next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                          2      2   2       2   2 2         2 2      2 
o2 = ideal (g*h*r - m, d*k  - g*q , b h - o*t , k t  - l*v, c d  - f*o ,
     ------------------------------------------------------------------------
        2 2    2   2     2
     f*j l  - q , a b*g*q  - 1)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             4 3 2 3 2    3 3 3 2    2 2 3   4 2    4 2 3 3   2 3 4 2 3 3 2  
o3 = ideal (f h q r w  - b g m u x, e g o q*u v  - f r w x , d g k n p r t  -
     ------------------------------------------------------------------------
      4 3 4   3 3 3 4 3 3 3    2   4
     e u v , e g j k n o s  - d w*x )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.