6 #ifndef CRYPTOPP_POLYNOMI_H
7 #define CRYPTOPP_POLYNOMI_H
37 RandomizationParameter(
unsigned int coefficientCount,
const typename T::RandomizationParameter &coefficientParameter )
38 : m_coefficientCount(coefficientCount), m_coefficientParameter(coefficientParameter) {}
41 unsigned int m_coefficientCount;
42 typename T::RandomizationParameter m_coefficientParameter;
47 typedef typename T::Element CoefficientType;
57 : m_coefficients((size_t)count, ring.
Identity()) {}
61 : m_coefficients(t.m_coefficients.size()) {*
this = t;}
65 : m_coefficients(1, element) {}
69 : m_coefficients(begin, end) {}
85 {Randomize(rng, parameter, ring);}
91 int Degree(
const Ring &ring)
const {
return int(CoefficientCount(ring))-1;}
93 unsigned int CoefficientCount(
const Ring &ring)
const;
95 CoefficientType
GetCoefficient(
unsigned int i,
const Ring &ring)
const;
104 void Randomize(
RandomNumberGenerator &rng,
const RandomizationParameter ¶meter,
const Ring &ring);
107 void SetCoefficient(
unsigned int i,
const CoefficientType &value,
const Ring &ring);
110 void Negate(
const Ring &ring);
120 bool IsZero(
const Ring &ring)
const {
return CoefficientCount(ring)==0;}
130 bool IsUnit(
const Ring &ring)
const;
140 CoefficientType EvaluateAt(
const CoefficientType &x,
const Ring &ring)
const;
151 std::istream& Input(std::istream &in,
const Ring &ring);
152 std::ostream& Output(std::ostream &out,
const Ring &ring)
const;
156 void FromStr(
const char *str,
const Ring &ring);
158 std::vector<CoefficientType> m_coefficients;
170 typedef typename T::Element CoefficientType;
206 static const ThisType &Zero();
207 static const ThisType &One();
225 ThisType& operator=(
const ThisType& t) {B::operator=(t);
return *
this;}
227 ThisType& operator+=(
const ThisType& t) {Accumulate(t, ms_fixedRing);
return *
this;}
229 ThisType& operator-=(
const ThisType& t) {Reduce(t, ms_fixedRing);
return *
this;}
231 ThisType& operator*=(
const ThisType& t) {
return *
this = *
this*t;}
233 ThisType& operator/=(
const ThisType& t) {
return *
this = *
this/t;}
235 ThisType& operator%=(
const ThisType& t) {
return *
this = *
this%t;}
238 ThisType& operator<<=(
unsigned int n) {ShiftLeft(n, ms_fixedRing);
return *
this;}
240 ThisType& operator>>=(
unsigned int n) {ShiftRight(n, ms_fixedRing);
return *
this;}
246 void Randomize(
RandomNumberGenerator &rng,
const RandomizationParameter ¶meter) {B::Randomize(rng, parameter, ms_fixedRing);}
249 void Negate() {B::Negate(ms_fixedRing);}
251 void swap(ThisType &t) {B::swap(t);}
259 ThisType operator+()
const {
return *
this;}
261 ThisType operator-()
const {
return ThisType(Inverse(ms_fixedRing));}
267 friend ThisType operator>>(ThisType a,
unsigned int n) {
return ThisType(a>>=n);}
269 friend ThisType operator<<(ThisType a,
unsigned int n) {
return ThisType(a<<=n);}
275 ThisType MultiplicativeInverse()
const {
return ThisType(B::MultiplicativeInverse(ms_fixedRing));}
277 bool IsUnit()
const {
return B::IsUnit(ms_fixedRing);}
280 ThisType Doubled()
const {
return ThisType(B::Doubled(ms_fixedRing));}
282 ThisType Squared()
const {
return ThisType(B::Squared(ms_fixedRing));}
284 CoefficientType EvaluateAt(
const CoefficientType &x)
const {
return B::EvaluateAt(x, ms_fixedRing);}
294 friend std::istream& operator>>(std::istream& in, ThisType &a)
295 {
return a.Input(in, ms_fixedRing);}
297 friend std::ostream& operator<<(std::ostream& out,
const ThisType &a)
298 {
return a.Output(out, ms_fixedRing);}
302 struct NewOnePolynomial
304 ThisType * operator()()
const
306 return new ThisType(ms_fixedRing.MultiplicativeIdentity());
310 static const Ring ms_fixedRing;
317 typedef T CoefficientRing;
319 typedef typename Element::CoefficientType CoefficientType;
325 {
return Element(rng, parameter, m_ring);}
328 {
return a.Equals(b, m_ring);}
330 const Element& Identity()
const
331 {
return this->result = m_ring.Identity();}
334 {
return this->result = a.Plus(b, m_ring);}
337 {a.Accumulate(b, m_ring);
return a;}
340 {
return this->result = a.Inverse(m_ring);}
343 {
return this->result = a.Minus(b, m_ring);}
346 {
return a.Reduce(b, m_ring);}
349 {
return this->result = a.Doubled(m_ring);}
351 const Element& MultiplicativeIdentity()
const
352 {
return this->result = m_ring.MultiplicativeIdentity();}
355 {
return this->result = a.Times(b, m_ring);}
358 {
return this->result = a.Squared(m_ring);}
361 {
return a.IsUnit(m_ring);}
364 {
return this->result = a.MultiplicativeInverse(m_ring);}
367 {
return this->result = a.DividedBy(b, m_ring);}
370 {
return this->result = a.Modulo(b, m_ring);}
381 Element Interpolate(
const CoefficientType x[],
const CoefficientType y[],
unsigned int n)
const;
384 CoefficientType InterpolateAt(
const CoefficientType &position,
const CoefficientType x[],
const CoefficientType y[],
unsigned int n)
const;
391 void CalculateAlpha(std::vector<CoefficientType> &alpha,
const CoefficientType x[],
const CoefficientType y[],
unsigned int n)
const;
393 CoefficientRing m_ring;
396 template <
class Ring,
class Element>
397 void PrepareBulkPolynomialInterpolation(
const Ring &ring, Element *w,
const Element x[],
unsigned int n);
398 template <
class Ring,
class Element>
399 void PrepareBulkPolynomialInterpolationAt(
const Ring &ring, Element *v,
const Element &position,
const Element x[],
const Element w[],
unsigned int n);
400 template <
class Ring,
class Element>
401 Element BulkPolynomialInterpolateAt(
const Ring &ring,
const Element y[],
const Element v[],
unsigned int n);
404 template <
class T,
int instance>
405 inline bool operator==(
const CryptoPP::PolynomialOverFixedRing<T, instance> &a,
const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
406 {
return a.Equals(b, a.ms_fixedRing);}
408 template <
class T,
int instance>
409 inline bool operator!=(
const CryptoPP::PolynomialOverFixedRing<T, instance> &a,
const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
413 template <
class T,
int instance>
414 inline bool operator> (
const CryptoPP::PolynomialOverFixedRing<T, instance> &a,
const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
415 {
return a.Degree() > b.Degree();}
417 template <
class T,
int instance>
418 inline bool operator>=(
const CryptoPP::PolynomialOverFixedRing<T, instance> &a,
const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
419 {
return a.Degree() >= b.Degree();}
421 template <
class T,
int instance>
422 inline bool operator< (
const CryptoPP::PolynomialOverFixedRing<T, instance> &a,
const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
423 {
return a.Degree() < b.Degree();}
425 template <
class T,
int instance>
426 inline bool operator<=(
const CryptoPP::PolynomialOverFixedRing<T, instance> &a,
const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
427 {
return a.Degree() <= b.Degree();}
430 template <
class T,
int instance>
431 inline CryptoPP::PolynomialOverFixedRing<T, instance>
operator+(
const CryptoPP::PolynomialOverFixedRing<T, instance> &a,
const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
432 {
return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Plus(b, a.ms_fixedRing));}
434 template <
class T,
int instance>
435 inline CryptoPP::PolynomialOverFixedRing<T, instance>
operator-(
const CryptoPP::PolynomialOverFixedRing<T, instance> &a,
const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
436 {
return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Minus(b, a.ms_fixedRing));}
438 template <
class T,
int instance>
439 inline CryptoPP::PolynomialOverFixedRing<T, instance>
operator*(
const CryptoPP::PolynomialOverFixedRing<T, instance> &a,
const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
440 {
return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Times(b, a.ms_fixedRing));}
442 template <
class T,
int instance>
443 inline CryptoPP::PolynomialOverFixedRing<T, instance> operator/(
const CryptoPP::PolynomialOverFixedRing<T, instance> &a,
const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
444 {
return CryptoPP::PolynomialOverFixedRing<T, instance>(a.DividedBy(b, a.ms_fixedRing));}
446 template <
class T,
int instance>
447 inline CryptoPP::PolynomialOverFixedRing<T, instance> operator%(
const CryptoPP::PolynomialOverFixedRing<T, instance> &a,
const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
448 {
return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Modulo(b, a.ms_fixedRing));}
453 template<
class T>
inline void swap(CryptoPP::PolynomialOver<T> &a, CryptoPP::PolynomialOver<T> &b)
457 template<
class T,
int i>
inline void swap(CryptoPP::PolynomialOverFixedRing<T,i> &a, CryptoPP::PolynomialOverFixedRing<T,i> &b)