The wilcoxonp command will compute the polynomial for the Wilcoxon or Mann-Whitney test; it can take one or two parameters. If you enter
you will get
and if you enter
you will get
Given two lists, or one list and a real number (a median), the wilcoxons command will return the Wilcoxon or Mann-Whitney statistic. If you enter
you will get
and if you enter
you will get
The wilcoxont command will perform the Wilcoxon or Mann-Whitney test, given two samples or one sample and a number (a median). It can additionally take an optional third argument of a function and an optional fourth argument of a real number. If you enter
you will get
Mann-Whitney 2-sample test, H0 same Median, H1 <> ranksum 93.0, shifted ranksum 27.0 u1=83 ,u2=27, u=min(u1,u2)=27 Limit value to reject H0 26 P-value 9055/176358 (0.0513444244094), alpha=0.05 H0 not rejected 1 \end{center} If you enter \begin{center} \tt wilcoxont([1,3,4,5,7,8,8,12,15,17],[2,6,10,11,13,14,15,18,19,20],0.3) \end{center} you will get \begin{verbatim} Mann-Whitney 2-sample test, H0 same Median, H1 <> ranksum 81.5, shifted ranksum 26.5 u1=73.5 ,u2=26.5, u=min(u1,u2)=26.5 Limit value to reject H0 35 P-value 316/4199 (0.0752560133365), alpha=0.3 H0 rejected 0
and if you enter
you will get
Wilcoxon 1-sample test, H0 Median=10, H1 M<>10 Wilcoxon statistic: 18, p-value: 0.375, confidence level: 0.05 1