Go to the documentation of this file.
7 #ifndef __IPTNLPADAPTER_HPP__
8 #define __IPTNLPADAPTER_HPP__
19 class ExpansionMatrix;
20 class ExpansionMatrixSpace;
22 class TDependencyDetector;
54 const std::string& prefix
188 Number regularization_size,
217 ONLY_SECOND_ORDER_TEST
230 Index deriv_test_start_index
294 const Index* x_not_fixed_map,
301 std::list<Index>& c_deps);
DECLARE_STD_EXCEPTION(ERROR_IN_TNLP_DERIVATIVE_TEST)
Index num_linear_variables_
Number of linear variables.
bool CheckDerivatives(DerivativeTestEnum deriv_test, Index deriv_test_start_index)
Method for performing the derivative test.
Number tol_
Overall convergence tolerance.
bool update_local_lambda(const Vector &y_c, const Vector &y_d)
Number nlp_lower_bound_inf_
Value for a lower bound that denotes -infinity.
virtual bool Eval_d(const Vector &x, Vector &d)
SmartPtr< ExpansionMatrix > P_d_g_
bool internal_eval_g(bool new_x)
Class to organize all the data required by the algorithm.
HessianApproximationType
enumeration for the Hessian information type.
SmartPtr< TNLP > tnlp_
Pointer to the TNLP class (class specific to Number* vectors and triplet matrices)
Index * findiff_jac_postriplet_
Position of entry in original triplet matrix.
Index n_full_g_
full dimension of g (c + d)
virtual bool Eval_grad_f(const Vector &x, Vector &g_f)
virtual bool IntermediateCallBack(AlgorithmMode mode, Index iter, Number obj_value, Number inf_pr, Number inf_du, Number mu, Number d_norm, Number regularization_size, Number alpha_du, Number alpha_pr, Index ls_trials, const IpoptData *ip_data, IpoptCalculatedQuantities *ip_cq)
This method is called once per iteration, after the iteration summary output has been printed.
virtual bool ProcessOptions(const OptionsList &options, const std::string &prefix)
Overload if you want the chance to process options or parameters that may be specific to the NLP.
SmartPtr< ExpansionMatrix > P_c_g_
Number findiff_perturbation_
Size of the perturbation for the derivative approximation.
Number * c_rhs_
the values for the full jacobian of g
bool DetermineDependentConstraints(Index n_x_var, const Index *x_not_fixed_map, const Number *x_l, const Number *x_u, const Number *g_l, const Number *g_u, Index n_c, const Index *c_map, std::list< Index > &c_deps)
virtual void FinalizeSolution(SolverReturn status, const Vector &x, const Vector &z_L, const Vector &z_U, const Vector &c, const Vector &d, const Vector &y_c, const Vector &y_d, Number obj_value, const IpoptData *ip_data, IpoptCalculatedQuantities *ip_cq)
This method is called at the very end of the optimization.
Index findiff_jac_nnz_
Number of unique nonzeros in constraint Jacobian.
Class for all IPOPT specific calculated quantities.
TNLPAdapter(const TNLPAdapter &)
Copy Constructor.
static void RegisterOptions(SmartPtr< RegisteredOptions > roptions)
DerivativeTestEnum derivative_test_
Maximal slack for one-sidedly bounded variables.
This file contains a base class for all exceptions and a set of macros to help with exceptions.
FixedVariableTreatmentEnum
Enum for treatment of fixed variables option.
double Number
Type of all numbers.
virtual bool GetSpaces(SmartPtr< const VectorSpace > &x_space, SmartPtr< const VectorSpace > &c_space, SmartPtr< const VectorSpace > &d_space, SmartPtr< const VectorSpace > &x_l_space, SmartPtr< const MatrixSpace > &px_l_space, SmartPtr< const VectorSpace > &x_u_space, SmartPtr< const MatrixSpace > &px_u_space, SmartPtr< const VectorSpace > &d_l_space, SmartPtr< const MatrixSpace > &pd_l_space, SmartPtr< const VectorSpace > &d_u_space, SmartPtr< const MatrixSpace > &pd_u_space, SmartPtr< const MatrixSpace > &Jac_c_space, SmartPtr< const MatrixSpace > &Jac_d_space, SmartPtr< const SymMatrixSpace > &Hess_lagrangian_space)
Method for creating the derived vector / matrix types.
Number derivative_test_perturbation_
Size of the perturbation for the derivative test.
SmartPtr< ExpansionMatrix > P_x_x_L_
Expansion from fixed x_L (ipopt) to full x.
void ResortX(const Vector &x, Number *x_orig)
Sort the primal variables, and add the fixed values in x.
SmartPtr< ExpansionMatrixSpace > P_x_x_L_space_
virtual bool GetBoundsInformation(const Matrix &Px_L, Vector &x_L, const Matrix &Px_U, Vector &x_U, const Matrix &Pd_L, Vector &d_L, const Matrix &Pd_U, Vector &d_U)
Method for obtaining the bounds information.
SmartPtr< ExpansionMatrixSpace > P_c_g_space_
Expansion from c only (ipopt) to full ampl c.
void ResortBnds(const Vector &x_L, Number *x_L_orig, const Vector &x_U, Number *x_U_orig)
virtual bool Eval_c(const Vector &x, Vector &c)
Index nz_full_jac_g_
number of non-zeros in full-size Jacobian of g
Index n_x_fixed_
Number of fixed variables.
FixedVariableTreatmentEnum fixed_variable_treatment_
Flag indicating how fixed variables should be handled.
bool dependency_detection_with_rhs_
Flag indicating if rhs should be considered during dependency detection.
Number * findiff_x_u_
Copy of the upper bounds.
SmartPtr< const VectorSpace > d_space_
Number bound_relax_factor_
Determines relaxation of fixing bound for RELAX_BOUNDS.
Index nz_h_
number of non-zeros in the non-fixed-size Hessian
bool internal_eval_jac_g(bool new_x)
int Index
Type of all indices of vectors, matrices etc.
SmartPtr< const MatrixSpace > pd_u_space_
HessianApproximationType hessian_approximation_
Flag indicating what Hessian information is to be used.
Template class for Smart Pointers.
Number * full_g_
copy of lambda (yc & yd)
virtual bool GetWarmStartIterate(IteratesVector &warm_start_iterate)
Method for obtaining an entire iterate as a warmstart point.
virtual bool Eval_jac_c(const Vector &x, Matrix &jac_c)
Number * findiff_x_l_
Copy of the lower bounds.
bool warm_start_same_structure_
Flag indicating whether the TNLP with identical structure has already been solved before.
virtual void GetScalingParameters(const SmartPtr< const VectorSpace > x_space, const SmartPtr< const VectorSpace > c_space, const SmartPtr< const VectorSpace > d_space, Number &obj_scaling, SmartPtr< Vector > &x_scaling, SmartPtr< Vector > &c_scaling, SmartPtr< Vector > &d_scaling) const
Routines to get the scaling parameters.
virtual bool Eval_jac_d(const Vector &x, Matrix &jac_d)
Number point_perturbation_radius_
Maximal perturbation of the initial point.
SmartPtr< const VectorSpace > x_space_
SmartPtr< const MatrixSpace > px_l_space_
Index nz_jac_c_
non-zeros of the jacobian of c
SmartPtr< const VectorSpace > x_l_space_
SmartPtr< ExpansionMatrixSpace > P_x_x_U_space_
Index * x_fixed_map_
Position of fixed variables.
SmartPtr< const SymMatrixSpace > Hess_lagrangian_space_
Index derivative_test_first_index_
Index of first quantity to be checked.
This class adapts the TNLP interface so it looks like an NLP interface.
Number * jac_g_
copy of g (c & d)
SmartPtr< const VectorSpace > d_l_space_
bool update_local_x(const Vector &x)
bool derivative_test_print_all_
Flag indicating if all test values should be printed, or only those violating the threshold.
virtual bool Eval_h(const Vector &x, Number obj_factor, const Vector &yc, const Vector &yd, SymMatrix &h)
SmartPtr< ExpansionMatrixSpace > P_x_full_x_space_
SmartPtr< const MatrixSpace > Jac_d_space_
void operator=(const TNLPAdapter &)
Default Assignment Operator.
SmartPtr< const VectorSpace > c_space_
SmartPtr< TDependencyDetector > dependency_detector_
Object that can be used to detect linearly dependent rows in the equality constraint Jacobian.
virtual void GetQuasiNewtonApproximationSpaces(SmartPtr< VectorSpace > &approx_space, SmartPtr< Matrix > &P_approx)
Method returning information on quasi-Newton approximation.
TaggedObject::Tag y_c_tag_for_iterates_
This is the base class for all derived symmetric matrix types.
DerivativeTestEnum
Enum for specifying which derivative test is to be performed.
SmartPtr< const VectorSpace > x_u_space_
Index nz_jac_c_no_extra_
non-zeros of the jacobian of c without added constraints for fixed variables.
Number derivative_test_tol_
Relative threshold for marking deviation from finite difference test.
JacobianApproxEnum jacobian_approximation_
Flag indicating how Jacobian is computed.
Number * full_lambda_
copy of the full x vector (fixed & non-fixed)
SmartPtr< const VectorSpace > d_u_space_
virtual ~TNLPAdapter()
Default destructor.
TaggedObject::Tag x_tag_for_iterates_
unsigned int Tag
Type for the Tag values.
SmartPtr< const MatrixSpace > Jac_c_space_
void ResortG(const Vector &c, const Vector &d, Number *g_orig)
SmartPtr< const MatrixSpace > pd_l_space_
Index * findiff_jac_ia_
Start position for nonzero indices in ja for each column of Jacobian.
void initialize_findiff_jac(const Index *iRow, const Index *jCol)
Initialize sparsity structure for finite difference Jacobian.
SmartPtr< TNLP > tnlp() const
Accessor method for the underlying TNLP.
Index nz_jac_d_
non-zeros of the jacobian of d
SolverReturn
enum for the return from the optimize algorithm
TNLPAdapter(const SmartPtr< TNLP > tnlp, const SmartPtr< const Journalist > jnlst=NULL)
Default constructor.
SmartPtr< ExpansionMatrixSpace > P_d_g_space_
Expansion from d only (ipopt) to full ampl d.
JacobianApproxEnum
Enum for specifying technique for computing Jacobian.
This class stores a list of user set options.
DECLARE_STD_EXCEPTION(INVALID_TNLP)
TaggedObject::Tag y_d_tag_for_iterates_
TNLP::IndexStyleEnum index_style_
Numbering style of variables and constraints.
Number nlp_upper_bound_inf_
Value for a upper bound that denotes infinity.
virtual bool GetStartingPoint(SmartPtr< Vector > x, bool need_x, SmartPtr< Vector > y_c, bool need_y_c, SmartPtr< Vector > y_d, bool need_y_d, SmartPtr< Vector > z_L, bool need_z_L, SmartPtr< Vector > z_U, bool need_z_U)
Method for obtaining the starting point for all the iterates.
Index * findiff_jac_ja_
Ordered by columns, for each column the row indices in Jacobian.
SmartPtr< const MatrixSpace > px_u_space_
SmartPtr< const Journalist > jnlst_
Journalist.
Index n_full_x_
full dimension of x (fixed + non-fixed)
SmartPtr< ExpansionMatrix > P_x_full_x_
Expansion from fixed x (ipopt) to full x.
TaggedObject::Tag x_tag_for_jac_g_
TaggedObject::Tag x_tag_for_g_
AlgorithmMode
enum to indicate the mode in which the algorithm is
virtual bool Eval_f(const Vector &x, Number &f)
Index nz_full_h_
number of non-zeros in full-size Hessian
Specialized CompoundVector class specifically for the algorithm iterates.
SmartPtr< ExpansionMatrix > P_x_x_U_
Expansion from fixed x_U (ipopt) to full x.