i1 : W = QQ[X, dX, Y, dY, Z, dZ, WeylAlgebra=>{X=>dX, Y=>dY, Z=>dZ}]
o1 = W
o1 : PolynomialRing
|
i3 : h = localCohom({1,2}, I)
o3 = HashTable{1 => subquotient (| -dY-dZ
| -ZdZ-1
2 => cokernel | -XYZ XY-XZ
------------------------------------------------------------------------
-Y+Z 0 0 0 dXdY+dXdZ dXY-dXZ XdX+1 0
-YZ -XdX-1 XdX-YdY -3dXZdZ-3dX dXZdZ+dX dXYZ XdXZ+Z dXYdY+dXZdZ+2dX
3XdX-2YdY-2ZdZ YdY+ZdZ+3 Y2dY-2YdYZ-2YZdZ+Z2dZ |
------------------------------------------------------------------------
0 |, | XY-XZ dY+dZ XdX+YdZ-ZdZ -YdZ+ZdZ+1 0 0 0
XdXdY+dY | | XYZ 0 0 0 YdY-ZdZ XdX-ZdZ ZdZ+1
------------------------------------------------------------------------
|)}
|
o3 : HashTable
|