
ooRexx Documentation 4.2

Open Object Rexx™
RxSock TCP/IP Socket Functions Reference

W. David Ashley

Rony G. Flatscher

Mark Hessling

Rick McGuire

Lee Peedin

Oliver Sims

Jon Wolfers

Open Object Rexx™

ooRexx Documentation 4.2 Open Object Rexx™
RxSock TCP/IP Socket Functions Reference
Edition 1

Author W. David Ashley
Author Rony G. Flatscher
Author Mark Hessling
Author Rick McGuire
Author Lee Peedin
Author Oliver Sims
Author Jon Wolfers

Copyright © 2005-2012 Rexx Language Association. All rights reserved.

Portions Copyright © 1995, 2004 IBM Corporation and others. All rights reserved.

This documentation and accompanying materials are made available under the terms of the Common
Public License v1.0 which accompanies this distribution. A copy is also available as an appendix to
this document and at the following address: http://www.oorexx.org/license.html.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

Neither the name of Rexx Language Association nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

http://www.oorexx.org/license.html

iii

Preface vii
1. Document Conventions ... vii

1.1. Typographic Conventions ... vii
1.2. Pull-quote Conventions ... viii
1.3. Notes and Warnings ... ix

2. How to Read the Syntax Diagrams ... x
3. Getting Help and Submitting Feedback .. xi

3.1. The Open Object Rexx SourceForge Site ... xii
3.2. The Rexx Language Association Mailing List .. xiii
3.3. comp.lang.rexx Newsgroup .. xiii

4. Related Information ... xiii

1. What is RxSock? 1

2. Installation and Removal 3

3. Parameters and Return Values 5
3.1. Stem Variables ... 6

4. Special Variables 7

5. Function Reference 9
5.1. SockLoadFuncs .. 10
5.2. SockDropFuncs ... 10
5.3. SockVersion .. 10
5.4. SockAccept ... 10
5.5. SockBind .. 12
5.6. SockClose .. 13
5.7. SockConnect .. 14
5.8. SockGetHostByAddr .. 16
5.9. SockGetHostByName .. 16
5.10. SockGetHostId .. 17
5.11. SockGetPeerName .. 17
5.12. SockGetSockName ... 18
5.13. SockGetSockOpt ... 19
5.14. SockInit ... 21
5.15. SockIoctl ... 22
5.16. SockListen .. 23
5.17. SockPSock_Errno ... 24
5.18. SockRecv ... 24
5.19. SockRecvFrom .. 26
5.20. SockSelect .. 27
5.21. SockSend ... 29
5.22. SockSendTo ... 30
5.23. SockSetSockOpt ... 31
5.24. SockShutDown .. 34
5.25. SockSock_Errno .. 35
5.26. SockSocket ... 35
5.27. SockSoClose .. 36

6. Socket Class Reference 39
6.1. Installation .. 39
6.2. The Socket Class ... 39

6.2.1. getHostByAddr (class) method .. 39
6.2.2. getHostByName (class) method .. 39
6.2.3. getHostId (class) method .. 40
6.2.4. accept method ... 40

Open Object Rexx™

iv

6.2.5. bind method ... 40
6.2.6. close method ... 40
6.2.7. connect method ... 40
6.2.8. getOption method ... 41
6.2.9. getPeerName method ... 41
6.2.10. getSockName method .. 41
6.2.11. new (class) method .. 42
6.2.12. ioctl method ... 42
6.2.13. listen method .. 42
6.2.14. recv method ... 42
6.2.15. recvFrom method ... 43
6.2.16. select method ... 43
6.2.17. Send method ... 43
6.2.18. setOption method ... 44
6.2.19. string method ... 44

6.3. The InetAddress Class .. 44
6.3.1. address method ... 44
6.3.2. address= method ... 44
6.3.3. The HostInfo Class ... 46

6.4. Socket Class Example .. 47

7. StreamSocket Class Reference 51
7.1. Installation .. 51
7.2. The StreamSocket Class ... 51

7.2.1. Inherited Methods ... 52
7.2.2. new (Inherited Class Method) ... 52
7.2.3. arrayIn ... 53
7.2.4. arrayOut ... 53
7.2.5. charIn .. 53
7.2.6. charOut .. 53
7.2.7. chars ... 53
7.2.8. close .. 54
7.2.9. description ... 54
7.2.10. lineIn .. 54
7.2.11. lineOut ... 54
7.2.12. lines ... 55
7.2.13. open .. 55
7.2.14. position .. 55
7.2.15. say .. 55
7.2.16. state .. 55
7.2.17. string ... 56

8. SMTP Class Reference 57
8.1. Installation .. 57
8.2. The SMTP Class .. 57

8.2.1. new (Class Method) ... 57
8.2.2. authid .. 58
8.2.3. cmdrespomse ... 58
8.2.4. connect .. 58
8.2.5. debug .. 58
8.2.6. localhost .. 59
8.2.7. logoff ... 59
8.2.8. password ... 59
8.2.9. response .. 59
8.2.10. send .. 59

v

8.2.11. smtperrno ... 60
8.3. The SMTPMsg Class .. 60

8.3.1. new (Class Method) ... 60
8.3.2. addRecipient .. 61
8.3.3. content ... 61
8.3.4. from ... 61
8.3.5. recipients ... 61
8.3.6. subject ... 61

9. Mime Classes Reference 63
9.1. Installation .. 63
9.2. The MimePart Class ... 63

9.2.1. New (class) method ... 63
9.2.2. addContent method .. 64
9.2.3. content method .. 64
9.2.4. description method ... 64
9.2.5. disposition method ... 64
9.2.6. encoding method .. 65
9.2.7. id method .. 65
9.2.8. string method ... 65
9.2.9. type method ... 65

9.3. The MimeMultiPart Class ... 66
9.3.1. New (class) method ... 66
9.3.2. addPart method ... 66
9.3.3. description method ... 66
9.3.4. disposition method ... 67
9.3.5. encoding method .. 67
9.3.6. id method .. 67
9.3.7. string method ... 68
9.3.8. type method ... 68

A. Notices 69
A.1. Trademarks .. 69
A.2. Source Code For This Document .. 70

B. Common Public License Version 1.0 71
B.1. Definitions .. 71
B.2. Grant of Rights ... 71
B.3. Requirements ... 72
B.4. Commercial Distribution .. 72
B.5. No Warranty ... 73
B.6. Disclaimer of Liability .. 73
B.7. General .. 73

C. Revision History 75

Index 77

vi

vii

Preface
This book describes the Open Object Rexx™ TCP/IP Sockets Function Library and Classes.

This book is intended for people who plan to develop applications using Rexx and TCP/IP sockets.
Its users range from the novice, who might have experience in some programming language but no
Rexx or sockets experience, to the experienced application developer, who might have had some
experience with Object Rexx and sockets.

This book is a reference rather than a tutorial. It assumes you are already familiar with object-oriented
programming concepts.

Descriptions include the use and syntax of the language and explain how the language processor
"interprets" the language as a program is running.

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

viii

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from
the Character Map menu bar, type the name of the character in the Search field
and click Next. The character you sought will be highlighted in the Character Table.
Double-click this highlighted character to place it in the Text to copy field and then

click the Copy button. Now switch back to your document and choose Edit → Paste
from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Notes and Warnings

ix

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

Preface

x

2. How to Read the Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The >>--- symbol indicates the beginning of a statement.

The ---> symbol indicates that the statement syntax is continued on the next line.

The >--- symbol indicates that a statement is continued from the previous line.

The --->< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the >--- symbol and end
with the ---> symbol.

• Required items appear on the horizontal line (the main path).

>>-STATEMENT--required_item------------------------------------><

• Optional items appear below the main path.

>>-STATEMENT--+---------------+--------------------------------><
 +-optional_item-+

• If you can choose from two or more items, they appear vertically, in a stack. If you must choose one
of the items, one item of the stack appears on the main path.

>>-STATEMENT--+-required_choice1-+-----------------------------><
 +-required_choice2-+

• If choosing one of the items is optional, the entire stack appears below the main path.

>>-STATEMENT--+------------------+-----------------------------><
 +-optional_choice1-+
 +-optional_choice2-+

• If one of the items is the default, it appears above the main path and the remaining choices are
shown below.

 +-default_choice--+
>>-STATEMENT--+-----------------+------------------------------><
 +-optional_choice-+

Getting Help and Submitting Feedback

xi

 +-optional_choice-+

• An arrow returning to the left above the main line indicates an item that can be repeated.

 +-----------------+
 V |
>>-STATEMENT----repeatable_item-+------------------------------><

A repeat arrow above a stack indicates that you can repeat the items in the stack.

• A set of vertical bars around an item indicates that the item is a fragment, a part of the syntax
diagram that appears in greater detail below the main diagram.

>>-STATEMENT--| fragment |-------------------------------------><

fragment:

|--expansion_provides_greater_detail----------------------------|

• Keywords appear in uppercase (for example, PARM1). They must be spelled exactly as shown but
you can type them in upper, lower, or mixed case. Variables appear in all lowercase letters (for
example, parmx). They represent user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described:

 +-,------+
 V |
>>-MAX(----number-+--)---><

3. Getting Help and Submitting Feedback
The Open Object Rexx Project has a number of methods to obtain help and submit feedback for
ooRexx and the extension packages that are part of ooRexx. These methods, in no particular order of
preference, are listed below.

Preface

xii

3.1. The Open Object Rexx SourceForge Site
The Open Object Rexx Project2 utilizes SourceForge3 to house the ooRexx Project4 source
repositories, mailing lists and other project features. Over time it has become apparent that the
Developer and User mailing lists are better tools for carrying on discussions concerning ooRexx and
that the Forums provided by SourceForge are cumbersome to use. The ooRexx user is most likely to
get timely replies from one of the mailing lists.

Here is a list of some of the most useful facilities provided by SourceForge.

The Developer Mailing List
You can subscribe to the oorexx-devel mailing list at ooRexx Mailing List Subscriptions5

page. This list is for discussing ooRexx project development activities and future interpreter
enhancements. It also supports a historical archive of past messages.

The Users Mailing List
You can subscribe to the oorexx-users mailing list at ooRexx Mailing List Subscriptions6 page.
This list is for discussing using ooRexx. It also supports a historical archive of past messages.

The Announcements Mailing List
You can subscribe to the oorexx-announce mailing list at ooRexx Mailing List Subscriptions7 page.
This list is only used to announce significant ooRexx project events.

The Bug Mailing List
You can subscribe to the oorexx-bugs mailing list at ooRexx Mailing List Subscriptions8 page. This
list is only used for monitoring changes to the ooRexx bug tracking system.

Bug Reports
You can create a bug report at ooRexx Bug Report9 page. Please try to provide as much
information in the bug report as possible so that the developers can determine the problem as
quickly as possible. Sample programs that can reproduce your problem will make it easier to
debug reported problems.

Documentation Feedback
You can submit feedback for, or report errors in, the documentation at ooRexx Documentation
Report10 page. Please try to provide as much information in a documentation report as possible.
In addition to listing the document and section the report concerns, direct quotes of the text
will help the developers locate the text in the source code for the document. (Section numbers
are generated when the document is produced and are not available in the source code itself.)
Suggestions as to how to reword or fix the existing text should also be included.

Request For Enhancement
You can suggest ooRexx features at the ooRexx Feature Requests11 page.

2 http://www.oorexx.org/
3 http://sourceforge.net/
4 http://sourceforge.net/projects/oorexx
5 http://sourceforge.net/mail/?group_id=119701
6 http://sourceforge.net/mail/?group_id=119701
7 http://sourceforge.net/mail/?group_id=119701
8 http://sourceforge.net/mail/?group_id=119701
9 http://sourceforge.net/tracker/?group_id=119701&atid=684730
10 http://sourceforge.net/tracker/?group_id=119701&atid=1001880
11 http://sourceforge.net/tracker/?group_id=119701&atid=684733

http://www.oorexx.org/
http://sourceforge.net/
http://sourceforge.net/projects/oorexx
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/tracker/?group_id=119701&atid=684730
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=684733
http://www.oorexx.org/
http://sourceforge.net/
http://sourceforge.net/projects/oorexx
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/tracker/?group_id=119701&atid=684730
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=684733

The Rexx Language Association Mailing List

xiii

Patch Reports
If you create an enhancement patch for ooRexx please post the patch using the ooRexx Patch
Report12 page. Please provide as much information in the patch report as possible so that the
developers can evaluate the enhancement as quickly as possible.

Please do not post bug fix patches here, instead you should open a bug report and attach the
patch to it.

The ooRexx Forums
The ooRexx project maintains a set of forums that anyone may contribute to or monitor. They
are located on the ooRexx Forums13 page. There are currently three forums available: Help,
Developers and Open Discussion. In addition, you can monitor the forums via email.

3.2. The Rexx Language Association Mailing List
The Rexx Language Association14 maintains a mailing list for its members. This mailing list is only
available to RexxLA members thus you will need to join RexxLA in order to get on the list. The dues
for RexxLA membership are small and are charged on a yearly basis. For details on joining RexxLA
please refer to the RexxLA Home Page15 or the RexxLA Membership Application16 page.

3.3. comp.lang.rexx Newsgroup
The comp.lang.rexx17 newsgroup is a good place to obtain help from many individuals within the Rexx
community. You can obtain help on Open Object Rexx or on any number of other Rexx interpreters
and tools.

4. Related Information
See also: Open Object Rexx: Reference

12 http://sourceforge.net/tracker/?group_id=119701&atid=684732
13 http://sourceforge.net/forum/?group_id=119701
14 http://www.rexxla.org/
15 http://rexxla.org/
16 http://www.rexxla.org/rexxla/join.html
17 http://groups.google.com/group/comp.lang.rexx/topics?hl=en

http://sourceforge.net/tracker/?group_id=119701&atid=684732
http://sourceforge.net/tracker/?group_id=119701&atid=684732
http://sourceforge.net/forum/?group_id=119701
http://www.rexxla.org/
http://rexxla.org/
http://www.rexxla.org/rexxla/join.html
http://groups.google.com/group/comp.lang.rexx/topics?hl=en
http://sourceforge.net/tracker/?group_id=119701&atid=684732
http://sourceforge.net/forum/?group_id=119701
http://www.rexxla.org/
http://rexxla.org/
http://www.rexxla.org/rexxla/join.html
http://groups.google.com/group/comp.lang.rexx/topics?hl=en

xiv

Chapter 1.

1

What is RxSock?
RxSock is a Rexx function package providing access to the TCP/IP socket APIs available to the
C programming environment. Most of the functions described in this reference are similar to the
corresponding C functions available in the TCP/IP socket library.

In addition, there are several classes supplied that encapsulate and extend the functionality of the
function package. These classes can reduce the amount of programming necessary to incorporate
TCP/IP protocols in your projects.

It is assumed that you are familiar with the basic socket APIs and can reference those specific to the
system. For more information, refer to the book Internetworking with TCP/IP, Volume I: Principles,
Protocols and Architecture by Douglas Comer (Prentice Hall PTR).

The RxSock package requires TCP/IP support to be active on your system.

2

Chapter 2.

3

Installation and Removal
The RxSock package is contained in the file rxsock.dll. This file must be placed in a directory listed
in your LIBPATH. To get access to the functions in the RxSock package, execute the following Rexx
code:

If RxFuncQuery("SockDropFuncs") then
do
 rc = RxFuncAdd("SockLoadFuncs","rxsock","SockLoadFuncs")
 rc = SockLoadFuncs()
end

To unload the DLL, call the SockDropFuncs() function and then exit all CMD.EXE shells. After exiting
all command shells, the DLL is dropped by the system and can be deleted or replaced.

4

Chapter 3.

5

Parameters and Return Values
Unless otherwise stated, the return values are the same as for the corresponding C functions. The
following standard parameter types are referred to throughout this reference:

socket
is a socket value, which is an integral number.

domain
is a domain value. Currently, only the domain AF_INET is supported.

address
is the stem of a stem variable with the following values:
address.family

must always be AF_INET.

address.port
is a port number.

address.addr
is a dotted decimal address or INADDR_ANY, where appropriate.

When this parameter is needed, set it the name of a stem variable for the function to set (or
that the function will read from). For example, if you pass the string xxx.! as a parameter, the
following variables are set or queried by the function:

"xxx.!family"
"xxx.!port"
"xxx.!addr"

A null address is an address with the family field being AF_INET, the port field being 0, and
the addr field being 0.0.0.0.

dotAddress
is the standard dotted decimal address. For example, the string 9.23.19.63 is a valid address.

host
is the stem of a stem variable with the following values:
host.name

is the standard name of the host.

host.alias.0
is the number of aliases for this host.

host.alias.1
is the first alias for this host.

host.alias.n
is the nth alias for this host.

host.addrtype
must always be AF_INET.

host.addr
is a dotted decimal address (default address).

Chapter 3. Parameters and Return Values

6

host.addr.0
is the number of addresses for this host.

host.addr.1
is the first address for this host.

host.addr.n
is the nth address for this host.

When this parameter is needed, set it the name of a stem variable for the function to
set (or that the function will read from). For example, if you pass the string xxx.! as a
parameter, the following variables are set or queried by the function:
"xxx.!name"
"xxx.!alias.0", "xxx.!alias.1" ... "xxx.!alias.n"
"xxx.!addrtype"
"xxx.!addr"
"xxx.!addr.0", "xxx.!addr.1" ... "xxx.!addr.n"

3.1. Stem Variables

The address and host type of a parameter are stems of a stem variable. Normally, when you pass
a string like addr. as a parameter, you expect the variables addr.family, addr.port, and addr.addr to
be set by the function. In the previous examples, however, the stem contained an exclamation mark.
This exclamation mark helps prevent the value that follows from getting misused as a normal variable.
Example:

port = 923
sNew = SockAccept(sOld,"addr.")
say addr.port

In this example, you might expect the say statement to write the port number of the accepted socket.
Instead, it writes the value of the variable, namely addr.923, because the port variable is set to this
value.

Because exclamation marks are rarely used in variables, it is unlikely that the variable !port is used in
your program.

Note

Do not use the characters _, 0, and 1 to prefix tail values. 0 and 1 are difficult to distinguish from
O, I, and l.

Chapter 4.

7

Special Variables
The following variables are maintained by the system: errno and h_errno.
Variable errno

The variable errno is set after each RxSock call. It can have one of the following values or any
other numeric value:

• EWOULDBLOCK

• EINPROGRESS

• EALREADY

• ENOTSOCK

• EDESTADDRREQ

• EMSGSIZE

• EPROTOTYPE

• ENOPROTOOPT

• EPROTONOSUPPORT

• ESOCKTNOSUPPORT

• EOPNOTSUPP

• EPFNOSUPPORT

• EAFNOSUPPORT

• EADDRINUSE

• EADDRNOTAVAIL

• ENETDOWN

• ENETUNREACH

• ENETRESET

• ECONNABORTED

• ECONNRESET

• ENOBUFS

• EISCONN

• ENOTCONN

• ESHUTDOWN

• ETOOMANYREFS

• ETIMEDOUT

Chapter 4. Special Variables

8

• ECONNREFUSED

• ELOOP

• ENAMETOOLONG

• EHOSTDOWN

• EHOSTUNREACH

• ENOTEMPTY

Note

The value is set even if the function called does not set the variable, in which case the value
has no meaning. A value of 0 indicates that no error occurred.

Variable h_errno
The variable h_errno is set after each RxSock call. It can have one of the following values or any
other numeric value:
• HOST_NOT_FOUND

• TRY_AGAIN

• NO_RECOVERY

• NO_ADDRESS

Note

The value is set even if the function called does not set the variable, in which case the value
has no meaning. A value of 0 indicates that no error occurred.

Chapter 5.

9

Function Reference
The following sections describe how the individual functions contained in RxSock are invoked from the
Rexx programming environment:
• Section 5.1, “SockLoadFuncs”

• Section 5.2, “SockDropFuncs”

• Section 5.3, “SockVersion”

• Section 5.4, “SockAccept”

• Section 5.5, “SockBind”

• Section 5.6, “SockClose”

• Section 5.7, “SockConnect”

• Section 5.8, “SockGetHostByAddr”

• Section 5.9, “SockGetHostByName”

• Section 5.10, “SockGetHostId”

• Section 5.11, “SockGetPeerName”

• Section 5.12, “SockGetSockName”

• Section 5.13, “SockGetSockOpt”

• Section 5.14, “SockInit”

• Section 5.15, “SockIoctl”

• Section 5.16, “SockListen”

• Section 5.17, “SockPSock_Errno”

• Section 5.18, “SockRecv”

• Section 5.19, “SockRecvFrom”

• Section 5.20, “SockSelect”

• Section 5.21, “SockSend”

• Section 5.22, “SockSendTo”

• Section 5.23, “SockSetSockOpt”

• Section 5.24, “SockShutDown”

• Section 5.25, “SockSock_Errno”

• Section 5.26, “SockSocket”

• Section 5.27, “SockSoClose”

Chapter 5. Function Reference

10

5.1. SockLoadFuncs

The SockLoadFuncs() call loads all RxSock functions.

Syntax:

>>--SockLoadFuncs(--+--------+--)--><
 +--parm--+

All parameters that you supply are only used to bypass copyright information.

5.2. SockDropFuncs

The SockDropFuncs call drops all RxSock functions.

Syntax:

SockDropFuncs()

To unload the dynamic load library (DLL), first call SockDropFuncs() and then exit all CMD.EXE shells.
After exiting all command shells, the DLL is dropped by the system and can be deleted or replaced.

5.3. SockVersion

The SockVersion() call provides the version of RxSock.

Syntax:

>>--SockVersion()--><

Return Values:

The returned value is in the form version.subversion, for example 2.1.

Prior to Version 1.2, this function did not exist. To check if a former version of Rxsock is installed, use
the following code after loading the function package with SockLoadFuncs():

/* oldVersion is 1 if a version of RxSock < 1.2 is loaded */
oldVersion = (1 = RxFuncQuery("SockVersion"))

5.4. SockAccept

SockAccept

11

The SockAccept() call accepts a connection request from a remote host.

Syntax:

>>--SockAccept(socket--+-------------+--)--------------------------------><
 +--, address--+

where:

socket
is the socket descriptor created with the SockSocket() call. It is bound to an address using the
SockBind() call and must be enabled to accept connections using theSockListen() call.

address
is a stem variable that contains the socket address of the connection client when the SockAccept()
call returns. This parameter is optional.

SockAccept() is used by a server in a connection-oriented mode to accept a connection request from
a client. The call accepts the first connection on its queue of pending connection requests. It creates
a new socket descriptor with the same properties as socket and returns it to the caller. This new
socket descriptor cannot be used to accept new connections. Only the original socket can accept more
connection requests.

If the queue has no pending connection requests, SockAccept() blocks the caller unless the socket is
in nonblocking mode. If no connection requests are queued and the socket is in nonblocking mode,
SockAccept() returns a value of -1 and sets the return code to the value EWOULDBLOCK.

You cannot get information on requesters without calling SockAccept(). The application cannot
tell the system from which requesters it will accept connections. The caller can close a connection
immediately after identifying the requester.

The SockSelect() call can be used to check the socket for incoming connection requests.

Return Values:

A positive value indicates successful execution of the call. The value -1 indicates an error. You can get
the specific error code by calling SockSock_Errno() or SockPSock_Errno(). Possible values:

ENOTSOCK
socket is not a valid socket descriptor.

EINTR
Interrupted system call.

EINVAL
SockListen() was not called for socket.

EOPNOTSUPP
socket is not connection-oriented.

EWOULDBLOCK
socket is in nonblocking mode, and there are no connection requests queued.

ECONNABORTED
The software caused a connection close.

Chapter 5. Function Reference

12

Note

SockAccept() interfaces with the C function accept().

5.5. SockBind

The SockBind() call binds a local name to the socket.

Syntax:

>>--SockBind(socket, address)--><

where:

socket
is the socket descriptor returned by a previous call to SockSocket().

address
is a stem variable containing the address that is to be bound to socket.

SockBind() binds the unique local name address to the socket with descriptor socket. After calling
SockSocket(), a descriptor does not have a name. However, it belongs to a particular address family
that you specified when calling SockSocket().

Because socket was created in the AF_INET domain, the fields of the stem address are as follows:

The family field must be set to AF_INET. The port field is set to the port to which the application must
bind. If port is set to 0, the caller allows the system to assign an available port. The application can
call SockGetSockName() to discover the port number assigned. The addr field is set to the Internet
address. On hosts with more than one network interface (called multihomed hosts), a caller can select
the interface with which it is to bind.

Only UDP packets and TCP connection requests from this interface that match the bound name are
routed to the application. This is important when a server offers a service to several networks. If addr
is set to INADDR_ANY, the caller requests socket be bound to all network interfaces on the host. If
you do not specify an address, the server can accept all UDP packets and TCP connection requests
made to its port, regardless of the network interface on which the requests arrived.

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code by calling SockSock_Errno() or SockPSock_Errno(). Possible values:

EADDRINUSE
address is already in use. See the SO_REUSEADDR option described under SockGetSockOpt()
and the SO_REUSEADDR option described under SockSetSockOpt().

EADDRNOTAVAIL
The address specified is not valid on this host. For example, the Internet address does not specify
a valid network interface.

SockClose

13

EAFNOSUPPORT
The address family is not supported.

ENOTSOCK
socket is not a valid socket descriptor.

EINVAL
socket is already bound to an address.

ENOBUFS
No buffer space available.

Note

SockBind() interfaces with the C function bind().

5.6. SockClose

The SockClose() call shuts down a socket and frees resources allocated to the socket.

Syntax

>>--SockClose(socket)--><

where:

socket
is the descriptor of the socket to be closed.

If the SO_LINGER option of SockSetSockOpt() is enabled, any queued data is sent. If this option is
disabled, any queued data is flushed.

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code by calling SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK
socket is not a valid socket descriptor.

EALREADY
The socket is in nonblocking mode. A previous connection attempt has not completed.

SockClose() is exactly the same as SockSoClose().

Chapter 5. Function Reference

14

Note

SockClose() interfaces with the C function soclose() or, in the Windows environments, with
closesocket().

5.7. SockConnect

The SockConnect() socket call requests a connection to a remote host.

Syntax:

>>--SockConnect(socket, address)---><

where:

socket
is the socket descriptor used to issue the connection request.

address
is a stem variable containing the address of the socket to which a connection is to be established.

The SockConnect() call performs the following tasks when called for a stream socket:

1. It completes the binding for a socket, if necessary.

2. It attempts to create a connection between two sockets.

This call is used by the client side of socket-based applications to establish a connection with a
server. The remote server must have a passive open pending, which means it must successfully call
SockBind() and SockListen(). Otherwise, SockConnect() returns the value -1 and the error value is set
to ECONNREFUSED.

In the Internet communication domain, a timeout occurs if a connection to the remote host is not
established within 75 seconds.

If the socket is in blocking mode, the SockConnect() call blocks the caller until the connection is
established or an error is received. If the socket is in nonblocking mode, SockConnect() returns the
value -1 and sets the error value to EINPROGRESS if the connection was successfully initiated. The
caller can test the completion of the connection by calling:

• SockSelect(), to test for the ability to write to the socket

• SockGetsockOpt(), with option SO_ERROR, to test if the connection was established

Stream sockets can call SockConnect() only once.

Datagram or raw sockets normally transfer data without being connected to the sender or receiver.
However, an application can connect to such a socket by calling SockConnect(). SockConnect()
specifies and stores the destination peer address for the socket. The system then knows to which

SockConnect

15

address to send data and the destination peer address does not have to be specified for each
datagram sent. The address is kept until the next SockConnect() call. This permits the use of the
SockRecv() and SockSend() calls, which are usually reserved for connection-oriented sockets.
However, data is still not necessarily delivered, which means the normal features of sockets
using connectionless data transfer are maintained. The application can therefore still use the
SockSendTo()and SockRecvFrom() calls.

Datagram and raw sockets can call SockConnect() several times. The application can change
their destination address by specifying a new address on the SockConnect() call. In addition, the
socket can be returned to a connectionless mode by calling SockConnect() with a null destination
address. The null address is created by setting the stem variable address as follows: the family field to
AF_INET, the port field to 0, and the addr field to 0.0.0.0.

The call to SockConnect returns the value -1, indicating that the connection to the null address cannot
be established. Calling SockSock_Errno() returns the value EADDRNOTAVAIL.

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code by calling SockSock_Errno() or SockPSock_Errno(). Possible values are:

EADDRNOTAVAIL
The calling host cannot reach the specified destination.

EAFNOSUPPORT
The address family is not supported.

EALREADY
The socket is in nonblocking mode. A previous connection attempt has not completed.

ENOTSOCK
The socket is not a valid socket descriptor.

ECONNREFUSED
The destination host rejected the connection request.

EINPROGRESS
socket is in nonblocking mode, and the connection cannot be completed immediately.
EINPROGRESS does not indicate an error.

EINTR
Interrupted system call.

EISCONN
socket is already connected.

ENETUNREACH
The network cannot be reached from this host.

ETIMEDOUT
Establishing the connection timed out.

ENOBUFS
There is no buffer space available.

EOPNOTSUPP
The operation is not supported on socket.

Chapter 5. Function Reference

16

Note

SockConnect interfaces with the C function connect().

5.8. SockGetHostByAddr

The SockGetHostByAddr() call retrieves information about a specific host using its address.

Syntax:

>>--SockGetHostByAddr(dotAddress, host--+------------+--)----------------><
 +--, domain--+

where:

dotAddress
is the standard dotted decimal address of the host.

host
is a stem variable that is to receive the information on the host.

domain
is the domain AF_INET. This parameter is optional.

Return values:

The value 1 indicates successful execution of the call. The value 0 indicates an error.

Note

SockGetHostByAdress() interfaces with the C function gethostbyaddr().

5.9. SockGetHostByName

The SockGetHostByName() call retrieves host information on a specific host using its name or any
alias.

Syntax:

>>--SockGetHostByName(nameAddress, host)---------------------------------><

where:

SockGetHostId

17

nameAddress
is the name of a host, for example www.ibm.com.

host
is the name of a stem variable to receive the information on the host.

Return values:

The value 1 indicates successful execution of the call. The value 0 indicates an error.

Note

SockGetHostByName() interfaces with the C function gethostbyname().

5.10. SockGetHostId

The SockGetHostId() call retrieves the dotAddress of the local host.

Syntax:

>>--SockGetHostId()--><

The return value is the dotAddress of the local host.

Note

SockGetHostId() interfaces with the C function gethostid().

5.11. SockGetPeerName

The SockGetPeerName() call gets the name of the peer connected to a socket.

Syntax:

>>--SockGetPeerName(socket, address)-------------------------------------><

where:

socket
is the socket descriptor.

address
is a stem variable that will contain the address of the peer connected to socket.

Chapter 5. Function Reference

18

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code by calling SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK
socket is not a valid socket descriptor.

ENOTCONN
socket is not connected.

ENOBUFS
There is no buffer space available.

Note

SockGetPeerName() interfaces with the C function getpeername().

5.12. SockGetSockName

The SockGetSockName() call gets the local socket name.

Syntax:

>>--SockGetSockName(socket, address)-------------------------------------><

where:

socket
is the socket descriptor.

address
is a stem variable that is to receive the address of the socket returned.

SockGetSockName() returns the address for socket in the stem variable address. If the socket is not
bound to an address, the call returns a null address.

The returned null address is a stem variable with the family field set to AF_INET, the port field set to 0,
and the addr field set to 0.0.0.0.

All sockets are explicitly assigned an address after a successful call to SockBind(). Stream sockets are
implicitly assigned an address after a successful call to SockConnect() or SockAccept() if SockBind()
was not called.

The SockGetSockName() call is often used to identify the port assigned to a socket after the socket
has been implicitly bound to a port. For example, an application can call SockConnect() without
previously calling SockBind(). In this case, the SockConnect() call completes the binding necessary by
assigning a port to the socket.

Return values:

SockGetSockOpt

19

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code by calling SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK
socket is not a valid socket descriptor.

ENOBUFS
There is no buffer space available.

Note

SockGetSockName() interfaces with the C function getsockname().

5.13. SockGetSockOpt

The SockGetSockOpt() call gets the socket options associated with a socket.

Syntax:

>>--SockGetSockOpt(socket, level, optName, optVal)-----------------------><

where:

socket
is the socket descriptor.

level
specifies which option level is queried for the specified optname. The only supported level is
SOL_SOCKET.

optname
is the name of the specified socket option. Only one option can be specified with a call.

optval
is the variable to receive the option values requested. For socket options that are Boolean the
option is enabled if optval is nonzero and disabled if optval is 0.

SockGetSockOpt() returns the value of a socket option at the socket level. It can be requested for
sockets of all domain types. Some options are supported only for specific socket types.

The following options are recognized for SOL_SOCKET:

SO_BROADCAST
returns the information whether datagram sockets are able to broadcast messages. If this option
is enabled, the application can send broadcast messages using datagram socket, if the interface
specified in the destination supports broadcasting of packets.

SO_DEBUG
returns the information whether debug information can be recorded for a socket.

Chapter 5. Function Reference

20

SO_DONTROUTE
returns the information whether the socket is able to bypass the routing of outgoing messages. If
this option is enabled, outgoing messages are directed to the network interface specified in the
network portion of the destination address. When enabled, packets can only be sent to directly
connected networks.

SO_ERROR
returns any error pending at the socket and clears the error status. It can be used to check for
asynchronous errors at connected datagram sockets or for asynchronous errors that are not
explicitly returned by one of the socket calls.

SO_KEEPALIVE
returns the information whether stream sockets are able to send keepalive packets. TCP uses
a timer called the keepalive timer. This timer monitors idle connections that might have been
disconnected because of a peer crash or timeout. If this option is enabled, a keepalive packet is
periodically sent to the peer.

This option is mainly used to enable servers to close connections that are no longer active as a
result of clients ending connections without properly closing them.

SO_LINGER
returns the information whether stream sockets are able to linger on close if data is present. If
this option is enabled and there is data still to be sent when SockSoClose() is called, the calling
application is blocked during the SockSoClose() call until the data is transmitted or the connection
has timed out. If this option is disabled, the SockSoClose() call returns without blocking the caller
while TCP is trying to send the data. Although the data transfer is usually successful, it cannot be
guaranteed because TCP tries to send the data only for a specific amount of time.

SO_OOBINLINE
returns the information whether stream sockets are able to receive out-of-band data. If this option
is enabled, out-of-band data is placed in the normal data input queue as it is received. It is then
made available to SockRecv() and SockRecvFrom() without the MSG_OOB flag being specified
in those calls. If this option is disabled, out-of-band data is placed in the priority data input queue
as it is received. It can then only be made available to SockRecv() and SockRecvFrom() by
specifying the MSG_OOB flag in those calls.

SO_RCVBUF
returns the buffer size for input.

SO_RCVLOWAT
returns the receive low-water mark.

SO_RCVTIMEO
returns the timeout value for a receive operation.

SO_REUSEADDR
returns the information whether stream and datagram sockets are able to reuse local addresses.
If this option is enabled, the local addresses that are already in use can then be bound. This
alters the normal algorithm used in the SockBind() call. At connection time, the system checks
whether the local addresses and ports differ from foreign addresses and ports. If not, the error
value EADDRINUSE is returned.

SO_SNDBUF
returns the size of the send buffer.

SockInit

21

SO_SNDLOWAT
returns the send low-water mark. This mark is ignored for nonblocking calls and not used in the
Internet domain.

SO_SNDTIMEO
returns the timeout value for a send operation.

SO_TYPE
returns the socket type. The integer pointed to by optval is then set to one of the following:
STREAM, DGRAM, RAW, or UNKNOWN.

SO_USELOOPBACK
bypasses hardware where possible.

All option values are integral except for SO_LINGER, which contains the following blank-delimited
integers:

• The l_onoff value. It is set to 0 if the SO_LINGER option is disabled.

• The l_linger value. It specifies the amount of time, in seconds, to be lingered on close. A value of 0
causes SockSoClose() to wait until disconnection completes.

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code by calling SockSock_Errno() or SockPSock_Errno(). Possible values are:

EADDRINUSE
The address is already in use.

ENOTSOCK
socket is not a valid socket descriptor.

ENOPROTOOPT
optname or level is not recognized.

Note

SockGetSockOpt() interfaces with the C function getsockopt().

5.14. SockInit

The SockInit() call initializes the socket data structures and checks whether the TCP/IP network is
active.

Syntax:

>>--SockInit()---><

Chapter 5. Function Reference

22

SockInit() can be called at the beginning of each program that uses SockSocket(). However, it is
not obligatory because each RxSock function is automatically initialized. For this reason, explicit
initialization is not available in all system environments.

Return values:

The value 0 indicates successful execution of the call. The value 1 indicates an error.

Note

SockInit() interfaces with the C function sock_init().

5.15. SockIoctl

The SockIoctl() call performs special operations on the socket.

Syntax:

>>--SockIoctl(socket, ioctlCmd, ioctlData)-------------------------------><

where:

socket
is the socket descriptor.

ioctlCmd
is the ioctl command to be performed.

ioctlData
is a variable containing data associated with the particular command. Its format depends on the
command requested. Valid commands are:

FIONBIO
sets or clears nonblocking input or output for a socket. This command is an integer. If the
integer is 0, nonblocking input or output on the socket is cleared. If the integer is a number
other than 0, input or output calls do not block until the call is completed.

FIONREAD
gets the number of immediately readable bytes for the socket. This command is an integer.

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK
socket is not a valid socket descriptor.

EINVAL
The request is not valid or not supported.

SockListen

23

EOPNOTSUPP
The operation is not supported on the socket.

Note

SockIoctl() interfaces with the C function ioctl() or, in the Windows environments, with
ioctlsocket().

5.16. SockListen

The SockListen() call completes the binding necessary for a socket to accept connections and creates
a connection request queue for incoming requests.

Syntax:

>>--SockListen(socket, backlog)--><

where:

socket
is the socket descriptor.

backlog
controls the maximum queue length for pending connections.

SockListen() performs the following tasks:

1. 1. It completes the binding necessary for socket, if SockBind() has not been called for the socket.

2. It creates a connection request queue with a length of backlog to queue incoming connection
requests.

When the queue is full, additional connection requests are ignored.

SockListen() can only be called for connection-oriented sockets.

SockListen() is called after allocating a socket with SockSocket() and after binding a name to socket
with SockBind(). It must be called before SockAccept().

SockListen() indicates when it is ready to accept client connection requests. It transforms an active
socket to a passive socket. After it is called, socket cannot be used as an active socket to initiate
connection requests.

If backlog is smaller than 0, SockListen() interprets the backlog to be 0. If it is greater than the
maximum value defined by the network system, SockListen() interprets the backlog to be this
maximum value.

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code SockSock_Errno() or SockPSock_Errno(). Possible values are:

Chapter 5. Function Reference

24

ENOTSOCK
socket is not a valid socket descriptor.

EOPNOTSUPP
socket is not a socket descriptor that supports the SockListen() call.

Note

SockListen() interfaces with the C function listen().

5.17. SockPSock_Errno

The SockPSock_Errno() call writes a short error message to the standard error device. It describes the
last error encountered during a call to a socket library function.

Syntax:

>>--SockPSock_Errno(--+----------------+--)------------------------------><
 +--error_string--+

where:

error_string
is the error string written to the standard error device describing the last error encountered. The
string printed is followed by a colon, a space, and then the message. If it is omitted or empty, only
the message is printed. The string is optional.

The error code is acquired by calling SockSock_Errno(). It is set when errors occur. Subsequent
socket calls do not clear the error code.

Note

SockPSock_Errno() interfaces with the C function psock_errno().

5.18. SockRecv

The SockRecv() call receives data on a connected socket.

Syntax:

>>--SockRecv(socket, var, len--+-----------+--)--------------------------><
 +--, flags--+

SockRecv

25

where:

socket
is the socket descriptor.

var
is the name of a Rexx variable to receive the data.

len
is the maximum amount of data to be read.

flags
is a blank-delimited list of options:

MSG_OOB
reads any out-of-band data on the socket.

MSG_PEEK
peeks at the data on the socket. The data is returned but not removed, so the subsequent
receive operation sees the same data.

SockRecv() receives data on a socket with descriptor socket and stores it in the Rexx variable var. It
applies only to connected sockets. For information on how to use SockRecv() with datagram and raw
sockets, see Datagram or raw sockets.

SockRecv() returns the length of the incoming data. If a datagram is too long to fit the buffer, the
excessive data is discarded. No data is discarded for stream sockets. If data is not available at socket,
the SockRecv() call waits for a message and blocks the caller unless the socket is in nonblocking
mode. See SockIoctl() for a description of how to set the nonblocking mode.

SockRecv() may return fewer bytes than requested. This is due to the underlying TCP/IP subsystem
and is not controllable by the RxSock programmer. When you receive fewer bytes than you request
you should follow immediately with another request for the balance of the requested bytes. You may
have to call SockRecv() repeatedly to obtain all the bytes. Each subsequent call should request the
difference between the previous request number of bytes and the number of bytes actually received.

Return values:

If successful, the length of the data in bytes is returned. The value 0 indicates that the connection
is closed. The value -1 indicates an error. You can get the specific error code SockSock_Errno() or
SockPSock_Errno(). Possible values are:

ENOTSOCK
socket is not a valid socket descriptor.

EINTR
Interrupted system call.

EINVAL
Invalid argument.

EWOULDBLOCK
socket is in nonblocking mode and no data is available, or the SO_RCVTIMEO option has been
set for socket and the timeout expired before any data arrived.

Chapter 5. Function Reference

26

Note

SockRecv() interfaces to the C function recv().

5.19. SockRecvFrom

The SockRecvFrom() call receives data on a socket.

Syntax:

>>--SockRecvFrom(socket, var, len--+-----------+--, address)-------------><
 +--, flags--+

where:

socket
is the socket descriptor.

var
is the name of a Rexx variable to receive the data.

len
is the maximum amount of data to be read.

flags
is a blank delimited list of options:

MSG_OOB
reads any out-of-band data on the socket.

MSG_PEEK
peeks at the data present on the socket. The data is returned but not consumed. The
subsequent receive operation thus sees the same data.

address
is a stem variable specifying the address of the sender from which the data is received, unless it is
a null address.

SockRecvFrom() receives data on a socket with descriptor socket and stores it in a Rexx variable
named var. It applies to any socket type, whether connected or not.

SockRecvFrom() returns the length of the incoming message or data. If a datagram is too long to
fit the supplied buffer, the excessive data is discarded. No data is discarded for stream sockets. If
data is not available at socket, the SockRecvFrom() call waits for a message to arrive and blocks the
caller, unless the socket is in nonblocking mode. See SockIoctl() for a description of how to set the
nonblocking mode.

Return values:

SockSelect

27

If successful, the length of the data in bytes is returned. The value -1 indicates an error. You can get
the specific error code SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK
socket is not a valid socket descriptor.

EINVAL
Invalid argument.

EWOULDBLOCK
socket is in nonblocking mode, no data is available, or the SO_RCVTIMEO option has been set for
socket and the timeout expired before data arrived.

Note

SockRecvFrom() interfaces with the C function recvfrom().

5.20. SockSelect

The SockSelect() call monitors the activity on a socket with regard to readability, readiness for writing,
and pending exceptional conditions.

Syntax:

>>--SockSelect(reads, writes, excepts--+-------------+--)----------------><
 +--, timeout--+

where:

reads
is the number of sockets to be checked for readability.

writes
is the number of sockets to be checked for readiness for writing.

excepts
is the number of sockets to be checked for pending exceptional conditions. For Network Services
sockets, the only pending exceptional condition is out-of-band data in the receive buffer.

timeout
is the maximum number of seconds the system waits for the selection to complete. Set the timeout
parameter to 0 for a blocking operation. If the socket is ready, the return will be immediate.

Each parameter specifying a number of sockets is qualified by a stem variable which is queried
and set by this function. The stem variable has the following format: stem.0 contains the number of
sockets, stem.1 the first socket, and so on. Upon return, the stem variables are reset to the sockets
that are ready. If any of the stem variables are empty (), or no parameter is passed, no sockets for that
type are checked.

Chapter 5. Function Reference

28

The timeout value must be integral (no fractional values). Nonnumeric and negative numbers are
considered to be 0. If no timeout value is passed, an empty string () is assumed.

If the timeout value is 0, SockSelect() does not wait before returning. If the timeout value is an
empty string (), SockSelect() does not time out, but returns when a socket becomes ready. If the
timeout value is in seconds, SockSelect() waits for the specified interval before returning. It checks all
indicated sockets at the same time and returns as soon as one of them is ready.

Return values:

The number of ready sockets is returned. The value 0 indicates an expired time limit. In this case, the
stem variables are not modified. The value -1 indicates an error. You can get the specific error code
SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK
socket is not a valid socket descriptor.

EFAULT
The address is not valid.

EINVAL
Invalid argument.

EINTR
Interrupted system call.

Example 5.1. SockSelect

r.0 = 2 /* specify 2 sockets for read in stem r. */
r.1 = 101
r.2 = 102
 /* specify 1 socket for write in stem w. */
w.0 = 1
w.1 = 103
 /* no sockets for exceptions in stem e. */
e.0 = 0
rc = SockSelect("r.","w.","e.")
do i = 1 to r.0 /* display sockets ready for read */
 say "socket" r.i "is ready for reading."
end

That SockSelect() call can be invoked as:

rc = SockSelect("r.","w.","")

or

rc = SockSelect("r.","w.",)

The function call SockSelect(, , , x) results in the program pausing for x seconds.

SockSend

29

Note

SockSelect() interfaces with the C function select().

5.21. SockSend

The SockSend() call sends data to a connected socket.

Syntax:

>>--SockSend(socket, data--+-----------+--)------------------------------><
 +--, flags--+

where:

socket
is the socket descriptor.

data
is the name of a Rexx variable containing the data to be transmitted.

flags
is a blank delimited list of options:

MSG_OOB
sends out-of-band data to sockets that support SOCK_STREAM communication.

MSG_DONTROUTE
turns on the SO_DONTROUTE option for the duration of the send operation. This option is
usually only used by diagnostic or routing programs.

SockSend() sends data to a connected socket with descriptor socket. For information on how to use
SockSend() with datagram and raw sockets, see Datagram or raw sockets.

If the socket does not have enough buffer space to hold the data to be sent, the SockSend() call
blocks unless the socket is placed in nonblocking mode. See SockIoctl() for a description of how to set
the nonblocking mode. Use the SockSelect() call to determine when it is possible to send more data.

Return values:

If successful, the number of bytes of the socket with descriptor socket that is added to the send buffer
is returned. Successful completion does not imply that the data has already been delivered to the
receiver.

The return value -1 indicates that an error was detected on the sending side of the connection. You
can get the specific error code SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK
socket is not a valid socket descriptor.

Chapter 5. Function Reference

30

EINTR
Interrupted system call.

EINVAL
Invalid argument.

ENOBUFS
There is no buffer space available to send the message.

EWOULDBLOCK
socket is in nonblocking mode, the data cannot be sent without blocking, or the SO_SNDTIMEO
option has been set for socket and the timeout expired before any data was sent.

Note

SockSend() interfaces with the C function send().

5.22. SockSendTo

The SockSentTo() call sends data to a connected or unconnected socket.

Syntax:

>>--SockSendTo(socket, data--+-----------+--, address)-------------------><
 +--, flags--+

where:

socket
is the socket descriptor.

data
is a string of data to be transmitted.

flags
is a blank delimited list of options:

MSG_OOB
sends out-of-band data to sockets that support SOCK_STREAM communication.

MSG_DONTROUTE
turns on the SO_DONTROUTE option for the duration of the send operation. This option is
usually only used by diagnostic or routing programs.

address
is a stem variable containing the destination address.

SockSendTo() sends data to a connected or unconnected socket with descriptor socket. For
unconnected datagram and raw sockets, it sends data to the specified destination address. For stream
sockets, the destination address is ignored.

SockSetSockOpt

31

Datagram sockets are connected by calling SockConnect(). This call identifies the peer to send
or receive the datagram. After a datagram socket is connected to a peer, you can still use the
SockSendTo() call but you cannot include a destination address.

To change the peer address when using connected datagram sockets, issue SockConnect() with a
null address. Specifying a null address removes the peer address specification. You can then issue
either a SockSendTo() call and specify a different destination address or a SockConnect() call to
connect to a different peer. For more information on connecting datagram sockets and specifying null
addresses, see Datagram or raw sockets.

Return values:

If successful, the number of bytes sent is returned. Successful completion does not guarantee that
the data is delivered to the receiver. The return value -1 indicates that an error was detected on the
sending side. You can get the specific error code SockSock_Errno() or SockPSock_Errno(). Possible
values are:

ENOTSOCK
socket is not a valid socket descriptor.

EMSGSIZE
The message data was too big to be sent as a single datagram.

ENOBUFS
There is no buffer space available to send the message.

EWOULDBLOCK
socket is in nonblocking mode, the data cannot be sent without blocking, or the SO_SNDTIMEO
option has been set for socket and the timeout expired before any data was sent.

ENOTCONN
The socket is not connected.

EDESTADDRREQ
Destination address required.

Note

SockSendTo() interfaces with the C function sendto().

5.23. SockSetSockOpt

The SockSetSockOpt() call sets options associated with a socket.

Syntax:

>>--SockSetSockOpt(socket, level, optName, optVal)-----------------------><

where:

Chapter 5. Function Reference

32

socket
is the socket descriptor.

level
specifies which option level is set. The only supported level is SOL_SOCKET.

optname
is the name of a specified socket option.

optval
is the variable containing the data needed by the set command. It is optional.

SockSetSockOpt() sets options associated with a socket with descriptor socket such as enabling
debugging at the socket or protocol level, controlling timeouts, or permitting socket data broadcasting.
Options can exist at the socket or the protocol level. They are always present at the highest socket
level. When setting socket options, the option level and name must be specified.

For socket options that are toggles, the option is enabled if optval is nonzero and disabled if optval is
0.

The following options are recognized for SOL_SOCKET:

SO_BROADCAST
enables datagram sockets to broadcast messages. The application can then send broadcast
messages using datagram socket, if the interface specified in the destination supports
broadcasting of packets.

SO_DEBUG
enables debug information to be recorded for a socket.

SO_DONTROUTE
enables the socket to bypass the routing of outgoing messages. Outgoing messages are then
directed to the network interface specified in the network portion of the destination address. When
enabled, packets can only be sent to directly connected networks.

SO_KEEPALIVE
enables stream sockets to send keepalive packets, which keep the connection alive. TCP uses
a timer called the keepalive timer. This timer monitors idle connections that might have been
disconnected because of a peer crash or timeout. If this option is enabled, a keepalive packet is
periodically sent to the peer.

This option is mainly used to enable servers to close connections that are no longer active as a
result of clients ending connections without properly closing them.

SO_LINGER
enables stream sockets to linger on close if data is present. If this option is enabled and there is
data still to be sent when SockSoClose() is called, the calling application is blocked during the
SockSoClose() call until the data is transmitted or the connection has timed out. If this option is
disabled, the SockSoClose() call returns without blocking the caller while TCP is trying to send the
data. Although the data transfer is usually successful, it cannot be guaranteed because TCP tries
to send the data only for a specific amount of time.

SO_OOBINLINE
enables stream sockets to receive out-of-band data, which is a logically separate data path
using the same connection as the normal data path. If this option is enabled, out-of-band data is
placed in the normal data input queue as it is received. It is then made available to SockRecv()

SockSetSockOpt

33

and SockRecvFrom() without the MSG_OOB flag being specified in those calls. If this option is
disabled, out-of-band data is placed in the priority data input queue as it is received. It can then
only be made available to SockRecv() and SockRecvFrom() by specifying the MSG_OOB flag in
those calls.

SO_RCVBUF
sets the buffer size for input. This option sets the size of the receive buffer to the value contained
in the buffer pointed to by optval. In this way, the buffer size can be tailored for specific application
needs, such as increasing the buffer size for high-volume connections.

SO_RCVLOWAT
sets the receive low-water mark.

SO_RCVTIMEO
sets the timeout value for a receive operation.

SO_REUSEADDR
enables stream and datagram sockets to reuse local addresses. Local addresses that are
already in use can then be bound. This alters the normal algorithm used in the SockBind() call.
At connection time, the system checks whether the local addresses and ports differ from foreign
addresses and ports. If not, the error value EADDRINUSE is returned.

SO_SNDBUF
Sets the buffer size for output. This option sets the size of the send buffer to the value contained
in the buffer pointed to by optval. In this way, the send buffer size can be tailored for specific
application needs, such as increasing the buffer size for high-volume connections.

SO_SNDLOWAT
sets the send low-water mark. This mark is ignored for nonblocking calls and not used in the
Internet domain.

SO_SNDTIMEO
sets the timeout value for a send operation.

SO_USELOOPBACK
bypasses hardware where possible.

Except for SO_LINGER, all values are integral. SO_LINGER expects two blank delimited integers:

1. The l_onoff value. It is set to 0 if the SO_LINGER option is disabled.

2. the l_linger value. The l_linger field specifies the amount of time, in seconds, to be lingered on
close. A value of 0 causes SockSoClose() to wait until disconnection completes.

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code SockSock_Errno() or SockPSock_Errno(). Possible values are:

EADDRINUSE
The address is already in use.

ENOTSOCK
socket is not a valid socket descriptor.

ENOPROTOOPT
optname is not recognized.

Chapter 5. Function Reference

34

EINVAL
Invalid argument.

ENOBUFS
There is no buffer space available.

Note

SockSetSockOpt() interfaces with the C function setsockopt().

5.24. SockShutDown

The SockShutDown() call shuts down all, or part, of a full duplex connection. This call is optional.

Syntax:

>>--SockShutDown(socket, howto)--><

>where:

socket
is the socket descriptor.

howto
is the condition of the shutdown of socket.

Because data flows in different directions are independent of each other, SockShutDown() allows you
to independently stop data flows in one direction, or all data flows, with one API call. For example, you
can enable yourself to send data but disable other senders to send data to you.

The howto parameter sets the condition for shutting down the connection to socket socket. It can be
set to one of the following:

0
No more data can be received on socket.

1
No more output is allowed on socket.

2
No more data can be sent or received on socket.

Return values:

The value 0 indicates successful execution of the call. The value -1 indicates an error. You can get the
specific error code SockSock_Errno() or SockPSock_Errno(). Possible values are:

ENOTSOCK
socket is not a valid socket descriptor.

SockSock_Errno

35

EINVAL
howto was not set to a valid value.

Note

SockShutDown() interfaces with the C function shutdown().

5.25. SockSock_Errno

The SockSock_Errno() call returns the last error code set by a socket call. Subsequent socket API
calls do not reset this error code.

Syntax:

>>--SockSock_Errno()---><

Note

SockSock_Errno() interfaces with the C function sock_errno().

5.26. SockSocket

The SockSocket() call creates an end point for communication and returns a socket descriptor
representing the end point. Each socket type provides a different communication service.

Syntax:

>>--SockSocket(domain, type, protocol)-----------------------------------><

where:

domain
is the communication domain requested. It specifies the protocol family to be used. Currently, only
the domain AF_INET is supported, which uses addresses in the Internet address format.

type
is the type of socket created. The following types are supported:
SOCK_STREAM

provides sequenced, two-way byte streams that are reliable and connection-oriented. It
supports a mechanism for out-of-band data. Stream sockets are supported by the Internet
(AF_INET) communication domain.

Chapter 5. Function Reference

36

SOCK_DGRAM
provides datagrams, which are connectionless messages of a fixed length whose reliability
is not guaranteed. Datagrams can be received out of order, lost, or delivered several times.
Datagram sockets are supported by the Internet (AF_INET) communication domain.

SOCK_RAW
provides the interface to internal protocols, such as IP and ICMP. Raw sockets are supported
by the Internet (AF_INET) communication domain.

protocol
is the protocol to be used with the socket. It can be IPPROTO_UDP, IPPROTO_TCP, or 0. If it is
set to 0, which is the default, the system selects the default protocol number for the domain and
socket type requested.

Sockets are deallocated with the SockClose() call.

Return values:

A non-negative socket descriptor return value indicates successful execution of the call. The
return value -1 indicates an error. You can get the specific error code SockSock_Errno() or
SockPSock_Errno(). Possible values are:

EMFILE
The maximum number of sockets are currently in use.

EPROTONOSUPPORT
The protocol is not supported in the specified domain or the protocol is not supported for the
specified socket type.

EPFNOSUPPORT
The protocol family is not supported.

ESOCKTNOSUPPORT
The socket type is not supported.

Note

SockSocket() interfaces with the C function socket().

5.27. SockSoClose

The SockSoClose() call shuts down a socket and frees resources allocated to the socket.

Syntax:

>>--SockSoClose(socket)--><

where:

SockSoClose

37

socket
is the socket descriptor of the socket to be closed.

This function is identical to SockClose().

38

Chapter 6.

39

Socket Class Reference
The following sections describe the socket class supplied with ooRexx. This class encapsulates the
rxsock external functions into several classes that improve the functionality if the external function
library by extending the error checking and reducing the amount of code needed in an average rxsock
program.

6.1. Installation

The Socket class package is contained in the file socket.cls. This file must be placed in a directory
listed in your PATH. To get access to the class and methods in the Socket class, include the following
statement in your Rexx program:

::requires 'socket.cls'

6.2. The Socket Class

Table 6.1. ooRexx Socket Class

Object

↓

Socket

new
gethostbyaddr
gethostbyname
gethostid

accept
bind
close
connect
getOption
getPeerName
getSockName

init
ioctl
listen
recv
recvFrom
selectend
setOption
string

6.2.1. getHostByAddr (class) method

>>--getHostByAddr(ipaddr)--------------------------------------><

This is a class method. It returns an instance of the Section 6.3.3, “The HostInfo Class” class.

6.2.2. getHostByName (class) method

Chapter 6. Socket Class Reference

40

>>--getHostByName(hostname)------------------------------------><

This is a class method. It returns an instance of the Section 6.3.3, “The HostInfo Class” class.

6.2.3. getHostId (class) method

>>--getHostId()--><

This is a class method. It returns the dotted decimal host id of the local machine.

6.2.4. accept method

>>--accept()---><

This method returns a new socket class instance that is connected to a remote host that has
requested a connection from a server socket.

6.2.5. bind method

>>--bind(address)--><

This method binds a socket to a particular local ip address specified by an instance of the Section 6.3,
“The InetAddress Class” class contained in the address argument.

6.2.6. close method

>>--close()--><

This method closes this socket instance.

6.2.7. connect method

getOption method

41

>>--connect(address)---><

This method connect the socket to a remote address specified by an instance of the Section 6.3, “The
InetAddress Class” class contained in the address argument.

6.2.8. getOption method

>>--getOption(option)--><

This method returns the value of the options specified by the option argument.

The option argument must be one of the following:
SO_BROADCAST
SO_DEBUG
SO_DONTROUTE
SO_ERROR
SO_KEEPALIVE
SO_LINGER
SO_OOBINLINE
SO_RCVBUF
SO_RCVLOWAT
SO_RCVTIMEO
SO_REUSEADDR
SO_SNDBUF
SO_SNDLOWAT
SO_SNDTIMEO
SO_TYPE
SO_USELOOPBACK

6.2.9. getPeerName method

>>--getPeerName()--><

This method returns the peer name of the remote connection.

6.2.10. getSockName method

>>--getSockName()--><

Chapter 6. Socket Class Reference

42

This method returns an instance of the Section 6.3, “The InetAddress Class” class than is the name
information of the remote machine.

6.2.11. new (class) method

>>--new(--+--+--)------><
 +--domain--+----------------------------+--+
 +--, type--+--------------+--+
 +--, protocol--+

This method returns a new instance of the Section 6.2, “The Socket Class”.

domain
If specified, this argument must be AF_INET.

type
If specified, this argument must be SOCK_STREAM, SOCK_DGRAM or SOCK_RAW.
SOCK_STREAM is the default.

protocol
If specified, this argument must be 0, IPPROTO_UDP or IPPROTO_TCP. 0 is the default.

6.2.12. ioctl method

>>--ioctl(cmd, data)---><

This method sends a special command to the socket. The cmd and the data are not checked for valid
values.

6.2.13. listen method

>>--listen(backlog)--><

This method turns the socket into a server listening socket. The backlog is the number of connection
requests the socket should cache.

6.2.14. recv method

recvFrom method

43

>>--recv(length)---><

This method recieves data on a socket connection. The length is the maximum number of bytes the
socket should receive. This method returns the data received, which could be less than the maximum
length specified.

6.2.15. recvFrom method

>>--recv(length, address)--------------------------------------><

This method recieves data on a socket connection from the specified address. The address must be
an instance of the Section 6.3, “The InetAddress Class” class. The length is the maximum number of
bytes the socket should receive. This method returns the data received, which could be less than the
maximum length specified.

6.2.16. select method

>>--select(reads, writes, excepts, timeout)--------------------><

This method monitors activity on a set of sockets. It returns the number of sockets ready for activity.
Upon return the input argument arrays will be reset to only the sockets that are ready.

reads
An array of socket instances to monitor for read activity.

writes
An array of socket instances to monitor for write activity.

excepts
An array of socket instances to monitor for exception activity.

timeout
The timeout in seconds. This must be a whole number (no fractions allowed).

6.2.17. Send method

>>--send(data)---><

Chapter 6. Socket Class Reference

44

This method sends the data on the socket. It returns the number of bytes sent, which could be less
than the length of data.

6.2.18. setOption method

>>--setOption(name, value)-------------------------------------><

This method sets the option given by name with the data in value. See the method Section 6.2.8,
“getOption method” for the list of valid names.

6.2.19. string method

>>--string()---><

This method returns the string representing the socket.

6.3. The InetAddress Class
Table 6.2. ooRexx InetAddress Class

Object

↓

InetAdress

new

address
address=
family
family=

init
makeStem
port
port=

6.3.1. address method

>>--address()--><

This method returns the ip address of the original hostname.

6.3.2. address= method

address= method

45

>>--address(ipaddress)---><

6.3.2.1. family method)

>>--family()---><

This method returns the ip address family of the original hostname.

6.3.2.2. family= method

>>--family(newfamily)--><

This method sets the ip address family of the original hostname.

6.3.2.3. init method

>>--init(hostname, port +------------+--)----------------------><
 +--, family--+

This method creates a new instance of the InetAddress class.

hostname
The ip address or host name of the host machine.

port
The port number of the connection.

family
The address family. The only valid value is AF_INET.

6.3.2.4. makeStem method

>>--makeStem()---><

Chapter 6. Socket Class Reference

46

This method returns a stem variable set to the current values of the instance. This method has limited
usefulness to the programmer.

6.3.2.5. port method

>>--port()---><

This method returns port number of the original hostname.

6.3.2.6. port= method

>>--port(newport)--><

This method sets the port number of the original hostname.

6.3.3. The HostInfo Class

Table 6.3. ooRexx HostInfo Class

Object

↓

HostInfo

new

addr
adress
alias

name
init
makeStem

6.3.3.1. addr method

>>--addr()---><

This method returns an array of ip addresses of the host.

6.3.3.2. address method

Socket Class Example

47

>>--address()--><

This method returns the main ip address of the host.

6.3.3.3. alias method

>>--alias()--><

This method returns an array of alias host name of the host.

6.3.3.4. name method

>>--alias()--><

This method returns the main host name of the host.

6.3.3.5. init method

>>--init(hostname)---><

This method create an instance of the HostInfo class and sets all the attribute methods of the instance.
The hostname can be either a valid DNS host name or an ip address.

6.3.3.6. makeStem method

>>--makeStem()---><

This method returns a stem variable set to the current values of the instance. This method has limited
usefulness to the programmer.

6.4. Socket Class Example

Chapter 6. Socket Class Reference

48

Example 6.1. Socket Class

host = '127.0.0.1'
port = 8080
srvr = .server~new(host, port)
call syssleep(1) -- just to let the server get started
call client host, port, 'This is test 1'
call client host, port, 'This is test 2'
call client host, port, 'stop'
return

::requires 'socket.cls'

::routine client
use strict arg host, port, message
-- get a new socket
s = .socket~new()
-- set the server address/port to connection information
addr = .inetaddress~new(host, port)
-- connect to the server
retc = s~connect(addr)
if retc <> 0 then do
 say 'Error' s~errno() 'connecting to server socket.'
 return
 end
-- send the command
retc = s~send(message)
-- receive the command back
say s~recv(4096)
-- close the socket
s~close()
return

::class server
::method init
use strict arg host, port
-- get a new socket
s = .socket~new()
if s = -1 then do
 say 'Error' s~errno() 'creating server socket'
 return
 end
-- set the socket to reuse the addresses assigned to it
retc = s~setoption('SO_REUSEADDR', 1)
if retc = -1 then do
 say 'Error' s~errno() 'setting socket option'
 return
 end
-- bind the socket to an address/port
addr = .inetaddress~new(host, port)
retc = s~bind(addr)
if retc = -1 then do
 say 'Error' s~errno() 'binding socket'
 return
 end
-- mark it as a listening socket
retc = s~listen(3)
if retc = -1 then do
 say 'Error' s~errno() 'making the socket a listening socket'
 return
 end
say 'Server starting'
reply

Socket Class Example

49

stop = .false
do while \stop
 -- accept a client connection socket
 cs = s~accept()
 if cs = .nil then do
 say 'Error accepting new socket'
 iterate
 end
 -- receive the command from the client
 cmd = cs~recv(4096)
 -- echo the command back to the client
 cs~send(cmd)
 -- close the client connection socket
 cs~close()
 -- if the command was stop then stop the server
 if cmd~upper() = 'STOP' then do
 stop = .true
 end
 end
-- close the socket
s~close()
return

50

Chapter 7.

51

StreamSocket Class Reference
The following sections describe the streamsocket class supplied with ooRexx. This class encapsulates
the rxsock external functions into a class that treats the socket as a standard ooRexx input/output
stream. It improves error checking and reduces the amount of code needed in an average rxsock
program.

7.1. Installation

The StreamSocket class package is contained in the file streamsocket.cls. This file must be placed in
a directory listed in your PATH. To get access to the class and methods in the StreamSocket class,
include the following statement in your Rexx program:

::requires 'streamsocket.cls'

7.2. The StreamSocket Class

A streamsocket object allows external communication from Rexx to a socket.

The StreamSocket class is a subclass of the InputOutputStream class.

Figure 7.1. The StreamSocket class and methods

Table 7.1. ooRexx StreamSocket Class

Object

↓

InputOutputStream

+ InputStream

+ OutputStream

↓

StreamSocket

new

charIn
charOut
chars
close
description
init
lineIn

lineOut
lines
open
say
state
string

Chapter 7. StreamSocket Class Reference

52

Note

The StreamSocket class also has available class methods that its metaclass, the Class class,
defines. It also inherits methods from the InputOutputStream class.

7.2.1. Inherited Methods
Methods inherited from the InputStream class.

Note

This class is searched second for inherited methods.

arrayIn close open
charIn lineIn position
charOut lineOut
chars lines

Methods inherited from the OutputStream class.

Note

This class is searched first for inherited methods.

arrayOut close open
charIn lineIn position
charOut lineOut
chars lines

7.2.2. new (Inherited Class Method)

>>-new(host, port--+-------------+--)--------------------------><
 +--, bufsize--+

Initializes a stream object for the host and port, but does not open the stream. Returns the new stream
object.

host
The host name or TCP/IP address of an Internet host.

arrayIn

53

port
The port number of the host.

bufsize
(optional) The buffersize to use for read operations. The default size is 4096.

7.2.3. arrayIn

This method is invalid for this class and will raise an error if invoked.

7.2.4. arrayOut

This method is invalid for this class and will raise an error if invoked.

7.2.5. charIn

>>-charIn-+----------------------------+-----------------------><
 +-(-+-------+--+---------+-)-+
 +-start-+ +-,length-+

Returns a string of up to length characters from the input stream. If you omit length, it defaults to 1.
If you specify start, it will be ignored since sockets are considered not to be persistent streams. If the
stream is not already open, the stream attempts to open for reading and writing. If that fails, the stream
opens for input only.

7.2.6. charOut

>>-charOut-+----------------------------+----------------------><
 +-(-+--------+--+--------+-)-+
 +-string-+ +-,start-+

Returns the count of characters remaining after trying to write string to the output stream.

The string can be the null string. In this case, charOut writes no characters to the stream and returns
0. If you omit string, charOut writes no characters to the stream and returns 0.

If you specify start it will be ignored since socket streams are not considered persistent.

7.2.7. chars

Chapter 7. StreamSocket Class Reference

54

>>-chars---><

Returns 1 if the stream is open. Otherwise returns0.

7.2.8. close

>>-close---><

Closes the stream. close returns READY: if closing the stream is successful, or an appropriate error
message. If you have tried to close an unopened socket, then the close method returns a null string
("").

7.2.9. description

>>-description---><

Returns any descriptive string associated with the current state of the stream or the Nil object if no
descriptive string is available. The description method is identical with the STATE method except that
the string that description returns is followed by a colon and, if available, additional information about
ERROR or NOTREADY states. (The Section 7.2.16, “state” method describes these states.)

7.2.10. lineIn

>>-lineIn-+-------------------------+--------------------------><
 +-(-+------+-+--------+-)-+
 +-line-+ +-,count-+

Returns the next count lines. The count must be 0 or 1. If you omit count, it defaults to 1. A line
number may be given but it will be ignored since sockets are not considered to be a persistent stream.
If the stream is not already open, the it tries to open the stream for reading and writing.

7.2.11. lineOut

>>-lineOut-+--------------------------+------------------------><
 +-(-+--------+-+-------+-)-+
 +-string-+ +-,line-+

lines

55

Returns 0 if successful in writing string to the output stream or 1 if an error occurs while writing the
line. If you specify line it will be ignored since a socket is not considered to be a persistent stream.

7.2.12. lines

>>-lines---><

Returns 1 if the stream is open. Otherwise returns0.

7.2.13. open

>>-open---><

Opens the stream for input and output and returns READY:. If the method is unsuccessful, it returns an
error message string in the same form that the description method uses.

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value of ERRNO, which is set whenever one of the file system primitives returns with a -1.

7.2.14. position

>>-position--><

This method is invalid for this class and will raise an error if invoked.

7.2.15. say

>>-say--+----------------+-------------------------------------><
 +-(-+--------+-)-+
 +-string-+

Returns 0 if successful in writing string to the output stream or 1 if an error occurs while writing the
line.

7.2.16. state

Chapter 7. StreamSocket Class Reference

56

>>-state---><

Returns a string indicating the current stream state.

The returned strings are as follows:

ERROR
The stream has been subject to an erroneous operation (possibly during input or output. You
might be able to obtain additional information about the error with the description method.

NOTREADY
The stream is known to be in such a state that the usual input or output operations attempted upon
would raise the NOTREADY condition.

READY
The stream is known to be in such a state that the usual input or output operations might be
attempted. This is the usual state for a stream, although it does not guarantee that any particular
operation will succeed.

UNKNOWN
The state of the stream is unknown. This generally means that the stream is closed or has not yet
been opened.

7.2.17. string

>>-string--><

Returns a string that indicates the name of the object the stream represents i.e. the hostname:port.

Chapter 8.

57

SMTP Class Reference
The following sections describe the smtp class supplied with ooRexx. This class can send SMTP
messages to an SMTP server. It utilizes the Section 7.2, “The StreamSocket Class” to perform the
communications with the server.

8.1. Installation

The SMTP class package is contained in the file smtp.cls. This file must be placed in a directory
listed in your PATH. To get access to the class and methods in the SMTP class, include the following
statement in your Rexx program:

::requires 'smtp.cls'

8.2. The SMTP Class

This class encapsulates all the communications necessary to send mail via an SMTP server.

Table 8.1. ooRexx SMTP Class

Object

↓

SMTP

new

authid
cmdresponse
connect
debug
localhost

logoff
password
response
send
smtperrno

Note

The SMTP class also has available class methods that its metaclass, the Class class, defines.

8.2.1. new (Class Method)

>>-new---><

Initializes the object. Returns the new smtp object.

Chapter 8. SMTP Class Reference

58

8.2.2. authid

>>-authid()--><

>>-authid(newauthid)---><

This method either sets the authid or returns the current authid. The default value for the authid is a
zero-length string.

8.2.3. cmdrespomse

>>-cmdresponse---><

This method returns an array containing all the commands sent to the SMTP server and the responses
from that server.

8.2.4. connect

>>-connect(smtphost--+--------------------------------+--)-------><
 +--, authid-----+--------------+-+
 +--, password--+

This opens the connection to the SMTP host machine.

smtphost
The host name or TCP/IP address of the SMTP host. This string can contain a port designation.

authid
(Optional) The account authid to be used if needed.

password
(optional) The password for the specified authid.

8.2.5. debug

>>-debug---><

>>-debug(flag)---><

localhost

59

This method either sets the debug flag or returns the current flag value. The default value for the flag
is 0 (false) which suppresses debug messages.

8.2.6. localhost

>>-localhost---><

This method returns the local host name.

8.2.7. logoff

>>-logoff--><

This method logs off the session to the SMTP host.

8.2.8. password

>>-password--><

>>-password(newpassword)---------------------------------------><

This method either sets the smtp server account passwordor returns the password value. The default
value for the password is a zero-length string.

8.2.9. response

>>-response--><

This method returns the parsed response to the last command sent to the SMTP server. The initial
value for the repsonse is a zero-length string.

8.2.10. send

Chapter 8. SMTP Class Reference

60

>>-send(msg)---><

This method sends an SMTP message to the SMTP server. The msg must be an instance of the
Section 8.3, “The SMTPMsg Class”.

8.2.11. smtperrno

>>-smtperrno---><

This method returns the return code of the last command sent to the SMTP server. The initial value for
the repsonse is a zero-length string.

8.3. The SMTPMsg Class

This class encapsulates all information needed to communicate a complete message to the SMTP
server.

Table 8.2. ooRexx SMTPMsg Class

Object

↓

SMTPMsg

new

addRecipient
content
from

subject
recipients

Note

The SMTPMsg class also has available class methods that its metaclass, the Class class,
defines.

8.3.1. new (Class Method)

>>-new---><

Initializes the object. Returns the new smtpmsg object.

addRecipient

61

8.3.2. addRecipient

>>-addRecipient(recp)--><

This method adds a new recipient of the message.

8.3.3. content

>>-content---><

>>-content(part)---><

This method sets a piece of the SMTP message. The part must be an instance of the Section 9.2,
“The MimePart Class”, Section 9.3, “The MimeMultiPart Class” or a plain string.

8.3.4. from

>>-from--><

>>-from(fromaddress)---><

This method sets or fetches the "From" mail header field.

8.3.5. recipients

>>-recipients--><

This returns an array of the mail header "Recipient" fields.

8.3.6. subject

>>-subject---><

>>-subject(newsubject)---><

Chapter 8. SMTP Class Reference

62

This method sets or fetches the "Subject" mail header field.

Chapter 9.

63

Mime Classes Reference
The following sections describe the mime classes supplied with ooRexx. These classes encapsulates
a mime object. This is most useful for sending complicated email messages vie the Section 8.2, “The
SMTP Class”.

9.1. Installation

The Mime class package is contained in the file mime.cls. This file must be placed in a directory
listed in your PATH. To get access to the class and methods in the Mime class, include the following
statement in your Rexx program:

::requires 'mime.cls'

9.2. The MimePart Class

Table 9.1. ooRexx MimePart Class

Object

↓

MimePart

new

addContent
content
description
disposition

encoding
id
string
type

Note

The MimePart class also has available class methods that its metaclass, the Class class, defines.

9.2.1. New (class) method

>>--new(--+--------+--)--><
 +--type--+

This is a class method. It returns an instance of the Section 9.2, “The MimePart Class” class.

type
(Optional) The mime type string. The default if not given is "text/plain".

Chapter 9. Mime Classes Reference

64

9.2.2. addContent method

>>--addContent(string)---><

This method adds content to the mime-content field. This filed may only contain ASCII strings.

string
The ASCII string to be added to the content.

9.2.3. content method

>>--content--><

This method returns the mime-content string.

9.2.4. description method

>>--description--><

>>--description(newdescription)--------------------------------><

This method sets or returns the mime-description string.

newdescription
The mime-description string.

9.2.5. disposition method

>>--disposition--><

>>--disposition(newdisposition)--------------------------------><

This method sets or returns the mime-disposition string.

newdisposition
The mime-disposition string.

encoding method

65

9.2.6. encoding method

>>--encoding---><

>>--encoding(newencoding)--------------------------------------><

This method sets or returns the mime-encoding string.

newencoding
The mime-encoding string.

9.2.7. id method

>>--id---><

>>--id(newid)--><

This method sets or returns the mime-id string.

newid
The mime-id string.

9.2.8. string method

>>--string---><

This method returns the formatted mime part string.

9.2.9. type method

>>--type---><

>>--type(newtype)--><

This method sets or returns the mime-type string.

newtype
The mime-type string.

Chapter 9. Mime Classes Reference

66

9.3. The MimeMultiPart Class

Table 9.2. ooRexx MimeMultiPart Class

Object

↓

Collection

new

add Part
description
disposition
encoding

id
string
type

Note

The MimeMultiPart class also has available class methods that its metaclass, the Class class,
defines.

9.3.1. New (class) method

>>--new(--+--------+--)--><
 +--type--+

This is a class method. It returns an instance of the Section 9.3, “The MimeMultiPart Class” class.

type
(Optional) The mime type string. The default if not given is "multipart/mixed".

9.3.2. addPart method

>>--addPart(part)--><

This method adds a new part to the mime object. part must be a

part
The part to be added. The part must be an instance of the Section 9.2, “The MimePart Class”.

9.3.3. description method

disposition method

67

>>--description--><

>>--description(newdescription)--------------------------------><

This method sets or returns the mime-description string.

newdescription
The mime-description string.

9.3.4. disposition method

>>--disposition--><

>>--disposition(newdisposition)--------------------------------><

This method sets or returns the mime-disposition string.

newdisposition
The mime-disposition string.

9.3.5. encoding method

>>--encoding---><

>>--encoding(newencoding)--------------------------------------><

This method sets or returns the mime-encoding string.

newencoding
The mime-encoding string.

9.3.6. id method

>>--id---><

>>--id(newid)--><

This method sets or returns the mime-id string.

newid
The mime-id string.

Chapter 9. Mime Classes Reference

68

9.3.7. string method

>>--string---><

This method returns the formatted mime part string.

9.3.8. type method

>>--type---><

>>--type(newtype)--><

This method sets or returns the mime-type string.

newtype
The mime-type string.

69

Appendix A. Notices
Any reference to a non-open source product, program, or service is not intended to state or imply that
only non-open source product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any Rexx Language Association (RexxLA) intellectual
property right may be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-open source product, program, or service.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

Information concerning non-open source products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. RexxLA has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims related to
non-RexxLA packages. Questions on the capabilities of non-RexxLA packages should be addressed
to the suppliers of those products.

All statements regarding RexxLA's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to the names and addresses used by
an actual business enterprise is entirely coincidental.

A.1. Trademarks
Open Object Rexx™ and ooRexx™ are trademarks of the Rexx Language Association.

The following terms are trademarks of the IBM Corporation in the United States, other countries, or
both:

1-2-3
AIX
IBM
Lotus
OS/2
S/390
VisualAge

AMD is a trademark of Advance Micro Devices, Inc.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the Unites States,
other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Appendix A. Notices

70

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

A.2. Source Code For This Document
The source code for this document is available under the terms of the Common Public License v1.0
which accompanies this distribution and is available in the appendix Appendix B, Common Public
License Version 1.0. The source code itself is available at http://sourceforge.net/project/
showfiles.php?group_id=119701.

The source code for this document is maintained in DocBook SGML/XML format.

71

Appendix B. Common Public License
Version 1.0
THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

B.1. Definitions
"Contribution" means:

1. in the case of the initial Contributor, the initial code and documentation distributed under this
Agreement, and

2. in the case of each subsequent Contributor:
a. changes to the Program, and

b. additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by that
particular Contributor. A Contribution 'originates' from a Contributor if it was added to the Program
by such Contributor itself or anyone acting on such Contributor's behalf. Contributions do not include
additions to the Program which: (i) are separate modules of software distributed in conjunction with the
Program under their own license agreement, and (ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by
the use or sale of its Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement, including all Contributors.

B.2. Grant of Rights
1. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,

worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly
display, publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

2. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell,
import and otherwise transfer the Contribution of such Contributor, if any, in source code and
object code form. This patent license shall apply to the combination of the Contribution and
the Program if, at the time the Contribution is added by the Contributor, such addition of the
Contribution causes such combination to be covered by the Licensed Patents. The patent license
shall not apply to any other combinations which include the Contribution. No hardware per se is
licensed hereunder.

3. Recipient understands that although each Contributor grants the licenses to its Contributions
set forth herein, no assurances are provided by any Contributor that the Program does not
infringe the patent or other intellectual property rights of any other entity. Each Contributor
disclaims any liability to Recipient for claims brought by any other entity based on infringement

Appendix B. Common Public License Version 1.0

72

of intellectual property rights or otherwise. As a condition to exercising the rights and licenses
granted hereunder, each Recipient hereby assumes sole responsibility to secure any other
intellectual property rights needed, if any. For example, if a third party patent license is required
to allow Recipient to distribute the Program, it is Recipient's responsibility to acquire that license
before distributing the Program.

4. Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

B.3. Requirements
A Contributor may choose to distribute the Program in object code form under its own license
agreement, provided that:

1. it complies with the terms and conditions of this Agreement; and

2. its license agreement:

a. effectively disclaims on behalf of all Contributors all warranties and conditions, express and
implied, including warranties or conditions of title and non-infringement, and implied warranties
or conditions of merchantability and fitness for a particular purpose;

b. effectively excludes on behalf of all Contributors all liability for damages, including direct,
indirect, special, incidental and consequential damages, such as lost profits;

c. states that any provisions which differ from this Agreement are offered by that Contributor
alone and not by any other party; and

d. states that source code for the Program is available from such Contributor, and informs
licensees how to obtain it in a reasonable manner on or through a medium customarily used
for software exchange.

When the Program is made available in source code form:

1. it must be made available under this Agreement; and

2. a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that
reasonably allows subsequent Recipients to identify the originator of the Contribution.

B.4. Commercial Distribution
Commercial distributors of software may accept certain responsibilities with respect to end users,
business partners and the like. While this license is intended to facilitate the commercial use of the
Program, the Contributor who includes the Program in a commercial product offering should do so
in a manner which does not create potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor ("Commercial Contributor")
hereby agrees to defend and indemnify every other Contributor ("Indemnified Contributor") against
any losses, damages and costs (collectively "Losses") arising from claims, lawsuits and other legal
actions brought by a third party against the Indemnified Contributor to the extent caused by the acts
or omissions of such Commercial Contributor in connection with its distribution of the Program in
a commercial product offering. The obligations in this section do not apply to any claims or Losses
relating to any actual or alleged intellectual property infringement. In order to qualify, an Indemnified

No Warranty

73

Contributor must: a) promptly notify the Commercial Contributor in writing of such claim, and b) allow
the Commercial Contributor to control, and cooperate with the Commercial Contributor in, the defense
and any related settlement negotiations. The Indemnified Contributor may participate in any such
claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering, Product
X. That Contributor is then a Commercial Contributor. If that Commercial Contributor then makes
performance claims, or offers warranties related to Product X, those performance claims and
warranties are such Commercial Contributor's responsibility alone. Under this section, the Commercial
Contributor would have to defend claims against the other Contributors related to those performance
claims and warranties, and if a court requires any other Contributor to pay any damages as a result,
the Commercial Contributor must pay those damages.

B.5. No Warranty
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED ON
AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS
OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF
TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Each Recipient is solely responsible for determining the appropriateness of using and distributing the
Program and assumes all risks associated with its exercise of rights under this Agreement, including
but not limited to the risks and costs of program errors, compliance with applicable laws, damage to or
loss of data, programs or equipment, and unavailability or interruption of operations.

B.6. Disclaimer of Liability
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION
LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE
OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

B.7. General
If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this Agreement, and without further action
by the parties hereto, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to
software (including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by
that Contributor to such Recipient under this Agreement shall terminate as of the date such litigation
is filed. In addition, if Recipient institutes patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program with
other software or hardware) infringes such Recipient's patent(s), then such Recipient's rights granted
under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient's rights under this Agreement shall terminate if it fails to comply with any of the material
terms or conditions of this Agreement and does not cure such failure in a reasonable period of time
after becoming aware of such noncompliance. If all Recipient's rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as reasonably practicable.

Appendix B. Common Public License Version 1.0

74

However, Recipient's obligations under this Agreement and any licenses granted by Recipient relating
to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid
inconsistency the Agreement is copyrighted and may only be modified in the following manner.
The Agreement Steward reserves the right to publish new versions (including revisions) of this
Agreement from time to time. No one other than the Agreement Steward has the right to modify
this Agreement. IBM is the initial Agreement Steward. IBM may assign the responsibility to serve
as the Agreement Steward to a suitable separate entity. Each new version of the Agreement will
be given a distinguishing version number. The Program (including Contributions) may always be
distributed subject to the version of the Agreement under which it was received. In addition, after a
new version of the Agreement is published, Contributor may elect to distribute the Program (including
its Contributions) under the new version. Except as expressly stated in Sections 2(a) and 2(b) above,
Recipient receives no rights or licenses to the intellectual property of any Contributor under this
Agreement, whether expressly, by implication, estoppel or otherwise. All rights in the Program not
expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of
the United States of America. No party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives its rights to a jury trial in any
resulting litigation.

75

Appendix C. Revision History
Revision 0-0 Tue Aug 7 2012 David Ashley

Initial creation of book by publican

76

77

Index
A
accept method

of Socket class, 40
accepting a socket connection, 10
addContent method

of MimePart class, 64
addPart method

of MimeMultiPart class, 66
addr method

of HostInfo class, 46
addRecipient method

of SMTPMsg class, 61
address method

of HostInfo class, 46
of InetAddress class, 44

address= method
of InetAddress class, 44

alias method
of HostInfo class, 47

arrayIn method
of StreamSocket class, 53

arrayOut method
of StreamSocket class, 53

authid method
of SMTP class, 58

B
bind method

of Socket class, 40
binding to a port, 12

C
charIn method

of StreamSocket class, 53
charOut method

of StreamSocket class, 53
chars method

of StreamSocket class, 53
class

SMTP class, 57
SMTPMsg class, 60
StreamSocket class, 51

class method
new

of Socket class, 42
class, mime, 63
class, SMTP, 57
class, socket, 39
class, StreamSocket, 51
close method

of Socket class, 40

of StreamSocket class, 54
closing a socket, 13, 36
cmdresponse method

of SMTP class, 58
Common Public License, 71
connect

of Socket class, 40
connect method

of SMTP class, 58
connect to a host, 14
connection, accepting a socket, 10
connection, listen on a socket for a, 23
content method

of MimePart class, 64
of SMTPMsg class, 61

CPL, 71

D
data on socket, receive, 24, 26
data on socket, send, 29, 30
debug method

of SMTP class, 58
definition of a socket, 1
description method

of MimeMultiPart class, 66
of MimePart class, 64
of StreamSocket class, 54

description, RxSock, 1
disposition method

of MimeMultiPart class, 67
of MimePart class, 64

dropping functions, 10

E
encoding method

of MimeMultiPart class, 67
of MimePart class, 65

error messages, writing, 24
error, get last socket, 35
example

of Socket class, 47

F
family method

of InetAddress class, 45
family= method

of InetAddress class, 45
from method

of SMTPMsg class, 61
function

SockAccept, 10
SockBind, 12
SockClose, 13

Index

78

SockConnect, 14
SockDropFuncs, 10
SockGetHostByAddr, 16
SockGetHostById, 17
SockGetHostByName, 16
SockGetPeerName, 17
SockGetSockName, 18
SockGetSockOpt, 19
SockInit, 21
SockIoctl, 22
SockListen, 23
SockLoadFuncs, 10
SockPSock, 24
SockRecv, 24
SockRecvFrom, 26
SockSelect, 27
SockSend, 29
SockSendTo, 30
SockSetSockOpt, 31
SockShutDown, 34
SockSocket, 35
SockSock_Errno, 35
SockSoClose, 36
SockVersion, 10

function parameters, 5
function return values, 5
functions, dropping, 10
functions, list of, 9
functions, loading, 10
functions, version of, 10

G
get a new socket, 35
get last socket error, 35
getHostByAddr class method

of Socket class, 39
getHostByName class method

of Socket class, 39
getHostId class method

of Socket class, 40
getOption

of Socket class, 41
getPeerName

of Socket class, 41
getSockName

of Socket class, 41

H
host information, lookup, 16, 16
host name, lookup remote connected, 17
host, connect to a, 14

I
id method

of MimeMultiPart class, 67
of MimePart class, 65

init method
of HostInfo class, 47
of InetAddress class, 45

initialize a socket, 21
installation, mime class, 63
installation, RxSock, 3
installation, socket class, 39
installation, streamsocket class, 51, 57
ioctl

of Socket class, 42

L
License, Common Public, 71
License, Open Object Rexx, 71
lineIn method

of StreamSocket class, 54
lineOut method

of StreamSocket class, 54
lines method

of StreamSocket class, 55
list of functions, 9
listen

of Socket class, 42
listen on a socket for a connection, 23
loading functions, 10
local host ip address, lookup, 17
local socket name, lookup, 18
localhost method

of SMTP class, 59
logoff method

of SMTP class, 59
lookup host information, 16, 16
lookup local host ip address, 17
lookup local socket name, 18
lookup remote connected host name, 17

M
makeStem method

of HostInfo class, 47
of InetAddress class, 45

method
accept method

of Socket class, 40
addContent method

of MimePart class, 64
addPart method

of MimeMultiPart class, 66
addr method

of HostInfo class, 46

79

addRecipient method
of SMTPMsg class, 61

address method
of HostInfo class, 46
of InetAddress class, 44

address= method
of InetAddress class, 44

alias method
of HostInfo class, 47

arrayIn method
of StreamSocket class, 53

arrayOut method
of StreamSocket class, 53

authid method
of SMTP class, 58

bind method
of Socket class, 40

charIn method
of StreamSocket class, 53

charOut method
of StreamSocket class, 53

chars method
of StreamSocket class, 53

close method
of Socket class, 40
of StreamSocket class, 54

cmdresponse method
of SMTP class, 58

connect
of Socket class, 40

connect method
of SMTP class, 58

content method
of MimePart class, 64
of SMTPMsg class, 61

debug method
of SMTP class, 58

description method
of MimeMultiPart class, 66
of MimePart class, 64
of StreamSocket class, 54

disposition method
of MimeMultiPart class, 67
of MimePart class, 64

encoding method
of MimeMultiPart class, 67
of MimePart class, 65

family method
of InetAddress class, 45

family= method
of InetAddress class, 45

from method
of SMTPMsg class, 61

getHostByAddr class method

of Socket class, 39
getHostByName class method

of Socket class, 39
getHostId class method

of Socket class, 40
getOption

of Socket class, 41
getPeerName

of Socket class, 41
getSockName

of Socket class, 41
id method

of MimeMultiPart class, 67
of MimePart class, 65

init method
of HostInfo class, 47
of InetAddress class, 45

ioctl
of Socket class, 42

lineIn method
of StreamSocket class, 54

lineOut method
of StreamSocket class, 54

lines method
of StreamSocket class, 55

listen
of Socket class, 42

localhost method
of SMTP class, 59

logoff method
of SMTP class, 59

makeStem method
of HostInfo class, 47
of InetAddress class, 45

name method
of HostInfo class, 47

New class method
of MimeMultiPart class, 66
of MimePart class, 63

new method
of SMTP class, 57
of SMTPMsg class, 60
of StreamSocket class, 52

open method
of StreamSocket class, 55

password method
of SMTP class, 59

port method
of InetAddress class, 46

port= method
of InetAddress class, 46

position method
of StreamSocket class, 55

recipients method

Index

80

of SMTPMsg class, 61
recv

of Socket class, 42
recvFrom

of Socket class, 43
response method

of SMTP class, 59
say method

of StreamSocket class, 55
seclect

of Socket class, 43
send

of Socket class, 43
send method

of SMTP class, 59
setOption

of Socket class, 44
smtperrno method

of SMTP class, 60
state method

of StreamSocket class, 55
string

of Socket class, 44
string method

of MimeMultiPart class, 68
of MimePart class, 65
of StreamSocket class, 56

subject method
of SMTPMsg class, 61

type method
of MimeMultiPart class, 68
of MimePart class, 65

mime class, 63
mime class installation, 63
monitor a socket, 27

N
name method

of HostInfo class, 47
new

of Socket class, 42
New class method

of MimeMultiPart class, 66
of MimePart class, 63

new method
of SMTP class, 57
of SMTPMsg class, 60
of StreamSocket class, 52

new socket, get a, 35
Notices, 69

O
ooRexx License, 71

open method
of StreamSocket class, 55

Open Object Rexx License, 71
option of a socket, set an, 31

P
parameters, function, 5
password method

of SMTP class, 59
port method

of InetAddress class, 46
port, binding to a, 12
port= method

of InetAddress class, 46
position method

of StreamSocket class, 55

R
receive data on socket, 24, 26
recipients method

of SMTPMsg class, 61
recv

of Socket class, 42
recvFrom

of Socket class, 43
registering functions, 10
response method

of SMTP class, 59
retrieve socket options, 19
return values, function, 5
RxSock description, 1
RxSock installation, 3

S
say method

of StreamSocket class, 55
select

of Socket class, 43
send

of Socket class, 43
send data on socket, 29, 30
send method

of SMTP class, 59
set an option of a socket, 31
setOption

of Socket class, 44
shutdown a socket, 34
SMTP class, 57, 57
smtperrno method

of SMTP class, 60
SMTPMsg class, 60
SockAccept, 10
SockBind, 12

81

SockClose, 13
SockConnect, 14
SockDropFuncs, 10
socket class, 39
Socket class example, 47
socket class installation, 39
socket error, get last, 35
socket options, retrieve, 19
socket special operations, 22
socket, definition of a, 1
socket, get a new, 35
socket, initialize a, 21
socket, monitor a, 27
socket, shutdown a, 34
socket, status of a, 27
SockGetHostAddr, 16
SockGetHostId, 17
SockGetHostName, 16
SockGetPeerName, 17
SockGetSockName, 18
SockGetSockOpt, 19
SockInit, 21
SockIoctl, 22
SockListen, 23
SockLoadFuncs, 10
SockPSock, 24
SockRecv, 24
SockRecvFrom, 26
SockSelect, 27
SockSend, 29
SockSendTo, 30
SockSetSockOpt, 31
SockShutDown, 34
SockSocket, 35
SockSock_Errno, 35
SockSoClose, 36
SockVersion, 10
special operations, socket, 22
special variables, 7
state method

of StreamSocket class, 55
status of a socket, 27
stem variables, usage of, 6
StreamSocket class, 51, 51
streamsocket class installation, 51, 57
string

of Socket class, 44
string method

of MimeMultiPart class, 68
of MimePart class, 65
of StreamSocket class, 56

subject method
of SMTPMsg class, 61

T
TCP/IP, 1
type method

of MimeMultiPart class, 68
of MimePart class, 65

U
usage of stem variables, 6

V
variables, special, 7
version of functions, 10

W
writing error messages, 24

82

	Open Object Rexx™
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. How to Read the Syntax Diagrams
	3. Getting Help and Submitting Feedback
	3.1. The Open Object Rexx SourceForge Site
	3.2. The Rexx Language Association Mailing List
	3.3. comp.lang.rexx Newsgroup

	4. Related Information

	Chapter 1. What is RxSock?
	Chapter 2. Installation and Removal
	Chapter 3. Parameters and Return Values
	3.1. Stem Variables

	Chapter 4. Special Variables
	Chapter 5. Function Reference
	5.1. SockLoadFuncs
	5.2. SockDropFuncs
	5.3. SockVersion
	5.4. SockAccept
	5.5. SockBind
	5.6. SockClose
	5.7. SockConnect
	5.8. SockGetHostByAddr
	5.9. SockGetHostByName
	5.10. SockGetHostId
	5.11. SockGetPeerName
	5.12. SockGetSockName
	5.13. SockGetSockOpt
	5.14. SockInit
	5.15. SockIoctl
	5.16. SockListen
	5.17. SockPSock_Errno
	5.18. SockRecv
	5.19. SockRecvFrom
	5.20. SockSelect
	5.21. SockSend
	5.22. SockSendTo
	5.23. SockSetSockOpt
	5.24. SockShutDown
	5.25. SockSock_Errno
	5.26. SockSocket
	5.27. SockSoClose

	Chapter 6. Socket Class Reference
	6.1. Installation
	6.2. The Socket Class
	6.2.1. getHostByAddr (class) method
	6.2.2. getHostByName (class) method
	6.2.3. getHostId (class) method
	6.2.4. accept method
	6.2.5. bind method
	6.2.6. close method
	6.2.7. connect method
	6.2.8. getOption method
	6.2.9. getPeerName method
	6.2.10. getSockName method
	6.2.11. new (class) method
	6.2.12. ioctl method
	6.2.13. listen method
	6.2.14. recv method
	6.2.15. recvFrom method
	6.2.16. select method
	6.2.17. Send method
	6.2.18. setOption method
	6.2.19. string method

	6.3. The InetAddress Class
	6.3.1. address method
	6.3.2. address= method
	6.3.2.1. family method)
	6.3.2.2. family= method
	6.3.2.3. init method
	6.3.2.4. makeStem method
	6.3.2.5. port method
	6.3.2.6. port= method

	6.3.3. The HostInfo Class
	6.3.3.1. addr method
	6.3.3.2. address method
	6.3.3.3. alias method
	6.3.3.4. name method
	6.3.3.5. init method
	6.3.3.6. makeStem method

	6.4. Socket Class Example

	Chapter 7. StreamSocket Class Reference
	7.1. Installation
	7.2. The StreamSocket Class
	7.2.1. Inherited Methods
	7.2.2. new (Inherited Class Method)
	7.2.3. arrayIn
	7.2.4. arrayOut
	7.2.5. charIn
	7.2.6. charOut
	7.2.7. chars
	7.2.8. close
	7.2.9. description
	7.2.10. lineIn
	7.2.11. lineOut
	7.2.12. lines
	7.2.13. open
	7.2.14. position
	7.2.15. say
	7.2.16. state
	7.2.17. string

	Chapter 8. SMTP Class Reference
	8.1. Installation
	8.2. The SMTP Class
	8.2.1. new (Class Method)
	8.2.2. authid
	8.2.3. cmdrespomse
	8.2.4. connect
	8.2.5. debug
	8.2.6. localhost
	8.2.7. logoff
	8.2.8. password
	8.2.9. response
	8.2.10. send
	8.2.11. smtperrno

	8.3. The SMTPMsg Class
	8.3.1. new (Class Method)
	8.3.2. addRecipient
	8.3.3. content
	8.3.4. from
	8.3.5. recipients
	8.3.6. subject

	Chapter 9. Mime Classes Reference
	9.1. Installation
	9.2. The MimePart Class
	9.2.1. New (class) method
	9.2.2. addContent method
	9.2.3. content method
	9.2.4. description method
	9.2.5. disposition method
	9.2.6. encoding method
	9.2.7. id method
	9.2.8. string method
	9.2.9. type method

	9.3. The MimeMultiPart Class
	9.3.1. New (class) method
	9.3.2. addPart method
	9.3.3. description method
	9.3.4. disposition method
	9.3.5. encoding method
	9.3.6. id method
	9.3.7. string method
	9.3.8. type method

	Appendix A. Notices
	A.1. Trademarks
	A.2. Source Code For This Document

	Appendix B. Common Public License Version 1.0
	B.1. Definitions
	B.2. Grant of Rights
	B.3. Requirements
	B.4. Commercial Distribution
	B.5. No Warranty
	B.6. Disclaimer of Liability
	B.7. General

	Appendix C. Revision History
	Index

