This function currently just finds the elements whose boundary give the product of every pair of cycles that are chosen as generators. Eventually, all higher Massey operations will also be computed. The maximum degree of a generating cycle is specified in the option GenDegreeLimit, if needed.
Golod rings are defined by being those rings whose Koszul complex KR has a trivial Massey operation. Also, the existence of a trivial Massey operation on a DG algebra A forces the multiplication on H(A) to be trivial. An example of a ring R such that H(KR) has trivial multiplication, yet KR does not admit a trivial Massey operation is unknown. Such an example cannot be monomially defined, by a result of Jollenbeck and Berglund.
This is an example of a Golod ring. It is Golod since it is the Stanley-Reisner ideal of a flag complex whose 1-skeleton is chordal [Jollenbeck-Berglund].
i1 : Q = ZZ/101[x_1..x_6] o1 = Q o1 : PolynomialRing |
i2 : I = ideal (x_3*x_5,x_4*x_5,x_1*x_6,x_3*x_6,x_4*x_6) o2 = ideal (x x , x x , x x , x x , x x ) 3 5 4 5 1 6 3 6 4 6 o2 : Ideal of Q |
i3 : R = Q/I o3 = R o3 : QuotientRing |
i4 : A = koszulComplexDGA(R) o4 = {Ring => R } Underlying algebra => R[T , T , T , T , T , T ] 1 2 3 4 5 6 Differential => {x , x , x , x , x , x } 1 2 3 4 5 6 isHomogeneous => true o4 : DGAlgebra |
i5 : isHomologyAlgebraTrivial(A,GenDegreeLimit=>3) Computing generators in degree 1 : -- used 0.0277225 seconds Computing generators in degree 2 : -- used 0.0702061 seconds Computing generators in degree 3 : -- used 0.067101 seconds o5 = true |
i6 : cycleList = getGenerators(A) Computing generators in degree 1 : -- used 0.0056169 seconds Computing generators in degree 2 : -- used 0.0420131 seconds Computing generators in degree 3 : -- used 0.0427611 seconds Computing generators in degree 4 : -- used 0.0212673 seconds Computing generators in degree 5 : -- used 0.0193853 seconds Computing generators in degree 6 : -- used 0.0189423 seconds o6 = {x T , x T , x T , x T , x T , -x T T , -x T T , -x T T , -x T T , - 5 4 5 3 6 4 6 3 6 1 6 1 3 5 3 4 6 3 4 6 1 4 ------------------------------------------------------------------------ x T T + x T T , - x T T + x T T , x T T T , x T T T - x T T T } 6 4 5 5 4 6 6 3 5 5 3 6 6 1 3 4 6 3 4 5 5 3 4 6 o6 : List |
i7 : tmo = findTrivialMasseyOperation(A) Computing generators in degree 1 : -- used 0.00564402 seconds Computing generators in degree 2 : -- used 0.0417725 seconds Computing generators in degree 3 : -- used 0.105834 seconds Computing generators in degree 4 : -- used 0.0047283 seconds Computing generators in degree 5 : -- used 0.00432332 seconds Computing generators in degree 6 : -- used 0.00438618 seconds o7 = {{3} | 0 0 0 0 0 0 0 0 0 0 |, {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 -x_6 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 -x_6 | {4} | x_6 0 0 0 0 {3} | 0 0 0 0 0 0 -x_6 0 0 0 | {4} | 0 0 x_6 0 0 {3} | 0 0 0 0 0 0 0 0 -x_6 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {3} | -x_5 0 x_6 -x_6 0 0 0 0 0 0 | {3} | 0 0 0 0 0 -x_6 0 0 0 0 | {3} | 0 0 0 0 0 0 0 0 0 0 | {3} | 0 0 0 0 0 0 0 0 0 0 | ------------------------------------------------------------------------ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_6 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_5 0 x_6 0 -x_5 0 -x_6 0 ------------------------------------------------------------------------ 0 |, {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |, 0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | {5} | 0 0 0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 x_6 | 0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | 0 | x_6 | 0 | 0 | 0 | 0 | 0 | 0 | ------------------------------------------------------------------------ 0, 0} o7 : List |
i8 : assert(tmo =!= null) |
Below is an example of a Teter ring (Artinian Gorenstein ring modulo its socle), and the computation in Avramov and Levin’s paper shows that H(A) does not have trivial multiplication, hence no trivial Massey operation can exist.
i9 : Q = ZZ/101[x,y,z] o9 = Q o9 : PolynomialRing |
i10 : I = ideal (x^3,y^3,z^3,x^2*y^2*z^2) 3 3 3 2 2 2 o10 = ideal (x , y , z , x y z ) o10 : Ideal of Q |
i11 : R = Q/I o11 = R o11 : QuotientRing |
i12 : A = koszulComplexDGA(R) o12 = {Ring => R } Underlying algebra => R[T , T , T ] 1 2 3 Differential => {x, y, z} isHomogeneous => true o12 : DGAlgebra |
i13 : isHomologyAlgebraTrivial(A) Computing generators in degree 1 : -- used 0.0221301 seconds Computing generators in degree 2 : -- used 0.0470134 seconds Computing generators in degree 3 : -- used 0.0433422 seconds o13 = false |
i14 : cycleList = getGenerators(A) Computing generators in degree 1 : -- used 0.0040993 seconds Computing generators in degree 2 : -- used 0.031444 seconds Computing generators in degree 3 : -- used 0.029243 seconds 2 2 2 2 2 2 2 2 2 2 2 o14 = {x T , y T , z T , x*y z T , x*y z T T , x y*z T T , x*y z T T , 1 2 3 1 1 2 1 2 1 3 ----------------------------------------------------------------------- 2 2 2 2 2 2 x*y z T T T , x y*z T T T , x y z*T T T } 1 2 3 1 2 3 1 2 3 o14 : List |
i15 : assert(findTrivialMasseyOperation(A) === null) Computing generators in degree 1 : -- used 0.0038837 seconds Computing generators in degree 2 : -- used 0.0294732 seconds Computing generators in degree 3 : -- used 0.0291225 seconds |