
ooRexx Documentation 4.2

Open Object Rexx™
Programmer Guide

W. David Ashley

Rony G. Flatscher

Mark Hessling

Rick McGuire

Lee Peedin

Oliver Sims

Jon Wolfers



Open Object Rexx™

ooRexx Documentation 4.2 Open Object Rexx™
Programmer Guide
Edition 1

Author W. David Ashley
Author Rony G. Flatscher
Author Mark Hessling
Author Rick McGuire
Author Lee Peedin
Author Oliver Sims
Author Jon Wolfers

Copyright © 2005-2014 Rexx Language Association. All rights reserved.

Portions Copyright © 1995, 2004 IBM Corporation and others. All rights reserved.

This documentation and accompanying materials are made available under the terms of the Common
Public License v1.0 which accompanies this distribution. A copy is also available as an appendix to
this document and at the following address: http://www.oorexx.org/license.html.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

Neither the name of Rexx Language Association nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

http://www.oorexx.org/license.html


iii

Preface                                                                                                                                        xi
1. Document Conventions ...................................................................................................  xi

1.1. Typographic Conventions ...................................................................................... xi
1.2. Pull-quote Conventions ........................................................................................  xii
1.3. Notes and Warnings ...........................................................................................  xiii

2. How to Read the Syntax Diagrams ................................................................................  xiv
3. Getting Help and Submitting Feedback ...........................................................................  xv

3.1. The Open Object Rexx SourceForge Site ............................................................  xvi
3.2. The Rexx Language Association Mailing List .......................................................  xvii
3.3. comp.lang.rexx Newsgroup ................................................................................. xvii

4. Related Information ....................................................................................................... xvii

1. Meet Open Object Rexx (ooRexx)                                                                                           1
1.1. The Main Attractions .....................................................................................................  1

1.1.1. Object-Oriented Programming .............................................................................  1
1.1.2. An English-Like Language ..................................................................................  1
1.1.3. Cross-Platform Versatility .................................................................................... 1
1.1.4. Fewer Rules ......................................................................................................  1
1.1.5. Interpreted, Not Compiled ................................................................................... 1
1.1.6. Built-In Classes and Functions ............................................................................ 1
1.1.7. Typeless Variables .............................................................................................  2
1.1.8. String Handling ..................................................................................................  2
1.1.9. Clear Error Messages and Powerful Debugging ...................................................  2
1.1.10. Impressive Development Tools .........................................................................  2

1.2. Rexx and the Operating System ....................................................................................  2
1.3. A Classic Language Gets Classier ................................................................................. 2

1.3.1. From Traditional Rexx to Object Rexx .................................................................  3
1.4. The Object Advantage ..................................................................................................  4
1.5. The Next Step ..............................................................................................................  5

2. A Quick Tour of Traditional Rexx                                                                                            7
2.1. What Is a Rexx Program? .............................................................................................  7
2.2. Running a Rexx Program ..............................................................................................  7
2.3. Elements of Rexx .......................................................................................................  10
2.4. Writing Your Program .................................................................................................. 10
2.5. Testing Your Program .................................................................................................  11
2.6. Variables, Constants, and Literal Strings ......................................................................  12
2.7. Assignments ...............................................................................................................  13
2.8. Using Functions ..........................................................................................................  14
2.9. Program Control .........................................................................................................  15
2.10. Subroutines and Procedures ......................................................................................  20

3. Into the Object World                                                                                                            23
3.1. What Is Object-Oriented Programming? .......................................................................  23
3.2. Modularizing Data .......................................................................................................  23
3.3. Modeling Objects ........................................................................................................  24

3.3.1. How Objects Interact ........................................................................................  25
3.3.2. Methods ...........................................................................................................  26
3.3.3. Polymorphism ..................................................................................................  26
3.3.4. Classes and Instances .....................................................................................  27
3.3.5. Data Abstraction ............................................................................................... 28
3.3.6. Subclasses, Superclasses, and Inheritance .......................................................  29

4. The Basics of Classes                                                                                                           31
4.1. Rexx Classes for Programming ...................................................................................  32

4.1.1. The Alarm Class ..............................................................................................  32



Open Object Rexx™

iv

4.1.2. The Buffer Class ..............................................................................................  32
4.1.3. The CaselessColumnComparator Class ............................................................. 32
4.1.4. The CaselessComparator Class ........................................................................  32
4.1.5. The CaselessDescendingComparator Class ......................................................  32
4.1.6. The Collection Classes .....................................................................................  32
4.1.7. The ColumnComparator Class ..........................................................................  34
4.1.8. The Comparable Class .....................................................................................  34
4.1.9. The Comparator Class .....................................................................................  34
4.1.10. The DateTime Class .......................................................................................  34
4.1.11. The DescendingComparator Class ..................................................................  34
4.1.12. The File Class ................................................................................................ 34
4.1.13. The InputOutputStream Class .........................................................................  34
4.1.14. The InputStream Class ...................................................................................  35
4.1.15. The InvertingComparator Class .......................................................................  35
4.1.16. The Message Class ........................................................................................ 35
4.1.17. The Method Class ..........................................................................................  35
4.1.18. The Monitor Class ..........................................................................................  35
4.1.19. The MutableBuffer Class ................................................................................  35
4.1.20. The OutputStream Class ................................................................................. 35
4.1.21. The NumericComparator Class .......................................................................  35
4.1.22. The Orderable Class ......................................................................................  36
4.1.23. The Package Class ........................................................................................  36
4.1.24. The Pointer Class ........................................................................................... 36
4.1.25. The RegularExpression Class .........................................................................  36
4.1.26. The RexxContext Class ..................................................................................  36
4.1.27. The RexxQueue Class .................................................................................... 36
4.1.28. The Routine Class .......................................................................................... 36
4.1.29. The StackFrame Class ...................................................................................  36
4.1.30. The Stem Class .............................................................................................  36
4.1.31. The Stream Class ..........................................................................................  37
4.1.32. The StreamSupplier Class ..............................................................................  37
4.1.33. The String Class ............................................................................................  37
4.1.34. The Supplier Class .........................................................................................  37
4.1.35. The TimeSpan Class ......................................................................................  37
4.1.36. The WeakReference Class .............................................................................  38

4.2. Rexx Classes for Organizing Objects ...........................................................................  38
4.2.1. The Object Class .............................................................................................  38
4.2.2. The Class Class ............................................................................................... 38

4.3. Rexx Classes: The Big Picture ....................................................................................  39
4.4. Creating Your Own Classes Using Directives ...............................................................  39

4.4.1. What Are Directives? ........................................................................................ 40
4.4.2. The Directives Rexx Provides ...........................................................................  40
4.4.3. How Directives Are Processed ..........................................................................  42
4.4.4. A Sample Program Using Directives .................................................................. 42
4.4.5. Another Sample Program .................................................................................  43

4.5. Defining an Instance ...................................................................................................  44
4.6. Types of Classes ........................................................................................................  44

4.6.1. Object Classes .................................................................................................  45
4.6.2. Mixin Classes ................................................................................................... 45
4.6.3. Abstract Classes ..............................................................................................  45
4.6.4. Metaclasses .....................................................................................................  45

5. A Closer Look at Objects                                                                                                      49
5.1. Using Objects in Rexx ................................................................................................. 49



v

5.2. Common Methods .......................................................................................................  51
5.2.1. Initializing Instances Using INIT ........................................................................  51
5.2.2. Returning String Data Using STRING ................................................................  52
5.2.3. Uninitializing and Deleting Instances Using UNINIT ............................................  54

5.3. Special Method Variables ............................................................................................  55
5.4. Public, Local, and Built-In Environment Objects ............................................................  56

5.4.1. The Public Environment Object (.environment) ................................................... 56
5.4.2. The Local Environment Object (.local) ...............................................................  57
5.4.3. Built-In Environment Objects .............................................................................  58
5.4.4. The Default Search Order for Environment Objects ............................................  58

5.5. Determining the Scope of Methods and Variables .........................................................  59
5.5.1. Objects with a Class Scope ..............................................................................  59
5.5.2. Objects with Their Own Unique Scope ..............................................................  60

5.6. More about Methods ...................................................................................................  60
5.6.1. The Default Search Order for Selecting a Method ..............................................  61
5.6.2. Changing the Search Order for Methods ...........................................................  62
5.6.3. Public versus Private Methods ..........................................................................  63
5.6.4. Defining an UNKNOWN Method .......................................................................  65

5.7. Concurrency ...............................................................................................................  65
5.7.1. Inter-Object Concurrency ..................................................................................  65
5.7.2. Intra-Object Concurrency ..................................................................................  67

6. Commands                                                                                                                             69
6.1. How to Issue Commands ............................................................................................  69
6.2. Rexx and Batch Files ..................................................................................................  72
6.3. Using Variables to Build Commands ............................................................................  74
6.4. Using Quotation Marks ................................................................................................  74
6.5. ADDRESS Instruction .................................................................................................. 75
6.6. Using Return Codes from Commands ..........................................................................  76
6.7. Subcommand Processing ............................................................................................  77
6.8. Trapping Command Errors ..........................................................................................  77

6.8.1. Instructions and Conditions ...............................................................................  78
6.8.2. Disabling Traps ................................................................................................  78
6.8.3. Using SIGNAL ON ERROR ..............................................................................  79
6.8.4. Using CALL ON ERROR ..................................................................................  79
6.8.5. A Common Error-Handling Routine ...................................................................  79

7. Input and Output                                                                                                                    81
7.1. More about Stream Objects .........................................................................................  81
7.2. Reading a Text File ....................................................................................................  81
7.3. Reading a Text File into an Array ................................................................................  83
7.4. Reading Specific Lines of a Text File ...........................................................................  83
7.5. Writing a Text File ......................................................................................................  84
7.6. Reading Binary Files ...................................................................................................  85
7.7. Reading Text Files a Character at a Time ....................................................................  86
7.8. Writing Binary Files .....................................................................................................  87
7.9. Closing Files ...............................................................................................................  87
7.10. Direct File Access .....................................................................................................  87
7.11. Checking for the Existence of a File ........................................................................... 90
7.12. Getting Other Information about a File .......................................................................  90
7.13. Using Standard I/O ...................................................................................................  91
7.14. Using Windows Devices ............................................................................................  92

8. Rexx C++ Application Programming Interfaces                                                                     95
8.1. Rexx Interpreter API ...................................................................................................  95



Open Object Rexx™

vi

8.1.1. RexxCreateInterpreter ....................................................................................... 97
8.1.2. Interpreter Instance Options ..............................................................................  97

8.2. Data Types Used in APIs ..........................................................................................  101
8.2.1. Rexx Object Types .........................................................................................  101
8.2.2. Rexx Numeric Types ......................................................................................  102

8.3. Introduction to API Vectors ........................................................................................  103
8.4. Threading Considerations ..........................................................................................  105
8.5. Garbage Collection Considerations ............................................................................  105
8.6. Rexx Interpreter Instance Interface ............................................................................  106
8.7. Rexx Thread Context Interface ..................................................................................  106
8.8. Rexx Method Context Interface ..................................................................................  106
8.9. Rexx Call Context Interface .......................................................................................  107
8.10. Rexx Exit Context Interface .....................................................................................  107
8.11. Building an External Native Library ........................................................................... 108
8.12. Defining Library Routines ......................................................................................... 110

8.12.1. Routine Declarations ..................................................................................... 111
8.12.2. Routine Argument Types ..............................................................................  112

8.13. Defining Library Methods .........................................................................................  114
8.13.1. Method Declarations .....................................................................................  115
8.13.2. Method Argument Types ...............................................................................  116
8.13.3. Pointer, Buffer, and CSELF ...........................................................................  119

8.14. Rexx Exits Interface ................................................................................................  123
8.14.1. Writing Context Exit Handlers ........................................................................ 124
8.14.2. Context Exit Definitions .................................................................................  125

8.15. Command Handler Interface ....................................................................................  138
8.16. Rexx Interface Methods Listing ................................................................................  140

8.16.1. Array ............................................................................................................  140
8.16.2. ArrayAppend ................................................................................................  140
8.16.3. ArrayAppendString ........................................................................................  141
8.16.4. ArrayAt ......................................................................................................... 142
8.16.5. ArrayDimension ............................................................................................  142
8.16.6. ArrayItems ....................................................................................................  143
8.16.7. ArrayOfFour .................................................................................................  143
8.16.8. ArrayOfThree ................................................................................................ 144
8.16.9. ArrayOfTwo ..................................................................................................  144
8.16.10. ArrayOfOne ................................................................................................  145
8.16.11. ArrayPut .....................................................................................................  145
8.16.12. ArraySize .................................................................................................... 146
8.16.13. AttachThread ..............................................................................................  147
8.16.14. BufferData ..................................................................................................  147
8.16.15. BufferLength ...............................................................................................  148
8.16.16. BufferStringData .........................................................................................  148
8.16.17. BufferStringLength ......................................................................................  149
8.16.18. CallProgram ...............................................................................................  149
8.16.19. CallRoutine .................................................................................................  150
8.16.20. CheckCondition ..........................................................................................  151
8.16.21. ClearCondition ............................................................................................  151
8.16.22. CString .......................................................................................................  152
8.16.23. DecodeConditionInfo ...................................................................................  152
8.16.24. DetachThread .............................................................................................  153
8.16.25. DirectoryAt .................................................................................................  153
8.16.26. DirectoryPut ................................................................................................ 154
8.16.27. DirectoryRemove ........................................................................................  155
8.16.28. DisplayCondition .........................................................................................  155



vii

8.16.29. Double .......................................................................................................  156
8.16.30. DoubleToObject ..........................................................................................  156
8.16.31. DoubleToObjectWithPrecision ...................................................................... 157
8.16.32. DropContextVariable ...................................................................................  158
8.16.33. DropObjectVariable .....................................................................................  158
8.16.34. DropStemArrayElement ...............................................................................  159
8.16.35. DropStemElement .......................................................................................  159
8.16.36. False ..........................................................................................................  160
8.16.37. FindClass ...................................................................................................  160
8.16.38. FindContextClass ........................................................................................  161
8.16.39. FindPackageClass ......................................................................................  161
8.16.40. FinishBufferString ........................................................................................ 162
8.16.41. ForwardMessage ........................................................................................  162
8.16.42. GetAllContextVariables ................................................................................ 163
8.16.43. GetAllStemElements ...................................................................................  164
8.16.44. GetApplicationData .....................................................................................  164
8.16.45. GetArgument ..............................................................................................  165
8.16.46. GetArguments ............................................................................................. 165
8.16.47. GetCallerContext ........................................................................................  166
8.16.48. GetConditionInfo .........................................................................................  166
8.16.49. GetContextDigits .........................................................................................  167
8.16.50. GetContextForm .........................................................................................  168
8.16.51. GetContextFuzz ..........................................................................................  168
8.16.52. GetContextVariable .....................................................................................  169
8.16.53. GetGlobalEnvironment ................................................................................  169
8.16.54. GetLocalEnvironment ..................................................................................  170
8.16.55. GetMessageName ......................................................................................  170
8.16.56. GetMethod .................................................................................................  171
8.16.57. GetMethodPackage ..................................................................................... 171
8.16.58. GetObjectVariable .......................................................................................  172
8.16.59. GetPackageClasses ....................................................................................  172
8.16.60. GetPackageMethods ...................................................................................  173
8.16.61. GetPackagePublicClasses ...........................................................................  174
8.16.62. GetPackagePublicRoutines .........................................................................  174
8.16.63. GetPackageRoutines ................................................................................... 175
8.16.64. GetRoutine .................................................................................................  175
8.16.65. GetRoutineName ........................................................................................  176
8.16.66. GetRoutinePackage ....................................................................................  176
8.16.67. GetScope ...................................................................................................  177
8.16.68. GetSelf .......................................................................................................  177
8.16.69. GetStemArrayElement .................................................................................  178
8.16.70. GetStemElement ......................................................................................... 178
8.16.71. GetStemValue ............................................................................................  179
8.16.72. GetSuper .................................................................................................... 180
8.16.73. Halt ............................................................................................................  180
8.16.74. HaltThread .................................................................................................  181
8.16.75. HasMethod .................................................................................................  181
8.16.76. InvalidRoutine .............................................................................................  182
8.16.77. Int32 ........................................................................................................... 182
8.16.78. Int32ToObject .............................................................................................  183
8.16.79. Int64 ........................................................................................................... 183
8.16.80. Int64ToObject .............................................................................................  184
8.16.81. InterpreterVersion .......................................................................................  185
8.16.82. Intptr ..........................................................................................................  185



Open Object Rexx™

viii

8.16.83. IntptrToObject .............................................................................................  186
8.16.84. IsArray .......................................................................................................  186
8.16.85. IsBuffer ......................................................................................................  187
8.16.86. IsDirectory ..................................................................................................  188
8.16.87. IsInstanceOf ...............................................................................................  188
8.16.88. IsMethod ....................................................................................................  189
8.16.89. IsMutableBuffer ........................................................................................... 189
8.16.90. IsOfType ....................................................................................................  190
8.16.91. IsPointer .....................................................................................................  190
8.16.92. IsRoutine ....................................................................................................  191
8.16.93. IsStem ........................................................................................................ 192
8.16.94. IsString ....................................................................................................... 192
8.16.95. LanguageLevel ...........................................................................................  193
8.16.96. LoadLibrary ................................................................................................  193
8.16.97. LoadPackage .............................................................................................. 194
8.16.98. LoadPackageFromData ...............................................................................  194
8.16.99. Logical .......................................................................................................  195
8.16.100. LogicalToObject ........................................................................................  196
8.16.101. MutableBufferCapacity ..............................................................................  196
8.16.102. MutableBufferData ....................................................................................  197
8.16.103. MutableBufferLength .................................................................................  197
8.16.104. NewArray .................................................................................................  198
8.16.105. NewBuffer ................................................................................................. 198
8.16.106. NewBufferString ........................................................................................  199
8.16.107. NewDirectory ............................................................................................  200
8.16.108. NewMethod ..............................................................................................  200
8.16.109. NewMutableBuffer .....................................................................................  201
8.16.110. NewPointer ...............................................................................................  201
8.16.111. NewRoutine ..............................................................................................  202
8.16.112. NewStem .................................................................................................. 202
8.16.113. NewString .................................................................................................  203
8.16.114. NewSupplier .............................................................................................  204
8.16.115. Nil ............................................................................................................  204
8.16.116. NullString .................................................................................................. 205
8.16.117. ObjectToCSelf ..........................................................................................  205
8.16.118. ObjectToCSelfScoped ...............................................................................  206
8.16.119. ObjectToDouble ........................................................................................  207
8.16.120. ObjectToInt32 ...........................................................................................  207
8.16.121. ObjectToInt64 ...........................................................................................  208
8.16.122. ObjectToIntptr ...........................................................................................  208
8.16.123. ObjectToLogical ........................................................................................  209
8.16.124. ObjectToString ..........................................................................................  209
8.16.125. ObjectToStringSize ...................................................................................  210
8.16.126. ObjectToStringValue .................................................................................  211
8.16.127. ObjectToUintptr .........................................................................................  211
8.16.128. ObjectToUnsignedInt32 .............................................................................  212
8.16.129. ObjectToUnsignedInt64 .............................................................................  212
8.16.130. ObjectToValue ..........................................................................................  213
8.16.131. ObjectToWholeNumber .............................................................................  213
8.16.132. PointerValue .............................................................................................  214
8.16.133. RaiseCondition .......................................................................................... 215
8.16.134. RaiseException .........................................................................................  215
8.16.135. RaiseException0 .......................................................................................  216
8.16.136. RaiseException1 .......................................................................................  216



ix

8.16.137. RaiseException2 .......................................................................................  217
8.16.138. RegisterLibrary .......................................................................................... 218
8.16.139. ReleaseGlobalReference ...........................................................................  218
8.16.140. ReleaseLocalReference ............................................................................. 219
8.16.141. RequestGlobalReference ...........................................................................  219
8.16.142. ResolveStemVariable ................................................................................  220
8.16.143. SendMessage ...........................................................................................  220
8.16.144. SendMessage0 .........................................................................................  221
8.16.145. SendMessage1 .........................................................................................  222
8.16.146. SendMessage2 .........................................................................................  222
8.16.147. SetContextVariable ...................................................................................  223
8.16.148. SetGuardOff .............................................................................................  224
8.16.149. SetGuardOn .............................................................................................  224
8.16.150. SetMutableBufferCapacity .......................................................................... 225
8.16.151. SetMutableBufferLength ............................................................................  225
8.16.152. SetObjectVariable .....................................................................................  226
8.16.153. SetStemArrayElement ...............................................................................  227
8.16.154. SetStemElement .......................................................................................  227
8.16.155. SetThreadTrace ........................................................................................  228
8.16.156. SetTrace ................................................................................................... 228
8.16.157. String .......................................................................................................  229
8.16.158. StringData ................................................................................................  229
8.16.159. StringGet ..................................................................................................  230
8.16.160. StringLength .............................................................................................  231
8.16.161. StringLower ..............................................................................................  231
8.16.162. StringSize .................................................................................................  232
8.16.163. StringSizeToObject ...................................................................................  232
8.16.164. StringUpper ..............................................................................................  233
8.16.165. SupplierAvailable ......................................................................................  233
8.16.166. SupplierIndex ............................................................................................  234
8.16.167. SupplierItem .............................................................................................  235
8.16.168. SupplierNext .............................................................................................  235
8.16.169. Terminate .................................................................................................  236
8.16.170. True .........................................................................................................  236
8.16.171. Uintptr ......................................................................................................  237
8.16.172. UintptrToObject .........................................................................................  237
8.16.173. UnsignedInt32 ........................................................................................... 238
8.16.174. UnsignedInt32ToObject .............................................................................  238
8.16.175. UnsignedInt64 ........................................................................................... 239
8.16.176. UnsignedInt64ToObject .............................................................................  240
8.16.177. ValuesToObject ........................................................................................  240
8.16.178. ValueToObject ..........................................................................................  241
8.16.179. WholeNumber ...........................................................................................  241
8.16.180. WholeNumberToObject .............................................................................  242

9. Classic Rexx Application Programming Interfaces                                                              245
9.1. Handler Characteristics .............................................................................................. 245
9.2. RXSTRINGs .............................................................................................................. 246
9.3. Calling the Rexx Interpreter .......................................................................................  247

9.3.1. From the Operating System ............................................................................  247
9.3.2. From within an Application ..............................................................................  247
9.3.3. The RexxStart Function ..................................................................................  247
9.3.4. The RexxWaitForTermination Function (Deprecated) ........................................  251
9.3.5. The RexxDidRexxTerminate Function (Deprecated) .......................................... 251



Open Object Rexx™

x

9.4. Subcommand Interface ..............................................................................................  252
9.4.1. Registering Subcommand Handlers .................................................................  252
9.4.2. Subcommand Interface Functions ...................................................................  254

9.5. External Function Interface ........................................................................................  258
9.5.1. Registering External Functions ........................................................................  259
9.5.2. Calling External Functions ..............................................................................  260
9.5.3. External Function Interface Functions ..............................................................  261

9.6. Registered System Exit Interface ...............................................................................  264
9.6.1. Writing System Exit Handlers ..........................................................................  264
9.6.2. System Exit Definitions ...................................................................................  267
9.6.3. System Exit Interface Functions ......................................................................  276

9.7. Variable Pool Interface ..............................................................................................  280
9.7.1. Interface Types ..............................................................................................  280
9.7.2. RexxVariablePool Restrictions ......................................................................... 281
9.7.3. RexxVariablePool Interface Function ...............................................................  281

9.8. Dynamically Allocating and De-allocating Memory .......................................................  285
9.8.1. The RexxAllocateMemory() Function ...............................................................  285
9.8.2. The RexxFreeMemory() Function ....................................................................  286

9.9. Queue Interface ........................................................................................................  286
9.9.1. Queue Interface Functions ..............................................................................  286

9.10. Halt and Trace Interface ..........................................................................................  292
9.10.1. Halt and Trace Interface Functions ................................................................  292

9.11. Macrospace Interface ..............................................................................................  294
9.11.1. Search Order ...............................................................................................  294
9.11.2. Storage of Macrospace Libraries ...................................................................  294
9.11.3. Macrospace Interface Functions ....................................................................  295

9.12. Windows Scripting Host Interface .............................................................................  299
9.12.1. Concurrency .................................................................................................  299
9.12.2. WSH Features .............................................................................................. 299

A. Distributing Programs without Source                                                                                301

B. Sample Rexx Programs                                                                                                       303

C. Notices                                                                                                                                 307
C.1. Trademarks ..............................................................................................................  307
C.2. Source Code For This Document ..............................................................................  308

D. Common Public License Version 1.0                                                                                  309
D.1. Definitions ................................................................................................................  309
D.2. Grant of Rights .........................................................................................................  309
D.3. Requirements ...........................................................................................................  310
D.4. Commercial Distribution ............................................................................................  310
D.5. No Warranty .............................................................................................................  311
D.6. Disclaimer of Liability ................................................................................................  311
D.7. General ....................................................................................................................  311

E. Revision History                                                                                                                  313

Index                                                                                                                                         315



xi

Preface
This book describes the Open Object Rexx, or Object Rexx programming language. In the following, it
is called Rexx unless compared to its traditional predecessor.

This book is aimed at developers who want to use Rexx for object-oriented programming, or a mix of
traditional and object-oriented programming.

This book assumes you are already familiar with the techniques of traditional structured programming,
and uses them as a springboard for quickly understanding Rexx and, in particular, Object Rexx. This
approach is designed to help experienced programmers get involved quickly with the Rexx language,
exploit its virtues, and become productive fast.

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/


Preface

xii

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from
the Character Map menu bar, type the name of the character in the Search field
and click Next. The character you sought will be highlighted in the Character Table.
Double-click this highlighted character to place it in the Text to copy field and then

click the Copy button. Now switch back to your document and choose Edit → Paste
from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.



Notes and Warnings

xiii

Output sent to a terminal is set in mono-spaced roman and presented thus:

books        Desktop   documentation  drafts  mss    photos   stuff  svn
books_tests  Desktop1  downloads      images  notes  scripts  svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
   public static void main(String args[]) 
       throws Exception
   {
      InitialContext iniCtx = new InitialContext();
      Object         ref    = iniCtx.lookup("EchoBean");
      EchoHome       home   = (EchoHome) ref;
      Echo           echo   = home.create();

      System.out.println("Created Echo");

      System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
   }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.



Preface

xiv

2. How to Read the Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The >>--- symbol indicates the beginning of a statement.

The ---> symbol indicates that the statement syntax is continued on the next line.

The >--- symbol indicates that a statement is continued from the previous line.

The --->< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the >--- symbol and end
with the ---> symbol.

• Required items appear on the horizontal line (the main path).

>>-STATEMENT--required_item------------------------------------><

• Optional items appear below the main path.

>>-STATEMENT--+---------------+--------------------------------><
              +-optional_item-+

• If you can choose from two or more items, they appear vertically, in a stack. If you must choose one
of the items, one item of the stack appears on the main path.

>>-STATEMENT--+-required_choice1-+-----------------------------><
              +-required_choice2-+

• If choosing one of the items is optional, the entire stack appears below the main path.

>>-STATEMENT--+------------------+-----------------------------><
              +-optional_choice1-+
              +-optional_choice2-+

• If one of the items is the default, it appears above the main path and the remaining choices are
shown below.

              +-default_choice--+
>>-STATEMENT--+-----------------+------------------------------><
              +-optional_choice-+



Getting Help and Submitting Feedback

xv

              +-optional_choice-+

• An arrow returning to the left above the main line indicates an item that can be repeated.

              +-----------------+
              V                 |
>>-STATEMENT----repeatable_item-+------------------------------><

A repeat arrow above a stack indicates that you can repeat the items in the stack.

• A set of vertical bars around an item indicates that the item is a fragment, a part of the syntax
diagram that appears in greater detail below the main diagram.

>>-STATEMENT--| fragment |-------------------------------------><

fragment:

|--expansion_provides_greater_detail----------------------------|

• Keywords appear in uppercase (for example, PARM1). They must be spelled exactly as shown but
you can type them in upper, lower, or mixed case. Variables appear in all lowercase letters (for
example, parmx). They represent user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described:

         +-,------+
         V        |
>>-MAX(----number-+--)-----------------------------------------><

3. Getting Help and Submitting Feedback
The Open Object Rexx Project has a number of methods to obtain help and submit feedback for
ooRexx and the extension packages that are part of ooRexx. These methods, in no particular order of
preference, are listed below.



Preface

xvi

3.1. The Open Object Rexx SourceForge Site
The Open Object Rexx Project2 utilizes SourceForge3 to house the ooRexx Project4 source
repositories, mailing lists and other project features. Over time it has become apparent that the
Developer and User mailing lists are better tools for carrying on discussions concerning ooRexx and
that the Forums provided by SourceForge are cumbersome to use. The ooRexx user is most likely to
get timely replies from one of the mailing lists.

Here is a list of some of the most useful facilities provided by SourceForge.

The Developer Mailing List
You can subscribe to the oorexx-devel mailing list at ooRexx Mailing List Subscriptions5

page. This list is for discussing ooRexx project development activities and future interpreter
enhancements. It also supports a historical archive of past messages.

The Users Mailing List
You can subscribe to the oorexx-users mailing list at ooRexx Mailing List Subscriptions6 page.
This list is for discussing using ooRexx. It also supports a historical archive of past messages.

The Announcements Mailing List
You can subscribe to the oorexx-announce mailing list at ooRexx Mailing List Subscriptions7 page.
This list is only used to announce significant ooRexx project events.

The Bug Mailing List
You can subscribe to the oorexx-bugs mailing list at ooRexx Mailing List Subscriptions8 page. This
list is only used for monitoring changes to the ooRexx bug tracking system.

Bug Reports
You can create a bug report at ooRexx Bug Report9 page. Please try to provide as much
information in the bug report as possible so that the developers can determine the problem as
quickly as possible. Sample programs that can reproduce your problem will make it easier to
debug reported problems.

Documentation Feedback
You can submit feedback for, or report errors in, the documentation at ooRexx Documentation
Report10 page. Please try to provide as much information in a documentation report as possible.
In addition to listing the document and section the report concerns, direct quotes of the text
will help the developers locate the text in the source code for the document. (Section numbers
are generated when the document is produced and are not available in the source code itself.)
Suggestions as to how to reword or fix the existing text should also be included.

Request For Enhancement
You can suggest ooRexx features at the ooRexx Feature Requests11 page.

2 http://www.oorexx.org/
3 http://sourceforge.net/
4 http://sourceforge.net/projects/oorexx
5 http://sourceforge.net/mail/?group_id=119701
6 http://sourceforge.net/mail/?group_id=119701
7 http://sourceforge.net/mail/?group_id=119701
8 http://sourceforge.net/mail/?group_id=119701
9 http://sourceforge.net/tracker/?group_id=119701&atid=684730
10 http://sourceforge.net/tracker/?group_id=119701&atid=1001880
11 http://sourceforge.net/tracker/?group_id=119701&atid=684733

http://www.oorexx.org/
http://sourceforge.net/
http://sourceforge.net/projects/oorexx
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/tracker/?group_id=119701&atid=684730
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=684733
http://www.oorexx.org/
http://sourceforge.net/
http://sourceforge.net/projects/oorexx
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/tracker/?group_id=119701&atid=684730
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=684733


The Rexx Language Association Mailing List

xvii

Patch Reports
If you create an enhancement patch for ooRexx please post the patch using the ooRexx Patch
Report12 page. Please provide as much information in the patch report as possible so that the
developers can evaluate the enhancement as quickly as possible.

Please do not post bug fix patches here, instead you should open a bug report and attach the
patch to it.

The ooRexx Forums
The ooRexx project maintains a set of forums that anyone may contribute to or monitor. They
are located on the ooRexx Forums13 page. There are currently three forums available: Help,
Developers and Open Discussion. In addition, you can monitor the forums via email.

3.2. The Rexx Language Association Mailing List
The Rexx Language Association14 maintains a mailing list for its members. This mailing list is only
available to RexxLA members thus you will need to join RexxLA in order to get on the list. The dues
for RexxLA membership are small and are charged on a yearly basis. For details on joining RexxLA
please refer to the RexxLA Home Page15 or the RexxLA Membership Application16 page.

3.3. comp.lang.rexx Newsgroup
The comp.lang.rexx17 newsgroup is a good place to obtain help from many individuals within the Rexx
community. You can obtain help on Open Object Rexx or on any number of other Rexx interpreters
and tools.

4. Related Information
See also: Open Object Rexx: Reference

12 http://sourceforge.net/tracker/?group_id=119701&atid=684732
13 http://sourceforge.net/forum/?group_id=119701
14 http://www.rexxla.org/
15 http://rexxla.org/
16 http://www.rexxla.org/rexxla/join.html
17 http://groups.google.com/group/comp.lang.rexx/topics?hl=en

http://sourceforge.net/tracker/?group_id=119701&atid=684732
http://sourceforge.net/tracker/?group_id=119701&atid=684732
http://sourceforge.net/forum/?group_id=119701
http://www.rexxla.org/
http://rexxla.org/
http://www.rexxla.org/rexxla/join.html
http://groups.google.com/group/comp.lang.rexx/topics?hl=en
http://sourceforge.net/tracker/?group_id=119701&atid=684732
http://sourceforge.net/forum/?group_id=119701
http://www.rexxla.org/
http://rexxla.org/
http://www.rexxla.org/rexxla/join.html
http://groups.google.com/group/comp.lang.rexx/topics?hl=en


xviii



Chapter 1.

1

Meet Open Object Rexx (ooRexx)
Rexx is a versatile, free-format language. Its simplicity makes it a good first language for beginners.
For more experienced users and computer professionals, Rexx offers powerful functions and the
ability to issue commands to several environments.

1.1. The Main Attractions

The following aspects of Rexx round out its versatility and functions.

1.1.1. Object-Oriented Programming
Object-oriented extensions have been added to traditional Rexx, but its existing functions and
instructions have not changed. The Open Object Rexx interpreter is an enhanced version of its
predecessor with support for:

• Classes, objects, and methods

• Messaging and polymorphism

• Inheritance and multiple inheritance

Object Rexx supplies the user with a base set of built-in classes providing many useful functions.
Open Object Rexx is fully compatible with earlier versions of Rexx that were not object-oriented.

1.1.2. An English-Like Language
To make Rexx easier to learn and use, many of its instructions are meaningful English words. Rexx
instructions are common words such as SAY, PULL, IF...THEN...ELSE, DO...END, and EXIT.

1.1.3. Cross-Platform Versatility
Versions of ooRexx are now available for a wide variety of platforms, and the programs you create
with Object Rexx will run on any of these, including Linux™, AIX®, as well as Windows XP®, and
Windows Vista®. It is also available in 64-bit versions that can exploit larger address spaces.

1.1.4. Fewer Rules
Rexx has relatively few rules about format. A single instruction can span many lines, and you can
include several instructions on a single line. Instructions need not begin in a particular column and can
be typed in uppercase, lowercase, or mixed case. You can skip spaces in a line or entire lines. There
is no line numbering.

1.1.5. Interpreted, Not Compiled
Rexx is an interpreted language. When a Rexx program runs, its language processor reads each
statement from the source file and runs it, one statement at a time. Languages that are not interpreted
must be compiled into object code before they can be run.

1.1.6. Built-In Classes and Functions
Rexx has built-in classes and functions that perform various processing, searching, and comparison
operations for text and numbers and provide formatting capabilities and arithmetic calculations.



Chapter 1. Meet Open Object Rexx (ooRexx)

2

1.1.7. Typeless Variables

Rexx regards all data as objects of various kinds. Variables can hold any kind of object, so you need
not declare variables as strings or numbers.

1.1.8. String Handling

Rexx includes capabilities for manipulating character strings. This allows programs to read and
separate characters, numbers, and mixed input. Rexx performs arithmetic operations on any string
that represents a valid number, including those in exponential formats.

1.1.9. Clear Error Messages and Powerful Debugging
Rexx displays messages with meaningful explanations when a Rexx program encounters an error. In
addition, the TRACE instruction provides a powerful debugging tool.

1.1.10. Impressive Development Tools
The ooRexx places many powerful tools at your disposal. These include a Rexx API to other
languages like C/C++ or Cobol, OLE/ActiveX support, a mathematical functions package.

1.2. Rexx and the Operating System

The most important role Rexx plays is as a programming language for Windows and Unix-based
systems. A Rexx program can serve as a script for the operating system. Using Rexx, you can reduce
long, complex, or repetitious tasks to a single command or program.

1.3. A Classic Language Gets Classier

Object-oriented extensions have been added to traditional Rexx without changing its existing functions
and instructions. So you can continue to use Rexx's procedural instructions, and incorporate objects
as you become more comfortable with the technology. In general, your current Rexx programs will
work without change.

In object-oriented technology, objects are used in programs to model the real world. Similar objects
are grouped into classes, and the classes themselves are arranged in hierarchies.

As an object-oriented programmer, you solve problems by identifying and classifying objects related
to the problem. Then you determine what actions or behaviors are required of those objects. Finally,
you write the instructions to generate the classes, create the objects, and implement the actions. Your
main program consists of instructions that send messages to objects.

A billing application, for example, might have an Invoice class and a Receipt class. These two classes
might be members of a Forms class. Individual invoices are instances of the Invoice class.



From Traditional Rexx to Object Rexx

3

Figure 1.1. Objects in a Billing Application

Each instance contains all the data associated with it (such as customer name or descriptions and
prices of items purchased). To get at the data, you write instructions that send messages to the
objects.  These messages activate coded actions called methods.  For an invoice object, you might
need CREATE, DISPLAY, PRINT, UPDATE, and ERASE methods.

1.3.1. From Traditional Rexx to Object Rexx

In traditional (classic) Rexx, all data was stored as strings. The strings represented character data as
well as numeric data. From an object-oriented perspective, traditional Rexx had just one kind of object:
the string. In object-oriented terminology, each string variable is a object that is an  reference to an
instance of the String class.

With ooRexx, variables can now reference objects other than strings. In addition to the String
class, Rexx includes classes for creating arrays, queues, streams, and many other useful objects.
Additionally, you can create your own classes that can interoperate seamlessly with the language
built-in classes. Objects in these Rexx classes are manipulated by methods instead of traditional
functions. To activate a method, you just send a message to the object.

For example, instead of using the SUBSTR function on a string variable Name, you send a SUBSTR 
message to the string object. In classic Rexx, you would do the following:

s=substr(name,2,3)

In Object Rexx, the equivalent would be:

s=name~substr(2,3)

The tilde  (~) character is the Rexx message send operator, called twiddle. The object receiving the
message is to the left of the twiddle. The message sent is to the right. In this example, the Name
object is sent the SUBSTR message. The numbers in parentheses (2,3) are arguments sent as part
of the message. The SUBSTR method is run for the Name object, and the result is assigned to the
s string object. Conceptually, you are "asking" the String object refered to by variable NAME to give
you its substring starting at character 2 for 3 characters. Many String operations are available as both
class methods and built-in functions, but the String class also provides many method enhancements
for which there are no corresponding built-in functions.

For classes other than String (such as Array or Queue), methods are provided, but not equivalent
built-in functions. For example, suppose you want to use a Rexx Array object instead of the traditional



Chapter 1. Meet Open Object Rexx (ooRexx)

4

string-based  stem variables (such as text.1 or text.2). To create an array object of five elements, you
would send a NEW message to the array class as follows:

myarray=.array~new(5)

A new instance of the Array class is created and reference to it is stored in the variable MyArray. A
period and the class name identify the class, .Array. The period tells the interpreter to look in the Rexx
environment for a class named "ARRAY". The Myarray array object has five elements, but the array
itself is currently empty. Items can be added using methods defined by the array class.

myarray[1] = "Rick"
myarray[2] = "David"
myarray[3] = "Mark"

say myarray[1] myarray[2] myarray[3]

The Array class implements many more methods. See the ooRexx reference for details on what
additional methods are provided.

By adding object technology to its repertoire of traditional programming techniques, Rexx has evolved
into an object-oriented language, like Smalltalk. Rexx accommodates the programming techniques of
traditional Rexx while adding new ones. With ooRexx, you can use the new technology as much or as
little as you like, at whatever pace you like. You can mix classic and object techniques. You can ease
into the object world gradually, building on the Rexx skills and knowledge you already have.

1.4. The Object Advantage
If you are unsure about whether to employ Rexx's object-oriented features, here are some tips to help
you decide.

Object-oriented technology reinforces good programming practices, such as hiding your data from
code that does not use it (encapsulation and polymorphism), partitioning your program in small,
manageable units (classification and data abstraction), reusing code wherever possible and changing
it in one place (inheritance and functional decomposition).

Other advantages often associated with object technology are:

• Simplified design through modeling with objects

• Greater code reuse

• Rapid prototyping

• The higher quality of proven components

• Easier and reduced maintenance

• Cost-savings potential

• Increased adaptability and scalability



The Next Step

5

With ooRexx, you get the user-friendliness of Rexx in an object-oriented environment.

Object Rexx provides a Sockets API for Rexx. So you can script Rexx clients and servers, and run
them in the Internet.

Object Rexx also provides access to FTP commands by means of its RxFtp package, and the use of
mathematical functions by means of its RxMath utility package. The Sockets, FTP, and mathematical
functions packages are each supplied with separate, full documentation.

1.5. The Next Step
If you already know traditional Rexx and want to go straight to the basic concepts of object-oriented
programming, continue with Chapter 3, Into the Object World.

If you are unfamiliar with traditional Rexx, continue to read Chapter 2, A Quick Tour of Traditional
Rexx.



6



Chapter 2.

7

A Quick Tour of Traditional Rexx
Because this book is for Windows and Unix programmers, it is assumed that you are familiar with at
least one other language. This chapter gives an overview of the basic Rexx rules and shows you in
which respects Rexx is similar to, or different from, other languages you may already know.

2.1. What Is a Rexx Program?

A Rexx program is a text file, typically created using a text editor or a word processor that contains a
list of instructions for your computer. Rexx programs are interpreted, which means the program is, like
a batch file, processed line by line. Consequently, you do not have to compile and link Rexx programs.
To run a Rexx program, all you need is Windows or Unix/Linux, the ooRexx interpreter, and the ASCII
text file containing the program.

Rexx is similar to programming languages such as C, Pascal, or Basic. An important difference is
that Rexx variables have no data type and are not declared. Instead, Rexx determines from context
whether the variable is, for example, a string or a number. Moreover, a variable that was treated as a
number in one instruction can be treated as a string in the next. Rexx keeps track of the variables for
you. It allocates and deallocates memory as necessary.

Another important difference is that you can execute  Windows, Unix/Linux commands and other
applications from a Rexx program. This is similar to what you can do with a Windows Batch facility
program or a Unix shell script. However, in addition to executing the command, you can also receive a
return code from the command and use any displayed output in your Rexx program. For example, the
output displayed by a DIR command can be intercepted by a Rexx program and used in subsequent
processing.

Rexx can also direct commands to environments other than Windows. Some applications provide an
environment to which Rexx can direct subcommands of the application. Or they also provide functions
that can be called from a Rexx program. In these situations, Rexx acts as a scripting language for the 
application.

2.2. Running a Rexx Program

Rexx programs should have a file extension of .rex (the default searched for by the ooRexx
interpreter). Here is a typical Rexx program named greeting.rex. It prompts the user to type in a name
and then displays a personalized greeting:

Example 2.1. GREETING.REX

/* greeting.rex - a Rexx program to display a greeting.  */
say "Please enter your name."    /* Display a message    */
pull name                        /* Read response        */
say "Hello" name                 /* Display greeting     */
exit 0                   /* Exit with a return code of 0 */

SAY   is a Rexx instruction that displays a message (like PRINT in Basic or printf in C). The message
to be displayed follows the SAY keyword. In this case, the message is the literal string "Please enter



Chapter 2. A Quick Tour of Traditional Rexx

8

your name.". The data between the quotes is a constant and will appear exactly as typed. You can use
either single (') or double quote (") delimiters for literal strings.

The    PULL instruction reads a line of text from the standard input (the keyboard), and returns the text
in the variable specified with the instruction. In our example, the text is returned in the variable name.

The next SAY instruction provides a  glimpse of what can be done with Rexx strings. It displays the
word Hello followed by the name of the user, which is stored in variable name. Rexx substitutes the
value of name and displays the resulting string. You do not need a separate format  string as you do
with C or Basic.

The final instruction,    EXIT, ends the Rexx program. Control returns to the operation system
command prompt. EXIT can also return a value. In our example, 0 is returned. The EXIT instruction is
optional. Running off the end of the program is equivalent to coding "EXIT 0".

You can terminate a running Rexx program by pressing the Ctrl+Break key combination. Rexx stops
running the program and control returns to the command prompt.

Rexx programs are often run from the command line, although, on the Windows operating systems
there are several other options. These options are discussed several paragraphs later. The ooRexx
interpreter is invoked by the command, rexx. With no arguments, the command produces a simple
syntax reminder:

C:\Rexx>rexx

Syntax: REXX [-v] ProgramName [parameter_1....parameter_n]
or    : REXX [-e] ProgramString [parameter_1....parameter_n]

C:\Rexx>

To run the program greeting.rex, for example, use the command

rexx greeting.rex

or

rexx greeting

If not provided, an extension of ".rex" is assumed.

The -v option produces the version and copyright information. For example:

C:\Rexx>rexx -v
Open Object Rexx Version 4.0.0
Build date: Jul 16 2009
Addressing Mode: 64

Copyright (c) IBM Corporation 1995, 2004.



Running a Rexx Program

9

Copyright (c) RexxLA 2005-2009.
All Rights Reserved.
This program and the accompanying materials
are made available under the terms of the Common Public License v1.0
which accompanies this distribution.
http://www.oorexx.org/license.html
C:\Rexx>

The -e accepts a complete Rexx program in the form of a single string and executes it immediately.
Enclose the string in double quotes and separate lines of the program with semi-colons. Arguments
can follow the string:

C:\Rexx>rexx -e "use arg name; say 'Hello to you' name" Mark
Hello to you Mark

C:\Rexx>

C:\Rexx>rexx -e "parse arg a b; say a '*' b 'is' a*b" 12 3
12 * 3 is 36

C:\Rexx>rexx -e "parse arg a b; say a '*' b 'is' a*b" 22 -1
22 * -1 is -22

C:\Rexx>rexx -e "parse arg a b; say a '*' b 'is' a*b" 126 456
126 * 456 is 57456

C:\Rexx>

On Windows only there are these additional ways to run your Rexx programs:

• The installation program on Windows sets up a file association for the .rex file extension. This
association allows the ooRexx programs to be run from Windows Explorer by double-clicking on the
icon of the program file. In addition, the program can be run from a command prompt in a console
window by simply typing the file name. The .rex extension is not needed. For example, simply type
greeting to execute the greeting.rex program:

C:\>greeting
Please enter your name.
Mark
Hello MARK

C:\>

• A Rexx program can be run in silent mode by using rexxhide. This executes the program without
creating a console window. This is most useful when creating a program shortcut. For the shortcut
target, enter rexxhide.exe followed by the program name and the program arguments. Double-
clicking on the shortcut then runs the program without creating a console window. Note that silent
means there is no output from the Rexx program. When your program is run by rexxhide, either
by double clicking on its icon, or from within a console window, there is no output displayed.
Therefore rexxhide would not normally be used for programs like greeting.rex. This is what the
greeting.rex program would look like when executed through rexxhide:



Chapter 2. A Quick Tour of Traditional Rexx

10

C:\>rexxhide greeting.rex

C:\>

• As a compliment to rexxhide is the rexxpaws program. When a Rexx program is executed
through rexxpaws, at completion of the Rexx program, there will be a pause waiting for the user
to hit the enter key. For example, using the greeting.rex program, rexxpaws would produce the
following:

C:\>rexxpaws greeting.rex
Please enter your name.
Mark
Hello MARK

Press ENTER key to exit...

C:\>

rexxpaws is useful for running a Rexx program from a shortcut, where the program does produce
output. On Windows, when double-clicking on the program file icon, a console window opens, the
program is run, and then the console window immediately closes. rexxpaws prevents the console
window from closing until the user hits the enter key. This allows the user to see what output the
program produced.

2.3. Elements of Rexx
Rexx programs are made up of clauses.  Each clause is a complete Rexx instruction.

Rexx instructions include the obligatory program control verbs (IF, SELECT, DO, CALL, RETURN) as
well as verbs that are unique to Rexx (such as PARSE, GUARD, and EXPOSE). In all, there are about
30 instructions. Many Rexx programs use only a small subset of the instructions.

A wide variety of  built-in functions complements the instruction set. Many functions manipulate strings
(such as SUBSTR, WORDS, POS, and SUBWORD). Other functions perform stream I/Os (such as
CHARIN, CHAROUT, LINEIN, and LINEOUT). Still other functions perform data conversion (such as
X2B, X2C, D2X, and C2D). A quick glance through the functions section of the Open Object Rexx:
Reference gives you an idea of the scope of capabilities available to you.

The built-in functions are also available in Rexx implementations on other operating systems. In
addition to these system-independent functions, Rexx includes a set of functions for working with
Windows itself. These functions, known as the Rexx Utilities, let you work with resources managed by
Windows or Linux, such as the display, the desktop, and the file system.

Instructions and functions are the building blocks of traditional Rexx programs. To convert Rexx into
an object-oriented language, two more elements are needed: classes and methods. Classes and
methods are covered in later chapters. This chapter continues with traditional building blocks of Rexx.

2.4. Writing Your Program

You can create Rexx programs using any editor that can create simple ASCII files without hidden
format controls. Windows Notepad or Linux gedit are a couple widely available editors.



Testing Your Program

11

Rexx is a free-format programming language. You can indent lines and insert blank lines for readability
if you wish. But even free-format languages have some rules about how language elements are used.
Rexx's rules center around its basic language element: the clause.

Usually, there is one  clause on each line of the program, but you can put several and separate each
clause with a semicolon (;):

say "Hello"; say "Goodbye"  /* Two clauses on one line */

To continue a clause on a second line, put a comma (,) or hypen (-) at the end of the line:

say,             /* Continuation */
"It isn't so"

or

say -            /* Continuation */
"It isn't so"

If you need to continue a literal string, do it like this:

say,             /* Continuation of literal strings */
"This is a long string that we want to continue",
"on another line."

Rexx automatically adds a blank after continue. If you need to split a string, but do not want to have
a blank inserted when Rexx puts the string back together, use the Rexx concatenation operator (||):

say "I do not want Rexx to in"||,   /* Continuation with concatenation */
"sert a blank!"

2.5. Testing Your Program

When writing your program, you can test statements as you go along using the REXXTRY command
from the Windows command prompt. REXXTRY is a kind of Rexx mini-interpreter that checks Rexx
statements one at a time. If you run REXXTRY with no parameter, or with a question mark as a
parameter, REXXTRY also briefly describes itself.

From your command prompt type:



Chapter 2. A Quick Tour of Traditional Rexx

12

rexx rexxtry  /* on windows the case of the REXX is insignificant */

REXXTRY describes itself and asks you for a Rexx statement to test. Enter your statement;
REXXTRY then runs it and returns any information available, or displays an error message if a
problem is encountered. REXXTRY remembers any previous statements you have entered during the
session. To continue, just type the next line in your program and REXXTRY will check it for you.

Enter an equal sign (=) to repeat your previous statement.

When you are done, type:

exit

and press Enter to leave REXXTRY.

You can also enter a Rexx statement directly on the command line for immediate processing and exit:

REXX rexxtry call show

In this case, entering CALL SHOW displays the user variables provided by RexxTRY.

2.6. Variables, Constants, and Literal Strings

Comprehensive rules for variables, constants, and literal strings are contained in the Open Object
Rexx: Reference.

Rexx imposes few rules on variable names. A variable name can be up to 250 characters long, with
the following restrictions:

• The first character must be A-Z, a-z, !, ?, or _ .

• The rest of the characters may be A-Z, a-z, !, ?, or _, ., or 0-9.

• The  period (.) has a special meaning for Rexx variables. Do not use it in a variable name until you
understand the rules for forming compound symbols.

The variable name can be typed and queried in uppercase, mixed-case, or lowercase characters.
A variable name in uppercase characters, for example, can also be queried in lowercase or mixed-
case characters. Rexx translates lowercase letters in variables to uppercase before using them. Thus
the variables names "abc", "Abc", and "ABC" all refer to the single variable "ABC". If you reference a
variable name that has not yet been set, the name, in uppercase, is returned.

Literal strings in Rexx are delimited by quotation marks (either ' or "). Examples of literal strings are:

'Hello'
"Final result:"



Assignments

13

If you need to use quotation marks within a literal string, use quotation marks of the other type to
delimit the string. For example:

"Don't panic"
'He said, "Bother"'

There is another way to do this. Within a literal string, a pair of quotation marks of the same type that
starts the string is interpreted as a single character of that type. For example:

'Don''t panic'                 (same as "Don't panic"      )
"He said, ""Bother"""          (same as 'He said, "Bother"')

2.7. Assignments

Assignments in Rexx usually take this form:

name = expression

For name, specify any valid variable name. For expression, specify the information to be stored, such
as a number, a string, or some calculation. Here are some examples:

Example 2.2. Arithmetic

a=1+2
b=a*1.5
c="This is a string assignment. No memory allocation needed!"

The PARSE instruction  and its variants PULL and ARG also assign values to variables. PARSE
assigns data from various sources to one or more variables according to the rules of parsing. PARSE
PULL, for example, is often used to read data from the keyboard:

Example 2.3. PARSE PULL

/* Using PARSE PULL to read the keyboard                              */
say "Enter your first name and last name"   /* prompt user            */
parse pull response       /* read keyboard and put result in RESPONSE */
say response              /* possibly displays "John Smith"           */

Other operands of PARSE indicate the source of the data. PARSE ARG, for example, retrieves
command line arguments. PARSE VERSION retrieves the information about the version of the Rexx
interpreter being used.



Chapter 2. A Quick Tour of Traditional Rexx

14

The most powerful feature of PARSE, however, is its ability to break up data using a template. The
various pieces of data are assigned to variables that are part of the template. The following example
prompts the user for a date, and assigns the month, day, and year to different variables. (In a real
application, you would want to add instructions to verify the input.)

Example 2.4. PARSE PULL

/* PARSE example using a template */
say "Enter a date in the form MM/DD/YY"
parse pull month "/" day "/" year
say month
say day
say year

The template in this example contains two literal strings ("/"). The PARSE instruction uses these
literals to determine how to split the data.

The PULL and ARG instructions  are short forms of the PARSE instruction. See the Object Rexx:
Reference for more information on Rexx parsing.

2.8. Using Functions

Rexx functions can be used in any expression. In the following example, the built-in function WORD is
used to return the third blank-delimited word in a string:

Example 2.5. Rexx function use

/* Example of function use                                     */
myname="John Q. Public"   /* assign a literal string to MYNAME */
surname=word(myname,3)    /* assign WORD result to SURNAME     */
say surname               /* display Public                    */

Literal strings can be supplied as arguments to functions, so the previous program can be rewritten as
follows:

Example 2.6. Rexx function use

/* Example of function use                                            */
surname=word("John Q. Public",3) /* assign WORD result to SURNAME     */
say surname                      /* display Public                    */

Because an expression can be used with the SAY instruction, you can further reduce the program to:



Program Control

15

Example 2.7. Rexx expressions

/* Example of function use                                            */
say word("John Q. Public",3)

Functions can be nested.  Suppose you want to display only the first two letters of the third word,
Public. The LEFT function can return the first two letters, but you need to give it the third word. LEFT
expects the input string as its first argument and the number of characters to return as its second
argument:

Example 2.8. Rexx function use

/* Example of function use */

/* Here is how to do it without nesting */
thirdword=word("John Q. Public",3)
say left(thirdword,2)

/* And here is how to do it with nesting */
say left(word("John Q. Public",3),2)

2.9. Program Control
Rexx has instructions such as  DO, LOOP, IF, and SELECT to control your program. Here is a typical
Rexx IF instruction:

Example 2.9. IF instruction

if a>1 & b<0 then do

say "Whoops, A is greater than 1 while B is less than 0!"
say "I'm ending with a return code of 99."
exit 99
end

The Rexx relational operator & for a logical AND is different from the operator in C, which is &&. Other
relational operators differ as well, so you may want to review the appropriate section in the Open
Object Rexx: Reference.

Here is a list of some Rexx comparison operators and operations:

= True if the terms are equal (numerically, when padded, and so on)

\=, ¬= True if the terms are not equal (inverse of =)



Chapter 2. A Quick Tour of Traditional Rexx

16

> Greater than

< Less than

<> Greater than or less than (same as not equal)

>= Greater than or equal to

<= Less than or equal to

== True if terms are strictly equal (identical)

\==, ¬== True if the terms are NOT strictly equal (inverse of ==)

Note

Throughout the language, the NOT character, ¬, is synonymous with the backslash  (\). You can
use both characters. The backslash can appear in the \ (prefix not), \=, and \== operators.

A character string has the value false if it is 0, and true if it is 1. A logical operator can take at least two
values and return 0 or 1 as appropriate:

& AND - returns 1 if both terms are true.

| Inclusive OR - returns 1 if either term or both terms are true.

&& Exclusive OR - returns 1 if either term, but not both terms, is true.

Prefix \,¬ Logical NOT - negates; 1 becomes 0, and 0 becomes 1.

Note

On ASCII systems, Rexx recognizes the ASCII character encoding 124 as the logical OR
character. Depending on the code page or keyboard you are using for your particular country, the
logical OR character is shown as a solid vertical bar (|) or a split vertical bar (¦). The appearance
of the character on your screen might not match the character engraved on the key. If you
receive error 13, invalid character in program, on an instruction including a vertical bar,
make sure this character is ASCII character encoding 124.

Using the wrong relational or comparison operator is a common mistake when switching between C
and Rexx. The familiar C language braces { } are not used in Rexx for blocks of instructions. Instead,
Rexx uses DO/END pairs. The THEN keyword is always required.

Here is an IF instruction with an ELSE:

Example 2.10. IF and ELSE instructions

if a>1 & b<0 then do

    say "Whoops, A is greater than 1 while B is less than 0!"
    say "I'm ending with a return code of 99."
    exit 99
end



Program Control

17

else do
    say "A and B are okay."
    say "On with the rest of the program."
end  /* if */

You can omit the DO/END pairs if only one clause follows the THEN or ELSE keyword:

Example 2.11. IF and ELSE instructions

if words(myvar) > 5 then
    say "Variable MYVAR has more than five words."
else
    say "Variable MYVAR has fewer than six words."

Rexx also supports an ELSE IF construction:

Example 2.12. ELSE IF instruction

count=words(myvar)
if count > 5 then
    say "Variable MYVAR has more than five words."
else if count >3 then
    say "Variable MYVAR has more than three, but fewer than six words."
else
    say "Variable MYVAR has fewer than four words."

The SELECT instruction in Rexx is similar to the SELECT CASE statement in Basic and the switch
statement in C. SELECT executes a block of statements based on the value of an expression. Rexx's
SELECT differs from the equivalent statements in Basic and C in that the SELECT keyword is not
followed by an expression. Instead, expressions are placed in WHEN clauses:

Example 2.13. SELECT instruction

select
when name="Bob" then
    say "It's Bob!"
when name="Mary" then
    say "Hello, Mary."
otherwise
end /* select */

WHEN clauses are evaluated sequentially. When one of the expressions is true, the statement, or
block of statements, is executed. All the other blocks are skipped, even if their WHEN clauses would
have evaluated to true. Notice that statements like the break statement in C are not needed.

The OTHERWISE keyword is used without an instruction following it. Rexx does not require an
OTHERWISE clause. However, if none of the WHEN clauses evaluates to true and you omit
OTHERWISE, an error occurs. Therefore, always include an OTHERWISE.



Chapter 2. A Quick Tour of Traditional Rexx

18

As with the IF instruction, you can use DO/END pairs for several clauses within SELECT cases. You
do not need a DO/END pair if several clauses follow the OTHERWISE keyword:

Example 2.14. SELECT and OTHERWISE instructions

select
when name="Bob" then
    say "It's Bob"
when name="Mary" then do
    say "Hello Mary"
    marycount=marycount+1
    end
otherwise
    say "I'm sorry.  I don't know you."
    anonymous=anonymous+1
end /* select */

Many Basic implementations have several different instructions for loops. Rexx has knows the DO/
END and LOOP/END pair. All of the traditional looping variations are incorporated into the DO and
LOOP instructions, which can be used interchangeably for looping:

Example 2.15. DO and LOOP instructions

do i=1 to 10         /* Simple loop            */
   say i
end

do i=1 to 10 by 2    /* Increment count by two */
   say i
end

b=3; a=0             /* DO WHILE - the conditional expression  */
do while a<b         /* is evaluated before the instructions   */

   say a             /* in the loop are executed.  If the      */
   a=a+1             /* expression isn't true at the outset,   */
end                  /* instructions are not executed at all.  */

a=5                  /* DO UNTIL - like many other languages,  */
b=4                  /* a Rexx DO UNTIL block is executed at   */
do until a>b         /* least once.  The expression is         */
   say "Until loop"  /* evaluated at the end of the loop.      */
end

or, using LOOP

loop i=1 to 10       /* Simple loop            */
   say i
end

loop i=1 to 10 by 2  /* Increment count by two */
   say i
end

b=3; a=0             /* LOOP WHILE - the conditional expression*/
loop while a<b    /* is evaluated before the instructions   */
   say a             /* in the loop are executed.  If the      */
   a=a+1             /* expression isn't true at the outset,   */



Program Control

19

end                  /* instructions are not executed at all.  */

a=5                  /* LOOP UNTIL - like many other languages,*/
b=4                  /* a Rexx LOOP UNTIL block is executed at */
do until a>b         /* least once.  The expression is         */
   say "Until loop"  /* evaluated at the end of the loop.      */
end

Rexx also has a FOREVER keyword. Use the LEAVE, RETURN, or EXIT instructions to break out of
the loop:

Example 2.16. DO FOREVER instruction

                  /* Program to emulate your five-year-old child */
num=random(1,10)  /* To emulate a three-year-old, move this inside the loop! */
do forever
  say "What number from 1 to 10 am I thinking of?"
  pull guess
  if guess=num then do
     say "That's correct"
     leave
  end
  say "No, guess again..."
end

Rexx also includes an  ITERATE instruction, which skips the rest of the instructions in that iteration of
the loop:

Example 2.17. ITERATE instruction

loop i=1 to 100
   /* Iterate when the "special case" value is reached    */
   if i=5 then iterate

   /* Instructions used for all other cases would be here */

end

You can use loops in IF or SELECT instructions:

Example 2.18. ITERATE instruction

/* Say hello ten times if I is equal to 1 */
if i=1 then
   loop j=1 to 10
      say "Hello!"
   end



Chapter 2. A Quick Tour of Traditional Rexx

20

There is an equivalent to the Basic GOTO statement: the Rexx SIGNAL instruction. SIGNAL causes
control to branch to a label:

Example 2.19. SIGNAL instruction

Signal fred;  /* Transfer control to label FRED below */
  ....
  ....
Fred: say "Hi!"

As with GOTO, you need to be careful about how you use SIGNAL. In particular, do not use SIGNAL
to jump to the middle of a DO/END block or into a SELECT structure.

2.10. Subroutines and Procedures

In Rexx you can write routines that make all variables accessible to the called routine. You can also
write routines that hide the caller's variables.

The following shows an example of a routine in which all variables are accessible:

Example 2.20. ROUTINE instruction

/* Routine example                     */
i=10               /* Initialize I     */
call myroutine     /* Call routine     */
say i              /* Displays 22      */
exit               /* End main program */

myroutine:         /* Label            */
i=i+12             /* Increment I      */
return

The  CALL instruction calls routine MYROUTINE. A label (note the colon) marks the start of the
routine. A RETURN  instruction ends the routine. Notice that an EXIT instruction is required in this
case to end the main program. If EXIT is omitted, Rexx assumes that the following instructions are
part of your main program and will execute those instructions. The SAY instruction displays 22 instead
of 10 because the caller's variables are accessible to the routine.

You can return a result to the caller by placing an expression in the RETURN instruction, like this:

Example 2.21. RETURN instruction

/* Routine with result                 */
i=10               /* Initialize I     */
call myroutine     /* Call routine     */
say result         /* Displays 22      */
exit               /* End main program */



Subroutines and Procedures

21

myroutine:         /* Label            */
return i+12        /* Increment I      */

The returned result is available to the caller in the  special variable RESULT, as previously shown. If
your routine returns a result, you can call it as a function:

Example 2.22. RESULT special variable

/* Routine with result called as function  */
i=10               /* Initialize I         */
say myroutine()    /* Displays 22          */
exit               /* End main program     */

myroutine:         /* Label                */
return i+12        /* Increment I          */

You can pass arguments to this sort of routine, but all variables are available to the routine anyway.

You can also write routines that separate the caller's variables from the routine's variables. This
eliminates the risk of accidentally writing over a variable used by the caller or by some other
unprotected routine. To get protection, use the  PROCEDURE instruction, as follows:

Example 2.23. PROCEDURE instruction

/* Routine example using PROCEDURE instruction                             */
headcount=0
tailcount=0
/* Toss a coin 100 times, report results */
do i=1 to 100
   call cointoss                                     /* Flip the coin      */
   if result="HEADS" then headcount=headcount+1      /* Increment counters */
   else tailcount=tailcount+1
                                                     /* Report results     */
say "Toss is" result ||".  Heads=" headcount  "Tails=" tailcount
end /* do */
exit                                                 /* End main program   */

cointoss: procedure             /* Use PROCEDURE to protect caller         */
   i=random(1,2)                /* Pick a random number: 1 or 2            */
   if i=1 then return "HEADS"   /* Return English string                   */
return "TAILS"

In this example, the variable i is used in both the main program and the routine. When the
PROCEDURE instruction is placed after the routine label, the routine's variables become local
variables. They are isolated from all other variables in the program. Without the PROCEDURE
instruction, the program would loop indefinitely. On each iteration the value of i would be reset to
some value less than 100, which means the loop would never end. If a programming error causes your
procedure to loop indefinitely, use the Ctrl+C key combination or close the command window to end
the procedure.



Chapter 2. A Quick Tour of Traditional Rexx

22

To access variables outside the routine, add an EXPOSE operand to the PROCEDURE instruction.
List the desired variables after the  EXPOSE keyword:

Example 2.24. EXPOSE keyword

/* Routine example using PROCEDURE instruction with EXPOSE operand         */
headcount=0
tailcount=0
/* Toss a coin 100 times, report results                                   */
do i=1 to 100
   call cointoss                                     /* Flip the coin      */
   say "Toss is" result ||".  Heads=" headcount  "Tails=" tailcount
end /* do */
exit                                                 /* End main program   */

cointoss: procedure expose headcount tailcount /* Expose the counter variables */
   if random(1,2)=1 then do                    /* Pick a random number: 1 or 2 */
      headcount=headcount+1                    /* Bump counter...              */
      return "HEADS"                           /* ...and return English string */
   end
   else
      tailcount=tailcount+1
return "TAILS"

To pass arguments to a routine, separate the arguments with commas:

Example 2.25. Passing arguments

call myroutine arg1, "literal arg", arg3   /* Call as subroutine */
myrc=myroutine(arg1, "literal arg", arg3)  /* Call as function   */

In the routine, use the  USE ARG instruction to retrieve the argument.



Chapter 3.

23

Into the Object World
Open Object Rexx includes features typical of an object-oriented language—features like subclassing,
polymorphism, and data encapsulation. Object Rexx is new version extension of the traditional Rexx
language, which has been expanded to include classes, objects, and methods. These extensions
do not replace traditional Rexx functions, or preclude the development or running of traditional
Rexx programs. You can program as before, program with objects, or mix objects with regular Rexx
instructions. The Rexx programming concepts that support the object-oriented features are described
in this chapter.

3.1. What Is Object-Oriented Programming?

Object-oriented programming is a way to write computer programs by focusing not on the instructions
and operations a program uses to manipulate data, but on the data itself. First, the program simulates,
or models, objects in the physical world as closely as possible. Then the objects interact with each
other to produce the desired result.

Real-world objects, such as a company's employees, money in a bank account, or a report, are stored
as data so the computer can act upon it. For example, when you print a report, print is the action and
report is the object acted upon. Often several actions apply; you could also send or erase the report.

3.2. Modularizing Data

In conventional, structured programming, actions like print are often isolated from the data by placing
them in subroutines or modules. A module typically contains an operation for implementing one simple
action. You might have a PRINT module, a SEND module, an ERASE module. These actions are
independent of the data they operate on.

But with object-oriented programming, it is the data that is modularized. And each data module
includes its own operations for performing actions directly related to its data.



Chapter 3. Into the Object World

24

Figure 3.1. Modular Data—a Report Object

In the case of report, the report object would contain its own built-in PRINT, SEND, ERASE, and FILE
operations.

Object-oriented programming lets you model real-world objects—even very complex ones—precisely
and elegantly. As a result, object manipulation becomes easier and computer instructions become
simpler and can be modified later with minimal effort.

Object-oriented programming hides any information that is not important for acting on an object,
thereby concealing the object's complexities. Complex tasks can then be initiated simply, at a very
high level.

3.3. Modeling Objects

In object-oriented programming, objects are modeled to real-world objects. A real-world object has
actions related to it and characteristics of its own.

Take a ball, for example. A ball can be acted on—rolled, tossed, thrown, bounced, caught. But it also
has its own physical characteristics—size, shape, composition, weight, color, speed, position. An
accurate data model of a real ball would define not only the physical characteristics but all related
actions and characteristics in one package:

Figure 3.2. A Ball Object

In object-oriented programming, objects are the basic building blocks—the fundamental units of data.

There are many kinds of objects; for example, character strings, collections, and input and output
streams. An object—such as a character string—always consists of two parts: the possible actions



How Objects Interact

25

or operations related to it, and its characteristics or variables. A variable has a variable name, and an
associated data value that can change over time. These actions and characteristics are so closely
associated that they cannot be separated:

Figure 3.3. Ball Object with Variable Names and Values

To access an object's data, you must always specify an action. For example, suppose the object is the
number 5. Its actions might include addition, subtraction, multiplication, and division. Each of these
actions is an interface to the object's data. The data is said to be  encapsulated because the only way
to access it is through one of these surrounding actions. The encapsulated internal characteristics
of an object are its variables. Variables are associated with an object and exist for the lifetime of that
object:

Figure 3.4. Encapsulated 5 Object

3.3.1. How Objects Interact
The actions defined by an object are its only interface to other objects. Actions form a kind of "wall"
that encapsulates the object, and shields its internal information from outside objects. This shielding
is called information hiding. Information hiding protects an object's data from corruption by outside
objects, and also protects outside objects from relying on another object's private data, which can
change without warning.

One object can act upon another (or cause it to act) only by calling that object's actions. Actions are
invoked by sending messages. messages. Objects respond to these messages by invoking  methods
(Section 3.3.2, “Methods”) that perform an action, return data, or both. A message to an object must
specify:

• A receiving object

• The "message send" symbol ~, which is called the twiddle 



Chapter 3. Into the Object World

26

• The name of the action and, optionally in parentheses, any parameters required

So the message format looks like this:

object~action(parameters)

Assume that the object is the string !iH. Sending it a message to use its REVERSE action:

"!iH"~reverse

returns the string object Hi!.

3.3.2. Methods

Sending a message to an object results in performing some action; that is, it results in running some
underlying code. The action-generating code is called a method. When you send a message to
an object, you specify its method name in the message. Method names are character strings like
REVERSE. In the preceding example, sending the reverse message to the !iH object causes it to
run the REVERSE method. Most objects are capable of more than one action, and so have a number
of available methods.

The classes Rexx provides include their own predefined methods. The Message class, for example,
has the COMPLETED, INIT, NOTIFY, RESULT, SEND, and START methods. When you create your
own classes, you can write new methods for them in Rexx code. Much of the object programming in
Rexx is writing the code for the methods you create.

3.3.3. Polymorphism

Rexx lets you send the same message to objects that are different:

"!iH"~reverse   /* Reverses the characters "!iH" to form "Hi!"  */
pen~reverse     /* Reverses the direction of a plotter pen      */
ball~reverse    /* Reverses the direction of a moving ball      */

As long as each object has its own REVERSE method, REVERSE runs even if the programming
implementation is different for each object. This ability to hide different functions behind a common
interface is called polymorphism. As a result of information hiding, each object in the previous example
knows only its own version of REVERSE. And even though the objects are different, each reverses
itself as dictated by its own code.

Although the !iH object's REVERSE code is different from the plotter pen's, the method name can
be the same because Rexx keeps track of the methods each object owns. The ability to reuse the
same method name so that one message can initiate more than one function is another feature
of polymorphism. You do not need to have several message names like REVERSE_STRING,
REVERSE_PEN, REVERSE_BALL. This keeps method-naming schemes simple and makes complex
programs easy to follow and modify.



Classes and Instances

27

The ability to hide the various implementations of a method while leaving the interface the same
illustrates polymorphism at its lowest level. On a higher level, polymorphism permits extensive code
reuse.

Polymorpism involves a form of contract between two objects. One object will send a message
to another object expecting a particular result. Different types of objects can implement different
versions of this message as long as it fulfills the expectations of the the invoking object. For example,
the LOOP instruction has a form called OVER. Loop OVER will iterate over a number of elements
provided by an object. For example,

Example 3.1. LOOP OVER

myarray = .array~of("Rick", "David", "Mark")
loop name over myarray
   say name
end

Will display the strings "Rick", "David", and "Mark", in that sequence. The LOOP OVER instruction
will work with Arrays, Lists, stem variables, streams, etc. The LOOP instruction itself does not know
anything about Arrays or Lists or stems or streams. The LOOP instruction specifies a contract. LOOP
will send the target object the message MAKEARRAY and expects the target object to return an
Array object that is used for the LOOP iteration. Any object can participate in LOOP iteration by
implementing this contract. Objects that do implement the MAKEARRAY contract are polymorphic with
the LOOP instruction.

3.3.4. Classes and Instances

In Rexx, objects are organized into classes. Classes are like templates; they define the methods and
variables that a group of similar objects have in common and store them in one place.

If you write a program to manipulate some screen icons, for example, you might create an Icon class.
All Icon objects will share the actions and characteristics defined by the class:

Figure 3.5. A Simple Class

All the icon objects will use common methods like DRAW or ERASE. They might will common
variables like position, color, or size. What makes each icon object different from one another is the
data assigned to its variables. For the Windows System icon, it might be position="20,20" while
for the Shredder it is "20,30" and for Information it is "20,40"



Chapter 3. Into the Object World

28

Figure 3.6. Icon Class

Objects that belong to a class are called  instances of that class. As instances of the Icon class, the
Windows System icon, Shredder icon, and Information icon acquire the methods and variables  of
the class. Instances behave as if they each had their own methods and variables of the same name.
All instances, however, have their own unique properties—the data associated with the variables.
Everything else can be stored at the class level.

Figure 3.7. Instances of the Icon Class

If you must update or change a particular method, you only have to change it at one place, at the class
level. This single update is then acquired by every new instance that uses the method.

A class that can create instances of an object is called an object class. The Icon class is an object
class you can use to create other objects with similar properties, such as an application icon or a
drives icon.

An object class is like a factory for producing instances of the objects.

3.3.5. Data Abstraction

The ability to create new, high-level data types and organize them into a meaningful class structure
is called data abstraction. Data abstraction is at the core of object-oriented programming. Once



Subclasses, Superclasses, and Inheritance

29

you model objects with real-world properties from the basic data types, you can continue creating,
assembling, and combining them into increasingly complex objects. Then you can use these objects
as if they were part of the original programming language.

3.3.6. Subclasses, Superclasses, and Inheritance

When you write your first object-oriented program, you do not have to begin your real-world modeling
from scratch. Rexx provides predefined classes and methods. From there you can create additional
classes of your own, according to your needs.

Rexx classes are hierarchical. The original class is called a base class or a superclass. The derived
class is called a subclass. Subclasses inherit methods and data from one or more superclasses. A
subclass can introduce new methods and data, and can override methods from the superclass.

Figure 3.8. Superclass and Subclasses

You can add a class to an existing superclass. For example, you might add the Icon class to the
Screen-Object superclass:

Figure 3.9. The Screen-Object Superclass

In this way, the subclass inherits additional methods from the superclass. A class can have more
than one superclass, for example, subclass Bitmap might have the superclasses Screen-Object and
Art-Object.  Acquiring methods and variables from more than one superclass is known as multiple
inheritance:

Figure 3.10. Multiple Inheritance



30



Chapter 4.

31

The Basics of Classes
Similar objects in Rexx are grouped into classes, forming a hierarchy. Rexx gives you a basic class
hierarchy to start with. All of the classes in the hierarchy are described in detail in the Open Object
Rexx: Reference. The following list shows the classes Rexx provides (there may be others in the
system). The classes indented are subclasses:

Object
    Alarm
    Buffer
    Class
    Collection classes
        MapCollection
            Directory
                Properties
            Relation
            Stem
            Table
            IdentityTable
        OrderedCollection
            Array
            List
            Queue
            CircularQueue
        SetCollection
            Bag
            Set
    Comparable
    Comparator
        CaselessColumnComparator
        CaselessComparator
        CaselessDescendingComparator
        ColumnComparator
        DescendingComparator
        InvertingComparator
        NumericComparator
    DateTime
    File
    InputOutputStream
        Stream
    InputStream
    Message
    Method
    Monitor
    MutableBuffer
    OutputStream
    Orderable
    Package
    Pointer
    RegularExpression
    RexxContext
    RexxQueue
    Routine
    Stream
    String
    Supplier
        StreamSupplier
    TimeSpan
    WeakReference



Chapter 4. The Basics of Classes

32

4.1. Rexx Classes for Programming
The classes Rexx supplies provide the starting point for object-oriented programming. Some key
classes that you are likely to work with are described in the following sections.

4.1.1. The Alarm Class

The Alarm class is used to create objects with timing and notification capability. An alarm object is able
to send a message to an object at any time in the future, and until then, you can cancel the alarm.

4.1.2. The Buffer Class

A Buffer instance is a Rexx interpreter managed block of storage. This class is designed primarily
for writing methods and functions in native code and can only be created using the native code
application programming interfaces.

4.1.3. The CaselessColumnComparator Class

The CaselessColumnComparator class performs caseless orderings of specific substrings of String
objects.

4.1.4. The CaselessComparator Class

The CaselessComparator class performs caseless orderings of String objects.

4.1.5. The CaselessDescendingComparator Class

The CaselessDescendingComparator class performs caseless string sort orderings in descending
order. This is the inverse of a CaselessComparator sort order.

4.1.6. The Collection Classes

The collection classes are used to manipulate collections of objects. A collection is an object that
contains a number of items, which can be any objects. These manipulations might include counting
objects, organizing them, or assigning them a supplier (for example, to indicate that a specific
assortment of baked goods is supplied by the Pie-by-Night Bakery).

Rexx includes classes, for example, for arrays, lists, queues, tables, and directories. Each item stored
in a Rexx collection has an associated index that you can use to retrieve the item from the collection
with the AT or [] (left and right bracket) methods, and each collection defines its own acceptable index
types:

Array

A sequenced collection of objects ordered by whole-number indexes.

Bag



The Collection Classes

33

A collection where the index is equal to the value. Bag indexes can be any object (as with the
Table class) and each index can appear more than once.

CircularQueue

The CircularQueue class allows for storing objects in a circular queue of a predefined size.
Once the end of the queue has been reached, new item objects are inserted from the beginning,
replacing earlier entries. Any object can be placed in the queue and the same object can occupy
more than one position in the queue.

Directory

A collection of character string indexes. Indexes are compared using the string == comparison
method to test for strict equality.

IdentityTable

An identity table is a collection with indexes that can be any object. In an identity table, each item
is associated with a single index, and there can be only one item for each index. Index and item
matches in an identity table are made using an object identity comparison. That is, an index will
only match if the same instance is used in the collection.

List

A sequenced collection that lets you add new items at any position in the sequence. A list
generates and returns an index value for each item placed in the list. The returned index remains
valid until the item is removed from the list.

Properties

A properties object is a collection with unique indexes that are character strings representing
names and items that are also restricted to character string values. Properties objects are useful
for processing bundles of application option values.

Queue

A sequenced collection of items ordered as a queue. You can remove items from the head of
the queue and add items at either its tail or its head. Queues index the items with whole-number
indexes, in the order in which the items would be removed. The current head of the queue has
index 1, the item after the head item has index 2, up to the number of items in the queue.

Relation

A collection of indexes that can be any object (as with the Table class). A relation can contain
duplicate indexes.

Set

A collection where the indexes are equal to the values. Set indexes can be any object (as with the
Table class) and each index is unique.

Stem

A stem object is a collection with unique indexes that are character strings.



Chapter 4. The Basics of Classes

34

Table

A collection of indexes that can be any object. For example, string objects, array objects, alarm
objects, or any user-created object can be a table index. The Table class determines an index
match by using the == comparison method to test for strict equality. A table contains no duplicate
indexes.

4.1.7. The ColumnComparator Class

The ColumnComparator class performs orderings based on specific substrings of String objects.

4.1.8. The Comparable Class

Any object that inherits the Comparable mixin class and implements a compareTo() method can be
sorted. The DateTime Class and TimeSpan Class are examples of built-in Rexx classes that can be
sorted. Any user created class may also implement a compareTo() method to enable sorting.

4.1.9. The Comparator Class

The Comparator class is the base class for implementing Comparator objects that can be used with
the Array sortWith() or stableSortWith() method. The compare() method implements some form of
comparison that determines the relative ordering of two objects. Many Comparator implementations
are specific to particular object types.

4.1.10. The DateTime Class

A DateTime object represents a point in between 1 January 0001 at 00:00.000000 and 31 December
9999 at 23:59:59.999999. A DateTime object has methods to allow formatting a date or time in various
formats, as well as allowing arithmetic operations between dates.

4.1.11. The DescendingComparator Class

The DescendingComparator class performs sort orderings in descending order. This is the inverse of a
Comparator sort order.

4.1.12. The File Class

The File class provides services which are common to all the filesystems supported by ooRexx. A File
object represents a path to a file or directory. The path can be relative or absolute.

4.1.13. The InputOutputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will
throw a syntax error when invoked.



The InputStream Class

35

4.1.14. The InputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will
throw a syntax error when invoked.

4.1.15. The InvertingComparator Class

The InvertingComparator class inverts the comparison results of another Comparator object to reverse
the resulting sort order.

4.1.16. The Message Class

Message objects allow you to run concurrently methods on other threads or to invoke dynamically
calculated messages. Methods of for this class are used, for example, to start a message on another
thread, to notify the sender object when an error occurs or when message processing is complete, or
to return the results of that processing to the sender or to some other object.

4.1.17. The Method Class

The Method class creates method objects from Rexx source code.

4.1.18. The Monitor Class

The Monitor class provides a way to forward messages to a specified destination. The Monitor creates
a proxy that can route dynamically route messages to different destinations. Monitor methods change
or restore a destination object.

4.1.19. The MutableBuffer Class

The MutableBuffer class is a buffer on which certain string operations such as concatenation can
be performed very efficiently. Unlike String objects, MutableBuffers can be altered without requiring
a new object allocation. A MutableBuffer object can provide better performance for algorithms that
involve frequent concatenations to build up longer string objects because it creates fewer intermediate
objects.

4.1.20. The OutputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will
throw a syntax error when invoked.

4.1.21. The NumericComparator Class

The NumericComparator class compares string using numeric comparison rules to determine sort
order.



Chapter 4. The Basics of Classes

36

4.1.22. The Orderable Class

The Orderable class can be inherited by classes which wish to provide each of the comparison
operator methods without needing to implement each of the individual methods. The inheriting class
need only implement the Comparable compareTo() method. This class is defined as a mixin class.

4.1.23. The Package Class

The Package class contains the source code for a package of Rexx code. A package instance holds
all of the routines, classes, and methods created from a source code unit and also manages external
dependencies referenced by ::REQUIRES directives. The files loaded by ::REQUIRES are also
contained in Package class instances.

4.1.24. The Pointer Class

A Pointer instance is a wrapper around a native pointer value. This class is designed primarily
for writing methods and functions in native code and can only be created using the native code
application programming interfaces. The Pointer class new method will raise an error if invoked.

4.1.25. The RegularExpression Class

This class provides support for regular expressions. A regular expression is a pattern you can use to
match strings.

4.1.26. The RexxContext Class

The RexxContext class gives access to context information about the currently executing Rexx code.
Instances of the RexxContext class can only be obtained via the .CONTEXT environment symbol.
They cannot be directly created by the user.

4.1.27. The RexxQueue Class

The RexxQueue class provides object-style access to Rexx external data queues.

4.1.28. The Routine Class

The Routine class creates routine objects from Rexx source code.

4.1.29. The StackFrame Class

The StackFrame class provides debugging information about a Rexx activity's execution chain.

4.1.30. The Stem Class



The Stream Class

37

A stem variable is a symbol that must start with a letter and end with a period, like "FRED." or "A.".
The value of a stem variable is a Stem object. A stem object is a collection of unique character string
indexes. Stem objects are automatically created when a Rexx stem variable or Rexx compound
variable is used. In addition to the items assigned to the collection indexes, a stem object also has a
default value that is used for all uninitialized indexes of the collection.

4.1.31. The Stream Class

Input and output streams let Rexx communicate with external objects, such as people, files, queues,
serial interfaces, displays, and networks. In programming there are many stream actions that can
be coded as methods for manipulating the various stream objects. These methods and objects are
organized in the Stream class.

The methods are used to open streams for reading or writing, close streams at the end of an
operation, move the line-read or line-write position within a file stream, or get information about a
stream. Methods are also provided to get character strings from a stream or send them to a stream,
count characters in a stream, flush buffered data to a stream, query path specifications, time stamps,
size, and other information from a stream, or do any other I/O stream manipulation (see Chapter 7,
Input and Output for examples).

4.1.32. The StreamSupplier Class

A subclass of the Supplier class that will provided stream lines using supplier semantics. This allows
the programmer to iterate over the remaining lines in a stream. A StreamSupplier object provides
a snapshot of the stream at the point in time it is created, including the current line read position. In
general, the iteration is not effected by later changes to the read and write positioning of the stream.
However, forces external to the iteration may change the content of the remaining lines as the itertion
progresses.

4.1.33. The String Class

Strings are data values that can have any length and contain any characters. They are subject to
logical operations like AND, OR, exclusive OR, and logical NOT. Strings can be concatenated,
copied, reversed, joined, and split. When strings are numeric, there is the need to perform arithmetic
operations on them or find their absolute value or convert them from binary to hexadecimal, and vice
versa. All this and more can be accomplished using the String class of objects.

4.1.34. The Supplier Class

All collections have suppliers The Supplier class is used to enumerate items that a collection
contained when the supplier was created. The supplier gives access to each index/value pair stored in
the collection as a sequence.

4.1.35. The TimeSpan Class

A TimeSpan object represents a point in between 1 January 0001 at 00:00.000000 and 31 December
9999 at 23:59:59.999999. A TimeSpan object has methods to allow formatting a date or time in
various formats, as well as allowing arithmetic operations between dates.



Chapter 4. The Basics of Classes

38

4.1.36. The WeakReference Class

A WeakReference instance maintains a non-pinning reference to another object. A non-pinning
reference does not prevent an object from getting garbage collected or having its uninit method run
when there are no longer normal references maintained to the object. Once the referenced object is
eligible for garbage collection, the reference inside the WeakReference instance will be cleared and
the VALUE method will return .nil on all subsequent calls. WeakReferences are useful for maintaining
caches of objects without preventing the objects from being reclaimed by the garbage collector when
needed.

4.2. Rexx Classes for Organizing Objects
Rexx provides several key classes that form the basis for building class hierarchies.

4.2.1. The Object Class
Because the root class in the hierarchy, is the Object class, everything below it is an object. To interact
with each other, objects require their own actions, called methods. These methods, which encode
actions that are needed by all objects, belong to the Object class.

Every other class in the hierarchy inherits the methods of the root class. Inheritance is the handing
down of methods from a "parent" class—called a superclass—to all of its "descendent" classes—
called subclasses. Finally, instances acquire methods from their own classes. Any method created for
the Object class is automatically made available to every other class in the hierarchy.

4.2.2. The Class Class
The Class class is used for generating new classes. If a class is like a factory for producing instances,
Class is like a factory for producing factories. Class is the parent of every new class in the hierarchy,
and these all inherit Class-like characteristics. Class-like characteristics are methods and related
variables, which reside in Class, to be used by all classes.

A class that can be used to create another class is called a  metaclass (Section 4.6.4, “Metaclasses”).
The Class class is unique among Rexx classes in that it is the only metaclass that Rexx provides. As
such, the Class's methods not only make new classes, they make methods for use by the new class
and its instances. They also make methods that only the new class itself can use, but not its instances.
These are called class methods. They give a new class some power that is denied to its instances.

Because each instance of Class is another class, that class inherits the Class's instance methods as
class methods. Thus if Class generates a Pizza factory instance, the factory-running actions (Class's
instance methods) become the class methods of the Pizza factory. Factory operations are class
methods, and any new methods created to manipulate pizzas would be instance methods:



Rexx Classes: The Big Picture

39

Figure 4.1. How Subclasses Inherit Instance Methods from the Class Class

As a programmer, you typically create classes by using directives, rather than the methods of the
Class class. In particular, you'll use the ::CLASS directive, described later in this section. The ::CLASS
directive is a kind of Rexx clause that declares class definitions in a simple, static form in your
programs.

4.3. Rexx Classes: The Big Picture

The following are the supplied Rexx classes.

4.4. Creating Your Own Classes Using Directives



Chapter 4. The Basics of Classes

40

By analyzing your problem in terms of objects, you can determine what classes need to be created.
You can create a class using messages or directives. Directives are a new kind of Rexx clause, and
they are preferred over messages because the code is easier to read and understand, especially in
large programs. They also provide an easy way for you to your class definitions with others using the
PUBLIC option.

4.4.1. What Are Directives?

A Rexx program is made up of one or more executable units. Directives separate these units, which
themselves are Rexx programs. Rexx processes all directives first to set up any classes, methods,
or routines needed by the program. Then it runs any code that exists before the first directive. The
first directive in a program marks the end of the executable part of the program. A directive is a kind
of clause that begins with a double-colon (::) and is non-executable (a directive cannot appear in the
expression of an INTERPRET instruction, for example).

4.4.2. The Directives Rexx Provides

The following is a short summary of all the Rexx directives. See the Open Object Rexx: Reference for
more details on, or examples of, any of these Rexx directives.

4.4.2.1. The ::CLASS Directive

You use the ::CLASS directive to create a class. Programs can then use the new class by specifying it
as a Rexx environment symbol (the class name preceded by a period) in the program. For example, in
Section 4.4.4, “A Sample Program Using Directives”, the Savings class is created using the ::CLASS
directive. A program can then use the new class by specifying it as an environment symbol, ".savings".

The new class that you create acquires any methods defined by subsequent ::METHOD directives
within the program, until either another ::CLASS directive or the end of the program is reached.

You can use the ::CLASS directive's SUBCLASS option to make the new class the subclass of
another. In Section 4.4.4, “A Sample Program Using Directives”, the Savings class is made a subclass
of the Account class. A subclass inherits instance and class methods from its specified superclass; in
the sample, Savings inherits from Account.

Additional ::CLASS directive options are available for:

• Inheriting instance methods from a specified metaclass as class methods of the new class (the
METACLASS option). For more information on metaclasses, see Section 4.6.4, “Metaclasses”.

• Making the new class available to programs outside its containing Rexx program (the PUBLIC
option). The outside program must refer to the new class by using a ::REQUIRES directive.

• Subclassing the new class to a mixin class in order to inherit its instance and class methods (the
MIXINCLASS option).

• Adding the instance and class methods of a mixin class to the new class, without subclassing it (the
INHERIT option).

When you create a new class, it is always a subclass of an existing class. If you do not specify the
SUBCLASS or MIXINCLASS option on the ::CLASS directive, the superclass for the new class is the
Object class.



The Directives Rexx Provides

41

Your class definition can be in a file of its own, with no executable code preceding it. For example,
when you define classes and methods to be shared by several programs, you put the executable code
in another file and refer to the class file using a ::REQUIRES directive.

Rexx processes ::CLASS directives in the order in which they appear, unless there is a dependency
on some later directive's processing. You cannot create two classes that have the same class name
in one program. If several programs contain classes with the same name, the last ::CLASS directive
processed is used.

4.4.2.2. The ::METHOD Directive

The ::CLASS directive is usually followed by a ::METHOD directive, which is used to create a method
for that class and define the method's attributes. The next directive in the program, or the end of the
program, ends the method.

Some classes you define have an INIT method. INIT is called whenever a NEW message is sent to a
class. The INIT method must contain whatever code is needed to initialize the object.

The ::METHOD directive can be used for:

• Creating a class method for the most-recent ::CLASS directive (the CLASS option).

• Creating a private method; that is, a method that works like a subroutine and can only be activated
by the objects of the same type it belongs to—otherwise the method is public by default, and any
sender can activate it.

• Creating a method that can be called while other methods are active on the same object, as
described in Section 5.7.2.1, “Activating Methods” (the UNGUARDED option).

4.4.2.3. The ::ATTRIBUTE Directive

A ::CLASS directive can also be followed by ::ATTRIBUTE directives, which are used to create
methods that directly access internal attributes of an object. For example, the Account class could
define

::attribute balance

Which would allow the account balance to be set or retrieved.

  anAccount~balance = 10000     -- set a new account balance
  say anAccount~balance         -- display the current account balance

The access methods can created as read-only, or given private scope.

4.4.2.4. The ::ROUTINE Directive

You use the ::ROUTINE directive to create a named routine within a program. The ::ROUTINE
directive starts the named routine and another directive (or the end of the program) ends the routine.

The ::ROUTINE directive is useful organizing functions that are not specific to a particular class type.



Chapter 4. The Basics of Classes

42

The ::ROUTINE directive includes a PUBLIC option for making the routine available to programs
outside its containing Rexx program. The outside program must reference the routine by using
a ::REQUIRES directive.

4.4.2.5. The ::REQUIRES Directive

You use the ::REQUIRES directive when a program needs access to the classes and objects of
another program. This directive has the following form:

::REQUIRES program_name

::REQUIRES directives are processed before other directives and the order of the ::REQUIRES
directives determines the search order for the classes and routines defined in the named programs.

Local routine or class definitions within a program override routines or classes of imported
through ::REQUIRES directives.

4.4.3. How Directives Are Processed

You place a directive (and its method code) after the program code. When you run a program
containing directives, Rexx:

1. Processes the directives first, to set up the program's classes, methods, and routines.

2. Runs any program code preceding the first directive. This code can use any classes, methods,
and routines set up by the directives.

Once Rexx has processed the code preceding the directive, any public classes and objects the
program defines are available to programs having the appropriate ::REQUIRES directive.

4.4.4. A Sample Program Using Directives

Here is a program that uses directives to create new classes and methods:

Example 4.1. Using directives

asav = .savings~new              /* executable code begins */
say asav~type                    /* executable code        */
asav~name= "John Smith"          /* executable code ends   */

::class Account                  /* directives begin ...   */

  ::method type
    return "an account"

  ::attribute name



Another Sample Program

43

::class Savings subclass Account

  ::method type
    return "a savings account"   /* ... directives end     */

The preceding program uses the ::CLASS directive to create two classes, the Account class and its
Savings  subclass. In the ::class Account expression, the ::CLASS directive precedes the name
of the new class, Account.

The example program also uses the ::METHOD directive to create a TYPE method and ::ATTRIBUTE
to create NAME and NAME= methods for Account. In the ::method type instruction, the ::METHOD
directive precedes the method name, and is immediately followed by the code for the method.
Methods for any new class follow its ::CLASS directive in the program, and precede the next ::CLASS
directive.

In the ::attribute name directive, we're creating a pair of methods. The NAME method returns the
current value of the NAME object variable. The NAME= method can assign a new value to the NAME
object variable.

You do not have to associate object variables with a specific object. Rexx keeps track of object
variables for you. Whenever you send a message to savings account Asav, which points to the Name
object, Rexx knows what internal object value to use. If you assign another value to Asav (such as
"Mary Smith"), Rexx recovers the object that was associated with Asav ("John Smith") as part of its
normal garbage-collection operations.

In the Savings subclass, a second TYPE method is created that supersedes the TYPE method
Savings would otherwise have inherited from Account. Note that the directives appear after the
program code.

4.4.5. Another Sample Program

A directive is nonexecutable code that begins with a double colon (::) and follows the program code.
The ::CLASS directive creates a class; in this example, the Dinosaur class. The sample provides
two methods for the Dinosaur class, INIT and DIET. These are added to the Dinosaur class using
the ::METHOD  directives. After the line containing the ::METHOD directive, the code for the method is
specified. Methods are ended either by the start of the next directive or by the end of the program.

Because directives must follow the executable code in your program, you put that code first. In this
case, the executable code creates a new dinosaur, Dino, that is an instance of the Dinosaur class.
Rexx then runs the INIT method. Rexx runs any INIT method automatically whenever the NEW
message is received. Here the INIT method is used to identify the type of dinosaur. Then the program
runs the DIET method to determine whether the dinosaur eats meat or vegetables. Rexx saves the
information returned by INIT and DIET as variables in the Dino object.

In the example, the Dinosaur class and its two methods are defined following the executable program
code:

Example 4.2. Defining methods

dino=.dinosaur~new         /* Create a new dinosaur instance and
                                            /* initialize variables */



Chapter 4. The Basics of Classes

44

dino~diet                  /* Run the DIET method          */
exit

::class Dinosaur           /* Create the Dinosaur class  */

  ::method init            /* Create the INIT method     */
    expose type
    say "Enter a type of dinosaur."
    pull type
    return

  ::method diet            /* Create the DIET method     */
    expose type
    select
    when type="T-REX" then string="Meat-eater"
    when type="TYRANNOSAUR" then string="Meat-eater"
    when type="TYRANNOSAURUS REX" then string="Meat-eater"
    when type="DILOPHOSAUR" then string="Meat-eater"
    when type="VELICORAPTOR" then string="Meat-eater"
    when type="RAPTOR" then string="Meat-eater"
    when type="ALLOSAUR" then string="Meat-eater"
    when type="BRONTOSAUR" then string="Plant-eater"
    when type="BRACHIOSAUR" then string="Plant-eater"
    when type="STEGOSAUR" then string="Plant-eater"
    otherwise string="Type of dinosaur or diet unknown"
    end
    say string
    return 0

4.5. Defining an Instance
You use the NEW method to define an instance of the new class, and then call methods that the
instance inherited from its superclass. To define an instance of the Savings class named "John Smith,"
and send John Smith the TYPE and NAME= messages to call the related methods, you enter:

newaccount = savings~new
say newaccount~type
newaccount~name = "John Smith"

4.6. Types of Classes
There are four kinds of classes:

• Object classes

• Mixin classes

• Abstract classes

• Metaclasses

The following sections explain these.



Object Classes

45

4.6.1. Object Classes

An object class is a factory for producing objects. An object class creates objects (instances) and
provides methods that these objects can use. An object acquires the instance methods of the class to
which it belongs at the time of its creation. If a class gains additional methods, objects created before
the definition of these methods do not acquire the new or changed methods.

The instance variables within an object are created on demand whenever a method EXPOSEs an
object variable. The class creates the object instance, defines the methods the object has, and the
object instance completes the job of constructing the object.

The String class and the Array Class are examples of object classes.

4.6.2. Mixin Classes

Classes can inherit from more than the single superclass from which they were created. This is called
multiple inheritance. Classes designed to add a set of instance and class methods to other classes are
called mixin classes, or simply mixins.

You can add mixin methods to an existing class by sending an INHERIT message or using the
INHERIT option on the ::CLASS directive. In either case, the class to be inherited must be a mixin.
During both class creation and multiple inheritance, subclasses inherit both class and instance
methods from their superclasses.

Mixins are always associated  with a base class, which is the mixin's first non-mixin superclass. Any
subclass of the mixin's base class can (directly or indirectly) inherit a mixin; other classes cannot. For
example, a mixin class created as a subclass of the Array class can only be inherited by other Array
subclasses. Mixins that use the Object class as a base class can be inherited by any class.

To create a new mixin class, you send a MIXINCLASS message to an existing class or use
the ::CLASS directive with the MIXINCLASS option. A mixin class is also an object class and can
create instances of the class.

4.6.3. Abstract Classes

Abstract classes provide definitions for instance methods and class methods but are not intended
to create instances. Abstract classes often define the message interfaces that subclasses should
implement.

You create an abstract class like object or mixin classes. No extra messages or keywords on
the ::CLASS directive are necessary. Rexx does not prevent users from creating instances of abstract
classes. It is possible to create abstract methods on a class. An abstract method is a placeholder that
subclasses are expected to override. Failing to provide a real method implementation will result in an
error when the abstract version is called.

4.6.4. Metaclasses

A metaclass is a class you can use to create another class. The only metaclass that Rexx provides
is .Class, the Class class. The Class class is the metaclass of all the classes Rexx provides. This
means that instances of .Class are themselves classes. The Class class is like a factory for producing
the factories that produce objects.



Chapter 4. The Basics of Classes

46

To change the behavior of an object that is an instance, you generally use subclassing. For example,
you can create Statarray, a subclass of the Array class. The statArray class can include a method for
computing a total of all the numeric elements of an array.

Example 4.3. Creating an Array subclass

/* Creating an array subclass for statistics */

::class statArray subclass array public

::method init    /*  Initialize running total and forward to superclass */
  expose total
  total = 0
  forward class (super)

::method put     /*  Modify to increment running total */
  expose total
  use arg value
  total = total + value  /* Should verify that value is numeric!!! */
  forward class (super)

::method "[]="   /*  Modify to increment running total */
  forward message "PUT"

::method remove  /*  Modify to decrement running total */
  expose total
  use arg index
  forward message "AT" continue
  total = total - result
  forward class (super)

::method average /*  Return the average of the array elements */
  expose total
  return total / self~items

::method total   /*  Return the running total of the array elements */
  expose total
  return total

You can use this method on the individual array instances, so it is an instance method.

However, if you want to change the behavior of the factory producing the arrays, you need a new class
method. One way to do this is to use the ::METHOD directive with the CLASS option. Another way to
add a class method is to create a new metaclass that changes the behavior of the Statarray class. A
new metaclass is a subclass of .class.

You can use a metaclass by specifying it in a SUBCLASS or MIXINCLASS message or on a ::CLASS
directive with the METACLASS option.

If you are adding a highly specialized class method useful only for a particular class, use
the ::METHOD directive with the CLASS option. However, if you are adding a class method that would
be useful for many classes, such as an instance counter that counts how many instances a class
creates, you use a metaclass.

The following examples add a class method that keeps a running total of instances created. The first
version uses the ::METHOD directive with the CLASS option. The second version uses a metaclass.

Version 1



Metaclasses

47

Example 4.4. Adding a class method

/* Adding a class method using ::METHOD */

a = .point~new(1,1)               /* Create some point instances  */
say "Created point instance" a
b = .point~new(2,2)               /* create another point instance */
say "Created point instance" b
c = .point~new(3,3)               /* create another point instance */
say "Created point instance" c
                                  /* ask the point class how many */
                                  /* instances it has created     */
say "The point class has created" .point~instances "instances."

::class point public                /* create Point class           */

::method init class
  expose instanceCount
  instanceCount = 0                 /* Initialize instanceCount     */
  forward class (super)             /* Forward INIT to superclass   */

::method new class
  expose instanceCount              /* Creating a new instance      */
  instanceCount = instanceCount + 1 /* Bump the count               */
  forward class (super)             /* Forward NEW to superclass    */

::method instances class
  expose instanceCount              /* Return the instance count    */
  return instanceCount

::method init
  expose xVal yVal                  /* Set object variables         */
  use arg xVal, yVal                /* as passed on NEW             */

::method string
  expose xVal yVal                  /* Use object variables         */
  return "("xVal","yVal")"          /* to return string value       */

Version 2

/* Adding a class method using a metaclass  */

a = .point~new(1,1)                    /* Create some point instances  */
say "Created point instance" a
b = .point~new(2,2)
say "Created point instance" b
c = .point~new(3,3)
say "Created point instance" c
                                       /* ask the point class how many */
                                       /* instances it has created     */
say "The point class has created" .point~instances "instances."

::class InstanceCounter subclass class /* Create a new metaclass that */
                                       /* will count its instances     */
::method init
  expose instanceCount
  instanceCount = 0                    /* Initialize instanceCount     */
  forward class (super)                /* Forward INIT to superclass   */



Chapter 4. The Basics of Classes

48

::method new
  expose instanceCount                 /* Creating a new instance      */
  instanceCount = instanceCount + 1    /* Bump the count               */
  forward class (super)                /* Forward NEW to superclass    */

::method instances
expose instanceCount                   /* Return the instance count    */
return instanceCount

::class point public metaclass InstanceCounter  /* Create Point class */
                                       /* using InstanceCounter metaclass */
::method init
  expose xVal yVal                     /* Set object variables         */
  use arg xVal, yVal                   /* as passed on NEW             */

::method string
  expose xVal yVal                     /* Use object variables         */
  return "("xVal","yVal")"             /* to return string value       */



Chapter 5.

49

A Closer Look at Objects
This chapter covers the mechanics of using objects in more detail. First, a quick refresher.

A Rexx object consists of:

• Actions coded as methods

• Attributes, coded as variables, and their values, sometimes referred to as "state data"

Sending a message to an object causes it to perform a related action. The method with the matching
name performs the action. The message is the interface to the object, and with information hiding, only
methods that belong to an object can access its variables.

Objects are grouped hierarchically into classes. The class at the top of the hierarchy is the Object
class. Everything below it in the hierarchy belongs to the Object class and is therefore an object. As a
result, all classes are objects.

In a class hierarchy, classes, superclasses, and subclasses are relative to one another. Unless
designated otherwise, any class directly above a class in the hierarchy is a superclass. And any class
below is a subclass.

From a class you can create instances of the class. Instances are merely similar objects that fit the
template of the class; they are "of" the class, but are not classes themselves.

Both the classes and their instances contain variables and methods. The methods a class provides for
use by its instances are called instance methods. The instance methods define which messages an
object can respond to.

The methods available to the class itself are called class methods. Many of the methods are actually
the instance methods of the Class class, but a class many have its own unique class methods. They
define messages that only the class—and not its instances—can respond to.

Figure 5.1. Instance Methods and Class Methods

5.1. Using Objects in Rexx

The following examples with Myarray illustrate how to use new objects in Rexx programs.



Chapter 5. A Closer Look at Objects

50

myarray=.array~new(5)

creates a new instance of the Array class, and assigns to the variable MYARRAY. The period
precedes a class name in an expression, to distinguish the class environment symbol from other
variables. The MYARRAY array object has five elements.

After the array is created, you can assign values to it. One way is with the PUT method. PUT has
two arguments, which must be enclosed in parentheses. The first argument is the value added to the
array, the second is the number of the element in which to place the value. Here, the string object
Hello is associated with the third element of Myarray:

myarray~put("Hello",3)

One way to retrieve values from an array object is by sending it an AT message. In the next example,
the SAY instruction displays the third element of Myarray:

say myarray~at(3)

Results:

Hello

The SAY  instruction expects a string object as input, which is what AT returns. If you try to display a
non-string object in the SAY instruction, SAY sends a STRING message to the object. The STRING
method returns a human-readable string representation for the object. In this example, the  STRING
method for an Array object returns the string an Array:

say myarray  /* SAY sends STRING message to Myarray */

Results:

an Array

Whenever a method returns a string, you can use it within expressions that require a string. Here,
the element of the array that AT returns is a string, so you can put an expression containing the AT
method inside a string function like COPIES():

say copies(myarray~at(3),4)

Results:
HelloHelloHelloHello

This example produces the same result using only methods:



Common Methods

51

say myarray~at(3)~copies(4)

Notice that the expression is evaluated from left to right. You can also use parentheses to enforce an
order of evaluation.

Almost all messages are sent using the twiddle, but there are exceptions. The exceptions are to
improve the reliability of the language. The following example uses the []= (left-bracket right-bracket
equal-sign) and [] methods to set and retrieve array elements:

myarray[4]="the fourth element"
say myarray[4]

Although the previous instructions look like an ordinary array assignment and array reference, they
are actually messages to the Array object referenced by MYARRAY. You can prove this by executing
these equivalent instructions, which use the twiddle to send the messages:

myarray~"[]="("a new test",4)
say myarray~"[]"(4)

Similarly, expression operators (such as +, -, /, and *) are actually methods, but you do not have to use
the twiddle to send them:

say 2+3      /* Displays 5 */
say 2~"+"(3) /* Displays 5 */

In the second SAY instruction, "+" must be a literal string because the message name contains
characters not allowed in a Rexx symbol.

5.2. Common Methods
When running your program, three methods that Rexx looks for, and runs automatically when
appropriate, are INIT, UNINIT, and STRING.

5.2.1. Initializing Instances Using INIT
Object classes can create instances. When these instances require initialization, you'll want to define
an INIT method to set a particular starting value or initiate some startup processing. Rexx looks for an
INIT method whenever a new object is created and runs it.

The purpose of initialization is to ensure that the instance variables are initialized correctly before
using it in an operation. If an INIT method is defined, Rexx runs it after creating the instance. Any
initialization arguments specified in the NEW message are passed to the  INIT method, which can use
them to set the initial state of object variables.



Chapter 5. A Closer Look at Objects

52

If a class overrides the INIT method it inherits from a superclass, the new INIT method must forward
the INIT message up the hierarchy, to properly initialize the instance. An example in the next section
demonstrates the use of INIT.

5.2.2. Returning String Data Using STRING
The STRING method  is a useful way to access object data and return it in string form for use by
your program. When a  SAY instruction is processed in Rexx, Rexx automatically sends a STRING
message to the object specified in the expression. Rexx uses the STRING method of the Object class
and returns a human-readable string representation for the object. For example, if you instruct Rexx to
say a, and a is an array object, Rexx returns an array. You can take advantage of this automatic use
of STRING by overriding Rexx's STRING method with your own, and extract the object data itself—in
this case, the actual array data.

The following programs demonstrate STRING and INIT. In the first program, the Part class is created,
and along with it, the two methods under discussion, STRING and INIT:

Example 5.1. STRING and INIT methods

/* PARTDEF.CMD - Class and method definition file */

/* Define the Part class as a public class */
::class part public

/* Define the INIT method to initialize object variables */
::method init
expose name description number
use arg name, description, number

/* Define the STRING method to return a string with the part name */
::method string
expose name
return "Part name:" name

In the ::CLASS directive, the keyword PUBLIC indicates that the class can be shared with other
programs. The two ::METHOD directives define INIT and STRING. Whenever Rexx creates a new
instance of a class, it calls the INIT method the new instance.. The sample INIT method uses an
EXPOSE instruction to make the name, description, and number variables available to other methods.
These exposed variables are object variables, and are associated with a single instance of a class:



Returning String Data Using STRING

53

Figure 5.2. Instances in the Part Class

The INIT method expects to be passed three arguments.  The USE ARG instruction assigns these
three arguments to the name, description, and number variables, respectively. Because those
variables are exposed, the values are available to other methods.

The STRING method returns the string Part name:, followed by the name of a part. The STRING
method does not expect any arguments. It uses  the EXPOSE instruction to identify which object
variables it requires. The RETURN instruction returns the result string.

The following example shows how to use the Part class:

Example 5.2. The PART class

/* USEPART.CMD  - use the Part class */
myparta=.part~new("Widget","A small widge",12345)
mypartb=.part~new("Framistat","Device to control frams",899)
say myparta
say mypartb
exit
::requires partdef

The USEPART program creates two parts, which are instances of the Part class. It then displays the
names of the two parts.

Rexx processes all directives before running your program. The  ::REQUIRES directive indicates
that the program needs access to public class definitions that are in another program. In this case,
the ::REQUIRES directive refers to the PARTDEF program, which contains the Part definition.

The assignment instructions for Mypart A and Mypart B create two objects that are instances of the
Part class. The objects are created by sending a NEW message to the Part class. The NEW message



Chapter 5. A Closer Look at Objects

54

causes the INIT method to be invoked as part of object creation. The INIT method takes the three
arguments you provide and makes them part of the object's own exclusive set of variables, called a
variable pool. Each object has its own variable pool (name, description, and number).

The SAY  instruction sends a STRING message to the object. In the first SAY instruction, the
STRING message is sent to MypartA. The STRING method accesses the Name object variable for
MypartA and returns it as part of a string. In the second SAY instruction, the STRING message is
sent again, but to a different object: MypartB. Because the STRING method is invoked for MypartB, it
automatically accesses the variables for MypartB. You do not need to pass the name of the object to
the method in order to distinguish different sets of object variables; Rexx keeps track of them for you.

5.2.3. Uninitializing and Deleting Instances Using UNINIT

Normally, object classes can create instances but have no direct control over their deletion. Once an
object is no longer referenced by any variables, Rexx automatically reclaims the storage for the old
value in a process called garbage collection.

If the instance has allocated other system resources, Rexx cannot automatically release these
resources because it is unaware that the instance has allocated them. An UNINIT method give an
object the opportunity to perform resource cleanup before the object is reclaimed by the garbage
collector.

In the following example, the value passed to text is initialized by Rexx using INIT and deleted by
Rexx using UNINIT. This program makes visible Rexx's automatic invocation of INIT and UNINIT by
revealing its processing on the screen using the SAY instruction:

Example 5.3. UNINIT method

/* UNINIT.CMD - example of UNINIT processing */

a=.scratchpad~new("Of all the things I've lost")
a=.scratchpad~new("I miss my mind the most")
say "Exiting program."
exit

::class scratchpad

  ::method init
    expose text
    use arg text
    say "Remembering" text

  ::method uninit
    expose text
    say "Forgetting" text
    return

Whether uninitialization processing is needed depends on the circumstances, If the object only
contains references to normal Rexx objects, an UNINIT method is generally not needed. If the object
contains references to external system resources such as open network connections or database
connections, an UNINIT method might be required to release those resources. If an object requires
uninitialization, define an UNINIT method to perform the cleanup processing you require.

If an object has UNINIT an method, Rexx runs it before reclaiming the object's storage. If an instance
overrides an UNINIT method of a superclass, each UNINIT method is responsible for sending the



Special Method Variables

55

UNINIT message up the hierarchy, using the SUPERCLASS overrides, so that each inherited UNINIT
method has the opportunity to run.

5.3. Special Method Variables

When writing methods, there are several special variables that are set automatically when a method
runs. Rexx supports the following variables:

SELF 
is set when a method is activated. Its value is the object that forms the execution context for the
method (that is, the object that received the activating message).

You can use SELF to:

• Send messages to the currently active object. For example, a FIND_CLUES method is
running in an object called Mystery_Novel. When FIND_CLUES finds a clue, it sends a
READ_LAST_PAGE message to Mystery_Novel:

self~read_last_page

• Pass references regarding an object to the methods of other objects. For example, a SING
method is running in object Song. The code:

Singer2~duet(self)

would give the DUET method access to the same Song.

SUPER 
is set when a method is activated. Its value is the class object that is the usual starting point for a
superclass method lookup for the SELF object. This is the first immediate superclass of the class
that defined the method currently running.

The special variable SUPER lets you call a method in the superclass of an object. For example,
the following Savings class has INIT methods that the Savings class, Account class, and Object
class define.

Example 5.4. SELF variable

::class Account

  ::method INIT
    expose balance
    use arg balance
    self~init:super    /* Forwards to the Object INIT method */

  ::method TYPE
    return "an account"



Chapter 5. A Closer Look at Objects

56

  ::method name attribute

::class Savings subclass Account

  ::method INIT
    expose interest_rate
    use arg balance, interest_rate
    self~init:super(balance)  /* Forwards to the Account INIT method */

  ::method type
    return "a savings account"

When the INIT method of the Savings class is called, the variable SUPER is set to the Account
class object. For example:

self~init:super(balance)

This instruction calls the INIT method of the Account class rather than recursively calling the INIT
method of the Savings class. When the INIT method of the Account class is called, the variable
SUPER is assigned to the Object class. So in the Account class INIT:

self~init:super

calls the INIT method of the Object class.

5.4. Public, Local, and Built-In Environment Objects

In addition to the special variables, Rexx provides a unique set of objects, called environment objects.
Environment objects are members of the Object class only. Rexx makes the following environment
objects available:

5.4.1. The Public Environment Object (.environment)

The Environment object is a directory of public objects that are always accessible throughout the
whole process. The Rexx built-in classes are stored in the Environment directory. To place something
in the Environment directory, you use the form:

.environment~your.object = value

Include a period (.) in any object name you use, to avoid conflicts with current or future Rexx entries to
the Environment directory. To retrieve your object, you use the form:

say .environment~your.object



The Local Environment Object (.local)

57

The scope of .environment is  the current process.

You use an environment symbol to access the entries of this directory. An environment symbol starts
with a period and has at least one other character, and the symbol is not a valid numeric value. You
have seen environment symbols earlier; for example in:

asav = .savings~new

.Savings is an environment symbol, and refers to the Savings class. The classes you create can be
referenced with an environment symbol. There is an environment symbol for each Rexx-defined class,
as well as for each of the unique objects this section describes, such as the Nil object.

5.4.1.1. The NIL Object (.nil)

The Nil object is a special environment object that does not contain any data. It represents the
absence of an object, the way a null string represents a string with no characters. Its only methods are
those of the Object class. You use the NIL object (rather than the null string) to test for the absence of
data in an array entry:

if board[row,column] = .nil
then ...

All the environment objects Rexx provides are single symbols. Use compound symbols when you
create your own, to avoid conflicts with future Rexx-defined entries.

5.4.2. The Local Environment Object (.local)

The Local environment object is a directory of process-specific objects that are always accessible. To
place something in the Local environment directory, you use the form:

.local~your.object =  value

Be sure to include a period (.) in any object name you use, to avoid conflicts with current or future
Rexx entries to the Local directory. To retrieve your object, you use the form:

say .local~your.object

The scope of .local is the current process.

You access objects in the Local environment object like in the Environment object. Rexx provides the
following objects in the Local environment:

.error 
is the Error object (the default error stream) to which Rexx writes error messages and trace output
to.



Chapter 5. A Closer Look at Objects

58

.input 
is the Input object (the default input stream), which is the source for the PARSE LINEIN
instruction, the LINEIN method of the Stream class, and (if you do not specify a stream name)
the LINEIN built-in function. It is also the source of the PULL and PARSE PULL instructions if the
external data queue is empty.

.output 
is the Output object (the default output stream), which is the destination of output from the SAY
instruction, the LINEOUT method (.OUTPUT~LINEOUT), and (if you do not specify a stream
name) the LINEOUT built-in function. You can replace this object in the environment to direct such
output elsewhere, for example to a transcript window.

5.4.3. Built-In Environment Objects

Rexx provides environment objects that all programs can use. To access these built-in objects, you
use the special environment symbols whose first character is a period (.).

.line 
The .line environment symbol returns the line number of the current instruction being executed. If
the current instruction is defined within an INTERPRET instruction, the value returned is the line
number of INTERPRET instruction.

.rs 
.rs is set to the return status from any executed command, including those submitted with the
ADDRESS instruction. The .rs environment symbol has a value of -1 when a command returns a
FAILURE condition, a value of 1 when a command returns an ERROR condition, and a value of 0
when a command indicates successful completion. The value of .rs is also available after trapping
the ERROR or FAILURE condition.

Note

Tracing interactively does not change the value of .rs. The initial value of .rs is 0.

5.4.4. The Default Search Order for Environment Objects

When you use an environment symbol, Rexx performs a series of searches to see if the environment
symbol has an assigned value. The search locations and their ordering are:

1. The directory of classes declared on ::CLASS directives within the current program file.

2. The directory of PUBLIC classes declared on ::CLASS directives of other files included with
a ::REQUIRES directive.

3. The program local environment directory, which includes process-specific objects such as
the .INPUT and .OUTPUT objects. You can directly access the local environment directory by
using the .Local environment symbol.

4. The global environment directory, which includes all "permanent" Rexx objects such as the Rexx-
supplied classes (for example, .ARRAY) and constants such as .TRUE and .FALSE. You can
directly access the global environment by using the .environment symbol or using the VALUE
built-in function with a null string for the selector argument.



Determining the Scope of Methods and Variables

59

5. Rexx defined symbols. Other simple environment symbols are reserved for use by Rexx for built-in
objects.

If an entry is not found for an environment symbol, the default character string value is used.

Note

You can place entries in both the .local and .environment directories for programs to use,
but .local should be preferred over .environment to avoid accidentally overwriting system-defined
values. To avoid conflicts with future Rexx-defined entries, it is recommended that entries you
place in either of these directories include at least one period in the entry name.

Example 5.5. .Local object

/* establish a global settings directory */
.local~setentry("MyProgram.settings", .directory~new)

5.5. Determining the Scope of Methods and Variables

Methods interact with variables and their associated data. But a method cannot interact with any
variable. Certain methods and variables are designed to work together. A method designates the
variables it wants to work with by exposing them with an  EXPOSE instruction. The exposed methods
are called object variables. Exposing variables confines them to an object; in object-oriented terms,
they are encapsulated. This protects the object variables' data from being changed by "unauthorized"
methods belonging to other objects.

5.5.1. Objects with a Class Scope
Encapsulation usually takes place at the class level. The class is designed as a template of methods
and variables. The instances themselves retain only the values of their variables.

Within the hierarchy, the class structure ensures the integrity of a class's variables, controlling the
methods allowed to operate on them. The class structure also provides for easy updating of the
method code. If a method requires a change, you only have to change it once, at the class level. The
change then is acquired by all the instances sharing the method.

Associated methods and variables have a certain scope, which is the class to which they belong:



Chapter 5. A Closer Look at Objects

60

Figure 5.3. Scope of the Number Class

Each class in a class hierarchy has a scope different from any other class. This is what allows a
variable in a subclass to have the same name as a variable in a superclass, even though the methods
that use the variables for completely unrelated purposes.

5.5.2. Objects with Their Own Unique Scope

The methods and variables used by instances in a class are usually found at the class level. But
sometimes an instance differs in some respect from the others in its class. It might perform an
additional action or require some unique handling. In this case one or more methods and related
variables can be added directly to the instance. These additional methods and variables form a
separate scope, independent of the class scopes found throughout the rest of the hierarchy.

Methods can be added directly to an instance's collection of object methods using SETMETHOD, a
method of the Object class. All subclasses of the Object class inherit SETMETHOD. Alternately, the
Class class provides an ENHANCED method that lets you create new instances of a class, whose
object methods are the instance methods of its class, but enhanced with the additional collection
methods.

5.6. More about Methods
A method name can  be any character string. When an object receives a message, Rexx searches for
a method whose name matches the message name.

You must surround a method name with quotation marks when it is the same as an operator. The
following example illustrates how to do this correctly. It creates a new class (Cost), defines a new
method (%), creates an instance of the Cost class (Mycost), and sends a % message to Mycost:

Example 5.6. Messages

mycost = Cost~new           /* Creates new instance mycost.*/



The Default Search Order for Selecting a Method

61

mycost~"%"                  /* Sends % message to mycost.  */

::class Cost subclass "Retail" /* Creates Cost, a sub-     */
                               /* class of "Retail" class. */
  ::method "%"                 /* Creates % method.        */
    expose p                   /* Produces: Enter a price. */
    say "Enter a price"        /* If the user specifies a  */
    pull p                     /* price of 100,            */
    say p*1.07                 /* produces: 107            */
    return 0

5.6.1. The Default Search Order for Selecting a Method

When a message is sent to an object, Rexx looks for a method whose name matches the message
string. If the message is ADD, for example, Rexx looks for a method named ADD. Because, in the
class hierarchy, there may be more than one method with the same name, Rexx begins its search at
the object specified in the message. If the sought method is not found there, the search continues up
the hierarchy. Rexx searches in the following order:

1. A method the object defines itself (with SETMETHOD or ENHANCED).

2. A method the object's class defines.

An object acquires the methods of its parent class; that is, the class for which the object was
created. If the class subsequently receives new methods, objects predating the new methods do
not acquire them.

3. A method an object's superclasses define.

As with the object's class, only methods that existed in the superclass when the object was
created are valid. Rexx searches the superclass method definitions in the order that INHERIT
messages were sent to an object's class.

If Rexx does not find a match for the message name, Rexx checks the object for method name
UNKNOWN. If it  exists, Rexx calls the UNKNOWN method, and returns whatever the UNKNOWN
method returns. For more information on the UNKNOWN method, see Section 5.6.4, “Defining an
UNKNOWN Method”. If the object does not have an UNKNOWN method, Rexx raises a NOMETHOD
condition. Any trapped information can then be inspected using Rexx's CONDITION built-in function.

Rexx searches up the hierarchy so that methods existing in higher levels can be supplemented or
overridden by methods existing in lower levels.



Chapter 5. A Closer Look at Objects

62

Figure 5.4. Searching the Hierarchy for a Method

For example, suppose you wrote a program that allows users to look up other users' phone numbers.
Your program includes a class called Phone_Directory, and all its instances are users' names with
phone numbers. You have included a method in Phone_Directory called NOTIFY that reports some
data to a file whenever someone looks up a number. All instances of Phone_Directory use the
NOTIFY method.

Now you decide you want NOTIFY, in addition to its normal handling, to personally inform you
whenever anyone looks up your number. To accommodate this special case for your name only, you
create your own NOTIFY method that adds the new task and replicates the file-handling task. You
save the new method as part of your own name instance, retaining the same name, NOTIFY.

Now, when a NOTIFY message is sent to your name instance, the new version of NOTIFY is found
first. Rexx does not look further up the class hierarchy. The instance-level version overrides the
version at the class level. This technique of overriding lets you change a method used by one instance
without disturbing the common method used by all the other instances. It is very powerful for that
reason.

5.6.2. Changing the Search Order for Methods

When composing a message, you can change the default search order for methods by doing both of
the following:

1. Making the receiver object the sender object. You usually do this by specifying the special variable
 SELF. SELF holds the value of the object in which a method is running.

2. Specifying a colon and a starting scope after the message name. The starting scope is a variable
or environment symbol that identifies the scope object to use as the method search starting point.
This scope object can be:
• A direct superclass of the class that defines the active method

• The object itself (for example, the value of the variable SELF), if you used SETMETHOD to add
methods to the object.

The scope variable is usually the special variable  SUPER, but it can be any environment
symbol or variable name whose value is a valid class.



Public versus Private Methods

63

In Section 4.4.4, “A Sample Program Using Directives”, an  Account subclass of the Object superclass
is created. It defines a TYPE method for Account, and creates the Savings subclass of Account. The
example defines a TYPE method for the Savings subclass, as follows:

Example 5.7. SUBCLASS option

::class Savings subclass Account

  ::method "TYPE"
    return "a savings account"

To change the search order so Rexx searches for TYPE in the Account rather than Savings subclass,
enter this instead:

Example 5.8. SUBCLASS method search order

  ::method "TYPE"
    return self~type:super "(savings)"

When you create an asav instance of the Savings subclass and send a TYPE message to asav:

say asav~type

Rexx displays:

an account

rather than:

a savings account

because Rexx searches for TYPE in the Account class first.

5.6.3. Public versus Private Methods

A method can be public or private. Any object can send a message that runs a public method. A
private method can only be invoked from specific calling contexts. These contexts are:



Chapter 5. A Closer Look at Objects

64

1. From within a method owned by the same class as the target. This is frequently the same object,
accessed via the special variable SELF. Private methods of an object can also be accessed from
other instances of the same class (or subclass instances).

2. From within a method defined at the same class scope as the method. For example:

Example 5.9. PUBLIC and PRIVATE options

::class Savings
::method newCheckingAccount CLASS
  instance = self~new
  instance~makeChecking
  return instance

::method makeChecking private
  expose checking
  checking = .true

The newCheckingAccount CLASS method is able to invoke the makeChecking method because
the scope of the makeChecking method is .Savings.

3. From within an instance (or subclass instance) of a class to a private class method of its class. For
example:

Example 5.10. PUBLIC and PRIVATE options

::class Savings
::method init class
  expose counter
  counter = 0

::method allocateAccountNumber private class
  expose counter
  counter = counter + 1
  return counter

::method init
  expose accountNumber
  accountNumber = self~class~allocateAccountNumber

The instance INIT method of the Savings class is able to invoke the allocateAccountNumber
private method of the .Savings class object because it is owned by an instance of the .Savings
class.

Private methods include methods at different scopes within the same object. This allows superclasses
to make methods available to their subclasses while hiding those methods from other objects.
A private method is like an internal subroutine. It shields the internal information of an object to
outsiders, but allowing objects to share information with each other and their defining classes.



Defining an UNKNOWN Method

65

5.6.4. Defining an UNKNOWN Method

When an object that receives a message has no matching message name, Rexx checks if the object
has a method named UNKNOWN. If it does, Rexx calls UNKNOWN, passing two arguments. The
first is the name of the method that was not located. The second is an array containing the arguments
passed with the original message.

5.7. Concurrency

In object-oriented programming, as in the real world, objects interact with each other. Assume, for
example, throngs of people interacting at rush hour in the business district of a big city. A program
that aspires to simulate the real world would have to enable many objects to interact at any given
time. That could mean thousands of objects sending messages to each other, thousands of methods
running at once. In Rexx, this simultaneous activity is called concurrency. To be precise, the
concurrency is object-oriented concurrency because it involves objects, as opposed to, for example,
processes or threads.

Rexx objects are inherently concurrent, and this concurrency takes the following forms:

• Inter-object concurrency, where several objects are active—exchanging messages, synchronizing,
running their methods—at the same time

• Intra-object concurrency, where several methods are able to run on the same object at the same
time

The default settings in Rexx allow full inter-object concurrency but limited intra-object concurrency.
Some situations, however, call for full intra-object concurrency.

5.7.1. Inter-Object Concurrency

Rexx provides for inter-object concurrency, where several objects in a program can run at the same
time, in the following ways:

• By early reply, using the  REPLY instruction

• Using message objects

Early reply allows the object that sends a message to continue processing after the message is sent.
Meanwhile, the receiving object runs the method corresponding to the message. This method contains
the REPLY instruction, which returns any results to the sender, interrupting the sender just long
enough to reply. The sender and receiver continue operating simultaneously.

Alternatively, an independent message object can be created and sent to a receiver. One difference in
this approach is that any reply returned does not interrupt the sender. The reply waits until the sender
asks for it. In addition, message objects can notify the sender about the completion of the method it
sent, and even specify synchronous or asynchronous method activation.

The chains of execution represented by the sender and receiver methods are called activities. An
activity is a thread of execution that  can run methods concurrently with methods on other activities. In
other words, activities can run at the same time.

An activity contains a stack of invocations that represent the Rexx programs running on the activity. An
invocation can be:



Chapter 5. A Closer Look at Objects

66

• A main program invocation

• An internal function or subroutine call

• An external function or subroutine call

• An INTERPRET instruction

• A message invocation

An invocation is pushed onto an activity when an executable unit is invoked. It is removed (or popped)
when execution completes.

5.7.1.1. Object Instance Variables

Every object has its own set of instance variables. These are variables associated solely with the
object. When an object's method runs, it first identifies the object variables it intends to work with.
Technically, it "exposes" these variables, using  the Rexx instruction EXPOSE. Exposing the object's
variables distinguishes them from variables used by the method itself, which are not exposed. Every
method an object owns—that is, all the instance methods in the object's class—can expose variables
from the object's instance variables.

Therefore, an object's instance variables includes variables:

• Exposed by methods defined by the object's class. This set of variables is called a variable pool.

• Exposed by methods defined by other classes in the inheritance hierarchy. The methods of each
class share variables in a pool scoped to just that class.

A class's variable pool, together with the methods that expose them, are called a class scope.
Rexx exploits this class scope to achieve concurrency. To explain, the object's instance variables
are contained in a collection of variable pools. Each pool is at a different scope in the object's
inheritance chain. Methods defined at different class scopes do not directly share data and can run
simultaneously.

Scopes, like objects, hide and protect data from outside manipulation. Methods of the same scope
share the variable pool of that scope. The scope shields the variable pool from methods operating at
other scopes. Thus, you can reuse variable names from class to class, without the variables being
accessed and possibly corrupted by a method outside their own class. So class scopes divide an
object's instance variables into pools that can operate independently of one another. Several methods
can use the same object instance variables concurrently, as long as they confine themselves to
variables in their own scope.

5.7.1.2. Prioritizing Access to Variables

Even with class scopes and subpools, a variable is vulnerable if several methods within the scope try
to access it at the same time. To handle this, Rexx ensures that when a particular method is activated
and exposes variables from its scope, that method has exclusive use of the scope variable pool until
processing is complete. Until then, Rexx delays the execution of any other method that needs the
same scope variables.

Thus if different activities send several messages to the same object, Rexx forces the methods to run
sequentially within a single scope. This "first-in, first-out" processing of methods in a scope prevents
them from simultaneously accessing one variable, and possibly corrupting the data.



Intra-Object Concurrency

67

5.7.1.3. Sending Messages within an Activity

Rexx makes one exception to sequential processing—when a method sends a message to itself.
Assume that method M1 has exclusive access to object O, and then tries to run a second, internal
method M2, also belonging to O. Internal method M2 would try to run, but Rexx would delay it until
the original method M1 finished. Yet M1 would be unable to proceed until M2 ran. The two methods
would become deadlocked. In actual practice Rexx intervenes by treating internal method M2 like a
subroutine call. In this case, Rexx runs method M2 immediately, then continues processing method
M1.

The mechanism controlling this is the activity. Typically, whenever a message is invoked on an
object, the activity acquires exclusive access by locking the object's scope. Any other activity sending
a message to the object whose scope is locked must wait until the first activity releases the lock.
The situation is different, however, if the messages originate from the same activity. When an
invocation running on an activity sends another message to the same object, the method is allowed
to run because the activity has already acquired the lock for the scope. Thus, Rexx permits nested,
nonconcurrent method invocations on a single activity. No deadlocks occur because Rexx treats these
additional messages as subroutine calls.

5.7.2. Intra-Object Concurrency

Several methods can access the same object at the same time only if they are operating at different
scopes. That is because they are working with separate variable subpools. If two methods in the same
scope try to run on the object, Rexx by default processes them on a "first-in, first-out" basis, while
treating internal methods as subroutines. You can, however, achieve full intra-object concurrency.
Rexx offers several mechanisms for this, including:

• The UNGUARDED option of the ::METHOD directive, which provide unconditional intra-object
concurrency.

• The  GUARD OFF and GUARD ON instructions, which permit switching between intra-object and
default concurrency.

When intra-object concurrency at the scope level is needed, you must specifically employ these
mechanisms (see the following section). Otherwise, Rexx sequentially processes the methods when
they are competing for the same object variables.

5.7.2.1. Activating Methods
By default, Rexx assumes that an active method requires exclusive use of its scope variable pool. If
another method attempts access at that time, it is locked out until the first method finishes. This default
intra-object concurrency maintains the integrity of the variable pool and prevents unexpected results.
Rexx manages queues for incoming requests that result in messages being sent to the same object.

Some methods can run concurrently without affecting variable pool integrity or yielding unexpected
results. When a method does not need exclusive use of its object variable pool, the UNGUARDED
option of the ::METHOD directive to provide unconditional intra-object concurrency. These
mechanisms control the locking of an object's scope when a method is invoked.

Many methods cannot UNGUARDED because they sometimes require exclusive use of their variable
pool. At other times, they must perform some action that involves the concurrent use of the same pool
by a method on another activity. In this case, you can use the GUARD built-in function. When the
method reaches the point in its processing where it no longer requires exclusive use of the variable



Chapter 5. A Closer Look at Objects

68

pool it can use the GUARD OFF instruction to allow methods running on different activities to become
active on the same scope. If the method needs to regain exclusive use, it calls GUARD ON.

For more flexibility when activating methods, you can use GUARD ON/OFF with the "WHEN
expression" option. Add this instruction to the method code at the point where exclusive use of the
variable pool becomes conditional. When processing reaches this point, Rexx evaluates expression to
determine if it is true or false.

For example, if you specify "GUARD OFF WHEN expression," the active method keeps running until
expression becomes true. To become true, another method must assign or drop an object variable
that is named in expression. Whenever an object variable changes, Rexx reevaluates expression. If
expression becomes true, GUARD is turned off, exclusive use of the variable pool is released, and
other methods needing exclusive use can begin running. If expression becomes false again, GUARD
is turned on and the active method regains exclusive use.

Note

If expression cannot be met, GUARD ON WHEN puts the program in a continuous wait condition.
This can occur in particular when several activities run concurrently. A second activity can make
expression invalid before GUARD ON WHEN can use it.



Chapter 6.

69

Commands
From a Rexx program you can pass commands to Windows and Unix/Linux shells or to applications
designed to work with Rexx. When used to run operating system commands, Rexx becomes a
powerful substitute for the Windows Batch Facility or Unix shell scripts. You can use variables, control
structures, mathematics, and parsing, and the full object oriented features of Rexx.

Applications that are designed to  work with Rexx are often referred to as scriptable applications. To
work with Rexx, a scriptable application registers a command environment with Rexx. An environment
serves as a kind of workspace shared between Rexx and the application that accepts application
commands issued from your Rexx programs.

For example, many editors provide a command prompt or dialog box from which you can issue
commands to set margins or add lines. If the editor is scriptable from Rexx, you can issue the same
editor commands from a Rexx program. These Rexx programs are referred to as macros.

When an application runs a Rexx macro, Rexx directs commands to the application's environment.
The application processes the command, and returns a status indicator as a return code.

The Rexx  ADDRESS instruction allows you select which named command environment commands
get directed to. There is always at least one active command environment, and all Rexx programs
start with a default environment selected. For programs launched from a command shell, an operating-
specific command handler is the normal default. Applications such as an editor can choose to make
their own command environment the default.

6.1. How to Issue Commands
Rexx makes it easy to issue commands. The basic rule is that whatever Rexx cannot process directly
gets passed to the current command environment. You can:

• Allow Rexx to evaluate part or all of a clause as an expression. Rexx automatically passes the
resulting string to the default environment.

• Enclose the entire clause in quotation marks. This makes it a literal string for Rexx to pass to the
default environment.

• Send a command explicitly to a command environment using the ADDRESS instruction.

Rexx processes your program one clause at a time. It examines each clause to determine if it is:

• A directive, such as ::CLASS or ::METHOD

• A message instruction, such as:

.array~new

• A keyword instruction, such as:

say "Type total number"

or



Chapter 6. Commands

70

pull input

• A variable assignment (any valid symbol followed by an equal sign), such as:

price = cost * 1.2

• A label for calling other routines

• A null (empty) clause

If the clause is none of the above, Rexx evaluates the entire clause as an expression and passes the
resulting string to the current command environment.

If the string is a valid valid command for that environment, the command handler will process it as if
you had entered it at the command prompt.

The following example shows a Rexx clause that uses the Windows DIR command to display a list of
files in the current directory.

/* display current directory */
say "DIR command using Rexx"
dir

The clause dir is not a Rexx instruction or a label, so Rexx evaluates it and passes the resulting
string to Windows. Windows recognizes the string DIR as one of its commands and processes it.

Letting Rexx evaluate the command as an expression might cause problems, however. Try adding
a path to the DIR command in the above program (such as, dir c:\config.sys). The Windows
command in this case is an incorrect Rexx expression. The program ends with an error.

A safer way to issue commands is by enclosing the command in quotes, which makes the command a
literal string. Rexx does not evaluate the contents of strings, so the string is passed to Windows as-is.
Here is an example using the PATH command:

/* display current path      */
say "PATH command using Rexx"
"path"

The following example, DP.CMD, shows a program using the DIR and PATH commands. The PAUSE
command is added to wait for the user to press a key before issuing the next instruction or command.
Borders are added too.

Example 6.1. DIR and PATH commands



How to Issue Commands

71

/* DP.CMD -- Issue DIR and PATH commands to Windows */

say "="~copies(40)    /* display line of equal   */
                      /* signs (=) for a border  */

"dir"                 /* display listing of      */
                      /* the current directory   */

"pause"               /* pauses processing and   */
                      /* tells user to "Press    */
                      /* any key to continue."   */

say "="~copies(40)    /* display line of =       */
"path"                /* display the current     */
                      /* PATH setting            */

When you specify the following:

[C:\]rexx dp

a possible output would be:

========================================

The volume label in drive C is WIN.
Directory of C:\EXAMPLES

.            <DIR>     10-16-94  12:43p

..           <DIR>     10-16-94  12:43p
EX4_1    CMD     nnnn  10-16-94   1:08p
DEMO     TXT      117  10-16-94   1:10p
4 File(s)   12163072 bytes free
Press any key when ready . . .

========================================
PATH=C:\WINDOWS
[C:\]



Chapter 6. Commands

72

Note

Usually, when executing a host command addressed to the Windows or Unix/Linux command
shell, a new process is created in the system command handler to execute the command.
Changes in a child process environment do not change the parent process environment.
Therefore, any change in the environment, such as a directory change, made by a host command
executed in a child process would not be reflected in the process running the Rexx program.

The interpreter attempts to mitigate this to some extent by executing some host commands in the
process running the Rexx program, rather than in a child process. This is done so that changes
to the environment made by executing the host command are visible in the process running the
Rexx program.

This is only done when the host command line is simple. That is, the command line must contain
a single command, without redirection and without pipe. On Windows this applies to the CD
and SET commands. On Unix-like systems, including Linux, this applies to cd, set, unset and
export. Rather than remembering the rules, it may be easier to avoid a potential problem by
using the built in directory() or value() functions rather than issuing a host command for
cd, set, etc.

Example 6.2. Environment commands (Windows)

'cd c:\tmp'               /* executed in Rexx program process */
'cd "c:\R&D (secret)"'    /* executed in Rexx program process */
'cd c:\windows && dir c:' /* executed in child process (2 commands) */
'd:'                      /* executed in Rexx program process */
'set myvar=my value'      /* executed in Rexx program process */

Example 6.3. Environment commands (Unix)

'cd'                      /* executed in Rexx program process: go to $HOME directory
 */
'cd ~/"R&D (secret)"'     /* executed in Rexx program process: go to $HOME/R&D
 (secret) */
'cd ~/"R&D \"secret\""'   /* executed in Rexx program process: go to $HOME/R&D
 "secret" */
'cd ~john'                /* executed in Rexx program process: go to John's home
 directory */
'cd /tmp && pwd'          /* executed in child process (2 commands) */
'set myvar=my value'      /* executed in Rexx program process */
'export myvar=my value'   /* executed in Rexx program process */
'unset myvar'             /* executed in Rexx program process */

6.2. Rexx and Batch Files



Rexx and Batch Files

73

You can use a Rexx program whenever you now use Windows batch files or Unix/Linux shell scripts.
The following example shows a Windows batch file that processes user input to display a help
message:

Example 6.4. Windows batch file

@echo off
if %1.==. goto msg
if %1 == on goto yes
if %1 == off goto no
if %1 == ON goto yes
if %1 == OFF goto no
if %1 == On goto yes
if %1 == oN goto yes
if %1 == OFf goto no
if %1 == OfF goto no
if %1 == Off goto no
if %1 == oFF goto no
if %1 == oFf goto no
if %1 == ofF goto no
helpmsg %1
goto exit
:msg
helpmsg
goto exit
:yes
prompt $i[$p]
goto exit
:no
cls
prompt
:exit

Here is the equivalent program in Rexx:

Example 6.5. Rexx program

/* HELP.CMD -- Get help for a system message */
arg action .
select
  when action=""    then     "helpmsg"
  when action="ON"  then     "prompt $i[$p]"
  when action="OFF" then do
    "cls"
    "prompt"
  end
  otherwise "helpmsg" action
end
exit



Chapter 6. Commands

74

6.3. Using Variables to Build Commands
You can use variables to build commands. The SHOFIL.CMD program is an example. SHOFIL
types a file that the user specifies. It prompts the user to enter a file name and then builds a variable
containing the TYPE command and the input file name.

To have Rexx issue the command to the operating system, put the variable containing the command
string on a line by itself. Rexx evaluates the variable and passes the resultant string to Windows:

Example 6.6. SHOFIL.CMD (Windows)

/* SHOFIL.CMD - build command with variables  */

/* prompt the user for a file name            */
say "Type a file name:"

/* assign the response to variable FILENAME   */
pull filename

/* build a command string by concatenation    */
commandstr = "TYPE" filename

/* Assuming the user typed "demo.txt,"        */
/* the variable COMMANDSTR contains           */
/* the string "TYPE DEMO.TXT" and so...       */

commandstr           /* ...Rexx passes the    */
                     /* string on to Windows  */

Rexx displays the following on the screen when you run the program:

[C:\]rexx shofil
Type a file name:
demo.txt

This is a sample text file. Its sole
purpose is to demonstrate how
commands can be issued from Rexx
programs.

[C:\]

6.4. Using Quotation Marks
The rules for forming a command from an expression are the same as those for forming expressions.
Be careful with symbols that are used in Rexx and Windows programs. The DIRREX.CMD program
below shows how Rexx evaluates a command when the command name and a variable name are the
same:

Example 6.7. DIRREX.CMD (Windows)



ADDRESS Instruction

75

/* DIRREX.CMD - assign a value to the symbol DIR  */
say "DIR command using Rexx"
dir = "echo This is not a directory."

/* pass the evaluated variable to Windows         */
dir

Because dir is a variable that contains a string, the string is passed to the system. The DIR command
is not executed. Here are the results:

[C:\]rexx dirrex
DIR command using Rexx:
This is not a directory.
[C:\]

Rexx evaluates a literal string--a string enclosed in matching quotation marks--exactly as it is. To
ensure that a symbol in a command is not evaluated as a variable, enclose it in matching quotation
marks as follows:

Example 6.8. Passing values to command environments

/* assign a value to the symbol DIR         */
say "DIR command using Rexx"
dir = "echo This is another string now."

/* pass the literal string "dir" to Windows */
"dir"

Rexx displays a directory listing.

The best way to ensure that Rexx passes a string to the system as a command is to enclose the entire
clause in quotation marks. This is especially important when you use symbols that Rexx uses as
operators.

If you want to use a variable in the command string, leave the variable outside the quotation marks.
For example:

extension = "BAK"
"delete *."||extension

option = "/w"
"dir"||option

6.5. ADDRESS Instruction



Chapter 6. Commands

76

To send a command to a specific environment, use this format of the ADDRESS instruction:

ADDRESS environment expression

For environment specify the destination of the command. To address the Windows environment, use
the symbol CMD. For expression, specify an expression that results in a string that Rexx passes to the
environment. Here are some examples:

Example 6.9. ADDREXX instruction

address CMD "dir"     /* pass the literal string      */
                      /* "dir" to Windows             */

address "bash" "ls"   /* pass the literal string      */
                      /* "ls" to the Linux bash shell */

cmdstr = "dir *.txt"  /* assign a string              */
                      /* to a variable                */

address CMD cmdstr    /* Rexx passes the string       */
                      /* "dir *.txt" to Windows       */
address edit "rain"   /* Rexx passes the "rain"       */
                      /* command to a fictitious      */
                      /* environment named edit       */

Notice that the ADDRESS instruction lets a single Rexx program issue commands to two or more
environments.

6.6. Using Return Codes from Commands

With each command it processes, Windows and Unix/Linux command shells produce a number called
a return code. When a Rexx program is running, this return code is automatically assigned to a special
built-in Rexx  variable named RC.

If the command was processed without problems, the return code is almost always 0. If something
goes wrong, the return code issued is a nonzero number. The number depends on the command itself
and the error encountered.

This example shows how to display a return code:

Example 6.10. GETRC.CMD (Windows)

/* GETRC.CMD report */
"TYPE nosuch.fil"
say "the return code is" RC

The special variable RC can be used in expressions like any other variable. In the next example, an
error message is displayed when the TYPE command returns a nonzero value in RC:



Subcommand Processing

77

Example 6.11. RC special variable

/* Simple if/then error handler */
say "Type a file name:"
pull filename
"TYPE" filename
if RC \= 0
then say "Could not find" filename

This program tells you only that the system could not find a nonexistent file.

A system error does not stop a Rexx program. Without some provision to stop the program, in this
case a trap,  Rexx continues running. You might have to press the Ctrl+Break key combination to stop
processing. Rexx includes the following instructions for trapping and controlling system errors:

• CALL ON ERROR

• CALL ON FAILURE

• SIGNAL ON ERROR

• SIGNAL ON FAILURE

6.7. Subcommand Processing

Rexx programs can issue commands or subcommands to programs other than Windows. To
determine what subcommands you can issue, refer to the documentation for the application.

To make your own applications scriptable from Rexx, see Chapter 9, Classic Rexx Application
Programming Interfaces.

6.8. Trapping Command Errors

The most efficient way to detect errors from commands is by creating condition traps, using the
SIGNAL ON and CALL ON instructions, with either the ERROR or the FAILURE condition. When used
in a program, these instructions enable, or switch on, a detector in Rexx that tests the result of every
command. Then, if a command signals an error, Rexx stops usual program processing, searches the
program for the appropriate label (ERROR:, or FAILURE:, or a label that you created), and resumes
processing there.

SIGNAL ON and CALL ON also tell Rexx to store the line number (in the Rexx program) of the
command instruction that triggered the condition. Rexx assigns that line number to the special variable
SIGL.  Your program can get more information about what caused the command error  through the
built-in function CONDITION.

Using the SIGNAL and CALL instructions to handle errors has several advantages; namely, that
programs:

• Are easier to read because you can confine error-trapping to a single, common routine



Chapter 6. Commands

78

• Are more flexible because they can respond to errors by clause (SIGL), by return code (RC), or by
other information (CONDITION method or built-in function)

• Can catch problems and react to them before the environment issues an error message

• Are easier to correct because you can turn the traps on and off (SIGNAL OFF and CALL OFF)

For other conditions that can be detected using SIGNAL ON and CALL ON, see the Open Object
Rexx: Reference.

6.8.1. Instructions and Conditions
The instructions to set a trap for errors are SIGNAL and CALL. Example formats are:

SIGNAL ON condition NAME trapname
CALL   ON condition NAME trapname

The SIGNAL ON instruction initiates an exit subroutine that ends the program. The CALL ON
instruction initiates a subroutine that returns processing to the clause immediately following the CALL
ON instruction. You use CALL ON to recover from a command error or failure.

The command conditions that can be trapped are:

ERROR 
Detects any nonzero error code the default environment issues as the result of a Rexx command.

FAILURE 
Detects a severe error, preventing the system from processing the command.

A failure, in this sense, is a particular category of error. If you use SIGNAL ON or CALL ON to set
a trap only for ERROR conditions, then it traps failures as well as other errors. If you also specify a
FAILURE condition, then the ERROR trap ignores failures.

With both the SIGNAL and the CALL instructions, you can specify the name of the trap routine. Add
a NAME keyword followed by the name of the subroutine. If you do not specify the name of the trap
routine, Rexx uses the value of condition as the name (Rexx looks for the label ERROR:, FAILURE:,
and so on).

For more information about other conditions that can be trapped, see the Open Object Rexx:
Reference.

6.8.2. Disabling Traps
To turn off a trap for any part of a program, use the SIGNAL or CALL instructions with the OFF
keyword, such as:

Example 6.12. SIGNAL

SIGNAL OFF ERROR
SIGNAL OFF FAILURE
CALL OFF ERROR
CALL OFF FAILURE



Using SIGNAL ON ERROR

79

6.8.3. Using SIGNAL ON ERROR
The following example shows how a program can use SIGNAL ON to trap a command error in a
program that copies a file. In this example, an error occurs because the name of a nonexistent file is
stored in the variable file1. Processing jumps to the clause following the label ERROR:

6.8.4. Using CALL ON ERROR
If there were a way to recover, such as by typing another file name, you could use CALL ON to
recover and resume processing:

6.8.5. A Common Error-Handling Routine
The following example shows a simple error trap that you can use in many programs:

Example 6.13. Common error handling routine

/* Here is a sample "main program" with an error            */



Chapter 6. Commands

80

signal on error        /* enable error handling             */
"ersae myfiles.*"      /* mistyped "erase" instruction      */
exit

/* And here is a fairly generic error handler for this      */
/* program (and many others...)                             */
error:
say "error" rc "in system call."
say
say "line number =" sigl
say "instruction = "  sourceline(sigl)
exit



Chapter 7.

81

Input and Output
Object Rexx supports a stream I/O model. Using streams, your program reads data from various
devices (such as hard disks, CD-ROMs, and keyboards) as a continuous stream of characters. Your
program also writes data as a continuous stream of characters.

In the stream model, a text file is represented as a stream of characters with special new-line
characters marking the end of each line of text in the stream. A binary file is a stream of characters
without an inherent line structure. A Rexx stream object allows you read from a data stream using
either the text-file line methods or using a continuous data stream method.

The Rexx Stream class is the mechanism for accessing I/O streams. To input or output data, you first
create an instance of the Stream class that represents the device or file you want to use. For example,
the following clause creates a stream object for the file C:\out.dat:

/* Create a stream object for out.dat */
file=.stream~new("c:\out.dat")

Then you use the appropriate stream methods access the data. OUT.DAT is a text file, so you would
normally use the LINES(), LINEIN, and LINEOUT() methods that that read or write data as delimited
lines. If the stream represents a binary file (such as a WAV, GIF, TIF, AVI, or EXE file), you would use
the CHAR, CHARIN, and CHAROUT methods that read and write data as characters.

The Stream class includes additional methods for opening and closing streams, flushing buffers,
seeking, retrieving stream status, and other input/output operations.

7.1. More about Stream Objects
To use streams in Rexx, you create new instances of the Stream class. These stream objects
represent the various data sources and destinations available to your program, such as hard disks,
CD-ROMs, keyboards, displays, printers, serial interfaces, network.

Stream objects can be transient or persistent. An example of a transient (or dynamic) stream object
is a serial interface. Data can be sent or received from serial interfaces, but the data is not stored
permanently by the serial interface itself. Consequently, you cannot, for example, read from a random
position in the data stream—it can only be read as a sequential stream of characters. Once you write
to the stream, the data cannot be read again.

A disk file is an example of a persistent stream object. Because the data is stored on disk, you can
search forward and backward in the stream and reread data that you have previously read. Rexx
maintains separate read and write pointers to a stream that you can move the pointers independently
using arguments on methods such as LINEIN, LINEOUT, CHARIN, and CHAROUT. The Stream class
also provides SEEK and POSITION methods for setting the read and write positions.

7.2. Reading a Text File

The following shows an example of reading a file. Program COUNT.CMD counts the words in a text
file. To run it, enter Rexx COUNT followed by the name of the file to be processed:



Chapter 7. Input and Output

82

rexx count myfile.txt
rexx count r:\rexx\articles\devcon7.scr

COUNT uses the String method WORDS to count the words, so COUNT actually counts whitespace-
delimited tokens:

Example 7.1. COUNT.CMD

/* COUNT.CMD - counts the words in a file                          */
parse arg path              /* Get file name from command line     */
count=0                     /* Initialize a counter                */
file=.stream~new(path)      /* Create a stream object for the file */
do while file~lines<>0      /* Loop as long as there are lines     */
  text=file~linein          /* Read a line from the file           */
  count=count+(text~words)  /* Count words and add to counter      */
end
say count                   /* Display the count                   */

To read a file, COUNT first creates a Stream object for the file by sending the NEW message to the
Stream class. The file name (with or without a path) is specified as an argument on the NEW method.

Within the DO loop, COUNT reads the lines of the file by sending LINEIN messages to the stream
object (pointed to by the variable File). The first LINEIN message causes Rexx to open the file (the
NEW method does not open the file). LINEIN, by default, reads one line from the file, starting at the
current read position.

Rexx returns only the text of the line to your program, but no new-line characters.

The DO loop is controlled by the expression "file~lines<>0". The LINES method returns the number of
lines remaining to be read in the file, so Rexx processes the loop until no lines remain to be read.

In the COUNT program, the LINEIN request forces Rexx to open the file, but you can also open the
file yourself using the OPEN method of the Stream class. By using the OPEN method, you control the
mode in which Rexx opens the file. When Rexx implicitly opens a file because of a LINEIN request,
it tries to open the file for both reading and writing. If that fails, it opens the file for reading. To ensure
that the file is opened only for reading, you can modify COUNT as follows:

Example 7.2. COUNT.CMD

/* COUNT.CMD - counts the words in a file                          */
parse arg path              /* Get file name from command line     */
count=0                     /* Initialize a counter                */
file=.stream~new(path)      /* Create a stream object for the file */
openrc=file~open("read")    /* Open the file for reading           */
if openrc<>"READY:" then do /* Check the return code               */
  say "Could not open" path||"~ RC="||openrc
  exit openrc               /* Bail out                            */
end
do while file~lines<>0      /* Loop as long as there are lines     */
  text=file~linein          /* Read a line from the file           */
  count=count+(text~words)  /* Count words and add to counter      */



Reading a Text File into an Array

83

end
file~close                  /* Close the file                      */
say count                   /* Display the count                   */

The CLOSE method, used near the end of the previous example, closes the file. A CLOSE is not
required. Rexx closes the stream for you when the program ends. However, it is a good idea to
CLOSE streams to make the resource available for other uses.

7.3. Reading a Text File into an Array

Rexx provides a Stream method, named ARRAYIN, that reads the contents of a stream into an array
object. ARRAYIN is convenient when you need to read an entire file into memory for processing. You
can read the entire file with a single Rexx clause--no looping is necessary.

The following example (CVIEW.CMD) uses the ARRAYIN method to read the entire CONFIG.SYS file
into an array object. CVIEW displays selected lines from CONFIG.SYS. A search argument can be
specified when starting CVIEW:

rexx cview libpath

CVIEW prompts for a search argument if you do not specify one.

If CVIEW finds the string, it displays the line on which the string is found. CVIEW continues to prompt
for new search strings until you enter Q in response to the prompt.

Example 7.3. CVIEW.CMD

/* CVIEW - display lines from CONFIG.SYS                               */
parse upper arg search_string      /* Get any command line argument  */
file=.stream~new("c:\config.sys")  /* Create stream object */
lines=file~arrayin                 /* Read file into an array object */
                                   /* LINES points to the array obj. */
loop forever
   if search_string="" then do     /* Prompt for user input          */
      say "Enter a search string or Q to quit:"
      parse upper pull search_string
      if search_string="Q" then exit
   end
   loop i over lines                /* Scan the array                */
      if pos(search_string,translate(i))>0 then do
         say i                      /* Display any line that matches */
         say "="~copies(20)
      end
   end
   search_string=""                 /* Reset for next search         */
end

7.4. Reading Specific Lines of a Text File



Chapter 7. Input and Output

84

You can read a specific line of a text file by entering a line number as an argument on the LINEIN
method. In this example, line 3 is read from CONFIG.SYS:

Example 7.4. LINEIN

/* Read and display line 3 of CONFIG.SYS */
infile=.stream~new("c:\config.sys")
say infile~linein(3)

You do not reduce file I/O by using specific line numbers. Because text files do not have a specific
record length, Rexx must read through the file counting line-end characters to find the line you want.

7.5. Writing a Text File

To write lines of text to a file, you use the LINEOUT method. By default, LINEOUT appends to an
existing file. The following example adds an item to a to-do list that is maintained as a simple text file:

Example 7.5. TODO.CMD

/* TODO.CMD - add to a todo list                              */
parse arg text
file=.stream~new("todo.dat")      /* Create a stream object    */
file~lineout(date() time() text)  /* Append a line to the file */
exit

In TODO, a text string is provided as the only argument on LINEOUT. Rexx writes the line of text to
the file and then writes a new-line character. You do not have to provide a new-line character in the
string to be written.

If you want to overwrite a file, specify a line number as a second argument to position the write pointer:

file~lineout("13760-0006",35)  /* Replace line 35 */

Rexx does not prevent you from overwriting existing new-line characters in the file. Consequently, if
you want to replace a line of the file without overlaying the following lines, the line you write must have
the same length as the line you are replacing. Writing a line that is shorter than an existing line leaves
part of the old line in the file.

Also, positioning the write pointer to line 1 does not replace the file. Rexx starts writing over the
existing data starting at line 1, but if you happen to write fewer bytes than previously existed in the file,
your data is followed by the remainder of the old file.

To replace a file, use the OPEN method with WRITE REPLACE or BOTH REPLACE as an argument.
In the following example, a file named TEMP.DAT is replaced with a random number of lines.



Reading Binary Files

85

TEMP.DAT is then read and displayed. You can run the example repeatedly to verify that TEMP.DAT
is replaced on each run.

Example 7.6. REPFILE.CMD

/* REPFILE.CMD - demonstrates file replacement */
testfile=.stream~new("temp.dat") /* Create a new stream object        */
testfile~open("both replace")    /* Open for read, write, and replace */
numlines=random(1,100)           /* Pick a number from 1 to 100       */
runid=random(1,9999)             /* Pick a run identifier             */
do i=1 to numlines               /* Write the lines                   */
   testfile~lineout("Run ID:"||runid "Line number" i)
end

/*
   Now read and display the file.  The read pointer is already at the
   beginning of the file.  MAKEARRAY reads from the read position to
   the end of the file and returns an array object containing the
   lines.
*/
filedata=testfile~makearray("line")
do i over filedata
   say i
end
testfile~close

The REPFILE example also demonstrates that Rexx maintains separate read and write pointers to a
stream. The read pointer is still at the beginning of the file while the write pointer is at the end of it.

7.6. Reading Binary Files

A binary file is a file whose data is not organized into lines using new-line characters. In most cases,
you use the character I/O methods (such as CHARS, CHARIN, CHAROUT) on these files.

Suppose, for example, that you want to read the data in the CHORD.WAV file (supplied with Windows
multimedia support in c:\winnt) into a variable:

Example 7.7. GETCHORD.CMD

/* GETCHORD - reads CHORD.WAV into a variable           */
chordf=.stream~new("c:\winnt\chord.wav")
say "Number of characters in the file=" chordf~chars

/* Read the whole WAV file into a single Rexx variable. */
/* Rexx variables are limited by available memory.      */
mychord=chordf~charin(1,chordf~chars)
say "Number of characters read into variable" mychord~length

The CHARIN method returns a string of characters from the stream, which in this case is
CHORD.WAV. CHARIN accepts two optional arguments. If no arguments are specified, CHARIN
reads one character from the current read position and then advances the read pointer.



Chapter 7. Input and Output

86

The first argument is a start position for reading the file. In the example, 1 is specified so that CHARIN
begins reading with the first character of the file. Omitting the first argument achieves the same result.

The second argument specifies how many characters are to be read. To read all the characters,
infile~chars was specified as the second argument. The CHARS method returns the number of
characters remaining to be read in the input stream receiving the message. CHARIN then returns all
the characters in the stream. CHORD.WAV has about 25000 characters.

7.7. Reading Text Files a Character at a Time

You can use the CHARIN and other character methods on text files. Because you read the file as
characters CHARIN returns the  line-end characters to your program. Line methods, on the contrary,
do not return the line-end characters to your program.

The line-end characters on Windows consist of a carriage return (ASCII value of 13) and a line feed
(ASCII value of 10). The line-end characters on Unix/Linux consist of a line feed (ASCII value of
10). Rexx adds these characters to the end of every line written using the LINEOUT method. Text-
processing applications, such as the Windows Notepad, also add the characters. When reading a
text file with CHARIN, interpret an ASCII sequence of 13 followed by 10 as the end of a line. As a
convenience, Rexx has an environment symbol name .ENDOFLINE that contains the linend sequence
used by the Stream class on the current system.

As an example, run the following program. It writes lines to a file using LINEOUT and then reads those
lines using CHARIN. You can mix line methods and character methods. Rexx maintains separate read
and write pointers, so there is no need to close the file or search for another position before reading
the lines just written.

Example 7.8. LINECHAR.CMD

/* LINECHAR.CMD - demonstrate line end characters                   */
file=.stream~new("test.dat")  /* Create a new stream object         */

file~open("both replace")  /* Open the file for reading and writing */
do i=1 to 3                /* Write three lines to the file         */
   file~lineout("Line" i)
end /* do */

do while file~chars<>0     /* Read the file a character at a time   */
   byte=file~charin        /* Read a character                      */
   ascii_value=byte~c2d    /* Convert character to a decimal value  */
   if ascii_value=13 then        /* Carriage return?                */
      say "Carriage return"
   else if ascii_value=10 then   /* Line feed?                      */
      say "Line feed"
   else say byte ascii_value     /* Ordinary character              */
end /* do */
file~close                       /* Close the file                  */

It is not recommended to use line methods to read binary files. Your binary file might not contain any
new-line characters. And, if it did, the characters probably are not meant to be interpreted as new-line
characters.



Writing Binary Files

87

7.8. Writing Binary Files

To write a binary file, you use CHAROUT. CHAROUT writes only the characters that you specify in an
argument of the method. CHAROUT does not add carriage-return and line-feed characters to the end
of the string. Here is an example:

Example 7.9. JACK.CMD

/* JACK.CMD - demonstrate that CHAROUT does not add new-line characters  */
filebin=.stream~new("binary.dat")   /* Create a new stream object       */
filebin~open("replace")             /* Open the file for replacement    */
do i=1 to 50                        /* Write fifty strings              */
  filebin~charout("All work and no play makes Jack a dull boy. ")
end
filebin~close                  /* Close the file so we can display it   */
"type binary.dat"              /* Use the TYPE command to display file  */

Because new-line characters are not added, the text displayed by the TYPE command is
concatenated.

CHAROUT writes the string specified and advances the write pointer. If you want to position the write
pointer before writing the string, specify the starting position as a second argument:

filebin~charout("Jack is loosing it.",30) /* start writing at character 30 */

In the example, the file is explicitly opened and closed. If you do not open the file, Rexx attempts
to open the file for both reading and writing. If you do not close the file, Rexx closes it when the
procedure ends.

7.9. Closing Files

If you do not explicitly close a file, Rexx closes the file when the Stream object is reclaimed by the
garbage collector. This frequently does not occur until your program exits, so it is good practice to
explicitly close files when you are finished with them.

7.10. Direct File Access

Rexx provides several ways for you to read records of a file directly (that is, in random order). The
following example, DIRECT.CMD, shows several cases that illustrate some of your options.

DIRECT opens a file for both reading and writing, which is indicated by the BOTH argument of the
OPEN method. The REPLACE argument of the OPEN method causes any existing DIRECT.DAT file
to be replaced.

The OPEN method also has the arguments BINARY and RECLENGTH, which are useful for direct file
access.



Chapter 7. Input and Output

88

The BINARY argument opens the stream in binary mode, which means that line-end characters are
ignored. Binary mode is useful if you want to process binary data using line methods. It is easier to
use line methods for direct access. With line methods, you can search a position in a file using line
numbers. With character methods, you must calculate the character displacement of the file.

The RECLENGTH argument defines a record length of 50 for the file. It enables you to use line
methods in a binary-mode stream. Because Rexx now knows how long each record is, it can calculate
the displacement of the file for a given record number and read the record directly.

Example 7.10. DIRECT.CMD

/* DIRECT.CMD - demonstration of direct file access       */
db=.stream~new("direct.dat")
db~open("both replace binary reclength 50")

/* Write three records of 50 bytes each using LINEOUT     */
db~lineout("Cole, Gary:  Blue")
db~lineout("McGuire, Rick: Red")
db~lineout("Pritko, Steve: Red. Oops.. I mean blue!")

/* Case 1: Read the records in order using LINEIN.        */
say "Case 1: Sequential reads with LINEIN..."
do i=1 to 3
   say db~linein
end
say "Press Enter to continue"; parse pull resp

/* Case 2: Read records in random order using LINEIN      */
say "Case 2: Random reads with LINEIN..."
do i=1 to 5
   lineno=random(1,3)
   say "Record" lineno "=" db~linein(lineno)
end
say "Press Enter to continue"; parse pull resp

/* Case 3: Read entire file with CHARIN                   */
say "Case 3: Read entire file with a single CHARIN..."
say db~charin(1,150)
say "Press Enter to continue"; parse pull resp

/* Case 4: Read file sequentially with CHARIN             */
say "Case 4: Sequential reads with CHARIN..."
db~seek(1 read)         /* Reposition read pointer        */
do i=1 to 3
   say db~charin(,50)
end
say "Press Enter to continue"; parse pull resp

/* Case 5: Read records in random order with CHARIN       */
say "Case 5: Random reads with CHARIN..."
do i=1 to 5
   lineno=random(1,3)
   charno=((lineno-1)*50)+1
   say "Record" lineno "Character" charno "=" db~charin(charno,50)
end
say "Press Enter to continue"; parse pull resp

/* Case 6: Write records in random order with LINEOUT     */
say "Case 6: Replace record 2 with LINEOUT"
db~lineout("This should replace line 2",2)
do i=1 to 3
   say db~linein(i)
end



Direct File Access

89

say "Press Enter to continue"; parse pull resp

/* Case 7: Write records in random order with CHAROUT     */
say "Case 7: Replace record 2 with CHARIN..."
db~charout("New record 2 from CHAROUT"~left(50,"."),51)
db~seek(1 read)         /* Reposition read pointer        */
do i=1 to 3
   say db~charin(,50)
end
say "Press Enter to continue"; parse pull resp
db~close

After opening the file, DIRECT writes three records using LINEOUT. The records are not padded to 50
characters. Rexx handles that. Because the file is opened in binary mode, Rexx does not write line-
end characters at the end of each line. It only writes the strings one after another to the stream.

In Case 1, the LINEIN method is used to read the file. Because the file is open in binary mode, LINEIN
does not look for line-end characters to mark the end of a line. Instead, it relies on the record length
that you specify on open. In fact, if there were a carriage-return or line-feed sequence of the line, Rexx
would return those characters to your program.

Case 2 demonstrates how to read the file in random order. In this case, the RANDOM function is used
to choose a record to be retrieved. Then the desired record number is specified as an argument on
LINEIN. Note that records are numbered starting from 1, not from 0. Because the file is opened in
binary mode, Rexx does not look for line-end characters. It uses the RECLENGTH to determine where
to read. The LINEIN method can, therefore, retrieve a line directly, without having to scan through the
file counting line-end characters.

Case 3 proves that no line-end characters exist in the file. The CHARIN method reads the entire file.
SAY displays the returned string as one long string. If Rexx inserted line-end characters, each record
would be displayed on a separate line.

Case 4 shows how to read the binary mode file sequentially using CHARIN. But before reading the
file, the read pointer must be reset to the beginning of the file. (Case 3 leaves the read pointer at the
end of the file.) The SEEK method resets the read pointer to character 1, which is the beginning of the
file. As with lines, Rexx numbers characters starting with 1, not 0. Position 1 is the first character of the
file.

By default, the number specified with SEEK refers to a character position. You can also search by
line number or by offsets. SEEK allows offsets from the current read or write position, or from the
beginning or ending of the file. If you prefer typing longer method names, you can use POSITION as a
synonym for SEEK.

In the loop of Case 4, the first argument on CHARIN is omitted. The first argument tells where to
position the read pointer. If it is omitted, Rexx automatically advances the read pointer based on the
number of characters you are reading.

Case 5 demonstrates how to read records in random order with CHARIN. In the loop, a random record
number is selected and assigned to variable lineno. This record number is then converted to a
character number, which can be used to specify the read position on CHARIN. Compare Case 5 with
Case 2. In Case 2, which uses line methods, it is not necessary to perform a calculation, you just
request the record you want.

Cases 6 and 7 write records in random order. Case 6 uses LINEOUT, while Case 7 uses CHAROUT.
Because the file is opened in binary mode, LINEOUT does not write line-end characters. You can write
over a line by specifying a line number. With CHAROUT, you need to calculate the character position



Chapter 7. Input and Output

90

of the line to be replaced. Unlike LINEOUT, you need to ensure that the string being written with
CHAROUT is padded to the appropriate record length. Otherwise, part of the record being replaced
remains in the file.

Consequently, for random reading of files with fixed length records, line methods are often the better
choice. However, one limitation of the line methods is that you cannot use them to write sparse
records. That is, if a file already has 200 records, you can use LINEOUT to write record 201, but you
cannot use LINEOUT to write record 300. With CHAROUT, however, you can open a new file and
start writing at character position 5000 if you choose.

7.11. Checking for the Existence of a File

To check for the existence of a file, you use the QUERY method of the Stream class. The following
ISTHERE.CMD program accepts a file name as a command line argument and checks for the
existence of that file.

Example 7.11. ISTHERE.CMD

/* ISTHERE.CMD - test for the existence of a file        */
parse arg fid                    /* Get the file name    */
qfile=.stream~new(fid)           /* Create stream object */
if qfile~query("exists")="" then /* Check for existence  */
   say fid "does not exist."
else
   say fid "exists."

In the example, a stream object is created for the file even though it might not exist. This is acceptable
because the file is not opened when the stream object is created.

The QUERY method accepts one argument. To check for the existence of a file, you specify the string
"exists" as previously shown. If the file exists, QUERY returns the full-path specification of the
stream object. Otherwise, QUERY returns a null string.

7.12. Getting Other Information about a File

The QUERY method can also return date and time stamps, read position, write position, the size of the
file, and so on. The following example shows most of the QUERY arguments.

Example 7.12. INFOON.CMD

/* INFOON.CMD - display information about a file */
parse arg fid
qfile=.stream~new(fid)
fullpath=qfile~query("exists")
if fullpath="" then do
   say fid "does not exist."
   exit
end
qfile~open("both")



Using Standard I/O

91

say ""
say "Full path name:" fullpath
say "Date and time stamps (U.S. format):" qfile~query("datetime")
say "            (International format):" qfile~query("timestamp")
say ""
say "Handle associated with stream:" qfile~query("handle")
say "                  Stream type:" qfile~query("streamtype")
say ""
say "          Size of the file (characters):" qfile~query("size")
say " Read position (in terms of characters):" qfile~query("seek read")
say "Write position (in terms of characters):" qfile~query("seek write")
qfile~close

7.13. Using Standard I/O

All of the preceding topics dealt with the reading and writing of files. You can use the same methods to
read from standard input (usually the keyboard) and to write to standard output (usually the display).
You can also use the methods to write to the standard error stream. In Object Rexx, these default
streams are represented by public objects of the Monitor class: .input, .output, and .error.

The streams STDIN, STDOUT, and STDERR are transient streams. For transient streams, you cannot
use any method or method argument for positioning the read and write pointers. You cannot, for
example, use the SEEK method on STDOUT.

Writing to STDOUT has the same effect as using the SAY instruction. However, the SAY instruction
always writes line-end characters at the end of the string. By using the CHAROUT method to write to
STDOUT, you can control when line-end characters are written.

The following example shows a modified COUNT program previously shown in Section 7.2, “Reading
a Text File”. COUNT has been modified to display a progress indicator. For every line processed,
COUNT now uses CHAROUT to display a single period. COUNT does not write any line-end
characters, so the periods wrap to the next line when they reach the end of the line in the Windows
window.

Example 7.13. Modified COUNT.CMD

                            /* count counts the words in a file */
parse arg path                          /* Get the file name    */
count=0                                 /* Initialize the count */
file=.stream~new(path)        /* Create a stream object for the input file */
do while file~lines<>0        /* Process each line of the file */
   text=file~linein           /* Read a line                   */
   count=count+(text~words)   /* Count blank-delimited tokens  */
   .output~charout(".")       /* Write period to STDOUT        */
end
say ""
say count

Reading from STDIN using LINEIN is similar to reading with the PARSE PULL instruction:

Example 7.14. INEXAM.CMD



Chapter 7. Input and Output

92

/* INEXAM.CMD - example of reading STDIN with LINEIN  */

/* Prompt for input with SAY and PARSE instructions   */
say "What is your name?"
parse pull response
say "Hi" response
say ""

/* Now prompt using LINEOUT and LINEIN                */
.output~lineout("What is your name?")
response=.input~linein
.output~lineout("Hi" response)

Using character methods with STDIN and STDOUT gives you more control over the reading and
writing of line-end characters. In the following example, the prompting string is written to STDOUT
using CHAROUT. Because CHAROUT does not add any line-end characters to the stream, the
display cursor is positioned after the prompt string on the same line.

Example 7.15. INCHAR.CMD

/* INCHAR.CMD - example of reading STDIN with CHARIN  */
.output~charout("What is your name? ")
response=.input~charin(,10)
.output~charout("Hi" response)

CHARIN is used to read the user's response. The user's keystrokes are not returned to your program
until the user presses the Enter key. In the example, a length of 10 is specified. If fewer characters
than the specified length are available, CHARIN waits until they become available. Otherwise, the
characters are returned to your program. CHARIN does not strip any carriage-return or line-feed
characters before returning the string to your program. You can observe this with INCHAR by typing
several strings that have less than ten characters and pressing Enter after each string:

[C:\]inchar
What is your name? John
Q.
Public
Hi John
Q.
Pu

7.14. Using Windows Devices

You can use Windows devices by substituting a device name (such as PRN, LPT1, LPT2, COM1, and
so on) for the file name when you create a stream object. Then use line or character methods to read
or write the device.

The following example sends data to a printer (device name PRN in the example). In addition to
sending text data, the example also sends a control character for starting a new page. You can send



Using Windows Devices

93

other control characters or escape sequences in a similar manner. (Generally, these are listed in the
manual for the device.)

Usually the control characters are characters that you cannot type at the keyboard. To use them in
your program, send a D2C message to the character's ASCII value as shown in the example.

Example 7.16. PRINTIT.CMD

/* PRINTIT.CMD - Prints a text file                                    */
say "Type file name: "           /* prompt for a file name */
pull filename                    /* ...and get it from the user        */
infile=.stream~new(filename)
printer=.stream~new("prn:")

newpage = 12~d2c                  /* save page-eject character         */

/* Repeat this loop until no lines remain in the file */
/* and keep track of the line count with COUNT        */

do count = 1 until filename~lines = 0
   if printer~lineout(infile~linein) <>0 then do
      say "Error: unable to write to printer"
      leave
   end
   if count // 50 = 0 then                 /* if the line count is a */
      printer~charout(newpage)             /* multiple of 50, then   */
                                           /* start a new page by    */
                                           /* sending the form feed  */

end                               /* go back to the start of loop    */
                                  /* until no lines remain           */

infile~close                      /* close the file                  */
exit                              /* end the program normally        */



94



Chapter 8.

95

Rexx C++ Application Programming
Interfaces
This chapter describes how to interface applications to Rexx or extend the Rexx language by using
Rexx C++ application programming interfaces (APIs). As used here, the term application refers to
programs written in C++.

The features described here let a C++ application extend many parts of the Rexx language or extend
an application with Rexx. This includes creating handlers for Rexx methods, external functions, and
system exits.

Rexx methods
are methods for Rexx classes written in C++. The methods reside in dynamically loaded external
shared libraries.

Functions
are function extensions of the Rexx language written in C++. Like the native methods, functions
are packaged in external libraries. Functions can be general-purpose extensions or specific to an
application.

Command Handlers
are programmer-defined handlers for named command environments. The application
programmer can tailor the Rexx interpreter behavior by creating named command environments to
interfacing with application environments.

System exits
are programmer-defined variations of the interpreter. The application programmer can tailor the
Rexx interpreter behavior by using the defined exit points to control Rexx resources.

Methods, functions, system exit handlers, and command handlers have similar coding, compilation,
and packaging characteristics.

In addition, applications can call methods defined of Rexx objects and execute them from externally
defined methods and functions.

8.1. Rexx Interpreter API
Rexx programs run in an environment controlled by an interpreter instance. An interpreter instance
environment is created with an enable set of exit handlers and a customized environment. An instance
may have multiple active threads and each interpreter instance has a unique version of the .local
environment directory, allowing programs to run with some degree of isolation.

If you use the older RexxStart (Section 9.3.3, “The RexxStart Function”) API to run a Rexx program,
the Rexx environment initializes, runs a single program, and the environment is terminated. With the
RexxCreateInterpreter() API, you have fine grain control over how the environment is used. You are
able to create a tailored environment, perform multiple operations (potentially, on multiple threads),
create objects that persist for longer than the life of a single program, etc. An application can create an
interpreter instance once, and reuse it to run multiple programs.

Interpreter environments are created using the RexxCreateInterpreter() (Section 8.1.1,
“RexxCreateInterpreter”) API:



Chapter 8. Rexx C++ Application Programming Interfaces

96

Example 8.1. API - Rexx CreateInterpreter

RexxInstance *instance;
RexxThreadContext *threadContext;
RexxOption options[25];

if (RexxCreateInterpreter(&instance, &threadContext, options)) {
…
}

Once you've created an interpreter instance, you can use the APIs provided by the RexxInstance or
RexxThreadContext interface to perform operations like running programs, loading class packages,
etc. For example, the following code will run a program using a created instance, checking for syntax
errors upon completion:

Example 8.2. API - RexxInstance and RexxThreadContext

    // create an Array object to hold the program arguments
    RexxArrayObject args = threadContext->NewArray(instanceInfo->argCount);
    // we're passing a variable number of arguments, so we need to create
    // String objects and insert them into the array
    for (size_t i = 0; i < argCount; i++)
    {
        if (arguments[i] != NULL)
        {
            // add the argument to the array, if specified.  Note that ArrayPut() requires
 an
            // index that is origin-1, unlike C arrays which are origin-0.
            threadContext->ArrayPut(args, threadContext->String(arguments[i]), i + 1);
        }
    }

    // call our program, using the provided arguments.
    RexxObjectPtr result = threadContext->CallProgram("myprogram.rex", args);
    // if an error occurred, get the decoded exception information
    if (threadContext->CheckCondition())
    {
        RexxCondition condition;

        // retrieve the error information and get it into a decoded form
        RexxDirectoryObject cond = threadContext->GetConditionInfo();
        threadContext->DecodeConditionInfo(cond, &condition);
        // display the errors
        printf("error %d: %s\n%s\n", condition.code, threadContext-
>CString(condition.errortext),
           threadContext->CString(condition.message));
    }
    else
    {
        // Copy any return value as a string
        if (result != NULLOBJECT)
        {
            CSTRING resultString = threadContext->CString(result);
            strncpy(returnResult, resultString, sizeof(returnResult));
        }
    }
    // make sure we terminate this first
    instance->Terminate();



RexxCreateInterpreter

97

The example above creates a Rexx String object for each program argument stores them in a Rexx
array. It then uses CallProgram() (Section 8.16.18, “CallProgram”) to call "myprogram.rex", passing
the array object as the program arguments. On return, if the program terminated with a Rexx SYNTAX
error, it displays the error message to the console. Finally, if the program exited normally and returned
a value, the ASCII-Z value of that result is copied to a buffer. As a final step, the interpreter instance is
destroyed once we're finished using it.

8.1.1. RexxCreateInterpreter

RexxCreateInterpreter creates an interpreter instance and an associated thread context interface for
the current thread.

Example 8.3. API - RexxInstance and RexxThreadContext

RexxInstance *instance;
RexxThreadContext *threadContext;
RexxOption options[25];

if (RexxCreateInterpreter(&instance, &threadContext, options)) {
…
}

Arguments

instance The returned RexxInstance interface vector. The interface vector provides access
to APIs that apply to the global interpreter environment.

threadContext The returned RexxThreadContext interface vector for the thread that creates the
interpreter instance. The thread context vector provides access to thread-specific
services.

options An array of RexxOption structures that control the interpreter instance initialization.
See Section 8.1.2, “Interpreter Instance Options” for details on the available
options.

Returns

1 (TRUE) if the interpreter instance was successfully created, 0 (FALSE) for any failure to create the
interpreter.

8.1.2. Interpreter Instance Options
The third argument to RexxCreateInterpreter is an options array that sets characteristics of the
interpreter instance. The options argument points to an array of RexxOption structures, and can be
NULL if no options are required. Each RexxOption instance contains information for named options
that can be specified in any order and even multiple times. The oorexxapi.h include file contains a
#define for each option name. The information required by an option varies with each option type,
and is specified using a ValueDescriptor struct to handle a variety of data types. An entry with a NULL
option name terminates the option list. The available interpreter options are:



Chapter 8. Rexx C++ Application Programming Interfaces

98

INITIAL_ADDRESS_ENVIRONMENT
Contains the ASCII-Z name of the initial address environment that will be used for all Rexx
programs run under this instance.

Example 8.4. API - RexxOption

RexxOption options[2];

options[0].optionName = INITIAL_ADDRESS_ENVIRONMENT;
options[0].option = "EDITOR";
options[1].optionName = NULL;

APPLICATION_DATA
Contains a void * value that will be stored with the interpreter instance. The application data can
be retrieved using the GetApplicationData() (Section 8.16.44, “GetApplicationData”) API. The
application data pointer allows methods, functions, exits, and command handlers to recover
access to globally defined application data.

Example 8.5. API - RexxOption

RexxOption options[2];

options[0].optionName = APPLICATION_DATA;
options[0].option = (void *)editorInfo;
options[1].optionName = NULL;

EXTERNAL_CALL_PATH
Contains an ASCII-Z string defining an additional search path that is used when searching
for Rexx program files. The call path string uses the format appropriate for the host platform
environment. On Windows, the path elements are separated by semicolons (;). On Unix-based
systems, a colon (:) is used.

Example 8.6. API - RexxOption

RexxOption options[2];

options[0].optionName = EXTERNAL_CALL_PATH;
options[0].option = myCallPath;
options[1].optionName = NULL;

EXTERNAL_CALL_EXTENSIONS
Contains an ASCII-Z string defining a list of extensions that will be used when searching for Rexx
program files. The specified extensions must include the extension ".". Multiple extensions are
separated by a comma (,).

Example 8.7. API - RexxOption

RexxOption options[2];

options[0].optionName = EXTERNAL_CALL_EXTENSIONS;



Interpreter Instance Options

99

options[0].option = ".ed,.mac";  // add ".ed" and ".mac" to search path.
options[1].optionName = NULL;

LOAD_REQUIRED_LIBRARY
Specifies the name of an external native library that will be loaded once the interpreter instance
is created. The library name is an ASCII-Z string with the library name in the same format used
for ::REQUIRED LIBRARY. Multiple libraries can be loaded by specifying this option multiple
times.

Example 8.8. API - RexxOption

RexxOption options[2];

options[0].optionName = LOAD_REQUIRED_LIBRARY;
options[0].option = "rxmath";
options[1].optionName = NULL;

REGISTER_LIBRARY
Specifies a package that will be registerd with the Rexx environment without loading an external
library. The library is specified with a RexxLibraryPackage structure that gives the library name
and a pointer to the associated RexxPackageEntry (Section 8.11, “Building an External Native
Library”) table that describes the package contents. The library name is an ASCII-Z string with
the library name in the same format used for ::REQUIRED LIBRARY. Multiple libraries can be
registered by specifying this option multiple times.

Example 8.9. API - RexxOption

RexxOption options[2];
RexxLibraryPackage package;

package.registeredName = "mypackage";
package.table = packageTable;

options[0].optionName = REGISTER_LIBRARY;
options[0].option = (void *)&package;
options[1].optionName = NULL;

DIRECT_EXITS
Specifies a list of system exits that will be used with this interpreter instance. The exits are a list
of RexxContextExit structs. Each enabled exit is specified in a single RexxContextExit struct that
identifies exit type and handler entry point. The list is terminated by an instance using an exit type
of 0. The direct exits are called using the RexxExitContext calling convention. See Section 8.14,
“Rexx Exits Interface” for details.

Example 8.10. API - RexxOption

RexxContextExit exits[2];
RexxOption options[2];

exits[0].handler = functionExit;
exits[0].sysexit_code = RXOFNC;



Chapter 8. Rexx C++ Application Programming Interfaces

100

exits[1].sysexit_code = 0;

options[0].optionName = DIRECT_EXITS;
options[0].option = (void *)exits;
options[1].optionName = NULL;

DIRECT_ENVIRONMENTS
Registers one or more subcommand handler environments with the interpreter instance. The
handlers are a list of RexxContextEnvironment structs. Each enabled handler is specified in a
single RexxContextEnvironment struct identifying the handler name and entry point. The list is
terminated by an instance using a handler name of NULL. The direct environment handlers are
called using the calling convention described in Section 8.15, “Command Handler Interface”.

Example 8.11. API - RexxOption

RexxContextEnvironment environments[2];
RexxOption options[2];

environments[0].handler = editorHandler;
environments[0].name = "EDITOR";
environments[1].name = NULL;

options[0].optionName = DIRECT_ENVIRONMENTS;
options[0].option = (void *)environments;
options[1].optionName = NULL;

REGISTERED_EXITS
Specifies a list of system exits that will be used with this interpreter instance. The exits are a list
of RexxContextExit structs. Each enabled exit is specified in a single RexxContextExit struct
identifying the type of the exit and the name of the registered exit handler. The list is terminated
by an instance using an exit type of 0. The registered exits are called using the RexxExitHandler
calling convention. See Section 9.6, “Registered System Exit Interface” for details.

Example 8.12. API - RexxOption

RXSYSEXIT exits[2];
RexxOption options[2];

exits[0].sysexit_name = "MyFunctionExit";
exits[0].sysexit_code = RXOFNC;
exits[1].sysexit_code = 0;

options[0].optionName = REGISTERED_EXITS;
options[0].option = (void *)exits;
options[1].optionName = NULL;

REGISTERED_ENVIRONMENTS
Registers one or more subcommand handler environments with the interpreter instance. The
handlers are a list of RexxRegisteredEnvironment structs. Each enabled handler is specified
in a single RexxRegisteredEnvironment struct identifying the name of the environment and the
registered subcom handler name. The list is terminated by an instance using a handler name



Data Types Used in APIs

101

of NULL. The direct environment handlers are called using the calling convention described in
Section 9.4, “Subcommand Interface”.

Example 8.13. API - RexxOption

RexxRegisteredEnvironment environments[2];
RexxOption options[2];

environments[0].registeredName = "MyEditorName";
environments[0].name = "EDITOR";
environments[1].name = NULL;

options[0].optionName = REGISTERED_ENVIRONMENTS;
options[0].option = (void *)environments;
options[1].optionName = NULL;

8.2. Data Types Used in APIs
The ooRexx APIs rely on a variety of special C++ types for interfacing with the interpreter. Some
of these types are specific to the Rexx language, while others are standard types defined by C++.
Many of the APIs involve conversion between types, while others require values of a specific type as
arguments. This section explains the different types and the rules for using these types.

8.2.1. Rexx Object Types
Open Object Rexx is fundamentally an object-oriented language. All data in the language (including
strings and numbers) are represented by object instances. The ooRexx APIs use a number of opaque
types that represent instances of Rexx built-in objects. The defined object types are:

RexxObjectPtr a reference to a Rexx object instance. This is the root of object hierarchy
and can represent any type of object.

RexxStringObject an instance of the Rexx String class. The API set allows String objects to
be created and manipulated.

RexxBufferStringObject an instance of the Rexx String class that can be written into. Buffer strings
are used for constructing String objects "in-place" to avoid needing to
create a String from a separate buffer. RexxBufferStringObject instances
must be finalized to be converted into a usable Rexx String object.

RexxArrayObject An instance of a Rexx single-dimension array. Arrays are used in many
places, and there are interfaces provided for direct array manipulation.

RexxDirectoryObject An instance of Rexx Directory class. Like arrays, there are APIs provided
for access and manipulating data stored in a directory.

RexxStemObject An instance of the Rexx Stem class. The APIs include a number of utility
routines for accessing and manipulating data in Stem objects.

RexxSupplierObject An instance of the Rexx Supplier class.

RexxClassObject An instance of the Rexx Class class.

RexxPackageObject An instance of the Rexx Package class.

RexxMethodObject An instance of the Rexx Method class.

RexxRoutineObject An instance of the Rexx Routine class. Routine objects can be invoked
directly from C++ code.



Chapter 8. Rexx C++ Application Programming Interfaces

102

RexxPointerObject A wrapper around a pointer value. Pointer objects are designed for
constructing Rexx classes that interface with native code subsystems.

RexxBufferObject An allocatable storage object that can be used for storing native C++ data.
Buffer objects and the contained data are managed using the Rexx object
garbage collector.

RexxMutableBufferObjectAn instance of the Rexx MutableBuffer class.

8.2.2. Rexx Numeric Types
The Routine and Method interfaces support a very complete set of C numeric types as arguments
and return values. In addition, there are also APIs provided for converting between Rexx Objects and
numeric types (and the reverse transformation as well). It is recommended that you allow the Rexx
runtime and APIs to handle conversions between Rexx strings and numeric types to give behavior
consistent with the Rexx built-in methods and functions.

In addition to a full set of standard numeric types, there are special types provided that implement the
standard Rexx rules for numbers used internally by Rexx. These types are:

wholenumber_t conversions involving the wholenumber_t conform to the Rexx whole number
rules. Values are converted using the same internal digits value used by the
built-in functions. For 32-bit versions, this is numeric digits 9, giving a range of
999,999,999 to -999,999,999. On 64-bit systems, numeric digits 18 is used,
giving a range of 999,999,999,999,999,999 to -999,999,999,999,999,999.

stringsize_t stringsize_t conversions also conform to the Rexx whole number rules, with the
added restriction that the value must be a non-negative whole number value.
The stringsize_t type is useful for arguments such as string lengths where only
a non-negative value is allowed. The range for 32-bit versions is 999,999,999 to
0, and 999,999,999,999,999,999 to 0 on 64-bit platforms.

logical_t a Rexx logical value. On conversion from a string value, this must be either
'1' (true) or '0' (false). On conversion back to a string value, a non-zero binary
value will be converted to '1' (true) and zero will become '0' (false).

A subset of the integer numeric types are of differing sizes depending on the addressing mode of the
system you are compiling on. These types will be either 32-bits or 64-bits. The variable size types are:

size_t An unsigned "size" value. This is the value type returned by pointer subtraction.

ssize_t The signed equivalent to size_t.

uintptr_t An unsigned integer value that's guaranteed to be the same size as a pointer
value. Use an uintptr_t type if you wish to return a pointer value as a Rexx
number.

intptr_t A signed equivalent to uintptr_t.

The remainder of the numeric types have fixed sizes regardless of the addressing mode.

int A 32-bit signed integer.

int32_t A 32-bit signed integer. This is equivalent to int.

uint32_t An unsigned 32-bit integer.

int64_t A signed 64-bit integer.

uint64_t An unsigned 64-bit integer.



Introduction to API Vectors

103

int16_t A signed 16-bit integer.

uint16_t An unsigned 16-bit integer.

int8_t A signed 8-bit integer.

uint8_t An unsigned 8-bit integer.

float A 32-bit floating point number. When used as an argument to a routine or
method, the strings "nan", "+infinity", and "-infinity" will be converted into
the appropriate floating-point values. The reverse conversion is used when
converting floating-point values back into Rexx objects.

double A 64-bit floating point number. The Rexx runtime applies the same special
processing for nan, +infinity, and -infinity values as float types.

8.3. Introduction to API Vectors
The Rexx APIs operate through a set of interface vectors that define a set of interpreter services that
are available. There are different interface vectors used for different contexts, but they use very similar
calling concepts.

The first interface vector you'll encounter with the programming interfaces is the RexxInstance value
returned by RexxCreateInterpreter. The RexxInstance type is defined as a struct when compiled for C
code, or a C++ class when compiled for ++. The struct version looks like this:

Example 8.14. API - RexxInstance

struct RexxInstance_
{
    RexxInstanceInterface *functions;   // the interface function vector
    void *applicationData;              // creator defined data pointer
};

The field applicationData contains any value that was specified via the APPLICATION_DATA option
on the RexxCreateInterpreter call. This provides easy access any application-specific data needed
to interact with the interpreter. All other interface contexts will include a pointer to the RexxInstance
structure, so it is always possible to recover this data pointer.

The functions field is a pointer to a second structure that defines the RexxInstance programming
interfaces. The RexxInstance services are ones that may be called from any thread and in any
context. The services are called using C function pointer fields in the interface structure. The
RexxInstanceInterface looks like this:

Example 8.15. API - RexxInstanceInterface

typedef struct
{
    wholenumber_t interfaceVersion;    // The interface version identifier

    void        (RexxEntry *Terminate)(RexxInstance *);
    logical_t   (RexxEntry *AttachThread)(RexxInstance *, RexxThreadContext **);
    size_t      (RexxEntry *InterpreterVersion)(RexxInstance *);
    size_t      (RexxEntry *LanguageLevel)(RexxInstance *);
    void        (RexxEntry *Halt)(RexxInstance *);
    void        (RexxEntry *SetTrace)(RexxInstance *, logical_t);
} RexxInstanceInterface;



Chapter 8. Rexx C++ Application Programming Interfaces

104

The first thing to note is the interface struct contains a field named interfaceVersion. The
interfaceVersion field is a version marker that defines the services the interpreter version supports.
This interface version is incremented any time new functions are added to the interface. Using
the interface version allows application code to reliably check that required interface functions are
available.

The remainder of the fields are functions that can be called to perform RexxInstance operations. Note
that the first argument to all of the functions is a pointer to a RexxInstance structure. A call to the
InterpreterVersion API from C code would look like this:

size_t version = context->functions->InterpreterVersion(context);

When using C++ code, the RexxThreadContext struct has convenience methods that simplify calling
these functions:

size_t version = context->InterpreterVersion();

Note that in the C++ call, it is no longer necessary to pass the RexxInstance as the first object. That's
handled automatically by the C++ method.

The RexxThreadContext pointer returned from RexxCreateInterpreter() functions the same way.
RexxThreadContext looks like this:

Example 8.16. API - RexxThreadContext

struct RexxThreadContext_
{
    RexxInstance *instance;             // the owning instance
    RexxThreadInterface *functions;     // the interface function vector
}

The RexxThreadContext struct contains an embedded RexxInstance pointer for the associated
interpreter instance. It also contains an interface vector for the functions available with a
RexxThreadContext. The RexxThreadInterface vector has its own version identifier and
function pointer for each of the defined services. The RexxThreadContext functions all require a
RexxThreadContext pointer as the first argument. The RexxThreadContext class also defines C+
+ convenience methods for accessing its own functions and the functions for the RexxInstance as
well. For example, to call the InterpreterVersion() API using a RexxThreadContext from C code, it is
necessary to code

size_t version = context->instance->functions->InterpreterVersion(context->instance);

The C++ version is simply

// context is a RexxThreadContext *
size_t version = context->InterpreterVersion();

When the Rexx interpreter makes calls to native code routines and methods, or invokes exit
handlers, the calls use context structures specific to the call context. These are the RexxCallContext



Threading Considerations

105

(Section 8.9, “Rexx Call Context Interface”), RexxMethodContext (Section 8.8, “Rexx Method
Context Interface”), and RexxExitContext (Section 8.10, “Rexx Exit Context Interface” structures.
Each structure contains a pointer to a RexxThreadContext instance that's valid until the call returns.
Through the embedded RexxThreadContext, each call may use any of the RexxThreadContext
or RexxInstance functions in addition to the context-specific functions. Each context defines C++
methods for the embedded RexxInstance and RexxThreadContext functions.

Note that the RexxInstance interface can be used at any time and on any thread. The
RexxThreadContext returned by RexxCreateInterpreter() can only be used on the same thread as
the RexxCreateInterpreter() call, but is not valid for use in the context of a method, routine, or exit
call-out. In those contexts, the RexxThreadContext instance passed to the call-out must be used. A
RexxThreadContext instance created for a call-out is only valid until the call returns to the interpreter.

8.4. Threading Considerations
When using RexxCreateInterpreter() (Section 8.1.1, “RexxCreateInterpreter”) to create a new
interpreter instances, a RexxThreadContext pointer is returned with the interpreter instance. The
thread context vector allows you to perform operations such as running Rexx programs while in the
same thread context as the RexxCreateInterpreter() call.

A given interpreter instance can process calls from multiple threads, but a RexxThreadContext
instance must be obtained for each additional thread you wish to use. A new thread context
is obtained by calling AttachThread() using the RexxInstance API vector returned from
RexxCreateInterpreter(). Once a valid RexxThreadContext interface has been created for the thread,
any of the thread context operations may be used from that thread. Before the thread terminates, the
DetachThread() (Section 8.16.24, “DetachThread”) API must be called to remove the attached thread
from the interpreter instance.

The interpreter is capable of asynchronous calls to interpreter APIs from signal or event handlers.
When called in this manner, it is possible that AttachThread will be called while running on a thread
that is already attached to the interpreter instance. When a nested AttachThread() (Section 8.16.13,
“AttachThread”) call is made, the previous thread context is suspended and the newly created thread
context is the active context for the source thread. It is very important that DetachThread() be called to
restore the original thread context before you return from the signal handler.

8.5. Garbage Collection Considerations
When any context API has a return result that is a Rexx object instance, the source API context
will protect that object instance from garbage collection for as long as the context is valid. Once
the API context is destroyed, the accessed objects might become eligible for garbage collection
and be reclaimed by the interpreter runtime. These object references are only valid until the current
context is destroyed. They cannot be stored in native code control blocks and be used in other
thread contexts. If you wish to store object references so that they can be accessed by other thread
contexts, you can create a globally valid object reference using the RequestClobalResource()
(Section 8.16.141, “RequestGlobalReference” API. A global reference will protect the object from the
garbage collector until the interpreter instance is terminated. Protecting the object will also protect any
objects referenced by the protected object. For example, using RequestGlobalReference() to protect
a Directory object will also protect all of the directory keys and values. The global reference can be
used with any API context valid for the same interpreter instance. Once you are finished with a locked
object, ReleaseGlobalResource() (Section 8.16.139, “ReleaseGlobalReference”) removes the object
lock and makes the object eligible for garbage collection.

On the flip side of this, sometimes it is desirable to remove the local API context protection from
an object. For example, if you use the ArrayAt() API to iterate through all of the elements of an
Array, each object ArrayAt() returns will be added to the API context's protection table. There is a



Chapter 8. Rexx C++ Application Programming Interfaces

106

small overhead associated with each protected reference, so iterating through a large array would
accumulate that overhead for each array element. Using ReleaseLocalReference() (Section 8.16.140,
“ReleaseLocalReference” on an object reference you no longer require will remove the local lock, and
thus limit the overhead associated with tracking the object references.

8.6. Rexx Interpreter Instance Interface
The Interpreter Instance API is defined by the RexxInstance interface vector. The RexxInstance
defines methods that affect the global state of the interpreter instance. Most of the instance APIs can
be called from any thread without requiring any extra steps to access the instance. The two most
important instance operations are AttachThread() (Section 8.16.13, “AttachThread”) and Terminate()
(Section 8.16.169, “Terminate”). AttachThread() allows additional externally identified threads to
be included in the interpreter instance threadpool. AttachThread returns a RexxThreadContext
(Section 8.7, “Rexx Thread Context Interface”) interface vector that enables a wider range of capability
for the attached thread. The Terminate() API shuts down an interpreter instance when it is no longer
needed.

8.7. Rexx Thread Context Interface
The RexxThreadContext interface vector provides a very wide range of functions to your application
code. There are roughly 125 functions defined on a RexxThreadContext. Among the services provided
are:

• Running Rexx programs

• Loading Rexx packages

• Invoking methods of Rexx objects

• Converting between objects and various C++ types

• Creating and manipulating common Rexx object types

• Raising/handling Rexx syntax errors

The C++ methods defined on a RexxThreadContext C++ object include the methods defined by the
RexxInstance (Section 8.6, “Rexx Interpreter Instance Interface”) class, so the single context vector is
used to access both thread context and interpreter instance APIs.

A RexxThreadContext instance is returned with the original RexxCreateInterpreter() (Section 8.1.1,
“RexxCreateInterpreter”) call that created the interpreter instance. The AttachThread()
(Section 8.16.13, “AttachThread” method will create a RexxThreadContext instance for additional
threads that you add to an interpreter instance. Additionally, the RexxMethodContext (Section 8.8,
“Rexx Method Context Interface”), RexxCallContext (Section 8.9, “Rexx Call Context Interface”), and
RexxExitContext (Section 8.10, “Rexx Exit Context Interface”) objects embed a RexxThreadContext
object the same way that a RexxThreadContext object embeds a RexxInstance object.

8.8. Rexx Method Context Interface
A RexxMethodContext object is included as an argument to any native C++ methof (Section 8.13,
“Defining Library Methods”) defined in external libraries. The method context provides services that
are specific to a method call, including:

• Accessing method-specific values such as SELF, SUPER, etc.

• Manipulating object instance variables



Rexx Call Context Interface

107

• Forwarding messages

• Manipulating GUARD state

• Locating classes defined in the method's package scope

In addition to the method-specific functions, the RexxMethodContext object has an embedded a
RexxThreadContext (Section 8.7, “Rexx Thread Context Interface”) object created specifically for this
environment. The RexxThreadContext provides a large number of additional methods to the method
environment.

API calls made using the RexxMethodContext APIs may cause Rexx syntax errors or other
condition to be raised. These calls are invoked as if the current context is operating with SIGNAL
ON ALL enabled. Any conditions will be trapped and held in a pending condition until the current
context returns. At the return, if a condition is still pending, the appropriate condition is reraised in
the caller's context. These errors can be checked using the CheckCondition() (Section 8.16.20,
“CheckCondition”) API, and pending conditions can be cancelled using ClearCondition()
(Section 8.16.21, “ClearCondition”).

8.9. Rexx Call Context Interface
A RexxCallContext object is included as an argument to any native C++ routine (Section 8.12,
“Defining Library Routines”) defined in external libraries. The call context provides services that are
specific to a routine call, including:

• Accessing caller context specific values such as the current numeric settings

• Manipulating variables in the caller's variable context

• Locating classes defined in the routine's package scope

In addition to the call-specific functions, the RexxCallContext object has an embedded a
RexxThreadContext (Section 8.7, “Rexx Thread Context Interface”) object created specifically for
this environment. The RexxThreadContext provides a large number of additional methods to the call
environment.

API calls made using the RexxCallContext APIs may cause Rexx syntax errors or other condition to
be raised. These calls are invoked as if the current context is operating with SIGNAL ON ALL enabled.
Any conditions will be trapped and held in a pending condition until the current context returns. At
the return, if a condition is still pending, the appropriate condition is reraised in the caller's context.
These errors can be checked using the CheckCondition() (Section 8.16.20, “CheckCondition”) API,
and pending conditions can be cancelled using ClearCondition() (Section 8.16.21, “ClearCondition”).

8.10. Rexx Exit Context Interface
A RexxExitContext object is included as an argument to any systemexit (Section 8.14.2, “Context
Exit Definitions”) or command handler (Section 8.15, “Command Handler Interface”). The exit context
provides services that are specific to a exit call, including:

• Accessing caller context specific values such as the current numeric settings

• Manipulating variables in the caller's variable context

In addition to the exit-specific functions, the RexxExitContext object has an embedded a
RexxThreadContext (Section 8.7, “Rexx Thread Context Interface”) object created specifically for
this environment. The RexxThreadContext provides a large number of additional methods to the exit
environment.



Chapter 8. Rexx C++ Application Programming Interfaces

108

API calls made using the RexxExitContext APIs may cause Rexx syntax errors or other condition to
be raised. These calls are invoked as if the current context is operating with SIGNAL ON ALL enabled.
Any conditions will be trapped and held in a pending condition until the current context returns. At
the return, if a condition is still pending, the appropriate condition is reraised in the caller's context.
These errors can be checked using the CheckCondition() (Section 8.16.20, “CheckCondition”) API,
and pending conditions can be cancelled using ClearCondition() (Section 8.16.21, “ClearCondition”).

8.11. Building an External Native Library
External libraries written in compiled languages (typically C or C++) provide a means to interface Rexx
programs with other subsystems intended for compiled languages. These libraries are packaged as
Dynamic Link Libraries on Windows or shared libraries on Unix-based systems. A named library can
be loaded using the ::REQUIRES directive, the loadLibrary() method on the Package class, or by
using the EXTERNAL keyword on a ::ROUTINE, ::METHOD, or ::ATTRIBUTE directive.

When the library is loaded, the interpreter searches for an entry point in the library named
RexxGetPackage(). An external library package is required to provide a RexxGetPackage() function
that returns a pointer to the descriptor structure defining the methods and routines contained within
the library. The RexxGetPackage() routine takes no arguments and has a RexxPackageEntry
*return value. This is normally created using the OOREXX_GET_PACKAGE() macro defined in the
oorexxapi.h include file.

// package loading stub.
OOREXX_GET_PACKAGE(package);

Where package is the name of the RexxPackageEntry table for this library. The package entry
table is a descriptor contained within the library. Note that on Windows, it is necessary to explicitly
export the RexxPackageEntry() function when the library is linked. This is the only name you are
required to export. Calls are made to the library routines and methods using addresses stored in the
RexxPackageEntry table.

The RexxPackageEntry structure contains information about the package and descriptors of any
methods and/or routines defined within the package. The structure looks like this:

Example 8.17. API - RexxPackageEntry

typedef struct _RexxPackageEntry
{
    int size;                      // size of the structure...helps compatibility
    int apiVersion;                // version this was compiled with
    int requiredVersion;           // minimum required interpreter version (0 means any)
    const char *packageName;       // package identifier
    const char  *packageVersion;   // package version #
    RexxPackageLoader loader;      // the package loader
    RexxPackageUnloader unloader;  // the package unloader
    struct _RexxRoutineEntry *routines; // routines contained in this package
    struct _RexxMethodEntry *methods;   // methods contained in this package
} RexxPackageEntry;

The fields in the RexxPackageEntry have the following functions:

size and apiVersion
these fields give the size of the received table and identify the interpreter level this library has
been compiled against. These indicators will allow additional information to be added to the



Building an External Native Library

109

RexxPackageEntry in the future without causing compatibility issues for older libraries. Normally,
these two fields are defined using the STANDARD_PACKAGE_HEADER macro, which sets both
values.

requiredVersion
a library can specify the minimum interpreter level it requires. The interpreter will only
load libraries that match the minimum compatibility requirement of the library package.
A zero value in this field indicates there is no minimum level requirement. The macro
REXX_CURRENT_INTERPRETER_VERSION will set the level of interpreter you are compiling
against. If REXX_CURRENT_INTERPRETER_VERSION is specified, then the library package will
not load with older releases. The API header files will be updated with a macro for each interpreter
version. The version macros are of the form REXX_INTERPRETER_version_level_revision,
where version, level, and revision refer to the corresponding values in an interpreter release
number. For example, REXX_INTERPRETER_4_0_0 would indicate that the 4.0.0 interpreter
level is the minimum this library requires.

packageName
a descriptive name for this library package.

packageVersion
a version string for this package. The version can be in whatever form is appropriate for the
package.

packageLoader
a function that will be called when the library package is first loaded by the interpreter. The
package loader function is passed a RexxThreadContext pointer, which will give the package
access to Rexx interpreter services at initialization time. The package loader is optional and is
indicated by a NULL value in the descriptor.

packageUnloader
a function that will be called when the library package is unloaded by the interpreter. The
unloading process happens when the last interpreter instance is destroyed during the last cleanup
stages. This gives the loaded library an opportunity to clean up any global resources such as
cached Rexx object references. The package loader is optional and is indicated by a NULL value
in the descriptor.

routines
a pointer to an array of RexxRoutineEntry structures that define the routines provided by this
package. If there are no routines, this field should be NULL. See Section 8.12, “Defining Library
Routines” for details on creating the exported routine table.

method
a pointer to an array of RexxMethodEntry structures that define the methods provided by this
package. If there are no methods, this field should be NULL. See Section 8.13, “Defining Library
Methods” for details on creating the exported method table.

Here is an example of a RexxPackageEntry table taken from the rxmath library package:

Example 8.18. API - RexxPackageEntry and RexxRoutineEntry

// now build the actual entry list
RexxRoutineEntry rxmath_functions[] =
{
    REXX_TYPED_ROUTINE(MathLoadFuncs, MathLoadFuncs),
    REXX_TYPED_ROUTINE(MathDropFuncs, MathDropFuncs),



Chapter 8. Rexx C++ Application Programming Interfaces

110

    REXX_TYPED_ROUTINE(RxCalcPi,      RxCalcPi),
    REXX_TYPED_ROUTINE(RxCalcSqrt,    RxCalcSqrt),
    REXX_TYPED_ROUTINE(RxCalcExp,     RxCalcExp),
    REXX_TYPED_ROUTINE(RxCalcLog,     RxCalcLog),
    REXX_TYPED_ROUTINE(RxCalcLog10,   RxCalcLog10),
    REXX_TYPED_ROUTINE(RxCalcSinH,    RxCalcSinH),
    REXX_TYPED_ROUTINE(RxCalcCosH,    RxCalcCosH),
    REXX_TYPED_ROUTINE(RxCalcTanH,    RxCalcTanH),
    REXX_TYPED_ROUTINE(RxCalcPower,   RxCalcPower),
    REXX_TYPED_ROUTINE(RxCalcSin,     RxCalcSin),
    REXX_TYPED_ROUTINE(RxCalcCos,     RxCalcCos),
    REXX_TYPED_ROUTINE(RxCalcTan,     RxCalcTan),
    REXX_TYPED_ROUTINE(RxCalcCotan,   RxCalcCotan),
    REXX_TYPED_ROUTINE(RxCalcArcSin,  RxCalcArcSin),
    REXX_TYPED_ROUTINE(RxCalcArcCos,  RxCalcArcCos),
    REXX_TYPED_ROUTINE(RxCalcArcTan,  RxCalcArcTan),
    REXX_LAST_ROUTINE()
};

RexxPackageEntry rxmath_package_entry =
{
    STANDARD_PACKAGE_HEADER
    REXX_INTERPRETER_4_0_0,              // anything after 4.0.0 will work
    "RXMATH",                            // name of the package
    "4.0",                               // package information
    NULL,                                // no load/unload functions
    NULL,
    rxmath_functions,                    // the exported functions
    NULL                                 // no methods in rxmath.
};

// package loading stub.
OOREXX_GET_PACKAGE(rxmath);

8.12. Defining Library Routines
The RexxRoutineEntry table defines routines that are exported by a library package. This table is an
array of RexxRoutineEntry structures, terminated by an entry that contains nothing but zero values in
the fields. The REXX_LAST_ROUTINE() macro will generate a suitable table terminator entry.

The remainder of the table will be entries generated via either the REXX_CLASSIC_ROUTINE() or
REXX_TYPED_ROUTINE() macros. REXX_CLASSIC_ROUTINE() entries are for routines created
using the older string-oriented function style. The classic routines allow packages to be migrated to
the new package loading system without requiring a rewrite of all of the contained functions. See
Section 9.5, “External Function Interface” for details on creating the functions in the classic style.

Routine table entries defined using REXX_TYPED_ROUTINE() use the new object-oriented interfaces
for creating routines. These routines can use the interpreter runtime to convert call arguments from
Rexx objects into primitive types and return values converted from primitive types back into Rexx
objects. These routines are also given access to a rich set of services through the RexxCallContext
(Section 8.9, “Rexx Call Context Interface”) interface vector.

The REXX_CLASSIC_ROUTINE() and REXX_TYPED_ROUTINE() macros take two arguments. The
first entry is the package table name for this routine. The second argument is the entry point name of
the real native code routine that implements the function. These names are frequently the same, but
need not be. The package table name is the name this routine will be called with from Rexx code.

Smaller function packages frequently place all of the contained functions and the package definition
tables in the same file, with the package tables placed near the end of the source file so all of the
functions are visible. For larger packages, it may be desirable to place the functions in more than
one source file. For functions packaged as multiple source files, it is necessary to create prototype



Routine Declarations

111

declarations so the routine entry table can be generated. The oorexxapi.h header file includes
REXX_CLASSIC_ROUTINE_PROTOTYPE() and REXX_TYPED_ROUTINE_PROTOTYPE() macros
to generate the appropriate declarations. For example,

Example 8.19. API - REXX_TYPED_ROUTINE_PROTYPE

// create function declarations for the linker
REXX_TYPED_ROUTINE_PROTOTYPE(RxCalcPi);
REXX_TYPED_ROUTINE_PROTOTYPE(RxCalcSqrt);

// now build the actual entry list
RexxRoutineEntry rxmath_functions[] =
{
    REXX_TYPED_ROUTINE(RxCalcPi,      RxCalcPi),
    REXX_TYPED_ROUTINE(RxCalcSqrt,    RxCalcSqrt),
    REXX_LAST_ROUTINE()
};

8.12.1. Routine Declarations
Library routines are created using a series of macros that create the body of the function. These
macros define the routine arguments and return value in a form that allows the Rexx runtime to
perform argument checking and conversions before calling the target routine. These macros are
named "RexxRoutinen, where n is the number of arguments passed to your routine. For example,

Example 8.20. API - RexxRoutine2

RexxRoutine2(int, beep, wholenumber_t, frequency, wholenumber_t, duration)
{
    return Beep(frequency, duration);  /* sound beep                 */
}

defines a beep routine that will be passed two wholenumber_t arguments (frequency and duration).
The return value is an int value.

An argument can be made optional by prefixing the type with "OPTIONAL_". For example,

Example 8.21. API - RexxRoutine2

RexxRoutine2(int, beep, wholenumber_t, frequency, OPTIONAL_wholenumber_t, duration)
{
    return Beep(frequency, duration);  /* sound beep                 */
}

would define a routine that takes two arguments. The first argument is required, but the second
is optional. Any optional arguments, when omitted on a call, will be passed using a zero value
appropriate to the type. The macros argumentExists(n) or argumentOmitted(n) can reliably test if an
argument was passed. For example, argumentExists(2) tests if the duration argument was specified
when beep() was called. The n value is origin 1.

In addition to the arguments passed by the caller, there are some special argument types that
provide your routine with additional information. These special types will add additional arguments



Chapter 8. Rexx C++ Application Programming Interfaces

112

to your native routine implementation. The argument value specified with argumentExists() or
argumentOmitted() maps to the arguments passed to your C++ routine rather than the arguments
in the originating Rexx call. See Section 8.12.2, “Routine Argument Types” for details on the special
argument types.

All routine declarations have an undeclared special argument passed to the routine. This special
argument is named context. The context is a pointer to a RexxCallContext value and provides access
to all API functions valid from a routine context.

Note

void is not a valid return type for a routine. There must be a real return type specified on the
routine declaration. If you wish to have a routine without a return value, declare the routine with
a return type of RexxObjectPtr and return the value NULLOBJECT. Routines that do not return a
real value may not be invoked as functions. Only the CALL instruction allows a return without a
value.

8.12.2. Routine Argument Types
A routine argument or return value may be a numeric type (Section 8.2.2, “Rexx Numeric Types”)
or an object type (Section 8.2.1, “Rexx Object Types”). For numeric types, the call arguments must
be convertible from a Rexx object equivalent into the primitive value or an error will be raised. For
optional numeric arguments, a zero value is passed for omitted values. When used as a return type,
the numeric values are translated into an appropriate Rexx object value.

If an argument is an object type, some additional validation is performed on the arguments being
passed. If an argument does not meet the requirements for a given object type, an error will be raised.
If an object-type argument is optional and a value is not specified on the call, the value NULLOBJECT
is passed to your routine. The supported object types and the special processing rules are as follows:

RexxObjectPtr
a reference to any Rexx object instance. Any arbitrary object type may be passed for a
RexxObjectPtr argument.

RexxStringObject
an instance of the Rexx String class. The argument value must be a Rexx String value or
convertible to a Rexx String value using the request('String') mechanism.

RexxArrayObject
An instance of a Rexx single-dimension array.

RexxClassObject
An instance of Rexx Class class.

RexxMutableBufferObject
An instance of Rexx MutableBuffer class.

RexxStemObject
An instance of the Rexx Stem class. For routine calls, a stem argument may be specified either
using the stem variable name directly or giving the stem variable name as a quoted string. For
example, for a routine defined using



Routine Argument Types

113

RexxRoutine1(int, MyRoutine, RexxStemObject, stem)

the following calls are equivalent:

x = MyRoutine(a.)
x = MyRoutine('a.')

This special processing allows routines that currently access stem variables using the
RexxVariablePool API to be more easily converted to the newer API set.

In addition to the numeric and object types, there are additional special types that provide additional
information to the calling routine or perform common special conversions on argument values. The
special types available to routines are:

CSTRING
The argument is passed as an ASCII-Z string. The source argument must be one that is valid
as a RexxStringObject value. The RexxStringObject is converted into a pointer to an ASCII-
Z string. This is equivalent to the value returned from the StringValue() (Section 8.16.126,
“ObjectToStringValue”) API from a RexxStringObject value. For an optional CSTRING argument, a
NULL pointer is provided when the argument is omitted.

When CSTRING is used as a return value, the ASCII-Z string value will be converted into a Rexx
String object. The Rexx runtime does not free any memory associated with a CSTRING return
value, so care must be taken to avoid memory leaks. Also, locally declared character buffers
cannot be returned as the storage associated with buffer is no longer valid once your routine
returns to the Rexx interpreter. CSTRING return values are best confined to returning C literal
values. For example, the following is not valid:

Example 8.22. API - CString

RexxRoutine0(CSTRING, MyRoutine)
{
   ....
   char buffer[32];
   sprintf(buffer, "%d:%d", major, minor);
   return buffer;     // buffer is not valid once return executes
}

A RexxStringObject return value and the String() (Section 8.16.157, “String”) API is more
appropriate in this situation.

Example 8.23. API - RexxStringObject

RexxRoutine0(RexxStringObject, MyRoutine)
{
   ....
   char buffer[32];
   sprintf(buffer, "%d:%d", major, minor);
   return context->String(buffer);     // creates a string object and returns it.
}



Chapter 8. Rexx C++ Application Programming Interfaces

114

POINTER
an "unwrapped" Pointer or Buffer string object. If the argument is a Pointer object, the wrapped
pointer value is returned as a void * value.. If the argument is a Buffer object, then a pointer to the
buffer's data area is returned. A NULL pointer is returned for an omitted OPTIONAL_POINTER
argument.

When POINTER is used as a routine return value, any pointer value can be returned. The Rexx
runtime will wrap the pointer value in a Rexx Pointer object.

POINTERSTRING
a pointer value that has been encoded in string form. The string value must be in the format
"0xnnnnnnnn", where the digits are valid hexadecimal digits. On 64-bit platforms, the pointer
value must be 16 digits long. The string value is converted into a void * value. A NULL pointer is
returned for an omitted optional POINTERSTRING argument.

When POINTERSTRING is used as a routine return value, any pointer value can be returned. The
Rexx runtime will convert the pointer value back into an encoded string value.

NAME
The name of the invoked routine, passed as a CSTRING. NAME is not valid as a return value.

ARGLIST
A RexxArrayObject containing all arguments passed to the routine. This is equivalent to using
Arg(1, 'A') from Rexx code. The returned array contains all of the routine arguments that were
specified in the original call. Omitted arguments are empty slots in the returned array. In addition,
if a routine has an ARGLIST argument specified, the normal check for the maximum number of
arguments is bypassed. This makes possible routines with an open-ended number of arguments.
ARGLIST is not valid as a return value.

8.13. Defining Library Methods
The RexxMethodEntry table defines method that are exported by a library package. This table is an
array of RexxMethodEntry structures, terminated by an entry that contains nothing but zero values in
the fields. The REXX_LAST_METHOD() macro will generate a suitable table terminator entry.

The remainder of the table will be entries generated via the REXX_METHOD() macro. Routine table
entries defined using REXX_METHOD() use the object-oriented interfaces for creating methods
that can be defined on Rexx classes. These methods can use the interpreter runtime to convert call
arguments from Rexx objects into primitive types and return values from primitive types back into Rexx
objects. Native methods are also given access to a rich set of services via the RexxMethodContext
interface vector.

The REXX_METHOD() macro take two arguments. The first entry is the package table name for this
method. The second argument is the entry point name of the real native code method that implements
the function. These names are frequently the same, but need not be.

Smaller function packages frequently place all of the contained functions and the package definition
tables in the same file, with the package tables placed near the end of the source file so all of the
methods are visible. For larger packages, it may be desirable to place the methods in more than
one source file. For libraries packaged as multiple source files, it is necessary to create a prototype
declarations so the method entry table can be generated. The oorexxapi.h header file includes a
REXX_METHOD_PROTOTYPE() macro to generate the appropriate declarations. For example,

Example 8.24. API - REXX_METHOD_PROTOTYPE



Method Declarations

115

// create function declarations for the linker
REXX_METHOD_PROTOTYPE(point_init);
REXX_METHOD_PROTOTYPE(point_add);

// now build the actual entry list
RexxMethodEntry point_methods[] =
{
    REXX_METHOD(point_init, point_init),
    REXX_METHOD(point_add,  point_add),
    REXX_LAST_METHOD()
};

8.13.1. Method Declarations
Library methods are created using a series of macros that create the body of the method. These
macros define the method arguments and return value in a form that allows the Rexx runtime to
perform argument checking and conversions before calling the target method. These macros are
named "RexxMethodn, where n is the number of arguments you wish to be passed to your method.
For example,

Example 8.25. API - RexxMethod2

RexxMethod2(int, beep, wholenumber_t, frequency, wholenumber_t, duration)
{
    return Beep(frequency, duration);  /* sound beep                 */
}

defines a beep method that will be passed two wholenumber_t arguments (frequency and duration).
The return value is an int value.

An argument can be made optional by prefixing the type with "OPTIONAL_". For example,

Example 8.26. API - RexxMethod2

RexxMethod2(int, beep, wholenumber_t, frequency, OPTIONAL_wholenumber_t, duration)
{
    return Beep(frequency, duration);  /* sound beep                 */
}

would define a method that takes two arguments. The first argument is required, but the second is
optional. Any omitted optional arguments will be passed using a zero value appropriate for the type.
The macros argumentExists(n) or argumentOmitted(n) can reliably test if an argument was passed.
For example, argumentExists(2) tests if the duration argument was specified when calling the beep()
method. The n value is origin 1.

In addition to the arguments passed by the caller, there are some special argument types that
provide your routine with additional information. These special types will add additional arguments
to your native routine implementation. The argument position specified with argumentExists() or
argumentOmitted() maps to the arguments passed to your C++ routine rather than the arguments in
the originating Rexx call. See below for details on the special argument types.

All method declarations have an undeclared special argument passed to the routine. This special
argument is named context. The context is a pointer to a RexxMethodContext (Section 8.8, “Rexx
Method Context Interface”) value and provides access to all APIs valid from a method context.



Chapter 8. Rexx C++ Application Programming Interfaces

116

Note

void is not a valid return type for a method. There must be a real return type specified on the
method declaration. If you wish to have a method without a return value, declare the method with
a return type of RexxObjectPtr and return the value NULLOBJECT. Methods that do not return
a real value may not be invoked within expression, but may be used as standalone message
instructions.

8.13.2. Method Argument Types
A method argument or return value may be a numeric type (Section 8.2.2, “Rexx Numeric Types”)
or an object type (Section 8.2.1, “Rexx Object Types”). For numeric types, the arguments must be
convertible from a Rexx object equivalent into the primitive value or an error will be raised. For optional
numeric arguments, a zero value is passed for omitted values. When used as a return type, the
numeric values are translated into an appropriate Rexx object value.

If an argument is an object type, some additional validation is performed on the arguments being
passed. If an argument does not meet the requirements for a given object type, an error will be raised.
If an object-type argument is optional and a value is not specified on the call, the value NULLOBJECT
is passed to your routine. The supported object types and the special processing rules are as follows:

RexxObjectPtr
a reference to any Rexx object instance. Any arbitrary object type may be passed for a
RexxObjectPtr argument.

RexxStringObject
an instance of the Rexx String class. The argument value must be a Rexx String value or
convertible to a Rexx String value using the request('String') mechanism.

RexxArrayObject
An instance of a Rexx single-dimension array.

RexxClassObject
An instance of Rexx Class class.

RexxMutableBufferObject
An instance of Rexx MutableBuffer class.

RexxStemObject
An instance of Rexx Stem class. To pass a Stem to a method, a stem argument must be specified
using a stem variable name directly. For example, for a method defined using

RexxMethod1(int, MyMethod, RexxStemObject, stem)

the following call passes a stem object associated with a stem variable to the method:

x = o~myMethod(a.)



Method Argument Types

117

In addition to the numeric and object types, there are additional special types that provide additional
information to the calling routine or perform common special conversions on argument values. The
special types available to routines are:

CSTRING
The argument is passed as an ASCII-Z string. The source argument must be one that is valid
as a RexxStringObject value. The RexxStringObject is converted into a pointer to an ASCII-
Z string. This is equivalent to the value returned from the StringValue() (Section 8.16.126,
“ObjectToStringValue”) API from a RexxStringObject value. For an optional CSTRING argument, a
NULL pointer is provided when the argument is omitted.

When CSTRING is used as a return value, the ASCII-Z string value will be converted into a Rexx
String object. CSTRING return values are best confined to returning C literal values. The Rexx
runtime does not free any memory associated with a CSTRING return value, so care must be
taken to avoid memory leaks. Also, locally declared character buffers cannot be returned as the
storage associated with buffer is no longer valid once your method returns to the Rexx interpreter.
CSTRING return values are best confined to returning C literal values. For example, the following
is not valid:

Example 8.27. API - CString

RexxMethod0(CSTRING, MyMethod)
{
   ....
   char buffer[32];
   sprintf(buffer, "%d:%d", major, minor);
   return buffer;     // buffer is not valid once return executes
}

A RexxStringObject return value and the String() API is more appropriate in this situation.

Example 8.28. API - RexxStringObject

RexxMethod0(RexxStringObject, MyMethod)
{
   ....
   char buffer[32];
   sprintf(buffer, "%d:%d", major, minor);
   return context->String(buffer);     // creates a string object and returns it.
}

POINTER
an "unwrapped" Pointer or Buffer string object. If the argument is a Pointer object, the wrapped
pointer value is returned as a void * value.. If the argument is a Buffer object, then a pointer to
buffer's storage area is returned. A NULL pointer is returned for an omitted optional POINTER
argument.

When POINTER is used as a method return value, any pointer value can be returned. The Rexx
runtime will wrap the pointer value in a Rexx Pointer object.

POINTERSTRING
a pointer value that has been encoded in string form. The string value must be in the format
"0xnnnnnnnn", where the digits are valid hexadecimal digits. On 64-bit platforms, the pointer



Chapter 8. Rexx C++ Application Programming Interfaces

118

value must be 16 digits long. The string value is converted into a void * value. A NULL pointer is
returned for an omitted optional POINTERSTRING argument.

When POINTERSTRING is used as a method return value, any pointer value can be returned.
The Rexx runtime will convert the pointer value back into an encoded string value.

NAME
The name of the invoked method, passed as a CSTRING. This is the message name that was
used to invoke the method. NAME is not valid as a return value.

ARGLIST
A RexxArrayObject containing all arguments passed to the method. This is equivalent to using
Arg(1, 'A') from Rexx code. The returned array contains all of the method arguments that were
specified in the original call. Omitted arguments are empty slots in the returned array. In addition,
if a method has an ARGLIST argument specified, the normal check for the maximum number of
arguments is bypassed. This makes possible methods with an open-ended number of arguments.
ARGLIST is not valid as a return value.

OSELF
A RexxObjectPtr containing a reference to the object that was the message target for the current
method. This is equivalent to the SELF variable that is available in Rexx method code. OSELF is
not valid as a return value.

SUPER
A RexxClassObject containing a reference to the super scope object for the current method. This
is equivalent to the SUPER variable that is set in Rexx method code. SUPER is not valid as a
return value.

SCOPE
A RexxObjectPtr containing a reference to the current method's owning scope. This is normally
the class that defined the method currently being executed. SCOPE is not valid as a return value.

CSELF
CSELF is a special argument type used for classes to store native pointers or structures inside
an object instance. When a CSELF type is encountered, the runtime will search all of the object's
variable scopes for an instance variable named CSELF. If a CSELF variable is located and the
value is an instance of either the Pointer or Buffer class, the POINTER value will be passed to
the method as a void * value. Objects that rely on CSELF values typically set the variable CSELF
inside an init method for the object. For example:

Example 8.29. API - CSELF

RexxMethod2(RexxObjectPtr, stream_init, OSELF, self, CSTRING, name)
{
    // create a new stream info member
    StreamInfo *stream_info = new StreamInfo(self, name);
    RexxPointerObject streamPtr = context->NewPointer(stream_info);
    context->SetObjectVariable("CSELF", streamPtr);

    return NULLOBJECT;
}

Then, within other methods for the object, when the CSELF variable is used as an argument to the
method, the void * is retrieved and cast to the correct type:



Pointer, Buffer, and CSELF

119

Example 8.30. API - CSELF

RexxMethod3(size_t, stream_charout, CSELF, streamPtr, OPTIONAL_RexxStringObject, data,
 OPTIONAL_int64_t, position)
{
    StreamInfo *stream_info = (StreamInfo *)streamPtr;
    stream_info->setContext(context, context->False());

    ...
}

CSELF is not valid as a return value.

8.13.3. Pointer, Buffer, and CSELF
Methods written in C++ frequently need to acquire access to data that is associated with an object
instance. ooRexx provides two classes, Buffer and Pointer, that allow these associations to be made.
Both classes are real Rexx classes that can be passed as arguments, returned as method results, and
assigned to object instance variables. For the Rexx programmer who might encounter one of these
instances, these are opaque objects that don't appear to be of much use. To the native library writer,
the usefulness derives from what is stored inside these objects.

8.13.3.1. The Buffer class
The Buffer class allows the library writer to allocate blocks of memory from the Rexx object space.
The memory is a part of the Buffer object instance, and will be reclaimed automatically when the
Buffer object is garbage collected. This means the programmer does not need to explicitly release a
Buffer object. It does, however, require that steps be taken to protect the Buffer object from garbage
collection while it is still needed. The usual protection mechanism it to store the buffer object in an
object instance variable using SetObjectVariable() (Section 8.16.152, “SetObjectVariable”). Once
assigned to a variable, the Buffer is protected from garbage collection until its associated object
instance is also reclaimed. The buffer is part of the internal state of the the object.

Buffer objects are allocated using the NewBuffer() function (Section 8.16.105, “NewBuffer”) that's
part of the RexxThreadContext interface. Once created, you can access the Buffer's data area
using BufferData() (Section 8.16.14, “BufferData”), which returns a pointer to the beginning of the
data buffer. The data buffer area is writeable storage, into which any data may be placed. This is
frequently used to allocate a C++ struct or class instance that is the native embodiment of the class
implementation. For example

Example 8.31. API - RexxBufferObject

RexxMethod0(RexxObjectPtr, myclass_init)
{
    // create a buffer for my internal data.
    RexxBufferObject data = context->NewBuffer(sizeof(MyDataClass));
    // store this someplace safe
    context->SetObjectVariable("MYDATA", data);
    // get access to the data area
    void *dataPtr = context->BufferData(data);
    // construct a C++ object to place in the buffer
    MyDataClass *myData = new (dataPtr) MyDataClass();
    // initialize the data below



Chapter 8. Rexx C++ Application Programming Interfaces

120

    ...

    return NULLOBJECT;
}

This example allocates a Buffer object instance, creates a C++ class in its data area, and stores a
reference to the Buffer in the MYDATA object variable. Other C++ methods can access this instance
by using the C++ equivalent to the Rexx EXPOSE instruction.

Example 8.32. API - RexxBufferObject

RexxMethod0(RexxObjectPtr, myclass_dosomething)
{
    // retrieve my instance buffer
    RexxBufferObject data = (RexxBufferObject)context->GetObjectVariable("MYDATA");
    // Get the data pointer and cast it back to my class type
    MyDataClass *myData = (MyDataClass *)context->BufferData(data);
    // perform the operation below
    ...
}

Since Buffer object instances are reclaimed automatically when the object is garbage collected, no
additional steps are required to cleanup that memory. However, if there are additional dymanically
allocated resources associated with the Buffer, such as pointers to system allocated resources or
dynamically allocated memory, it may be necessary to add an UNINIT method to your class to ensure
the resources are not leaked.

Example 8.33. API - RexxBufferObject

RexxMethod0(RexxObjectPtr, myclass_uninit)
{
    // retrieve my instance buffer
    RexxBufferObject data = context->GetObjectVariable("MYDATA");
    // Get the data pointer and cast it back to my class type
    MyDataClass *myData = (MyDataClass *)context->BufferData(data);
    // delete any resources I've obtained (but not the MyDataClass
    // instance itself
    delete ((void *)myData) myData;
}

8.13.3.2. The Pointer class
The Pointer class has uses similar to the Buffer class, but Pointer instances only hold a single pointer
value to native C/C++ resources. A Pointer instance is effectively a Buffer object where the buffer
data area is a single void * pointer. Like Buffer objects, Pointers can be stored in Rexx variables and
retrieved in native methods. Pointer object instances are garbage collected just like Buffer objects, but
when a Pointer is reclaimed, whatever value refererenced by the Pointer instance are not cleaned up.
If additional cleanup is required, then it will be necessary to implement an UNINIT method to handle
the cleanup. Here are the Buffer examples above reworked for the Pointer class:



Pointer, Buffer, and CSELF

121

Example 8.34. API - RexxObjectPtr

RexxMethod0(RexxObjectPtr, myclass_init)
{
    // construct a C++ object to associate with the object
    MyDataClass *myData = new MyDataClass();
    // create a Pointer to store this in the object
    RexxPointerObject data = context->NewPointer(myData);
    // store this someplace safe
    context->SetObjectVariable("MYDATA", data);
    // initialize the data below
    ...

    return NULLOBJECT;
}

RexxMethod0(RexxObjectPtr, myclass_dosomething)
{
    // retrieve my instance data
    RexxPointerObject data = (RexxPointerObject)context->GetObjectVariable("MYDATA");
    // Get the data pointer and cast it back to my class type
    MyDataClass *myData = (MyDataClass *)context->PointerValue(data);
    // perform the operation below
    ...
}

RexxMethod0(RexxObjectPtr, myclass_uninit)
{
    // retrieve my instance data
    RexxPointerObject data = (RexxPointerObject)context->GetObjectVariable("MYDATA");
    // Get the data pointer and cast it back to my class type
    MyDataClass *myData = (MyDataClass *)context->PointerValue(data);
    // delete the backing instance
    delete myData;
}

8.13.3.3. The POINTER method type
The Rexx runtime has some special support for Pointer and Buffer objects when they are passed as
method arguments and also when used as return values. The RexxMethod macros used to define
method instances support the POINTER special argument type. When an argument is defined as
a POINTER, then the argument value must be either a Buffer object or a Pointer object. The Rexx
runtime will automatically pass this argument to the native method as the Buffer BufferData() value
or the Pointer PointerValue() value, thus removing the need to unwrapper these in the method code.
The POINTER type is generally used for private methods of a class where the Rexx versions of the
methods pass Pointer or Buffer references to the private native code. For example, the Rexx code
might look like this:

Example 8.35. API - RexxObjectPtr

::method setTitle
  expose title prefix handle
  use arg title
  // set the title to the title concatenated to the prefix
  self~privateSetTitle(handle, prefix title)



Chapter 8. Rexx C++ Application Programming Interfaces

122

::method privateSetTitle PRIVATE EXTERNAL "LIBRARY mygui setTitle"

The corresponding C++ method would look like this:

Example 8.36. API - RexxObjectPtr

RexxMethod2(RexxObjectPtr, setTitle, POINTER, handle, CSTRING, title)
{
    // the pointer object was unwrapped for me
    MyWindowHandle *myHandle = (MyWindowHandle *)handle;

    // other stuff here
}

When POINTER is used as a method return type, the runtime will automatically create a Pointer object
instance that wrappers the returned void *value. The created Pointer instance is the result returned to
the Rexx code.

8.13.3.4. The CSELF method type
There's one additional concept using Pointer and Buffer objects supported by the C++ APIs. When a
method definition specifies the special type CSELF, the runtime will look for an object variable named
CSELF. If the variable is found, and if the variable is assigned to an instance of Pointer or Buffer, then
the corresponding data pointer is returned as the argument. The CSELF type is most useful when just
a single anchor to native C++ data is backing an object instance and the backing data is created in the
object INIT method. Here's the Pointer example above reworked to use CSELF:

Example 8.37. API - CSELF

RexxMethod0(RexxObjectPtr, myclass_init)
{
    // construct a C++ object to associate with the object
    MyDataClass *myData = new MyDataClass();
    // create a Pointer to store this in the object
    RexxPointerObject data = context->NewPointer(myData);
    // assign this to the special CSELF variable
    context->SetObjectVariable("CSELF", data);
    // initialize the data below
    ...

    return NULLOBJECT;
}

RexxMethod1(RexxObjectPtr, myclass_dosomething, CSELF, cself)
{
    // We can just cast this to our data value
    MyDataClass *myData = (MyDataClass *)cself;
    // perform the operation below
    ...
}



Rexx Exits Interface

123

RexxMethod1(RexxObjectPtr, myclass_uninit, CSELF, cself)
{
    // We can just cast this to our data value
    MyDataClass *myData = (MyDataClass *)cself;
    // delete the backing instance
    delete myData;
}

Using the CSELF argument type eliminates the need to directly access the Rexx variable used to
anchor the value in every method except the INIT method. This produces generally smaller, more
reliable code, since the runtime is managing the retrieval.

There are other advantages to using the CSELF convention. The example above is equivalent to
the examples using Pointer and Buffer objects. If, however, you were to create a subclass of the
Buffer example and try to access the value stored in MYDATA from a subclass method, you'll find
that GetObjectVariable("MYDATA") will return NULLOBJECT. The GetObjectVariable() method
retrieves variables from the current method's variable scope. Since the INIT method that set MYDATA
originally and the subclass method that wishes to access the data are defined at different class
scopes, GetObjectVariable() will access different variable pools and MYDATA will not be found. One
solution would be to create a private attribute method in the base class:

::attribute mydata get private

The subclass method can then access the method using SendMessage() (Section 8.16.144,
“SendMessage0”) to access the value.

RexxObjectPtr self = context->GetSelf()
RexxPointerObject = context->SendMessage0(self, "MYDATA");

The CSELF type handles this detail automatically. When used as an argument, all variable scopes of
the object's class hiearchy are searched for a variable named CSELF. if one is located, it will be used
for the value passed to the method. This allows all subclasses of a class using the CSELF convention
to access the backing native data.

Frequently, one class instance might need access to the native information associated with another
object instance. The other object instance might be of the same class or another class that is designed
to interoperate with the current class. The ObjectToCSelf() (Section 8.16.117, “ObjectToCSelf”) allows
the CSELF information for an object other than the current active object to be retieved.

8.14. Rexx Exits Interface

The Rexx system exits let the programmer create a customized Rexx operating environment. You can
set up user-defined exit handlers to process specific Rexx activities.

Applications can create exits for:

• The administration of resources at the beginning and the end of interpretation

• Linkages to external functions and subcommand handlers

• Special language features; for example, input and output to standard resources

• Polling for halt and external trace events



Chapter 8. Rexx C++ Application Programming Interfaces

124

Direct exit handlers are specified when the interpreter instance is created, and reside as entry points
within the application that creates the interpreter instance.

8.14.1. Writing Context Exit Handlers

The following is a sample exit handler declaration:

Example 8.38. API - Rexx_IO_Exit

int REXXENTRY Rexx_IO_exit(
     RexxExitContext *context,   // the exit context API vector
     int   exitNumber,           // code defining the exit function
     int   subfunction,          // code defining the exit subfunction
     PEXIT parmBlock);           // function-dependent control block

where:

context
is the RexxExitContext vector that provides access to interpreter services for this exit handler.

exitNumber
is the major function code defining the type of exit call.

subfunction
is the subfunction code defining the exit event for the call.

parmBlock
is a pointer to the exit parameter list.

The exit parameter list contains exit-specific information. See the exit descriptions following the
parameter list formats.

Note

Some exit subfunctions do not have parameters. parmBlock is set to NULL for exit
subfunctions without parameters.

8.14.1.1. Exit Return Codes
Exit handlers return an integer value that signals one of the following actions:

RXEXIT_HANDLED
The exit handler processed the exit subfunction and updated the subfunction parameter list as
required. The Rexx interpreter continues with processing as usual.

RXEXIT_NOT_HANDLED
The exit handler did not process the exit subfunction. The Rexx interpreter processes the
subfunction as if the exit handler were not called.



Context Exit Definitions

125

RXEXIT_RAISE_ERROR
A fatal error occurred in the exit handler. The Rexx interpreter raises Rexx error 48 ("Failure
in system service"). Other errors can be raised using the RaiseException() (Section 8.16.134,
“RaiseException”) API provided by the exit context.

For example, if an application creates an input/output exit handler, one of the following happens:

• When the exit handler returns RXEXIT_NOT_HANDLED for an RXSIOSAY subfunction, the Rexx
interpreter writes the output line to STDOUT.

• When the exit handler returns RXEXIT_HANDLED for an RXSIOSAY subfunction, the Rexx
interpreter assumes the exit handler has handled all required output. The interpreter does not write
the output line to STDOUT.

• When the exit handler returns RXEXIT_RAISE_ERROR for an RXSIOSAY subfunction, the
interpreter raises Rexx error 48, "Failure in system service".

8.14.1.2. Exit Parameters
Each exit subfunction has a different parameter list. All RXSTRING exit subfunction parameters are
passed as null-terminated strings. The terminating null is not included in the length stored in the
RXSTRING structures. The string values pointed to by the RXSTRING structs may also contain null
characters.

For some exit subfunctions, the exit handler can return an RXSTRING character result in the
parameter list. The interpreter provides a default 256-byte RXSTRING for the result string. If the result
is longer than 256 bytes, a new RXSTRING can be allocated using RexxAllocateMemory(size).
The Rexx interpreter will release the allocated storage after the exit handler returns.

8.14.1.3. Identifying Exit Handlers to Rexx
System exit handlers are specified using the DIRECT_EXITS option when the interpreter instance
is created. The exits are specified using a RexxContextExit structure identifying which exits will be
enabled.

8.14.2. Context Exit Definitions
The Rexx interpreter supports the following system exits:

RXFNC 
External function call exit.
RXFNCCAL

Call an external function. This exit is called at the beginning of the search for external
functions, allowing external functions calls to be intercepted. The RXFNCCAL converts all
function arguments to RXSTRING values and can only return RXSTRING values as a function
result. For full object access, the RXOFNC exit is also provided.

RXOFNC 
Object oriented external function call exit.
RXOFNCCAL

Call an external function. This exit is called at the beginning of the search for external
functions, allowing external functions calls to be intercepted. This is an extended version of
the RXFNC exit that passes arguments as object references and allows object return values.



Chapter 8. Rexx C++ Application Programming Interfaces

126

RXEXF 
Scripting external function call exit.
RXEXFCAL

Call an external function. This exit is called at the end of the search for external functions if
no suitable call target has been found. This allows applications to extend the external function
search order. Like the RXOFNC exit, the RXEXF exit will pass function arguments and return
values as Rexx objects.

RXCMD 
Subcommand call exit.
RXCMDHST

Call a subcommand handler.

RXMSQ 
External data queue exit.
RXMSQPLL

Pull a line from the external data queue.

RXMSQPSH
Place a line in the external data queue.

RXMSQSIZ
Return the number of lines in the external data queue.

RXMSQNAM
Set the active external data queue name.

RXSIO 
Standard input and output exit.
RXSIOSAY

Write a line to the standard output stream for the SAY instruction.

RXSIOTRC
Write a line to the standard error stream for the Rexx trace or Rexx error messages.

RXSIOTRD
Read a line from the standard input stream for PULL or PARSE PULL.

RXSIODTR
Read a line from the standard input stream for interactive debugging.

RXNOVAL 
NOVALUE exit.
RXNOVALCALL

Process a variable NOVALUE condition.

RXVALUE 
VALUE built-in function extension.
RXVALUECALL

Process a VALUE() built-in function call for an unknown named environment.

RXHLT 
Halt processing exit.
RXHLTTST

Test for a HALT condition.



Context Exit Definitions

127

RXHLTCLR
Clear a HALT condition.

RXTRC 
External trace exit.
RXTRCTST

Test for an external trace event.

RXINI 
Initialization exit.
RXINIEXT

Allow additional Rexx procedure initialization.

RXTER 
Termination exit.
RXTEREXT

Process Rexx procedure termination.

The following sections describe each exit subfunction, including:

• The service the subfunction provides

• When Rexx calls the exit handler

• The default action when the exit is not provided or the exit handler does not process the subfunction

• The exit action

• The subfunction parameter list

8.14.2.1. RXOFNC

Processes calls to external functions.

RXOFNCCAL
Processes calls to external functions.

• When called: At beginning of the search for an external routine or function.

• Default action: Call the external routine using the usual external function search order.

• Exit action: Call the external routine, if possible.

• Continuation: If necessary, raise Rexx error 40 ("Incorrect call to routine"), 43 ("Routine not
found"), or 44 ("Function or message did not return data").

• Parameter list:

Example 8.39. API - Rexx_IO_Exit parameter list

typedef  struct _RXOFNC_FLAGS {        /* fl */
   unsigned rxfferr  : 1;              /* Invalid call to routine.   */
   unsigned rxffnfnd : 1;              /* Function not found.        */



Chapter 8. Rexx C++ Application Programming Interfaces

128

   unsigned rxffsub  : 1;              /* Called as a subroutine     */
}  RXOFNC_FLAGS ;

typedef  struct _RXOFNCCAL_PARM {      /* fnc */
   RXOFNC_FLAGS      rxfnc_flags ;     /* function flags             */
   CONSTRXSTRING     rxfnc_name;       // the called function name
   size_t            rxfnc_argc;       /* Number of args in list.    */
   RexxObjectPtr    *rxfnc_argv;       /* Pointer to argument list.  */
   RexxObjectPtr     rxfnc_retc;       /* Return value.              */
}  RXOFNCCAL_PARM;

The name of the external function is defined by the rxfnc_name CONSTRXSTRING
(Section 9.2, “RXSTRINGs”) value. The arguments to the function are in rxfnc_argv array and
rxfnc_argc gives the number of arguments. If you call the named external function with the Rexx
CALL instruction (rather than using a function call), the flag rxffsub is TRUE.

The exit handler can set rxfnc_flags to indicate whether the external function call was
successful. If neither rxfferr nor rxffnfnd is TRUE, the exit handler successfully called the
external function. The error flags are checked only when the exit handler handles the request.

The exit handler sets rxffnfnd to TRUE when the exit handler cannot locate the external function.
The interpreter raises Rexx error 43, "Routine not found". The exit handler sets rxfferr to TRUE
when the exit handler locates the external function, but the external function returned an error
return code. The Rexx interpreter raises error 40, "Incorrect call to routine."

The exit handler returns the external function result in the rxfnc_retc RexxObjectPtr. The Rexx
interpreter raises error 44, "Function or method did not return data," when the external routine
is called as a function and the exit handler does not return a result. When the external routine is
called with the Rexx CALL instruction, a result is not required.

8.14.2.2. RXEXF

Processes calls to external functions.

RXEXFCAL
Processes calls to external functions.

• When called: At end of the search for an external routine or function when no suitable call target
has been located.

• Default action: Raise error 43 ("Routine not found").

• Exit action: Call the external routine, if possible.

• Continuation: If necessary, raise Rexx error 40 ("Incorrect call to routine"), 43 ("Routine not
found"), or 44 ("Function or message did not return data").

• Parameter list:

Example 8.40. API - Rexx_IO_Exit parameter list

typedef  struct _RXEXF_FLAGS {         /* fl */



Context Exit Definitions

129

   unsigned rxfferr  : 1;              /* Invalid call to routine.   */
   unsigned rxffnfnd : 1;              /* Function not found.        */
   unsigned rxffsub  : 1;              /* Called as a subroutine     */
}  RXEXF_FLAGS ;

typedef  struct _RXEXFCAL_PARM {       /* fnc */
   RXEXF_FLAGS       rxfnc_flags ;     /* function flags             */
   CONSTRXSTRING     rxfnc_name;       // the called function name
   size_t            rxfnc_argc;       /* Number of args in list.    */
   RexxObjectPtr    *rxfnc_argv;       /* Pointer to argument list.  */
   RexxObjectPtr     rxfnc_retc;       /* Return value.              */
}  RXEXFCAL_PARM;

The name of the external function is defined by the rxfnc_name CONSTRXSTRING value.
The arguments to the function are in rxfnc_argv array and rxfnc_argc gives the number of
arguments. If you call the named external function with the Rexx CALL instruction (rather than
using a function call), the flag rxffsub is TRUE.

The exit handler can set rxfnc_flags to indicate whether the external function call was
successful. If neither rxfferr nor rxffnfnd is TRUE, the exit handler successfully called the
external function. The error flags are checked only when the exit handler handles the request.

The exit handler sets rxffnfnd to TRUE when the exit handler cannot locate the external function.
The interpreter raises Rexx error 43, "Routine not found". The exit handler sets rxfferr to TRUE
when the exit handler locates the external function, but the external function returned an error
return code. The Rexx interpreter raises error 40, "Incorrect call to routine."

The exit handler returns the external function result in the rxfnc_retc RexxObjectPtr. The Rexx
interpreter raises error 44, "Function or method did not return data," when the external routine
is called as a function and the exit handler does not return a result. When the external routine is
called with the Rexx CALL instruction, a result is not required.

8.14.2.3. RXFNC

Processes calls to external functions.

RXFNCCAL
Processes calls to external functions.

• When called: At beginning of the search for an external routine or function.

• Default action: Call the external routine using the usual external function search order.

• Exit action: Call the external routine, if possible.

• Continuation: If necessary, raise Rexx error 40 ("Incorrect call to routine"), 43 ("Routine not
found"), or 44 ("Function or message did not return data").

• Parameter list:

Example 8.41. API - Rexx_IO_Exit parameter list

typedef struct {



Chapter 8. Rexx C++ Application Programming Interfaces

130

   struct {
      unsigned rxfferr  : 1;           /* Invalid call to routine.    */
      unsigned rxffnfnd : 1;           /* Function not found.         */
      unsigned rxffsub  : 1;           /* Called as a subroutine if   */
                                       /* TRUE.  Return values are    */
                                       /* optional for subroutines,   */
                                       /* required for functions.     */
   } rxfnc_flags ;

   const char *      rxfnc_name;       /* Pointer to function name.   */
   unsigned short    rxfnc_namel;      /* Length of function name.    */
   const char *      rxfnc_que;        /* Current queue name.         */
   unsigned short    rxfnc_quel;       /* Length of queue name.       */
   unsigned short    rxfnc_argc;       /* Number of args in list.     */
   PCONSTRXSTRING    rxfnc_argv;       /* Pointer to argument list.   */
                                       /* List mimics argv list for   */
                                       /* function calls, an array of */
                                       /* RXSTRINGs.                  */
   RXSTRING          rxfnc_retc;       /* Return value.               */
} RXFNCCAL_PARM;

The name of the external function is defined by rxfnc_name and rxfnc_namel. The arguments
to the function are in rxfnc_argc and rxfnc_argv. If you call the named external function with the
Rexx CALL instruction (rather than using a function call), the flag rxffsub is TRUE.

The exit handler can set rxfnc_flags to indicate whether the external function call was
successful. If neither rxfferr nor rxffnfnd is TRUE, the exit handler successfully called the
external function. The error flags are checked only when the exit handler handles the request.

The exit handler sets rxffnfnd to TRUE when the exit handler cannot locate the external function.
The interpreter raises Rexx error 43, "Routine not found". The exit handler sets rxfferr to TRUE
when the exit handler locates the external function, but the external function returned an error
return code. The Rexx interpreter raises error 40, "Incorrect call to routine."

The exit handler returns the external function result in the rxfnc_retc RXSTRING. The Rexx
interpreter raises error 44, "Function or method did not return data," when the external routine
is called as a function and the exit handler does not return a result. When the external routine is
called with the Rexx CALL instruction, a result is not required.

The RXFNC translates all call arguments to string values and only allows a string value as a
return value. To access call arguments as Rexx objects, use the RXOFNC exit.

8.14.2.4. RXCMD

Processes calls to subcommand handlers.

RXCMDHST
Calls a named subcommand handler.

• When called: When Rexx procedure issues a command.

• Default action: Call the named subcommand handler specified by the current Rexx ADDRESS
setting.

• Exit action: Process the call to a named subcommand handler.



Context Exit Definitions

131

• Continuation: Raise the ERROR or FAILURE condition when indicated by the parameter list
flags.

• Parameter list:

Example 8.42. API - Rexx_IO_Exit parameter list

typedef struct {
   struct {                            /* Condition flags             */
      unsigned rxfcfail : 1;           /* Command failed.  Trap with  */
                                       /* CALL or SIGNAL on FAILURE.  */
      unsigned rxfcerr  : 1;           /* Command ERROR occurred.     */
                                       /* Trap with CALL or SIGNAL on */
                                       /* ERROR.                      */
   } rxcmd_flags;
   const char *      rxcmd_address;    /* Pointer to address name.    */
   unsigned short    rxcmd_addressl;   /* Length of address name.     */
   const char *      rxcmd_dll;        /* dll name for command.       */
   unsigned short    rxcmd_dll_len;    /* Length of dll name.  0 ==>  */
                                       /* executable file.            */
   CONSTRXSTRING     rxcmd_command;    /* The command string.         */
   RXSTRING          rxcmd_retc;       /* Pointer to return code      */
                                       /* buffer.  User allocated.    */
} RXCMDHST_PARM;

The rxcmd_command field contains the issued command. Rxcmd_address, rxcmd_addressl,
rxcmd_dll, and rxcmd_dll_len fully define the current ADDRESS setting. Rxcmd_retc is an
RXSTRING for the return code value assigned to Rexx special variable RC.

The exit handler can set rxfcfail or rxfcerr to TRUE to raise an ERROR or FAILURE condition.

8.14.2.5. RXMSQ

External data queue exit.

RXMSQPLL
Pulls a line from the external data queue.

• When called: When a Rexx PULL instruction, PARSE PULL instruction, or LINEIN built-in
function reads a line from the external data queue.

• Default action: Remove a line from the current Rexx data queue.

• Exit action: Return a line from the data queue that the exit handler provided.

• Parameter list:

Example 8.43. API - Rexx_IO_Exit parameter list

typedef struct {
   RXSTRING          rxmsq_retc;       /* Pointer to dequeued entry   */
                                       /* buffer.  User allocated.    */
} RXMSQPLL_PARM;



Chapter 8. Rexx C++ Application Programming Interfaces

132

The exit handler returns the queue line in the rxmsq_retc RXSTRING.

RXMSQPSH
Places a line in the external data queue.

• When called: When a Rexx PUSH instruction, QUEUE instruction, or LINEOUT built-in function
adds a line to the data queue.

• Default action: Add the line to the current Rexx data queue.

• Exit action: Add the line to the data queue that the exit handler provided.

• Parameter list:

Example 8.44. API - Rexx_IO_Exit parameter list

typedef struct {
   struct {                            /* Operation flag              */
      unsigned rxfmlifo : 1;           /* Stack entry LIFO when TRUE, */
                                       /* FIFO when FALSE.            */
   } rxmsq_flags;
   CONSTRXSTRING     rxmsq_value;      /* The entry to be pushed.     */
} RXMSQPSH_PARM;

The rxmsq_value RXSTRING contains the line added to the queue. It is the responsibility of
the exit handler to truncate the string if the exit handler data queue has a maximum length
restriction. Rxfmlifo is the stacking order (LIFO or FIFO).

RXMSQSIZ
Returns the number of lines in the external data queue.

• When called: When the Rexx QUEUED built-in function requests the size of the external data
queue.

• Default action: Request the size of the current Rexx data queue.

• Exit action: Return the size of the data queue that the exit handler provided.

• Parameter list:

Example 8.45. API - Rexx_IO_Exit parameter list

typedef struct {
   size_t            rxmsq_size;       /* Number of Lines in Queue    */
} RXMSQSIZ_PARM;

The exit handler returns the number of queue lines in rxmsq_size.



Context Exit Definitions

133

RXMSQNAM
Sets the name of the active external data queue.
• When called: Called by the RXQUEUE("SET", newname) built-in function.

• Default action: Change the current default queue to newname.

• Exit action: Change the default queue name for the data queue that the exit handler provided.

• Parameter list:

Example 8.46. API - Rexx_IO_Exit parameter list

typedef struct {
   RXSTRING     rxmsq_name;       /* RXSTRING containing         */
                                  /* queue name.                 */
} RXMSQNAM_PARM;

rxmsq_name contains the new queue name.

8.14.2.6. RXSIO

Standard input and output.

Note

The PARSE LINEIN instruction and the LINEIN, LINEOUT, LINES, CHARIN, CHAROUT, and
CHARS built-in functions do not call the RXSIO exit handler.

RXSIOSAY
Writes a line to the standard output stream.

• When called: When the SAY instruction writes a line to the standard output stream.

• Default action: Write a line to the standard output stream (STDOUT).

• Exit action: Write a line to the output stream that the exit handler provided.

• Parameter list:

Example 8.47. API - Rexx_IO_Exit parameter list

typedef struct {
   CONSTRXSTRING      rxsio_string;     /* String to display.          */
} RXSIOSAY_PARM;



Chapter 8. Rexx C++ Application Programming Interfaces

134

The output line is contained in rxsio_string. The output line can be of any length. It is the
responsibility of the exit handler to truncate or split the line if necessary.

RXSIOTRC
Writes trace and error message output to the standard error stream.
• When called: To output lines of trace output and Rexx error messages.

• Default action: Write a line to the standard error stream (.ERROR).

• Exit action: Write a line to the error output stream that the exit handler provided.

• Parameter list:

Example 8.48. API - Rexx_IO_Exit parameter list

typedef struct {
   CONSTRXSTRING       rxsio_string;     /* Trace line to display.      */
} RXSIOTRC_PARM;

The output line is contained in rxsio_string. The output line can be of any length. It is the
responsibility of the exit handler to truncate or split the line if necessary.

RXSIOTRD
Reads from standard input stream.
• When called: To read from the standard input stream for the Rexx PULL and PARSE PULL

instructions.

• Default action: Read a line from the standard input stream (STDIN).

• Exit action: Return a line from the standard input stream that the exit handler provided.

• Parameter list:

Example 8.49. API - Rexx_IO_Exit parameter list

typedef struct {
   RXSTRING          rxsiotrd_retc;    /* RXSTRING for input.         */
} RXSIOTRD_PARM;

The input stream line is returned in the rxsiotrd_retc RXSTRING.

RXSIODTR
Interactive debug input.
• When called: To read from the debug input stream for interactive debug prompts.

• Default action: Read a line from the standard input stream (STDIN).

• Exit action: Return a line from the standard debug stream that the exit handler provided.



Context Exit Definitions

135

• Parameter list:

Example 8.50. API - Rexx_IO_Exit parameter list

typedef struct {
   RXSTRING          rxsiodtr_retc;    /* RXSTRING for input.         */
} RXSIODTR_PARM;

The input stream line is returned in the rxsiodtr_retc RXSTRING.

8.14.2.7. RXNOVAL

Processes NOVALUE variable conditions.

RXNOVALCALL
Processes a Rexx NOVALUE condition.

• When called: Before the interpreter raises a NOVALUE condition. The exit is given the
opportunity to provide a value to the unassigned variable.

• Default action: Raise a NOVALUE condition for an unassigned variable.

• Exit action: Return an initial value for an unassigned variable.

• Continuation: If the exit provides a value for the unassigned variable, that value is assigned to
the indicated variable. The exit will not be called for the same variable on the next reference
unless the variable is dropped. If a value is not returned, a NOVALUE condition will be raised. If
SIGNAL ON NOVALUE is not enabled, the variable name will be returned as the value.

• Parameter list:

Example 8.51. API - Rexx_IO_Exit parameter list

typedef  struct _RXVARNOVALUE_PARM {   /* var */
   RexxStringObject  variable_name;    // the request variable name
   RexxObjectPtr     value;            // returned variable value
}  RXVARNOVALUE_PARM;

8.14.2.8. RXVALUE

Extends the environments available to the VALUE() built-in function.

RXVALUECALL
Processes an extended call to the VALUE() built-in function.



Chapter 8. Rexx C++ Application Programming Interfaces

136

• When called: When the VALUE() built-in function is called with an unknown environment name.
The exit is given the opportunity to provide a value for the given environment selector.

• Default action: Raise a SYNTAX error for an unknown environment name.

• Exit action: Return a value for the given name/environment pair.

• Continuation: If the exit provides a value for the VALUE() call, that value is returned as a result. .

• Parameter list:

Example 8.52. API - Rexx_IO_Exit parameter list

typedef  struct _RXVALCALL_PARM {      /* val */
   RexxStringObject  selector;         // the environment selector name
   RexxStringObject  variable_name;    // the request variable name
   RexxObjectPtr     value;            // returned variable value
}  RXVALCALL_PARM;

If the newValue argument is specified on the VALUE() built-in function, that value is assigned to
value on the call to the exit.

8.14.2.9. RXHLT

HALT condition processing.

Because the RXHLT exit handler is called after every Rexx instruction, enabling this exit slows Rexx
program execution. The RexxSetHalt() function can halt a Rexx program without between-instruction
polling.

RXHLTTST
Tests the HALT indicator.
• When called: When the interpreter polls externally raises HALT conditions. The exit will be

called after completion of every Rexx instruction.

• Default action: The interpreter uses the system facilities for trapping Cntrl-Break signals.

• Exit action: Return the current state of the HALT condition (either TRUE or FALSE).

• Continuation: Raise the Rexx HALT condition if the exit handler returns TRUE.

• Parameter list:

Example 8.53. API - Rexx_IO_Exit parameter list

typedef struct {
   struct {                            /* Halt flag                   */
      unsigned rxfhhalt : 1;           /* Set if HALT occurred.       */
   } rxhlt_flags;
} RXHLTTST_PARM;



Context Exit Definitions

137

If the exit handler sets rxfhhalt to TRUE, the HALT condition is raised in the Rexx program.

The Rexx program can retrieve the reason string using the CONDITION("D") built-in function.

RXHLTCLR
Clears the HALT condition.
• When called: When the interpreter has recognized and raised a HALT condition, to

acknowledge processing of the HALT condition.

• Default action: The interpreter resets the Cntrl-Break signal handlers.

• Exit action: Reset exit handler HALT state to FALSE.

• Parameters: None.

8.14.2.10. RXTRC

Tests the external trace indicator.

Note

Because the RXTRC exit is called after every Rexx instruction, enabling this exit slows Rexx
procedure execution. The SetThreadTrace() (Section 8.16.155, “SetThreadTrace”) method can
turn on Rexx tracing without the between-instruction polling.

RXTRCTST
Tests the external trace indicator.
• When called: When the interpreter polls for an external trace event. The exit is called after

completion of every Rexx instruction.

• Default action: None.

• Exit action: Return the current state of external tracing (either TRUE or FALSE).

• Continuation: When the exit handler switches from FALSE to TRUE, the Rexx interpreter enters
the interactive Rexx debug mode using TRACE ?R level of tracing. When the exit handler
switches from TRUE to FALSE, the Rexx interpreter exits the interactive debug mode.

• Parameter list:

Example 8.54. API - Rexx_IO_Exit parameter list

typedef struct {
   struct {
      unsigned rxftrace : 1;        /* External trace setting        */
   } rxtrc_flags;
} RXTRCTST_PARM;



Chapter 8. Rexx C++ Application Programming Interfaces

138

If the exit handler switches rxftrace to TRUE, Rexx switches on the interactive debug mode. If
the exit handler switches rxftrace to FALSE, Rexx switches off the interactive debug mode.

8.14.2.11. RXINI

Initialization processing. This exit is called as the last step of Rexx program initialization.

RXINIEXT
Initialization exit.
• When called: Before the first instruction of the Rexx procedure is interpreted.

• Default action: None.

• Exit action: The exit handler can perform additional initialization. For example:
• Use SetContextVariable() (Section 8.16.147, “SetContextVariable”) API to initialize

application-specific variables.

• Use SetThreadTrace() (Section 8.16.155, “SetThreadTrace”) API to switch on the interactive
Rexx debug mode.

• Parameters: None.

8.14.2.12. RXTER

Termination processing.

The RXTER exit is called as the first step of Rexx program termination.

RXTEREXT
Termination exit.
• When called: After the last instruction of the Rexx procedure has been interpreted.

• Default action: None.

• Exit action: The exit handler can perform additional termination activities. For example, the exit
handler can use SetContextVariable() (Section 8.16.147, “SetContextVariable”) to retrieve the
Rexx variable values.

• Parameters: None.

8.15. Command Handler Interface
Applications can create custom command handlers that function like operating command shell
environments. These named evironments can be invoked with the Rexx ADDRESS instuction and
applications can create Rexx instances that direct commands to custom application command
handlers by default.

Command handlers are registered with an interpreter instance when it is created. See Section 8.1.2,
“Interpreter Instance Options” for how to register a handler with an interpreter instance.

The command handlers are registered as a function pointer to a handler routine. When a Rexx
program issues a command to the named ADDRESS target, the handler is called with the evaluated



Command Handler Interface

139

command string and the name of the address environment. The handler is responsible for executing
the command and returning a return code value back to the Rexx program. Handlers are called using
the following function signature:

RexxObjectPtr RexxEntry TestCommandHandler(RexxExitContext *context,
     RexxStringObject address, RexxStringObject command)

Arguments

context A RexxExitContext (Section 8.10, “Rexx Exit Context Interface”) interface vector
for the handler call. The RexxExitContext provides access to runtime services
appropriate to a command handler. For example, the exit context can set or
get Rexx variables, invoke methods on objects, and raise ERROR or FAILURE
conditions.

address A String object containing the target command environment name.

command A String object containing the issued command string.

Returns

Any object that should be used as the command return code. This value will be assigned to the
variable RC upon return. If NULLOBJECT is returned, a 0 is used as the return code. The return code
value is traditionally a numeric value, but any value can be returned, including more complex object
return values, if desired.

For normal commands, the command is processed and a return code is given back to the Rexx
program. The interpreter recognizes two different abnormal return states for commands, ERROR
and FAILURE. An ERROR condition indicates there was some sort of error return state involved
with executing a command. These could be command syntax errors, semantic errors, etc. FAILURE
conditions are more serious conditions. One traditional FAILURE condition is the unknown command
error.

Command handlers raise ERROR and FAILURE conditions using the RaiseCondition()
(Section 8.16.133, “RaiseCondition”) API provided by the RexxExitContext. For example:

Example 8.55. API - Command handler interface

// if this was an unknown command, give our generic unknown command return code
if (errorStatus == COMMAND_FAILURE) {
    // Note:  The return code needs to be included with the FAILURE condition
    context->RaiseCondition("FAILURE", command, NULLOBJECT, context->WholeNumber(-1));
    // just return null...the RC value is picked up from the condition.
    return NULLOBJECT;
}
else if (errorStatus == COMMAND_ERROR) {
    // Note:  The return code needs to be included with the ERROR condition
    context->RaiseCondition("ERROR", command, NULLOBJECT, context->WholeNumber(rc));
    // just return null...the RC value is picked up from the condition.
    return NULLOBJECT;
}
// return the RC value for the command, which need not be 0
return context->WholeNumber(rc);



Chapter 8. Rexx C++ Application Programming Interfaces

140

8.16. Rexx Interface Methods Listing
This section describes each available method and its associated context.

8.16.1. Array

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxArrayObject arr;
RexxObjectPtr obj1, obj2, obj3, obj4;

>>--arr = context->Array(obj1);------------------------------------------><

>>--arr = context->Array(obj1, obj2);------------------------------------><

>>--arr = context->Array(obj1, obj2, obj3);------------------------------><

>>--arr = context->Array(obj1, obj2, obj3, obj4);------------------------><

This method has four forms. It create a new one-dimension Array with the specified objects.

Arguments

obj1 The first object to be added.

obj2 The second object to be added.

obj3 The third object to be added.

obj4 The fourth object to be added.

Returns

The new Array object.

8.16.2. ArrayAppend

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes



ArrayAppendString

141

Interpreter No

RexxArrayObject arr;
RexxObjectPtr obj;
size_t n;

>>--n = context->ArrayAppend(arr, obj);----------------------------------><

Append an Object to the end of an Array.

Arguments

arr The target Array object.

obj The object to be appended.

Returns

The index of the appended object.

8.16.3. ArrayAppendString

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxArrayObject arr;
CSTRING str;
size_t n, len;

>>--n = context->ArrayAppendString(arr, str, len);-----------------------><

Append an object to the end of an Array. The appended object is a String object created from a pointer
and length.

Arguments

arr The target Array object.

str A pointer to the string data to be appended.

len The length of the string value in characters.

Returns

The Array index of the appended object.



Chapter 8. Rexx C++ Application Programming Interfaces

142

8.16.4. ArrayAt

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxArrayObject arr;
RexxObjectPtr obj;
size_t idx;

>>--obj = context->ArrayAt(arr, idx);------------------------------------><

Retrieve an object from a specified Array index.

Arguments

arr The source Array object.

idx The index of the required object. This argument is 1-based.

Returns

The object at the specified index. Returns NULLOBJECT if there is no value at the specified index.

8.16.5. ArrayDimension

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxArrayObject arr;
size_t sz;

>>--sz = context->ArrayDimension(arr);-----------------------------------><

Returns number of dimensions of an Array.

Arguments



ArrayItems

143

arr The target Array object.

Returns

The number of Array dimensions.

8.16.6. ArrayItems

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxArrayObject arr;
size_t sz;

>>--sz = context->ArrayItems(arr);---------------------------------------><

Returns number of elements in an Array.

Arguments

arr The source Array object.

Returns

The number of Array elements.

8.16.7. ArrayOfFour

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxArrayObject arr;
RexxObjectPtr obj1, obj2, obj3, obj4;

>>--arr = context->ArrayOfFour(obj1, obj2, obj3, obj4);------------------><



Chapter 8. Rexx C++ Application Programming Interfaces

144

Create a new one-dimension Array with the specified objects.

Arguments

obj1 The first object to be added.

obj2 The second object to be added.

obj3 The third object to be added.

obj4 The fourth object to be added.

Returns

The new Array object.

8.16.8. ArrayOfThree

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxArrayObject arr;
RexxObjectPtr obj1, obj2, obj3;

>>--arr = context->ArrayOfThree(obj1, obj2, obj3);-----------------------><

Create a new one-dimension Array with the specified objects.

Arguments

obj1 The first object to be added.

obj2 The second object to be added.

obj3 The third object to be added.

Returns

The new Array object.

8.16.9. ArrayOfTwo

Context Available

Thread Yes

Method Yes

Function Yes



ArrayOfOne

145

Exit Yes

Interpreter No

RexxArrayObject arr;
RexxObjectPtr obj1, obj2;

>>--arr = context->ArrayOfTwo(obj1, obj2);-------------------------------><

Create a new one-dimension Array with the specified objects..

Arguments

obj1 The first object to be added.

obj2 The second object to be added.

Returns

The new Array object.

8.16.10. ArrayOfOne

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxArrayObject arr;
RexxObjectPtr obj;

>>--arr = context->ArrayOfOne(obj);--------------------------------------><

Create a new one-dimension Array with the specified object.

Arguments

obj The object to be added.

Returns

The new Array object.

8.16.11. ArrayPut



Chapter 8. Rexx C++ Application Programming Interfaces

146

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxArrayObject arr;
RexxObjectPtr obj;
size_t idx;

>>--context->ArrayPut(arr, obj, idx);------------------------------------><

Replace/add an Object to an Array.

Arguments

arr The target Array object.

obj The object to be added.

idx The index into the Array object. This argument is 1-based.

Returns

Void.

8.16.12. ArraySize

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxArrayObject arr;
size_t sz;

>>--sz = context->ArraySize(arr);----------------------------------------><

Returns the size of an Array.

Arguments

arr The source Array object.



AttachThread

147

Returns

The Array size.

8.16.13. AttachThread

Context Available

Thread No

Method No

Function No

Exit No

Interpreter Yes

RexxThreadContext *tc

>>--success = context->AttachThread(&tc);-------------------------------><

Attaches the current thread to the Rexx interpreter instance context pointer.

Arguments

tc Pointer to a RexxThreadContext pointer used to return a RexxThreadContext for
the attached thread.

Returns

Boolean value. 1 = success, 0 = failure. If the call was successful, a RexxThreadContext object valid
for the current context is returned via the tc argument.

8.16.14. BufferData

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxBufferObject obj;
POINTER str;

>>--str = context->BufferData(obj);--------------------------------------------><



Chapter 8. Rexx C++ Application Programming Interfaces

148

Returns a pointer to a Buffer object's data area.

Arguments

obj The source Buffer object.

Returns

The C pointer to the Buffer object's data area.

8.16.15. BufferLength

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxBufferObject obj;
size_t sz;

>>--sz = context->BufferLength(obj);-------------------------------------><

Return the length of a Buffer object's data area.

Arguments

obj The source Buffer object.

Returns

The length of the Buffer object's data area.

8.16.16. BufferStringData

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No



BufferStringLength

149

RexxBufferStringObject obj;
POINTER str;

>>--str = context->BufferStringData(obj);--------------------------------------><

Returns a pointer to a RexxBufferString object's data area.

Arguments

obj The source object.

Returns

The C pointer to the RexxBufferString's data area. This is a writable data area, but the
RexxBufferString must be finalized using FinishBufferString() (Section 8.16.40, “FinishBufferString”)
before it can be used in any other context.

8.16.17. BufferStringLength

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxBufferStringObject obj;
size_t sz;

>>--sz = context->BufferStringLength(obj);-------------------------------><

Return the length of a RexxBufferStringObject instance.

Arguments

obj The source RexxBufferStringObject.

Returns

The length of the RexxBufferStringObject.

8.16.18. CallProgram

Context Available

Thread Yes

Method Yes



Chapter 8. Rexx C++ Application Programming Interfaces

150

Function Yes

Exit Yes

Interpreter No

CSTRING name;
RexxObjectPtr ret;
RexxArrayObject arr;

>>--ret = context->CallProgram(name, arr);----------------------------><

Returns the result object of the routine.

Arguments

name The ASCII-Z path/name of the Rexx program to call.

arr An Array of object program arguments.

Returns

Any result object returned by the program. NULLOBJECT is returned if the program does not return
a value. Any errors involved with calling the program will will return a NULLOBJECT result. The
CheckCondition() (Section 8.16.20, “CheckCondition”). can be used to check if any errors occurred
during the call.

8.16.19. CallRoutine

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj, ret;
RexxArrayObject arr;

>>--ret = context->CallRoutine(obj, arr);-----------------------------><

Returns the result object of the routine.

Arguments

obj The routine object to call.

arr An Array of routine argument objects.

Returns



CheckCondition

151

Any result object returned by the Routine. NULLOBJECT is returned if the program does not return
a value. Any errors involved with calling the program will will return a NULLOBJECT result. The
CheckCondition() (Section 8.16.20, “CheckCondition”). can be used to check if any errors occurred
during the call.

8.16.20. CheckCondition

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

logical_t flag;

>>--flag = context->CheckCondition();------------------------------------><

Checks to see if any conditions have resulted from a call to a Rexx API. .

Arguments

None.

Returns

1 = if a condition has been raised, 0 = no condition raised.

8.16.21. ClearCondition

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

>>--context->ClearCondition();-------------------------------------------><

Clears any pending condition status.

Arguments



Chapter 8. Rexx C++ Application Programming Interfaces

152

None.

Returns

Void.

8.16.22. CString

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
RexxStringObject ostr;
CSTRING str;

>>--str = context->CString(obj);-----------------------------------------><

>>--ostr = context->CString(str);----------------------------------------><

There are two forms of this method. The first converts an Object into a C ASCII-Z string. The second
converts C ASCII-Z string into a String object.

Arguments

obj The source object for the conversion.

str The source C ASCII-Z string for the conversion.

Returns

For the first method form, a CSTRING representation of the object is returned. For the second form, a
String object is created from the ASCII-Z string data..

8.16.23. DecodeConditionInfo

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No



DetachThread

153

RexxDirectoryObject dirj;
RexxCondition cond;

>>--context->DecodeConditionInfo(dir, &cond);----------------------------><

Decodes the condition information into a RexxCondition structure.

Arguments

dir The source Directory object containing the condition information.

cond A pointer to the RexxCondition structure.

Returns

Void. The cond structure is updated with information from dir.

8.16.24. DetachThread

Context Available

Thread Yes

Method No

Function No

Exit No

Interpreter Nos

>>--context->DetachThread()-------------;-------------------------------><

Detaches the thread represented by the RexxThreadContext object from it's interpreter instance. Once
DetachThread() is called, the RexxThreadContext object issuing the call is no longer a valid, active
interface.

Arguments

None

Returns

Void.

8.16.25. DirectoryAt

Context Available

Thread Yes

Method Yes



Chapter 8. Rexx C++ Application Programming Interfaces

154

Function Yes

Exit Yes

Interpreter No

RexxDirectoryObject dirobj;
RexxObjectPtr obj;
CSTRING str;

>>--obj = context->DirectoryAt(dirobj, str);-----------------------------><

Return the object at the specified index.

Arguments

dirobj The source Directory object.

str The index into the Directory object.

Returns

The object at the specified index. Returns NULLOBJECT if the given index does not exist.

8.16.26. DirectoryPut

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxDirectoryObject dirobj;
RexxObjectPtr item;
CSTRING index;

>>--context->DirectoryPut(dirobj, item, index);--------------------------><

Replace/add an Object at the specified Directory index.

Arguments

dirobj The source Directory object.

item The object instance to be stored at the index.

index The ASCII-Z string index into the Directory object.

Returns



DirectoryRemove

155

Void.

8.16.27. DirectoryRemove

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxDirectoryObject dirobj;
RexxObjectPtr obj;
CSTRING str;

>>--obj = context->DirectoryRemove(dirobj, str);-------------------------><

Removes and returns the object at the specified Directory index.

Arguments

dirobj The source Directory object.

str The ASCII-Z index into the Directory object.

Returns

The object removed at the specified index. Returns NULLOBJECT if the index did not exist in the
target Directory.

8.16.28. DisplayCondition

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

wholenumber_t rc;

>>--rc = context->DisplayCondition();------------------------------------><



Chapter 8. Rexx C++ Application Programming Interfaces

156

If any syntax conditions are currently pending in the Rexx context, then error information will be output
to the current .error stream.

Arguments

None.

Returns

If there is syntax information to display, the return code will be the major error number for the syntax
error. Returns 0 if there is no current syntax condition.

8.16.29. Double

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
double n;
logical_t flag;

>>--obj = context->Double(n);--------------------------------------------><

>>--flag = context->Double(obj, &n);-------------------------------------><

There are two forms of this method. The first form converts C double value to an Object. The second
form converts an Object to a C double value.

Arguments

n For the first method form, the double value to be converted. For the second method
form, the target of the conversion.

obj The object to be converted..

Returns

For the first method form, returns an Object version of the double value. For the second method form,
0 - success, 1 = failure. If successful, the converted value is placed in n.

8.16.30. DoubleToObject

Context Available

Thread Yes



DoubleToObjectWithPrecision

157

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
double n;

>>--obj = context->DoubleToObject(n);------------------------------------><

Converts C double value to an Object.

Arguments

n The double value to be converted.

Returns

An Object representation of the double value.

8.16.31. DoubleToObjectWithPrecision

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
size_t p;
double n;

>>--obj = context->DoubleToObject(n, p);---------------------------------><

Converts C double value to an Object with a specific precision.

Arguments

n The double value to be converted.

p The precision to be used for the conversion.

Returns

An Object representation of the double value.



Chapter 8. Rexx C++ Application Programming Interfaces

158

8.16.32. DropContextVariable

Context Available

Thread No

Method No

Function Yes

Exit Yes

Interpreter No

CSTRING name;

>>--context->DropContextVariable(name);-------------------------------><

Drops a Rexx variable in the current routine's caller variable context.

Arguments

name The name of the Rexx variable.

Returns

Void.

8.16.33. DropObjectVariable

Context Available

Thread No

Method Yes

Function No

Exit No

Interpreter No

CSTRING str;

>>--context->DropObjectVariable(str);------------------------------------><

Drops an instance variable in the current method's scope.

Arguments

str The name of the object variable.

Returns



DropStemArrayElement

159

Void.

8.16.34. DropStemArrayElement

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxStemObject sobj;
size_t n;

>>--context->DropStemArrayElement(sobj, n);------------------------------><

Drops an element of the Stem object.

Arguments

sobj The target Stem object.

n The Stem object element number.

Returns

Void.

8.16.35. DropStemElement

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxStemObject sobj;
CSTRING name;

>>--context->DropStemElement(sobj, name);--------------------------------><

Drops an element of the Stem object.



Chapter 8. Rexx C++ Application Programming Interfaces

160

Arguments

sobj The target Stem object.

name The Stem object element name.

Returns

Void.

8.16.36. False

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;

>>--obj = context->False();----------------------------------------------><

This method returns the Rexx .false ( 0 ) object.

Arguments

None.

Returns

The Rexx .false object.

8.16.37. FindClass

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxClassObject class;
CSTRING name;



FindContextClass

161

>>--class = context->FindClass(name);---------------------------------><

Locates a Class object in the current thread context.

Arguments

name An ASCII-Z string containing the name of the class.

Returns

The located Class object. Returns NULLOBJECT if the class is not found.

8.16.38. FindContextClass

Context Available

Thread No

Method Yes

Function Yes

Exit No

Interpreter No

CSTRING name;
RexxClassObject obj;

>>--obj = context->FindContextClass(name);-------------------------------><

Locate a Class object in the current Method or Routine Package context.

Arguments

name The class name to be located.

Returns

The located Class object. Returns NULLOBJECT if the class is not found.

8.16.39. FindPackageClass

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No



Chapter 8. Rexx C++ Application Programming Interfaces

162

RexxPackageObject pkg;
RexxClassObject class;
CSTRING name;

>>--class = context->FindPackageClass(pkg, name);---------------------><

Locate a class object in a given Package object's context.

Arguments

pkg The Package object used to resolve the class.

name An ASCII-Z string containing the name of the class.

Returns

The located Class object. Returns NULLOBJECT if the class is not found.

8.16.40. FinishBufferString

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxBufferStringObject obj;
RexxStringObject strobj;
size_t len;

>>--str = context->FinishBufferString(obj, len);---------------------------><

Converts a RexxBufferStringObject into a completed, immutable String object of the given length and
returns a reference to the completed String object.

Arguments

obj The working RexxBufferStringObject.

len The final length of the constructed string.

Returns

The finalized Rexx string object.

8.16.41. ForwardMessage



GetAllContextVariables

163

Context Available

Thread No

Method Yes

Function No

Exit No

Interpreter No

CSTRING str;
RexxObjectPtr obj, ret;
RexxClassObject sobj;
RexxArrayObject arr;

>>--ret = context->ForwardMessage(obj, str, cobj, arr);------------------><

Forwards a message to a different object or method. This is equivalent to using a FORWARD
CONTINUE instruction from Rexx code.

Arguments

obj The object to receive the message. If NULL, the object that is the target of the
current method call is used.

str The message name to use. If NULL, then the name of the current method is used.

cobj The class scope used to locate the method. If NULL, this will be an unscoped
method call.

arr The Array of message arguments. If NULL, the same arguments that were used on
the current method invocation will be used.

Returns

The invoked message result. NULLOBJECT will be returned if the target method does not return a
result.

8.16.42. GetAllContextVariables

Context Available

Thread No

Method No

Function Yes

Exit Yes

Interpreter No

RexxDirectoryObject obj;

>>--obj = context->GetAllContextVariables();--------------------------><



Chapter 8. Rexx C++ Application Programming Interfaces

164

Returns all the Rexx variables in the current routine's caller's context as a Directory. Only simple
variables and stem variables are included in the Directory. Stem variable entries will have a Stem
object as the value. Compound variables may be accessed via the Stem object values.

Arguments

None.

Returns

A RexxDirectoryObject with the variable names and values.

8.16.43. GetAllStemElements

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxStemObject sobj;
RexxDirectoryObject obj;

>>--obj = context->GetAllStemElements(sobj);-----------------------------><

Returns all elements of a Stem object as a Directory object. Each assigned Stem tail element will be
an entry in the Directory.

Arguments

sobj The source Stem object.

Returns

The Directory object containing the Stem variable values.

8.16.44. GetApplicationData

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes



GetArgument

165

Interpreter No

>>--ptr = context->GetApplicationData();------------------------------><

Returns the application data pointer that was set via the APPLICATION_DATA option when the
intepreter instance was created.

Arguments

None.

Returns

The application instance data set when the interpreter instance was created.

8.16.45. GetArgument

Context Available

Thread No

Method Yes

Function Yes

Exit No

Interpreter No

RexxObjectPtr obj;
size_t n;

>>--obj = context->GetArgument(n);------------------------------------><

Returns the specified argument to the method or routine. This is equivalent to calling Arg(n) from
within Rexx code.

Arguments

n The argument number (1-based).

Returns

The object corresponding to the given argument position. Returns NULLOBJECT if the argument was
not specified.

8.16.46. GetArguments

Context Available

Thread No



Chapter 8. Rexx C++ Application Programming Interfaces

166

Method Yes

Function Yes

Exit No

Interpreter No

RexxArrayObject arr;

>>--arr = context->GetArguments();------------------------------------><

Returns an Array object of the arguments to the method or routine. This is the same argument Array
returned by the ARGLIST argument type.

Arguments

None.

Returns

The Array object containing the method or routine arguments.

8.16.47. GetCallerContext

Context Available

Thread No

Method No

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;

>>--obj = context->GetCallerContext();--------------------------------><

Get the RexxContext object corresponding to the routine or exit's calling context.

Arguments

None.

Returns

The current exit or routine caller's RexxContext object.

8.16.48. GetConditionInfo



GetContextDigits

167

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxDirectoryObject dir;

>>--dir = context->GetConditionInfo();--------------------------------><

Returns a Directory object containing the condition information. This is equivalent to calling
Condition('O') from within Rexx code.

Arguments

None.

Returns

The RexxDirectoryObject containing the condition information. If there are no pending conditions,
NULLOBJECT is returned.

8.16.49. GetContextDigits

Context Available

Thread No

Method No

Function Yes

Exit No

Interpreter No

stringsize_t sz;

>>--sz = context->GetContextDigits();---------------------------------><

Get the routine caller's current NUMERIC DIGITS setting.

Arguments

None.

Returns

The current NUMERIC DIGITS setting.



Chapter 8. Rexx C++ Application Programming Interfaces

168

8.16.50. GetContextForm

Context Available

Thread No

Method No

Function Yes

Exit No

Interpreter No

stringsize_t sz;

>>--sz = context->GetContextForm();-----------------------------------><

Get the routine caller's current NUMERIC FORM setting.

Arguments

None.

Returns

The current NUMERIC FORM setting.

8.16.51. GetContextFuzz

Context Available

Thread No

Method No

Function Yes

Exit No

Interpreter No

stringsize_t sz;

>>--sz = context->GetContextFuzz();-----------------------------------><

Get the routine caller's current NUMERIC FUZZ setting.

Arguments

None.

Returns



GetContextVariable

169

The current NUMERIC FUZZ setting.

8.16.52. GetContextVariable

Context Available

Thread No

Method No

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
CSTRING name;

>>--obj = context->GetContextVariable(name);--------------------------><

Gets the value of a Rexx variable in the routine or exit caller's variable context. Only simple variables
and stem variables can be retrieved with GetContextVariable(). The value returned for a stem
variable will be the corresponding Stem object. Compound variable values can be retrieved from the
corresponding Stem values.

Arguments

name The name of the Rexx variable.

Returns

The value of the named variable. Returns NULLOBJECT if the variable has not been assigned a
value.

8.16.53. GetGlobalEnvironment

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxDirectoryObject dir;

>>--dir = context->GetGlobalEnvironment();----------------------------><



Chapter 8. Rexx C++ Application Programming Interfaces

170

Returns a reference to the .environment Directory.

Arguments

None.

Returns

A RexxDirectoryObject pointer to the .environment Directory.

8.16.54. GetLocalEnvironment

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxDirectoryObject dir;

>>--dir = context->GetLocalEnvironment();-----------------------------><

Returns a reference to the interpreter instance .local Directory.

Arguments

None.

Returns

A RexxDirectoryObject pointer to the .local Directory.

8.16.55. GetMessageName

Context Available

Thread No

Method Yes

Function No

Exit No

Interpreter No

CSTRING str;



GetMethod

171

>>--str = context->GetMessageName(obj);-------------------------------><

Returns the message name used to invoke the current method.

Arguments

None.

Returns

The current method message name.

8.16.56. GetMethod

Context Available

Thread No

Method Yes

Function No

Exit No

Interpreter No

RexxMethodObject obj;

>>--obj = context->GetMethod();---------------------------------------><

Returns the Method object for the currently executing method.

Arguments

None.

Returns

The current Method object.

8.16.57. GetMethodPackage

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No



Chapter 8. Rexx C++ Application Programming Interfaces

172

RexxMethodObject obj;
RexxPackageObject pkg;

>>--pkg = context->GetMethodPackage(obj);-----------------------------><

Returns the Package object associated with the specified Method instance.

Arguments

obj The source Method object..

Returns

The Method's defining Package object.

8.16.58. GetObjectVariable

Context Available

Thread No

Method Yes

Function No

Exit No

Interpreter No

CSTRING str;
RexxObjectPtr obj;

>>--obj = context->GetObjectVariable(str);-------------------------------><

Retrieves a Rexx instance variable value from the current object's method scope context. Only simple
variables and stem variables can be retrieved with GetObjectVariable(). The value returned for a stem
variable will be the corresponding Stem object. Compound variable values can be retrieved from the
corresponding Stem values.

Arguments

str The name of the object variable.

Returns

The object assigned to the named object variable. Returns NULLOBJECT if the variable has not been
assigned a value.

8.16.59. GetPackageClasses

Context Available



GetPackageMethods

173

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxDirectoryObject dir;
RexxPackageObject pkg;

>>--dir = context->GetPackageClasses(pkg);----------------------------><

Returns a Directory object containing the Package public and private classes, indexed by class name.

Arguments

obj The package object to query.

Returns

A Directory object containing the package classes.

8.16.60. GetPackageMethods

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxDirectoryObject dir;
RexxPackageObject pkg;

>>--dir = context->GetPackageMethods(pkg);----------------------------><

Returns a Directory object containing the Package unattached methods, indexed by Method name.
This is equivalent to using the .methods environment symbol from Rexx code.

Arguments

obj The package routine object to query.

Returns

A Directory object containing the Package's unattached methods.



Chapter 8. Rexx C++ Application Programming Interfaces

174

8.16.61. GetPackagePublicClasses

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxDirectoryObject dir;
RexxPackageObject pkg;

>>--dir = context->GetPackagePublicClasses(pkg);----------------------><

Returns a Directory object containing the Package public classes, indexed by class name.

Arguments

obj The package object to query.

Returns

A Directory object containing the public classes.

8.16.62. GetPackagePublicRoutines

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxDirectoryObject dir;
RexxPackageObject pkg;

>>--dir = context->GetPackagePublicRoutines(pkg);---------------------><

Returns a Directory object containing the Package public routines, indexed by routine name.

Arguments

obj The package object to query.



GetPackageRoutines

175

Returns

A Directory object containing the public routines.

8.16.63. GetPackageRoutines

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxDirectoryObject dir;
RexxPackageObject pkg;

>>--dir = context->GetPackageRoutines(pkg);---------------------------><

Returns a Directory object containing the Package public and private routines, indexed by routine
name.

Arguments

obj The package routine object to query.

Returns

A Directory object containing the routines.

8.16.64. GetRoutine

Context Available

Thread No

Method No

Function Yes

Exit No

Interpreter No

RexxRoutineObject obj;

>>--obj = context->GetRoutine();--------------------------------------><

Returns current Routine object.



Chapter 8. Rexx C++ Application Programming Interfaces

176

Arguments

None

Returns

The current Routine object.

8.16.65. GetRoutineName

Context Available

Thread No

Method No

Function Yes

Exit No

Interpreter No

CSTRING name;

>>--name = context->GetRoutineName();---------------------------------><

Returns the name of the current routine.

Arguments

None

Returns

A pointer ASCII-Z routine name.

8.16.66. GetRoutinePackage

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxRoutineObject obj;
RexxPackageObject pkg;

>>--pkg = context->GetRoutinePackage(obj);----------------------------><



GetScope

177

Returns Routine object's associated Package object.

Arguments

obj The routine object to query.

Returns

The Package object instance.

8.16.67. GetScope

Context Available

Thread No

Method Yes

Function No

Exit No

Interpreter No

RexxObjectPtr obj;

>>--obj = context->GetScope();----------------------------------------><

Return the current active method's scope.

Arguments

None.

Returns

The current Method's scope.

8.16.68. GetSelf

Context Available

Thread No

Method Yes

Function No

Exit No

Interpreter No



Chapter 8. Rexx C++ Application Programming Interfaces

178

RexxObjectPtr obj;

>>--obj = context->GetSelf();-----------------------------------------><

Returns the Object that is the current method's message target. This is equivalent to the SELF
variable in a Rexx method. The same value can be accessed as a method argument using the OSELF
type.

Arguments

None.

Returns

The current SELF object.

8.16.69. GetStemArrayElement

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxStemObject sobj;
RexxObjectPtr obj;
size_t n;

>>--obj = context->GetStemArrayElement(sobj, n);-------------------------><

Retrieves an element of a Stem object using a numeric index.

Arguments

sobj The source Stem object.

n The Stem object element number. The numeric index is translated into the
corresponding String tail.

Returns

The Object stored at the target index or NULLOBJECT if the target index has not been assigned a
value.

8.16.70. GetStemElement

Context Available



GetStemValue

179

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxStemObject sobj;
RexxObjectPtr obj;
CSTRING name;

>>--obj = context->GetStemElement(sobj, name);---------------------------><

Retrieves an element of a Stem object.

Arguments

sobj The source Stem object.

name The Stem object element name. This is a fully resolved tail name, taken as a
constant. No variable substitution is performed on the tail.

Returns

The the object at the target index or NULLOBJECT if the target index has not been assigned a value.

8.16.71. GetStemValue

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxStemObject sobj;
RexxObjectPtr obj;
CSTRING name;

>>--obj = context->GetStemValue(sobj);-----------------------------------><

Retrieves the base name value of a Stem object.

Arguments

sobj The source Stem object.

Returns



Chapter 8. Rexx C++ Application Programming Interfaces

180

The Stem object's default base value.

8.16.72. GetSuper

Context Available

Thread No

Method Yes

Function No

Exit No

Interpreter No

RexxObjectPtr obj;

>>--obj = context->GetSuper();----------------------------------------><

Returns the current method's super class scope. This is equivalent to the SUPER variable used from
Rexx code. This value can also be obtained via the SUPER method argument type.

Arguments

None.

Returns

The current method's SUPER scope.

8.16.73. Halt

Context Available

Thread No

Method No

Function No

Exit No

Interpreter Yes

>>--context->Halt();-----------------------------------------------------><

Raise a HALT condition on all threads associated with the interpreter instance.

Arguments

None.



HaltThread

181

Returns

Void.

8.16.74. HaltThread

Context Available

Thread Yes

Method No

Function No

Exit No

Interpreter Nos

>>--context->HaltThread();----------------------------------------------><

Raises a HALT condition on the thread corresponding to the current context pointer.

Arguments

None

Returns

Void.

8.16.75. HasMethod

Context Available

Thread Yes

Method Tes

Function Tes

Exit Yes

Interpreter No

logical_t flag;
RexxObjectPtr obj;
CSTRING name;

>>--flag = context->HasMethod(obj, name);-------------------------------><

Tests if an object supports the specified method name.

Arguments



Chapter 8. Rexx C++ Application Programming Interfaces

182

obj The target object.

name An ASCII-Z method name.

Returns

1 = the method exists, 0 = the method does not exist.

8.16.76. InvalidRoutine

Context Available

Thread No

Method No

Function Yes

Exit No

Interpreter No

RexxDirectoryObject obj;

>>--context->InvalidRoutine();----------------------------------------><

Raises the standard Error 40, "Invalid call to routine" synatx error for the current routine. This error will
be raised by the Rexx runtime once the routine returns.

Arguments

None.

Returns

Void.

8.16.77. Int32

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
logical_t flag;
int32_t n;



Int32ToObject

183

>>--obj = context->Int32(n);---------------------------------------------><

>>--logical_t = context->Int32(obj, &n);---------------------------------><

There a two forms of this method. The first form converts a C 32-bit integer n to an Object. The second
form converts an Object to a C 32-bit integer, returning it in n.

Arguments

n For the first form, the value to be converted. For the second form, the converted
result.

obj The object to be converted.

Returns

For the first form, n Object representation of the integer value. For the second form, returns 1 =
success, 0 = failure. If successful, the converted value is placed in n.

8.16.78. Int32ToObject

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
int32_t n;

>>--obj = context->Int32ToObject(n);-------------------------------------><

Convert a C 32-bit integer n to an Object.

Arguments

n The integer to be converted.

Returns

An Object representation of the integer value.

8.16.79. Int64

Context Available



Chapter 8. Rexx C++ Application Programming Interfaces

184

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
logical_t flag;
int64_t n;

>>--obj = context->Int64(n);---------------------------------------------><

>>--logical_t = context->Int64(obj, &n);---------------------------------><

There a two forms of this method. The first form converts a C 64-bit integer n to an Object. The second
form converts an Object to a C 64-bit integer and returns in n.

Arguments

n For the first form, the integer to be converted. For the second form, the converted
integer.

obj The object to be converted.

Returns

For the first form, an Object representation of the integer value. For the second form, returns 1 =
success, 0 = failure. If successful, the converted value is placed in n.

8.16.80. Int64ToObject

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
int64_t n;

>>--obj = context->Int64ToObject(n);-------------------------------------><

Convert the C 64-bit integer n to an Object.

Arguments



InterpreterVersion

185

n The integer to be converted.

Returns

An Object representing the integer value.

8.16.81. InterpreterVersion

Context Available

Thread Yes

Method Tes

Function Tes

Exit Yes

Interpreter Yes

size_t version;

>>--version = context->InterpreterVersion();----------------------------><

Returns the version of the interpreter. The returned version is encoded in the 3 least significant
bytes of the returned value, using 1 byte each for the interpreter version, release, and revision
values. For example, on a 32-bit platform, this value would be 0x00040000 for version 4.0.0. The
oorexxapi.h header file will have a define matching these values using the naming convention
REXX_INTERPRETER_4_0_0 and the macro REXX_CURRENT_INTERPRETER_VERSION will give
the interpreter version used to compile your code.

Arguments

None.

Returns

The interpreter version number.

8.16.82. Intptr

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No



Chapter 8. Rexx C++ Application Programming Interfaces

186

RexxObjectPtr obj;
logical_t flag;
intptr_t n;

>>--obj = context->Intptr(&n);-------------------------------------------><

>>--flag = context->Intptr(obj, &n);-------------------------------------><

There are two forms of this method. The first form converts the C signed integer n to an Object. The
second form converts an Object to a C signed integer and returns it in n.

Arguments

n For the first form, the value to be converted. For the second form, the conversion
result.

obj The object to be converted.

Returns

For the first form, an Object version of the integer value. For the second form, returns 1 = success, 0 =
failure. If successful, the converted value is placed in n.

8.16.83. IntptrToObject

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
intptr_t n;

>>--obj = context->IntptrToObject(&n);-----------------------------------><

Convert the C signed integer n to an Object.

Arguments

n The signed integer to be converted.

Returns

An Object representing the integer value.

8.16.84. IsArray



IsBuffer

187

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
logical_t flag;

>>--flag = context->IsArray(obj);---------------------------------------><

Tests if an Object is an Array. A true result indicates the RexxObjectPtr value may be safely cast to a
RexxArrayObject.

Arguments

obj The object to be tested.

Returns

1 = is an Array object, 0 = not an Array object.

8.16.85. IsBuffer

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
logical_t flag;

>>--flag = context->IsBuffer(obj);--------------------------------------><

Tests if an Object is a Buffer object. A true result indicates the RexxObjectPtr value may be safely cast
to a RexxBufferObject.

Arguments

obj The object to be tested.

Returns



Chapter 8. Rexx C++ Application Programming Interfaces

188

1 = is a Buffer object, 0 = not a Buffer object.

8.16.86. IsDirectory

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
logical_t flag;

>>--flag = context->IsDirectory(obj);-----------------------------------><

Tests if an Object is a Directory object. A true result indicates the RexxObjectPtr value may be safely
cast to a RexxDirectoryObject.

Arguments

obj The object to be tested.

Returns

1 = is a Directory object, 0 = not a Directory object.

8.16.87. IsInstanceOf

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
RexxClassObj class;
logical_t flag;

>>--flag = context->IsInstanceOf(obj, class);---------------------------><

Tests if an Object is an instance of the specified class.



IsMethod

189

Arguments

obj The Object to be tested.

class The Class object for the instance test.

Returns

1 = is an instance, 0 = not an instance.

8.16.88. IsMethod

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
logical_t flag;

>>--flag = context->IsMethod(obj);--------------------------------------><

Tests if an Object is a Method object. A true result indicates the RexxObjectPtr value may be safely
cast to a RexxMethodObject.

Arguments

obj The object to be tested.

Returns

1 = is a Method object, 0 = not a Method object.

8.16.89. IsMutableBuffer

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No



Chapter 8. Rexx C++ Application Programming Interfaces

190

RexxObjectPtr obj;
logical_t flag;

>>--flag = context->IsMutableBuffer(obj);-------------------------------><

Tests if an Object is a MutableBuffer object. A true result indicates the RexxObjectPtr value may be
safely cast to a RexxMutableBufferObject.

Arguments

obj The object to be tested.

Returns

1 = is a MutableBuffer object, 0 = not a MutableBuffer object.

8.16.90. IsOfType

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
CSTRING class;
logical_t flag;

>>--flag = context->IsOfType(obj, class);-------------------------------><

Tests an object to see if it is an instance of the named class. This method combines the operations of
the FindClass() and IsInstanceOf() methods in a single call.

Arguments

obj The object to be tested.

class An ASCII-Z string containing the name of the Rexx class. The named class will be
located in the current context and used in an IsInstanceOf() test.

Returns

1 = is an instance, 0 = not an instance or the named class cannot be located.

8.16.91. IsPointer

Context Available



IsRoutine

191

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
logical_t flag;

>>--flag = context->IsPointer(obj);-------------------------------------><

Tests if an Object is a Pointer object. A true result indicates the RexxObjectPtr value may be safely
cast to a RexxPointerObject.

Arguments

obj The object to be tested.

Returns

1 = is a Pointer object, 0 = not a Pointer object.

8.16.92. IsRoutine

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
logical_t flag;

>>--flag = context->IsRoutine(obj);-------------------------------------><

Tests if an Object a Routine object. A true result indicates the RexxObjectPtr value may be safely cast
to a RexxPointerObject.

Arguments

obj The object to be tested.

Returns

1 = is a Routine object, 0 = not a Routine object.



Chapter 8. Rexx C++ Application Programming Interfaces

192

8.16.93. IsStem

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
logical_t flag;

>>--flag = context->IsStem(obj);----------------------------------------><

Tests if an Object is a Stem object. A true result indicates the RexxObjectPtr value may be safely cast
to a RexxStemObject.

Arguments

obj The object to be tested.

Returns

1 = is a Stem object, 0 = not a Stem object.

8.16.94. IsString

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
logical_t flag;

>>--flag = context->IsString(obj);--------------------------------------><

Tests if an Object is a String object. A true result indicates the RexxObjectPtr value may be safely cast
to a RexxStringObject.

Arguments



LanguageLevel

193

obj The object to be tested.

Returns

1 = is a String object, 0 = not a String object.

8.16.95. LanguageLevel

Context Available

Thread Yes

Method Tes

Function Yes

Exit Yes

Interpreter Yes

size_t langlevel;

>>--langlevel = context->LanguageLevel();-------------------------------><

Returns the language level of the interpreter. The returned language level is encoded in the 2 least
significant bytes of the returned value, using 1 byte each for the interpreter version, release, and
revision values. For example, on a 32-bit platform, this value would be 0x00000603 for language
level 6.03. The oorexxapi.h header file will have a define matching these values using a the naming
convention REXX_LANGUAGE_6_03 and the macro REXX_CURRENT_LANGUAGE_LEVEL will
give the interpreter version used to compile your code.

Arguments

None.

Returns

The interpreter language level number.

8.16.96. LoadLibrary

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No



Chapter 8. Rexx C++ Application Programming Interfaces

194

CSTRING name;
logical_t success;

>>--logical_t = context->LoadLibrary(name);---------------------------------><

Loads an external library with the given name and adds it to the global Rexx environment.

Arguments

name The ASCII-Z path/name of the library package, in format required by
the ::REQUIRES LIBRARY directive.

Returns

True if the library was successfully loaded or the library had been previously loaded. False is returned
for any errors in loading the package.

8.16.97. LoadPackage

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

CSTRING name;
RexxPackageObject pkg;

>>--pkg = context->LoadPackage(name);---------------------------------><

Returns the Package object loaded from the specified file path/name.

Arguments

name The ASCII-Z path/name of the Rexx package source file.

Returns

The loaded Package object. Any errors resulting from loading the package will return a NULLOBJECT
value. Information about errors can be retrieved using GetConditionInfo() (Section 8.16.48,
“GetConditionInfo”).

8.16.98. LoadPackageFromData

Context Available

Thread Yes



Logical

195

Method Yes

Function Yes

Exit Yes

Interpreter No

CSTRING name, data;
size_t sz;
RexxPackageObject pkg;

>>--pkg = context->LoadPackageFromData(name, data, sz);---------------><

Returns the loaded package object from the specified file path/name.

Arguments

name The ASCII-Z name assigned to the package.

data Data buffer containing the package Rexx.

sz The size of the data buffer.

Returns

The loaded Package object. Any errors resulting from loading the package will return a NULLOBJECT
value. Information about errors can be retrieved using GetConditionInfo() (Section 8.16.48,
“GetConditionInfo”).

8.16.99. Logical

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
logical_t flag, n;

>>--flag = context->Logical(obj, &n);------------------------------------><

>>--obj = context->Logical(n);-------------------------------------------><

This method has two forms. The first form converts an Object to a C logical value (0 or 1). The second
form converts a C logical value to an Object.

Arguments



Chapter 8. Rexx C++ Application Programming Interfaces

196

obj The object to be converted.

n For the first method form, a C pointer to a logical_t to receive the conversion result.
For the second form, a logical_t to be converted to an Object.

Returns

For the first method form, 1 = success and 0 = conversion error, with the converted value placed in n
For the second form, an Object version of the logical value.

8.16.100. LogicalToObject

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
logical_t flag, n;

>>--obj = context->LogicalToObject(n);-----------------------------------><

Converts a C logical value to an Object.

Arguments

n The logical_t value to be converted..

Returns

Either the .false or .true object is returned.

8.16.101. MutableBufferCapacity

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No



MutableBufferData

197

RexxMutableBufferObject obj;
size_t sz;

>>--sz = context->MutableBufferCapacity(obj);-------------------------------------><

Return the current buffer size of the MutableBuffer. The capacity is the total size of the buffer. The
length value is the amount of data currently contained in the buffer.

Arguments

obj The source MutableBuffer object.

Returns

The size of the MutableBuffer object's data area.

8.16.102. MutableBufferData

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxMutableBufferObject obj;
POINTER str;

>>--str = context->MutableBufferData(obj);-------------------------------------><

Returns a pointer to a MutableBuffer object's data area.

Arguments

obj The source MutableBuffer object.

Returns

The C pointer to the MutableBuffer object's data area.

8.16.103. MutableBufferLength

Context Available

Thread Yes

Method Yes

Function Yes



Chapter 8. Rexx C++ Application Programming Interfaces

198

Exit Yes

Interpreter No

RexxMutableBufferObject obj;
size_t sz;

>>--sz = context->MutableBufferLength(obj);-------------------------------------><

Return the current length of the data in a MutableBuffer object's data area.

Arguments

obj The source MutableBuffer object.

Returns

The length of data in the MutableBuffer object's data area.

8.16.104. NewArray

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxArrayObject obj;
size_t len;

>>--obj = context->NewArray(d);------------------------------------------><

Create an Array object of the specified size.

Arguments

d The size of the Array.

Returns

The new Array object.

8.16.105. NewBuffer

Context Available



NewBufferString

199

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxBufferObject obj;
size_t len;

>>--obj = context->NewBuffer(len);---------------------------------------><

Create a Buffer object with a specific data size.

Arguments

len The maximum length of the buffer.

Returns

The new Buffer object.

8.16.106. NewBufferString

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxBufferStringObject obj;
size_t len;

>>--obj = context->NewBufferString(len);---------------------------------><

Create a RexxBufferString with the indicated buffer size. A RexxBufferString is a mutable String object
that can be used to construct return values. You must use FinishBufferString() (Section 8.16.40,
“FinishBufferString”) to transform this into a completed String object.

Arguments

len The maximum length of the final String object.

Returns

A new RexxBufferString value.



Chapter 8. Rexx C++ Application Programming Interfaces

200

8.16.107. NewDirectory

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxDirectoryObject obj;

>>--obj = context->NewDirectory();---------------------------------------><

Create a Directory object.

Arguments

None

Returns

The new Directory object.

8.16.108. NewMethod

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxMethodObject obj;
CSTRING name, code;
size_t sz;

>>--obj = context->NewMethod(name, code, sz);----------------------------><

Create a new Method object from an in-memory buffer.

Arguments

name ASCII-Z name of the method.



NewMutableBuffer

201

code A data buffer containing the new method's Rexx code.

sz Size of the code buffer.

Returns

The created Method object. Any errors resulting from creating the method will return a NULLOBJECT
value. Information about any error can be retrieved using GetConditionInfo() (Section 8.16.48,
“GetConditionInfo”).

8.16.109. NewMutableBuffer

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxMutableBufferObject obj;
size_t len;

>>--obj = context->NewMutableBuffer(len);--------------------------------><

Create a MutableBuffer object with a specific initial capacity. The new buffer will have an initial length
of 0.

Arguments

len The initial capacity of the buffer.

Returns

The new MutableBuffer object.

8.16.110. NewPointer

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No



Chapter 8. Rexx C++ Application Programming Interfaces

202

RexxPointerObject obj;
POINTER p;

>>--obj = context->NewPointer(p);----------------------------------------><

Create a new Pointer object from a C pointer.

Arguments

p The source C pointer.

Returns

The created Pointer object.

8.16.111. NewRoutine

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxRoutineObject obj;
CSTRING name, code;
size_t sz;

>>--obj = context->NewRoutine(name, code, sz);---------------------------><

Create a new Routine object from an in-memory buffer.

Arguments

name ASCII-Z name of the routine.

code Buffer containing the routine Rexx code.

sz Size of the code buffer.

Returns

The new Routine object. Any errors resulting from creating the the routine will return a NULLOBJECT
value. Information about errors can be retrieved using GetConditionInfo() (Section 8.16.48,
“GetConditionInfo”).

8.16.112. NewStem



NewString

203

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxStemObject obj;
CSTRING str;

>>--obj = context->NewStem(str);-----------------------------------------><

Create an new Stem object with the specified base name.

Arguments

str The base name for the new Stem object.

Returns

The new Stem object.

8.16.113. NewString

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxStringObject obj;
CSTRING str;
size_t len;

>>--obj = context->NewString(str, len);----------------------------------><

>>--obj = context->NewString(str);---------------------------------------><

There are two forms of this method. Both create a new String object from program data.

Arguments

str For the first form, a pointer to a null-terminated ASCII-Z string. For the second
form, a pointer to a data buffer containing the string data.



Chapter 8. Rexx C++ Application Programming Interfaces

204

len Length of the str string.

Returns

The new String object.

8.16.114. NewSupplier

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxSupplierObject obj;
RexxArrayObject arr1, arr2;

>>--obj = context->NewSupplier(arr1, arr2);------------------------------><

This method returns a Supplier object based on the supplied argument Arrays.

Arguments

arr1 The Array of supplier items.

arr2 The Array of supplier item indexes.

Returns

The new Supplier object.

8.16.115. Nil

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;

>>--obj = context->Nil();------------------------------------------------><



NullString

205

Returns the Rexx Nil object.

Arguments

None.

Returns

The Rexx Nil object.

8.16.116. NullString

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxStringObject obj;

>>--obj = context->NullString();-----------------------------------------><

This method returns a string object of zero length.

Arguments

None.

Returns

A null String object.

8.16.117. ObjectToCSelf

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No



Chapter 8. Rexx C++ Application Programming Interfaces

206

RexxObjectPtr obj;
POINTER ptr;

>>--ptr = context->ObjectToCSelf(obj);--------------------------------><

Returns a pointer to the CSELF value for another object. CSELF is a special argument type used for
classes to store native pointers or structures inside an object instance. ObjectToCSelf() will search all
of the object's variable scopes searching for a variable named CSELF. If a CSELF variable is located
and the value is an instance of either the Pointer or the Buffer class, the corresponding POINTER
value will be returned as a void * value. Objects that rely on CSELF values typically set the variable
CSELF inside an INIT method for the class.

Arguments

obj The source object.

Returns

The CSELF value for the object. Returns NULL if no CSELF value was found in the target object.

8.16.118. ObjectToCSelfScoped

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
POINTER ptr;

>>--ptr = context->ObjectToCSelfScoped(obj,scope);---------------------><

Returns a pointer to the CSELF value for another object. CSELF is a special argument type used for
classes to store native pointers or structures inside an object instance. ObjectToCSelfScoped() will
search scopes searching for a variable named CSELF, beginning with the indicated scope level. If a
CSELF variable is located and the value is an instance of either the Pointer or the Buffer class, the
corresponding POINTER value will be returned as a void * value. Objects that rely on CSELF values
typically set the variable CSELF inside an INIT method for the class.

Arguments

obj The source object.

scope A class object indicating the starting scope.

Returns

The CSELF value for the object. Returns NULL if no CSELF value was found in the target object.



ObjectToDouble

207

8.16.119. ObjectToDouble

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
double n;
logical_t flag;

>>--flag = context->ObjectToDouble(obj, &n);-----------------------------><

Converts an Object to a C double value.

Arguments

obj The source object for the conversion.

n A returned converted value.

Returns

1 = success, 0 = conversion error. The converted value is placed in n.

8.16.120. ObjectToInt32

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
int32_t n;
logical_t flag;

>>--flag = context->ObjectToInt32(obj, &n);------------------------------><

Convert an Object into a 32-bit integer.

Arguments



Chapter 8. Rexx C++ Application Programming Interfaces

208

obj The object to convert.

n The conversion result.

Returns

1 = success, 0 = conversion error. The converted value is placed in n.

8.16.121. ObjectToInt64

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
int64_t n;
logical_t flag;

>>--flag = context->ObjectToInt64(obj, &n);------------------------------><

Convert an Object into a 64-bit integer.

Arguments

obj The object to be converted.

n The conversion result.

Returns

1 = success, 0 = conversion error. The converted value is placed in n.

8.16.122. ObjectToIntptr

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No



ObjectToLogical

209

RexxObjectPtr obj;
intptr_t n;
logical_t flag;

>>--flag = context->ObjectToIntptr(obj, &n);-----------------------------><

Convert an Object to an intptr_t value.

Arguments

obj The object to convert.

n The conversion result.

Returns

1 = success, 0 = conversion error. The converted value is placed in n.

8.16.123. ObjectToLogical

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
logical_t flag, n;

>>--flag = context->ObjectToLogical(obj, &n);----------------------------><

Converts an Object to a C logical value (0 or 1).

Arguments

obj The object to convert.

n The conversion result.

Returns

1 = success, 0 = conversion error. The converted value is placed in n.

8.16.124. ObjectToString

Context Available

Thread Yes



Chapter 8. Rexx C++ Application Programming Interfaces

210

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
RexxStringObject str;

>>--str = context->ObjectToString(obj);----------------------------------><

Convert an Object to a String object.

Arguments

obj The source object for the conversion.

Returns

The String object.

8.16.125. ObjectToStringSize

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
size_t n;
logical_t flag;

>>--flag = context->ObjectToStringSize(obj, &n);-------------------------><

Convert an Object to a stringsize_t number value.

Arguments

obj The object to convert.

n The conversion result.

Returns

1 = success, 0 = conversion error. The converted value is placed in n.



ObjectToStringValue

211

8.16.126. ObjectToStringValue

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
CSTRING str;

>>--str = context->ObjectToStringValue(obj);-----------------------------><

Convert an Object to a C ASCII-Z string.

Arguments

obj The source object for the conversion.

Returns

The C ASCII-Z string representation of the object.

8.16.127. ObjectToUintptr

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
uintptr_t n;
logical_t flag;

>>--flag = context->ObjectToUintptr(obj, &n);----------------------------><

Convert an Object to an uintptr_t value.

Arguments

obj The object to convert.



Chapter 8. Rexx C++ Application Programming Interfaces

212

n The conversion result.

Returns

1 = success, 0 = conversion error. The converted value is placed in n.

8.16.128. ObjectToUnsignedInt32

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
uint32_t n;
logical_t flag;

>>--flag = context->ObjectToUnsignedInt32(obj, &n);----------------------><

Convert an Object to an uint32_t value.

Arguments

obj The object to convert.

n The conversion result.

Returns

1 = success, 0 = conversion error. The converted value is placed in n.

8.16.129. ObjectToUnsignedInt64

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
uint64_t n;
logical_t flag;



ObjectToValue

213

>>--flag = context->ObjectToUnsignedInt64(obj, &n);----------------------><

Convert an Object to an uint64_t value.

Arguments

obj The object to convert.

n The conversion result.

Returns

1 = success, 0 = conversion error. The converted value is placed in n.

8.16.130. ObjectToValue

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
ValueDescriptor desc;
logical_t flag;

>>--flag = context->ObjectToValue(obj, &desc);---------------------------><

Convert a Rexx object to another type. The target type is identified by the ValueDescriptor
structure, and can by any of the types that may be used as a method or routine return type.
For many conversions, it may be more appropriate to use more targeted routines such as
ObjectToWholeNumber(). ObjectToValue() is capable of conversions to types such as int8_t for which
there are no specific conversion APIs.

Arguments

obj The object to be converted.

desc A C pointer to a ValueDescriptor struct that identifies the conversion type. The
converted value will be stored in the ValueDescriptor if successful.

Returns

1 = success, 0 = conversion error. If successful, desc is updated with the converted value of the
requested type.

8.16.131. ObjectToWholeNumber



Chapter 8. Rexx C++ Application Programming Interfaces

214

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
wholenumber_t wn;
logical_t flag;

>>--flag = context->ObjectToWholeNumber(obj, &wn);-----------------------><

Convert an Object to a whole number value.

Arguments

obj The object to convert.

n The conversion result.

Returns

1 = success, 0 = conversion error. The converted value is placed in n.

8.16.132. PointerValue

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxPointerObject obj;
POINTER p;

>>--p = context->PointerValue(obj);--------------------------------------><

Return the wrappered C pointer value from a RexxPointerObject.

Arguments

obj The source RexxPointerObject.

Returns



RaiseCondition

215

The wrappered C pointer value.

8.16.133. RaiseCondition

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

CSTRING str;
RexxStringObject sobj;
RexxArrayObject arr;
RexxObjectPtr obj;

>>--context->RaiseCondition(str, sobj, add, obj);-------------------------><

Raise a condition. The raised condition is held in a pending state until the method, routine, or exit
returns to the Rexx runtime. This is similar to using the RAISE instruction to raise a condition from
Rexx code.

Arguments

str The condition name.

sobj The optional condition description as a String object.

add A optional object containing additional condition information.

obj A Object that will be returned as a routine or method result if the raised condition is
not trapped by the caller.

Returns

Void.

8.16.134. RaiseException

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No



Chapter 8. Rexx C++ Application Programming Interfaces

216

size_t n;
RexxObjectPtr obj;

>>--context->RaiseException(n, obj);-------------------------------------><

Raise a SYNTAX condition. The raised condition is held in a pending state until the method, routine,
or exit returns to the Rexx runtime. This is similar to using the RAISE instruction to raise a SYNTAX
condition from Rexx code.

Arguments

n The exception condition number. There are #defines for the recognized condition
errors in the oorexxerrors.h include file.

obj An Array of error message substitution values.

Returns

Void.

8.16.135. RaiseException0

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

size_t n;

>>--context->RaiseException0(n);-----------------------------------------><

Raise an exception condition with no message substitution values.

Arguments

n The exception condition number.

Returns

Void.

8.16.136. RaiseException1

Context Available

Thread Yes



RaiseException2

217

Method Yes

Function Yes

Exit Yes

Interpreter No

size_t n;
RexxObjectPtr obj;

>>--context->RaiseException1(n, obj);------------------------------------><

Raise an exception condition with a single message substitution value.

Arguments

n The exception condition number.

obj A substitution value for the condition error message.

Returns

Void.

8.16.137. RaiseException2

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

size_t n;
RexxObjectPtr obj1, obj2;

>>--context->RaiseException2(n, obj1, obj2);-----------------------------><

Raise an exception condition with two message substitution values.

Arguments

n The exception condition number.

obj1 The first substitution value.

obj2 The second substitution value.

Returns



Chapter 8. Rexx C++ Application Programming Interfaces

218

Void.

8.16.138. RegisterLibrary

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

CSTRING name;
logical_t success;

>>--logical_t = context->RegisterLibrary(name, table);---------------------------------><

Registers an in-process library package with the global Rexx environment. The package is processed
as if it is loaded from an external library, but without requiring the library packaging.

Arguments

name The ASCII-Z path/name of the library package, in format required by
the ::REQUIRES LIBRARY directive.

table A pointer to a RexxPackageEntry (Section 8.11, “Building an External Native
Library”) table defining the contents of the package.

Returns

True if the library was successfully registered. False is returned if a package has already be loaded or
registered with the given name.

8.16.139. ReleaseGlobalReference

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr ref;

>>--context->ReleaseGlobalReference(ref);--------------------------------><



ReleaseLocalReference

219

Release access to a global object reference. This removes the global garbage collection protection
from the object reference. Once released, ref should no longer be used for object operations.

Arguments

ref A global Rexx object reference.

Returns

Void.

8.16.140. ReleaseLocalReference

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr ref;

>>--context->ReleaseLocalReference(ref);---------------------------------><

Removes local context protection from an object reference. Once released, ref should no longer be
used for object operations.

Arguments

ref The local Rexx object reference.

Returns

Void.

8.16.141. RequestGlobalReference

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No



Chapter 8. Rexx C++ Application Programming Interfaces

220

RexxObjectPtr ref, obj;

>>--ref = context->RequestGlobalReference(obj);--------------------------><

Requests global garbage collection protection for an object reference. The returned value may be
saved in native code control blocks and used as an object reference in any API context. The obj will be
protected from garbage collection until the global reference is released with ReleaseGlobalReference()
(Section 8.16.139, “ReleaseGlobalReference”).

Arguments

obj The Rexx object to be protected.

Returns

A global reference to this object that can be saved and used in any API context.

8.16.142. ResolveStemVariable

Context Available

Thread No

Method No

Function Yes

Exit No

Interpreter No

RexxObjectPtr obj;
RexxStemObject stem;

>>--stem = context->ResolveStemVariable(obj);-------------------------><

Resolves a stem variable object using the same mechanism applied to RexxStemObject arguments
passed to routines. If obj is a Stem object, the same Stem object will be returned. If obj is a String
object, the string value is used to resolve a stem variable from the caller's variable context. The Stem
object value of the referenced stem variable is returned as a result.

Arguments

obj The source object to be resolved to a Stem object.

Returns

The resolved Stem object.

8.16.143. SendMessage



SendMessage0

221

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj, ret;
RexxArrayObject arr;

>>--ret = context->SendMessage(obj, meg, arr);---------------------------><

Send a message to an Object.

Arguments

obj The object to receive the message.

msg An ASCII-Z string containing the message name. This argument will be converted
to upper case automatically.

arr The Array of message arguments.

Returns

The returned object. If the method does not return an object then NULLOBJECT is returned. Any
errors resulting from invoking the method will return a NULLOBJECT value. The CheckCondition()
(Section 8.16.20, “CheckCondition”). can be used to check if an error occurred during the call.

8.16.144. SendMessage0

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj, ret;

>>--ret = context->SendMessage0(obj, meg);-------------------------------><

Send a message to an Object. This is a short cut method when no arguments are needed by the
receiving object method.

Arguments



Chapter 8. Rexx C++ Application Programming Interfaces

222

obj The object to receive the message.

msg An ASCII-Z string containing the message name. This argument will be converted
to upper case automatically.

Returns

The returned object. If the method does not return an object then NULLOBJECT is returned. Any
errors resulting from invoking the method will return a NULLOBJECT value. The CheckCondition()
(Section 8.16.20, “CheckCondition”). can be used to check if an error occurred during the call.

8.16.145. SendMessage1

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj, ret, arg1;

>>--ret = context->SendMessage2(obj, meg, arg1);-------------------------><

Send a message to an Object. This is a short cut method when only one argument is needed by the
receiving object method.

Arguments

obj The object to receive the message.

msg An ASCII-Z string containing the message name. This argument will be converted
to upper case automatically.

arg1 The first argument to the receiving method.

Returns

The returned object. If the method does not return an object then NULLOBJECT is returned. Any
errors resulting from invoking the method will return a NULLOBJECT value. The CheckCondition()
(Section 8.16.20, “CheckCondition”). can be used to check if an error occurred during the call.

8.16.146. SendMessage2

Context Available

Thread Yes

Method Yes



SetContextVariable

223

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj, ret, arg1, arg2;

>>--ret = context->SendMessage2(obj, meg, arg1, arg2);-------------------><

Send a message to an Object. This is a short cut method when only two arguments are needed by the
receiving object method.

Arguments

obj The object to receive the message.

msg An ASCII-Z string containing the message name. This argument will be converted
to upper case automatically.

arg1 The first argument to the receiving method.

arg2 The second argument to the receiving method.

Returns

The returned object. If the method does not return an object then NULLOBJECT is returned. Any
errors resulting from invoking the method will return a NULLOBJECT value. The CheckCondition()
(Section 8.16.20, “CheckCondition”). can be used to check if an error occurred during the call.

8.16.147. SetContextVariable

Context Available

Thread No

Method No

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
CSTRING name;

>>--context->SetContextVariable(name, obj);---------------------------><

Sets the value of a Rexx variable in the current function context. Only simple and stem variables
may be set using SetContextVariable(). Compound variable values may be set by retrieving the
Stem object associated with a stem variable and using SetStemElement() (Section 8.16.154,
“SetStemElement”) to set the associated compound variable.

Arguments



Chapter 8. Rexx C++ Application Programming Interfaces

224

name The name of the Rexx variable.

obj The object to assign to the variable.

Returns

Void.

8.16.148. SetGuardOff

Context Available

Thread No

Method Yes

Function No

Exit No

Interpreter No

>>--context->SetGuardOff();----------------------------------------------><

Release the guard lock for this method scope.

Arguments

None.

Returns

Void.

8.16.149. SetGuardOn

Context Available

Thread No

Method Yes

Function No

Exit No

Interpreter No

>>--context->SetGuardOn();-----------------------------------------------><

Obtain the guard lock for this object scope.

Arguments



SetMutableBufferCapacity

225

None.

Returns

Void.

8.16.150. SetMutableBufferCapacity

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxMutableBufferObject obj;
size_t len;
POINTER data;

>>--data = context->SetMutableBufferCapacity(obj,len);----------------------------------><

Ensure the MutableBuffer object's data area is at least the indicated size. If necessary, the internal
data area will be reallocated. SetMutableBufferCapacity will only change the capacity if len is larger
than the current buffer capacity.

Arguments

obj The source MutableBuffer object.

len The required buffer capacity. If len is larger than the current data area, the internal
data area will be reallocated to the larger size and any existing buffer data will be
copied to the new data area.

Returns

A pointer to the MutableBuffer's data area. Because SetMutableBufferCapacity() may reallocate the
data area, the return value should replace any previous buffer pointers.

8.16.151. SetMutableBufferLength

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No



Chapter 8. Rexx C++ Application Programming Interfaces

226

RexxMutableBufferObject obj;
size_t len;
size_t newLen;

>>--newLen = context->SetMutableBufferLength(obj,len);----------------------------------><

Sets the length of the data in the MutableBuffer's data area. If the length is greater than the current
capacity, then it will be capped at the current capacity. If len is longer than the buffer's current data
length, data will be padded with '00'x characters for the additional length. When adding characters to
the buffer's data area, you should call SetMutableBufferLength() before copying the additional data
into the buffer. If additional capacity is required, SetMutableBufferCapacity to increase the buffer size.

Arguments

obj The source MutableBuffer object.

len The new data length. If len is larger than the current data area, the new length will
be capped at the length of the data area.

Returns

The new data length, which may be less than the indicated length if the buffer capacity is smaller.

8.16.152. SetObjectVariable

Context Available

Thread No

Method Yes

Function No

Exit No

Interpreter No

CSTRING str;
RexxObjectPtr obj;

>>--context->SetObjectVariable(str, obj);--------------------------------><

Sets an instance variable in the current method's variable scope to a new value. Only simple and stem
variables may be set using this API.

Arguments

str The name of the object variable.

obj The object to assign to the object variable.

Returns

Void.



SetStemArrayElement

227

8.16.153. SetStemArrayElement

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxStemObject sobj;
RexxObjectPtr obj;
size_t n;

>>--context->SetStemArrayElement(sobj, n, obj);--------------------------><

Sets an element of the Stem object. If the element exists it is replaced. This method uses a numeric
index as the element name.

Arguments

sobj The target Stem object.

n The Stem object element number.

obj The object value assigned to the Stem object element.

Returns

Void.

8.16.154. SetStemElement

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxStemObject sobj;
RexxObjectPtr obj;
CSTRING name;

>>--context->SetStemElement(sobj, name, obj);----------------------------><



Chapter 8. Rexx C++ Application Programming Interfaces

228

Sets an element of the Stem object. If the element exists it is replaced.

Arguments

sobj The target Stem object.

name The Stem object element name. This is a fully resolve Stem tail element.

obj The object value assigned to the Stem object element.

Returns

Void.

8.16.155. SetThreadTrace

Context Available

Thread Yes

Method No

Function No

Exit No

Interpreter No

logical_t flag;

>>--context->SetThreadTrace(flag);---------------------------------------><

Sets the interactive trace state for the current thread.

Arguments

flag New state for interactive trace.

Returns

Void.

8.16.156. SetTrace

Context Available

Thread No

Method No

Function No

Exit No

Interpreter Yes



String

229

logical_t flag;

>>--context->SetTrace(flag);---------------------------------------------><

Sets the interactvive trace state for the interpreter instance. This will enable tracing in all active
threads for the interpreter instance.

Arguments

flag The new trace state.

Returns

Void.

8.16.157. String

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxRoutineObject obj;
CSTRING str;
size_t len;

>>--obj = context->String(str, len);-------------------------------------><

>>--obj = context->String(str);------------------------------------------><

There are two forms of this method. Both create a new String object from a C string.

Arguments

str The ASCII-Z string to be converted.

len Length of the str string.

Returns

A new String object.

8.16.158. StringData

Context Available



Chapter 8. Rexx C++ Application Programming Interfaces

230

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
CSTRING str;

>>--str = context->StringData(obj);--------------------------------------><

Returns a read-only pointer to the String object's string data.

Arguments

obj The source String object for the data.

Returns

A pointer to the String object's string data.

8.16.159. StringGet

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
POINTER str;
size_t c, len1, len2;

>>--c = context->StringGet(obj, len1, str, len2);------------------------><

Copies all or part of the String object to a C string buffer.

Arguments

obj The source String object.

len1 The starting position within the String. This argument is 1-based

str A pointer to the target buffer for the copy. Note that the buffer is NOT zero-
terminated.



StringLength

231

len2 The number of characters to copy. This argument should be less than or equal the
size of the str buffer or a buffer overrun will result.

Returns

The number of characters actually copied.

8.16.160. StringLength

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
size_t sz;

>>--sz = context->StringLength(obj);-------------------------------------><

Return the length a String object.

Arguments

obj The source String object.

Returns

The string length of the String object.

8.16.161. StringLower

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr srcobj, newobj;

>>--newobj = context->StringLower(srcobj);-------------------------------><



Chapter 8. Rexx C++ Application Programming Interfaces

232

Convert a String object to lower case, returning a new String object.

Arguments

srcobj The source String object to be converted to lower case.

Returns

A new String object with the string value lower cased.

8.16.162. StringSize

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
logical_t flag;
stringsize_t n;

>>--obj = context->StringSize(&n);-------------------------------------------><

>>--flag = context->StringSize(obj, &n);-------------------------------------><

There are two forms of this method. The first converts the stringsize_t value n to an Object. The
second converts an Object to a stringsize_t value and returns it in n.

Arguments

n For the first form, the stringsize_t value to be converted. For the second form, the
target of the conversion.

obj The object to be converted.

Returns

For the first form, an Object representation of the integer value. For the second form, 1 = success, 0 =
failure. If successful, the converted value is placed in n.

8.16.163. StringSizeToObject

Context Available

Thread Yes



StringUpper

233

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
size_t sz;

>>--obj = context->StringSizeToObject(sz);-------------------------------><

Convert a stringsize_t value to an Object.

Arguments

sz The stringsize_t value to be converted.

Returns

an Object that represents the C stringsize_t value.

8.16.164. StringUpper

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr srcobj, newobj;

>>--newobj = context->StringUpper(srcobj);-------------------------------><

Convert a String object upper case, returning a new String object.

Arguments

srcobj The source String object.

Returns

A new String object with the string value upper cased.

8.16.165. SupplierAvailable



Chapter 8. Rexx C++ Application Programming Interfaces

234

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxSupplierObjectPtr sobj;
logical_t flag;

>>--flag = context->SupplierAvailable(sobj);-----------------------------><

Returns 1 if there is another supplier item available.

Arguments

sobj The source supplier object.

Returns

1 = another item available, 0 = no item available.

8.16.166. SupplierIndex

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxSupplierObjectPtr sobj;
RexxObjectPtr obj;

>>--obj = context->SupplierIndex(sobj);----------------------------------><

Return the current supplier object index value.

Arguments

sobj The source supplier object.

Returns

The index object at the current supplier position.



SupplierItem

235

8.16.167. SupplierItem

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxSupplierObjectPtr sobj;
RexxObjectPtr obj;

>>--obj = context->SupplierItem(sobj);-----------------------------------><

Return the current supplier item object.

Arguments

sobj The source supplier object.

Returns

The object item at the current supplier position.

8.16.168. SupplierNext

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxSupplierObjectPtr sobj;

>>--context->SupplierNext(sobj);-----------------------------------------><

Advance a Supplier object to the next enumeration position.

Arguments

sobj The source supplier object.

Returns



Chapter 8. Rexx C++ Application Programming Interfaces

236

Void.

8.16.169. Terminate

Context Available

Thread No

Method No

Function No

Exit No

Interpreter Yes

>>--context->Terminate();----------------------------------------------><

Terminates the current Rexx interpreter instance. Terminate() may only be called from the thread
context that originally created the interpreter instance. This call will wait for all threads to complete
processing before returning.

Arguments

None.

Returns

Void.

8.16.170. True

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;

>>--obj = context->True();-----------------------------------------------><

This method returns the Rexx .true object.

Arguments

None.



Uintptr

237

Returns

The Rexx .true object.

8.16.171. Uintptr

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
logical_t flag;
uintptr_t n;

>>--obj = context->Uintptr(&n);------------------------------------------><

>>--flag = context->Uintptr(obj, &n);------------------------------------><

There are two forms of this method. The first converts the uintptr_t value n to an Object. The second
converts an Object to a uintptr_t value and returns it in n.

Arguments

n For the first form, the uintptr_t value to be converted. For the second form, the
target of the conversion.

obj The object to be converted.

Returns

For the first form, an Object version of the integer. The second form returns 1 = success, 0 = failure. If
successful, the converted value is placed in n.

8.16.172. UintptrToObject

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No



Chapter 8. Rexx C++ Application Programming Interfaces

238

RexxObjectPtr obj;
uintptr_t n;

>>--obj = context->UintptrToObject(&n);----------------------------------><

Convert a uintptr_t value n to an Object.

Arguments

n The uintptr_t value to be converted.

Returns

An Object that represents the uintptr_t value.

8.16.173. UnsignedInt32

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
logical_t flag;
uint32_t n;

>>--obj = context->UnsignedInt32(n);-------------------------------------><

>>--flag = context->UnsignedInt32(obj, &n);------------------------------><

There are two forms of this method. The first converts a C 32-bit unsigned integer n to an Object. The
second converts an Object to a uint32_t value and returns it in n.

Arguments

n For the first form, the uint32_t value to be converted. For the second form, the
target of the conversion.

n The object to be converted to a uint32_t value.

Returns

For the first form, an Object version of the integer value. For the second form, returns 1 = success, 0 =
failure. If successful, the converted value is placed in n.

8.16.174. UnsignedInt32ToObject



UnsignedInt64

239

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
uint32_t n;

>>--obj = context->UnsignedInt32ToObject(n);-----------------------------><

Convert a C 32-bit unsigned integer n to an Object.

Arguments

n The uint32_t value to be converted.

Returns

An Object that represents the C unsigned integer.

8.16.175. UnsignedInt64

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
logical_t flag;
uint64_t n;

>>--obj = context->UnsignedInt64(n);-------------------------------------><

>>--flag = context->UnsignedInt64(obj, &n);------------------------------><

There are two forms of this method. The first converts a C 64-bit unsigned integer n to an Object. The
second converts an Object to a uint64_t value and returns it in n.

Arguments

n For the first form, the uint64_t value to be converted. For the second form, the
target of the conversion.



Chapter 8. Rexx C++ Application Programming Interfaces

240

n The object to be converted.

Returns

For the first form, an Object version of the integer value. For the second form, returns 1 = success, 0 =
failure. If successful, the converted value is placed in n.

8.16.176. UnsignedInt64ToObject

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
uint64_t n;

>>--obj = context->UnsignedInt64ToObject(n);-----------------------------><

Convert a C 64-bit unsigned integer n to an Object.

Arguments

n The uint64_t value to be converted.

Returns

An Object that represents the C unsigned integer.

8.16.177. ValuesToObject

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxArrayObj obj;
ValueDescriptor desc[3];



ValueToObject

241

>>--obj = context->ValuesToObject(desc);---------------------------------><

Converts an array of ValueDescriptor structs to an Array of objects.

Arguments

desc A C pointer to the ValueDescriptor struct array to be converted. The end of the
array is marked by a ValueDescriptor struct with all fields set to zero.

Returns

A Array object containing the converted objects.

8.16.178. ValueToObject

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
ValueDescriptor desc;;

>>--obj = context->ValueToObject(&desc);---------------------------------><

Convert a type to an Object representation. The source type is identified by the ValueDescriptor
structure, and can by any of the types that may be used as a method or routine return types.
For many conversions, it may be more appropriate to use more targeted routines such as
WholeNumberToObject(). ValueToObject() is capable of converting to types such as int8_t for which
there are no specific conversion APIs.

Arguments

desc A C pointer to the ValueDescriptor struct describing the source value.

Returns

The object representing the converted value.

8.16.179. WholeNumber

Context Available

Thread Yes



Chapter 8. Rexx C++ Application Programming Interfaces

242

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
wholenumber_t n;
logical_t flag;

>>--obj = context->WholeNumber(n);---------------------------------------><

>>--flag = context->WholeNumber(obj, &n);--------------------------------><

There are two forms of this method. The first form converts a wholenumber_t value to an Object. The
second form converts an Object to a wholenumber_t value and returns it in n.

Arguments

n For the first form, the wholenumber_t value to be converted. For the second form,
the target of the conversion.

obj The source object for the conversion.

Returns

For the first form, an Object version of the integer value. For the second form, returns 1 = success, 0 =
failure. If successful, the converted value is placed in n.

8.16.180. WholeNumberToObject

Context Available

Thread Yes

Method Yes

Function Yes

Exit Yes

Interpreter No

RexxObjectPtr obj;
wholenumber_t n;

>>--obj = context->WholeNumberToObject(n);-------------------------------><

Convert a C wholenumber_t value to an Object.

Arguments

n The C whole number to be converted.



WholeNumberToObject

243

Returns

An Object that represents the C whole number.



244



Chapter 9.

245

Classic Rexx Application Programming
Interfaces
This appendix describes how to interface applications to Rexx or extend the Rexx language by using
Rexx application programming interfaces (APIs). As used here, the term application refers to programs
written in languages other than Rexx. This is usually the C language. Conventions in this appendix
are based on the C language. Refer to a C programming reference manual if you need a better
understanding of these conventions.

The features described here let an application extend many parts of the Rexx language or extend
an application with Rexx. This includes creating handlers for subcommands, external functions, and
system exits.

Subcommands
are commands issued from a Rexx program. A Rexx expression is evaluated and the result is
passed as a command to the currently addressed subcommand handler. Subcommands are used
in Rexx programs running as application macros.

Functions
are direct extensions of the Rexx language. An application can create functions that extend
the native Rexx function set. Functions can be general-purpose extensions or specific to an
application.

System exits
are programmer-defined variations of the operating system. The application programmer can tailor
the Rexx interpreter behavior by replacing Rexx system requests.

Subcommand, function, and system exit handlers have similar coding, compilation, and packaging
characteristics.

In addition, applications can manipulate the variables in Rexx programs (see Section 9.7, “Variable
Pool Interface”), and execute Rexx routines directly from memory (see Section 9.11, “Macrospace
Interface”).

9.1. Handler Characteristics
The basic requirements for subcommand, function, and system exit handlers are:

• Rexx handlers must use the REXXENTRY linkage convention. Handler functions should be
declared with the appropriate type definition from the rexx.h include file. Using C++, the functions
must be declared as extern "C":
• RexxSubcomHandler

• RexxFunctionHandler

• RexxExitHandler

• A Rexx handler must be packaged as either of the following:
• An exported routine within a loadable library (dynamic-link library (DLL) on Windows, or shared

library on Unix-based systems.).

• An entry point within an executable (EXE) module

• A handler must be registered with Rexx before it can be used. Rexx uses the registration
information to locate and call the handler. For example, external function registration of a dynamic-



Chapter 9. Classic Rexx Application Programming Interfaces

246

link library external function identifies both the dynamic-link library and routine that contains the
external function. Also note:
• Dynamic-link library handlers are global to the system; any Rexx program can call them.

• Executable file handlers are local to the registering process; only a Rexx program running in
the same process as an executable module can call a handler packaged within that executable
module.

9.2. RXSTRINGs

Many of the Rexx application programming interfaces pass Rexx character strings to and from a Rexx
procedure. The RXSTRING data structure is used to describe Rexx character strings. An RXSTRING
is a content-insensitive, flat model character string with a theoretical maximum length of 4 gigabytes.
The following structure defines an RXSTRING:

Example 9.1. RXSTRING

typedef struct {
   size_t          strlength;     /* length of string             */
   char *          strptr;        /* pointer to string            */
} RXSTRING;

typedef RXSTRING *PRXSTRING;      /* pointer to an RXSTRING       */

Many programming interfaces use RXSTRINGs for input-only operations. These APIs use a constant
version of the RXSTRING, the CONSTRXSTRING.

Example 9.2. RXSTRING

typedef struct {
   size_t          strlength;     /* length of string             */
   const char *    strptr;        /* pointer to string            */
} RXSTRING;

typedef CONSTRXSTRING *PCONSTRXSTRING;      /* pointer to a CONSTRXSTRING       */

Notes:

1. The rexx.h include file contains a number of convenient macros for setting and testing RXSTRING
values.

2. An RXSTRING can have a value (including the null string, "") or it can be empty.
• If an RXSTRING has a value, the strptr field is not null. The RXSTRING macro

RXVALIDSTRING(string) returns TRUE.

• If an RXSTRING is the Rexx null string (""), the strptr field is not null and the strlength field is 0.
The RXSTRING macro RXZEROLENSTRING(string) returns TRUE.



Calling the Rexx Interpreter

247

• If an RXSTRING is empty, the field strptr is null. The RXSTRING macro
RXNULLSTRING(string) returns TRUE.

3. When the Rexx interpreter passes an RXSTRING to a subcommand handler, external function, or
exit handler, the interpreter adds a  null character (hexadecimal zero) at the end of the RXSTRING
data. You can use the C string library functions on these strings. However, the RXSTRING data
can also contain null characters. There is no guarantee that the first null character encountered in
an RXSTRING marks the end of the string. You use the C string functions only when you do not
expect null characters in the RXSTRINGs, such as file names passed to external functions. The
strlength field in the RXSTRING does not include the terminating null character.

4. On calls to subcommand  and external functions handlers, as well as to some of the exit handlers,
the Rexx interpreter expects that an RXSTRING value is returned. The Rexx interpreter provides
a default RXSTRING with a strlength of 256 for the returned information. If the returned data is
shorter than 256 characters, the handler can copy the data into the default RXSTRING and set the
strlength field to the length returned.

If the returned data is longer than 256 characters, a new RXSTRING can be allocated using
RexxAllocateMemory(size). The strptr field must point to the new storage and the strlength
must be set to the string length. The Rexx interpreter returns the newly allocated storage to the
system for the handler routine.

9.3. Calling the Rexx Interpreter

A Rexx program can be run directly from the command prompt of the operating system, or from within
an application.

9.3.1. From the Operating System
You can run a Rexx program directly from the operating system command prompt using Rexx followed
by the program name. See Section 2.2, “Running a Rexx Program”.

9.3.2. From within an Application
The Rexx interpreter is a dynamic-link library (DLL) routine (or Unix/Linux shared object). Any
application can call the Rexx interpreter to run a Rexx program. The interpreter is fully reentrant and
supports Rexx procedures running on several threads within the same process.

A C-language prototype for calling Rexx is in the rexx.h include file.

9.3.3. The RexxStart Function

RexxStart calls the Rexx interpreter to run a Rexx procedure.

retc = RexxStart(ArgCount, ArgList, ProgramName, Instore, EnvName,
                 CallType, Exits, ReturnCode, Result);

9.3.3.1. Parameters



Chapter 9. Classic Rexx Application Programming Interfaces

248

ArgCount (size_t) - input
is the number of elements in the ArgList array. This is the value that the ARG() built-in function
in the Rexx program returns. ArgCount includes RXSTRINGs that represent omitted arguments.
Omitted arguments are empty RXSTRINGs (strptr is null).

ArgList (PCONSTRXSTRING) - input
is an array of CONSTRXSTRING structures that are the Rexx program arguments.

ProgramName (const char *) - input
is the address of the ASCII name of the Rexx procedure. If Instore is null, ProgramName must
contain at least the file name of the Rexx procedure. You can also provide an extension, drive,
and path. If you do not specify a file extension, the default is .REX. A Rexx program can use any
extension. If you do not provide the path and the drive, the Rexx interpreter uses the usual file
search order to locate the file.

If Instore is not null, ProgramName is the name used in the PARSE SOURCE instruction. If Instore
requests a Rexx procedure from the macrospace, ProgramName is the macrospace function
name (see Section 9.11, “Macrospace Interface”).

Instore (PRXSTRING) - input
is an array of two RXSTRING descriptors for in-storage Rexx procedures. If the strptr fields of
both RXSTRINGs are null, the interpreter searches for Rexx procedure ProgramName in the
Rexx macrospace (see Section 9.11, “Macrospace Interface”). If the procedure is not in the
macrospace, the call to RexxStart terminates with an error return code.

If either Instore strptr field is not null, Instore is used to run a Rexx procedure directly from storage.

Instore[0] 
is an RXSTRING describing a memory buffer that contains the Rexx procedure source. The
source must be an exact image of a Rexx procedure disk file, complete with carriage returns,
line feeds, and end-of-file characters.

Instore[1]
is an RXSTRING containing the translated image of the Rexx procedure. If Instore[1] is empty,
the Rexx interpreter returns the translated image in Instore[1] when the Rexx procedure
finishes running. The translated image may be used in Instore[1] on subsequent RexxStart
calls.

If Instore[1] is not empty, the interpreter runs the translated image directly. The program
source provided in Instore[0] is used only if the Rexx procedure uses the SOURCELINE built-
in function. Instore[0] can be empty if SOURCELINE is not used. If Instore[0] is empty and the
procedure uses the SOURCELINE built-in function, SOURCELINE() returns no lines and any
attempt to access the source returns Error 40.

If Instore[1] is not empty, but does not contain a valid Rexx translated image, unpredictable
results can occur. The Rexx interpreter might be able to determine that the translated image is
incorrect and translate the source again.

Instore[1] is both an input and an output parameter.

If the procedure is executed from disk, the Instore pointer must be null. If the first argument string
in Arglist is exactly the string "//T" and the CallType is RXCOMMAND, the interpreter performs a
syntax check on the procedure source, but does not execute it and does not store any images.

The program calling RexxStart must release Instore[1] using RexxFreeMemory(ptr) when the
translated image is no longer needed.



The RexxStart Function

249

Only the interpreter version that created the image can run the translated image. Therefore,
neither change the format of the translated image of a Rexx program, nor move a translated image
to other systems or save it for later use. You can, however, use the translated image several times
during a single application execution.

EnvName (const char *) - input
is the address of the initial ADDRESS environment name. The ADDRESS environment is a
subcommand handler registered using RexxRegisterSubcomExe or RexxRegisterSubcomDll.
EnvName is used as the initial setting for the Rexx ADDRESS instruction.

If EnvName is null, the file extension is used as the initial ADDRESS environment. The
environment name cannot be longer than 250 characters.

CallType (int) - input
is the type of the Rexx procedure execution. Allowed execution types are:
RXCOMMAND

The Rexx procedure is a system or application command. Rexx commands usually have
a single argument string. The Rexx PARSE SOURCE instruction returns COMMAND as the
second token.

RXSUBROUTINE
The Rexx procedure is a subroutine of another program. The subroutine can have several
arguments and does not need to return a result. The Rexx PARSE SOURCE instruction
returns SUBROUTINE as the second token.

RXFUNCTION
The Rexx procedure is a function called from another program. The subroutine can have
several arguments and must return a result. The Rexx PARSE SOURCE instruction returns
FUNCTION as the second token.

Exits (PRXSYSEXIT) - input 
is an array of RXSYSEXIT structures defining exits for the Rexx interpreter to be used. The
RXSYSEXIT structures have the following form:

Example 9.3. RXSYSEXIT

typedef struct {
   const char *    sysexit_name;  /* name of exit handler        */
   int             sysexit_code;  /* system exit function code   */
} RXSYSEXIT;

The sysexit_name is the address of an ASCII exit handler name registered with
RexxRegisterExitExe or RexxRegisterExitDll. Sysexit_code is a code identifying the handler exit
type. See Section 9.6, “Registered System Exit Interface” for exit code definitions. An RXENDLST
entry identifies the system-exit list end. Exits must be null if exits are not used.

ReturnCode (short *) - output
is the integer form of the Result string. If the Result string is a whole number in the range -(2**15)
to 2**15-1, it is converted to an integer and also returned in ReturnCode.



Chapter 9. Classic Rexx Application Programming Interfaces

250

Result (PRXSTRING) - output
is the string returned from the Rexx procedure with the Rexx RETURN or EXIT instruction. A
default RXSTRING can be provided for the returned result. If a default RXSTRING is not provided
or the default is too small for the returned result, the Rexx interpreter allocates an RXSTRING
using RexxAllocateMemory(size). The caller of RexxStart is responsible for releasing the
RXSTRING storage with RexxFreeMemory(ptr).

The Rexx interpreter does not add a terminating null to Result.

9.3.3.2. Return Codes
The possible RexxStart return codes are:

negative
Interpreter errors. See the Appendix in the Open Object Rexx: Reference for the list of Rexx
errors.

0
No errors occurred. The Rexx procedure ran normally.

positive
A system return code that indicates problems finding or loading the interpreter.

When a macrospace Rexx procedure (see Section 9.11, “Macrospace Interface”) is not loaded in the
macrospace, the return code is -3 ("Program is unreadable").

9.3.3.3. Example

Example 9.4. RexxStart
The following example for RexxStart should compile and execute on Linux. A few small changes as
noted in the example, and it should compile and execute on Windows. This is dependent on having
the build environment set up correctly. Note that you need to provide a test.rex program for the
executable to pass to the interpreter:

/* rexxStartExample.c

  gcc -D_GNU_SOURCE -std=c99 -pedantic -ldl rexxStartExample.c -lrexx -lrexxapi -o
 rexxStartExample

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <rexx.h>

int main(int argc, char *argv[]) {
   int           return_code; /* interpreter return code */
   short         rc;          /* converted return code */

   CONSTRXSTRING argr[1];     /* rexx program argument string */
   RXSTRING      retstr;      /* rexx program return value */

   char          return_buffer[250]; /* returned buffer */
   char          rexx_argument[] = "theargument";



The RexxWaitForTermination Function (Deprecated)

251

   /* build the argument string */
   MAKERXSTRING(argr[0], rexx_argument, strlen(rexx_argument));

   /* set up default return */
   MAKERXSTRING(retstr, return_buffer, sizeof(return_buffer));

   retstr.strptr[0] = 0;

   return_code = RexxStart(1,            // one argument
                           argr,         // here it is
                           "./test.rex", // name of program
                           NULL,         // use disk version
                           "bash",       // default address name
                           RXCOMMAND,    // called as a subcommand
                           NULL,         // no exits
                           &rc,          // where to put rc
                           &retstr);     // where to put returned string

   /* process return value */
   printf("rc %i\n", rc);
   if (retstr.strlength > 0) {
      printf("ret: %s\n", retstr.strptr);
   }

   /* need to return storage? */
   if (RXSTRPTR(retstr) !=  return_buffer) {
      RexxFreeMemory(RXSTRPTR(retstr)); /* release the RXSTRING */
   }
   return 0;
}

/*
  In the above code, change: "./test.rex" to: ".\test.rex" and
  change: "bash" to: "cmd".

  For the VC++ compiler, this command line should work:

  cl rexxStartExample.cpp rexx.lib rexxapi.lib

*/

When RexxStart is executed within an external program (usually a C program), the main Rexx
thread runs on the same thread as the RexxStart invocation. When the main thread terminates, the
interpreter will wait until all additional threads created from the main thread terminate before returning
control to the invoking program.

9.3.4. The RexxWaitForTermination Function (Deprecated)

RexxWaitForTermination is not supported in 4.0 and will return immediately if called. This is
maintained for binary compatibility with previous releases.

9.3.5. The RexxDidRexxTerminate Function (Deprecated)

RexxDidRexxTerminate always returns 1 for 4.0. This is maintained for binary compatibility with early
releases.



Chapter 9. Classic Rexx Application Programming Interfaces

252

retc = RexxDidRexxTerminate();

9.4. Subcommand Interface

An application can create handlers to process commands from a Rexx program. Once created,
the subcommand handler name can be used with the RexxStart function or the Rexx ADDRESS
instruction. Subcommand handlers must be registered with the RexxRegisterSubcomExe or
RexxRegisterSubcomDll function before they are used.

9.4.1. Registering Subcommand Handlers

A subcommand handler can reside in the same module (executable or DLL) as an application, or it
can reside in a separate dynamic-link library. It is recommended that an application that runs Rexx
procedures  with RexxStart uses RexxRegisterSubcomExe to register subcommand handlers. The
Rexx interpreter passes commands to the application subcommand handler entry point. Subcommand
handlers created with RexxRegisterSubcomExe are available only to Rexx programs called from the
registering application.

The RexxRegisterSubcomDll interface creates subcommand handlers that reside in a dynamic-link
library. Any Rexx program using the Rexx ADDRESS instruction can access a dynamic-link library
subcommand handler. A dynamic-link library subcommand handler can also be registered directly
from a Rexx program using the RXSUBCOM command.

9.4.1.1. Creating Subcommand Handlers

The following example is a sample subcommand handler definition.

Example 9.5. Command handler

RexxReturnCode REXXENTRY command_handler(
  PCONSTRXSTRING Command,     /* Command string from Rexx            */
  unsigned short *Flags,      /* Returned Error/Failure flags        */
  PRXSTRING Retstr);          /* Returned RC string                  */

where:

Command
is the command string created by Rexx.

command is a null-terminated RXSTRING containing the issued command.

Flags
is the subcommand completion status. The subcommand handler can indicate success, error, or
failure status. The subcommand handler can set Flags to one of the following values:
RXSUBCOM_OK

The subcommand completed normally. No errors occurred during subcommand processing
and the Rexx procedure continues when the subcommand handler returns.



Registering Subcommand Handlers

253

RXSUBCOM_ERROR 
A subcommand error occurred. RXSUBCOM_ERROR indicates a subcommand error
occurred; for example, incorrect command options or syntax.

If the subcommand handler sets Flags to RXSUBCOM_ERROR, the Rexx interpreter raises
an ERROR condition if SIGNAL ON ERROR or CALL ON ERROR traps have been created.
If TRACE ERRORS has been issued, Rexx traces the command when the subcommand
handler returns.

RXSUBCOM_FAILURE 
A subcommand failure occurred. RXSUBCOM_FAILURE indicates that general subcommand
processing errors have occurred. For example, unknown commands usually return
RXSUBCOM_FAILURE.

If the subcommand handler sets Flags to RXSUBCOM_FAILURE, the Rexx interpreter
raises a FAILURE condition if SIGNAL ON FAILURE or CALL ON FAILURE traps have
been created. If TRACE FAILURES has been issued, Rexx traces the command when the
subcommand handler returns.

Retstr 
is the address of an RXSTRING for the return code. It is a character string return code that is
assigned to the Rexx special variable RC when the subcommand handler returns to Rexx. The
Rexx interpreter provides a default 256-byte RXSTRING in Retstr. A longer RXSTRING can
be allocated with RexxAllocateMemory(size) if the return string is longer than the default
RXSTRING. If the subcommand handler sets Retstr to an empty RXSTRING (a null strptr), Rexx
assigns the string 0 to RC.

9.4.1.1.1. Example

Example 9.6. Subcommand handler

RexxReturnCode REXXENTRY Edit_Commands(
  PCONSTRXSTRING Command,     /* Command string passed from the caller    */
  unsigned short *Flags,      /* pointer too short for return of flags    */
  PRXSTRING Retstr)           /* pointer to RXSTRING for RC return        */
{
  int         command_id;                /* command to process         */
  int         rc;                        /* return code                */
  const char *scan_pointer;              /* current command scan       */
  const char *target;                    /* general editor target      */

  scan_pointer = Command->strptr;      /* point to the command       */
                                       /* resolve command            */
  command_id = resolve_command(&scan_pointer);

  switch (command_id) {                /* process based on command   */

    case   LOCATE:                     /* locate command             */

                                       /* validate rest of command   */
      if (rc = get_target(&scan_pointer, &target)) {
        *Flags = RXSUBCOM_ERROR;       /* raise an error condition   */
        break;                         /* return to Rexx             */
      }
      rc = locate(target);             /* locate target in the file  */
      *Flags = RXSUBCOM_OK;            /* not found is not an error  */



Chapter 9. Classic Rexx Application Programming Interfaces

254

      break;                           /* finish up                  */

...

      default:                         /* unknown command            */
        rc = 1;                        /* return code for unknown    */
        *Flags = RXSUBCOM_FAILURE;     /* this is a command failure  */
        break;
  }

  sprintf(Retstr->strptr, "%d", rc);   /* format return code string  */
                                       /* and set the correct length */
  Retstr->strlength = strlen(Retstr->strptr);
  return 0;                            /* processing completed       */
}

9.4.2. Subcommand Interface Functions
The following sections explain the functions for registering and using subcommand handlers.

9.4.2.1. RexxRegisterSubcomDll

RexxRegisterSubcomDll registers a subcommand handler that resides in a dynamic-link library
routine.

retc = RexxRegisterSubcomDll(EnvName, ModuleName, EntryPoint,
                             UserArea, DropAuth);

9.4.2.1.1. Parameters

EnvName (const char *) - input
is the address of an ASCII subcommand handler name.

ModuleName (const char *) - input
is the address of an ASCII dynamic-link library name. ModuleName is the DLL file containing the
subcommand handler routine.

EntryPoint (const char *) - input
is the address of an ASCII dynamic-link library procedure name. EntryPoint is the name of the
exported routine within ModuleName that Rexx calls as a subcommand handler.

UserArea (const char *) - input
is the address of an area of user-defined information. The user-defined information is a buffer
the size of two pointer values. The bytes UserArea buffer is saved with the subcommand
handler registration. UserArea can be null if there is no user information to be saved. The
RexxQuerySubcom function can retrieve the saved user information.

DropAuth (size_t) - input
is the drop authority. DropAuth identifies the processes that can deregister the subcommand
handler. The possible DropAuth values are:
RXSUBCOM_DROPPABLE

Any process can deregister the subcommand handler with RexxDeregisterSubcom.



Subcommand Interface Functions

255

RXSUBCOM_NONDROP
Only a  thread within the same process as the thread that registered the handler can
deregister the handler with RexxDeregisterSubcom.

9.4.2.1.2. Return Codes

RXSUBCOM_OK 0 A subcommand has executed successfully.

RXSUBCOM_DUP 10 A duplicate handler name has been successfully
registered. There is either an executable handler
with the same name registered in another
process, or a DLL handler with the same name
registered in another DLL. (To address this
subcommand, you must specify its library name.)

RXSUBCOM_NOTREG 30 Registration was unsuccessful due
to duplicate handler and module
names (RexxRegisterSubcomExe or
RexxRegisterSubcomDll); the subroutine
environment is not registered (other Rexx
subcommand functions).

RXSUBCOM_NOEMEM 1002 There is insufficient memory available to
complete this request.

9.4.2.2. RexxRegisterSubcomExe

RexxRegisterSubcomExe registers a subcommand handler that resides within the application code.

retc = RexxRegisterSubcomExe(EnvName, EntryPoint, UserArea);

9.4.2.2.1. Parameters

EnvName (const char *) - input
is the address of an ASCII subcommand handler name.

EntryPoint (REXXPFN) - input
is the address of the subcommand handler entry point within the application executable code.

UserArea (const char *) - input
is the address of an area of user-defined information. The user-defined information is a buffer
the size of two pointer values. The bytes UserArea buffer is saved with the subcommand
handler registration. UserArea can be null if there is no user information to be saved. The
RexxQuerySubcom function can retrieve the saved user information.

9.4.2.2.2. Return Codes

RXSUBCOM_OK 0 A subcommand has executed successfully.

RXSUBCOM_DUP 10 A duplicate handler name has been successfully
registered. There is either an executable handler
with the same name registered in another
process, or a DLL handler with the same name



Chapter 9. Classic Rexx Application Programming Interfaces

256

registered in another DLL. (To address this
subcommand, you must specify its library name.)

RXSUBCOM_NOTREG 30 Registration was unsuccessful due
to duplicate handler and library
names (RexxRegisterSubcomExe or
RexxRegisterSubcomDll); the subroutine
environment is not registered (other Rexx
subcommand functions).

RXSUBCOM_NOEMEM 1002 There is insufficient memory available to
complete this request.

9.4.2.2.3. Remarks
If EnvName is the same as a subcommand handler already registered with RexxRegisterSubcomDll,
RexxRegisterSubcomExe returns RXSUBCOM_DUP. This is not an error condition. It means that
RexxRegisterSubcomExe has successfully registered the new subcommand handler.

A Rexx procedure can register dynamic-link library subcommand handlers with the RXSUBCOM
command. For example:

Example 9.7. RXSUBCOM

                               /* register Dialog Manager       */
                               /* subcommand handler            */
"RXSUBCOM REGISTER ISPCIR ISPCIR ISPCIR"
Address ispcir                 /* send commands to dialog mgr   */

The RXSUBCOM command registers the Dialog Manager subcommand handler ISPCIR as routine
ISPCIR in the ISPCIR dynamic-link library.

9.4.2.2.4. Example

Example 9.8. RexxStart

const char  *user_info[2];       /* saved user information     */

user_info[0] = global_workarea;      /* save global work area for  */
user_info[1] = NULL;                 /* re-entrance                */

rc = RexxRegisterSubcomExe("Editor", /* register editor handler    */
    &Edit_Commands,                  /* located at this address    */
    user_info);                      /* save global pointer        */

9.4.2.3. RexxDeregisterSubcom

RexxDeregisterSubcom deregisters a subcommand handler.



Subcommand Interface Functions

257

retc = RexxDeregisterSubcom(EnvName, ModuleName);

9.4.2.3.1. Parameters

EnvName (const char *) - input
is the address of an ASCII subcommand handler name.

ModuleName (const char *) - input
is the address of an ASCII dynamic-link library name. ModuleName is the name of the
dynamic-link library containing the registered subcommand handler. When ModuleName is
null, RexxDeregisterSubcom searches the RexxRegisterSubcomExe subcommand handler
list for a handler within the current process. If RexxDeregisterSubcom does not find a
RexxRegisterSubcomExe handler, it searches the RexxRegisterSubcomDll subcommand handler
list.

9.4.2.3.2. Return Codes

RXSUBCOM_OK 0 A subcommand has executed successfully.

RXSUBCOM_NOTREG 30 Registration was unsuccessful due
to duplicate handler and dynalink
names (RexxRegisterSubcomExe or
RexxRegisterSubcomDll); the subroutine
environment is not registered (other Rexx
subcommand functions).

RXSUBCOM_NOCANDROP 40 The subcommand handler has been registered
as "not droppable."

9.4.2.3.3. Remarks
The handler is removed from the active subcommand handler list.

9.4.2.4. RexxQuerySubcom

RexxQuerySubcom queries a subcommand handler and retrieves saved user information.

retc = RexxQuerySubcom(EnvName, ModuleName, Flag, UserWord);

9.4.2.4.1. Parameters

EnvName (const char *) - input
is the address of an ASCII subcommand handler name.

ModuleName (const char *) - input
is the address of an ASCII dynamic-link library name. ModuleName restricts the query to a
subcommand handler within the ModuleName dynamic-link library. When ModuleName is null,
RexxQuerySubcom searches the RexxRegisterSubcomExe subcommand handler list for a
handler within the current process. If RexxQuerySubcom does not find a RexxRegisterSubcomExe
handler, it searches the RexxRegisterSubcomDll subcommand handler list.



Chapter 9. Classic Rexx Application Programming Interfaces

258

Flag (unsigned short *) - output
is the subcommand handler registration flag. Flag is the EnvName subcommand
handler registration status. When RexxQuerySubcom returns RXSUBCOM_OK, the
EnvName subcommand handler is currently registered. When RexxQuerySubcom returns
RXSUBCOM_NOTREG, the EnvName subcommand handler is not registered.

UserWord (char *) - output
is the address of an area that receives the user information saved with RexxRegisterSubcomExe
or RexxRegisterSubcomDll. The userarea must be large enough to store two pointer values.
UserWord can be null if the saved user information is not required.

9.4.2.4.2. Return Codes

RXSUBCOM_OK 0 A subcommand has executed successfully.

RXSUBCOM_NOTREG 30 Registration was unsuccessful due
to duplicate handler and dynalink
names (RexxRegisterSubcomExe or
RexxRegisterSubcomDll); the subroutine
environment is not registered (other Rexx
subcommand functions).

9.4.2.4.3. Example

Example 9.9. Command handlers

RexxReturnCode REXXENTRY Edit_Commands(
  PCONSTRXSTRING  Command,    /* Command string passed from the caller    */
  unsigned short *Flags,      /* pointer too short for return of flags    */
  PRXSTRING       Retstr)     /* pointer to RXSTRING for RC return        */
{
  char            *user_info[2];       /* saved user information     */
  char            *global_workarea;    /* application data anchor    */
  unsigned short   query_flag;         /* flag for handler query     */

  rc = RexxQuerySubcom("Editor",       /* retrieve application work  */
      NULL,                            /* area anchor from Rexx      */
      &query_flag,
      user_info);

  global_workarea = user_info[0];      /* set the global anchor      */

9.5. External Function Interface

There are two types of Rexx external functions:

• Routines written in Rexx

• Routines written in other platform-supported native code (compiled) languages

External functions written in Rexx do not need to be registered. These functions are found by a disk
search for a Rexx procedure file that matches the function name.



Registering External Functions

259

There are two styles of native code routines supported by Open Object Rexx. Registered External
Functions are an older style of routine that is only capable of dealing with String data. These routines
do not have access to any of the object-oriented features of the language. The registered external
functions are described here, but should be considered only if compatibility with older versions of
Object Rexx or other Rexx interpreters is a consideration.

The newer style functions have access to Rexx objects and a fuller set of APIs for interfacing with the
interpreter runtime. These functions are the preferred method for writing Open Object Rexx extensions
are defined in Section 8.11, “Building an External Native Library”.

9.5.1. Registering External Functions
An external function can reside in the same module (executable or library) as an application, or in a
separate loadable library. RexxRegisterFunctionExe registers external functions within an application
module. External functions registered with RexxRegisterFunctionExe are available only to Rexx
programs called from the registering application.

The RexxRegisterFunctionDll interface registers external functions that reside in a dynamic-link library.
Any Rexx program can access such an external function after it is registered. It can also be registered
directly from a Rexx program using the Rexx RXFUNCADD built-in function.

9.5.1.1. Creating External Functions

The following is a sample external function definition:

Example 9.10. External functions

size_t REXXENTRY SysLoadFuncs(
     const char *Name,                   /* name of the function       */
     size_t      Argc,                   /* number of arguments        */
     CONSTRXSTRING  Argv[],              /* list of argument strings   */
     const char *Queuename,              /* current queue name         */
     PRXSTRING   Retstr)                 /* returned result string     */

where:

Name
is the address of an ASCII function name used to call the external function.

Argc
is the number of elements in the Argv array. Argv contains Argc RXSTRINGs.

Argv
is an array of null-terminated CONSTRXSTRINGs for the function arguments.

Queuename
is the name of the currently defined external Rexx data queue.

Retstr
is the address of an RXSTRING for the returned value. Retstr is a character string function or
subroutine return value. When a Rexx program calls an external function with the Rexx CALL



Chapter 9. Classic Rexx Application Programming Interfaces

260

instruction, Retstr is assigned to the special Rexx variable RESULT. When the Rexx program calls
an external function with a function call, Retstr is used directly within the Rexx expression.

The Rexx interpreter provides a default 256-byte RXSTRING in Retstr. A longer RXSTRING can
be allocated with RexxAllocateMemory(size) if the returned string is longer than 256 bytes.
The Rexx interpreter releases Retstr with RexxFreeMemory(ptr) when the external function
completes.

Returns 
is an integer return code from the function. When the external function returns 0, the function
completed successfully. Retstr contains the return value. When the external function returns a
nonzero return code, the Rexx interpreter raises Rexx error 40, "Incorrect call to routine". The
Retstr value is ignored.

If the external function does not have a return value, the function must set Retstr to an empty
RXSTRING (null strptr). When an external function called as a function does not return a value,
the interpreter raises error 44, "Function or message did not return data". When an external
function called with the Rexx CALL instruction does not return a value, the Rexx interpreter drops
(unassigns) the special variable RESULT.

9.5.2. Calling External Functions
RexxRegisterFunctionExe external functions are local to the registering process. Another
process can call the RexxRegisterFunctionExe to make these functions local to this process.
RexxRegisterFunctionDll functions, however, are available to all processes. The function names
cannot be duplicated.

9.5.2.1. Example

Example 9.11. External functions

size_t REXXENTRY SysMkDir(
     const char *Name,                 /* name of the function       */
     size_t      Argc,                 /* number of arguments        */
     CONSTRXSTRING  Argv[],            /* list of argument strings   */
     const char *Queuename,            /* current queue name         */
     PRXSTRING   Retstr)               /* returned result string     */
{
  ULONG  rc;                           /* Return code of function    */

  if (Argc != 1)                       /* must be 1 argument         */
    return 40;                         /* incorrect call if not      */

                                       /* make the directory         */
  rc = !CreateDirectory(Argv[0].strptr, NULL);

  sprintf(Retstr->strptr, "%d", rc);   /* result: <> 0 failed        */
                                       /* set proper string length   */
  Retstr->strlength = strlen(Retstr->strptr);
  return 0;                            /* successful completion      */
}



External Function Interface Functions

261

9.5.3. External Function Interface Functions

The following sections explain the functions for registering and using external functions.

9.5.3.1. RexxRegisterFunctionDll

RexxRegisterFunctionDll registers an external function that resides in a dynamic-link library routine.

retc = RexxRegisterFunctionDll(FuncName, ModuleName, EntryPoint);

9.5.3.1.1. Parameters

FuncName (const char *) - input
is the address of an external function name. The function name must not exceed 1024 characters.

ModuleName (const char *) - input
is the address of an ASCII library name. ModuleName is the library file containing the external
function routine.

EntryPoint (const char *) - input
is the address of an ASCII dynamic-link procedure name. EntryPoint is the name of the exported
external function routine within ModuleName.

9.5.3.1.2. Return Codes

RXFUNC_OK 0 The call to the function completed successfully.

RXFUNC_NOEMEM 1002 Memory allocation failure, or related.

9.5.3.1.3. Remarks
On Windows, External functions that reside in a dynamic-link library routine must be exported. You
can do this by specifying a module-definition (.DEF) file that lists the external functions in the EXPORT
section. For example:

EXPORTS
   SYSMKDIR = SysMkDir

A Rexx procedure can register dynamic-link library-external functions with the RXFUNCADD built-in
function. For example:

Example 9.12. RXFUNCADD

                               /* register function SysLoadFuncs  */
                               /* in dynamic link library RexxUTIL*/



Chapter 9. Classic Rexx Application Programming Interfaces

262

Call RxFuncAdd "SysLoadFuncs", "RexxUTIL", "SysLoadFuncs"
Call SysLoadFuncs              /* call to load other functions    */

RXFUNCADD registers the external function SysLoadFuncs as routine SysLoadFuncs in the rexxutil
library. SysLoadFuncs registers additional functions in rexxutil with RexxRegisterFunctionDll. See the
SysLoadFuncs routine below for a function registration example.

9.5.3.1.4. Example

Example 9.13. External functions

static const char *RxFncTable[] =      /* function package list      */
{
      "SysCls",
      "SysCurpos",
      "SysCurState",
      "SysDriveInfo",
}

size_t REXXENTRY SysLoadFuncs(
     const char *Name,                   /* name of the function       */
     size_t      Argc,                   /* number of arguments        */
     CONSTRXSTRING  Argv[],              /* list of argument strings   */
     const char *Queuename,              /* current queue name         */
     PRXSTRING   Retstr)                 /* returned result string     */
{
  INT    entries;                      /* Number of entries          */
  INT    j;                            /* counter                    */

  Retstr->strlength = 0;               /* set null string return     */

  if (Argc > 0)                        /* check arguments            */
    return 40;                         /* too many, raise an error   */

                                       /* get count of arguments     */
  entries = sizeof(RxFncTable)/sizeof(const char *);
                                       /* register each function in  */
  for (j = 0; j < entries; j++) {      /* the table                  */
    RexxRegisterFunctionDll(RxFncTable[j],
          "RexxUTIL", RxFncTable[j]);
  }
  return 0;                            /* successful completion      */
}

9.5.3.2. RexxRegisterFunctionExe

RexxRegisterFunctionExe registers an external function that resides within the application code.

retc = RexxRegisterFunctionExe(FuncName, EntryPoint);

9.5.3.2.1. Parameters



External Function Interface Functions

263

FuncName (const char *) - input
is the address of an external function name. The function name must not exceed 1024 characters.

EntryPoint (REXXPFN) - input
is the address of the external function entry point within the executable application file. Functions
registered with RexxRegisterFunctionExe are local to the current process. Rexx procedures in the
same process as the RexxRegisterFunctionExe issuer can call local external functions.

9.5.3.2.2. Return Codes

RXFUNC_OK 0 The call to the function completed successfully.

RXFUNC_DEFINED 10 The requested function is already registered.

RXFUNC_NOMEM 20 There is not enough memory to register a new
function.

9.5.3.3. RexxDeregisterFunction

RexxDeregisterFunction deregisters an external function.

retc = RexxDeregisterFunction(FuncName);

9.5.3.3.1. Parameters

FuncName (const char *) - input
is the address of an external function name to be deregistered.

9.5.3.3.2. Return Codes

RXFUNC_DEFINED 10 The requested function is already registered.

RXFUNC_NOTREG 30 The requested function is not registered.

9.5.3.4. RexxQueryFunction

RexxQueryFunction queries the existence of a registered external function.

retc = RexxQueryFunction(FuncName);

9.5.3.4.1. Parameters

FuncName (const char *) - input
is the address of an external function name to be queried.

9.5.3.4.2. Return Codes

RXFUNC_OK 0 The call to the function completed successfully.



Chapter 9. Classic Rexx Application Programming Interfaces

264

RXFUNC_NOTREG 30 The requested function is not registered.

9.5.3.4.3. Remarks
RexxQueryFunction returns RXFUNC_OK only if the requested function is available to the current
process. If not, the RexxQueryFunction searches the external RexxRegisterFunctionDll function list.

9.6. Registered System Exit Interface

The Rexx system exits let the programmer create a customized Rexx operating environment. You can
set up user-defined exit handlers to process specific Rexx activities.

Applications can create exits for:

• The administration of resources at the beginning and the end of interpretation

• Linkages to external functions and subcommand handlers

• Special language features; for example, input and output to standard resources

• Polling for halt and external trace events

Exit handlers are similar to subcommand handlers and external functions. Applications must register
named exit handlers with the Rexx interpreter. Exit handlers can reside in dynamic-link libraries or
within an executable application module.

9.6.1. Writing System Exit Handlers

The following is a sample exit handler definition:

Example 9.14. Rexx_IO_exit

int REXXENTRY Rexx_IO_exit(
     int   ExitNumber,    /* code defining the exit function    */
     int   Subfunction,   /* code defining the exit subfunction */
     PEXIT ParmBlock);    /* function-dependent control block   */

where:

ExitNumber
is the major function code defining the type of exit call.

Subfunction
is the subfunction code defining the exit event for the call.

ParmBlock
is a pointer to the exit parameter list.

The exit parameter list contains exit-specific information. See the exit descriptions following the
parameter list formats.



Writing System Exit Handlers

265

Note

Some exit subfunctions do not have parameters. ParmBlock is set to null for exit subfunctions
without parameters.

9.6.1.1. Exit Return Codes
Exit handlers return an integer value that signals one of the following actions:

RXEXIT_HANDLED
The exit handler processed the exit subfunction and updated the subfunction parameter list as
required. The Rexx interpreter continues with processing as usual.

RXEXIT_NOT_HANDLED
The exit handler did not process the exit subfunction. The Rexx interpreter processes the
subfunction as if the exit handler were not called.

RXEXIT_RAISE_ERROR
A fatal error occurred in the exit handler. The Rexx interpreter raises Rexx error 48 ("Failure in
system service").

For example, if an application creates an input/output exit handler, one of the following happens:

• When the exit handler returns RXEXIT_NOT_HANDLED for an RXSIOSAY subfunction, the Rexx
interpreter writes the output line to STDOUT.

• When the exit handler returns RXEXIT_HANDLED for an RXSIOSAY subfunction, the Rexx
interpreter assumes the exit handler has handled all required output. The interpreter does not write
the output line to STDOUT.

• When the exit handler returns RXEXIT_RAISE_ERROR for an RXSIOSAY subfunction, the
interpreter raises Rexx error 48, "Failure in system service".

9.6.1.2. Exit Parameters
Each exit subfunction has a different parameter list. All RXSTRING exit subfunction parameters are
passed as null-terminated RXSTRINGs. The RXSTRING value can also contain null characters.

For some exit subfunctions, the exit handler can return an RXSTRING character result in the
parameter list. The interpreter provides a default 256-byte RXSTRING for the result string. If the result
is longer than 256 bytes, a new RXSTRING can be allocated using RexxAllocateMemory(size).
The Rexx interpreter returns the RXSTRING storage for the exit handler.

9.6.1.3. Identifying Exit Handlers to Rexx
System exit handlers must be registered with RexxRegisterExitDll or RexxRegisterExitExe. The
system exit handler registration is similar to the subcommand handler registration.

The Rexx system exits are enabled with the RexxStart function parameter Exits. Exits is a pointer to
an array of RXSYSEXIT structures. Each RXSYSEXIT structure in the array contains a Rexx exit code
and the address of an ASCII exit handler name. The RXENDLST exit code marks the exit list end.



Chapter 9. Classic Rexx Application Programming Interfaces

266

Example 9.15. RXSYSEXIT

typedef struct {
   const char *    sysexit_name;       /* name of exit handler        */
   int             sysexit_code;       /* system exit function code   */
} RXSYSEXIT;

The Rexx interpreter calls the registered exit handler named in sysexit_name for all of the
sysexit_code subfunctions.

9.6.1.3.1. Example

Example 9.16. RXSYSEXIT

...
{
const char *user_info[2];              /* saved user information     */
RXSYSEXIT   exit_list[2];              /* system exit list           */

  user_info[0] = global_workarea;      /* save global work area for  */
  user_info[1] = NULL;                 /* re-entrance                */

  rc = RexxRegisterExitExe("EditInit", /* register exit handler      */
      &Init_exit,                      /* located at this address    */
      user_info);                      /* save global pointer        */

                                       /* set up for RXINI exit      */
  exit_list[0].sysexit_name = "EditInit";
  exit_list[0].sysexit_code = RXINI;
  exit_list[1].sysexit_code = RXENDLST;

  return_code = RexxStart(1,           /* one argument               */
                          argv,        /* argument array             */
                          "CHANGE.ED", /* Rexx procedure name        */
                          NULL,        /* use disk version           */
                          "Editor",    /* default address name       */
                          RXCOMMAND,   /* calling as a subcommand    */
                          exit_list,   /* exit list                  */
                          &rc,         /* converted return code      */
                          &retstr);    /* returned result            */

                                       /* process return value       */
...
}

int REXXENTRY Init_exit(
     int   ExitNumber,    /* code defining the exit function    */
     int   Subfunction,   /* code defining the exit subfunction */
     PEXIT ParmBlock)     /* function dependent control block   */
{
  char            *user_info[2];       /* saved user information     */
  char            *global_workarea;    /* application data anchor    */
  unsigned short   query_flag;         /* flag for handler query     */



System Exit Definitions

267

  rc = RexxQueryExit("EditInit",       /* retrieve application work  */
      NULL,                            /* area anchor from Rexx      */
      &query_flag,
      user_info);

  global_workarea = user_info[0];      /* set the global anchor      */

  if (global_workarea->rexx_trace)     /* trace at start?            */
                                       /* turn on macro tracing      */
    RexxSetTrace(global_workarea->rexx_pid, global_workarea->rexx_tid);
  return RXEXIT_HANDLED;               /* successfully handled       */
}

9.6.2. System Exit Definitions
The Rexx interpreter supports the following system exits:

RXFNC 
External function call exit.
RXFNCCAL

Call an external function.

RXCMD 
Subcommand call exit.
RXCMDHST

Call a subcommand handler.

RXMSQ 
External data queue exit.
RXMSQPLL

Pull a line from the external data queue.

RXMSQPSH
Place a line in the external data queue.

RXMSQSIZ
Return the number of lines in the external data queue.

RXMSQNAM
Set the active external data queue name.

RXSIO 
Standard input and output exit.
RXSIOSAY

Write a line to the standard output stream for the SAY instruction.

RXSIOTRC
Write a line to the standard error stream for the Rexx trace or Rexx error messages.

RXSIOTRD
Read a line from the standard input stream for PULL or PARSE PULL.



Chapter 9. Classic Rexx Application Programming Interfaces

268

RXSIODTR
Read a line from the standard input stream for interactive debugging.

RXHLT 
Halt processing exit.
RXHLTTST

Test for a HALT condition.

RXHLTCLR
Clear a HALT condition.

RXTRC 
External trace exit.
RXTRCTST

Test for an external trace event.

RXINI 
Initialization exit.
RXINIEXT

Allow additional Rexx procedure initialization.

RXTER 
Termination exit.
RXTEREXT

Process Rexx procedure termination.

The following sections describe each exit subfunction, including:

• The service the subfunction provides

• When Rexx calls the exit handler

• The default action when the exit is not provided or the exit handler does not process the subfunction

• The exit action

• The subfunction parameter list

9.6.2.1. RXFNC

Processes calls to external functions.

RXFNCCAL
Processes calls to external functions.

• When called: When Rexx calls an external subroutine or function.

• Default action: Call the external routine using the usual external function search order.

• Exit action: Call the external routine, if possible.

• Continuation: If necessary, raise Rexx error 40 ("Incorrect call to routine"), 43 ("Routine not
found"), or 44 ("Function or message did not return data").

• Parameter list:



System Exit Definitions

269

Example 9.17. RXFUNC parameter list

typedef struct {
   struct {
      unsigned rxfferr  : 1;           /* Invalid call to routine.    */
      unsigned rxffnfnd : 1;           /* Function not found.         */
      unsigned rxffsub  : 1;           /* Called as a subroutine if   */
                                       /* TRUE.  Return values are    */
                                       /* optional for subroutines,   */
                                       /* required for functions.     */
   } rxfnc_flags ;

   const char *      rxfnc_name;       /* Pointer to function name.   */
   unsigned short    rxfnc_namel;      /* Length of function name.    */
   const char *      rxfnc_que;        /* Current queue name.         */
   unsigned short    rxfnc_quel;       /* Length of queue name.       */
   unsigned short    rxfnc_argc;       /* Number of args in list.     */
   PCONSTRXSTRING    rxfnc_argv;       /* Pointer to argument list.   */
                                       /* List mimics argv list for   */
                                       /* function calls, an array of */
                                       /* RXSTRINGs.                  */
   RXSTRING          rxfnc_retc;       /* Return value.               */
} RXFNCCAL_PARM;

The name of the external function is defined by rxfnc_name and rxfnc_namel. The arguments
to the function are in rxfnc_argc and rxfnc_argv. If you call the named external function with the
Rexx CALL instruction (rather than using a function call), the flag rxffsub is TRUE.

The exit handler can set rxfnc_flags to indicate whether the external function call was
successful. If neither rxfferr nor rxffnfnd is TRUE, the exit handler successfully called the
external function. The error flags are checked only when the exit handler handles the request.

The exit handler sets rxffnfnd to TRUE when the exit handler cannot locate the external function.
The interpreter raises Rexx error 43, "Routine not found". The exit handler sets rxfferr to TRUE
when the exit handler locates the external function, but the external function returned an error
return code. The Rexx interpreter raises error 40, "Incorrect call to routine."

The exit handler returns the external function result in the rxfnc_retc RXSTRING. The Rexx
interpreter raises error 44, "Function or method did not return data," when the external routine
is called as a function and the exit handler does not return a result. When the external routine is
called with the Rexx CALL instruction, a result is not required.

9.6.2.2. RXCMD

Processes calls to subcommand handlers.

RXCMDHST
Calls a named subcommand handler.

• When called: When Rexx procedure issues a command.

• Default action: Call the named subcommand handler specified by the current Rexx ADDRESS
setting.



Chapter 9. Classic Rexx Application Programming Interfaces

270

• Exit action: Process the call to a named subcommand handler.

• Continuation: Raise the ERROR or FAILURE condition when indicated by the parameter list
flags.

• Parameter list:

Example 9.18. RXCMD parameter list

typedef struct {
   struct {                            /* Condition flags             */
      unsigned rxfcfail : 1;           /* Command failed.  Trap with  */
                                       /* CALL or SIGNAL on FAILURE.  */
      unsigned rxfcerr  : 1;           /* Command ERROR occurred.     */
                                       /* Trap with CALL or SIGNAL on */
                                       /* ERROR.                      */
   } rxcmd_flags;
   const char *      rxcmd_address;    /* Pointer to address name.    */
   unsigned short    rxcmd_addressl;   /* Length of address name.     */
   const char *      rxcmd_dll;        /* dll name for command.       */
   unsigned short    rxcmd_dll_len;    /* Length of dll name.  0 ==>  */
                                       /* executable file.            */
   CONSTRXSTRING     rxcmd_command;    /* The command string.         */
   RXSTRING          rxcmd_retc;       /* Pointer to return code      */
                                       /* buffer.  User allocated.    */
} RXCMDHST_PARM;

The rxcmd_command field contains the issued command. Rxcmd_address, rxcmd_addressl,
rxcmd_dll, and rxcmd_dll_len fully define the current ADDRESS setting. Rxcmd_retc is an
RXSTRING for the return code value assigned to Rexx special variable RC.

The exit handler can set rxfcfail or rxfcerr to TRUE to raise an ERROR or FAILURE condition.

9.6.2.3. RXMSQ

External data queue exit.

RXMSQPLL
Pulls a line from the external data queue.

• When called: When a Rexx PULL instruction, PARSE PULL instruction, or LINEIN built-in
function reads a line from the external data queue.

• Default action: Remove a line from the current Rexx data queue.

• Exit action: Return a line from the data queue that the exit handler provided.

• Parameter list:

Example 9.19. RXMSQ parameter list

typedef struct {
   RXSTRING          rxmsq_retc;       /* Pointer to dequeued entry   */



System Exit Definitions

271

                                       /* buffer.  User allocated.    */
} RXMSQPLL_PARM;

The exit handler returns the queue line in the rxmsq_retc RXSTRING.

RXMSQPSH
Places a line in the external data queue.

• When called: When a Rexx PUSH instruction, QUEUE instruction, or LINEOUT built-in function
adds a line to the data queue.

• Default action: Add the line to the current Rexx data queue.

• Exit action: Add the line to the data queue that the exit handler provided.

• Parameter list:

Example 9.20. RXMSQ parameter list

typedef struct {
   struct {                            /* Operation flag              */
      unsigned rxfmlifo : 1;           /* Stack entry LIFO when TRUE, */
                                       /* FIFO when FALSE.            */
   } rxmsq_flags;
   CONSTRXSTRING     rxmsq_value;      /* The entry to be pushed.     */
} RXMSQPSH_PARM;

The rxmsq_value RXSTRING contains the line added to the queue. It is the responsibility of
the exit handler to truncate the string if the exit handler data queue has a maximum length
restriction. Rxfmlifo is the stacking order (LIFO or FIFO).

RXMSQSIZ
Returns the number of lines in the external data queue.

• When called: When the Rexx QUEUED built-in function requests the size of the external data
queue.

• Default action: Request the size of the current Rexx data queue.

• Exit action: Return the size of the data queue that the exit handler provided.

• Parameter list:

Example 9.21. RXMSQ parameter list

typedef struct {
   size_t            rxmsq_size;       /* Number of Lines in Queue    */
} RXMSQSIZ_PARM;



Chapter 9. Classic Rexx Application Programming Interfaces

272

The exit handler returns the number of queue lines in rxmsq_size.

RXMSQNAM
Sets the name of the active external data queue.
• When called: Called by the RXQUEUE("SET", newname) built-in function.

• Default action: Change the current default queue to newname.

• Exit action: Change the default queue name for the data queue that the exit handler provided.

• Parameter list:

Example 9.22. RXMSQ parameter list

typedef struct {
   CONSTRXSTRING     rxmsq_name;       /* RXSTRING containing         */
                                       /* queue name.                 */
} RXMSQNAM_PARM;

rxmsq_name contains the new queue name.

9.6.2.4. RXSIO

Standard input and output.

Note

The PARSE LINEIN instruction and the LINEIN, LINEOUT, LINES, CHARIN, CHAROUT, and
CHARS built-in functions do not call the RXSIO exit handler.

RXSIOSAY
Writes a line to the standard output stream.

• When called: When the SAY instruction writes a line to the standard output stream.

• Default action: Write a line to the standard output stream (STDOUT).

• Exit action: Write a line to the output stream that the exit handler provided.

• Parameter list:

Example 9.23. RXSIO parameter list

typedef struct {
   CONSTRXSTRING      rxsio_string;     /* String to display.          */



System Exit Definitions

273

} RXSIOSAY_PARM;

The output line is contained in rxsio_string. The output line can be of any length. It is the
responsibility of the exit handler to truncate or split the line if necessary.

RXSIOTRC
Writes trace and error message output to the standard error stream.
• When called: To output lines of trace output and Rexx error messages.

• Default action: Write a line to the standard error stream (.ERROR).

• Exit action: Write a line to the error output stream that the exit handler provided.

• Parameter list:

Example 9.24. RXSIO parameter list

typedef struct {
   CONSTRXSTRING       rxsio_string;     /* Trace line to display.      */
} RXSIOTRC_PARM;

The output line is contained in rxsio_string. The output line can be of any length. It is the
responsibility of the exit handler to truncate or split the line if necessary.

RXSIOTRD
Reads from standard input stream.
• When called: To read from the standard input stream for the Rexx PULL and PARSE PULL

instructions.

• Default action: Read a line from the standard input stream (STDIN).

• Exit action: Return a line from the standard input stream that the exit handler provided.

• Parameter list:

Example 9.25. RXSIO parameter list

typedef struct {
   RXSTRING          rxsiotrd_retc;    /* RXSTRING for input.         */
} RXSIOTRD_PARM;

The input stream line is returned in the rxsiotrd_retc RXSTRING.

RXSIODTR
Interactive debug input.
• When called: To read from the debug input stream for interactive debug prompts.



Chapter 9. Classic Rexx Application Programming Interfaces

274

• Default action: Read a line from the standard input stream (STDIN).

• Exit action: Return a line from the standard debug stream that the exit handler provided.

• Parameter list:

Example 9.26. RXSIO parameter list

typedef struct {
   RXSTRING          rxsiodtr_retc;    /* RXSTRING for input.         */
} RXSIODTR_PARM;

The input stream line is returned in the rxsiodtr_retc RXSTRING.

9.6.2.5. RXHLT

HALT condition processing.

Because the RXHLT exit handler is called after every Rexx instruction, enabling this exit slows Rexx
program execution. The RexxSetHalt function can halt a Rexx program without between-instruction
polling.

RXHLTTST
Tests the HALT indicator.
• When called: When the interpreter polls externally raises HALT conditions. The exit will be

called after completion of every Rexx instruction.

• Default action: The interpreter uses the system facilities for trapping Cntrl-Break signals.

• Exit action: Return the current state of the HALT condition (either TRUE or FALSE).

• Continuation: Raise the Rexx HALT condition if the exit handler returns TRUE.

• Parameter list:

Example 9.27. RXHLT parameter list

typedef struct {
   struct {                            /* Halt flag                   */
      unsigned rxfhhalt : 1;           /* Set if HALT occurred.       */
   } rxhlt_flags;
} RXHLTTST_PARM;

If the exit handler sets rxfhhalt to TRUE, the HALT condition is raised in the Rexx program.

The Rexx program can retrieve the reason string using the CONDITION("D") built-in function.

RXHLTCLR
Clears the HALT condition.



System Exit Definitions

275

• When called: When the interpreter has recognized and raised a HALT condition, to
acknowledge processing of the HALT condition.

• Default action: The interpreter resets the Cntrl-Break signal handlers.

• Exit action: Reset exit handler HALT state to FALSE.

• Parameters: None.

9.6.2.6. RXTRC

Tests the external trace indicator.

Note

Because the RXTRC exit is called after every Rexx instruction, enabling this exit slows Rexx
procedure execution. The RexxSetTrace function can turn on Rexx tracing without the between-
instruction polling.

RXTRCTST
Tests the external trace indicator.
• When called: When the interpreter polls for an external trace event. The exit is called after

completion of every Rexx instruction.

• Default action: None.

• Exit action: Return the current state of external tracing (either TRUE or FALSE).

• Continuation: When the exit handler switches from FALSE to TRUE, the Rexx interpreter enters
the interactive Rexx debug mode using TRACE ?R level of tracing. When the exit handler
switches from TRUE to FALSE, the Rexx interpreter exits the interactive debug mode.

• Parameter list:

Example 9.28. RXTRC parameter list

typedef struct {
   struct {
      unsigned rxftrace : 1;        /* External trace setting        */
   } rxtrc_flags;
} RXTRCTST_PARM;

If the exit handler switches rxftrace to TRUE, Rexx switches on the interactive debug mode. If
the exit handler switches rxftrace to FALSE, Rexx switches off the interactive debug mode.

9.6.2.7. RXINI



Chapter 9. Classic Rexx Application Programming Interfaces

276

Initialization processing. This exit is called as the last step of Rexx program initialization.

RXINIEXT
Initialization exit.
• When called: Before the first instruction of the Rexx procedure is interpreted.

• Default action: None.

• Exit action: The exit handler can perform additional initialization. For example:
• Use RexxVariablePool to initialize application-specific variables.

• Use RexxSetTrace to switch on the interactive Rexx debug mode.

• Parameters: None.

9.6.2.8. RXTER

Termination processing.

The RXTER exit is called as the first step of Rexx program termination.

RXTEREXT
Termination exit.
• When called: After the last instruction of the Rexx procedure has been interpreted.

• Default action: None.

• Exit action: The exit handler can perform additional termination activities. For example, the exit
handler can use RexxVariablePool to retrieve the Rexx variable values.

• Parameters: None.

9.6.3. System Exit Interface Functions
The system exit functions are similar to the subcommand handler functions. The system exit functions
are:

9.6.3.1. RexxRegisterExitDll

RexxRegisterExitDll registers an exit handler that resides in a dynamic-link library routine.

retc = RexxRegisterExitDll(ExitName, ModuleName, EntryPoint,
                           UserArea, DropAuth);

9.6.3.1.1. Parameters

ExitName (const char *) - input
is the address of an ASCII exit handler name.

ModuleName (const char *) - input
is the address of an ASCII dynamic-link library name. ModuleName is the DLL file containing the
exit handler routine.



System Exit Interface Functions

277

EntryPoint (const char *) - input
is the address of an ASCII dynamic-link procedure name. EntryPoint is the routine within
ModuleName that Rexx calls as an exit handler.

UserArea (const char *) - input
is the address of an area of user-defined information. The user-defined information is a buffer
the size of two pointer values. The bytes UserArea buffer is saved with the subcommand handler
registration. UserArea can be null if there is no user information to be saved. The RexxQueryExit
function can retrieve the saved user information.

DropAuth (size_t) - input
is the drop authority. DropAuth identifies the processes that can deregister the exit handler.
Possible DropAuth values are:
RXEXIT_DROPPABLE

Any process can deregister the exit handler with RexxDeregisterExit.

RXEXIT_NONDROP
Only a  thread within the same process as the thread that registered the handler can
deregister the handler with RexxDeregisterExit.

9.6.3.1.2. Return Codes

RXEXIT_OK 0 The system exit function executed successfully.

RXEXIT_DUP 10 A duplicate handler name has been successfully
registered. There is either an executable handler
with the same name registered in another
process, or a DLL handler with the same name
registered in another DLL. (To address this exit
handler, you must specify its library name.)

RXEXIT_NOEMEM 1002 There is insufficient memory available to
complete this request.

9.6.3.2. RexxRegisterExitExe

RexxRegisterExitExe registers an exit handler that resides within the application code.

retc = RexxRegisterExitExe(ExitName, EntryPoint, UserArea);

9.6.3.2.1. Parameters

ExitName (const char *) - input
is the address of an ASCII exit handler name.

EntryPoint (REXXPFN) - input
is the address of the exit handler entry point within the application executable file.

UserArea (const char *) - input
is the address of an area of user-defined information. The user-defined information is a buffer
the size of two pointer values. The bytes UserArea buffer is saved with the subcommand handler



Chapter 9. Classic Rexx Application Programming Interfaces

278

registration. UserArea can be null if there is no user information to be saved. The RexxQueryExit
function can retrieve the user information.

9.6.3.2.2. Return Codes

RXEXIT_OK 0 The system exit function executed successfully.

RXEXIT_DUP 10 A duplicate handler name has been successfully
registered. There is either an executable handler
with the same name registered in another
process, or a DLL handler with the same name
registered in another DLL. (To address this exit
handler, you must specify its library name.)

RXEXIT_NOTREG 30 Registration was unsuccessful due to duplicate
handler and DLL names (RexxRegisterExitExe
or RexxRegisterExitDll); the exit handler is not
registered (other Rexx exit handler functions).

RXEXIT_NOEMEM 1002 There is insufficient memory available to
complete this request.

9.6.3.2.3. Remarks
If ExitName has the same name as a handler registered with RexxRegisterExitDll,
RexxRegisterExitExe returns RXEXIT_DUP, which means that the new exit handler has been properly
registered.

9.6.3.2.4. Example

Example 9.29. SYSEXIT

const char      *user_info[2];       /* saved user information     */

user_info[0] = global_workarea;      /* save global work area for  */
user_info[1] = NULL;                 /* re-entrance                */

rc = RexxRegisterExitExe("IO_Exit",  /* register editor handler    */
    &Edit_IO_Exit,                   /* located at this address    */
    user_info);                      /* save global pointer        */

9.6.3.3. RexxDeregisterExit

RexxDeregisterExit deregisters an exit handler.

retc = RexxDeregisterExit(ExitName, ModuleName);

9.6.3.3.1. Parameters



System Exit Interface Functions

279

ExitName (const char *) - input
is the address of an ASCII exit handler name.

ModuleName (const char *) - input
is the address of an ASCII dynamic-link library name. ModuleName restricts the query to an
exit handler within the ModuleName library. When ModuleName is null, RexxDeregisterExit
searches the RexxRegisterExitExe exit handler list for a handler within the current process.
If RexxDeregisterExit does not find a RexxRegisterExitExe handler, it searches the
RexxRegisterExitDll exit handler list.

9.6.3.3.2. Return Codes

RXEXIT_OK 0 The system exit function executed successfully.

RXEXIT_NOTREG 30 Registration was unsuccessful due to duplicate
handler and DLL names (RexxRegisterExitExe
or RexxRegisterExitDll); the exit handler is not
registered (other Rexx exit handler functions).

RXEXIT_NOCANDROP 40 The exit handler has been registered as "not
droppable."

9.6.3.3.3. Remarks
The handler is removed from the exit handler list.

9.6.3.4. RexxQueryExit

RexxQueryExit queries an exit handler and retrieves saved user information.

retc = RexxQueryExit(ExitName, ModuleName, Flag, UserWord);

9.6.3.4.1. Parameters

ExitName (const char *) - input
is the address of an ASCII exit handler name.

ModuleName (const char *) - input
restricts the query to an exit handler within the ModuleName dynamic-link library. When
ModuleName is null, RexxQueryExit searches the RexxRegisterExitExe exit handler list for a
handler within the current process. If RexxQueryExit does not find a RexxRegisterExitExe handler,
it searches the RexxRegisterExitDll exit handler list.

Flag (unsigned short *) - output
is the ExitName exit handler registration status. When RexxQueryExit returns RXEXIT_OK, the
ExitName exit handler is currently registered. When RexxQueryExit returns RXEXIT_NOTREG,
the ExitName exit handler is not registered.

UserWord (char *) - output
is the address of an area to receive the user information saved with RexxRegisterExitExe or
RexxRegisterExitDll. The referenced area must be large enough to store two pointer values.
UserWord can be null if the saved user information is not required.



Chapter 9. Classic Rexx Application Programming Interfaces

280

9.6.3.4.2. Return Codes

RXEXIT_OK 0 The system exit function executed successfully.

RXEXIT_NOTREG 30 Registration was unsuccessful due to duplicate
handler and DLL names (RexxRegisterExitExe
or RexxRegisterExitDll); the exit handler is not
registered (other Rexx exit handler functions).

9.6.3.4.3. Example

Example 9.30. Command handler

int REXXENTRY Edit_IO_Exit(
  int       Code,       /* Major exit code                          */
  int       SubCode     /* Minor exit code                          */
  PEXIT     Parms)      /* Exit-specific parameters                 */
{
  char            *user_info[2];       /* saved user information     */
  char            *global_workarea;    /* application data anchor    */
  unsigned short   query_flag;         /* flag for handler query     */

  rc = RexxQueryExit("IO_Exit",        /* retrieve application work  */
      NULL,                            /* area anchor from Rexx.     */
      &query_flag,
      user_info);

  global_workarea = user_info[0];      /* set the global anchor      */
...
}

9.7. Variable Pool Interface

Application programs can use the Rexx Variable Pool Interface to manipulate the variables of a
currently active Rexx procedure.

9.7.1. Interface Types
Three of the Variable Pool Interface functions (set, fetch, and drop) have dual interfaces.

9.7.1.1. Symbolic Interface

The symbolic interface uses normal Rexx variable rules when interpreting variables. Variable names
are valid Rexx symbols (in mixed case if desired) including compound symbols. Compound symbols
are referenced with tail substitution. The functions that use the symbolic interface are RXSHV_SYSET,
RXSHV_SYFET, and RXSHV_SYDRO.

9.7.1.2. Direct Interface



RexxVariablePool Restrictions

281

The direct interface uses no substitution or case translation. Simple symbols must be valid Rexx
variable names. A valid Rexx variable name:

• Does not begin with a digit or period.

• Contains only uppercase A to Z, the digits 0 - 9, or the characters _, ! or ? before the first period of
the name.

• Can contain any characters after the first period of the name.

Compound variables are specified using the derived name of the variable. Any characters (including
blanks) can appear after the first period of the name. No additional variable substitution is used.
RXSHV_SET, RXSHV_FETCH, and RXSHV_DROP use the direct interface.

9.7.2. RexxVariablePool Restrictions

The RexxVariablePool interface is only available from subcommand handlers, external functions, and
exit handlers. The interface will access the variable context that initiated the call to the handler code
and is only available if made from the same thread.

9.7.3. RexxVariablePool Interface Function
Rexx procedure variables are accessed using the RexxVariablePool function.

9.7.3.1. RexxVariablePool

RexxVariablePool accesses variables of a currently active Rexx procedure.

retc = RexxVariablePool(RequestBlockList);

9.7.3.1.1. Parameters

RequestBlockList (PSHVBLOCK) - input 
is a linked list of shared variable request blocks (SHVBLOCK). Each block is a separate variable
access request.

The SHVBLOCK has the following form:

Example 9.31. SHVBLOCK

typedef struct shvnode {
    struct shvnode    *shvnext;
    CONSTRXSTRING      shvname;
    RXSTRING           shvvalue;
    size_t             shvnamelen;
    size_t             shvvaluelen;
    unsigned char      shvcode;
    unsigned char      shvret;
}   SHVBLOCK;



Chapter 9. Classic Rexx Application Programming Interfaces

282

where:

shvnext
is the address of the next SHVBLOCK in the request list. shvnext is null for the last request block.

shvname 
is an RXSTRING containing a Rexx variable name. shvname usage varies with the SHVBLOCK
request code:

RXSHV_SET , RXSHV_SYSET, RXSHV_FETCH, RXSHV_SYFET, RXSHV_DROPV, 
RXSHV_SYDRO, RXSHV_PRIV

shvname is an RXSTRING pointing to the name of the Rexx variable that the shared variable
request block accesses.

RXSHV_NEXTV
shvname is an RXSTRING defining an area of storage to receive the name of the next
variable. shvnamelen is the length of the RXSTRING area. If the variable name is longer than
the shvnamelen characters, the name is truncated and the RXSHV_TRUNC bit of shvret
is set. On return, shvname.strlength contains the length of the variable name; shvnamelen
remains unchanged.

If shvname is an empty RXSTRING (strptr is null), the Rexx interpreter allocates and
returns an RXSTRING to hold the variable name. If the Rexx interpreter allocates the
RXSTRING, an RXSHV_TRUNC condition cannot occur. However, RXSHV_MEMFL errors
are possible for these operations. If an RXSHV_MEMFL condition occurs, memory is not
allocated for that request block. The RexxVariablePool caller must release the storage with
RexxFreeMemory(ptr).

Note

The RexxVariablePool does not add a terminating null character to the variable name.

shvvalue 
An RXSTRING containing a Rexx variable value. The meaning of shvvalue varies with the
SHVBLOCK request code:

RXSHV_SET  , RXSHV_SYSET
shvvalue is the value assigned to the Rexx variable in shvname. shvvaluelen contains the
length of the variable value.

RXSHV_FETCH, RXSHV_SYFET  , RXSHV_PRIV  ,RXSHV_NEXT 
shvvalue is a buffer that is used by the Rexx interpreter to return the value of the Rexx
variable shvname. shvvaluelen contains the length of the value buffer. On return,
shvvalue.strlength is set to the length of the returned value but shvvaluelen remains
unchanged. If the variable value is longer than the shvvaluelen characters, the value is
truncated and the RXSHV_TRUNC bit of shvret is set. On return, shvvalue.strlength is set to
the length of the returned value; shvvaluelen remains unchanged.

If shvvalue is an empty RXSTRING (strptr is null), the Rexx interpreter allocates and
returns an RXSTRING to hold the variable value. If the Rexx interpreter allocates the
RXSTRING, an RXSHV_TRUNC condition cannot occur. However, RXSHV_MEMFL errors
are possible for these operations. If an RXSHV_MEMFL condition occurs, memory is not



RexxVariablePool Interface Function

283

allocated for that request block. The RexxVariablePool caller must release the storage with
RexxFreeMemory(ptr).

Note

The RexxVariablePool does not add a terminating null character to the variable value.

RXSHV_DROPV  , RXSHV_SYDRO
shvvalue is not used.

shvcode 
The shared variable block request code. Valid request codes are:

RXSHV_SET, RXSHV_SYSET
Assign a new value to a Rexx procedure variable.

RXSHV_FETCH, RXSHV_SYFET
Retrieve the value of a Rexx procedure variable.

RXSHV_DROPV, RXSHV_SYDRO
Drop (unassign) a Rexx procedure variable.

RXSHV_PRIV
Fetch the private information of the Rexx procedure. The following information items can be
retrieved by name:

PARM
The number of arguments supplied to the Rexx procedure. The number is formatted as a
character string.

PARM.n
The nth argument string to the Rexx procedure. If the nth argument was not supplied to
the procedure (either omitted or fewer than n parameters were specified), a null string is
returned.

QUENAME
The current Rexx data queue name.

SOURCE
The Rexx procedure source string used for the PARSE SOURCE instruction.

VERSION
The Rexx interpreter version string used for the PARSE SOURCE instruction.

RXSHV_NEXTV
Fetch the next variable, excluding variables hidden by PROCEDURE instructions. The
variables are not returned in any specified order.

The Rexx interpreter maintains an internal pointer to its list of variables. The variable pointer is
reset to the first Rexx variable whenever:

• An external program returns control to the interpreter



Chapter 9. Classic Rexx Application Programming Interfaces

284

• A set, fetch, or drop RexxVariablePool function is used

RXSHV_NEXTV returns both the name and the value of Rexx variables until the end of the
variable list is reached. If no Rexx variables are left to return, RexxVariablePool sets the
RXSHV_LVAR bit in shvret.

shvret 
The individual shared variable request return code. shvret is a 1-byte field of status flags for the
individual shared variable request. The shvret fields for all request blocks in the list are ORed
together to form the RexxVariablePool return code. The individual status conditions are:

RXSHV_OK
The request was processed without error (all flag bits are FALSE).

RXSHV_NEWV
The named variable was uninitialized at the time of the call.

RXSHV_LVAR
No more variables are available for an RXSHV_NEXTV operation.

RXSHV_TRUNC
A variable value or variable name was truncated because the supplied RXSTRING was too
small for the copied value.

RXSHV_BADN
The variable name specified in shvname was invalid for the requested operation.

RXSHV_MEMFL
The Rexx interpreter was unable to obtain the storage required to complete the request.

RXSHV_BADF
The shared variable request block contains an invalid function code.

The Rexx interpreter processes each request block in the order provided. RexxVariablePool returns
to the caller after the last block is processed or a severe error occurred (such as an out-of-memory
condition).

The RexxVariablePool function return code is a composite return code for the entire set of shared
variable requests. The return codes for all of the individual requests are ORed together to form the
composite return code. Individual shared variable request return codes are returned in the shared
variable request blocks.

9.7.3.1.2. RexxVariablePool Return Codes
0 to 127

RexxVariablePool has processed the entire shared variable request block list.

The RexxVariablePool function return code is a composite return code for the entire set of shared
variable requests. The low-order 6 bits of the shvret fields for all request blocks are ORed together
to form the composite return code. Individual shared variable request status flags are returned in
the shared variable request block shvret field.

RXSHV_NOAVL
The variable pool interface was not enabled when the call was issued.



Dynamically Allocating and De-allocating Memory

285

9.7.3.1.3. Example

Example 9.32. RexxVariablePool

/*********************************************************************/
/*                                                                   */
/* SetRexxVariable - Set the value of a Rexx variable                */
/*                                                                   */
/*********************************************************************/

int SetRexxVariable(
  const char *name,                    /* Rexx variable to set       */
  char       *value)                   /* value to assign            */
{
  SHVBLOCK   block;                    /* variable pool control block*/

  block.shvcode = RXSHV_SYSET;         /* do a symbolic set operation*/
  block.shvret=(UCHAR)0;               /* clear return code field    */
  block.shvnext=(PSHVBLOCK)0;          /* no next block              */
                                       /* set variable name string   */
  MAKERXSTRING(block.shvname, name, strlen(name));
                                       /* set value string           */
  MAKERXSTRING(block.shvvalue, value, strlen(value));
  block.shvvaluelen=strlen(value);     /* set value length           */
  return RexxVariablePool(&block);     /* set the variable           */
}

9.8. Dynamically Allocating and De-allocating Memory

For several functions of the Rexx-API it is necessary or possible to dynamically allocate or free
memory. Depending on the operating system, compiler and REXX interpreter, the method for these
allocations and de- allocations vary. To write system independent code, Object REXX comes with two
API function calls called RexxAllocateMemory() and RexxFreeMemory(). These functions are wrapper
for the corresponding compiler or operating system memory functions.

9.8.1. The RexxAllocateMemory() Function

void * REXXENTRY RexxAllocateMemory( size_t size );

where:
size

is the number of bytes of requested memory.

Return Codes

Returns a pointer to the newly allocated block of memory, or NULL if no memory could be allocated.



Chapter 9. Classic Rexx Application Programming Interfaces

286

9.8.2. The RexxFreeMemory() Function

RexxReturnCode REXXENTRY RexxFreeMemory( void *MemoryBlock );

where:
MemoryBlock

is a void pointer to the block of memory allocated by the Object REXX interpreter, or allocated by a
previous call to RexxAllocateMemory().

Return Codes

RexxFreeMemory() always returns 0.

9.9. Queue Interface

Application programs can use the Rexx Queue Interface to establish and manipulate named
queues. Named queues prevent different Rexx programs that are running in a single session from
interfering with each other. Named queues also allow Rexx programs running in different sessions to
synchronize execution and pass data. These queuing services are entirely separate from the Windows
InterProcess Communications queues.

9.9.1. Queue Interface Functions
The following sections explain the functions for creating and using named queues.

9.9.1.1. RexxCreateQueue

RexxCreateQueue creates a new (empty) queue.

retc = RexxCreateQueue(Buffer, BuffLen, RequestedName, DupFlag);

9.9.1.1.1. Parameters

Buffer (char *) - input
is the address of the buffer where the ASCII name of the created queue is returned.

BuffLen (size_t) - input
is the size of the buffer.

RequestedName (const char *) - input
is the address of an ASCII queue name. If no queue of that name exists, a queue is created
with the requested name. If the name already exists, a queue is created, but Rexx assigns an
arbitrary name to it. In addition, the DupFlag is set. The maximum length for a queue name is
1024 characters.

When RequestedName is null, Rexx provides a name for the created queue.

In all cases, the actual queue name is passed back to the caller.



Queue Interface Functions

287

DupFlag (size_t *) - output
is the duplicate name indicator. This flag is set when the requested name already exists.

9.9.1.1.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_STORAGE 1 The name buffer is not large enough for the
queue name.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.

9.9.1.1.3. Remarks
Queue names must conform to the same syntax rules as Rexx variable names. Lowercase characters
in queue names are translated to uppercase.

9.9.1.2. RexxOpenQueue

RexxOpenQueue creates a new (empty) queue if a queue by the given name does not already exist.
In contrast to RexxCreateQueue, RexxOpenQueue will not create a differently named queue if the
indicated queue name already exists.

retc = RexxOpenQueue(RequestedName, CreatedFlag);

9.9.1.2.1. Parameters

RequestedName (const char *) - input
is the address of an ASCII queue name. If no queue of that name exists, a queue is created with
the requested name. and the CreatedFlag will be set to TRUE. If the name already exists, this will
just return a successful return code. The maximum length for a queue name is 1024 characters.

CreateFlag (size_t *) - output
indicates whether RexxOpenQueue created the indicated queue. If zero on return, then the named
queue already existed.

9.9.1.2.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_STORAGE 1 The name buffer is not large enough for the
queue name.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.

9.9.1.2.3. Remarks
Queue names must conform to the same syntax rules as Rexx variable names. Lowercase characters
in queue names are translated to uppercase.



Chapter 9. Classic Rexx Application Programming Interfaces

288

9.9.1.3. RexxDeleteQueue

RexxDeleteQueue deletes a queue.

retc = RexxDeleteQueue(QueueName);

9.9.1.3.1. Parameters

QueueName (const char *) - input
is the address of the ASCII name of the queue to be deleted.

9.9.1.3.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.

RXQUEUE_NOTREG 9 The queue does not exist.

RXQUEUE_ACCESS 10 The queue cannot be deleted because it is busy.

9.9.1.3.3. Remarks
If a queue is busy (for example, wait is active), it is not deleted.

9.9.1.4. RexxQueueExists

RexxQueueExists tests if name queue exists.

retc = RexxQueueExists(QueueName);

9.9.1.4.1. Parameters

QueueName (const char *) - input
is the address of the ASCII name of the queue to be queried.

9.9.1.4.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.

RXQUEUE_NOTREG 9 The queue does not exist.

9.9.1.5. RexxQueryQueue



Queue Interface Functions

289

RexxQueryQueue returns the number of entries remaining in the named queue.

retc = RexxQueryQueue(QueueName, Count);

9.9.1.5.1. Parameters

QueueName (const char *) - input
is the address of the ASCII name of the queue to be queried.

Count (size_t *) - output
is the number of entries in the queue.

9.9.1.5.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.

RXQUEUE_NOTREG 9 The queue does not exist.

9.9.1.6. RexxAddQueue

RexxAddQueue adds an entry to a queue.

retc = RexxAddQueue(QueueName, EntryData, AddFlag);

9.9.1.6.1. Parameters

QueueName (const char *) - input
is the address of the ASCII name of the queue to which data is to be added.

EntryData (PCONSTRXSTRING) - input
is the address of a CONSTRXSTRING containing the data to be added to the queue.

AddFlag (size_t) - input
is the LIFO/FIFO flag. When AddFlag is RXQUEUE_LIFO, data is added LIFO (Last In, First Out) to
the queue. When AddFlag is RXQUEUE_FIFO, data is added FIFO (First In, First Out).

9.9.1.6.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.

RXQUEUE_PRIORITY 6 The order flag is not equal to RXQUEUE_LIFO
or RXQUEUE_FIFO.



Chapter 9. Classic Rexx Application Programming Interfaces

290

RXQUEUE_NOTREG 9 The queue does not exist.

RXQUEUE_MEMFAIL 12 There is insufficient memory available to
complete the request.

9.9.1.7. RexxPullFromQueue

RexxPullFromQueue removes the top entry from the queue and returns it to the caller.

retc = RexxPullFromQueue(QueueName, DataBuf, DateTime, WaitFlag);

9.9.1.7.1. Parameters

QueueName (const char *) - input
is the address of the ASCII name of the queue from which data is to be pulled.

DataBuf (PRXSTRING) - output
is the address of an RXSTRING for the returned value.

DateTime (REXXDATETIME *) - output
is the address of the entry's date and time stamp. If the date and time stamp is not needed,
DateTime may be NULL.

WaitFlag (size_t) - input
is the wait flag. When WaitFlag is RXQUEUE_NOWAIT and the queue is empty, RXQUEUE_EMPTY
is returned. Otherwise, when WaitFlag is RXQUEUE_WAIT, Rexx waits until a queue entry is
available and returns that entry to the caller.

9.9.1.7.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.

RXQUEUE_BADWAITFLAG 7 The wait flag is not equal to RXQUEUE_WAIT or
RXQUEUE_NOWAIT.

RXQUEUE_EMPTY 8 Attempted to pull the item off the queue but it
was empty.

RXQUEUE_NOTREG 9 The queue does not exist.

RXQUEUE_MEMFAIL 12 There is insufficient memory available to
complete the request.

9.9.1.8. RexxClearQueue

RexxClearQueue clears all entries from a named queue.

retc = RexxClearQueue(QueueName);



Queue Interface Functions

291

9.9.1.8.1. Parameters

QueueName (const char *) - input
is the address of the ASCII name of the queue to be cleared.

9.9.1.8.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.

RXQUEUE_NOTREG 9 The queue does not exist.

9.9.1.9. RexxPullQueue (Deprecated)

RexxPullQueue removes the top entry from the queue and returns it to the caller. RexxPullQueue
is deprecated in favor of its more portable replacement RexxPullFromQueue (Section 9.9.1.7,
“RexxPullFromQueue”).

retc = RexxPullQueue(QueueName, DataBuf, DateTime, WaitFlag);

9.9.1.9.1. Parameters

QueueName (const char *) - input
is the address of the ASCII name of the queue from which data is to be pulled.

DataBuf (PRXSTRING) - output
is the address of an RXSTRING for the returned value.

DateTime (PDATETIME) - output
is the address of the entry's date and time stamp.

WaitFlag (size_t) - input
is the wait flag. When WaitFlag is RXQUEUE_NOWAIT and the queue is empty, RXQUEUE_EMPTY
is returned. Otherwise, when WaitFlag is RXQUEUE_WAIT, Rexx waits until a queue entry is
available and returns that entry to the caller.

9.9.1.9.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.

RXQUEUE_BADWAITFLAG 7 The wait flag is not equal to RXQUEUE_WAIT or
RXQUEUE_NOWAIT.

RXQUEUE_EMPTY 8 Attempted to pull the item off the queue but it
was empty.

RXQUEUE_NOTREG 9 The queue does not exist.



Chapter 9. Classic Rexx Application Programming Interfaces

292

RXQUEUE_MEMFAIL 12 There is insufficient memory available to
complete the request.

9.9.1.9.3. Remarks
The caller is responsible for freeing the returned memory that DataBuf points to.

9.10. Halt and Trace Interface

The halt and trace functions raise a Rexx HALT condition or change the Rexx interactive debug mode
while a Rexx procedure is running. You might prefer these interfaces to the RXHLT and RXTRC
system exits. The system exits require an additional call to an exit routine after each Rexx instruction
completes, possibly causing a noticeable performance degradation. The Halt and Trace functions,
on the contrary, are a single request to change the halt or trace state and do not degrade the Rexx
procedure performance.

9.10.1. Halt and Trace Interface Functions
The Halt and Trace functions are:

9.10.1.1. RexxSetHalt

RexxSetHalt raises a HALT condition in a running Rexx program.

retc = RexxSetHalt(ProcessId, ThreadId);

9.10.1.1.1. Parameters

ProcessId (process_id_t) - input
is the process ID of the target Rexx procedure. ProcessId is the application process that called the
RexxStart function.

ThreadId (thread_id_t) - input
is the thread  ID of the target Rexx procedure. ThreadId is the application thread that called the
RexxStart function. If ThreadId=0, all the threads of the process are canceled.

9.10.1.1.2. Return Codes

RXARI_OK 0 The function completed successfully.

RXARI_NOT_FOUND 1 The target Rexx procedure was not found.

RXARI_PROCESSING_ERROR 2 A failure in Rexx processing occurred.

9.10.1.1.3. Remarks
This call is not processed if the target Rexx program is running with the RXHLT exit enabled.

9.10.1.2. RexxSetTrace



Halt and Trace Interface Functions

293

RexxSetTrace turns on the interactive debug mode for a Rexx procedure.

retc = RexxSetTrace(ProcessId, ThreadId);

9.10.1.2.1. Parameters

ProcessId (process_id_t) - input
is the process ID of the target Rexx procedure. ProcessId is the application process that called the
RexxStart function.

ThreadId (thread_id_t) - input
is the thread  ID of the target Rexx procedure. ThreadId is the application thread that called the
RexxStart function. If ThreadId=0, all the threads of the process are traced.

9.10.1.2.2. Return Codes

RXARI_OK 0 The function completed successfully.

RXARI_NOT_FOUND 1 The target Rexx procedure was not found.

RXARI_PROCESSING_ERROR 2 A failure in Rexx processing occurred.

9.10.1.2.3. Remarks
A RexxSetTrace call is not processed if the Rexx procedure is using the RXTRC exit.

9.10.1.3. RexxResetTrace

RexxResetTrace turns off the interactive debug mode for a Rexx procedure.

retc = RexxResetTrace(ProcessId,ThreadId);

9.10.1.3.1. Parameters

ProcessId (process_id_t) - input
is the process ID of the target Rexx procedure. ProcessId is the application process that called the
RexxStart function.

ThreadId (thread_id_t) - input
is the thread ID of the target Rexx procedure. ThreadId is the application thread that called the
RexxStart function. If ThreadId=0, the trace of all threads of the process is reset.

9.10.1.3.2. Return Codes

RXARI_OK 0 The function completed successfully.

RXARI_NOT_FOUND 1 The target Rexx procedure was not found.

RXARI_PROCESSING_ERROR 2 A failure in Rexx processing occurred.



Chapter 9. Classic Rexx Application Programming Interfaces

294

9.10.1.3.3. Remarks

• A RexxResetTrace call is not processed if the Rexx procedure uses the RXTRC exit.

• Interactive debugging is not turned off unless the interactive debug mode was originally started with
RexxSetTrace.

9.11. Macrospace Interface

The macrospace can improve the performance of Rexx procedures by maintaining Rexx procedure
images in memory for immediate load and execution. This is useful for frequently-used procedures
and functions such as editor macros.

Programs registered in the Rexx macrospace are available to all processes. You can run them by
using the RexxStart function or calling them as functions or subroutines from other Rexx procedures.

Procedures in the macrospace are called in the same way as other Rexx external functions. However,
the macrospace Rexx procedures can be placed at the front or at the very end of the external function
search order.

Procedures in the macrospace are stored without source code information and therefore cannot be
traced.

Rexx procedures in the macrospace can be saved to a disk file. A saved macrospace file can be
reloaded with a single call to RexxLoadMacroSpace. An application, such as an editor, can create
its own library of frequently-used functions and load the entire library into memory for fast access.
Several macrospace libraries can be created and loaded.

Note

The TRACE keyword instruction cannot be used in the Rexx macrospace. Since macrospace
uses the tokenized format, it is not possible to get the source code from macrospace to trace a
function.

9.11.1. Search Order
When RexxAddMacro loads a Rexx procedure into the macrospace, the position in the external
function search order is specified. Possible values are:

RXMACRO_SEARCH_BEFORE
The Rexx interpreter locates a function registered with RXMACRO_SEARCH_BEFORE before
any registered functions or external Rexx files.

RXMACRO_SEARCH_AFTER
The Rexx interpreter locates a function registered with RXMACRO_SEARCH_AFTER after any
registered functions or external Rexx files.

9.11.2. Storage of Macrospace Libraries
The Rexx macrospace is stored in separate process using a daemon process. Macrospace routines
are retrieved using interprocess call (IPC) mechanisms. A package file that is loaded in the local
process might be preferable to loading routines in the macrospace.



Macrospace Interface Functions

295

9.11.3. Macrospace Interface Functions
The functions to manipulate macrospaces are:

9.11.3.1. RexxAddMacro

RexxAddMacro loads a Rexx procedure into the macrospace.

retc = RexxAddMacro(FuncName, SourceFile, Position);

9.11.3.1.1. Parameters

FuncName (const char *) - input
is the address of the ASCII function name. Rexx procedures in the macrospace are called using
the assigned function name.

SourceFile (const char *) - input
is the address of the ASCII file specification for the Rexx procedure source file. When a file
extension is not supplied, .CMD is used. When the full path is not specified, the current directory
and path are searched.

Position (size_t) - input
is the position in the Rexx external function search order. Possible values are:
RXMACRO_SEARCH_BEFORE

The Rexx interpreter locates the function before any registered functions or external Rexx
files.

RXMACRO_SEARCH_AFTER
The Rexx interpreter locates the function after any registered functions or external Rexx files.

9.11.3.1.2. Return Codes

RXMACRO_OK 0 The call to the function completed
successfully.

RXMACRO_NO_STORAGE 1 There was not enough memory to
complete the requested function.

RXMACRO_SOURCE_NOT_FOUND 7 The requested file was not found.

RXMACRO_INVALID_POSITION 8 An invalid search-order position
request flag was used.

9.11.3.2. RexxDropMacro

RexxDropMacro removes a Rexx procedure from the macrospace.

retc = RexxDropMacro(FuncName);



Chapter 9. Classic Rexx Application Programming Interfaces

296

9.11.3.2.1. Parameter

FuncName (const char *) - input
is the address of the ASCII function name.

9.11.3.2.2. Return Codes

RXMACRO_OK 0 The call to the function completed successfully.

RXMACRO_NOT_FOUND 2 The requested function was not found in the
macrospace.

9.11.3.3. RexxClearMacroSpace

RexxClearMacroSpace removes all loaded Rexx procedures from the macrospace.

retc = RexxClearMacroSpace();

9.11.3.3.1. Return Codes

RXMACRO_OK 0 The call to the function completed successfully.

RXMACRO_NOT_FOUND 2 The requested function was not found in the
macrospace.

9.11.3.3.2. Remarks
RexxClearMacroSpace must be used with care. This function removes all functions from the
macrospace, including functions loaded by other processes.

9.11.3.4. RexxSaveMacroSpace

RexxSaveMacroSpace saves all or part of the macrospace Rexx procedures to a disk file.

retc = RexxSaveMacroSpace(FuncCount, FuncNames, MacroLibFile);

9.11.3.4.1. Parameters

FuncCount (size_t) - input
Number of Rexx procedures to be saved.

FuncNames (const char **) - input
is the address of a list of ASCII function names. FuncCount gives the size of the function list.

MacroLibFile (const char *) - input
is the address of the ASCII macrospace file name. If MacroLibFile already exists, it is replaced
with the new file.



Macrospace Interface Functions

297

9.11.3.4.2. Return Codes

RXMACRO_OK 0 The call to the function completed
successfully.

RXMACRO_NOT_FOUND 2 The requested function was not found
in the macrospace.

RXMACRO_EXTENSION_REQUIRED 3 An extension is required for the
macrospace file name.

RXMACRO_FILE_ERROR 5 An error occurred accessing a
macrospace file.

9.11.3.4.3. Remarks
When FuncCount is 0 or FuncNames is null, RexxSaveMacroSpace saves all functions in the
macrospace.

Saved macrospace files can be used only with the same interpreter version that created the images. If
RexxLoadMacroSpace is called to load a saved macrospace and the release level or service level is
incorrect, RexxLoadMacroSpace fails. The Rexx procedures must then be reloaded individually from
the original source programs.

9.11.3.5. RexxLoadMacroSpace

RexxLoadMacroSpace loads all or part of the Rexx procedures from a saved macrospace file.

retc = RexxLoadMacroSpace(FuncCount, FuncNames, MacroLibFile);

9.11.3.5.1. Parameters

FuncCount (size_t) - input
is the number of Rexx procedures to load from the saved macrospace.

FuncNames (const char **) - input
is the address of a list of Rexx function names. FuncCount gives the size of the function list.

MacroLibFile (const char *) - input
is the address of the saved macrospace file name.

9.11.3.5.2. Return Codes

RXMACRO_OK 0 The call to the function completed
successfully.

RXMACRO_NO_STORAGE 1 There was not enough memory to
complete the requested function.

RXMACRO_NOT_FOUND 2 The requested function was not found
in the macrospace.

RXMACRO_ALREADY_EXISTS 4 Duplicate functions cannot be loaded
from a macrospace file.



Chapter 9. Classic Rexx Application Programming Interfaces

298

RXMACRO_FILE_ERROR 5 An error occurred accessing a
macrospace file.

RXMACRO_SIGNATURE_ERROR 6 A macrospace save file does not
contain valid function images.

9.11.3.5.3. Remarks
When FuncCount is 0 or FuncNames is null, RexxLoadMacroSpace loads all Rexx procedures from
the saved file.

If a RexxLoadMacroSpace call replaces an existing macrospace Rexx procedure, the entire load
request is discarded and the macrospace remains unchanged.

9.11.3.6. RexxQueryMacro

RexxQueryMacro searches the macrospace for a specified function.

retc = RexxQueryMacro(FuncName, Position)

9.11.3.6.1. Parameters

FuncName (const char *) - input
is the address of an ASCII function name.

Position (unsigned short *) - output
is the address of an unsigned short integer flag. If the function is loaded in the macrospace,
Position is set to the search-order position of the current function.

9.11.3.6.2. Return Codes

RXMACRO_OK 0 The call to the function completed successfully.

RXMACRO_NOT_FOUND 2 The requested function was not found in the
macrospace.

9.11.3.7. RexxReorderMacro

RexxReorderMacro changes the search order position of a loaded macrospace function.

retc = RexxReorderMacro(FuncName, Position)

9.11.3.7.1. Parameters

FuncName (const char *) - input
is the address of an ASCII macrospace function name.

Position (ULONG) - input
is the new search-order position of the macrospace function. Possible values are:



Windows Scripting Host Interface

299

RXMACRO_SEARCH_BEFORE
The Rexx interpreter locates the function before any registered functions or external Rexx
files.

RXMACRO_SEARCH_AFTER
The Rexx interpreter locates the function after any registered functions or external Rexx files.

9.11.3.7.2. Return Codes

RXMACRO_OK 0 The call to the function completed
successfully.

RXMACRO_NOT_FOUND 2 The requested function was not found
in the macrospace.

RXMACRO_INVALID_POSITION 8 An invalid search-order position
request flag was used.

9.12. Windows Scripting Host Interface

The purpose of this section is to describe any behaviors specific to Object Rexx that the designer
of a Windows Scripting Host (WSH) should be aware of. It is assumed that the reader is already
familiar with how to do that, or has the appropriate documentation at hand. For further information, see
"Windows Scripting Host Engine", in Open Object Rexx: Reference.

9.12.1. Concurrency

Object Rexx is a multithreaded program. (See Concurrency, in Object Rexx for Windows: Reference.)
The closest Windows model is the free-threaded model for dealing with multiple threads. The WSH
controls are typically apartment-threaded. Therefore, since Object Rexx does not restrict its callers to
any particular thread, and it passes on any exterior calls in the thread context in which it was received,
then for all practical purposes it should be treated as an apartment-threaded program.

9.12.2. WSH Features

9.12.2.1. COM Interfaces

There are several interfaces that a WSH engine can use. Object Rexx does not support all of them;
some are supported, but created dynamically. Since the dynamically-supported interfaces will not
appear in an OLE viewer, they are listed here.

The following interfaces are fully supported:

• IUnknown

• IActiveScriptParse

• IActiveScriptError

• IActiveScriptParseProcedure

• IObjectSafety



Chapter 9. Classic Rexx Application Programming Interfaces

300

While Object Rexx has code for all of the methods of an interface that it supports, all methods may not
be implemented. The methods that are not implemented will return E_NOTIMPL.

The following interfaces are supported:

• IDispatch
• GetIDsOfNames

• Invoke

• IDispatchEx
• GetDispID - but does not support dynamic creation of properties or methods.

• InvokeEx - but does not support dynamic creation of properties or methods.

• GetMemberName

• GetNextDispID

• IActiveScript
• SetScriptSite

• GetScriptState

• SetScriptState

• Close

• AddNamedItem

• AddTypeLib

• GetScriptDispatch

9.12.2.2.  Script Debugging
Object Rexx does not support the WSH Script Debugging facilities. For the best techniques for
debugging an Object Rexx script, refer to the section on the Trace keyword in "Keyword Instructions",
in Open Object Rexx: Reference.

9.12.2.3. DCOM
Object Rexx does not support DCOM.



301

Appendix A. Distributing Programs
without Source
Open Object Rexx comes with a utility called RexxC. You can use this utility to produce versions of
your programs that do not include the original program source. You can use these programs to replace
any Rexx program file that includes the source, with the following restrictions:

1. The SOURCELINE built-in function returns 0 for the number of lines in the program and raises an
error for all attempts to retrieve a line.

2. A sourceless program may not be traced. The TRACE instruction runs without error, but no tracing
of instruction lines, expression results, or intermediate expression values occurs.

The syntax of the REXXC utility is:

>>-RexxC--inputfile--+------------+--+------+------------------><
                     +-outputfile-+  +- -s -+

If you specify the outputfile, the language processor processes the inputfile and writes the executable
version of the program to the outputfile. If the outputfile already exists, it is replaced.

If the language processor detects a syntax error while processing the program, it reports the error and
stops processing without creating a new output file. If you omit the outputfile, the language processor
performs a syntax check on the program without writing the executable version to a file.

You can use the s option (/s on Windows and -s on unixes) to suppress the display of the information
about the interpreter used.

Note

You can use the in-storage capabilities of the RexxStart programming interface to process the file
image of the output file.

Due to changes in the 4.0 interpreter it is not possible for Rexx programs, tokenized with any previous
version of ooRexx, to run under ooRexx 4.0.0. The programs will need to be re-tokenized with the
4.0.0 interpreter. The changes are such that the old tokenized form can not be changed to the new
form. Therefore, no utility such as the old RxMigrate can be provided. Part of the purpose of the
changes is to make this sitaution less likely to occur in the future.



302



303

Appendix B. Sample Rexx Programs
Rexx supplies the following sample programs as .REX files.

CCREPLY.REX
A concurrent programming example.

This program demonstrates how to use reply to run two methods at the same time.

COMPLEX.REX
A complex number class.

This program demonstrates how to create a complex number class using the ::CLASS
and ::METHOD directives. An example of subclassing the complex number class (the Vector
subclass) is also shown. Finally, the Stringlike class demonstrates the use of a mixin to provide to
the complex number class with some string behavior.

DESKICON.REX
A WindowsProgramManager class example.

This sample uses the method AddDesktopIcon of the WindowsProgramManager class to create a
shortcut to a program or an application on the Windows desktop.

DESKTOP.REX
This program demonstrates how you could use the WindowsProgramManager class to manipulate
program groups and program items.

DRIVES.REX
A sample use of the Sys... functions.

This program displays information about drives using the utility functions SysDriveMap,
SysDriveInfo, SysFileSystemType, and SysBootDrive.

EVENTLOG.REX
A sample use of the WindowsEventLog class.

This sample demonstrates how to read from and write to the Windows event log using the
methods of the WindowsEventLog class.

FACTOR.REX
A factorial program.

This program demonstrates a way to define a factorial class using the subclass method and
the .methods environment symbol.

GREPLY.REX
An example contrasting the GUARDED and UNGUARDED methods.

This program demonstrates the difference between GUARDED and UNGUARDED methods with
respect to their use of the object variable pool.

GUESS.REX
An animal guessing game.

This sample creates a simple node class and uses it to create a logic tree. The logic tree is filled in
by playing a simple guessing game.



Appendix B. Sample Rexx Programs

304

KTGUARD.REX
A GUARD instruction example.

This program demonstrates the use of the START method and the GUARD instruction to control
the running of several programs. In this sample, the programs are controlled by one "guarded"
variable.

MONTH.REX
An example that displays the days of the month January 1994.

This version demonstrates the use of arrays to replace stems.

OLE\APPS\SAMP01.REX
Starts Internet Explorer and shows the RexxLA homepage. After 10 seconds the RexxLA news
page is displayed.

OLE\APPS\SAMP02.REX
Shows some features of the Windows Scripting Host Shell Object:
• Query environment string

• List special folders

• Create a shortcut on the desktop

OLE\APPS\SAMP03.REX
Shows some features of the Windows Scripting Host Network object:
• Query computer name, user name

• List network connections for drives and printers

OLE\APPS\SAMP04.REX
Creates a mail message in Lotus Notes® and sends it to a number of recipients automatically.

OLE\APPS\SAMP05.REX
Creates a new document in WordPro 97, enters some text with different attributes, and finally
saves and prints the document.

OLE\APPS\SAMP06.REX
Creates a new document in WordPro 97 with a provided Smartmaster. Fills in some "Click here"
fields with data prompted by the program or queried from the system. Finally the document is
saved to the directory in which this Rexx program is located and is sent to the printer.

OLE\APPS\SAMP07.REX
Creates a new spreadsheet in Lotus 1-2-3® and fills in a table with fictional revenue numbers. The
table also contains a calculated field and different styles. A second sheet is added with a 3D chart
displaying the revenue data.

OLE\APPS\SAMP08.REX
Creates a Microsoft Word document, enters some text, and saves it. The program then loads the
document again and modifies it.

OLE\APPS\SAMP09.REX
Creates a Microsoft Excel sheet, enters some data, and saves it.



305

OLE\APPS\SAMP10.REX
Uses the Windows Script Host FileSystemObject to obtain information about the drives of the
system.

OLE\APPS\SAMP11.REX
Gets the stock price from the RexxLA internet page with Microsoft Internet Explorer, and stores it
in a Rexx variable.

OLE\APPS\SAMP12.REX
Demonstrates the use of events with Microsoft Internet Explorer:
• Navigate to the RexxLA homepage and disallow the changing of the URL to a page not in that

"address space".

OLE\APPS\SAMP13.REX
Demonstrates the use of events with Microsoft Internet Explorer:
• Search for the string "Rexx" on the RexxLA Web page, and go randomly to one of the found

sites.

OLE\OLEINFO\OLEINFO.REX
This application is a "small" browser for OLE objects.

OLE\ADSI\ADSI1.REX
Retrieves information about a computer with ADSI.

OLE\ADSI\ADSI2.REX
Gets a user's full name and changes it.

OLE\ADSI\ADSI3.REX
Shows the use of ADSI containers.

OLE\ADSI\ADSI4.REX
Shows the use of filters with ADSI collections.

OLE\ADSI\ADSI5.REX
Displays namespaces and domains.

OLE\ADSI\ADSI6.REX
Enables you to inspect the properties of an object.

OLE\ADSI\ADSI7.REX
Creates a group, and places several users in it.

OLE\ADSI\ADSI8.REX
Removes the users and the group that were created in sample ADSI7.REX.

OLE\METHINFO\MAIN.REX
This application demonstrates the use of the GetKnownMethods method.

OLE\WMI\ACCOUNTS.REX
This is a demo application for displaying all the accounts of the windows system with WMI. It also
shows how to display all the properties of a WMI object in general.

OLE\WMI\SERVICES.REX
This application demonstrates how to list, start, stop, pause, or resume windows services with
WMI.



Appendix B. Sample Rexx Programs

306

OLE\WMI\PROCESS.REX
This application displays by means of WMI the processes of a windows system that are running.

OLE\WMI\OSINFO.REX
This sample script uses a Windows Management Instrumentation (WMI) object
("Win32_OperatingSystem") to obtain information about the installed operating system(s).

OLE\WMI\SYSINFO\SYSINFO.REX
This is a demo application for inspecting some system properties using WMI.

PHILFORK.REX
Sample for concurrency with command line output.

PIPE.REX
A pipeline implementation.

This program demonstrates the use of the ::CLASS and ::METHOD directives to create a simple
implementation of a CMS-like pipeline function.

QDATE.REX
An example that types or pushes today's date and moon phase, in English date format.

QTIME.REX
An example that lays or stacks time in English time format, and also chimes.

REGISTRY.REX
This program demonstrates how you could use the WindowsRegistry class to work with the
Windows registry.

SEMCLS.REX
An Object Rexx semaphore class.

This file implements a semaphore class in Object Rexx.

STACK.REX
A stack class.

This program demonstrates how to implement a stack class using the ::CLASS and ::METHOD
directives. Also included is a short example of the use of a stack.

USECOMP.REX
A simple demonstration of the complex number class.

This program demonstrates the use of the ::REQUIRES directive, using the complex number class
included in the samples.

USEPIPE.REX
Sample uses of the pipe implementation in PIPE.REX.

This program demonstrates how you could use the pipes implemented in the pipe sample.



307

Appendix C. Notices
Any reference to a non-open source product, program, or service is not intended to state or imply that
only non-open source product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any Rexx Language Association (RexxLA) intellectual
property right may be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-open source product, program, or service.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

Information concerning non-open source products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. RexxLA has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims related to
non-RexxLA packages. Questions on the capabilities of non-RexxLA packages should be addressed
to the suppliers of those products.

All statements regarding RexxLA's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to the names and addresses used by
an actual business enterprise is entirely coincidental.

C.1. Trademarks
Open Object Rexx™ and ooRexx™ are trademarks of the Rexx Language Association.

The following terms are trademarks of the IBM Corporation in the United States, other countries, or
both:

1-2-3
AIX
IBM
Lotus
OS/2
S/390
VisualAge

AMD is a trademark of Advance Micro Devices, Inc.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the Unites States,
other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.



Appendix C. Notices

308

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

C.2. Source Code For This Document
The source code for this document is available under the terms of the Common Public License v1.0
which accompanies this distribution and is available in the appendix Appendix D, Common Public
License Version 1.0. The source code itself is available at http://sourceforge.net/project/
showfiles.php?group_id=119701.

The source code for this document is maintained in DocBook SGML/XML format.



309

Appendix D. Common Public License
Version 1.0
THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

D.1. Definitions
"Contribution" means:

1. in the case of the initial Contributor, the initial code and documentation distributed under this
Agreement, and

2. in the case of each subsequent Contributor:
a. changes to the Program, and

b. additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by that
particular Contributor. A Contribution 'originates' from a Contributor if it was added to the Program
by such Contributor itself or anyone acting on such Contributor's behalf. Contributions do not include
additions to the Program which: (i) are separate modules of software distributed in conjunction with the
Program under their own license agreement, and (ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by
the use or sale of its Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement, including all Contributors.

D.2. Grant of Rights
1. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,

worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly
display, publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

2. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell,
import and otherwise transfer the Contribution of such Contributor, if any, in source code and
object code form. This patent license shall apply to the combination of the Contribution and
the Program if, at the time the Contribution is added by the Contributor, such addition of the
Contribution causes such combination to be covered by the Licensed Patents. The patent license
shall not apply to any other combinations which include the Contribution. No hardware per se is
licensed hereunder.

3. Recipient understands that although each Contributor grants the licenses to its Contributions
set forth herein, no assurances are provided by any Contributor that the Program does not
infringe the patent or other intellectual property rights of any other entity. Each Contributor
disclaims any liability to Recipient for claims brought by any other entity based on infringement



Appendix D. Common Public License Version 1.0

310

of intellectual property rights or otherwise. As a condition to exercising the rights and licenses
granted hereunder, each Recipient hereby assumes sole responsibility to secure any other
intellectual property rights needed, if any. For example, if a third party patent license is required
to allow Recipient to distribute the Program, it is Recipient's responsibility to acquire that license
before distributing the Program.

4. Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

D.3. Requirements
A Contributor may choose to distribute the Program in object code form under its own license
agreement, provided that:

1. it complies with the terms and conditions of this Agreement; and

2. its license agreement:

a. effectively disclaims on behalf of all Contributors all warranties and conditions, express and
implied, including warranties or conditions of title and non-infringement, and implied warranties
or conditions of merchantability and fitness for a particular purpose;

b. effectively excludes on behalf of all Contributors all liability for damages, including direct,
indirect, special, incidental and consequential damages, such as lost profits;

c. states that any provisions which differ from this Agreement are offered by that Contributor
alone and not by any other party; and

d. states that source code for the Program is available from such Contributor, and informs
licensees how to obtain it in a reasonable manner on or through a medium customarily used
for software exchange.

When the Program is made available in source code form:

1. it must be made available under this Agreement; and

2. a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that
reasonably allows subsequent Recipients to identify the originator of the Contribution.

D.4. Commercial Distribution
Commercial distributors of software may accept certain responsibilities with respect to end users,
business partners and the like. While this license is intended to facilitate the commercial use of the
Program, the Contributor who includes the Program in a commercial product offering should do so
in a manner which does not create potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor ("Commercial Contributor")
hereby agrees to defend and indemnify every other Contributor ("Indemnified Contributor") against
any losses, damages and costs (collectively "Losses") arising from claims, lawsuits and other legal
actions brought by a third party against the Indemnified Contributor to the extent caused by the acts
or omissions of such Commercial Contributor in connection with its distribution of the Program in
a commercial product offering. The obligations in this section do not apply to any claims or Losses
relating to any actual or alleged intellectual property infringement. In order to qualify, an Indemnified



No Warranty

311

Contributor must: a) promptly notify the Commercial Contributor in writing of such claim, and b) allow
the Commercial Contributor to control, and cooperate with the Commercial Contributor in, the defense
and any related settlement negotiations. The Indemnified Contributor may participate in any such
claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering, Product
X. That Contributor is then a Commercial Contributor. If that Commercial Contributor then makes
performance claims, or offers warranties related to Product X, those performance claims and
warranties are such Commercial Contributor's responsibility alone. Under this section, the Commercial
Contributor would have to defend claims against the other Contributors related to those performance
claims and warranties, and if a court requires any other Contributor to pay any damages as a result,
the Commercial Contributor must pay those damages.

D.5. No Warranty
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED ON
AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS
OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF
TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Each Recipient is solely responsible for determining the appropriateness of using and distributing the
Program and assumes all risks associated with its exercise of rights under this Agreement, including
but not limited to the risks and costs of program errors, compliance with applicable laws, damage to or
loss of data, programs or equipment, and unavailability or interruption of operations.

D.6. Disclaimer of Liability
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION
LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE
OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

D.7. General
If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this Agreement, and without further action
by the parties hereto, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to
software (including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by
that Contributor to such Recipient under this Agreement shall terminate as of the date such litigation
is filed. In addition, if Recipient institutes patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program with
other software or hardware) infringes such Recipient's patent(s), then such Recipient's rights granted
under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient's rights under this Agreement shall terminate if it fails to comply with any of the material
terms or conditions of this Agreement and does not cure such failure in a reasonable period of time
after becoming aware of such noncompliance. If all Recipient's rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as reasonably practicable.



Appendix D. Common Public License Version 1.0

312

However, Recipient's obligations under this Agreement and any licenses granted by Recipient relating
to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid
inconsistency the Agreement is copyrighted and may only be modified in the following manner.
The Agreement Steward reserves the right to publish new versions (including revisions) of this
Agreement from time to time. No one other than the Agreement Steward has the right to modify
this Agreement. IBM is the initial Agreement Steward. IBM may assign the responsibility to serve
as the Agreement Steward to a suitable separate entity. Each new version of the Agreement will
be given a distinguishing version number. The Program (including Contributions) may always be
distributed subject to the version of the Agreement under which it was received. In addition, after a
new version of the Agreement is published, Contributor may elect to distribute the Program (including
its Contributions) under the new version. Except as expressly stated in Sections 2(a) and 2(b) above,
Recipient receives no rights or licenses to the intellectual property of any Contributor under this
Agreement, whether expressly, by implication, estoppel or otherwise. All rights in the Program not
expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of
the United States of America. No party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives its rights to a jury trial in any
resulting litigation.



313

Appendix E. Revision History
Revision 0-0 Tue Aug 7 2012 David Ashley

Initial creation of book by publican



314



315

Index
Symbols
" (double quotation mark), 12
' (single quotation mark), 12
, (comma), 11
- (hyphen), 11
. (period), 12
.Nil object, 57
\ (backslash), 16
~ (tilde, or twiddle), 3, 25

A
abstract class, definition, 45
access to variables, prioritizing, 66
acquisition, 28
activities, 65
ADDRESS instruction, 69, 75
addressing environments by name, 75
apartment-threading and Windows Scripting Host,
299
application environments, 77
application programming interfaces

exit handler, 123, 264
exit interface, 123, 264

RexxDeregisterExit, 278
RexxQueryExit, 279
RexxRegisterExitDll, 276
RexxRegisterExitExe, 277

external function interface, 258
RexxDeregisterFunction, 263
RexxQueryFunction, 263
RexxRegisterFunctionDll, 261
RexxRegisterFunctionExe, 262

halt and trace interface, 292
RexxResetTrace, 293
RexxSetHalt, 292
RexxSetTrace, 292

handler definitions, 252
handler interface

subcommand handler, 252
invoking the Rexx interpreter, 247

RexxDidRexxTerminate, 251
RexxStart, 247
RexxWaitForTermination, 251

macrospace interface, 294
RexxAddMacro, 295
RexxClearMacroSpace, 296
RexxDropMacro, 295
RexxLoadMacroSpace, 297
RexxQueryMacro, 298
RexxReorderMacro, 298
RexxSaveMacroSpace, 296

queue interface, 286
RexxAddQueue, 289
RexxClearQueue, 290
RexxCreateQueue, 286
RexxDeleteQueue, 288
RexxOpenQueue, 287
RexxPullFromQueue, 290
RexxPullQueue, 291
RexxQueryExists, 288
RexxQueryQueue, 288

RexxCreateInterpreter, 97
RXSTRING data structure, 246

RXSTRING, 246
RXSYSEXIT, 249, 265
SHVBLOCK, 281

RXSYSEXIT data structure, 249
SHVBLOCK, 281
subcommand interface, 252

RexxDeregisterSubcom, 256
RexxQuerySubcom, 257
RexxRegisterSubcomDll, 254
RexxRegisterSubcomExe, 255

system memory interface, 285
RexxAllocateMemory, 285
RexxFreeMemory, 286

variable pool interface, 280
RexxVariablePool, 281

ARG instruction, 14
Array, 140
ArrayAppend, 140
ArrayAppendString, 141
ArrayAt, 142
ArrayDimension, 142
ARRAYIN method, using, 83
ArrayItems, 143
ArrayOfFour, 143
ArrayOfOne, 145
ArrayOfThree, 144
ArrayOfTwo, 144
ArrayPut, 145
arrays, reading streams into, 83
ArraySize, 146
assignments, 13
AttachThread, 147

B
backslash (\), 16
base class for mixins, 45
binary files

closing, 87
direct access, 87
querying existence, 90
querying other information, 90
reading, 86



Index

316

writing, 87
BufferData, 147
BufferLength, 148
BufferStringData, 148
BufferStringLength, 149
built-in objects, 56, 58

C
CALL instruction, 20, 77
calling the Rexx interpreter, 247
CallProgram, 149
CallRoutine, 150
changing the search order for methods, 62
CheckCondition, 151
checking for the existence of a file, 90
class

types
abstract, 45
metaclass, 45
mixin, 45
object, 45

class methods, 49
class scope, 59
classes, 2

Alarm class, 31, 32
Array class, 31, 32
Bag class, 31, 32
Buffer class, 31, 32
CaselessColumnComparator class, 31, 32
CaselessComparator class, 31, 32
CaselessDescendingComparator class, 31, 32
CircularQueue class, 31, 33
Class class, 31
Collection class, 31, 32
ColumnComparator class, 31, 34
Comparable class, 31, 34
Comparator class, 31, 34
creating with directives, 40
DateTime class, 31, 34
definition, 27
DescendingComparator class, 31, 34
Directory class, 31, 33
File class, 31, 34
IdentityTable class, 31, 33
InputOutputStream class, 31, 34
InputStream class, 31, 35
InvertingComparator class, 31, 35
List class, 31, 33
MapCollection class, 31
Message class, 31, 35
Method class, 31, 35
Monitor class, 31, 35
MutableBuffer class, 31, 35
NumericComparator class, 31, 35

Orderable class, 31, 36
OrderedCollection class, 31
OutputStream class, 31, 35
Package class, 31, 36
Pointer class, 31, 36
Properties class, 31, 33
provided by Rexx, 31, 39
Queue class, 31, 33
RegularExpression class, 31, 36
Relation class, 31, 33
RexxContext class, 31, 36
RexxQueue class, 31, 36
Routine class, 31, 36
Set class, 31, 33
SetCollection class, 31
StackFrame class, 36
Stem class, 31, 33, 36
Stream class, 31, 31, 37
StreamSupplier class, 31, 37
String class, 31, 37
subclasses, 29
superclasses, 29
Supplier class, 31, 37
Table class, 31, 34
TimeSpan class, 31, 37
WeakReference class, 31, 38

clauses
and instructions, 10
definition, 10
separating, 11
spanning more than one line, 11
using object in, 49

ClearCondition, 151
closing files, 87
COM interfaces for Windows Scripting Host, 299
comma (,), 11
commands, 69
Common Public License, 309
concurrency, 65
concurrency and Windows Scripting Host, 299
CONDITION built-in function, 77
condition traps, 77
continuing a clause, 11
counting words in a file, 82
CPL, 309
creating classes, 40
CString, 152

D
data

abstraction, 28
encapsulation, 25
modularizing, 23

DecodeConditionInfo, 152



317

default search order for methods, 61
DetachThread, 153
devices, sending information to, 92
direct file access, 87
directives, 40

::ATTRIBUTE, 41
::CLASS, 40
::METHOD, 41
::REQUIRES, 42, 53
::REQUIRES example, 42
::ROUTINE, 41
creating classes with, 39
definition, 40
order of processing, 42
sample program, 42, 43, 52

DirectoryAt, 153
DirectoryPut, 154
DirectoryRemove, 155
DisplayCondition, 155
DO instruction, 15
Double, 156
double quotation mark ("), 12
DoubleToObject, 156
DoubleToObjectWithPrecision, 157
DropContextVariable, 158
DropObjectVariable, 158
DropStemArrayElement, 159
DropStemElement, 159

E
encapsulation of data, 25
environment for scriptable applications, 69
Environment objects, 56
ERROR condition, 78
example Rexx programs, included, 303
examples

metaclass, 46
Exit context methods

Array, 140
ArrayAppend, 140
ArrayAppendString, 141
ArrayAt, 142
ArrayDimension, 142
ArrayItems, 143
ArrayOfFour, 143
ArrayOfOne, 144, 144, 145
ArrayPut, 145
ArraySize, 146
BufferData, 147
BufferLength, 148
BufferStringData, 148
BufferStringLength, 149
CallProgram, 149
CallRoutine, 150

CheckCondition, 151
ClearCondition, 151
CString, 152
DecodeConditionInfo, 152
DirectoryAt, 153
DirectoryPut, 154
DirectoryRemove, 155
DisplayCondition, 155
Double, 156
DoubleToObject, 156
DoubleToObjectWithPrecision, 157
DropContextVariable, 158
DropStemArrayElement, 159
DropStemElement, 159
False, 160
FindClass, 160
FindPackageClass, 161
FinishBufferString, 162
GetAllContextVariables, 163
GetAllStemElements, 164
GetApplicationData, 164
GetCallerContext, 166
GetConditionInfo, 166
GetContextVariable, 169
GetGlobalEnvironment, 169
GetLocalEnvironment, 170
GetMethodPackage, 171
GetPackageClasses, 172
GetPackageMethods, 173
GetPackagePublicClasses, 174
GetPackagePublicRoutines, 174
GetPackageRoutines, 175
GetRoutinePackage, 176
GetStemArrayElement, 178
GetStemElement, 178
GetStemValue, 179
HasMethod, 181
Int32, 182
Int32ToObject, 183
Int64, 183
Int64ToObject, 184
InterpreterVersion, 185
Intptr, 185
IntptrToObject, 186
IsArray, 186
IsBuffer, 187
IsDirectory, 188
IsInstanceOf, 188
IsMethod, 189
IsMutableBuffer, 189
IsOfType, 190
IsPointer, 190
IsRoutine, 191
IsStem, 192



Index

318

IsString, 192
LanguageLevel, 193
LoadLibrary, 193
LoadPackage, 194
LoadPackageFromData, 194
Logical, 195
LogicalToObject, 196
MutableBufferCapacity, 196
MutableBufferData, 197
MutableBufferLength, 197
NewArray, 198
NewBuffer, 198
NewBufferString, 199
NewDirectory, 200
NewMethod, 200
NewMutableBuffer, 201
NewPointer, 201
NewRoutine, 202
NewStem, 202
NewString, 203
NewSupplier, 204
Nil, 204
NullString, 205
ObjectToCSelf, 205
ObjectToCSelfScoped, 206
ObjectToDouble, 207
ObjectToInt32, 207
ObjectToInt64, 208
ObjectToIntptr, 208
ObjectToLogical, 209
ObjectToString, 209
ObjectToStringSize, 210
ObjectToStringValue, 211
ObjectToUintptr, 211
ObjectToUnsignedInt32, 212
ObjectToUnsignedInt64, 212
ObjectToValue, 213
ObjectToWholeNumber, 213
PointerValue, 214
RaiseCondition, 215
RaiseException, 215
RaiseException0, 216
RaiseException1, 216
RaiseException2, 217
RegisterLibrary, 218
ReleaseGlobalReference, 218
ReleaseLocalReference, 219
RequestGlobalReference, 219
SendMessage, 220
SendMessage0, 221
SendMessage1, 222
SendMessage2, 222
SetContextVariable, 223
SetMutableBufferCapacity, 225

SetMutableBufferLength, 225
SetStemArrayElement, 227
SetStemElement, 227
String, 229
StringData, 229
StringGet, 230
StringLength, 231
StringLower, 231
StringSize, 232
StringSizeToObject, 232
StringUpper, 233
SupplierAvailable, 233
SupplierIndex, 234
SupplierItem, 235
SupplierNext, 235
True, 236
Uintptr, 237
UintptrToObject, 237
UnsignedInt32, 238
UnsignedInt32ToObject, 238
UnsignedInt64, 239
UnsignedInt64ToObject, 240
ValuesToObject, 240
ValueToObject, 241
WholeNumber, 241
WholeNumberToObject, 242

EXIT instruction, 8
exits, 123, 264
EXPOSE instruction, 53, 59
EXPOSE keyword, 22
external command exit, 130, 269
external function exit, 127, 129, 268
external function interface

description, 258
interface functions, 261
returned results, 260
RexxDeregisterFunction, 263
RexxQueryFunction, 263
RexxRegisterFunctionDll, 261
RexxRegisterFunctionExe, 262
simple function, 260
simple registration, 262
writing, 259

external HALT exit, 136, 274
external I/O exit, 133, 272
external queue exit, 131, 270
external trace exit, 137, 275

F
FAILURE condition, 78
False, 160
FindClass, 160
FindContextClass, 161
FindPackageClass, 161



319

FinishBufferString, 162
ForwardMessage, 162
Function context methods

Array, 140
ArrayAppend, 140
ArrayAppendString, 141
ArrayAt, 142
ArrayDimension, 142
ArrayItems, 143
ArrayOfFour, 143
ArrayOfOne, 145
ArrayOfThree, 144
ArrayOfTwo, 144
ArrayPut, 145
ArraySize, 146
BufferData, 147
BufferLength, 148
BufferStringData, 148
BufferStringLength, 149
CallProgram, 149
CallRoutine, 150
CheckCondition, 151
ClearCondition, 151
CString, 152
DecodeConditionInfo, 152
DirectoryAt, 153
DirectoryPut, 154
DirectoryRemove, 155
DisplayCondition, 155
Double, 156
DoubleToObject, 156
DoubleToObjectWithPrecision, 157
DropContextVariable, 158
DropStemArrayElement, 159
DropStemElement, 159
False, 160
FindClass, 160
FindPackageClass, 161
FinishBufferString, 162
GetAllContextVariables, 163
GetAllStemElements, 164
GetApplicationData, 164
GetArgument, 165
GetArguments, 165
GetCallerContext, 166
GetConditionInfo, 166
GetContextDigits, 167
GetContextForm, 168
GetContextFuzz, 168
GetContextVariable, 169
GetGlobalEnvironment, 169
GetLocalEnvironment, 170
GetMethodPackage, 171
GetPackageClasses, 172

GetPackageMethods, 173
GetPackagePublicClasses, 174
GetPackagePublicRoutines, 174
GetPackageRoutines, 175
GetRoutine, 175
GetRoutineName, 176
GetRoutinePackage, 176
GetStemArrayElement, 178
GetStemElement, 178
GetStemValue, 179
HasMethod, 181
Int32, 182
Int32ToObject, 183
Int64, 183
Int64ToObject, 184
InterpreterVersion, 185
Intptr, 185
IntptrToObject, 186
InvalidRoutine, 182
IsArray, 186
IsBuffer, 187
IsDirectory, 188
IsInstanceOf, 188
IsMethod, 189
IsMutableBuffer, 189
IsOfType, 190
IsRoutine, 191
IsRPointer, 190
IsStem, 192
IsString, 192
LanguageLevel, 193
LoadLibrary, 193
LoadPackage, 194
LoadPackageFromData, 194
Logical, 195
LogicalToObject, 196
MutableBufferCapacity, 196
MutableBufferData, 197
MutableBufferLength, 197
NewArray, 198
NewBuffer, 198
NewBufferString, 199
NewDirectory, 200
NewMethod, 200
NewMutableBuffer, 201
NewPointer, 201
NewRoutine, 202
NewStem, 202
NewString, 203
NewSupplier, 204
Nil, 204
NullString, 205
ObjectToCSelf, 205
ObjectToCSelfScoped, 206



Index

320

ObjectToDouble, 207
ObjectToInt32, 207
ObjectToInt64, 208
ObjectToIntptr, 208
ObjectToLogical, 209
ObjectToString, 209
ObjectToStringSize, 210
ObjectToStringValue, 211
ObjectToUintptr, 211
ObjectToUnsignedInt32, 212
ObjectToUnsignedInt64, 212
ObjectToValue, 213
ObjectToWholeNumber, 213
PointerValue, 214
RaiseCondition, 215
RaiseException, 215
RaiseException0, 216
RaiseException1, 216
RaiseException2, 217
RegisterLibrary, 218
ReleaseGlobalReference, 218
ReleaseLocalReference, 219
RequestGlobalReference, 219
ResolveStemVariable, 220
SendMessage, 220
SendMessage0, 221
SendMessage1, 222
SendMessage2, 222
SetContextVariable, 223
SetMutableBufferCapacity, 225
SetMutableBufferLength, 225
SetStemArrayElement, 227
SetStemElement, 227
String, 229
StringData, 229
StringGet, 230
StringLength, 231
StringLower, 231
StringSize, 232
StringSizeToObject, 232
StringUpper, 233
SupplierAvailable, 233
SupplierIndex, 234
SupplierItem, 235
SupplierNext, 235
True, 236
Uintptr, 237
UintptrToObject, 237
UnsignedInt32, 238
UnsignedInt32ToObject, 238
UnsignedInt64, 239
UnsignedInt64ToObject, 240
ValuesToObject, 240
ValueToObject, 241

WholeNumber, 241
WholeNumberToObject, 242

functions
in expressions, 14
nesting, 15
Rexx built-in, 10

G
GetAllContextVariables, 163
GetAllStemElements, 164
GetApplicationData, 164
GetArgument, 165
GetArguments, 165
GetCallerContext, 166
GetConditionInfo, 166
GetContextDigits, 167
GetContextForm, 168
GetContextFuzz, 168
GetContextVariable, 169
GetGlobalEnvironment, 169
GetLocalEnvironment, 170
GetMessageName, 170
GetMethod, 171
GetMethodPackage, 171
GetObjectVariable, 172
GetPackageClasses, 172
GetPackageMethods, 173
GetPackagePublicClasses, 174
GetPackagePublicRoutines, 174
GetPackageRoutines, 175
GetRoutine, 175
GetRoutineName, 176
GetRoutinePackage, 176
GetScope, 177
GetSelf, 177
GetStemArrayElement, 178
GetStemElement, 178
GetStemValue, 179
GetSuper, 180
GUARD instruction, 67

H
Halt, 180
HaltThread, 181
HasMethod, 181
host command exit, 130, 269
hyphen (-), 11

I
I/O model, 81
I/O, standard (keyboard, displays, and error
streams), 91
IF instruction, 15



321

information hiding, 25
inheritance, 29, 39
INIT method, 43, 51
initialization exit, 138, 275
instance methods, 49
instances, 2, 3

definition, 29
uninitializing and deleting, 54

instances methods, 28
instructions

ADDRESS, 69, 75
ARG, 14
CALL, 20, 77
DO, 15
EXIT, 8
for program control (DO, LOOP, IF,
SELECT ...), 15
IF, 15
ITERATE, 19
LOOP, 15
PARSE, 14
PROCEDURE, 21
PULL, 8, 13
RETURN, 20
SAY, 8
SELECT, 15
SIGNAL ON, 77
USE ARG, 22

Int32, 182
Int32ToObject, 183
Int64, 183
Int64ToObject, 184
inter-object concurrency, 65
InterpreterVersion, 185
Intptr, 185
IntptrToObject, 186
intra-object concurrency, 67
InvalidRoutine, 182
invoking the Rexx interpreter, 247
IsArray, 186
IsBuffer, 187
IsDirectory, 188
IsInstanceOf, 188
IsMethod, 189
IsMutableBuffer, 189
IsOfType, 190
IsPointer, 190
IsRoutine, 191
IsStem, 192
IsString, 192
issuing Linux/Unix commands, 7
issuing Windows commands, 7
ITERATE instructions, 19

L
Language Level, 193
License, Common Public, 309
License, Open Object Rexx, 309
line-end characters, 86
Linux commands, issuing, 7
LoadLibrary, 193
LoadPackage, 194
LoadPackageFromData, 194
Local environment object, 57
local objects, 56
locking a scope, 66
Logical, 195
LogicalToObject, 196
LOOP instruction, 15

M
macros

definition, 69
environments for, 77

macrospace interface
description, 294
RexxAddMacro, 295
RexxClearMacroSpace, 296
RexxDropMacro, 295
RexxLoadMacroSpace, 297
RexxQueryMacro, 298
RexxReorderMacro, 298
RexxSaveMacroSpace, 296

message-send operator (~), 3, 25
messages, 3, 3
metaclasses, 38, 45
Method context methods

Array, 140
ArrayAppend, 140
ArrayAppendString, 141
ArrayAt, 142
ArrayDimension, 142
ArrayItems, 143
ArrayOfFour, 143
ArrayOfOne, 145
ArrayOfThree, 144
ArrayOfTwo, 144
ArrayPut, 145
ArraySize, 146
BufferData, 147
BufferLength, 148
BufferStringData, 148
BufferStringLength, 149
CallProgram, 149
CallRoutine, 150
CheckCondition, 151
ClearCondition, 151



Index

322

CString, 152
DecodeConditionInfo, 152
DirectoryAt, 153
DirectoryPut, 154
DirectoryRemove, 155
DisplayCondition, 155
Double, 156
DoubleToObject, 156
DoubleToObjectWithPrecision, 157
DropObjectVariable, 158
DropStemArrayElement, 159
DropStemElement, 159
False, 160
FindClass, 160
FindContextClass, 161
FindPackageClass, 161
FinishBufferString, 162
ForwardMessage, 162
GetAllStemElements, 164
GetApplicationData, 164
GetArgument, 165
GetArguments, 165
GetConditionInfo, 166
GetGlobalEnvironment, 169
GetLocalEnvironment, 170
GetMessageName, 170
GetMethod, 171
GetMethodPackage, 171
GetObjectVariable, 172
GetPackageClasses, 172
GetPackageMethods, 173
GetPackagePublicClasses, 174
GetPackagePublicRoutines, 174
GetPackageRoutines, 175
GetRoutinePackage, 176
GetScope, 177
GetSelf, 177
GetStemArrayElement, 178
GetStemElement, 178
GetStemValue, 179
GetSuper, 180
HasMethod, 181
Int32, 182
Int32ToObject, 183
Int64, 183
Int64ToObject, 184
InterpreterVersion, 185
Intptr, 185
IntptrToObject, 186
IsArray, 186
IsBuffer, 187
IsDirectory, 188
IsInstanceOf, 188
IsMethod, 189

IsMutableBuffer, 189
IsOfType, 190
IsPointer, 190
IsRoutine, 191
IsStem, 192
IsString, 192
LanguageLevel, 193
LoadLibrary, 193
LoadPackage, 194
LoadPackageFromData, 194
Logical, 195
LogicalToObject, 196
MutableBufferCapacity, 196
MutableBufferData, 197
MutableBufferLength, 197
NewArray, 198
NewBDirectory, 200
NewBuffer, 198
NewBufferString, 199
NewMethod, 200
NewMutableBuffer, 201
NewPointer, 201
NewRoutine, 202
NewStem, 202
NewString, 203
NewSupplier, 204
Nil, 204
NullString, 205
ObjectToCSelf, 205
ObjectToCSelfScoped, 206
ObjectToDouble, 207
ObjectToInt32, 207
ObjectToInt64, 208
ObjectToIntptr, 208
ObjectToLogical, 209
ObjectToString, 209
ObjectToStringSize, 210
ObjectToStringValue, 211
ObjectToUintptr, 211
ObjectToUnsignedInt32, 212
ObjectToUnsignedInt64, 212
ObjectToValue, 213
ObjectToWholeNumber, 213
PointerValue, 214
RaiseCondition, 215
RaiseException, 215
RaiseException0, 216
RaiseException1, 216
RaiseException2, 217
RegisterLibrary, 218
ReleaseGlobalReference, 218
ReleaseLocalReference, 219
RequestGlobalReference, 219
SendMessage, 220



323

SendMessage0, 221
SendMessage1, 222
SendMessage2, 222
SetGuardOff, 224
SetGuardOn, 224
SetMutableBufferCapacity, 225
SetMutableBufferLength, 225
SetObjectVariable, 226
SetStemArrayElement, 227
SetStemElement, 227
String, 229
StringData, 229
StringGet, 230
StringLength, 231
StringLower, 231
StringSize, 232
StringSizeToObject, 232
StringUpper, 233
SupplierAvailable, 233
SupplierIndex, 234
SupplierItem, 235
SupplierNext, 235
True, 236
Uintptr, 237
UintptrToObject, 237
UnsignedInt32, 238
UnsignedInt32ToObject, 238
UnsignedInt64, 239
UnsignedInt64ToObject, 240
ValuesToObject, 240
ValueToObject, 241
WholeNumber, 241
WholeNumberToObject, 242

method names, specifying, 60
methods, 3, 25

definition, 26
instance, 28
private, 63
public, 63
scope, 60
search order for, 61
selecting, 61

mixin classes, 45
model, stream I/O, 81
modularizing data, 23
multiple clauses on a line, 11
multiple inheritance, 29
multithreading and Windows Scripting Host, 299
MutableBufferCapacity, 196
MutableBufferData, 197
MutableBufferLength, 197

N
naming variables, 12

NewArray, 198
NewBuffer, 198
NewBufferString, 199
NewDirectory, 200
NewMethod, 200
NewMutableBuffer, 201
NewPointer, 201
NewRoutine, 202
NewStem, 202
NewString, 203
NewSupplier, 204
Nil, 204
Notices, 307
NOVALUE exit, 135
NPointerValue, 214
NullString, 205

O
object classes, 28, 45
object instance variables, 66
object-oriented programming, 23
objects, 2, 3

definition, 24
kinds of, 24

ObjectToCSelf, 205
ObjectToCSelfScoped, 206
ObjectToDouble, 207
ObjectToInt32, 207
ObjectToInt64, 208
ObjectToIntptr, 208
ObjectToLogical, 209
ObjectToString, 209
ObjectToStringSize, 210
ObjectToStringValue, 211
ObjectToUintptr, 211
ObjectToUnsignedInt32, 212
ObjectToUnsignedInt64, 212
ObjectToValue, 213
ObjectToWholeNumber, 213
ooRexx License, 309
Open Object Rexx License, 309
operators and operations, partial list of, 15

P
PARSE instruction, 14
period (.), 12
polymorphism, 26
prioritizing access to variables, 66
private methods, 63
PROCEDURE instruction, 21
procedures, 20
programs

definition, 7



Index

324

running, 7
writing, 10

programs without source, 301
public methods, 63
public objects, 56
PULL instruction, 8, 14

Q
querying a file, 90
queue exit, 131, 270
queue interface

description, 286, 292
RexxAddQueue, 289
RexxClearQueue, 290
RexxCreateQueue, 286
RexxDeleteQueue, 288
RexxOpenQueue, 287
RexxPullFromQueue, 290
RexxPullQueue, 291
RexxQueryQueue, 288
RexxQueueExists, 288
RexxResetTrace, 293
RexxSetHalt, 292
RexxSetTrace, 292

R
RaiseCondition, 215
RaiseException, 215
RaiseException0, 216
RaiseException1, 216
RaiseException2, 217
RC special variable, 76
reading

a text file, one character at a time, 86
binary files, 85
specific lines of text files, 83
streams into arrays, 83
text files, 81

RegisterLibrary, 218
ReleaseGlobalReference, 218
ReleaseLocalReference, 219
REPLY instruction, 65
RequestGlobalReference, 219
ResolveStemVariable, 220
return code from Windows and Linux, 76
RETURN instruction, 20
Rexx

ADDRESS instruction, 69, 75
and object-oriented extensions, 2
and Unix, 2
and Windows, 2
ARG instruction, 14
as a macro language, 7

assignments, 13
built-in functions, 10
built-in objects, 56
CALL instruction, 20, 77
default environment, 69
directives, 40
DO instruction, 15
EXIT instruction, 8
EXPOSE instruction, 53, 59
features, 1
GUARD instruction, 67
IF instruction, 15
ITERATE instruction, 19
local objects, 56
LOOP instruction, 15
PARSE instruction, 14
PROCEDURE instruction, 21
procedures, 20
program samples, included, 303
program, definition, 7
program, running a, 7
program, writing a, 10
public objects, 56
PULL instruction, 8, 14
REPLY instruction, 65
RETURN instruction, 20
SAY instruction, 7, 50, 52, 54
SELECT instruction, 15
SIGNAL instruction, 77
subroutines, 20
traditional, 3, 7
USE ARG instruction, 22, 53

Rexx instance context methods
AttachThread, 147
Halt, 180
InterpreterVersion, 185
LanguageLevel, 193
SetTrace, 228
Terminate, 236

Rexx interpreter, invoking, 247
Rexx program, definition, 7
RexxAddMacro, 295
RexxAddQueue, 289
RexxAllocateMemory, 285
REXXC utility, 301
RexxClearMacroSpace, 296
RexxClearQueue, 290
RexxContextExit interface

exit functions, 138
external function exit, 127, 129
external HALT exit, 136
host command exit, 130
initialization exit, 138
NOVALUE exit, 135, 135



325

queue exit, 131
RexxContextExit data structure, 125
RXCMD exit, 126, 130
RXEXF exit, 126, 128
RXFNC exit, 125, 129
RXHLT exit, 126, 136
RXINI exit, 127, 138
RXMSQ exit, 126, 131
RXNOVAL exit, 126, 135
RXOFNC exit, 125, 127
RXSIO exit, 126, 133
RXTER exit, 127, 138
RXTRC exit, 127, 137
RXVALUE exit, 126, 135
scripting function exit, 128
termination exit, 138
tracing exit, 137

RexxContextExitHandler interface
definition, 124

RexxCreateInterpreter, 97
RexxCreateQueue, 286
RexxDeleteQueue, 288
RexxDeregisterExit, 278
RexxDeregisterFunction, 263
RexxDeregisterSubcom, 256
RexxDidRexxTerminate, 251
RexxDropMacro, 295
RexxFreeMemory, 286
RexxLoadMacroSpace, 297
RexxOpenQueue, 287
RexxPullFromQueue, 290
RexxPullQueue, 291
RexxQueryExit, 279
RexxQueryFunction, 263
RexxQueryMacro, 298
RexxQueryQueue, 288
RexxQuerySubcom, 257
RexxQueueExists, 288
RexxRegisterExitDll, 276
RexxRegisterExitExe, 277
RexxRegisterFunctionDll, 261
RexxRegisterFunctionExe, 262
RexxRegisterSubcomDll, 254
RexxRegisterSubcomExe, 255
RexxReorderMacro, 298
RexxResetTrace, 293
RexxSaveMacroSpace, 296
RexxSetHalt, 292
RexxSetTrace, 292
RexxStart, 247

example using, 250
exit example, 256
using exits, 249
using in-storage programs, 248

using macrospace programs, 248
REXXTRY procedures

developing with REXXTRY, 11
REXXTRY program, 11
RexxVariablePool, 281
RexxWaitForTermination, 251
RXCMD exit, 130, 269
RXEXF exit, 128
RXFNC exit, 129, 268
RXHLT exit, 136, 274
RXINI exit, 138, 275
RXMSQ exit, 131, 270
RXNOVAL exit, 135
RXOFNC exit, 127
RXSIO exit, 133, 272
RXSTRING, 246

definition, 246
null terminated, 247
returning, 247

RXSYSEXIT data structure, 249
RXTER exit, 138, 276
RXTRC exit, 137, 275
RXVALUE exit, 135

S
sample Rexx programs, included, 303
SAY instruction, 7, 50, 52, 54
scope, 59, 60
scriptable applications, 69
scripting function exit, 128
search order

for environment symbols, 58
for methods, changing, 62, 63
for methods, default, 61

SELECT instruction, 15
SELF special variable, 55
sending messages within an activity, 67
SendMessage, 220
SendMessage0, 221
SendMessage1, 222
SendMessage2, 222
session I/O exit, 133, 272
SetContextVariable, 223
SetGuardOff, 224
SetGuardOnn, 224
SetMutableBufferCapacity, 225
SetMutableBufferLength, 225
SetObjectVariable, 226
SetStemArrayElement, 227
SetStemElement, 227
SetThreadTrace, 228
SetTrace, 228
SHVBLOCK, 281
SIGL special variable, 77



Index

326

SIGNAL ON instruction, 77
single quotation mark ('), 12
special variable, 55
splitting clauses, 11
standard I/O (keyboard, displays, and error
streams), 91
starting REXXTRY, 11
stem, 4
stream I/O model, 81
stream object, 81
string, 4
String, 229
STRING method, 50, 52, 54
StringData, 229
StringGet, 230
StringLength, 231
StringLower, 231
strings, 2, 3, 8, 11, 12, 37
StringSize, 232
StringSizeToObject, 232
StringUpper, 233
SUBCLASS option, 43, 63
subclasses, 29
subcommand interface

definition, 252
description, 252
registering, 252
RexxDeregisterSubcom, 256
RexxQuerySubcom, 257
RexxRegisterSubcomDll, 254
RexxRegisterSubcomExe, 255
subcommand errors, 253
subcommand failures, 253
subcommand handler example, 253
subcommand return code, 253

subcommand processing, 77
subroutines, 20
SUPER special variable, 55
superclasses, 29
SupplierAvailable, 233
SupplierIndex, 234
SupplierItem, 235
SupplierNext, 235
symbols

.environment symbol, 57

.error symbol, 57

.input symbol, 58

.line symbol, 58

.local symbol, 57

.nil symbol, 57

.output symbol, 58

.rs symbol, 58
SYSEXIT interface

definition, 264

description, 264
exit functions, 276
external function exit, 268
external HALT exit, 274
host command exit, 269
initialization exit, 275
queue exit, 270
registration example, 278
RexxDeregisterExit, 278
RexxQueryExit, 279
RexxRegisterExitDll, 276
RexxRegisterExitExe, 277
RXCMD exit, 267, 269
RXFNC exit, 267, 268
RXHLT exit, 268, 274
RXINI exit, 268, 275
RXMSQ exit, 267, 270
RXSIO exit, 267, 272
RXSYSEXIT data structure, 265
RXTER exit, 268, 276
RXTRC exit, 268, 275
sample exit, 266
termination exit, 276
tracing exit, 275

T
Terminate, 236
termination exit, 138, 276
text files

closing, 87
direct access, 87
querying existence, 90
querying other information, 90
reading, 81
reading a character at a time, 86
reading into an array, 83
reading specific lines, 83
writing, 84

thread, 65, 255, 277, 292, 293
Thread context methods

Array, 140
ArrayAppend, 140
ArrayAppendString, 141
ArrayAt, 142
ArrayDimension, 142
ArrayItems, 143
ArrayOfFour, 143
ArrayOfOne, 145
ArrayOfThree, 144
ArrayOfTwo, 144
ArrayPut, 145
ArraySize, 146
BufferData, 147
BufferLength, 148



327

BufferStringData, 148
BufferStringLength, 149
CallProgram, 149
CallRoutine, 150
CheckCondition, 151
ClearCondition, 151
CString, 152
DecodeConditionInfo, 152
DetachThread, 153
DirectoryAt, 153
DirectoryPut, 154
DirectoryRemove, 155
DisplayCondition, 155
Double, 156
DoubleToObject, 156
DoubleToObjectWithPrecision, 157
DropStemArrayElement, 159
DropStemElement, 159
False, 160
FindClass, 160
FindPClass, 161
FinishBufferString, 162
GetAllStemElements, 164
GetApplicationData, 164
GetConditionInfo, 166
GetGlobalEnvironment, 169
GetLocalEnvironment, 170
GetMethodPackage, 171
GetPackageClasses, 172
GetPackageMethods, 173
GetPackagePublicClasses, 174
GetPackagePublicRoutines, 174
GetPackageRoutines, 175
GetRoutinePackage, 176
GetStemArrayElement, 178
GetStemElement, 178
GetStemValue, 179
HaltThread, 181
HasMethod, 181
Int32, 182
Int32ToObject, 183
Int64, 183
Int64ToObject, 184
InterpreterVersion, 185
Intptr, 185
IntptrToObject, 186
IsArray, 186
IsBuffer, 187
IsDirectory, 188
IsInstanceOf, 188
IsMethod, 189
IsMutableBuffer, 189
IsOfType, 190
IsPointer, 190

IsRoutine, 191
IsStem, 192
IsString, 192
LanguageLevel, 193
LoadLibrary, 193
LoadPackage, 194
LoadPackageFromData, 194
Logical, 195
LogicalToObject, 196
MutableBufferCapacity, 196
MutableBufferData, 197
MutableBufferLength, 197
NewArray, 198
NewBuffer, 198
NewBufferString, 199
NewDirectory, 200
NewMethod, 200
NewMutableBuffer, 201
NewPointer, 201
NewRoutine, 202
NewStem, 202
NewString, 203
NewSupplier, 204
Nil, 204
NullString, 205
ObjectToCSelf, 205
ObjectToCSelfScoped, 206
ObjectToDouble, 207
ObjectToInt32, 207
ObjectToInt64, 208
ObjectToIntptr, 208
ObjectToLogical, 209
ObjectToString, 209
ObjectToStringSize, 210
ObjectToStringValue, 211
ObjectToUintptr, 211
ObjectToUnsignedInt32, 212
ObjectToUnsignedInt64, 212
ObjectToWholeNumber, 213
PointerValue, 214
RaiseCondition, 215
RaiseException, 215
RaiseException0, 216
RaiseException1, 216
RaiseException2, 217
RegisterLibrary, 218
ReleaseGlobalReference, 218
ReleaseLocalReference, 219
RequestGlobalReference, 219
SendMessage, 220
SendMessage0, 221
SendMessage1, 222
SendMessage2, 222
SetMutableBufferCapacity, 225



Index

328

SetMutableBufferLength, 225
SetStemArrayElement, 227
SetStemElement, 227
SetThreadTrace, 228
String, 229
StringData, 229
StringGet, 230
StringLength, 231
StringLower, 231
StringSize, 232
StringSizeToObject, 232
StringUpper, 233
SupplierAvailable, 233
SupplierIndex, 234
SupplierItem, 235
SupplierNext, 235
True, 236
Uintptr, 237
UintptrToObject, 237
UnsignedInt32, 238
UnsignedInt32ToObject, 238
UnsignedInt64, 239
UnsignedInt64ToObject, 240
WholeNumber, 241
WholeNumberToObject, 242

tilde (~), 3, 25
trapping command errors, 77
traps, 77
True, 236
twiddle (~), 3, 25
typeless, 2

U
Uintptr, 237
UintptrToObject, 237
UNINIT method, 54
Unix commands, issuing, 7
UNKNOWN method, 61, 65
UnsignedInt32, 238
UnsignedInt32ToObject, 238
UnsignedInt64, 239
UnsignedInt64ToObject, 240
USE ARG instruction, 53
USE ARG instructions, 22

V
VALUE exit, 135
ValuesToObject, 240
ValueToObject, 241
variable pool interface

description, 280
direct interface, 280
dropping a variable, 283

fetching next variable, 282
fetching private information, 282
fetching variables, 282
restrictions, 281
return codes, 283, 284
returning variable names, 282
returning variable value, 282
RexxVariablePool, 281
RexxVariablePool example, 285
setting variables, 282
shared variable pool request block, 281
SHVBLOCK data structure, 281
symbolic interface, 280

variables
acquiring, 28, 29
exposing, 22, 53, 66
hiding, 20
in objects, 28, 29, 49
making accessible, 22
naming, 12
special, 21, 55, 62, 62

W
WholeNumber, 241
WholeNumberToObject, 242
Windows batch (CMD) files, 72
Windows commands, issuing, 7
Windows Scripting Host interface, 299
writing

binary files, 87
text files, 84


	Open Object Rexx™
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. How to Read the Syntax Diagrams
	3. Getting Help and Submitting Feedback
	3.1. The Open Object Rexx SourceForge Site
	3.2. The Rexx Language Association Mailing List
	3.3. comp.lang.rexx Newsgroup

	4. Related Information

	Chapter 1. Meet Open Object Rexx (ooRexx)
	1.1. The Main Attractions
	1.1.1. Object-Oriented Programming
	1.1.2. An English-Like Language
	1.1.3. Cross-Platform Versatility
	1.1.4. Fewer Rules
	1.1.5. Interpreted, Not Compiled
	1.1.6. Built-In Classes and Functions
	1.1.7. Typeless Variables
	1.1.8. String Handling
	1.1.9. Clear Error Messages and Powerful Debugging
	1.1.10. Impressive Development Tools

	1.2. Rexx and the Operating System
	1.3. A Classic Language Gets Classier
	1.3.1. From Traditional Rexx to Object Rexx

	1.4. The Object Advantage
	1.5. The Next Step

	Chapter 2. A Quick Tour of Traditional Rexx
	2.1. What Is a Rexx Program?
	2.2. Running a Rexx Program
	2.3. Elements of Rexx
	2.4. Writing Your Program
	2.5. Testing Your Program
	2.6. Variables, Constants, and Literal Strings
	2.7. Assignments
	2.8. Using Functions
	2.9. Program Control
	2.10. Subroutines and Procedures

	Chapter 3. Into the Object World
	3.1. What Is Object-Oriented Programming?
	3.2. Modularizing Data
	3.3. Modeling Objects
	3.3.1. How Objects Interact
	3.3.2. Methods
	3.3.3. Polymorphism
	3.3.4. Classes and Instances
	3.3.5. Data Abstraction
	3.3.6. Subclasses, Superclasses, and Inheritance


	Chapter 4. The Basics of Classes
	4.1. Rexx Classes for Programming
	4.1.1. The Alarm Class
	4.1.2. The Buffer Class
	4.1.3. The CaselessColumnComparator Class
	4.1.4. The CaselessComparator Class
	4.1.5. The CaselessDescendingComparator Class
	4.1.6. The Collection Classes
	4.1.7. The ColumnComparator Class
	4.1.8. The Comparable Class
	4.1.9. The Comparator Class
	4.1.10. The DateTime Class
	4.1.11. The DescendingComparator Class
	4.1.12. The File Class
	4.1.13. The InputOutputStream Class
	4.1.14. The InputStream Class
	4.1.15. The InvertingComparator Class
	4.1.16. The Message Class
	4.1.17. The Method Class
	4.1.18. The Monitor Class
	4.1.19. The MutableBuffer Class
	4.1.20. The OutputStream Class
	4.1.21. The NumericComparator Class
	4.1.22. The Orderable Class
	4.1.23. The Package Class
	4.1.24. The Pointer Class
	4.1.25. The RegularExpression Class
	4.1.26. The RexxContext Class
	4.1.27. The RexxQueue Class
	4.1.28. The Routine Class
	4.1.29. The StackFrame Class
	4.1.30. The Stem Class
	4.1.31. The Stream Class
	4.1.32. The StreamSupplier Class
	4.1.33. The String Class
	4.1.34. The Supplier Class
	4.1.35. The TimeSpan Class
	4.1.36. The WeakReference Class

	4.2. Rexx Classes for Organizing Objects
	4.2.1. The Object Class
	4.2.2. The Class Class

	4.3. Rexx Classes: The Big Picture
	4.4. Creating Your Own Classes Using Directives
	4.4.1. What Are Directives?
	4.4.2. The Directives Rexx Provides
	4.4.2.1. The ::CLASS Directive
	4.4.2.2. The ::METHOD Directive
	4.4.2.3. The ::ATTRIBUTE Directive
	4.4.2.4. The ::ROUTINE Directive
	4.4.2.5. The ::REQUIRES Directive

	4.4.3. How Directives Are Processed
	4.4.4. A Sample Program Using Directives
	4.4.5. Another Sample Program

	4.5. Defining an Instance
	4.6. Types of Classes
	4.6.1. Object Classes
	4.6.2. Mixin Classes
	4.6.3. Abstract Classes
	4.6.4. Metaclasses


	Chapter 5. A Closer Look at Objects
	5.1. Using Objects in Rexx
	5.2. Common Methods
	5.2.1. Initializing Instances Using INIT
	5.2.2. Returning String Data Using STRING
	5.2.3. Uninitializing and Deleting Instances Using UNINIT

	5.3. Special Method Variables
	5.4. Public, Local, and Built-In Environment Objects
	5.4.1. The Public Environment Object (.environment)
	5.4.1.1. The NIL Object (.nil)

	5.4.2. The Local Environment Object (.local)
	5.4.3. Built-In Environment Objects
	5.4.4. The Default Search Order for Environment Objects

	5.5. Determining the Scope of Methods and Variables
	5.5.1. Objects with a Class Scope
	5.5.2. Objects with Their Own Unique Scope

	5.6. More about Methods
	5.6.1. The Default Search Order for Selecting a Method
	5.6.2. Changing the Search Order for Methods
	5.6.3. Public versus Private Methods
	5.6.4. Defining an UNKNOWN Method

	5.7. Concurrency
	5.7.1. Inter-Object Concurrency
	5.7.1.1. Object Instance Variables
	5.7.1.2. Prioritizing Access to Variables
	5.7.1.3. Sending Messages within an Activity

	5.7.2. Intra-Object Concurrency
	5.7.2.1. Activating Methods



	Chapter 6. Commands
	6.1. How to Issue Commands
	6.2. Rexx and Batch Files
	6.3. Using Variables to Build Commands
	6.4. Using Quotation Marks
	6.5. ADDRESS Instruction
	6.6. Using Return Codes from Commands
	6.7. Subcommand Processing
	6.8. Trapping Command Errors
	6.8.1. Instructions and Conditions
	6.8.2. Disabling Traps
	6.8.3. Using SIGNAL ON ERROR
	6.8.4. Using CALL ON ERROR
	6.8.5. A Common Error-Handling Routine


	Chapter 7. Input and Output
	7.1. More about Stream Objects
	7.2. Reading a Text File
	7.3. Reading a Text File into an Array
	7.4. Reading Specific Lines of a Text File
	7.5. Writing a Text File
	7.6. Reading Binary Files
	7.7. Reading Text Files a Character at a Time
	7.8. Writing Binary Files
	7.9. Closing Files
	7.10. Direct File Access
	7.11. Checking for the Existence of a File
	7.12. Getting Other Information about a File
	7.13. Using Standard I/O
	7.14. Using Windows Devices

	Chapter 8. Rexx C++ Application Programming Interfaces
	8.1. Rexx Interpreter API
	8.1.1. RexxCreateInterpreter
	8.1.2. Interpreter Instance Options

	8.2. Data Types Used in APIs
	8.2.1. Rexx Object Types
	8.2.2. Rexx Numeric Types

	8.3. Introduction to API Vectors
	8.4. Threading Considerations
	8.5. Garbage Collection Considerations
	8.6. Rexx Interpreter Instance Interface
	8.7. Rexx Thread Context Interface
	8.8. Rexx Method Context Interface
	8.9. Rexx Call Context Interface
	8.10. Rexx Exit Context Interface
	8.11. Building an External Native Library
	8.12. Defining Library Routines
	8.12.1. Routine Declarations
	8.12.2. Routine Argument Types

	8.13. Defining Library Methods
	8.13.1. Method Declarations
	8.13.2. Method Argument Types
	8.13.3. Pointer, Buffer, and CSELF
	8.13.3.1. The Buffer class
	8.13.3.2. The Pointer class
	8.13.3.3. The POINTER method type
	8.13.3.4. The CSELF method type


	8.14. Rexx Exits Interface
	8.14.1. Writing Context Exit Handlers
	8.14.1.1. Exit Return Codes
	8.14.1.2. Exit Parameters
	8.14.1.3. Identifying Exit Handlers to Rexx

	8.14.2. Context Exit Definitions
	8.14.2.1. RXOFNC
	8.14.2.2. RXEXF
	8.14.2.3. RXFNC
	8.14.2.4. RXCMD
	8.14.2.5. RXMSQ
	8.14.2.6. RXSIO
	8.14.2.7. RXNOVAL
	8.14.2.8. RXVALUE
	8.14.2.9. RXHLT
	8.14.2.10. RXTRC
	8.14.2.11. RXINI
	8.14.2.12. RXTER


	8.15. Command Handler Interface
	8.16. Rexx Interface Methods Listing
	8.16.1. Array
	8.16.2. ArrayAppend
	8.16.3. ArrayAppendString
	8.16.4. ArrayAt
	8.16.5. ArrayDimension
	8.16.6. ArrayItems
	8.16.7. ArrayOfFour
	8.16.8. ArrayOfThree
	8.16.9. ArrayOfTwo
	8.16.10. ArrayOfOne
	8.16.11. ArrayPut
	8.16.12. ArraySize
	8.16.13. AttachThread
	8.16.14. BufferData
	8.16.15. BufferLength
	8.16.16. BufferStringData
	8.16.17. BufferStringLength
	8.16.18. CallProgram
	8.16.19. CallRoutine
	8.16.20. CheckCondition
	8.16.21. ClearCondition
	8.16.22. CString
	8.16.23. DecodeConditionInfo
	8.16.24. DetachThread
	8.16.25. DirectoryAt
	8.16.26. DirectoryPut
	8.16.27. DirectoryRemove
	8.16.28. DisplayCondition
	8.16.29. Double
	8.16.30. DoubleToObject
	8.16.31. DoubleToObjectWithPrecision
	8.16.32. DropContextVariable
	8.16.33. DropObjectVariable
	8.16.34. DropStemArrayElement
	8.16.35. DropStemElement
	8.16.36. False
	8.16.37. FindClass
	8.16.38. FindContextClass
	8.16.39. FindPackageClass
	8.16.40. FinishBufferString
	8.16.41. ForwardMessage
	8.16.42. GetAllContextVariables
	8.16.43. GetAllStemElements
	8.16.44. GetApplicationData
	8.16.45. GetArgument
	8.16.46. GetArguments
	8.16.47. GetCallerContext
	8.16.48. GetConditionInfo
	8.16.49. GetContextDigits
	8.16.50. GetContextForm
	8.16.51. GetContextFuzz
	8.16.52. GetContextVariable
	8.16.53. GetGlobalEnvironment
	8.16.54. GetLocalEnvironment
	8.16.55. GetMessageName
	8.16.56. GetMethod
	8.16.57. GetMethodPackage
	8.16.58. GetObjectVariable
	8.16.59. GetPackageClasses
	8.16.60. GetPackageMethods
	8.16.61. GetPackagePublicClasses
	8.16.62. GetPackagePublicRoutines
	8.16.63. GetPackageRoutines
	8.16.64. GetRoutine
	8.16.65. GetRoutineName
	8.16.66. GetRoutinePackage
	8.16.67. GetScope
	8.16.68. GetSelf
	8.16.69. GetStemArrayElement
	8.16.70. GetStemElement
	8.16.71. GetStemValue
	8.16.72. GetSuper
	8.16.73. Halt
	8.16.74. HaltThread
	8.16.75. HasMethod
	8.16.76. InvalidRoutine
	8.16.77. Int32
	8.16.78. Int32ToObject
	8.16.79. Int64
	8.16.80. Int64ToObject
	8.16.81. InterpreterVersion
	8.16.82. Intptr
	8.16.83. IntptrToObject
	8.16.84. IsArray
	8.16.85. IsBuffer
	8.16.86. IsDirectory
	8.16.87. IsInstanceOf
	8.16.88. IsMethod
	8.16.89. IsMutableBuffer
	8.16.90. IsOfType
	8.16.91. IsPointer
	8.16.92. IsRoutine
	8.16.93. IsStem
	8.16.94. IsString
	8.16.95. LanguageLevel
	8.16.96. LoadLibrary
	8.16.97. LoadPackage
	8.16.98. LoadPackageFromData
	8.16.99. Logical
	8.16.100. LogicalToObject
	8.16.101. MutableBufferCapacity
	8.16.102. MutableBufferData
	8.16.103. MutableBufferLength
	8.16.104. NewArray
	8.16.105. NewBuffer
	8.16.106. NewBufferString
	8.16.107. NewDirectory
	8.16.108. NewMethod
	8.16.109. NewMutableBuffer
	8.16.110. NewPointer
	8.16.111. NewRoutine
	8.16.112. NewStem
	8.16.113. NewString
	8.16.114. NewSupplier
	8.16.115. Nil
	8.16.116. NullString
	8.16.117. ObjectToCSelf
	8.16.118. ObjectToCSelfScoped
	8.16.119. ObjectToDouble
	8.16.120. ObjectToInt32
	8.16.121. ObjectToInt64
	8.16.122. ObjectToIntptr
	8.16.123. ObjectToLogical
	8.16.124. ObjectToString
	8.16.125. ObjectToStringSize
	8.16.126. ObjectToStringValue
	8.16.127. ObjectToUintptr
	8.16.128. ObjectToUnsignedInt32
	8.16.129. ObjectToUnsignedInt64
	8.16.130. ObjectToValue
	8.16.131. ObjectToWholeNumber
	8.16.132. PointerValue
	8.16.133. RaiseCondition
	8.16.134. RaiseException
	8.16.135. RaiseException0
	8.16.136. RaiseException1
	8.16.137. RaiseException2
	8.16.138. RegisterLibrary
	8.16.139. ReleaseGlobalReference
	8.16.140. ReleaseLocalReference
	8.16.141. RequestGlobalReference
	8.16.142. ResolveStemVariable
	8.16.143. SendMessage
	8.16.144. SendMessage0
	8.16.145. SendMessage1
	8.16.146. SendMessage2
	8.16.147. SetContextVariable
	8.16.148. SetGuardOff
	8.16.149. SetGuardOn
	8.16.150. SetMutableBufferCapacity
	8.16.151. SetMutableBufferLength
	8.16.152. SetObjectVariable
	8.16.153. SetStemArrayElement
	8.16.154. SetStemElement
	8.16.155. SetThreadTrace
	8.16.156. SetTrace
	8.16.157. String
	8.16.158. StringData
	8.16.159. StringGet
	8.16.160. StringLength
	8.16.161. StringLower
	8.16.162. StringSize
	8.16.163. StringSizeToObject
	8.16.164. StringUpper
	8.16.165. SupplierAvailable
	8.16.166. SupplierIndex
	8.16.167. SupplierItem
	8.16.168. SupplierNext
	8.16.169. Terminate
	8.16.170. True
	8.16.171. Uintptr
	8.16.172. UintptrToObject
	8.16.173. UnsignedInt32
	8.16.174. UnsignedInt32ToObject
	8.16.175. UnsignedInt64
	8.16.176. UnsignedInt64ToObject
	8.16.177. ValuesToObject
	8.16.178. ValueToObject
	8.16.179. WholeNumber
	8.16.180. WholeNumberToObject


	Chapter 9. Classic Rexx Application Programming Interfaces
	9.1. Handler Characteristics
	9.2. RXSTRINGs
	9.3. Calling the Rexx Interpreter
	9.3.1. From the Operating System
	9.3.2. From within an Application
	9.3.3. The RexxStart Function
	9.3.3.1. Parameters
	9.3.3.2. Return Codes
	9.3.3.3. Example

	9.3.4. The RexxWaitForTermination Function (Deprecated)
	9.3.5. The RexxDidRexxTerminate Function (Deprecated)

	9.4. Subcommand Interface
	9.4.1. Registering Subcommand Handlers
	9.4.1.1. Creating Subcommand Handlers
	9.4.1.1.1. Example


	9.4.2. Subcommand Interface Functions
	9.4.2.1. RexxRegisterSubcomDll
	9.4.2.1.1. Parameters
	9.4.2.1.2. Return Codes

	9.4.2.2. RexxRegisterSubcomExe
	9.4.2.2.1. Parameters
	9.4.2.2.2. Return Codes
	9.4.2.2.3. Remarks
	9.4.2.2.4. Example

	9.4.2.3. RexxDeregisterSubcom
	9.4.2.3.1. Parameters
	9.4.2.3.2. Return Codes
	9.4.2.3.3. Remarks

	9.4.2.4. RexxQuerySubcom
	9.4.2.4.1. Parameters
	9.4.2.4.2. Return Codes
	9.4.2.4.3. Example



	9.5. External Function Interface
	9.5.1. Registering External Functions
	9.5.1.1. Creating External Functions

	9.5.2. Calling External Functions
	9.5.2.1. Example

	9.5.3. External Function Interface Functions
	9.5.3.1. RexxRegisterFunctionDll
	9.5.3.1.1. Parameters
	9.5.3.1.2. Return Codes
	9.5.3.1.3. Remarks
	9.5.3.1.4. Example

	9.5.3.2. RexxRegisterFunctionExe
	9.5.3.2.1. Parameters
	9.5.3.2.2. Return Codes

	9.5.3.3. RexxDeregisterFunction
	9.5.3.3.1. Parameters
	9.5.3.3.2. Return Codes

	9.5.3.4. RexxQueryFunction
	9.5.3.4.1. Parameters
	9.5.3.4.2. Return Codes
	9.5.3.4.3. Remarks



	9.6. Registered System Exit Interface
	9.6.1. Writing System Exit Handlers
	9.6.1.1. Exit Return Codes
	9.6.1.2. Exit Parameters
	9.6.1.3. Identifying Exit Handlers to Rexx
	9.6.1.3.1. Example


	9.6.2. System Exit Definitions
	9.6.2.1. RXFNC
	9.6.2.2. RXCMD
	9.6.2.3. RXMSQ
	9.6.2.4. RXSIO
	9.6.2.5. RXHLT
	9.6.2.6. RXTRC
	9.6.2.7. RXINI
	9.6.2.8. RXTER

	9.6.3. System Exit Interface Functions
	9.6.3.1. RexxRegisterExitDll
	9.6.3.1.1. Parameters
	9.6.3.1.2. Return Codes

	9.6.3.2. RexxRegisterExitExe
	9.6.3.2.1. Parameters
	9.6.3.2.2. Return Codes
	9.6.3.2.3. Remarks
	9.6.3.2.4. Example

	9.6.3.3. RexxDeregisterExit
	9.6.3.3.1. Parameters
	9.6.3.3.2. Return Codes
	9.6.3.3.3. Remarks

	9.6.3.4. RexxQueryExit
	9.6.3.4.1. Parameters
	9.6.3.4.2. Return Codes
	9.6.3.4.3. Example



	9.7. Variable Pool Interface
	9.7.1. Interface Types
	9.7.1.1. Symbolic Interface
	9.7.1.2. Direct Interface

	9.7.2. RexxVariablePool Restrictions
	9.7.3. RexxVariablePool Interface Function
	9.7.3.1. RexxVariablePool
	9.7.3.1.1. Parameters
	9.7.3.1.2. RexxVariablePool Return Codes
	9.7.3.1.3. Example



	9.8. Dynamically Allocating and De-allocating Memory
	9.8.1. The RexxAllocateMemory() Function
	9.8.2. The RexxFreeMemory() Function

	9.9. Queue Interface
	9.9.1. Queue Interface Functions
	9.9.1.1. RexxCreateQueue
	9.9.1.1.1. Parameters
	9.9.1.1.2. Return Codes
	9.9.1.1.3. Remarks

	9.9.1.2. RexxOpenQueue
	9.9.1.2.1. Parameters
	9.9.1.2.2. Return Codes
	9.9.1.2.3. Remarks

	9.9.1.3. RexxDeleteQueue
	9.9.1.3.1. Parameters
	9.9.1.3.2. Return Codes
	9.9.1.3.3. Remarks

	9.9.1.4. RexxQueueExists
	9.9.1.4.1. Parameters
	9.9.1.4.2. Return Codes

	9.9.1.5. RexxQueryQueue
	9.9.1.5.1. Parameters
	9.9.1.5.2. Return Codes

	9.9.1.6. RexxAddQueue
	9.9.1.6.1. Parameters
	9.9.1.6.2. Return Codes

	9.9.1.7. RexxPullFromQueue
	9.9.1.7.1. Parameters
	9.9.1.7.2. Return Codes

	9.9.1.8. RexxClearQueue
	9.9.1.8.1. Parameters
	9.9.1.8.2. Return Codes

	9.9.1.9. RexxPullQueue (Deprecated)
	9.9.1.9.1. Parameters
	9.9.1.9.2. Return Codes
	9.9.1.9.3. Remarks



	9.10. Halt and Trace Interface
	9.10.1. Halt and Trace Interface Functions
	9.10.1.1. RexxSetHalt
	9.10.1.1.1. Parameters
	9.10.1.1.2. Return Codes
	9.10.1.1.3. Remarks

	9.10.1.2. RexxSetTrace
	9.10.1.2.1. Parameters
	9.10.1.2.2. Return Codes
	9.10.1.2.3. Remarks

	9.10.1.3. RexxResetTrace
	9.10.1.3.1. Parameters
	9.10.1.3.2. Return Codes
	9.10.1.3.3. Remarks



	9.11. Macrospace Interface
	9.11.1. Search Order
	9.11.2. Storage of Macrospace Libraries
	9.11.3. Macrospace Interface Functions
	9.11.3.1. RexxAddMacro
	9.11.3.1.1. Parameters
	9.11.3.1.2. Return Codes

	9.11.3.2. RexxDropMacro
	9.11.3.2.1. Parameter
	9.11.3.2.2. Return Codes

	9.11.3.3. RexxClearMacroSpace
	9.11.3.3.1. Return Codes
	9.11.3.3.2. Remarks

	9.11.3.4. RexxSaveMacroSpace
	9.11.3.4.1. Parameters
	9.11.3.4.2. Return Codes
	9.11.3.4.3. Remarks

	9.11.3.5. RexxLoadMacroSpace
	9.11.3.5.1. Parameters
	9.11.3.5.2. Return Codes
	9.11.3.5.3. Remarks

	9.11.3.6. RexxQueryMacro
	9.11.3.6.1. Parameters
	9.11.3.6.2. Return Codes

	9.11.3.7. RexxReorderMacro
	9.11.3.7.1. Parameters
	9.11.3.7.2. Return Codes



	9.12. Windows Scripting Host Interface
	9.12.1. Concurrency
	9.12.2. WSH Features
	9.12.2.1. COM Interfaces
	9.12.2.2.  Script Debugging
	9.12.2.3. DCOM



	Appendix A. Distributing Programs without Source
	Appendix B. Sample Rexx Programs
	Appendix C. Notices
	C.1. Trademarks
	C.2. Source Code For This Document

	Appendix D. Common Public License Version 1.0
	D.1. Definitions
	D.2. Grant of Rights
	D.3. Requirements
	D.4. Commercial Distribution
	D.5. No Warranty
	D.6. Disclaimer of Liability
	D.7. General

	Appendix E. Revision History
	Index

