
gi-docgen
Release 2021.1

Emmanuele Bassi

Sep 27, 2021

CONTENTS:

1 Using GI-DocGen 1

2 Project configuration 5

3 Linking items by name 9

4 Introspection attributes 13

5 Templates 15

6 Commands 17

7 Installation 23

8 Usage 25

9 Disclaimer 27

10 Copyright and Licensing terms 29

i

ii

CHAPTER

ONE

USING GI-DOCGEN

In order to use GI-DocGen, you will need:

• a library using GObject and generating introspection data as part of its build process

• a project configuration file

For the former, you should read the gobject-introspection documentation, which includes all the details on how to
write introspectable API.

1.1 Writing a project configuration file

The project configuration file provides some basic information describing your project, expressed in key/value pairs,
and will be exposed to the template system used when generating the API reference through gi-docgen. Not every
key is mandatory, and the template will decide whether or not use its value when generating the API reference. For
simplicity, we’re going to assume you’re using the “basic” template that is part of gi-docgen.

The project configuration file is written using ToML, and you can use the --config command line option for gi-
docgen.

We begin with the library preamble:

[library]
description = "The GTK toolkit"
authors = "GTK Development Team"
license = "GPL-2.1-or-later"
browse_url = "https://gitlab.gnome.org/GNOME/gtk/"
repository_url = "https://gitlab.gnome.org/GNOME/gtk.git"
website_url = "https://www.gtk.org"

The keys above will be used in the main landing page for the library.

If your project has dependencies, and you wish to display them or cross-link types and symbols from your API
reference, you will need to describe them using the dependencies key, for instance:

List the dependencies using their GIR namespace
dependencies = [

"GObject-2.0",
"Graphene-1.0",
"Pango-1.0",
"Gdk-4.0",
"Gsk-4.0",

]

Each dependency will need its own object, for instance:

1

https://gi.readthedocs.io/en/latest/
https://toml.io/en/

gi-docgen, Release 2021.1

[dependencies."GObject-2.0"]
name = "GObject"
description = "The base type system library"
docs_url = "https://developer.gnome.org/gobject/stable"

The name, description, and docs_url keys will be used when generating the list of dependencies on the main
landing page.

If you wish to add links to the source code repository for type and symbol declarations, as well as the location of the
documentation source, you will need a source-location section:

[source-location]
The base URL for the web UI
base_url = "https://gitlab.gnome.org/GNOME/gtk/-/blob/master/"
The format for links, using "filename" and "line" for the format
file_format = "{filename}#L{line}"

If your library has additional content, in the form of Markdown files that you wish to include in the generated API
reference, you can use the extra section:

[extra]
A list of Markdown files; they will be parsed using the
same rules as the documentation coming from the introspection
data. The path of each file is relative to the content
directory specified on the command line.
#
The order in which they are included will be used when
generating the index.
#
The generated files will be placed in the root output directory
content_files = [

"getting_started.md",
"building.md",
"compiling.md",
"running.md",
"question_index.md",
...

]
Additional images referenced by the documentation; their path
is relative to the content directory specified on the command
line.
#
The image files will be copied into the root documentation,
without replicating the directory structure in which they
are listed.
content_images = [

"images/aboutdialog.png",
"images/action-bar.png",
"images/appchooserbutton.png",
"images/appchooserdialog.png",
...

]

For more information about the project configuration, please see the :doc:project-configuration page.

2 Chapter 1. Using GI-DocGen

gi-docgen, Release 2021.1

1.2 Generating the API reference

Once you have a project configuration file, and the introspection data for the library you wish to document, all you
need is to launch the gi-docgen command line tool.

You will need to provide:

• the location of the project configuration file

• the location of the additional content files

• additional search paths for the dependencies

• the output directory for the generated files

• the location of the introspection file

A simple invocation for the installed Gtk-4.0.gir file is:

gi-docgen generate -C gtk4.toml /usr/share/gir-1.0/Gtk-4.0.gir

This will generate the API reference for the Gtk-4.0 namespace, and will put the generate files under the current
directory.

1.2. Generating the API reference 3

gi-docgen, Release 2021.1

4 Chapter 1. Using GI-DocGen

CHAPTER

TWO

PROJECT CONFIGURATION

Projects using gi-docgen should provide their own configuration file to describe how to generate their API reference.

The configuration file format uses ToML to provide key and value pairs that will be used by gi-docgen and, optionally,
by the templates themselves.

Project configuration takes precendence over gi-docgen’s defaults, but can be overridden by command line options,
where applicable.

2.1 Standard sections and keys

2.1.1 The library section

The library section is used to define the library configuration values that gi-docgen will pass to the templates, as
well as configuration switches that control the files generated by gi-docgen.

The following keys are used, if found:

version = s The version of the library. This is the actual version of the shared library, as opposed to the version of
the API as represented by the namespace.

authors = s The name of the authors of the library, as a string.

license = s The license of the documentation, as an SPDX identifier.

website_url = s The website for the library.

browse_url = s The website that can be used to browse the source code of the library.

logo_url = s The location of a logo image. This can be a local file, or a URL.

description = s A short description of the library.

dependencies = dict(s, dict(s, s) A dictionary of dependencies; each entry in the dictionary has a key
in the form of {namespace}-{version}, and values in the form of a dictionary with the following keys:
name, description, and docs_url.

devhelp = b Whether gi-docgen should generate a DevHelp file for the namespace.

search_index = b Whether gi-docgen should generate a search index file for the namespace.

5

https://toml.io/en/
https://spdx.org/licenses/

gi-docgen, Release 2021.1

2.1.2 The theme section

The theme section is used to define the theme being used by gi-docgen when generating the API reference of a
project.

The following keys are used, if found:

templates_dir = s The directory that contains the templates to be used by gi-docgen. The default directory is
inside the gi-docgen module directory. This key can be overridden by the --templates-dir command line
argument.

name = s The name of the template to use. The name is a sub-directory of the template_dir directory, and will
be used to load the template’s configuration file. This key can be overridden by the --theme-name command
line argument.

show_index_summary = b A boolean value that controls whether to show the summary of each symbol in the
namespace index.

show_class_hierarchy = b A boolean value that controls whether to generate a class graph with the ancestors
of a type, as well as the implemented interfaces. Requires the dot utility from GraphViz installed in the PATH.

2.1.3 The source-location section

The source-location section is used to define the location of the source code repository of a project to allow
gi-docgen to create links from the API reference to the definition of symbols and the source of the documentation
stanzas.

The following keys are used, if found:

base_url = s The base URL for accessing a file in the source code repository.

file_format = s The format string used to point to a file, and a line in that file; the string can contain the token
{filename}, which will be replaced with the basename of the file; and the token {line}, which will be
replaced with the line in the file. The default value for this key is: {filename}#L{line}.

2.1.4 The extra section

The extra section is used to define additional content used when generating the API reference of a project.

The following keys are used, if found:

content_files = list(s) A list of tuples. The first element of the tuple is a Markdown file name, relative to
the directories specified by the --content-dir command line arguments; the second element of the tuple is
the title used for the link to the content file. When generating the API reference, gi-docgen will transform the
Markdown file into an HTML one, using the same pre-processing filters applied to the documentation blocks
found in the introspection data. The generated HTML files will be placed in the root directory of the namespace.

content_images = list(s) A list of files, relative to the directories specified by the --content-dir com-
mand line arguments. The files will be copied in the root directory of the namespace.

urlmap_file = s Path of a JavaScript file that defines the mapping from namespaces to url prefixes for resolving
links to external symbols, as a JavaScript map with the name baseURLs:

baseURLs = [
['Pango', 'https://gnome.pages.gitlab.gnome.org/pango/Pango/'],
['PangoCairo', 'https://gnome.pages.gitlab.gnome.org/pango/PangoCairo/'],

]

6 Chapter 2. Project configuration

https://graphviz.org/

gi-docgen, Release 2021.1

2.2 Symbol overrides

2.2.1 Visibility

It is possible to override the visibility of types, properties, and symbols in the introspection data from within the project
configuration file.

The following example will hide the type Protected:

[[object]]
name = "Protected"
hidden = true

The type will be skipped when generating the API reference and the search index. This annotation applies to all
possible top-level types:

• aliases

• bitfields

• callbacks

• classes

• domains

• enums

• functions

• function macros

• interfaces

• records

• unions

The object key is always an array of dictionaries; each element in the array can have a name key, used to match the
object name exactly; or a pattern key, which uses a regular expression to match the object name.

Each object can contain the following keys:

• name: the name of the symbol to match exactly

• pattern: a regular expression to match the symbol name

• hidden: whether the symbol should be hidden from the documentation

• check_ignore: whether the symbol should be skipped when checking the documentation

Each element can also have the following sections:

• property

• signal

• constructor

• method

• function

Each one of these sections can contain array of objects.

The following example will hide the backend property on the Printer type:

2.2. Symbol overrides 7

gi-docgen, Release 2021.1

[[object]]
name = "Printer"

[[object.property]]
name = "backend"
hidden = true

The following example will hide the private-changed signal on the StyleProvider type:

[[object]]
name = "StyleProvider"

[[object.signal]]
name = "private-changed"
hidden = true

The following example will skip the quark function on the ParserError type when checking the documentation:

[[object]]
name = "ParserError"

[[object.function]]
name = "quark"
check_ignore = true

8 Chapter 2. Project configuration

CHAPTER

THREE

LINKING ITEMS BY NAME

Gi-docgen is capable of linking symbols across the same introspected namespace, by using a qualifier fragment and
the symbol name.

For instance:

/**
* ExampleFoo:

*
* This structure is related to [struct@Bar].

*/

/**
* example_foo_set_bar:

*
* Sets [struct@Example.Bar] on an instance of `Foo`.
*/

/**
* ExampleFoo:bar:

*
* Sets an instance of [`Bar`](struct.Bar.html) on `Foo`.
*/

will all link to Bar.

Backticks will be stripped, so [`class@Foo`] will correctly link to Foo.

The link can either be a fully qualified name, which includes the namespace; or a name relative to the current names-
pace; for instance, both of the following links will point to ExampleFoo when generating the documentation for the
“Example” namespace:

• [class@Foo]

• [class@Example.Foo]

The available qualifier fragments are:

9

gi-docgen, Release 2021.1

Fragment Description Example
alias An alias to another type [alias@Allocation]
callback A callback type [callback@Gtk.ListBoxForeachFunc]
class An object class [class@Widget], [class@Gdk.Surface],

[class@Gsk.RenderNode]
const A constant or pre-processor symbol [const@Gdk.KEY_q]
ctor A constructor function [ctor@Gtk.Box.new], [ctor@Button.

new_with_label]
enum A plain enumeration [enum@Orientation]
error A GError domain enumeration [error@Gtk.BuilderParseError]
flags A bitfield [flags@Gdk.ModifierType]
func A global or a type function [func@Gtk.init], [func@show_uri],

[func@Gtk.Window.list_toplevels]
iface A GTypeInterface [iface@Gtk.Buildable]
method An instance or class method [method@Gtk.Widget.show],

[method@WidgetClass.add_binding]
property A GObject property [property@Gtk.Orientable:orientation]
signal A GObject signal [signal@Gtk.RecentManager::changed]
struct A plain C structure or union [struct@Gtk.TextIter]
vfunc A virtual function in a class or inter-

face
[vfunc@Gtk.Widget.measure]

The generic type fragment, followed by a type, will look up the given type and generate the appropriate link for it.
The type can be fully qualified or relative to the current namespace:

// Equivalent to [class@Gtk.Window]
[type@Gtk.Window]

// Equivalent to [enum@Gtk.Orientation]
[type@Gtk.Orientation]

Anything that is a known type—aliases, callbacks, classes, constants, enumerations, interfaces, structures—can be
linked using the type fragment.

Additionally, the id fragment, followed by a C symbol identifier, will try to link to the function; for instance:

// Equivalent to [func@Gtk.show_uri], will link to gtk_show_uri()
[id@gtk_show_uri]

// Equivalent to [method@Gtk.Widget.show], will link to gtk_widget_show()
[id@gtk_widget_show]

The id fragment can only be used for symbols within the current namespace.

It’s important to note that the method and func fragments can have multiple meanings:

• the method fragment will match both instance and class methods, depending on the type used; for instance, to
match an instance method you should use the type name, and to match a class method you should use the class
name. The class method should not be confused with the vfunc fragment, which uses the type name and links
to virtual methods defined in the class or interface structure. Class methods take the class pointer as their first
argument, whereas virtual methods take the instance pointer as their first argument.

// will link to gtk_widget_show()
[method@Gtk.Widget.show]

(continues on next page)

10 Chapter 3. Linking items by name

gi-docgen, Release 2021.1

(continued from previous page)

// will link to gtk_widget_class_add_binding()
[method@Gtk.WidgetClass.add_binding]

// will link to GtkWidgetClass.show
[vfunc@Gtk.Widget.show]

• similarly, the func fragment will match global functions and type functions, depending on whether the link
contains a type or not. Additionally, func will match function macros, which are part of the global namespace.

// will link to gtk_show_uri()
[func@Gtk.show_uri]

// will link to gtk_window_list_toplevels()
[func@Gtk.Window.list_toplevels]

// will link to gtk_widget_class_bind_template_child()
[func@Gtk.widget_class_bind_template_child]

3.1 External Links

Gi-docgen can use the same syntax to point to symbols in other namespaces with gi-docgen-generated documentation,
as long as you provide it with a mapping from the namespace names to a base url for the docs. This is done by defining
a JavaScript map called baseURLs like this:

baseURLs = [
['Pango', 'https://gnome.pages.gitlab.gnome.org/pango/Pango/'],
['PangoCairo', 'https://gnome.pages.gitlab.gnome.org/pango/PangoCairo/'],

]

And specifying the path of the JavaScript file into the extras section of the project configuration, in the
urlmap_file key.

3.1. External Links 11

gi-docgen, Release 2021.1

12 Chapter 3. Linking items by name

CHAPTER

FOUR

INTROSPECTION ATTRIBUTES

GI-DocGen consumes the following attributes found in the introspection data when generating the API reference for
that data.

4.1 Properties

The following attributes apply to properties.

org.gtk.Property.get = s Defines the getter method for a given property. The value of the attribute is the C
symbol of the function.

org.gtk.Property.set = s Defines the setter method for a given property. The value of the attribute is the C
symbol of the function.

4.2 Methods

The following attributes apply to methods of a classed type or interface.

org.gtk.Method.set_property = s Defines the property set by the function. The property name must be in
the same type as the method

org.gtk.Method.get_property = s Defines the property retrieved by the function. The property name must
be in the same type as the method

org.gtk.Method.signal = s Defines the signal emitted by the function. The signal name must be in the same
type as the method

13

gi-docgen, Release 2021.1

14 Chapter 4. Introspection attributes

CHAPTER

FIVE

TEMPLATES

The generate command of gi-docgen uses Jinja2 templates to generate the HTML pages of the API reference from the
introspection data provided by a library.

5.1 Template configuration

Each template must contain a template configuration file, with the same name as the template all in lower case. The
template configuration format is ToML.

The template configuration file can contain the following sections:

5.1.1 The metadata section

Contains template metadata, like licensing and author information:

name = s The name of the template

author_name = s The name of the author of the template

author_email = s The email of the author of the template

copyright_year = s The copyright year of the template

license = s The license of the template, as an SPDX identifier.

5.1.2 The templates section

Contains the template files for each section of the template. If the key is not present, the default file name is used.

class = s The class template file. Default: class.html

interface = s The interface template file. Default: interface.html

property = s The property template file. Default: property.html

signal = s The signal template file. Default: signal.html

method = s The method template file. Default: method.html

vfunc = s The virtual method template file. Defalt: vfunc.html

type_func = s The type function template file. Default: type_func.html

ctor = s The constructor function template file. Default: type_func.html

class_method = s The class method template file. Default: class_method.html

15

https://palletsprojects.com/p/jinja/
https://spdx.org/licenses/

gi-docgen, Release 2021.1

error = s The error domain template file. Default: error.html

flags = s The bitfield template file. Default: flags.html

enum = s The enumeration template file. Default: enum.html

record = s The record template file. Default: record.html

union = s The union template file. Default: union.html

alias = s The alias template file. Default: alias.html

function = s The function template file. Default: function.html

constant = s The constant template file. Default: constant.html

namespace = s The namespace template file. Default: namespace.html

content = s The template file for additional content. Default: content.html

5.1.3 The css section

Contains style related data.

style = s The main CSS file for the template

5.1.4 Th extra_files section

Contains additional files that must be copied into the output directory after generating the reference.

files = list(s) A list of files needed by the template. Each file is relative to the template’s directory.

5.2 Template data

Each Jinja template file will be passed objects and additional data when gi-docgen renders the API reference.

All templates will receive:

• the CONFIG object, containing the project configuration

• the namespace object, containing the GIR namespace

Additionally, each template will receive a template object containing the information needed to render the template.

16 Chapter 5. Templates

CHAPTER

SIX

COMMANDS

6.1 gi-docgen generate

6.1.1 Generating the API reference from introspection data

SYNOPSIS

gi-docgen generate [OPTIONS. . .] [GIRFILE]

DESCRIPTION

The generate command generates the API reference from a GIR file.

GIR files are XML files that describe an API in a machine readable way, and are typically provided by a GObject
library.

OPTIONS

--add-include--path DIR Adds DIR to the list of paths used to find introspection data files included
in the given GIRFILE. The default search path for GIR files is $XDG_DATA_DIRS/gir-1.0 and
$XDG_DATA_HOME/gir-1.0; this option is typically used to include uninstalled GIR files, or non-standard
locations.

-C, --config FILE Loads a project configuration file.

--dry-run Only load the introspection data, without generating the reference.

--templates-dir DIR Look for templates under DIR. The default location for the templates directory is inside
the gi-docgen installation.

--content-dir DIR The directories for extra content, like additional files and images specified in the project
configuration file. This argument may be called multiple times to specify several lookup directories, content
files will be looked up in the content directories in the same order they are added.

--theme-name NAME The name of the template to use. Overrides the name specified by the project configuration
file.

--output-dir DIR Generates the reference under DIR.

--no-namespace-dir When specified, the files are directly generated under the output directory, instead of using
a sub-directory based on the namespace name and version.

17

gi-docgen, Release 2021.1

--section NAME Only generate the section NAME of the reference. Valid section names are:
aliases, bitfields, callbacks, classes, constants, domains, enums, functions,
function_macros, interfaces, structs, and unions. Additionally, all will generate all sections,
and none will generate no section.

6.2 gi-docgen gen-index

6.2.1 Generating the symbols index from introspection data

SYNOPSIS

gi-docgen gen-index [OPTIONS. . .] [GIRFILE]

DESCRIPTION

The gen-index command generates a symbols index from introspection data. The symbols index can be used to
efficiently search symbols and terms.

The generated index file is called index.json

OPTIONS

--add-include--path DIR Adds DIR to the list of paths used to find introspection data files included
in the given GIRFILE. The default search path for GIR files is $XDG_DATA_DIRS/gir-1.0 and
$XDG_DATA_HOME/gir-1.0; this option is typically used to include uninstalled GIR files, or non-standard
locations.

-C, --config FILE Loads a project configuration file.

--dry-run Only load the introspection data, without generating the index.

--content-dir DIR The directories for extra content, like additional files and images specified in the project
configuration file. This argument may be called multiple times to specify several lookup directories, the content
files will be looked these directories in the same order they are added.

--output-dir DIR Generates the index file under DIR.

INDEX FILE

The index file is in JSON format.

The index file contains a single object with the following members:

meta = object An object with metadata about the index.

symbols = array of objects An array of all the addressable symbols.

terms = object A dictionary of all terms.

The meta object contains the following members:

ns = s The namespace name.

version = s The namespace version.

generator = s The gi-docgen string.

18 Chapter 6. Commands

https://json.org

gi-docgen, Release 2021.1

generator-version = s The version of gi-docgen.

The symbols array contains objects with the following members:

type = s (mandatory) The type of symbol: alias, bitfield, callback, class, class_method,
ctor, domain, enum, function, function_macro, interface, method, property, signal,
type_func, union, vfunc.

name = s (mandatory) The name of the symbol.

ctype = s The base C type for identifiers; only available for types: alias, bitfield, class, domain, enum,
interface, union.

type_name = s The type name related to a symbol; only available for types: class_method, ctor, method,
property, signal, type_func, vfunc.

ident = s The C identifier for symbols; only available for types: class_method, constant, ctor,
function, function_macro, method, type_func.

struct_for = s The C type related to a class structure; only available for the class_method type.

The terms dictonary contains all terms as members; each term is associated to an array of indices in the symbols
array.

6.3 gi-docgen check

6.3.1 Check the documentation in the introspection data

SYNOPSIS

gi-docgen check [OPTIONS. . .] [GIRFILE]

DESCRIPTION

The check command runs a series of checks on the introspection file, to verify that public API is properly documented.
It can be used as part of a test suite.

OPTIONS

--add-include--path DIR Adds DIR to the list of paths used to find introspection data files included
in the given GIRFILE. The default search path for GIR files is $XDG_DATA_DIRS/gir-1.0 and
$XDG_DATA_HOME/gir-1.0; this option is typically used to include uninstalled GIR files, or non-standard
locations.

-C, --config FILE Loads a project configuration file.

6.3. gi-docgen check 19

gi-docgen, Release 2021.1

6.4 SYNOPSIS

gi-docgen COMMAND [OPTIONS. . .]

The gi-docgen command line utility has several commands, each with its own functionality and options.

6.5 COMMANDS

gi-docgen generate Generates the API reference

gi-docgen gen-index Generates the symbol indices for search

gi-docgen check Checks the documentation

6.6 OPTIONS

All commands support the following options:

-q, --quiet Do not emit any additional information message.

--fatal-warnings Make all warnings fatal, immediately terminating the process.

--help Show an help message.

6.7 ENVIRONMENT VARIABLES

All commands support the following environment variables:

GIDOCGEN_DEBUG If set, gi-docgen will emit debugging messages.

6.8 BUGS

Report bugs at https://gitlab.gnome.org/GNOME/gi-docgen/issues

6.9 HOMEPAGE and CONTACT

https://gnome.pages.gitlab.gnome.org/gi-docgen/

20 Chapter 6. Commands

https://gitlab.gnome.org/GNOME/gi-docgen/issues
https://gnome.pages.gitlab.gnome.org/gi-docgen/

gi-docgen, Release 2021.1

6.10 AUTHOR

Emmanuele Bassi

GI-DocGen is a document generator for GObject-based libraries. GObject is the base type system of the GNOME
project. GI-Docgen reuses the introspection data generated by GObject-based libraries to generate the API reference
of these libraries, as well as other ancillary documentation.

6.10. AUTHOR 21

gi-docgen, Release 2021.1

22 Chapter 6. Commands

CHAPTER

SEVEN

INSTALLATION

7.1 Running GI-DocGen uninstalled

You can run GI-DocGen from its repository, by calling:

./gi-docgen.py

GI-DocGen will automatically detect this case.

7.2 Installing GI-DocGen via pip

To install GI-DocGen, you will need to have the following pieces of software available on your computer:

• Python 3.6, or later

• pip

Run the following command:

pip3 install --user gi-docgen

After running the command above, make sure to have the $HOME/.local/bin directory listed in your $PATH
environment variable.

To update GI-DocGen, run the following command:

pip3 install --user --upgrade gi-docgen

23

gi-docgen, Release 2021.1

24 Chapter 7. Installation

CHAPTER

EIGHT

USAGE

First, read Using GI-DocGen.

Additional documentation on how to control the generation of your project’s API reference is available in the Project
configuration page.

25

gi-docgen, Release 2021.1

26 Chapter 8. Usage

CHAPTER

NINE

DISCLAIMER

GI-DocGen is not a general purpose documentation tool for C libraries.

While GI-DocGen can be used to generate API references for most GObject/C libraries that expose introspection data,
its main goal is to generate the reference for GTK and its immediate dependencies. Any and all attempts at making
this tool more generic, or to cover more use cases, will be weighted heavily against its primary goal.

If you need a general purpose documentation tool, I strongly recommend:

• HotDoc

• Doxygen

• GTK-Doc

27

https://hotdoc.github.io/
https://www.doxygen.nl/index.html
https://gitlab.gnome.org/GNOME/gtk-doc/

gi-docgen, Release 2021.1

28 Chapter 9. Disclaimer

CHAPTER

TEN

COPYRIGHT AND LICENSING TERMS

Copyright 2021 GNOME Foundation

GI-DocGen is released under the terms of the Apache License, version 2.0, or under the terms of the GNU General
Publice License, either version 3.0 or, at your option, any later version.

29

	Using GI-DocGen
	Project configuration
	Linking items by name
	Introspection attributes
	Templates
	Commands
	Installation
	Usage
	Disclaimer
	Copyright and Licensing terms

