv * val)

Frees the private data val that has been allocated from decode_krb5_priv().

void

krb5_free_priv_enc_part(/* IN/OUT */
krb5_context context,
krb5_priv_enc_part * val)

Frees the private encoded part val that has been allocated from decode_krb5_
enc_priv_part().

free_kdc_rep_part

free_error

free_ap_req

free_ap_rep

free_safe

free_priv

free_priv_enc_part

4 LIBKRB5.A FUNCTIONS 28

void

krb5_free_cred(/* IN/OUT */
krb5_context context,
krb5_cred * val)

Frees the credential val.

void

krb5_free_creds(/* IN/OUT */
krb5_context context,
krb5_creds * val)

Calls krb5_free_cred_contents() with val as the argument. val is freed as well.

void

krb5_free_cred_contents(/* IN/OUT */
krb5_context context,
krb5_creds * val)

The function zeros out the session key stored in the credential and then frees the
credentials structures. The argument val is not freed.

void

krb5_free_cred_enc_part(/* IN/OUT */
krb5_context context,
krb5_cred_enc_part * val)

Frees the addresses and ticket_info elements of val. val is not freed by this routine.

void

krb5_free_checksum(/* IN/OUT */
krb5_context context,
krb5_checksum * val)

The checksum and the pointer val are both freed.

void

krb5_free_keyblock(/* IN/OUT */
krb5_context context,
krb5_keyblock * val)

The keyblock contents of val are zeroed and the memory freed. The pointer val
is freed as well.

void

krb5_free_pa_data(/* IN/OUT */
krb5_context context,
krb5_pa_data ** val)

Frees the contents of *val. val is freed as well.

free_cred

free_creds

free_cred_contents

free_cred_enc_part

free_checksum

free_keyblock

free_pa_data

4 LIBKRB5.A FUNCTIONS 99

void

krb5_free_ap_rep_enc_part(/* IN/OUT */
krb5_context context,
krb5_ap_rep_enc_part * val)

Frees the subkey keyblock (if set) as well as val that has been allocated from
krb5_rd_rep() or krb5_send_auth().

void

krb5_free_tkt_authent(/* IN/OUT */
krb5_context context,
krb5_tkt_authent * val)

Frees the ticket and authenticator portions of val. The pointer val is freed as well.

void

krb5_free_pwd_data(/* IN/OUT */
krb5_context context,
passwd_pwd_data * val)

Frees the pwd_data val that has been allocated from decode_krb5_pwd_data().

void

krb5_free_pwd_sequences(/* IN/OUT */
krb5_context context,
passwd_phrase_element ** val)

Frees the passwd_phrase_element val. This is usually called from krb5_free_
pwd_data().

void

krb5_free_realm_tree(/* IN/OUT */
krb5_context context,
krb5_principal * realms)

Frees the realms tree realms returned by krb5_walk_realm_tree().

void

krb5_free_tgt_creds(/* IN/OUT */
krb5_context context,
krb5_creds ** tgts)

Frees the TGT credentials tgts returned by krb5_get_cred_from_kdc().

4.6 Operating-system specific functions
The operating-system specific functions provide an interface between the other parts of
the 1libkrb5.a libraries and the operating system.

Beware! Any of the functions below are allowed to be implemented as macros.
Prototypes for functions can be found in <krb5.h>; other definitions (including macros,

free_ap_rep_enc_part

free_tkt_authent

free_pwd_data

free_pwd_sequences

free_realm_tree

free_tgt_creds

4 LIBKRB5.A FUNCTIONS 60

if used) are in <krb5/1libos.h>.

The following global symbols are provided in libos.a. If you wish to substitute for
any of them, you must substitute for all of them (they are all declared and initialized
in the same object file):
extern char *krb5_defkeyname: default name of key table file
extern char *krb5_lname_file: name of aname/Iname translation database
extern int krb5_max_dgram_size: maximum allowable datagram size

extern int krb5_max_skdc_timeout: maximum per-message KDC reply timeout

extern int krb5_skdc_timeout_shift: shift factor (bits) to exponentially back-off
the KDC timeouts

extern int krb5_skdc_timeout_1: initial KDC timeout
extern char *krb5_kdc_udp_portname: name of KDC UDP port
extern char *krb5_default_pwd_promptl: first prompt for password reading.

extern char *krb5_default_pwd_prompt2: second prompt

4.6.1 Operating specific context

The krb5_context has space for operating system specific data. These functions are
called from krb5_init_context() and krb5_free_context(), but are included here for
completeness.

krb5_error_code
krb5_os_init_context(/* IN/OUT */
krb5_context context)

NOTE: This is an internal function, which is not necessarily intended for use by
application programs. Its interface may change at any time.

Initializes context->os_context and establishes the location of the initial config-

uration files.

krb5_error_code
krb5_os_free_context(/* IN/OUT */
krb5_context context)

NOTE: This is an internal function, which is not necessarily intended for use by
application programs. Its interface may change at any time.

Frees the operating system specific portion of context.
4.6.2 Configuration based functions

These functions allow access to configuration specific information. In some cases, the
configuration may be overriden by program control.

os_init_context

os_Iree_context

4 LIBKRB5.A FUNCTIONS 61

krb5_error_code

krb5_set_config_files(/* IN/OUT */
krb5_context context,
/FINT/
const char ** filenames)

Sets the list of configuration files to be examined in determining machine defaults.
filenames is an array of files to check in order. The array must have a NULL entry as
the last element.

Returns system errors.

krb5_error_code

krb5_get_krbhst(/* IN */
krb5_context context,
const krb5_data * realm,
/*ouT */
char *** hostlist)

Figures out the Kerberos server names for the given realm, filling in hostlist with
a null terminated array of pointers to hostnames.

If realm is unknown, the filled-in pointer is set to NULL.

The pointer array and strings pointed to are all in allocated storage, and should be
freed by the caller when finished.

Returns system errors.

krb5_error_code

krb5_free_krbhst(/* IN */
krb5_context context,
char * const * hostlist)

Frees the storage taken by a host list returned by krb5_get_krbhst().

krb5_error_code

krb5_get_default_realm(/* IN */
krb5_context context,
/*ouT */

char ** lrealm)

Retrieves the default realm to be used if no user-specified realm is available (e.g.
to interpret a user-typed principal name with the realm omitted for convenience), filling
in lrealm with a pointer to the default realm in allocated storage.

It is the caller’s responsibility for freeing the allocated storage pointed to be lream
when it is finished with it.

Returns system errors.

set_config_files

get_krbhst

free_krbhst

get_default_realm

4 LIBKRB5.A FUNCTIONS 62

krb5_error_code

krb5_set_default_realm(/* IN */
krb5_context context,
char * realm)

Sets the default realm to be used if no user-specified realm is available (e.g. to
interpret a user-typed principal name with the realm omitted for convenience). (c.f.
krb5_get_default_realm)

If realm is NULL, then the operating system default value will used.

Returns system errors.

krb5_error_code

krb5_get_host_realm(/* IN */
krb5_context context,
const char * host,
/*ouT */

char *** realmlist)

Figures out the Kerberos realm names for host, filling in realmlist with a pointer
to an argv|| style list of names, terminated with a null pointer.

If host is NULL, the local host’s realms are determined.
If there are no known realms for the host, the filled-in pointer is set to NULL.

The pointer array and strings pointed to are all in allocated storage, and should be
freed by the caller when finished.

Returns system errors.

krb5_error_code

krb5_free_host_realm(/* IN */
krb5_context context,
char * const * realmlist)

Frees the storage taken by a realmlist returned by krb5_get_local_realm().

krb5_error_code

krb5_get_realm_domain(/* IN/OUT */
krb5_context context,
J*IN */
const char * realm,
/*ouT */

char ** domain)

Determines the proper name of a realm. This is mainly so that a krb4 principal
can be converted properly into a krb5 one. If realm is null, the function will assume
the default realm of the host. The returned *domain is allocated and must be freed by
the caller.

set_default_realm

get_host_realm

free_host_realm

get_realm_domain

4 LIBKRB5.A FUNCTIONS 63

4.6.3 Disk based functions
These functions all relate to disk based I/0.

krb5_error_code

krb5_lock_file(/* IN */
krb5_context context,
in fd,
int mode)

Attempts to lock the file in the given mode; returns 0 for a successful lock, or an
error code otherwise.

The caller should arrange for the file referred by fd to be opened in such a way as
to allow the required lock.

Modes are given in <krb5/libos.h>

krb5_error_code

krb5_unlock_file(/* IN */
krb5_context context,
int £d)

Attempts to (completely) unlock the file. Returns 0 if successful, or an error code
otherwise.

krb5_error_code

krb5_create_secure_file(/* IN */
krb5_context context,
const char * pathname)

Creates a file named pathname which can only be read by the current user.

krb5_error_code

krb5_sync_disk_file(/* IN */
krb5_context context,
FILE * £p)

Assures that the changes made to the file pointed to by the file handle fp are forced
out to disk.

4.6.4 Network based routines

These routines send and receive network data the specifics of addresses and families on
a given operating system.

krb5_error_code

krb5_os_localaddr(/* IN */
krb5_context context,
/*ouT */
krb5_address *** addr)

lock_file

unlock_file

create_secure_file

sync_disk_file

os_localaddr

4 LIBKRB5.A FUNCTIONS 64

Return all the protocol addresses of this host.

Compile-time configuration flags will indicate which protocol family addresses might
be returned. *addr is filled in to point to an array of address pointers, terminated by
a null pointer. All the storage pointed to is allocated and should be freed by the caller
with krb5_free_address() when no longer needed.

krb5_error_code

krb5_gen_portaddr(/* IN */
krb5_context context,
const krb5_address * adr,
krb5_const_pointer ptr,
/*OUuT */
krb5_address ** outaddr)

Given an address adr and an additional address-type specific portion pointed to
by port this routine combines them into a freshly-allocated krb5_address with type
ADDRTYPE_ADDRPORT and fills in *outaddr to point to this address. For IP
addresses, ptr should point to a network-byte-order TCP or UDP port number. Upon
success, *outaddr will point to an allocated address which should be freed with krb5_
free_address().

krb5_error_code

krb5_sendto_kdc(/* IN */
krb5_context context,
const krb5_data * send,
const krb5_data * realm,
/*ouT */
krb5_data * receive)

Send the message send to a KDC for realm realm and return the response (if any)
in receive.

If the message is sent and a response is received, 0 is returned, otherwise an error
code is returned.

The storage for receive is allocated and should be freed by the caller when finished.

int

krb5_net_read(/* IN */
krb5_context context,
int £d,
/* OoUuT */
char * buf,
/¥ IN %/
int len)

Like read(2), but guarantees that it reads as much as was requested or returns -1
and sets errno.

(make sure your sender will send all the stuff you are looking for!) Ounly useful on
stream sockets and pipes.

gen_portaddr

sendto_kdc

net_read

4 LIBKRB5.A FUNCTIONS 65

int net_write
krb5_net_write(/* IN */

krb5_context context,
int fd,

const char * buf,

int len)

Like write(2), but guarantees that it writes as much as was requested or returns -1
and sets errno.

Only useful on stream sockets and pipes.

krb5_error_code write_message
krb5_write_message(/* IN */

krb5_context context,

krb5_pointer £d,

krb5_data * data)

krb5_write_message() writes data to the network as a message, using the network
connection pointed to by fd.

krb5_error_code read_message
krb5_read_message(/* IN */

krb5_context context,

krb5_pointer fd,

/*OouT */

krb5_data * data)

Reads data from the network as a message, using the network connection pointed
to by fd.

4.6.5 Operating specific access functions
These functions are involved with access control decisions and policies.

krb5_error_code aname_to_localname
krb5_aname_to_localname(/* IN */

krb5_context context,
krb5_const_principal aname,
int 1nsize,

/*ouT */

char * 1name)

Converts a principal name aname to a local name suitable for use by programs
wishing a translation to an environment-specific name (e.g. user account name).

lnsize specifies the maximum length name that is to be filled into lname. The
translation will be null terminated in all non-error returns.

Returns system errors.

4 LIBKRB5.A FUNCTIONS 66

krb5_boolean

krb5_kuserok(/* IN */
krb5_context context,
krb5_principal principal,
const char * luser)

Given a Kerberos principal principal, and a local username luser, determine
whether user is authorized to login to the account luser. Returns TRUE if authorized,
FALSE if not authorized.

krb5_error_code

krb5_sname_to_principal(/* IN */
krb5_context context,
const char * hostname,
const char * sname,
krb5_int32 type,
/*OoUT */
krb5_principal * ret_princ)

Given a hostname hostname and a generic service name sname, this function gen-
erates a full principal name to be used when authenticating with the named service on
the host. The full prinicpal name is returned in ret_princ.

The realm of the principal is determined internally by calling krb5_get_host_
realm().

The type argument controls how krb5_sname_to_principal() generates the prin-
cipal name, ret_princ, for the named service, sname. Currently, two values are sup-

ported: KRB5_NT_SRV_HOST, and KRB5_NT_UNKNOWN.

If type is set to KRB5_NT_SRV_HOST, the hostname will be canonicalized, i.e.
a fully qualified lowercase hostname using the primary name and the domain name,
before ret_princ is generated in the form ”sname/hostname@QLOCAL.REALM.” Most
applications should use KRB5_NT_SRV_HOST.

However, if type is set to KRB5_NT_UNKNOWN, while the generated principal
name will have the form ”sname/hostname@LOCAL.REALM” the hostname will not
be canonicalized first. It will appear exactly as it was passed in hostname.

The caller should release ret_princ’s storage by calling krb5_free_principal()
when it is finished with the principal.

4.6.6 Miscellaneous operating specific functions

These functions handle the other operating specific functions that do not fall into any
other major class.

krb5_error_code

krb5_timeofday(/* IN */
krb5_context context,
/*oUuT */
krb5_context context,
krb5_int32 * timeret)

kuserok

sname_to_principal

timeofday

4 LIBKRB5.A FUNCTIONS 67

Retrieves the system time of day, in seconds since the local system’s epoch. [The
ASN.1 encoding routines must convert this to the standard ASN.1 encoding as needed|

krb5_error_code

krb5_us_timeofday(/* IN */
krb5_context context,
/*OoUuT */
krb5_int32 * seconds,
krb5_int32 * microseconds)

Retrieves the system time of day, in seconds since the local system’s epoch. [The
ASN.1 encoding routines must convert this to the standard ASN.1 encoding as needed|

The seconds portion is returned in *seconds, the microseconds portion in *microseconds.

krb5_error_code

krb5_read_password(/* IN */
krb5_context context,
const char * prompt,
const char * prompt?2,
/*OoUuT */
char * return_pwd,
/% IN/OUT */

unsigned int * size_return)

Read a password from the keyboard. The first *size_return bytes of the password
entered are returned in return_pwd. If fewer than *size_return bytes are typed as a
password, the remainder of return_pwd is zeroed. Upon success, the total number of
bytes filled in is stored in *size_return.

prompt is used as the prompt for the first reading of a password. It is printed to
the terminal, and then a password is read from the keyboard. No newline or spaces are
emitted between the prompt and the cursor, unless the newline/space is included in the
prompt.

If prompt2 is a null pointer, then the password is read once. If prompt2 is set, then
it is used as a prompt to read another password in the same manner as described for
prompt. After the second password is read, the two passwords are compared, and an
error is returned if they are not identical.

Echoing is turned off when the password is read.

If there is an error in reading or verifying the password, an error code is returned;
else zero is returned.

krb5_error_code

krb5_random_confounder(/* IN */
krb5_context context,
int size,
/¥ ouT */
krb5_pointer £illin)

Given a length and a pointer, fills in the area pointed to by fillin with size
random octets suitable for use in a confounder.

us_timeofday

read_password

random_confounder

4 LIBKRB5.A FUNCTIONS 68

krb5_error_code
krb5_gen_replay_name(/* IN */
krb5_context context,
const krb5_address * inaddr,
const char * unigq,
/*OUT */

char ** string)

Given a krb5_address with type ADDRTYPE_ADDRPORT in inaddr, this
function unpacks its component address and additional type, and uses them along with
uniq to allocate a fresh string to represent the address and additional information. The
string is suitable for use as a replay cache tag. This string is allocated and should be
freed with free() when the caller has finished using it. When using IP addresses,
the components in inaddr->contents must be of type ADDRTYPE_INET and
ADDRTYPE_PORT.

gen_replay_name

Index

ccache

decode_krb5_enc_priv_part
decode_krb5_priv
decode_krb5_pwd_data

F

free ... @
G

getenv 43| @
I

id oo

in_creds
K

keyprocarg

krb5_425_conv_principal
krb5_address_compare

krb5_address_order
krb5_address_search
krb5_aname_to_localname
krb5_auth_con_free
krb5_auth_con_genaddrs
krb5_auth_con_getaddrs
krb5_auth_con_getflags
krb5_auth_con_getkey
krb5_auth_con_getrecvsubkey
krb5_auth_con_getsendsubkey
krb5_auth_con_init
krb5_auth_con_initivector
krb5_auth_con_setaddrs

krb5_auth_con_setcksumtype
krb5_auth_con_setflags
krb5_auth_con_setivector
krb5_auth_con_setports

krb5_auth_con_setrcache
krb5_auth_con_setrecvsubkey
krb5_auth_con_setsendsubkey
krb5_auth_con_setuserkey

krb5_auth_getauthenticator
krb5_auth_getlocalseqnumber
krb5_auth_getremoteseqnumber
krb5_auth_setcksumtype
krb5_auth_to_rep
krb5_build_principal
krb5_build_principal _ext
krb5_build_principal _va
krb5_cc_close

69

krb5_cc_default
krb5_cc_default_name
krb5_cc_destroy
krb5_cc_end_seq_get
krb5_cc_gen_new
krb5_cc_get_name
krb5_cc_get_principal
krbb5_cc_initialize
krb5_cc_next_cred
krb5_cc_register
krb5_cc_remove_cred
krb5_cc_resolve
krb5_cc_retrieve_cred
krb5_cc_set_flags
krb5_cc_start_seq_get
krbb_cc_store_cred
krb5_copy_addresses
krb5_copy_authdata
krb5_copy_authenticator
krb5_copy_checksum
krb5_copy_creds
krb5_copy_data
krb5_copy _keyblock
krb5_copy _keyblock _contents
krb5_copy_principal
krb5_copy _ticket
krb5_create_secure_file
krb5_decode_kdc_rep
krb5_decrypt_tkt_part
krb5_enc_tkt_part
krb5_encode_kdc_rep
krb5_encrypt_tkt_part
krb5_free_address
krb5_free_addresses
krb5_free_ap_rep
krb5_free_ap_rep_enc_part
krb5_free_ap_req
krb5_free_authdata
krb5_free_authenticator
krb5_free_authenticator_contents . . .
krb5_free_checksum
krb5_free_context
krb5_free_cred
krb5_free_cred_contents
krb5_free_cred_enc_part
krbb5_free_credentials
krb5_free_creds
krb5_free_data
krb5_free_enc_tkt_part
krb5_free_error
krb5_free_host_realm

INDEX

krbb5_free_kdc_rep
krb5_free_kdc_rep_part
krb5_free_kdc_req
krb5_free_keyblock ...,.l
krb5_free_krbhst 60
krbb5_free_pa_data
krb5_free_princial
krb5_free_principal . .
krb5_free_priv
krb5_free_priv_enc_part
krb5_free_pwd_data
krbb5_free_pwd_sequences
krb5_free_realm_tree
krb5_free_safe
krb5_free_tgt_creds
krb5_free_ticket
krb5_free_tickets
krb5_free_tkt_authent
krb5_fulladdr_order
krb5_gen_portaddr
krb5_gen_replay_name
krb5_generate_seq_number [32|
krb5_generate_subkey
krb5_get_cred_from_kdc
krb5_get_cred_via_tkt
krb5_get_credentials

krb5_get_default_in_tkt_etypes .
krb5_get_default_realm
krb5_get_host_realm
krb5_get_in_tkt
krbb_get_in_tkt_with_keytab
krb5_get_in_tkt_with_password . .
krb5_get_in_tkt_with_skey
krbb_get_krbhst
krb5_get_local_realm
krb5_get_notification_message
krb5_get_realm_domain
krb5_get_server_rcache
krb5_init_context
krb5_kdc_rep_decrypt_proc
krb5_kt_add_entry
krb5_kt_add_internal
krb5_kt_close
krb5_kt_default
krb5_kt_default_name
krb5_kt_end_seq_get
krb5_kt_free_entry

krb5_kt_get_entry

krb5_kt_get_name

krb5_kt_next_entry
krb5_kt_read_service_key
krb5_kt_register
krb5_kt_remove_entry
krb5_kt_remove_internal

EEEEMEMMﬂEEEEEEEI‘EEEEEﬁﬂﬁﬂE@EEEEEEEEEEEE&EEEEEE

krb5_kt_resolve
krb5_kt_start_seq_get
krbb_kuserok
krb5_lock_file
krb5_mk_error
krb5_mk_priv
krb5_mk_rep
krb5_mk_req
krb5_mk_req_extended
krb5_mk_safe
krb5_net_read
krb5_net_write
krbb_os_free_context
krb5_os_init_context
krb5_os_localaddr
krb5_parse_name
krb5_princ_component
krb5_princ_data
krb5_princ_realm
krb5_princ_set_realm
krb5_princ_set_realm_data
krb5_princ_set_realm_length
krb5_princ_size
krb5_princ_type
krb5_principal_compare
krb5_process_key
krb5_random_confounder
krb5_rc_close
krb5_rc_default
krb5_rc_default_name
krb5_rc_default_type
krb5_rc_destroy
krb5_rc_expunge
krb5_rc_get_lifespan
krb5_rc_get_name
krb5_rc_get_type
krb5_rc_initialize
krb5_rc_recover
krb5_rc_register_type
krbb_rc_resolve
krb5_rc_resolve_full
krb5_rc_resolve_type
krb5_rc_store
krb5_rd_error
krb5_rd_priv
krb5_rd_rep
krb5_rd_req
krb5_rd_req_decode
krb5_rd_req_decoded
krb5_rd_safe
krbb_read_error
krb5_read_message
krb5_read_password
krb5_realm_compare

INDEX

krb5_recvauth .
krb5_send_auth
krb5_send_tgs .
krb5_sendauth
krbb5_sendto_kdc

krb5_set_config_files

krb5_set_default_in_tkt_etypes

krb5_set_default_realm

krb5_sname_to_principal

krb5_sync_disk_file

krb5_timeofday
krb5_unlock_file

krb5_unparse_name
krb5_unparse_name_ext
krb5_us_timeofday
krb5_walk_realm_tree

krb5_write_message

krb5_xfree ...

realloc

RegisterWindowMessage

71

	Introduction
	Acknowledgments
	Kerberos Basics
	The purpose of Realms
	Fundamental assumptions about the environment

	Glossary of terms

	Useful KDC parameters to know about
	Error tables
	error_table krb5
	error_table kdb5
	error_table kv5m
	error_table asn1

	libkrb5.a functions
	Main functions
	The krb5_context
	The krb5_auth_context
	Principal access functions
	The application functions
	Miscellaneous main functions

	Credentials cache functions
	Replay cache functions
	Key table functions
	Free functions
	Operating-system specific functions
	Operating specific context
	Configuration based functions
	Disk based functions
	Network based routines
	Operating specific access functions
	Miscellaneous operating specific functions

