libstdc++
simd.h
1 // Definition of the public simd interfaces -*- C++ -*-
2 
3 // Copyright (C) 2020-2021 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 #ifndef _GLIBCXX_EXPERIMENTAL_SIMD_H
26 #define _GLIBCXX_EXPERIMENTAL_SIMD_H
27 
28 #if __cplusplus >= 201703L
29 
30 #include "simd_detail.h"
31 #include "numeric_traits.h"
32 #include <bit>
33 #include <bitset>
34 #ifdef _GLIBCXX_DEBUG_UB
35 #include <cstdio> // for stderr
36 #endif
37 #include <cstring>
38 #include <functional>
39 #include <iosfwd>
40 #include <utility>
41 
42 #if _GLIBCXX_SIMD_X86INTRIN
43 #include <x86intrin.h>
44 #elif _GLIBCXX_SIMD_HAVE_NEON
45 #include <arm_neon.h>
46 #endif
47 
48 /** @ingroup ts_simd
49  * @{
50  */
51 /* There are several closely related types, with the following naming
52  * convention:
53  * _Tp: vectorizable (arithmetic) type (or any type)
54  * _TV: __vector_type_t<_Tp, _Np>
55  * _TW: _SimdWrapper<_Tp, _Np>
56  * _TI: __intrinsic_type_t<_Tp, _Np>
57  * _TVT: _VectorTraits<_TV> or _VectorTraits<_TW>
58  * If one additional type is needed use _U instead of _T.
59  * Otherwise use _T\d, _TV\d, _TW\d, TI\d, _TVT\d.
60  *
61  * More naming conventions:
62  * _Ap or _Abi: An ABI tag from the simd_abi namespace
63  * _Ip: often used for integer types with sizeof(_Ip) == sizeof(_Tp),
64  * _IV, _IW as for _TV, _TW
65  * _Np: number of elements (not bytes)
66  * _Bytes: number of bytes
67  *
68  * Variable names:
69  * __k: mask object (vector- or bitmask)
70  */
71 _GLIBCXX_SIMD_BEGIN_NAMESPACE
72 
73 #if !_GLIBCXX_SIMD_X86INTRIN
74 using __m128 [[__gnu__::__vector_size__(16)]] = float;
75 using __m128d [[__gnu__::__vector_size__(16)]] = double;
76 using __m128i [[__gnu__::__vector_size__(16)]] = long long;
77 using __m256 [[__gnu__::__vector_size__(32)]] = float;
78 using __m256d [[__gnu__::__vector_size__(32)]] = double;
79 using __m256i [[__gnu__::__vector_size__(32)]] = long long;
80 using __m512 [[__gnu__::__vector_size__(64)]] = float;
81 using __m512d [[__gnu__::__vector_size__(64)]] = double;
82 using __m512i [[__gnu__::__vector_size__(64)]] = long long;
83 #endif
84 
85 namespace simd_abi {
86 // simd_abi forward declarations {{{
87 // implementation details:
88 struct _Scalar;
89 
90 template <int _Np>
91  struct _Fixed;
92 
93 // There are two major ABIs that appear on different architectures.
94 // Both have non-boolean values packed into an N Byte register
95 // -> #elements = N / sizeof(T)
96 // Masks differ:
97 // 1. Use value vector registers for masks (all 0 or all 1)
98 // 2. Use bitmasks (mask registers) with one bit per value in the corresponding
99 // value vector
100 //
101 // Both can be partially used, masking off the rest when doing horizontal
102 // operations or operations that can trap (e.g. FP_INVALID or integer division
103 // by 0). This is encoded as the number of used bytes.
104 template <int _UsedBytes>
105  struct _VecBuiltin;
106 
107 template <int _UsedBytes>
108  struct _VecBltnBtmsk;
109 
110 template <typename _Tp, int _Np>
111  using _VecN = _VecBuiltin<sizeof(_Tp) * _Np>;
112 
113 template <int _UsedBytes = 16>
114  using _Sse = _VecBuiltin<_UsedBytes>;
115 
116 template <int _UsedBytes = 32>
117  using _Avx = _VecBuiltin<_UsedBytes>;
118 
119 template <int _UsedBytes = 64>
120  using _Avx512 = _VecBltnBtmsk<_UsedBytes>;
121 
122 template <int _UsedBytes = 16>
123  using _Neon = _VecBuiltin<_UsedBytes>;
124 
125 // implementation-defined:
126 using __sse = _Sse<>;
127 using __avx = _Avx<>;
128 using __avx512 = _Avx512<>;
129 using __neon = _Neon<>;
130 using __neon128 = _Neon<16>;
131 using __neon64 = _Neon<8>;
132 
133 // standard:
134 template <typename _Tp, size_t _Np, typename...>
135  struct deduce;
136 
137 template <int _Np>
138  using fixed_size = _Fixed<_Np>;
139 
140 using scalar = _Scalar;
141 
142 // }}}
143 } // namespace simd_abi
144 // forward declarations is_simd(_mask), simd(_mask), simd_size {{{
145 template <typename _Tp>
146  struct is_simd;
147 
148 template <typename _Tp>
149  struct is_simd_mask;
150 
151 template <typename _Tp, typename _Abi>
152  class simd;
153 
154 template <typename _Tp, typename _Abi>
155  class simd_mask;
156 
157 template <typename _Tp, typename _Abi>
158  struct simd_size;
159 
160 // }}}
161 // load/store flags {{{
162 struct element_aligned_tag
163 {
164  template <typename _Tp, typename _Up = typename _Tp::value_type>
165  static constexpr size_t _S_alignment = alignof(_Up);
166 
167  template <typename _Tp, typename _Up>
168  _GLIBCXX_SIMD_INTRINSIC static constexpr _Up*
169  _S_apply(_Up* __ptr)
170  { return __ptr; }
171 };
172 
173 struct vector_aligned_tag
174 {
175  template <typename _Tp, typename _Up = typename _Tp::value_type>
176  static constexpr size_t _S_alignment
177  = std::__bit_ceil(sizeof(_Up) * _Tp::size());
178 
179  template <typename _Tp, typename _Up>
180  _GLIBCXX_SIMD_INTRINSIC static constexpr _Up*
181  _S_apply(_Up* __ptr)
182  {
183  return static_cast<_Up*>(
184  __builtin_assume_aligned(__ptr, _S_alignment<_Tp, _Up>));
185  }
186 };
187 
188 template <size_t _Np> struct overaligned_tag
189 {
190  template <typename _Tp, typename _Up = typename _Tp::value_type>
191  static constexpr size_t _S_alignment = _Np;
192 
193  template <typename _Tp, typename _Up>
194  _GLIBCXX_SIMD_INTRINSIC static constexpr _Up*
195  _S_apply(_Up* __ptr)
196  { return static_cast<_Up*>(__builtin_assume_aligned(__ptr, _Np)); }
197 };
198 
199 inline constexpr element_aligned_tag element_aligned = {};
200 
201 inline constexpr vector_aligned_tag vector_aligned = {};
202 
203 template <size_t _Np>
204  inline constexpr overaligned_tag<_Np> overaligned = {};
205 
206 // }}}
207 template <size_t _Xp>
208  using _SizeConstant = integral_constant<size_t, _Xp>;
209 
210 namespace __detail
211 {
212  struct _Minimum
213  {
214  template <typename _Tp>
215  _GLIBCXX_SIMD_INTRINSIC constexpr
216  _Tp
217  operator()(_Tp __a, _Tp __b) const
218  {
219  using std::min;
220  return min(__a, __b);
221  }
222  };
223 
224  struct _Maximum
225  {
226  template <typename _Tp>
227  _GLIBCXX_SIMD_INTRINSIC constexpr
228  _Tp
229  operator()(_Tp __a, _Tp __b) const
230  {
231  using std::max;
232  return max(__a, __b);
233  }
234  };
235 } // namespace __detail
236 
237 // unrolled/pack execution helpers
238 // __execute_n_times{{{
239 template <typename _Fp, size_t... _I>
240  _GLIBCXX_SIMD_INTRINSIC constexpr void
241  __execute_on_index_sequence(_Fp&& __f, index_sequence<_I...>)
242  { ((void)__f(_SizeConstant<_I>()), ...); }
243 
244 template <typename _Fp>
245  _GLIBCXX_SIMD_INTRINSIC constexpr void
246  __execute_on_index_sequence(_Fp&&, index_sequence<>)
247  { }
248 
249 template <size_t _Np, typename _Fp>
250  _GLIBCXX_SIMD_INTRINSIC constexpr void
251  __execute_n_times(_Fp&& __f)
252  {
253  __execute_on_index_sequence(static_cast<_Fp&&>(__f),
254  make_index_sequence<_Np>{});
255  }
256 
257 // }}}
258 // __generate_from_n_evaluations{{{
259 template <typename _R, typename _Fp, size_t... _I>
260  _GLIBCXX_SIMD_INTRINSIC constexpr _R
261  __execute_on_index_sequence_with_return(_Fp&& __f, index_sequence<_I...>)
262  { return _R{__f(_SizeConstant<_I>())...}; }
263 
264 template <size_t _Np, typename _R, typename _Fp>
265  _GLIBCXX_SIMD_INTRINSIC constexpr _R
266  __generate_from_n_evaluations(_Fp&& __f)
267  {
268  return __execute_on_index_sequence_with_return<_R>(
269  static_cast<_Fp&&>(__f), make_index_sequence<_Np>{});
270  }
271 
272 // }}}
273 // __call_with_n_evaluations{{{
274 template <size_t... _I, typename _F0, typename _FArgs>
275  _GLIBCXX_SIMD_INTRINSIC constexpr auto
276  __call_with_n_evaluations(index_sequence<_I...>, _F0&& __f0, _FArgs&& __fargs)
277  { return __f0(__fargs(_SizeConstant<_I>())...); }
278 
279 template <size_t _Np, typename _F0, typename _FArgs>
280  _GLIBCXX_SIMD_INTRINSIC constexpr auto
281  __call_with_n_evaluations(_F0&& __f0, _FArgs&& __fargs)
282  {
283  return __call_with_n_evaluations(make_index_sequence<_Np>{},
284  static_cast<_F0&&>(__f0),
285  static_cast<_FArgs&&>(__fargs));
286  }
287 
288 // }}}
289 // __call_with_subscripts{{{
290 template <size_t _First = 0, size_t... _It, typename _Tp, typename _Fp>
291  _GLIBCXX_SIMD_INTRINSIC constexpr auto
292  __call_with_subscripts(_Tp&& __x, index_sequence<_It...>, _Fp&& __fun)
293  { return __fun(__x[_First + _It]...); }
294 
295 template <size_t _Np, size_t _First = 0, typename _Tp, typename _Fp>
296  _GLIBCXX_SIMD_INTRINSIC constexpr auto
297  __call_with_subscripts(_Tp&& __x, _Fp&& __fun)
298  {
299  return __call_with_subscripts<_First>(static_cast<_Tp&&>(__x),
300  make_index_sequence<_Np>(),
301  static_cast<_Fp&&>(__fun));
302  }
303 
304 // }}}
305 
306 // vvv ---- type traits ---- vvv
307 // integer type aliases{{{
308 using _UChar = unsigned char;
309 using _SChar = signed char;
310 using _UShort = unsigned short;
311 using _UInt = unsigned int;
312 using _ULong = unsigned long;
313 using _ULLong = unsigned long long;
314 using _LLong = long long;
315 
316 //}}}
317 // __first_of_pack{{{
318 template <typename _T0, typename...>
319  struct __first_of_pack
320  { using type = _T0; };
321 
322 template <typename... _Ts>
323  using __first_of_pack_t = typename __first_of_pack<_Ts...>::type;
324 
325 //}}}
326 // __value_type_or_identity_t {{{
327 template <typename _Tp>
328  typename _Tp::value_type
329  __value_type_or_identity_impl(int);
330 
331 template <typename _Tp>
332  _Tp
333  __value_type_or_identity_impl(float);
334 
335 template <typename _Tp>
336  using __value_type_or_identity_t
337  = decltype(__value_type_or_identity_impl<_Tp>(int()));
338 
339 // }}}
340 // __is_vectorizable {{{
341 template <typename _Tp>
342  struct __is_vectorizable : public is_arithmetic<_Tp> {};
343 
344 template <>
345  struct __is_vectorizable<bool> : public false_type {};
346 
347 template <typename _Tp>
348  inline constexpr bool __is_vectorizable_v = __is_vectorizable<_Tp>::value;
349 
350 // Deduces to a vectorizable type
351 template <typename _Tp, typename = enable_if_t<__is_vectorizable_v<_Tp>>>
352  using _Vectorizable = _Tp;
353 
354 // }}}
355 // _LoadStorePtr / __is_possible_loadstore_conversion {{{
356 template <typename _Ptr, typename _ValueType>
357  struct __is_possible_loadstore_conversion
358  : conjunction<__is_vectorizable<_Ptr>, __is_vectorizable<_ValueType>> {};
359 
360 template <>
361  struct __is_possible_loadstore_conversion<bool, bool> : true_type {};
362 
363 // Deduces to a type allowed for load/store with the given value type.
364 template <typename _Ptr, typename _ValueType,
365  typename = enable_if_t<
366  __is_possible_loadstore_conversion<_Ptr, _ValueType>::value>>
367  using _LoadStorePtr = _Ptr;
368 
369 // }}}
370 // __is_bitmask{{{
371 template <typename _Tp, typename = void_t<>>
372  struct __is_bitmask : false_type {};
373 
374 template <typename _Tp>
375  inline constexpr bool __is_bitmask_v = __is_bitmask<_Tp>::value;
376 
377 // the __mmaskXX case:
378 template <typename _Tp>
379  struct __is_bitmask<_Tp,
380  void_t<decltype(declval<unsigned&>() = declval<_Tp>() & 1u)>>
381  : true_type {};
382 
383 // }}}
384 // __int_for_sizeof{{{
385 #pragma GCC diagnostic push
386 #pragma GCC diagnostic ignored "-Wpedantic"
387 template <size_t _Bytes>
388  constexpr auto
389  __int_for_sizeof()
390  {
391  if constexpr (_Bytes == sizeof(int))
392  return int();
393  #ifdef __clang__
394  else if constexpr (_Bytes == sizeof(char))
395  return char();
396  #else
397  else if constexpr (_Bytes == sizeof(_SChar))
398  return _SChar();
399  #endif
400  else if constexpr (_Bytes == sizeof(short))
401  return short();
402  #ifndef __clang__
403  else if constexpr (_Bytes == sizeof(long))
404  return long();
405  #endif
406  else if constexpr (_Bytes == sizeof(_LLong))
407  return _LLong();
408  #ifdef __SIZEOF_INT128__
409  else if constexpr (_Bytes == sizeof(__int128))
410  return __int128();
411  #endif // __SIZEOF_INT128__
412  else if constexpr (_Bytes % sizeof(int) == 0)
413  {
414  constexpr size_t _Np = _Bytes / sizeof(int);
415  struct _Ip
416  {
417  int _M_data[_Np];
418 
419  _GLIBCXX_SIMD_INTRINSIC constexpr _Ip
420  operator&(_Ip __rhs) const
421  {
422  return __generate_from_n_evaluations<_Np, _Ip>(
423  [&](auto __i) { return __rhs._M_data[__i] & _M_data[__i]; });
424  }
425 
426  _GLIBCXX_SIMD_INTRINSIC constexpr _Ip
427  operator|(_Ip __rhs) const
428  {
429  return __generate_from_n_evaluations<_Np, _Ip>(
430  [&](auto __i) { return __rhs._M_data[__i] | _M_data[__i]; });
431  }
432 
433  _GLIBCXX_SIMD_INTRINSIC constexpr _Ip
434  operator^(_Ip __rhs) const
435  {
436  return __generate_from_n_evaluations<_Np, _Ip>(
437  [&](auto __i) { return __rhs._M_data[__i] ^ _M_data[__i]; });
438  }
439 
440  _GLIBCXX_SIMD_INTRINSIC constexpr _Ip
441  operator~() const
442  {
443  return __generate_from_n_evaluations<_Np, _Ip>(
444  [&](auto __i) { return ~_M_data[__i]; });
445  }
446  };
447  return _Ip{};
448  }
449  else
450  static_assert(_Bytes != _Bytes, "this should be unreachable");
451  }
452 #pragma GCC diagnostic pop
453 
454 template <typename _Tp>
455  using __int_for_sizeof_t = decltype(__int_for_sizeof<sizeof(_Tp)>());
456 
457 template <size_t _Np>
458  using __int_with_sizeof_t = decltype(__int_for_sizeof<_Np>());
459 
460 // }}}
461 // __is_fixed_size_abi{{{
462 template <typename _Tp>
463  struct __is_fixed_size_abi : false_type {};
464 
465 template <int _Np>
466  struct __is_fixed_size_abi<simd_abi::fixed_size<_Np>> : true_type {};
467 
468 template <typename _Tp>
469  inline constexpr bool __is_fixed_size_abi_v = __is_fixed_size_abi<_Tp>::value;
470 
471 // }}}
472 // constexpr feature detection{{{
473 constexpr inline bool __have_mmx = _GLIBCXX_SIMD_HAVE_MMX;
474 constexpr inline bool __have_sse = _GLIBCXX_SIMD_HAVE_SSE;
475 constexpr inline bool __have_sse2 = _GLIBCXX_SIMD_HAVE_SSE2;
476 constexpr inline bool __have_sse3 = _GLIBCXX_SIMD_HAVE_SSE3;
477 constexpr inline bool __have_ssse3 = _GLIBCXX_SIMD_HAVE_SSSE3;
478 constexpr inline bool __have_sse4_1 = _GLIBCXX_SIMD_HAVE_SSE4_1;
479 constexpr inline bool __have_sse4_2 = _GLIBCXX_SIMD_HAVE_SSE4_2;
480 constexpr inline bool __have_xop = _GLIBCXX_SIMD_HAVE_XOP;
481 constexpr inline bool __have_avx = _GLIBCXX_SIMD_HAVE_AVX;
482 constexpr inline bool __have_avx2 = _GLIBCXX_SIMD_HAVE_AVX2;
483 constexpr inline bool __have_bmi = _GLIBCXX_SIMD_HAVE_BMI1;
484 constexpr inline bool __have_bmi2 = _GLIBCXX_SIMD_HAVE_BMI2;
485 constexpr inline bool __have_lzcnt = _GLIBCXX_SIMD_HAVE_LZCNT;
486 constexpr inline bool __have_sse4a = _GLIBCXX_SIMD_HAVE_SSE4A;
487 constexpr inline bool __have_fma = _GLIBCXX_SIMD_HAVE_FMA;
488 constexpr inline bool __have_fma4 = _GLIBCXX_SIMD_HAVE_FMA4;
489 constexpr inline bool __have_f16c = _GLIBCXX_SIMD_HAVE_F16C;
490 constexpr inline bool __have_popcnt = _GLIBCXX_SIMD_HAVE_POPCNT;
491 constexpr inline bool __have_avx512f = _GLIBCXX_SIMD_HAVE_AVX512F;
492 constexpr inline bool __have_avx512dq = _GLIBCXX_SIMD_HAVE_AVX512DQ;
493 constexpr inline bool __have_avx512vl = _GLIBCXX_SIMD_HAVE_AVX512VL;
494 constexpr inline bool __have_avx512bw = _GLIBCXX_SIMD_HAVE_AVX512BW;
495 constexpr inline bool __have_avx512dq_vl = __have_avx512dq && __have_avx512vl;
496 constexpr inline bool __have_avx512bw_vl = __have_avx512bw && __have_avx512vl;
497 
498 constexpr inline bool __have_neon = _GLIBCXX_SIMD_HAVE_NEON;
499 constexpr inline bool __have_neon_a32 = _GLIBCXX_SIMD_HAVE_NEON_A32;
500 constexpr inline bool __have_neon_a64 = _GLIBCXX_SIMD_HAVE_NEON_A64;
501 constexpr inline bool __support_neon_float =
502 #if defined __GCC_IEC_559
503  __GCC_IEC_559 == 0;
504 #elif defined __FAST_MATH__
505  true;
506 #else
507  false;
508 #endif
509 
510 #ifdef _ARCH_PWR10
511 constexpr inline bool __have_power10vec = true;
512 #else
513 constexpr inline bool __have_power10vec = false;
514 #endif
515 #ifdef __POWER9_VECTOR__
516 constexpr inline bool __have_power9vec = true;
517 #else
518 constexpr inline bool __have_power9vec = false;
519 #endif
520 #if defined __POWER8_VECTOR__
521 constexpr inline bool __have_power8vec = true;
522 #else
523 constexpr inline bool __have_power8vec = __have_power9vec;
524 #endif
525 #if defined __VSX__
526 constexpr inline bool __have_power_vsx = true;
527 #else
528 constexpr inline bool __have_power_vsx = __have_power8vec;
529 #endif
530 #if defined __ALTIVEC__
531 constexpr inline bool __have_power_vmx = true;
532 #else
533 constexpr inline bool __have_power_vmx = __have_power_vsx;
534 #endif
535 
536 // }}}
537 // __is_scalar_abi {{{
538 template <typename _Abi>
539  constexpr bool
540  __is_scalar_abi()
541  { return is_same_v<simd_abi::scalar, _Abi>; }
542 
543 // }}}
544 // __abi_bytes_v {{{
545 template <template <int> class _Abi, int _Bytes>
546  constexpr int
547  __abi_bytes_impl(_Abi<_Bytes>*)
548  { return _Bytes; }
549 
550 template <typename _Tp>
551  constexpr int
552  __abi_bytes_impl(_Tp*)
553  { return -1; }
554 
555 template <typename _Abi>
556  inline constexpr int __abi_bytes_v
557  = __abi_bytes_impl(static_cast<_Abi*>(nullptr));
558 
559 // }}}
560 // __is_builtin_bitmask_abi {{{
561 template <typename _Abi>
562  constexpr bool
563  __is_builtin_bitmask_abi()
564  { return is_same_v<simd_abi::_VecBltnBtmsk<__abi_bytes_v<_Abi>>, _Abi>; }
565 
566 // }}}
567 // __is_sse_abi {{{
568 template <typename _Abi>
569  constexpr bool
570  __is_sse_abi()
571  {
572  constexpr auto _Bytes = __abi_bytes_v<_Abi>;
573  return _Bytes <= 16 && is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>;
574  }
575 
576 // }}}
577 // __is_avx_abi {{{
578 template <typename _Abi>
579  constexpr bool
580  __is_avx_abi()
581  {
582  constexpr auto _Bytes = __abi_bytes_v<_Abi>;
583  return _Bytes > 16 && _Bytes <= 32
584  && is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>;
585  }
586 
587 // }}}
588 // __is_avx512_abi {{{
589 template <typename _Abi>
590  constexpr bool
591  __is_avx512_abi()
592  {
593  constexpr auto _Bytes = __abi_bytes_v<_Abi>;
594  return _Bytes <= 64 && is_same_v<simd_abi::_Avx512<_Bytes>, _Abi>;
595  }
596 
597 // }}}
598 // __is_neon_abi {{{
599 template <typename _Abi>
600  constexpr bool
601  __is_neon_abi()
602  {
603  constexpr auto _Bytes = __abi_bytes_v<_Abi>;
604  return _Bytes <= 16 && is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>;
605  }
606 
607 // }}}
608 // __make_dependent_t {{{
609 template <typename, typename _Up>
610  struct __make_dependent
611  { using type = _Up; };
612 
613 template <typename _Tp, typename _Up>
614  using __make_dependent_t = typename __make_dependent<_Tp, _Up>::type;
615 
616 // }}}
617 // ^^^ ---- type traits ---- ^^^
618 
619 // __invoke_ub{{{
620 template <typename... _Args>
621  [[noreturn]] _GLIBCXX_SIMD_ALWAYS_INLINE void
622  __invoke_ub([[maybe_unused]] const char* __msg,
623  [[maybe_unused]] const _Args&... __args)
624  {
625 #ifdef _GLIBCXX_DEBUG_UB
626  __builtin_fprintf(stderr, __msg, __args...);
627  __builtin_trap();
628 #else
629  __builtin_unreachable();
630 #endif
631  }
632 
633 // }}}
634 // __assert_unreachable{{{
635 template <typename _Tp>
636  struct __assert_unreachable
637  { static_assert(!is_same_v<_Tp, _Tp>, "this should be unreachable"); };
638 
639 // }}}
640 // __size_or_zero_v {{{
641 template <typename _Tp, typename _Ap, size_t _Np = simd_size<_Tp, _Ap>::value>
642  constexpr size_t
643  __size_or_zero_dispatch(int)
644  { return _Np; }
645 
646 template <typename _Tp, typename _Ap>
647  constexpr size_t
648  __size_or_zero_dispatch(float)
649  { return 0; }
650 
651 template <typename _Tp, typename _Ap>
652  inline constexpr size_t __size_or_zero_v
653  = __size_or_zero_dispatch<_Tp, _Ap>(0);
654 
655 // }}}
656 // __div_roundup {{{
657 inline constexpr size_t
658 __div_roundup(size_t __a, size_t __b)
659 { return (__a + __b - 1) / __b; }
660 
661 // }}}
662 // _ExactBool{{{
663 class _ExactBool
664 {
665  const bool _M_data;
666 
667 public:
668  _GLIBCXX_SIMD_INTRINSIC constexpr _ExactBool(bool __b) : _M_data(__b) {}
669 
670  _ExactBool(int) = delete;
671 
672  _GLIBCXX_SIMD_INTRINSIC constexpr operator bool() const { return _M_data; }
673 };
674 
675 // }}}
676 // __may_alias{{{
677 /**@internal
678  * Helper __may_alias<_Tp> that turns _Tp into the type to be used for an
679  * aliasing pointer. This adds the __may_alias attribute to _Tp (with compilers
680  * that support it).
681  */
682 template <typename _Tp>
683  using __may_alias [[__gnu__::__may_alias__]] = _Tp;
684 
685 // }}}
686 // _UnsupportedBase {{{
687 // simd and simd_mask base for unsupported <_Tp, _Abi>
688 struct _UnsupportedBase
689 {
690  _UnsupportedBase() = delete;
691  _UnsupportedBase(const _UnsupportedBase&) = delete;
692  _UnsupportedBase& operator=(const _UnsupportedBase&) = delete;
693  ~_UnsupportedBase() = delete;
694 };
695 
696 // }}}
697 // _InvalidTraits {{{
698 /**
699  * @internal
700  * Defines the implementation of __a given <_Tp, _Abi>.
701  *
702  * Implementations must ensure that only valid <_Tp, _Abi> instantiations are
703  * possible. Static assertions in the type definition do not suffice. It is
704  * important that SFINAE works.
705  */
706 struct _InvalidTraits
707 {
708  using _IsValid = false_type;
709  using _SimdBase = _UnsupportedBase;
710  using _MaskBase = _UnsupportedBase;
711 
712  static constexpr size_t _S_full_size = 0;
713  static constexpr bool _S_is_partial = false;
714 
715  static constexpr size_t _S_simd_align = 1;
716  struct _SimdImpl;
717  struct _SimdMember {};
718  struct _SimdCastType;
719 
720  static constexpr size_t _S_mask_align = 1;
721  struct _MaskImpl;
722  struct _MaskMember {};
723  struct _MaskCastType;
724 };
725 
726 // }}}
727 // _SimdTraits {{{
728 template <typename _Tp, typename _Abi, typename = void_t<>>
729  struct _SimdTraits : _InvalidTraits {};
730 
731 // }}}
732 // __private_init, __bitset_init{{{
733 /**
734  * @internal
735  * Tag used for private init constructor of simd and simd_mask
736  */
737 inline constexpr struct _PrivateInit {} __private_init = {};
738 
739 inline constexpr struct _BitsetInit {} __bitset_init = {};
740 
741 // }}}
742 // __is_narrowing_conversion<_From, _To>{{{
743 template <typename _From, typename _To, bool = is_arithmetic_v<_From>,
744  bool = is_arithmetic_v<_To>>
745  struct __is_narrowing_conversion;
746 
747 // ignore "signed/unsigned mismatch" in the following trait.
748 // The implicit conversions will do the right thing here.
749 template <typename _From, typename _To>
750  struct __is_narrowing_conversion<_From, _To, true, true>
751  : public __bool_constant<(
752  __digits_v<_From> > __digits_v<_To>
753  || __finite_max_v<_From> > __finite_max_v<_To>
754  || __finite_min_v<_From> < __finite_min_v<_To>
755  || (is_signed_v<_From> && is_unsigned_v<_To>))> {};
756 
757 template <typename _Tp>
758  struct __is_narrowing_conversion<_Tp, bool, true, true>
759  : public true_type {};
760 
761 template <>
762  struct __is_narrowing_conversion<bool, bool, true, true>
763  : public false_type {};
764 
765 template <typename _Tp>
766  struct __is_narrowing_conversion<_Tp, _Tp, true, true>
767  : public false_type {};
768 
769 template <typename _From, typename _To>
770  struct __is_narrowing_conversion<_From, _To, false, true>
771  : public negation<is_convertible<_From, _To>> {};
772 
773 // }}}
774 // __converts_to_higher_integer_rank{{{
775 template <typename _From, typename _To, bool = (sizeof(_From) < sizeof(_To))>
776  struct __converts_to_higher_integer_rank : public true_type {};
777 
778 // this may fail for char -> short if sizeof(char) == sizeof(short)
779 template <typename _From, typename _To>
780  struct __converts_to_higher_integer_rank<_From, _To, false>
781  : public is_same<decltype(declval<_From>() + declval<_To>()), _To> {};
782 
783 // }}}
784 // __data(simd/simd_mask) {{{
785 template <typename _Tp, typename _Ap>
786  _GLIBCXX_SIMD_INTRINSIC constexpr const auto&
787  __data(const simd<_Tp, _Ap>& __x);
788 
789 template <typename _Tp, typename _Ap>
790  _GLIBCXX_SIMD_INTRINSIC constexpr auto&
791  __data(simd<_Tp, _Ap>& __x);
792 
793 template <typename _Tp, typename _Ap>
794  _GLIBCXX_SIMD_INTRINSIC constexpr const auto&
795  __data(const simd_mask<_Tp, _Ap>& __x);
796 
797 template <typename _Tp, typename _Ap>
798  _GLIBCXX_SIMD_INTRINSIC constexpr auto&
799  __data(simd_mask<_Tp, _Ap>& __x);
800 
801 // }}}
802 // _SimdConverter {{{
803 template <typename _FromT, typename _FromA, typename _ToT, typename _ToA,
804  typename = void>
805  struct _SimdConverter;
806 
807 template <typename _Tp, typename _Ap>
808  struct _SimdConverter<_Tp, _Ap, _Tp, _Ap, void>
809  {
810  template <typename _Up>
811  _GLIBCXX_SIMD_INTRINSIC const _Up&
812  operator()(const _Up& __x)
813  { return __x; }
814  };
815 
816 // }}}
817 // __to_value_type_or_member_type {{{
818 template <typename _V>
819  _GLIBCXX_SIMD_INTRINSIC constexpr auto
820  __to_value_type_or_member_type(const _V& __x) -> decltype(__data(__x))
821  { return __data(__x); }
822 
823 template <typename _V>
824  _GLIBCXX_SIMD_INTRINSIC constexpr const typename _V::value_type&
825  __to_value_type_or_member_type(const typename _V::value_type& __x)
826  { return __x; }
827 
828 // }}}
829 // __bool_storage_member_type{{{
830 template <size_t _Size>
831  struct __bool_storage_member_type;
832 
833 template <size_t _Size>
834  using __bool_storage_member_type_t =
835  typename __bool_storage_member_type<_Size>::type;
836 
837 // }}}
838 // _SimdTuple {{{
839 // why not tuple?
840 // 1. tuple gives no guarantee about the storage order, but I require
841 // storage
842 // equivalent to array<_Tp, _Np>
843 // 2. direct access to the element type (first template argument)
844 // 3. enforces equal element type, only different _Abi types are allowed
845 template <typename _Tp, typename... _Abis>
846  struct _SimdTuple;
847 
848 //}}}
849 // __fixed_size_storage_t {{{
850 template <typename _Tp, int _Np>
851  struct __fixed_size_storage;
852 
853 template <typename _Tp, int _Np>
854  using __fixed_size_storage_t = typename __fixed_size_storage<_Tp, _Np>::type;
855 
856 // }}}
857 // _SimdWrapper fwd decl{{{
858 template <typename _Tp, size_t _Size, typename = void_t<>>
859  struct _SimdWrapper;
860 
861 template <typename _Tp>
862  using _SimdWrapper8 = _SimdWrapper<_Tp, 8 / sizeof(_Tp)>;
863 template <typename _Tp>
864  using _SimdWrapper16 = _SimdWrapper<_Tp, 16 / sizeof(_Tp)>;
865 template <typename _Tp>
866  using _SimdWrapper32 = _SimdWrapper<_Tp, 32 / sizeof(_Tp)>;
867 template <typename _Tp>
868  using _SimdWrapper64 = _SimdWrapper<_Tp, 64 / sizeof(_Tp)>;
869 
870 // }}}
871 // __is_simd_wrapper {{{
872 template <typename _Tp>
873  struct __is_simd_wrapper : false_type {};
874 
875 template <typename _Tp, size_t _Np>
876  struct __is_simd_wrapper<_SimdWrapper<_Tp, _Np>> : true_type {};
877 
878 template <typename _Tp>
879  inline constexpr bool __is_simd_wrapper_v = __is_simd_wrapper<_Tp>::value;
880 
881 // }}}
882 // _BitOps {{{
883 struct _BitOps
884 {
885  // _S_bit_iteration {{{
886  template <typename _Tp, typename _Fp>
887  static void
888  _S_bit_iteration(_Tp __mask, _Fp&& __f)
889  {
890  static_assert(sizeof(_ULLong) >= sizeof(_Tp));
891  conditional_t<sizeof(_Tp) <= sizeof(_UInt), _UInt, _ULLong> __k;
892  if constexpr (is_convertible_v<_Tp, decltype(__k)>)
893  __k = __mask;
894  else
895  __k = __mask.to_ullong();
896  while(__k)
897  {
898  __f(std::__countr_zero(__k));
899  __k &= (__k - 1);
900  }
901  }
902 
903  //}}}
904 };
905 
906 //}}}
907 // __increment, __decrement {{{
908 template <typename _Tp = void>
909  struct __increment
910  { constexpr _Tp operator()(_Tp __a) const { return ++__a; } };
911 
912 template <>
913  struct __increment<void>
914  {
915  template <typename _Tp>
916  constexpr _Tp
917  operator()(_Tp __a) const
918  { return ++__a; }
919  };
920 
921 template <typename _Tp = void>
922  struct __decrement
923  { constexpr _Tp operator()(_Tp __a) const { return --__a; } };
924 
925 template <>
926  struct __decrement<void>
927  {
928  template <typename _Tp>
929  constexpr _Tp
930  operator()(_Tp __a) const
931  { return --__a; }
932  };
933 
934 // }}}
935 // _ValuePreserving(OrInt) {{{
936 template <typename _From, typename _To,
937  typename = enable_if_t<negation<
938  __is_narrowing_conversion<__remove_cvref_t<_From>, _To>>::value>>
939  using _ValuePreserving = _From;
940 
941 template <typename _From, typename _To,
942  typename _DecayedFrom = __remove_cvref_t<_From>,
943  typename = enable_if_t<conjunction<
944  is_convertible<_From, _To>,
945  disjunction<
946  is_same<_DecayedFrom, _To>, is_same<_DecayedFrom, int>,
947  conjunction<is_same<_DecayedFrom, _UInt>, is_unsigned<_To>>,
948  negation<__is_narrowing_conversion<_DecayedFrom, _To>>>>::value>>
949  using _ValuePreservingOrInt = _From;
950 
951 // }}}
952 // __intrinsic_type {{{
953 template <typename _Tp, size_t _Bytes, typename = void_t<>>
954  struct __intrinsic_type;
955 
956 template <typename _Tp, size_t _Size>
957  using __intrinsic_type_t =
958  typename __intrinsic_type<_Tp, _Size * sizeof(_Tp)>::type;
959 
960 template <typename _Tp>
961  using __intrinsic_type2_t = typename __intrinsic_type<_Tp, 2>::type;
962 template <typename _Tp>
963  using __intrinsic_type4_t = typename __intrinsic_type<_Tp, 4>::type;
964 template <typename _Tp>
965  using __intrinsic_type8_t = typename __intrinsic_type<_Tp, 8>::type;
966 template <typename _Tp>
967  using __intrinsic_type16_t = typename __intrinsic_type<_Tp, 16>::type;
968 template <typename _Tp>
969  using __intrinsic_type32_t = typename __intrinsic_type<_Tp, 32>::type;
970 template <typename _Tp>
971  using __intrinsic_type64_t = typename __intrinsic_type<_Tp, 64>::type;
972 
973 // }}}
974 // _BitMask {{{
975 template <size_t _Np, bool _Sanitized = false>
976  struct _BitMask;
977 
978 template <size_t _Np, bool _Sanitized>
979  struct __is_bitmask<_BitMask<_Np, _Sanitized>, void> : true_type {};
980 
981 template <size_t _Np>
982  using _SanitizedBitMask = _BitMask<_Np, true>;
983 
984 template <size_t _Np, bool _Sanitized>
985  struct _BitMask
986  {
987  static_assert(_Np > 0);
988 
989  static constexpr size_t _NBytes = __div_roundup(_Np, __CHAR_BIT__);
990 
991  using _Tp = conditional_t<_Np == 1, bool,
992  make_unsigned_t<__int_with_sizeof_t<std::min(
993  sizeof(_ULLong), std::__bit_ceil(_NBytes))>>>;
994 
995  static constexpr int _S_array_size = __div_roundup(_NBytes, sizeof(_Tp));
996 
997  _Tp _M_bits[_S_array_size];
998 
999  static constexpr int _S_unused_bits
1000  = _Np == 1 ? 0 : _S_array_size * sizeof(_Tp) * __CHAR_BIT__ - _Np;
1001 
1002  static constexpr _Tp _S_bitmask = +_Tp(~_Tp()) >> _S_unused_bits;
1003 
1004  constexpr _BitMask() noexcept = default;
1005 
1006  constexpr _BitMask(unsigned long long __x) noexcept
1007  : _M_bits{static_cast<_Tp>(__x)} {}
1008 
1009  _BitMask(bitset<_Np> __x) noexcept : _BitMask(__x.to_ullong()) {}
1010 
1011  constexpr _BitMask(const _BitMask&) noexcept = default;
1012 
1013  template <bool _RhsSanitized, typename = enable_if_t<_RhsSanitized == false
1014  && _Sanitized == true>>
1015  constexpr _BitMask(const _BitMask<_Np, _RhsSanitized>& __rhs) noexcept
1016  : _BitMask(__rhs._M_sanitized()) {}
1017 
1018  constexpr operator _SimdWrapper<bool, _Np>() const noexcept
1019  {
1020  static_assert(_S_array_size == 1);
1021  return _M_bits[0];
1022  }
1023 
1024  // precondition: is sanitized
1025  constexpr _Tp
1026  _M_to_bits() const noexcept
1027  {
1028  static_assert(_S_array_size == 1);
1029  return _M_bits[0];
1030  }
1031 
1032  // precondition: is sanitized
1033  constexpr unsigned long long
1034  to_ullong() const noexcept
1035  {
1036  static_assert(_S_array_size == 1);
1037  return _M_bits[0];
1038  }
1039 
1040  // precondition: is sanitized
1041  constexpr unsigned long
1042  to_ulong() const noexcept
1043  {
1044  static_assert(_S_array_size == 1);
1045  return _M_bits[0];
1046  }
1047 
1048  constexpr bitset<_Np>
1049  _M_to_bitset() const noexcept
1050  {
1051  static_assert(_S_array_size == 1);
1052  return _M_bits[0];
1053  }
1054 
1055  constexpr decltype(auto)
1056  _M_sanitized() const noexcept
1057  {
1058  if constexpr (_Sanitized)
1059  return *this;
1060  else if constexpr (_Np == 1)
1061  return _SanitizedBitMask<_Np>(_M_bits[0]);
1062  else
1063  {
1064  _SanitizedBitMask<_Np> __r = {};
1065  for (int __i = 0; __i < _S_array_size; ++__i)
1066  __r._M_bits[__i] = _M_bits[__i];
1067  if constexpr (_S_unused_bits > 0)
1068  __r._M_bits[_S_array_size - 1] &= _S_bitmask;
1069  return __r;
1070  }
1071  }
1072 
1073  template <size_t _Mp, bool _LSanitized>
1074  constexpr _BitMask<_Np + _Mp, _Sanitized>
1075  _M_prepend(_BitMask<_Mp, _LSanitized> __lsb) const noexcept
1076  {
1077  constexpr size_t _RN = _Np + _Mp;
1078  using _Rp = _BitMask<_RN, _Sanitized>;
1079  if constexpr (_Rp::_S_array_size == 1)
1080  {
1081  _Rp __r{{_M_bits[0]}};
1082  __r._M_bits[0] <<= _Mp;
1083  __r._M_bits[0] |= __lsb._M_sanitized()._M_bits[0];
1084  return __r;
1085  }
1086  else
1087  __assert_unreachable<_Rp>();
1088  }
1089 
1090  // Return a new _BitMask with size _NewSize while dropping _DropLsb least
1091  // significant bits. If the operation implicitly produces a sanitized bitmask,
1092  // the result type will have _Sanitized set.
1093  template <size_t _DropLsb, size_t _NewSize = _Np - _DropLsb>
1094  constexpr auto
1095  _M_extract() const noexcept
1096  {
1097  static_assert(_Np > _DropLsb);
1098  static_assert(_DropLsb + _NewSize <= sizeof(_ULLong) * __CHAR_BIT__,
1099  "not implemented for bitmasks larger than one ullong");
1100  if constexpr (_NewSize == 1)
1101  // must sanitize because the return _Tp is bool
1102  return _SanitizedBitMask<1>(_M_bits[0] & (_Tp(1) << _DropLsb));
1103  else
1104  return _BitMask<_NewSize,
1105  ((_NewSize + _DropLsb == sizeof(_Tp) * __CHAR_BIT__
1106  && _NewSize + _DropLsb <= _Np)
1107  || ((_Sanitized || _Np == sizeof(_Tp) * __CHAR_BIT__)
1108  && _NewSize + _DropLsb >= _Np))>(_M_bits[0]
1109  >> _DropLsb);
1110  }
1111 
1112  // True if all bits are set. Implicitly sanitizes if _Sanitized == false.
1113  constexpr bool
1114  all() const noexcept
1115  {
1116  if constexpr (_Np == 1)
1117  return _M_bits[0];
1118  else if constexpr (!_Sanitized)
1119  return _M_sanitized().all();
1120  else
1121  {
1122  constexpr _Tp __allbits = ~_Tp();
1123  for (int __i = 0; __i < _S_array_size - 1; ++__i)
1124  if (_M_bits[__i] != __allbits)
1125  return false;
1126  return _M_bits[_S_array_size - 1] == _S_bitmask;
1127  }
1128  }
1129 
1130  // True if at least one bit is set. Implicitly sanitizes if _Sanitized ==
1131  // false.
1132  constexpr bool
1133  any() const noexcept
1134  {
1135  if constexpr (_Np == 1)
1136  return _M_bits[0];
1137  else if constexpr (!_Sanitized)
1138  return _M_sanitized().any();
1139  else
1140  {
1141  for (int __i = 0; __i < _S_array_size - 1; ++__i)
1142  if (_M_bits[__i] != 0)
1143  return true;
1144  return _M_bits[_S_array_size - 1] != 0;
1145  }
1146  }
1147 
1148  // True if no bit is set. Implicitly sanitizes if _Sanitized == false.
1149  constexpr bool
1150  none() const noexcept
1151  {
1152  if constexpr (_Np == 1)
1153  return !_M_bits[0];
1154  else if constexpr (!_Sanitized)
1155  return _M_sanitized().none();
1156  else
1157  {
1158  for (int __i = 0; __i < _S_array_size - 1; ++__i)
1159  if (_M_bits[__i] != 0)
1160  return false;
1161  return _M_bits[_S_array_size - 1] == 0;
1162  }
1163  }
1164 
1165  // Returns the number of set bits. Implicitly sanitizes if _Sanitized ==
1166  // false.
1167  constexpr int
1168  count() const noexcept
1169  {
1170  if constexpr (_Np == 1)
1171  return _M_bits[0];
1172  else if constexpr (!_Sanitized)
1173  return _M_sanitized().none();
1174  else
1175  {
1176  int __result = __builtin_popcountll(_M_bits[0]);
1177  for (int __i = 1; __i < _S_array_size; ++__i)
1178  __result += __builtin_popcountll(_M_bits[__i]);
1179  return __result;
1180  }
1181  }
1182 
1183  // Returns the bit at offset __i as bool.
1184  constexpr bool
1185  operator[](size_t __i) const noexcept
1186  {
1187  if constexpr (_Np == 1)
1188  return _M_bits[0];
1189  else if constexpr (_S_array_size == 1)
1190  return (_M_bits[0] >> __i) & 1;
1191  else
1192  {
1193  const size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
1194  const size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
1195  return (_M_bits[__j] >> __shift) & 1;
1196  }
1197  }
1198 
1199  template <size_t __i>
1200  constexpr bool
1201  operator[](_SizeConstant<__i>) const noexcept
1202  {
1203  static_assert(__i < _Np);
1204  constexpr size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
1205  constexpr size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
1206  return static_cast<bool>(_M_bits[__j] & (_Tp(1) << __shift));
1207  }
1208 
1209  // Set the bit at offset __i to __x.
1210  constexpr void
1211  set(size_t __i, bool __x) noexcept
1212  {
1213  if constexpr (_Np == 1)
1214  _M_bits[0] = __x;
1215  else if constexpr (_S_array_size == 1)
1216  {
1217  _M_bits[0] &= ~_Tp(_Tp(1) << __i);
1218  _M_bits[0] |= _Tp(_Tp(__x) << __i);
1219  }
1220  else
1221  {
1222  const size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
1223  const size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
1224  _M_bits[__j] &= ~_Tp(_Tp(1) << __shift);
1225  _M_bits[__j] |= _Tp(_Tp(__x) << __shift);
1226  }
1227  }
1228 
1229  template <size_t __i>
1230  constexpr void
1231  set(_SizeConstant<__i>, bool __x) noexcept
1232  {
1233  static_assert(__i < _Np);
1234  if constexpr (_Np == 1)
1235  _M_bits[0] = __x;
1236  else
1237  {
1238  constexpr size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
1239  constexpr size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
1240  constexpr _Tp __mask = ~_Tp(_Tp(1) << __shift);
1241  _M_bits[__j] &= __mask;
1242  _M_bits[__j] |= _Tp(_Tp(__x) << __shift);
1243  }
1244  }
1245 
1246  // Inverts all bits. Sanitized input leads to sanitized output.
1247  constexpr _BitMask
1248  operator~() const noexcept
1249  {
1250  if constexpr (_Np == 1)
1251  return !_M_bits[0];
1252  else
1253  {
1254  _BitMask __result{};
1255  for (int __i = 0; __i < _S_array_size - 1; ++__i)
1256  __result._M_bits[__i] = ~_M_bits[__i];
1257  if constexpr (_Sanitized)
1258  __result._M_bits[_S_array_size - 1]
1259  = _M_bits[_S_array_size - 1] ^ _S_bitmask;
1260  else
1261  __result._M_bits[_S_array_size - 1] = ~_M_bits[_S_array_size - 1];
1262  return __result;
1263  }
1264  }
1265 
1266  constexpr _BitMask&
1267  operator^=(const _BitMask& __b) & noexcept
1268  {
1269  __execute_n_times<_S_array_size>(
1270  [&](auto __i) { _M_bits[__i] ^= __b._M_bits[__i]; });
1271  return *this;
1272  }
1273 
1274  constexpr _BitMask&
1275  operator|=(const _BitMask& __b) & noexcept
1276  {
1277  __execute_n_times<_S_array_size>(
1278  [&](auto __i) { _M_bits[__i] |= __b._M_bits[__i]; });
1279  return *this;
1280  }
1281 
1282  constexpr _BitMask&
1283  operator&=(const _BitMask& __b) & noexcept
1284  {
1285  __execute_n_times<_S_array_size>(
1286  [&](auto __i) { _M_bits[__i] &= __b._M_bits[__i]; });
1287  return *this;
1288  }
1289 
1290  friend constexpr _BitMask
1291  operator^(const _BitMask& __a, const _BitMask& __b) noexcept
1292  {
1293  _BitMask __r = __a;
1294  __r ^= __b;
1295  return __r;
1296  }
1297 
1298  friend constexpr _BitMask
1299  operator|(const _BitMask& __a, const _BitMask& __b) noexcept
1300  {
1301  _BitMask __r = __a;
1302  __r |= __b;
1303  return __r;
1304  }
1305 
1306  friend constexpr _BitMask
1307  operator&(const _BitMask& __a, const _BitMask& __b) noexcept
1308  {
1309  _BitMask __r = __a;
1310  __r &= __b;
1311  return __r;
1312  }
1313 
1314  _GLIBCXX_SIMD_INTRINSIC
1315  constexpr bool
1316  _M_is_constprop() const
1317  {
1318  if constexpr (_S_array_size == 0)
1319  return __builtin_constant_p(_M_bits[0]);
1320  else
1321  {
1322  for (int __i = 0; __i < _S_array_size; ++__i)
1323  if (!__builtin_constant_p(_M_bits[__i]))
1324  return false;
1325  return true;
1326  }
1327  }
1328  };
1329 
1330 // }}}
1331 
1332 // vvv ---- builtin vector types [[gnu::vector_size(N)]] and operations ---- vvv
1333 // __min_vector_size {{{
1334 template <typename _Tp = void>
1335  static inline constexpr int __min_vector_size = 2 * sizeof(_Tp);
1336 
1337 #if _GLIBCXX_SIMD_HAVE_NEON
1338 template <>
1339  inline constexpr int __min_vector_size<void> = 8;
1340 #else
1341 template <>
1342  inline constexpr int __min_vector_size<void> = 16;
1343 #endif
1344 
1345 // }}}
1346 // __vector_type {{{
1347 template <typename _Tp, size_t _Np, typename = void>
1348  struct __vector_type_n {};
1349 
1350 // substition failure for 0-element case
1351 template <typename _Tp>
1352  struct __vector_type_n<_Tp, 0, void> {};
1353 
1354 // special case 1-element to be _Tp itself
1355 template <typename _Tp>
1356  struct __vector_type_n<_Tp, 1, enable_if_t<__is_vectorizable_v<_Tp>>>
1357  { using type = _Tp; };
1358 
1359 // else, use GNU-style builtin vector types
1360 template <typename _Tp, size_t _Np>
1361  struct __vector_type_n<_Tp, _Np,
1362  enable_if_t<__is_vectorizable_v<_Tp> && _Np >= 2>>
1363  {
1364  static constexpr size_t _S_Np2 = std::__bit_ceil(_Np * sizeof(_Tp));
1365 
1366  static constexpr size_t _S_Bytes =
1367 #ifdef __i386__
1368  // Using [[gnu::vector_size(8)]] would wreak havoc on the FPU because
1369  // those objects are passed via MMX registers and nothing ever calls EMMS.
1370  _S_Np2 == 8 ? 16 :
1371 #endif
1372  _S_Np2 < __min_vector_size<_Tp> ? __min_vector_size<_Tp>
1373  : _S_Np2;
1374 
1375  using type [[__gnu__::__vector_size__(_S_Bytes)]] = _Tp;
1376  };
1377 
1378 template <typename _Tp, size_t _Bytes, size_t = _Bytes % sizeof(_Tp)>
1379  struct __vector_type;
1380 
1381 template <typename _Tp, size_t _Bytes>
1382  struct __vector_type<_Tp, _Bytes, 0>
1383  : __vector_type_n<_Tp, _Bytes / sizeof(_Tp)> {};
1384 
1385 template <typename _Tp, size_t _Size>
1386  using __vector_type_t = typename __vector_type_n<_Tp, _Size>::type;
1387 
1388 template <typename _Tp>
1389  using __vector_type2_t = typename __vector_type<_Tp, 2>::type;
1390 template <typename _Tp>
1391  using __vector_type4_t = typename __vector_type<_Tp, 4>::type;
1392 template <typename _Tp>
1393  using __vector_type8_t = typename __vector_type<_Tp, 8>::type;
1394 template <typename _Tp>
1395  using __vector_type16_t = typename __vector_type<_Tp, 16>::type;
1396 template <typename _Tp>
1397  using __vector_type32_t = typename __vector_type<_Tp, 32>::type;
1398 template <typename _Tp>
1399  using __vector_type64_t = typename __vector_type<_Tp, 64>::type;
1400 
1401 // }}}
1402 // __is_vector_type {{{
1403 template <typename _Tp, typename = void_t<>>
1404  struct __is_vector_type : false_type {};
1405 
1406 template <typename _Tp>
1407  struct __is_vector_type<
1408  _Tp, void_t<typename __vector_type<
1409  remove_reference_t<decltype(declval<_Tp>()[0])>, sizeof(_Tp)>::type>>
1410  : is_same<_Tp, typename __vector_type<
1411  remove_reference_t<decltype(declval<_Tp>()[0])>,
1412  sizeof(_Tp)>::type> {};
1413 
1414 template <typename _Tp>
1415  inline constexpr bool __is_vector_type_v = __is_vector_type<_Tp>::value;
1416 
1417 // }}}
1418 // __is_intrinsic_type {{{
1419 #if _GLIBCXX_SIMD_HAVE_SSE_ABI
1420 template <typename _Tp>
1421  using __is_intrinsic_type = __is_vector_type<_Tp>;
1422 #else // not SSE (x86)
1423 template <typename _Tp, typename = void_t<>>
1424  struct __is_intrinsic_type : false_type {};
1425 
1426 template <typename _Tp>
1427  struct __is_intrinsic_type<
1428  _Tp, void_t<typename __intrinsic_type<
1429  remove_reference_t<decltype(declval<_Tp>()[0])>, sizeof(_Tp)>::type>>
1430  : is_same<_Tp, typename __intrinsic_type<
1431  remove_reference_t<decltype(declval<_Tp>()[0])>,
1432  sizeof(_Tp)>::type> {};
1433 #endif
1434 
1435 template <typename _Tp>
1436  inline constexpr bool __is_intrinsic_type_v = __is_intrinsic_type<_Tp>::value;
1437 
1438 // }}}
1439 // _VectorTraits{{{
1440 template <typename _Tp, typename = void_t<>>
1441  struct _VectorTraitsImpl;
1442 
1443 template <typename _Tp>
1444  struct _VectorTraitsImpl<_Tp, enable_if_t<__is_vector_type_v<_Tp>
1445  || __is_intrinsic_type_v<_Tp>>>
1446  {
1447  using type = _Tp;
1448  using value_type = remove_reference_t<decltype(declval<_Tp>()[0])>;
1449  static constexpr int _S_full_size = sizeof(_Tp) / sizeof(value_type);
1450  using _Wrapper = _SimdWrapper<value_type, _S_full_size>;
1451  template <typename _Up, int _W = _S_full_size>
1452  static constexpr bool _S_is
1453  = is_same_v<value_type, _Up> && _W == _S_full_size;
1454  };
1455 
1456 template <typename _Tp, size_t _Np>
1457  struct _VectorTraitsImpl<_SimdWrapper<_Tp, _Np>,
1458  void_t<__vector_type_t<_Tp, _Np>>>
1459  {
1460  using type = __vector_type_t<_Tp, _Np>;
1461  using value_type = _Tp;
1462  static constexpr int _S_full_size = sizeof(type) / sizeof(value_type);
1463  using _Wrapper = _SimdWrapper<_Tp, _Np>;
1464  static constexpr bool _S_is_partial = (_Np == _S_full_size);
1465  static constexpr int _S_partial_width = _Np;
1466  template <typename _Up, int _W = _S_full_size>
1467  static constexpr bool _S_is
1468  = is_same_v<value_type, _Up>&& _W == _S_full_size;
1469  };
1470 
1471 template <typename _Tp, typename = typename _VectorTraitsImpl<_Tp>::type>
1472  using _VectorTraits = _VectorTraitsImpl<_Tp>;
1473 
1474 // }}}
1475 // __as_vector{{{
1476 template <typename _V>
1477  _GLIBCXX_SIMD_INTRINSIC constexpr auto
1478  __as_vector(_V __x)
1479  {
1480  if constexpr (__is_vector_type_v<_V>)
1481  return __x;
1482  else if constexpr (is_simd<_V>::value || is_simd_mask<_V>::value)
1483  return __data(__x)._M_data;
1484  else if constexpr (__is_vectorizable_v<_V>)
1485  return __vector_type_t<_V, 2>{__x};
1486  else
1487  return __x._M_data;
1488  }
1489 
1490 // }}}
1491 // __as_wrapper{{{
1492 template <size_t _Np = 0, typename _V>
1493  _GLIBCXX_SIMD_INTRINSIC constexpr auto
1494  __as_wrapper(_V __x)
1495  {
1496  if constexpr (__is_vector_type_v<_V>)
1497  return _SimdWrapper<typename _VectorTraits<_V>::value_type,
1498  (_Np > 0 ? _Np : _VectorTraits<_V>::_S_full_size)>(__x);
1499  else if constexpr (is_simd<_V>::value || is_simd_mask<_V>::value)
1500  {
1501  static_assert(_V::size() == _Np);
1502  return __data(__x);
1503  }
1504  else
1505  {
1506  static_assert(_V::_S_size == _Np);
1507  return __x;
1508  }
1509  }
1510 
1511 // }}}
1512 // __intrin_bitcast{{{
1513 template <typename _To, typename _From>
1514  _GLIBCXX_SIMD_INTRINSIC constexpr _To
1515  __intrin_bitcast(_From __v)
1516  {
1517  static_assert((__is_vector_type_v<_From> || __is_intrinsic_type_v<_From>)
1518  && (__is_vector_type_v<_To> || __is_intrinsic_type_v<_To>));
1519  if constexpr (sizeof(_To) == sizeof(_From))
1520  return reinterpret_cast<_To>(__v);
1521  else if constexpr (sizeof(_From) > sizeof(_To))
1522  if constexpr (sizeof(_To) >= 16)
1523  return reinterpret_cast<const __may_alias<_To>&>(__v);
1524  else
1525  {
1526  _To __r;
1527  __builtin_memcpy(&__r, &__v, sizeof(_To));
1528  return __r;
1529  }
1530 #if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__
1531  else if constexpr (__have_avx && sizeof(_From) == 16 && sizeof(_To) == 32)
1532  return reinterpret_cast<_To>(__builtin_ia32_ps256_ps(
1533  reinterpret_cast<__vector_type_t<float, 4>>(__v)));
1534  else if constexpr (__have_avx512f && sizeof(_From) == 16
1535  && sizeof(_To) == 64)
1536  return reinterpret_cast<_To>(__builtin_ia32_ps512_ps(
1537  reinterpret_cast<__vector_type_t<float, 4>>(__v)));
1538  else if constexpr (__have_avx512f && sizeof(_From) == 32
1539  && sizeof(_To) == 64)
1540  return reinterpret_cast<_To>(__builtin_ia32_ps512_256ps(
1541  reinterpret_cast<__vector_type_t<float, 8>>(__v)));
1542 #endif // _GLIBCXX_SIMD_X86INTRIN
1543  else if constexpr (sizeof(__v) <= 8)
1544  return reinterpret_cast<_To>(
1545  __vector_type_t<__int_for_sizeof_t<_From>, sizeof(_To) / sizeof(_From)>{
1546  reinterpret_cast<__int_for_sizeof_t<_From>>(__v)});
1547  else
1548  {
1549  static_assert(sizeof(_To) > sizeof(_From));
1550  _To __r = {};
1551  __builtin_memcpy(&__r, &__v, sizeof(_From));
1552  return __r;
1553  }
1554  }
1555 
1556 // }}}
1557 // __vector_bitcast{{{
1558 template <typename _To, size_t _NN = 0, typename _From,
1559  typename _FromVT = _VectorTraits<_From>,
1560  size_t _Np = _NN == 0 ? sizeof(_From) / sizeof(_To) : _NN>
1561  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_To, _Np>
1562  __vector_bitcast(_From __x)
1563  {
1564  using _R = __vector_type_t<_To, _Np>;
1565  return __intrin_bitcast<_R>(__x);
1566  }
1567 
1568 template <typename _To, size_t _NN = 0, typename _Tp, size_t _Nx,
1569  size_t _Np
1570  = _NN == 0 ? sizeof(_SimdWrapper<_Tp, _Nx>) / sizeof(_To) : _NN>
1571  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_To, _Np>
1572  __vector_bitcast(const _SimdWrapper<_Tp, _Nx>& __x)
1573  {
1574  static_assert(_Np > 1);
1575  return __intrin_bitcast<__vector_type_t<_To, _Np>>(__x._M_data);
1576  }
1577 
1578 // }}}
1579 // __convert_x86 declarations {{{
1580 #ifdef _GLIBCXX_SIMD_WORKAROUND_PR85048
1581 template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1582  _To __convert_x86(_Tp);
1583 
1584 template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1585  _To __convert_x86(_Tp, _Tp);
1586 
1587 template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1588  _To __convert_x86(_Tp, _Tp, _Tp, _Tp);
1589 
1590 template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1591  _To __convert_x86(_Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp);
1592 
1593 template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1594  _To __convert_x86(_Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp,
1595  _Tp, _Tp, _Tp, _Tp);
1596 #endif // _GLIBCXX_SIMD_WORKAROUND_PR85048
1597 
1598 //}}}
1599 // __bit_cast {{{
1600 template <typename _To, typename _From>
1601  _GLIBCXX_SIMD_INTRINSIC constexpr _To
1602  __bit_cast(const _From __x)
1603  {
1604  // TODO: implement with / replace by __builtin_bit_cast ASAP
1605  static_assert(sizeof(_To) == sizeof(_From));
1606  constexpr bool __to_is_vectorizable
1607  = is_arithmetic_v<_To> || is_enum_v<_To>;
1608  constexpr bool __from_is_vectorizable
1609  = is_arithmetic_v<_From> || is_enum_v<_From>;
1610  if constexpr (__is_vector_type_v<_To> && __is_vector_type_v<_From>)
1611  return reinterpret_cast<_To>(__x);
1612  else if constexpr (__is_vector_type_v<_To> && __from_is_vectorizable)
1613  {
1614  using _FV [[gnu::vector_size(sizeof(_From))]] = _From;
1615  return reinterpret_cast<_To>(_FV{__x});
1616  }
1617  else if constexpr (__to_is_vectorizable && __from_is_vectorizable)
1618  {
1619  using _TV [[gnu::vector_size(sizeof(_To))]] = _To;
1620  using _FV [[gnu::vector_size(sizeof(_From))]] = _From;
1621  return reinterpret_cast<_TV>(_FV{__x})[0];
1622  }
1623  else if constexpr (__to_is_vectorizable && __is_vector_type_v<_From>)
1624  {
1625  using _TV [[gnu::vector_size(sizeof(_To))]] = _To;
1626  return reinterpret_cast<_TV>(__x)[0];
1627  }
1628  else
1629  {
1630  _To __r;
1631  __builtin_memcpy(reinterpret_cast<char*>(&__r),
1632  reinterpret_cast<const char*>(&__x), sizeof(_To));
1633  return __r;
1634  }
1635  }
1636 
1637 // }}}
1638 // __to_intrin {{{
1639 template <typename _Tp, typename _TVT = _VectorTraits<_Tp>,
1640  typename _R
1641  = __intrinsic_type_t<typename _TVT::value_type, _TVT::_S_full_size>>
1642  _GLIBCXX_SIMD_INTRINSIC constexpr _R
1643  __to_intrin(_Tp __x)
1644  {
1645  static_assert(sizeof(__x) <= sizeof(_R),
1646  "__to_intrin may never drop values off the end");
1647  if constexpr (sizeof(__x) == sizeof(_R))
1648  return reinterpret_cast<_R>(__as_vector(__x));
1649  else
1650  {
1651  using _Up = __int_for_sizeof_t<_Tp>;
1652  return reinterpret_cast<_R>(
1653  __vector_type_t<_Up, sizeof(_R) / sizeof(_Up)>{__bit_cast<_Up>(__x)});
1654  }
1655  }
1656 
1657 // }}}
1658 // __make_vector{{{
1659 template <typename _Tp, typename... _Args>
1660  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, sizeof...(_Args)>
1661  __make_vector(const _Args&... __args)
1662  {
1663  return __vector_type_t<_Tp, sizeof...(_Args)>{static_cast<_Tp>(__args)...};
1664  }
1665 
1666 // }}}
1667 // __vector_broadcast{{{
1668 template <size_t _Np, typename _Tp>
1669  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np>
1670  __vector_broadcast(_Tp __x)
1671  {
1672  return __call_with_n_evaluations<_Np>(
1673  [](auto... __xx) { return __vector_type_t<_Tp, _Np>{__xx...}; },
1674  [&__x](int) { return __x; });
1675  }
1676 
1677 // }}}
1678 // __generate_vector{{{
1679  template <typename _Tp, size_t _Np, typename _Gp, size_t... _I>
1680  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np>
1681  __generate_vector_impl(_Gp&& __gen, index_sequence<_I...>)
1682  {
1683  return __vector_type_t<_Tp, _Np>{
1684  static_cast<_Tp>(__gen(_SizeConstant<_I>()))...};
1685  }
1686 
1687 template <typename _V, typename _VVT = _VectorTraits<_V>, typename _Gp>
1688  _GLIBCXX_SIMD_INTRINSIC constexpr _V
1689  __generate_vector(_Gp&& __gen)
1690  {
1691  if constexpr (__is_vector_type_v<_V>)
1692  return __generate_vector_impl<typename _VVT::value_type,
1693  _VVT::_S_full_size>(
1694  static_cast<_Gp&&>(__gen), make_index_sequence<_VVT::_S_full_size>());
1695  else
1696  return __generate_vector_impl<typename _VVT::value_type,
1697  _VVT::_S_partial_width>(
1698  static_cast<_Gp&&>(__gen),
1699  make_index_sequence<_VVT::_S_partial_width>());
1700  }
1701 
1702 template <typename _Tp, size_t _Np, typename _Gp>
1703  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np>
1704  __generate_vector(_Gp&& __gen)
1705  {
1706  return __generate_vector_impl<_Tp, _Np>(static_cast<_Gp&&>(__gen),
1707  make_index_sequence<_Np>());
1708  }
1709 
1710 // }}}
1711 // __xor{{{
1712 template <typename _TW>
1713  _GLIBCXX_SIMD_INTRINSIC constexpr _TW
1714  __xor(_TW __a, _TW __b) noexcept
1715  {
1716  if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
1717  {
1718  using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW,
1719  _VectorTraitsImpl<_TW>>::value_type;
1720  if constexpr (is_floating_point_v<_Tp>)
1721  {
1722  using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
1723  return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a)
1724  ^ __vector_bitcast<_Ip>(__b));
1725  }
1726  else if constexpr (__is_vector_type_v<_TW>)
1727  return __a ^ __b;
1728  else
1729  return __a._M_data ^ __b._M_data;
1730  }
1731  else
1732  return __a ^ __b;
1733  }
1734 
1735 // }}}
1736 // __or{{{
1737 template <typename _TW>
1738  _GLIBCXX_SIMD_INTRINSIC constexpr _TW
1739  __or(_TW __a, _TW __b) noexcept
1740  {
1741  if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
1742  {
1743  using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW,
1744  _VectorTraitsImpl<_TW>>::value_type;
1745  if constexpr (is_floating_point_v<_Tp>)
1746  {
1747  using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
1748  return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a)
1749  | __vector_bitcast<_Ip>(__b));
1750  }
1751  else if constexpr (__is_vector_type_v<_TW>)
1752  return __a | __b;
1753  else
1754  return __a._M_data | __b._M_data;
1755  }
1756  else
1757  return __a | __b;
1758  }
1759 
1760 // }}}
1761 // __and{{{
1762 template <typename _TW>
1763  _GLIBCXX_SIMD_INTRINSIC constexpr _TW
1764  __and(_TW __a, _TW __b) noexcept
1765  {
1766  if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
1767  {
1768  using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW,
1769  _VectorTraitsImpl<_TW>>::value_type;
1770  if constexpr (is_floating_point_v<_Tp>)
1771  {
1772  using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
1773  return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a)
1774  & __vector_bitcast<_Ip>(__b));
1775  }
1776  else if constexpr (__is_vector_type_v<_TW>)
1777  return __a & __b;
1778  else
1779  return __a._M_data & __b._M_data;
1780  }
1781  else
1782  return __a & __b;
1783  }
1784 
1785 // }}}
1786 // __andnot{{{
1787 #if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__
1788 static constexpr struct
1789 {
1790  _GLIBCXX_SIMD_INTRINSIC __v4sf
1791  operator()(__v4sf __a, __v4sf __b) const noexcept
1792  { return __builtin_ia32_andnps(__a, __b); }
1793 
1794  _GLIBCXX_SIMD_INTRINSIC __v2df
1795  operator()(__v2df __a, __v2df __b) const noexcept
1796  { return __builtin_ia32_andnpd(__a, __b); }
1797 
1798  _GLIBCXX_SIMD_INTRINSIC __v2di
1799  operator()(__v2di __a, __v2di __b) const noexcept
1800  { return __builtin_ia32_pandn128(__a, __b); }
1801 
1802  _GLIBCXX_SIMD_INTRINSIC __v8sf
1803  operator()(__v8sf __a, __v8sf __b) const noexcept
1804  { return __builtin_ia32_andnps256(__a, __b); }
1805 
1806  _GLIBCXX_SIMD_INTRINSIC __v4df
1807  operator()(__v4df __a, __v4df __b) const noexcept
1808  { return __builtin_ia32_andnpd256(__a, __b); }
1809 
1810  _GLIBCXX_SIMD_INTRINSIC __v4di
1811  operator()(__v4di __a, __v4di __b) const noexcept
1812  {
1813  if constexpr (__have_avx2)
1814  return __builtin_ia32_andnotsi256(__a, __b);
1815  else
1816  return reinterpret_cast<__v4di>(
1817  __builtin_ia32_andnpd256(reinterpret_cast<__v4df>(__a),
1818  reinterpret_cast<__v4df>(__b)));
1819  }
1820 
1821  _GLIBCXX_SIMD_INTRINSIC __v16sf
1822  operator()(__v16sf __a, __v16sf __b) const noexcept
1823  {
1824  if constexpr (__have_avx512dq)
1825  return _mm512_andnot_ps(__a, __b);
1826  else
1827  return reinterpret_cast<__v16sf>(
1828  _mm512_andnot_si512(reinterpret_cast<__v8di>(__a),
1829  reinterpret_cast<__v8di>(__b)));
1830  }
1831 
1832  _GLIBCXX_SIMD_INTRINSIC __v8df
1833  operator()(__v8df __a, __v8df __b) const noexcept
1834  {
1835  if constexpr (__have_avx512dq)
1836  return _mm512_andnot_pd(__a, __b);
1837  else
1838  return reinterpret_cast<__v8df>(
1839  _mm512_andnot_si512(reinterpret_cast<__v8di>(__a),
1840  reinterpret_cast<__v8di>(__b)));
1841  }
1842 
1843  _GLIBCXX_SIMD_INTRINSIC __v8di
1844  operator()(__v8di __a, __v8di __b) const noexcept
1845  { return _mm512_andnot_si512(__a, __b); }
1846 } _S_x86_andnot;
1847 #endif // _GLIBCXX_SIMD_X86INTRIN && !__clang__
1848 
1849 template <typename _TW>
1850  _GLIBCXX_SIMD_INTRINSIC constexpr _TW
1851  __andnot(_TW __a, _TW __b) noexcept
1852  {
1853  if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
1854  {
1855  using _TVT = conditional_t<__is_simd_wrapper_v<_TW>, _TW,
1856  _VectorTraitsImpl<_TW>>;
1857  using _Tp = typename _TVT::value_type;
1858 #if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__
1859  if constexpr (sizeof(_TW) >= 16)
1860  {
1861  const auto __ai = __to_intrin(__a);
1862  const auto __bi = __to_intrin(__b);
1863  if (!__builtin_is_constant_evaluated()
1864  && !(__builtin_constant_p(__ai) && __builtin_constant_p(__bi)))
1865  {
1866  const auto __r = _S_x86_andnot(__ai, __bi);
1867  if constexpr (is_convertible_v<decltype(__r), _TW>)
1868  return __r;
1869  else
1870  return reinterpret_cast<typename _TVT::type>(__r);
1871  }
1872  }
1873 #endif // _GLIBCXX_SIMD_X86INTRIN
1874  using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
1875  return __vector_bitcast<_Tp>(~__vector_bitcast<_Ip>(__a)
1876  & __vector_bitcast<_Ip>(__b));
1877  }
1878  else
1879  return ~__a & __b;
1880  }
1881 
1882 // }}}
1883 // __not{{{
1884 template <typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1885  _GLIBCXX_SIMD_INTRINSIC constexpr _Tp
1886  __not(_Tp __a) noexcept
1887  {
1888  if constexpr (is_floating_point_v<typename _TVT::value_type>)
1889  return reinterpret_cast<typename _TVT::type>(
1890  ~__vector_bitcast<unsigned>(__a));
1891  else
1892  return ~__a;
1893  }
1894 
1895 // }}}
1896 // __concat{{{
1897 template <typename _Tp, typename _TVT = _VectorTraits<_Tp>,
1898  typename _R = __vector_type_t<typename _TVT::value_type,
1899  _TVT::_S_full_size * 2>>
1900  constexpr _R
1901  __concat(_Tp a_, _Tp b_)
1902  {
1903 #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_1
1904  using _W
1905  = conditional_t<is_floating_point_v<typename _TVT::value_type>, double,
1906  conditional_t<(sizeof(_Tp) >= 2 * sizeof(long long)),
1907  long long, typename _TVT::value_type>>;
1908  constexpr int input_width = sizeof(_Tp) / sizeof(_W);
1909  const auto __a = __vector_bitcast<_W>(a_);
1910  const auto __b = __vector_bitcast<_W>(b_);
1911  using _Up = __vector_type_t<_W, sizeof(_R) / sizeof(_W)>;
1912 #else
1913  constexpr int input_width = _TVT::_S_full_size;
1914  const _Tp& __a = a_;
1915  const _Tp& __b = b_;
1916  using _Up = _R;
1917 #endif
1918  if constexpr (input_width == 2)
1919  return reinterpret_cast<_R>(_Up{__a[0], __a[1], __b[0], __b[1]});
1920  else if constexpr (input_width == 4)
1921  return reinterpret_cast<_R>(
1922  _Up{__a[0], __a[1], __a[2], __a[3], __b[0], __b[1], __b[2], __b[3]});
1923  else if constexpr (input_width == 8)
1924  return reinterpret_cast<_R>(
1925  _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6], __a[7],
1926  __b[0], __b[1], __b[2], __b[3], __b[4], __b[5], __b[6], __b[7]});
1927  else if constexpr (input_width == 16)
1928  return reinterpret_cast<_R>(
1929  _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6],
1930  __a[7], __a[8], __a[9], __a[10], __a[11], __a[12], __a[13],
1931  __a[14], __a[15], __b[0], __b[1], __b[2], __b[3], __b[4],
1932  __b[5], __b[6], __b[7], __b[8], __b[9], __b[10], __b[11],
1933  __b[12], __b[13], __b[14], __b[15]});
1934  else if constexpr (input_width == 32)
1935  return reinterpret_cast<_R>(
1936  _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6],
1937  __a[7], __a[8], __a[9], __a[10], __a[11], __a[12], __a[13],
1938  __a[14], __a[15], __a[16], __a[17], __a[18], __a[19], __a[20],
1939  __a[21], __a[22], __a[23], __a[24], __a[25], __a[26], __a[27],
1940  __a[28], __a[29], __a[30], __a[31], __b[0], __b[1], __b[2],
1941  __b[3], __b[4], __b[5], __b[6], __b[7], __b[8], __b[9],
1942  __b[10], __b[11], __b[12], __b[13], __b[14], __b[15], __b[16],
1943  __b[17], __b[18], __b[19], __b[20], __b[21], __b[22], __b[23],
1944  __b[24], __b[25], __b[26], __b[27], __b[28], __b[29], __b[30],
1945  __b[31]});
1946  }
1947 
1948 // }}}
1949 // __zero_extend {{{
1950 template <typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1951  struct _ZeroExtendProxy
1952  {
1953  using value_type = typename _TVT::value_type;
1954  static constexpr size_t _Np = _TVT::_S_full_size;
1955  const _Tp __x;
1956 
1957  template <typename _To, typename _ToVT = _VectorTraits<_To>,
1958  typename
1959  = enable_if_t<is_same_v<typename _ToVT::value_type, value_type>>>
1960  _GLIBCXX_SIMD_INTRINSIC operator _To() const
1961  {
1962  constexpr size_t _ToN = _ToVT::_S_full_size;
1963  if constexpr (_ToN == _Np)
1964  return __x;
1965  else if constexpr (_ToN == 2 * _Np)
1966  {
1967 #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_3
1968  if constexpr (__have_avx && _TVT::template _S_is<float, 4>)
1969  return __vector_bitcast<value_type>(
1970  _mm256_insertf128_ps(__m256(), __x, 0));
1971  else if constexpr (__have_avx && _TVT::template _S_is<double, 2>)
1972  return __vector_bitcast<value_type>(
1973  _mm256_insertf128_pd(__m256d(), __x, 0));
1974  else if constexpr (__have_avx2 && _Np * sizeof(value_type) == 16)
1975  return __vector_bitcast<value_type>(
1976  _mm256_insertf128_si256(__m256i(), __to_intrin(__x), 0));
1977  else if constexpr (__have_avx512f && _TVT::template _S_is<float, 8>)
1978  {
1979  if constexpr (__have_avx512dq)
1980  return __vector_bitcast<value_type>(
1981  _mm512_insertf32x8(__m512(), __x, 0));
1982  else
1983  return reinterpret_cast<__m512>(
1984  _mm512_insertf64x4(__m512d(),
1985  reinterpret_cast<__m256d>(__x), 0));
1986  }
1987  else if constexpr (__have_avx512f
1988  && _TVT::template _S_is<double, 4>)
1989  return __vector_bitcast<value_type>(
1990  _mm512_insertf64x4(__m512d(), __x, 0));
1991  else if constexpr (__have_avx512f && _Np * sizeof(value_type) == 32)
1992  return __vector_bitcast<value_type>(
1993  _mm512_inserti64x4(__m512i(), __to_intrin(__x), 0));
1994 #endif
1995  return __concat(__x, _Tp());
1996  }
1997  else if constexpr (_ToN == 4 * _Np)
1998  {
1999 #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_3
2000  if constexpr (__have_avx512dq && _TVT::template _S_is<double, 2>)
2001  {
2002  return __vector_bitcast<value_type>(
2003  _mm512_insertf64x2(__m512d(), __x, 0));
2004  }
2005  else if constexpr (__have_avx512f
2006  && is_floating_point_v<value_type>)
2007  {
2008  return __vector_bitcast<value_type>(
2009  _mm512_insertf32x4(__m512(), reinterpret_cast<__m128>(__x),
2010  0));
2011  }
2012  else if constexpr (__have_avx512f && _Np * sizeof(value_type) == 16)
2013  {
2014  return __vector_bitcast<value_type>(
2015  _mm512_inserti32x4(__m512i(), __to_intrin(__x), 0));
2016  }
2017 #endif
2018  return __concat(__concat(__x, _Tp()),
2019  __vector_type_t<value_type, _Np * 2>());
2020  }
2021  else if constexpr (_ToN == 8 * _Np)
2022  return __concat(operator __vector_type_t<value_type, _Np * 4>(),
2023  __vector_type_t<value_type, _Np * 4>());
2024  else if constexpr (_ToN == 16 * _Np)
2025  return __concat(operator __vector_type_t<value_type, _Np * 8>(),
2026  __vector_type_t<value_type, _Np * 8>());
2027  else
2028  __assert_unreachable<_Tp>();
2029  }
2030  };
2031 
2032 template <typename _Tp, typename _TVT = _VectorTraits<_Tp>>
2033  _GLIBCXX_SIMD_INTRINSIC _ZeroExtendProxy<_Tp, _TVT>
2034  __zero_extend(_Tp __x)
2035  { return {__x}; }
2036 
2037 // }}}
2038 // __extract<_Np, By>{{{
2039 template <int _Offset,
2040  int _SplitBy,
2041  typename _Tp,
2042  typename _TVT = _VectorTraits<_Tp>,
2043  typename _R = __vector_type_t<typename _TVT::value_type,
2044  _TVT::_S_full_size / _SplitBy>>
2045  _GLIBCXX_SIMD_INTRINSIC constexpr _R
2046  __extract(_Tp __in)
2047  {
2048  using value_type = typename _TVT::value_type;
2049 #if _GLIBCXX_SIMD_X86INTRIN // {{{
2050  if constexpr (sizeof(_Tp) == 64 && _SplitBy == 4 && _Offset > 0)
2051  {
2052  if constexpr (__have_avx512dq && is_same_v<double, value_type>)
2053  return _mm512_extractf64x2_pd(__to_intrin(__in), _Offset);
2054  else if constexpr (is_floating_point_v<value_type>)
2055  return __vector_bitcast<value_type>(
2056  _mm512_extractf32x4_ps(__intrin_bitcast<__m512>(__in), _Offset));
2057  else
2058  return reinterpret_cast<_R>(
2059  _mm512_extracti32x4_epi32(__intrin_bitcast<__m512i>(__in),
2060  _Offset));
2061  }
2062  else
2063 #endif // _GLIBCXX_SIMD_X86INTRIN }}}
2064  {
2065 #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_1
2066  using _W = conditional_t<
2067  is_floating_point_v<value_type>, double,
2068  conditional_t<(sizeof(_R) >= 16), long long, value_type>>;
2069  static_assert(sizeof(_R) % sizeof(_W) == 0);
2070  constexpr int __return_width = sizeof(_R) / sizeof(_W);
2071  using _Up = __vector_type_t<_W, __return_width>;
2072  const auto __x = __vector_bitcast<_W>(__in);
2073 #else
2074  constexpr int __return_width = _TVT::_S_full_size / _SplitBy;
2075  using _Up = _R;
2076  const __vector_type_t<value_type, _TVT::_S_full_size>& __x
2077  = __in; // only needed for _Tp = _SimdWrapper<value_type, _Np>
2078 #endif
2079  constexpr int _O = _Offset * __return_width;
2080  return __call_with_subscripts<__return_width, _O>(
2081  __x, [](auto... __entries) {
2082  return reinterpret_cast<_R>(_Up{__entries...});
2083  });
2084  }
2085  }
2086 
2087 // }}}
2088 // __lo/__hi64[z]{{{
2089 template <typename _Tp,
2090  typename _R
2091  = __vector_type8_t<typename _VectorTraits<_Tp>::value_type>>
2092  _GLIBCXX_SIMD_INTRINSIC constexpr _R
2093  __lo64(_Tp __x)
2094  {
2095  _R __r{};
2096  __builtin_memcpy(&__r, &__x, 8);
2097  return __r;
2098  }
2099 
2100 template <typename _Tp,
2101  typename _R
2102  = __vector_type8_t<typename _VectorTraits<_Tp>::value_type>>
2103  _GLIBCXX_SIMD_INTRINSIC constexpr _R
2104  __hi64(_Tp __x)
2105  {
2106  static_assert(sizeof(_Tp) == 16, "use __hi64z if you meant it");
2107  _R __r{};
2108  __builtin_memcpy(&__r, reinterpret_cast<const char*>(&__x) + 8, 8);
2109  return __r;
2110  }
2111 
2112 template <typename _Tp,
2113  typename _R
2114  = __vector_type8_t<typename _VectorTraits<_Tp>::value_type>>
2115  _GLIBCXX_SIMD_INTRINSIC constexpr _R
2116  __hi64z([[maybe_unused]] _Tp __x)
2117  {
2118  _R __r{};
2119  if constexpr (sizeof(_Tp) == 16)
2120  __builtin_memcpy(&__r, reinterpret_cast<const char*>(&__x) + 8, 8);
2121  return __r;
2122  }
2123 
2124 // }}}
2125 // __lo/__hi128{{{
2126 template <typename _Tp>
2127  _GLIBCXX_SIMD_INTRINSIC constexpr auto
2128  __lo128(_Tp __x)
2129  { return __extract<0, sizeof(_Tp) / 16>(__x); }
2130 
2131 template <typename _Tp>
2132  _GLIBCXX_SIMD_INTRINSIC constexpr auto
2133  __hi128(_Tp __x)
2134  {
2135  static_assert(sizeof(__x) == 32);
2136  return __extract<1, 2>(__x);
2137  }
2138 
2139 // }}}
2140 // __lo/__hi256{{{
2141 template <typename _Tp>
2142  _GLIBCXX_SIMD_INTRINSIC constexpr auto
2143  __lo256(_Tp __x)
2144  {
2145  static_assert(sizeof(__x) == 64);
2146  return __extract<0, 2>(__x);
2147  }
2148 
2149 template <typename _Tp>
2150  _GLIBCXX_SIMD_INTRINSIC constexpr auto
2151  __hi256(_Tp __x)
2152  {
2153  static_assert(sizeof(__x) == 64);
2154  return __extract<1, 2>(__x);
2155  }
2156 
2157 // }}}
2158 // __auto_bitcast{{{
2159 template <typename _Tp>
2160  struct _AutoCast
2161  {
2162  static_assert(__is_vector_type_v<_Tp>);
2163 
2164  const _Tp __x;
2165 
2166  template <typename _Up, typename _UVT = _VectorTraits<_Up>>
2167  _GLIBCXX_SIMD_INTRINSIC constexpr operator _Up() const
2168  { return __intrin_bitcast<typename _UVT::type>(__x); }
2169  };
2170 
2171 template <typename _Tp>
2172  _GLIBCXX_SIMD_INTRINSIC constexpr _AutoCast<_Tp>
2173  __auto_bitcast(const _Tp& __x)
2174  { return {__x}; }
2175 
2176 template <typename _Tp, size_t _Np>
2177  _GLIBCXX_SIMD_INTRINSIC constexpr
2178  _AutoCast<typename _SimdWrapper<_Tp, _Np>::_BuiltinType>
2179  __auto_bitcast(const _SimdWrapper<_Tp, _Np>& __x)
2180  { return {__x._M_data}; }
2181 
2182 // }}}
2183 // ^^^ ---- builtin vector types [[gnu::vector_size(N)]] and operations ---- ^^^
2184 
2185 #if _GLIBCXX_SIMD_HAVE_SSE_ABI
2186 // __bool_storage_member_type{{{
2187 #if _GLIBCXX_SIMD_HAVE_AVX512F && _GLIBCXX_SIMD_X86INTRIN
2188 template <size_t _Size>
2189  struct __bool_storage_member_type
2190  {
2191  static_assert((_Size & (_Size - 1)) != 0,
2192  "This trait may only be used for non-power-of-2 sizes. "
2193  "Power-of-2 sizes must be specialized.");
2194  using type =
2195  typename __bool_storage_member_type<std::__bit_ceil(_Size)>::type;
2196  };
2197 
2198 template <>
2199  struct __bool_storage_member_type<1> { using type = bool; };
2200 
2201 template <>
2202  struct __bool_storage_member_type<2> { using type = __mmask8; };
2203 
2204 template <>
2205  struct __bool_storage_member_type<4> { using type = __mmask8; };
2206 
2207 template <>
2208  struct __bool_storage_member_type<8> { using type = __mmask8; };
2209 
2210 template <>
2211  struct __bool_storage_member_type<16> { using type = __mmask16; };
2212 
2213 template <>
2214  struct __bool_storage_member_type<32> { using type = __mmask32; };
2215 
2216 template <>
2217  struct __bool_storage_member_type<64> { using type = __mmask64; };
2218 #endif // _GLIBCXX_SIMD_HAVE_AVX512F
2219 
2220 // }}}
2221 // __intrinsic_type (x86){{{
2222 // the following excludes bool via __is_vectorizable
2223 #if _GLIBCXX_SIMD_HAVE_SSE
2224 template <typename _Tp, size_t _Bytes>
2225  struct __intrinsic_type<_Tp, _Bytes,
2226  enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 64>>
2227  {
2228  static_assert(!is_same_v<_Tp, long double>,
2229  "no __intrinsic_type support for long double on x86");
2230 
2231  static constexpr size_t _S_VBytes = _Bytes <= 16 ? 16
2232  : _Bytes <= 32 ? 32
2233  : 64;
2234 
2235  using type [[__gnu__::__vector_size__(_S_VBytes)]]
2236  = conditional_t<is_integral_v<_Tp>, long long int, _Tp>;
2237  };
2238 #endif // _GLIBCXX_SIMD_HAVE_SSE
2239 
2240 // }}}
2241 #endif // _GLIBCXX_SIMD_HAVE_SSE_ABI
2242 // __intrinsic_type (ARM){{{
2243 #if _GLIBCXX_SIMD_HAVE_NEON
2244 template <>
2245  struct __intrinsic_type<float, 8, void>
2246  { using type = float32x2_t; };
2247 
2248 template <>
2249  struct __intrinsic_type<float, 16, void>
2250  { using type = float32x4_t; };
2251 
2252 #if _GLIBCXX_SIMD_HAVE_NEON_A64
2253 template <>
2254  struct __intrinsic_type<double, 8, void>
2255  { using type = float64x1_t; };
2256 
2257 template <>
2258  struct __intrinsic_type<double, 16, void>
2259  { using type = float64x2_t; };
2260 #endif
2261 
2262 #define _GLIBCXX_SIMD_ARM_INTRIN(_Bits, _Np) \
2263 template <> \
2264  struct __intrinsic_type<__int_with_sizeof_t<_Bits / 8>, \
2265  _Np * _Bits / 8, void> \
2266  { using type = int##_Bits##x##_Np##_t; }; \
2267 template <> \
2268  struct __intrinsic_type<make_unsigned_t<__int_with_sizeof_t<_Bits / 8>>, \
2269  _Np * _Bits / 8, void> \
2270  { using type = uint##_Bits##x##_Np##_t; }
2271 _GLIBCXX_SIMD_ARM_INTRIN(8, 8);
2272 _GLIBCXX_SIMD_ARM_INTRIN(8, 16);
2273 _GLIBCXX_SIMD_ARM_INTRIN(16, 4);
2274 _GLIBCXX_SIMD_ARM_INTRIN(16, 8);
2275 _GLIBCXX_SIMD_ARM_INTRIN(32, 2);
2276 _GLIBCXX_SIMD_ARM_INTRIN(32, 4);
2277 _GLIBCXX_SIMD_ARM_INTRIN(64, 1);
2278 _GLIBCXX_SIMD_ARM_INTRIN(64, 2);
2279 #undef _GLIBCXX_SIMD_ARM_INTRIN
2280 
2281 template <typename _Tp, size_t _Bytes>
2282  struct __intrinsic_type<_Tp, _Bytes,
2283  enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 16>>
2284  {
2285  static constexpr int _SVecBytes = _Bytes <= 8 ? 8 : 16;
2286  using _Ip = __int_for_sizeof_t<_Tp>;
2287  using _Up = conditional_t<
2288  is_floating_point_v<_Tp>, _Tp,
2289  conditional_t<is_unsigned_v<_Tp>, make_unsigned_t<_Ip>, _Ip>>;
2290  static_assert(!is_same_v<_Tp, _Up> || _SVecBytes != _Bytes,
2291  "should use explicit specialization above");
2292  using type = typename __intrinsic_type<_Up, _SVecBytes>::type;
2293  };
2294 #endif // _GLIBCXX_SIMD_HAVE_NEON
2295 
2296 // }}}
2297 // __intrinsic_type (PPC){{{
2298 #ifdef __ALTIVEC__
2299 template <typename _Tp>
2300  struct __intrinsic_type_impl;
2301 
2302 #define _GLIBCXX_SIMD_PPC_INTRIN(_Tp) \
2303  template <> \
2304  struct __intrinsic_type_impl<_Tp> { using type = __vector _Tp; }
2305 _GLIBCXX_SIMD_PPC_INTRIN(float);
2306 _GLIBCXX_SIMD_PPC_INTRIN(double);
2307 _GLIBCXX_SIMD_PPC_INTRIN(signed char);
2308 _GLIBCXX_SIMD_PPC_INTRIN(unsigned char);
2309 _GLIBCXX_SIMD_PPC_INTRIN(signed short);
2310 _GLIBCXX_SIMD_PPC_INTRIN(unsigned short);
2311 _GLIBCXX_SIMD_PPC_INTRIN(signed int);
2312 _GLIBCXX_SIMD_PPC_INTRIN(unsigned int);
2313 _GLIBCXX_SIMD_PPC_INTRIN(signed long);
2314 _GLIBCXX_SIMD_PPC_INTRIN(unsigned long);
2315 _GLIBCXX_SIMD_PPC_INTRIN(signed long long);
2316 _GLIBCXX_SIMD_PPC_INTRIN(unsigned long long);
2317 #undef _GLIBCXX_SIMD_PPC_INTRIN
2318 
2319 template <typename _Tp, size_t _Bytes>
2320  struct __intrinsic_type<_Tp, _Bytes,
2321  enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 16>>
2322  {
2323  static constexpr bool _S_is_ldouble = is_same_v<_Tp, long double>;
2324  // allow _Tp == long double with -mlong-double-64
2325  static_assert(!(_S_is_ldouble && sizeof(long double) > sizeof(double)),
2326  "no __intrinsic_type support for long double on PPC");
2327 #ifndef __VSX__
2328  static_assert(!is_same_v<_Tp, double>,
2329  "no __intrinsic_type support for double on PPC w/o VSX");
2330 #endif
2331  using type =
2332  typename __intrinsic_type_impl<
2333  conditional_t<is_floating_point_v<_Tp>,
2334  conditional_t<_S_is_ldouble, double, _Tp>,
2335  __int_for_sizeof_t<_Tp>>>::type;
2336  };
2337 #endif // __ALTIVEC__
2338 
2339 // }}}
2340 // _SimdWrapper<bool>{{{1
2341 template <size_t _Width>
2342  struct _SimdWrapper<bool, _Width,
2343  void_t<typename __bool_storage_member_type<_Width>::type>>
2344  {
2345  using _BuiltinType = typename __bool_storage_member_type<_Width>::type;
2346  using value_type = bool;
2347 
2348  static constexpr size_t _S_full_size = sizeof(_BuiltinType) * __CHAR_BIT__;
2349 
2350  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper<bool, _S_full_size>
2351  __as_full_vector() const { return _M_data; }
2352 
2353  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper() = default;
2354  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_BuiltinType __k)
2355  : _M_data(__k) {};
2356 
2357  _GLIBCXX_SIMD_INTRINSIC operator const _BuiltinType&() const
2358  { return _M_data; }
2359 
2360  _GLIBCXX_SIMD_INTRINSIC operator _BuiltinType&()
2361  { return _M_data; }
2362 
2363  _GLIBCXX_SIMD_INTRINSIC _BuiltinType __intrin() const
2364  { return _M_data; }
2365 
2366  _GLIBCXX_SIMD_INTRINSIC constexpr value_type operator[](size_t __i) const
2367  { return _M_data & (_BuiltinType(1) << __i); }
2368 
2369  template <size_t __i>
2370  _GLIBCXX_SIMD_INTRINSIC constexpr value_type
2371  operator[](_SizeConstant<__i>) const
2372  { return _M_data & (_BuiltinType(1) << __i); }
2373 
2374  _GLIBCXX_SIMD_INTRINSIC constexpr void _M_set(size_t __i, value_type __x)
2375  {
2376  if (__x)
2377  _M_data |= (_BuiltinType(1) << __i);
2378  else
2379  _M_data &= ~(_BuiltinType(1) << __i);
2380  }
2381 
2382  _GLIBCXX_SIMD_INTRINSIC
2383  constexpr bool _M_is_constprop() const
2384  { return __builtin_constant_p(_M_data); }
2385 
2386  _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_none_of() const
2387  {
2388  if (__builtin_constant_p(_M_data))
2389  {
2390  constexpr int __nbits = sizeof(_BuiltinType) * __CHAR_BIT__;
2391  constexpr _BuiltinType __active_mask
2392  = ~_BuiltinType() >> (__nbits - _Width);
2393  return (_M_data & __active_mask) == 0;
2394  }
2395  return false;
2396  }
2397 
2398  _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_all_of() const
2399  {
2400  if (__builtin_constant_p(_M_data))
2401  {
2402  constexpr int __nbits = sizeof(_BuiltinType) * __CHAR_BIT__;
2403  constexpr _BuiltinType __active_mask
2404  = ~_BuiltinType() >> (__nbits - _Width);
2405  return (_M_data & __active_mask) == __active_mask;
2406  }
2407  return false;
2408  }
2409 
2410  _BuiltinType _M_data;
2411  };
2412 
2413 // _SimdWrapperBase{{{1
2414 template <bool _MustZeroInitPadding, typename _BuiltinType>
2415  struct _SimdWrapperBase;
2416 
2417 template <typename _BuiltinType>
2418  struct _SimdWrapperBase<false, _BuiltinType> // no padding or no SNaNs
2419  {
2420  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase() = default;
2421  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase(_BuiltinType __init)
2422  : _M_data(__init)
2423  {}
2424 
2425  _BuiltinType _M_data;
2426  };
2427 
2428 template <typename _BuiltinType>
2429  struct _SimdWrapperBase<true, _BuiltinType> // with padding that needs to
2430  // never become SNaN
2431  {
2432  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase() : _M_data() {}
2433  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase(_BuiltinType __init)
2434  : _M_data(__init)
2435  {}
2436 
2437  _BuiltinType _M_data;
2438  };
2439 
2440 // }}}
2441 // _SimdWrapper{{{
2442 template <typename _Tp, size_t _Width>
2443  struct _SimdWrapper<
2444  _Tp, _Width,
2445  void_t<__vector_type_t<_Tp, _Width>, __intrinsic_type_t<_Tp, _Width>>>
2446  : _SimdWrapperBase<__has_iec559_behavior<__signaling_NaN, _Tp>::value
2447  && sizeof(_Tp) * _Width
2448  == sizeof(__vector_type_t<_Tp, _Width>),
2449  __vector_type_t<_Tp, _Width>>
2450  {
2451  using _Base
2452  = _SimdWrapperBase<__has_iec559_behavior<__signaling_NaN, _Tp>::value
2453  && sizeof(_Tp) * _Width
2454  == sizeof(__vector_type_t<_Tp, _Width>),
2455  __vector_type_t<_Tp, _Width>>;
2456 
2457  static_assert(__is_vectorizable_v<_Tp>);
2458  static_assert(_Width >= 2); // 1 doesn't make sense, use _Tp directly then
2459 
2460  using _BuiltinType = __vector_type_t<_Tp, _Width>;
2461  using value_type = _Tp;
2462 
2463  static inline constexpr size_t _S_full_size
2464  = sizeof(_BuiltinType) / sizeof(value_type);
2465  static inline constexpr int _S_size = _Width;
2466  static inline constexpr bool _S_is_partial = _S_full_size != _S_size;
2467 
2468  using _Base::_M_data;
2469 
2470  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper<_Tp, _S_full_size>
2471  __as_full_vector() const
2472  { return _M_data; }
2473 
2474  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(initializer_list<_Tp> __init)
2475  : _Base(__generate_from_n_evaluations<_Width, _BuiltinType>(
2476  [&](auto __i) { return __init.begin()[__i.value]; })) {}
2477 
2478  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper() = default;
2479  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(const _SimdWrapper&)
2480  = default;
2481  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_SimdWrapper&&) = default;
2482 
2483  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper&
2484  operator=(const _SimdWrapper&) = default;
2485  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper&
2486  operator=(_SimdWrapper&&) = default;
2487 
2488  template <typename _V, typename = enable_if_t<disjunction_v<
2489  is_same<_V, __vector_type_t<_Tp, _Width>>,
2490  is_same<_V, __intrinsic_type_t<_Tp, _Width>>>>>
2491  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_V __x)
2492  // __vector_bitcast can convert e.g. __m128 to __vector(2) float
2493  : _Base(__vector_bitcast<_Tp, _Width>(__x)) {}
2494 
2495  template <typename... _As,
2496  typename = enable_if_t<((is_same_v<simd_abi::scalar, _As> && ...)
2497  && sizeof...(_As) <= _Width)>>
2498  _GLIBCXX_SIMD_INTRINSIC constexpr
2499  operator _SimdTuple<_Tp, _As...>() const
2500  {
2501  const auto& dd = _M_data; // workaround for GCC7 ICE
2502  return __generate_from_n_evaluations<sizeof...(_As),
2503  _SimdTuple<_Tp, _As...>>([&](
2504  auto __i) constexpr { return dd[int(__i)]; });
2505  }
2506 
2507  _GLIBCXX_SIMD_INTRINSIC constexpr operator const _BuiltinType&() const
2508  { return _M_data; }
2509 
2510  _GLIBCXX_SIMD_INTRINSIC constexpr operator _BuiltinType&()
2511  { return _M_data; }
2512 
2513  _GLIBCXX_SIMD_INTRINSIC constexpr _Tp operator[](size_t __i) const
2514  { return _M_data[__i]; }
2515 
2516  template <size_t __i>
2517  _GLIBCXX_SIMD_INTRINSIC constexpr _Tp operator[](_SizeConstant<__i>) const
2518  { return _M_data[__i]; }
2519 
2520  _GLIBCXX_SIMD_INTRINSIC constexpr void _M_set(size_t __i, _Tp __x)
2521  { _M_data[__i] = __x; }
2522 
2523  _GLIBCXX_SIMD_INTRINSIC
2524  constexpr bool _M_is_constprop() const
2525  { return __builtin_constant_p(_M_data); }
2526 
2527  _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_none_of() const
2528  {
2529  if (__builtin_constant_p(_M_data))
2530  {
2531  bool __r = true;
2532  if constexpr (is_floating_point_v<_Tp>)
2533  {
2534  using _Ip = __int_for_sizeof_t<_Tp>;
2535  const auto __intdata = __vector_bitcast<_Ip>(_M_data);
2536  __execute_n_times<_Width>(
2537  [&](auto __i) { __r &= __intdata[__i.value] == _Ip(); });
2538  }
2539  else
2540  __execute_n_times<_Width>(
2541  [&](auto __i) { __r &= _M_data[__i.value] == _Tp(); });
2542  return __r;
2543  }
2544  return false;
2545  }
2546 
2547  _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_all_of() const
2548  {
2549  if (__builtin_constant_p(_M_data))
2550  {
2551  bool __r = true;
2552  if constexpr (is_floating_point_v<_Tp>)
2553  {
2554  using _Ip = __int_for_sizeof_t<_Tp>;
2555  const auto __intdata = __vector_bitcast<_Ip>(_M_data);
2556  __execute_n_times<_Width>(
2557  [&](auto __i) { __r &= __intdata[__i.value] == ~_Ip(); });
2558  }
2559  else
2560  __execute_n_times<_Width>(
2561  [&](auto __i) { __r &= _M_data[__i.value] == ~_Tp(); });
2562  return __r;
2563  }
2564  return false;
2565  }
2566  };
2567 
2568 // }}}
2569 
2570 // __vectorized_sizeof {{{
2571 template <typename _Tp>
2572  constexpr size_t
2573  __vectorized_sizeof()
2574  {
2575  if constexpr (!__is_vectorizable_v<_Tp>)
2576  return 0;
2577 
2578  if constexpr (sizeof(_Tp) <= 8)
2579  {
2580  // X86:
2581  if constexpr (__have_avx512bw)
2582  return 64;
2583  if constexpr (__have_avx512f && sizeof(_Tp) >= 4)
2584  return 64;
2585  if constexpr (__have_avx2)
2586  return 32;
2587  if constexpr (__have_avx && is_floating_point_v<_Tp>)
2588  return 32;
2589  if constexpr (__have_sse2)
2590  return 16;
2591  if constexpr (__have_sse && is_same_v<_Tp, float>)
2592  return 16;
2593  /* The following is too much trouble because of mixed MMX and x87 code.
2594  * While nothing here explicitly calls MMX instructions of registers,
2595  * they are still emitted but no EMMS cleanup is done.
2596  if constexpr (__have_mmx && sizeof(_Tp) <= 4 && is_integral_v<_Tp>)
2597  return 8;
2598  */
2599 
2600  // PowerPC:
2601  if constexpr (__have_power8vec
2602  || (__have_power_vmx && (sizeof(_Tp) < 8))
2603  || (__have_power_vsx && is_floating_point_v<_Tp>) )
2604  return 16;
2605 
2606  // ARM:
2607  if constexpr (__have_neon_a64
2608  || (__have_neon_a32 && !is_same_v<_Tp, double>) )
2609  return 16;
2610  if constexpr (__have_neon
2611  && sizeof(_Tp) < 8
2612  // Only allow fp if the user allows non-ICE559 fp (e.g.
2613  // via -ffast-math). ARMv7 NEON fp is not conforming to
2614  // IEC559.
2615  && (__support_neon_float || !is_floating_point_v<_Tp>))
2616  return 16;
2617  }
2618 
2619  return sizeof(_Tp);
2620  }
2621 
2622 // }}}
2623 namespace simd_abi {
2624 // most of simd_abi is defined in simd_detail.h
2625 template <typename _Tp>
2626  inline constexpr int max_fixed_size
2627  = (__have_avx512bw && sizeof(_Tp) == 1) ? 64 : 32;
2628 
2629 // compatible {{{
2630 #if defined __x86_64__ || defined __aarch64__
2631 template <typename _Tp>
2632  using compatible = conditional_t<(sizeof(_Tp) <= 8), _VecBuiltin<16>, scalar>;
2633 #elif defined __ARM_NEON
2634 // FIXME: not sure, probably needs to be scalar (or dependent on the hard-float
2635 // ABI?)
2636 template <typename _Tp>
2637  using compatible
2638  = conditional_t<(sizeof(_Tp) < 8
2639  && (__support_neon_float || !is_floating_point_v<_Tp>)),
2640  _VecBuiltin<16>, scalar>;
2641 #else
2642 template <typename>
2643  using compatible = scalar;
2644 #endif
2645 
2646 // }}}
2647 // native {{{
2648 template <typename _Tp>
2649  constexpr auto
2650  __determine_native_abi()
2651  {
2652  constexpr size_t __bytes = __vectorized_sizeof<_Tp>();
2653  if constexpr (__bytes == sizeof(_Tp))
2654  return static_cast<scalar*>(nullptr);
2655  else if constexpr (__have_avx512vl || (__have_avx512f && __bytes == 64))
2656  return static_cast<_VecBltnBtmsk<__bytes>*>(nullptr);
2657  else
2658  return static_cast<_VecBuiltin<__bytes>*>(nullptr);
2659  }
2660 
2661 template <typename _Tp, typename = enable_if_t<__is_vectorizable_v<_Tp>>>
2662  using native = remove_pointer_t<decltype(__determine_native_abi<_Tp>())>;
2663 
2664 // }}}
2665 // __default_abi {{{
2666 #if defined _GLIBCXX_SIMD_DEFAULT_ABI
2667 template <typename _Tp>
2668  using __default_abi = _GLIBCXX_SIMD_DEFAULT_ABI<_Tp>;
2669 #else
2670 template <typename _Tp>
2671  using __default_abi = compatible<_Tp>;
2672 #endif
2673 
2674 // }}}
2675 } // namespace simd_abi
2676 
2677 // traits {{{1
2678 // is_abi_tag {{{2
2679 template <typename _Tp, typename = void_t<>>
2680  struct is_abi_tag : false_type {};
2681 
2682 template <typename _Tp>
2683  struct is_abi_tag<_Tp, void_t<typename _Tp::_IsValidAbiTag>>
2684  : public _Tp::_IsValidAbiTag {};
2685 
2686 template <typename _Tp>
2687  inline constexpr bool is_abi_tag_v = is_abi_tag<_Tp>::value;
2688 
2689 // is_simd(_mask) {{{2
2690 template <typename _Tp>
2691  struct is_simd : public false_type {};
2692 
2693 template <typename _Tp>
2694  inline constexpr bool is_simd_v = is_simd<_Tp>::value;
2695 
2696 template <typename _Tp>
2697  struct is_simd_mask : public false_type {};
2698 
2699 template <typename _Tp>
2700 inline constexpr bool is_simd_mask_v = is_simd_mask<_Tp>::value;
2701 
2702 // simd_size {{{2
2703 template <typename _Tp, typename _Abi, typename = void>
2704  struct __simd_size_impl {};
2705 
2706 template <typename _Tp, typename _Abi>
2707  struct __simd_size_impl<
2708  _Tp, _Abi,
2709  enable_if_t<conjunction_v<__is_vectorizable<_Tp>, is_abi_tag<_Abi>>>>
2710  : _SizeConstant<_Abi::template _S_size<_Tp>> {};
2711 
2712 template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
2713  struct simd_size : __simd_size_impl<_Tp, _Abi> {};
2714 
2715 template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
2716  inline constexpr size_t simd_size_v = simd_size<_Tp, _Abi>::value;
2717 
2718 // simd_abi::deduce {{{2
2719 template <typename _Tp, size_t _Np, typename = void>
2720  struct __deduce_impl;
2721 
2722 namespace simd_abi {
2723 /**
2724  * @tparam _Tp The requested `value_type` for the elements.
2725  * @tparam _Np The requested number of elements.
2726  * @tparam _Abis This parameter is ignored, since this implementation cannot
2727  * make any use of it. Either __a good native ABI is matched and used as `type`
2728  * alias, or the `fixed_size<_Np>` ABI is used, which internally is built from
2729  * the best matching native ABIs.
2730  */
2731 template <typename _Tp, size_t _Np, typename...>
2732  struct deduce : __deduce_impl<_Tp, _Np> {};
2733 
2734 template <typename _Tp, size_t _Np, typename... _Abis>
2735  using deduce_t = typename deduce<_Tp, _Np, _Abis...>::type;
2736 } // namespace simd_abi
2737 
2738 // }}}2
2739 // rebind_simd {{{2
2740 template <typename _Tp, typename _V, typename = void>
2741  struct rebind_simd;
2742 
2743 template <typename _Tp, typename _Up, typename _Abi>
2744  struct rebind_simd<
2745  _Tp, simd<_Up, _Abi>,
2746  void_t<simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>>
2747  {
2748  using type
2749  = simd<_Tp, simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>;
2750  };
2751 
2752 template <typename _Tp, typename _Up, typename _Abi>
2753  struct rebind_simd<
2754  _Tp, simd_mask<_Up, _Abi>,
2755  void_t<simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>>
2756  {
2757  using type
2758  = simd_mask<_Tp, simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>;
2759  };
2760 
2761 template <typename _Tp, typename _V>
2762  using rebind_simd_t = typename rebind_simd<_Tp, _V>::type;
2763 
2764 // resize_simd {{{2
2765 template <int _Np, typename _V, typename = void>
2766  struct resize_simd;
2767 
2768 template <int _Np, typename _Tp, typename _Abi>
2769  struct resize_simd<_Np, simd<_Tp, _Abi>,
2770  void_t<simd_abi::deduce_t<_Tp, _Np, _Abi>>>
2771  { using type = simd<_Tp, simd_abi::deduce_t<_Tp, _Np, _Abi>>; };
2772 
2773 template <int _Np, typename _Tp, typename _Abi>
2774  struct resize_simd<_Np, simd_mask<_Tp, _Abi>,
2775  void_t<simd_abi::deduce_t<_Tp, _Np, _Abi>>>
2776  { using type = simd_mask<_Tp, simd_abi::deduce_t<_Tp, _Np, _Abi>>; };
2777 
2778 template <int _Np, typename _V>
2779  using resize_simd_t = typename resize_simd<_Np, _V>::type;
2780 
2781 // }}}2
2782 // memory_alignment {{{2
2783 template <typename _Tp, typename _Up = typename _Tp::value_type>
2784  struct memory_alignment
2785  : public _SizeConstant<vector_aligned_tag::_S_alignment<_Tp, _Up>> {};
2786 
2787 template <typename _Tp, typename _Up = typename _Tp::value_type>
2788  inline constexpr size_t memory_alignment_v = memory_alignment<_Tp, _Up>::value;
2789 
2790 // class template simd [simd] {{{1
2791 template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
2792  class simd;
2793 
2794 template <typename _Tp, typename _Abi>
2795  struct is_simd<simd<_Tp, _Abi>> : public true_type {};
2796 
2797 template <typename _Tp>
2798  using native_simd = simd<_Tp, simd_abi::native<_Tp>>;
2799 
2800 template <typename _Tp, int _Np>
2801  using fixed_size_simd = simd<_Tp, simd_abi::fixed_size<_Np>>;
2802 
2803 template <typename _Tp, size_t _Np>
2804  using __deduced_simd = simd<_Tp, simd_abi::deduce_t<_Tp, _Np>>;
2805 
2806 // class template simd_mask [simd_mask] {{{1
2807 template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
2808  class simd_mask;
2809 
2810 template <typename _Tp, typename _Abi>
2811  struct is_simd_mask<simd_mask<_Tp, _Abi>> : public true_type {};
2812 
2813 template <typename _Tp>
2814  using native_simd_mask = simd_mask<_Tp, simd_abi::native<_Tp>>;
2815 
2816 template <typename _Tp, int _Np>
2817  using fixed_size_simd_mask = simd_mask<_Tp, simd_abi::fixed_size<_Np>>;
2818 
2819 template <typename _Tp, size_t _Np>
2820  using __deduced_simd_mask = simd_mask<_Tp, simd_abi::deduce_t<_Tp, _Np>>;
2821 
2822 // casts [simd.casts] {{{1
2823 // static_simd_cast {{{2
2824 template <typename _Tp, typename _Up, typename _Ap, bool = is_simd_v<_Tp>,
2825  typename = void>
2826  struct __static_simd_cast_return_type;
2827 
2828 template <typename _Tp, typename _A0, typename _Up, typename _Ap>
2829  struct __static_simd_cast_return_type<simd_mask<_Tp, _A0>, _Up, _Ap, false,
2830  void>
2831  : __static_simd_cast_return_type<simd<_Tp, _A0>, _Up, _Ap> {};
2832 
2833 template <typename _Tp, typename _Up, typename _Ap>
2834  struct __static_simd_cast_return_type<
2835  _Tp, _Up, _Ap, true, enable_if_t<_Tp::size() == simd_size_v<_Up, _Ap>>>
2836  { using type = _Tp; };
2837 
2838 template <typename _Tp, typename _Ap>
2839  struct __static_simd_cast_return_type<_Tp, _Tp, _Ap, false,
2840 #ifdef _GLIBCXX_SIMD_FIX_P2TS_ISSUE66
2841  enable_if_t<__is_vectorizable_v<_Tp>>
2842 #else
2843  void
2844 #endif
2845  >
2846  { using type = simd<_Tp, _Ap>; };
2847 
2848 template <typename _Tp, typename = void>
2849  struct __safe_make_signed { using type = _Tp;};
2850 
2851 template <typename _Tp>
2852  struct __safe_make_signed<_Tp, enable_if_t<is_integral_v<_Tp>>>
2853  {
2854  // the extra make_unsigned_t is because of PR85951
2855  using type = make_signed_t<make_unsigned_t<_Tp>>;
2856  };
2857 
2858 template <typename _Tp>
2859  using safe_make_signed_t = typename __safe_make_signed<_Tp>::type;
2860 
2861 template <typename _Tp, typename _Up, typename _Ap>
2862  struct __static_simd_cast_return_type<_Tp, _Up, _Ap, false,
2863 #ifdef _GLIBCXX_SIMD_FIX_P2TS_ISSUE66
2864  enable_if_t<__is_vectorizable_v<_Tp>>
2865 #else
2866  void
2867 #endif
2868  >
2869  {
2870  using type = conditional_t<
2871  (is_integral_v<_Up> && is_integral_v<_Tp> &&
2872 #ifndef _GLIBCXX_SIMD_FIX_P2TS_ISSUE65
2873  is_signed_v<_Up> != is_signed_v<_Tp> &&
2874 #endif
2875  is_same_v<safe_make_signed_t<_Up>, safe_make_signed_t<_Tp>>),
2876  simd<_Tp, _Ap>, fixed_size_simd<_Tp, simd_size_v<_Up, _Ap>>>;
2877  };
2878 
2879 template <typename _Tp, typename _Up, typename _Ap,
2880  typename _R
2881  = typename __static_simd_cast_return_type<_Tp, _Up, _Ap>::type>
2882  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _R
2883  static_simd_cast(const simd<_Up, _Ap>& __x)
2884  {
2885  if constexpr (is_same<_R, simd<_Up, _Ap>>::value)
2886  return __x;
2887  else
2888  {
2889  _SimdConverter<_Up, _Ap, typename _R::value_type, typename _R::abi_type>
2890  __c;
2891  return _R(__private_init, __c(__data(__x)));
2892  }
2893  }
2894 
2895 namespace __proposed {
2896 template <typename _Tp, typename _Up, typename _Ap,
2897  typename _R
2898  = typename __static_simd_cast_return_type<_Tp, _Up, _Ap>::type>
2899  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR typename _R::mask_type
2900  static_simd_cast(const simd_mask<_Up, _Ap>& __x)
2901  {
2902  using _RM = typename _R::mask_type;
2903  return {__private_init, _RM::abi_type::_MaskImpl::template _S_convert<
2904  typename _RM::simd_type::value_type>(__x)};
2905  }
2906 } // namespace __proposed
2907 
2908 // simd_cast {{{2
2909 template <typename _Tp, typename _Up, typename _Ap,
2910  typename _To = __value_type_or_identity_t<_Tp>>
2911  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR auto
2912  simd_cast(const simd<_ValuePreserving<_Up, _To>, _Ap>& __x)
2913  -> decltype(static_simd_cast<_Tp>(__x))
2914  { return static_simd_cast<_Tp>(__x); }
2915 
2916 namespace __proposed {
2917 template <typename _Tp, typename _Up, typename _Ap,
2918  typename _To = __value_type_or_identity_t<_Tp>>
2919  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR auto
2920  simd_cast(const simd_mask<_ValuePreserving<_Up, _To>, _Ap>& __x)
2921  -> decltype(static_simd_cast<_Tp>(__x))
2922  { return static_simd_cast<_Tp>(__x); }
2923 } // namespace __proposed
2924 
2925 // }}}2
2926 // resizing_simd_cast {{{
2927 namespace __proposed {
2928 /* Proposed spec:
2929 
2930 template <class T, class U, class Abi>
2931 T resizing_simd_cast(const simd<U, Abi>& x)
2932 
2933 p1 Constraints:
2934  - is_simd_v<T> is true and
2935  - T::value_type is the same type as U
2936 
2937 p2 Returns:
2938  A simd object with the i^th element initialized to x[i] for all i in the
2939  range of [0, min(T::size(), simd_size_v<U, Abi>)). If T::size() is larger
2940  than simd_size_v<U, Abi>, the remaining elements are value-initialized.
2941 
2942 template <class T, class U, class Abi>
2943 T resizing_simd_cast(const simd_mask<U, Abi>& x)
2944 
2945 p1 Constraints: is_simd_mask_v<T> is true
2946 
2947 p2 Returns:
2948  A simd_mask object with the i^th element initialized to x[i] for all i in
2949 the range of [0, min(T::size(), simd_size_v<U, Abi>)). If T::size() is larger
2950  than simd_size_v<U, Abi>, the remaining elements are initialized to false.
2951 
2952  */
2953 
2954 template <typename _Tp, typename _Up, typename _Ap>
2955  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR enable_if_t<
2956  conjunction_v<is_simd<_Tp>, is_same<typename _Tp::value_type, _Up>>, _Tp>
2957  resizing_simd_cast(const simd<_Up, _Ap>& __x)
2958  {
2959  if constexpr (is_same_v<typename _Tp::abi_type, _Ap>)
2960  return __x;
2961  else if constexpr (simd_size_v<_Up, _Ap> == 1)
2962  {
2963  _Tp __r{};
2964  __r[0] = __x[0];
2965  return __r;
2966  }
2967  else if constexpr (_Tp::size() == 1)
2968  return __x[0];
2969  else if constexpr (sizeof(_Tp) == sizeof(__x)
2970  && !__is_fixed_size_abi_v<_Ap>)
2971  return {__private_init,
2972  __vector_bitcast<typename _Tp::value_type, _Tp::size()>(
2973  _Ap::_S_masked(__data(__x))._M_data)};
2974  else
2975  {
2976  _Tp __r{};
2977  __builtin_memcpy(&__data(__r), &__data(__x),
2978  sizeof(_Up)
2979  * std::min(_Tp::size(), simd_size_v<_Up, _Ap>));
2980  return __r;
2981  }
2982  }
2983 
2984 template <typename _Tp, typename _Up, typename _Ap>
2985  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
2986  enable_if_t<is_simd_mask_v<_Tp>, _Tp>
2987  resizing_simd_cast(const simd_mask<_Up, _Ap>& __x)
2988  {
2989  return {__private_init, _Tp::abi_type::_MaskImpl::template _S_convert<
2990  typename _Tp::simd_type::value_type>(__x)};
2991  }
2992 } // namespace __proposed
2993 
2994 // }}}
2995 // to_fixed_size {{{2
2996 template <typename _Tp, int _Np>
2997  _GLIBCXX_SIMD_INTRINSIC fixed_size_simd<_Tp, _Np>
2998  to_fixed_size(const fixed_size_simd<_Tp, _Np>& __x)
2999  { return __x; }
3000 
3001 template <typename _Tp, int _Np>
3002  _GLIBCXX_SIMD_INTRINSIC fixed_size_simd_mask<_Tp, _Np>
3003  to_fixed_size(const fixed_size_simd_mask<_Tp, _Np>& __x)
3004  { return __x; }
3005 
3006 template <typename _Tp, typename _Ap>
3007  _GLIBCXX_SIMD_INTRINSIC auto
3008  to_fixed_size(const simd<_Tp, _Ap>& __x)
3009  {
3010  return simd<_Tp, simd_abi::fixed_size<simd_size_v<_Tp, _Ap>>>([&__x](
3011  auto __i) constexpr { return __x[__i]; });
3012  }
3013 
3014 template <typename _Tp, typename _Ap>
3015  _GLIBCXX_SIMD_INTRINSIC auto
3016  to_fixed_size(const simd_mask<_Tp, _Ap>& __x)
3017  {
3018  constexpr int _Np = simd_mask<_Tp, _Ap>::size();
3019  fixed_size_simd_mask<_Tp, _Np> __r;
3020  __execute_n_times<_Np>([&](auto __i) constexpr { __r[__i] = __x[__i]; });
3021  return __r;
3022  }
3023 
3024 // to_native {{{2
3025 template <typename _Tp, int _Np>
3026  _GLIBCXX_SIMD_INTRINSIC
3027  enable_if_t<(_Np == native_simd<_Tp>::size()), native_simd<_Tp>>
3028  to_native(const fixed_size_simd<_Tp, _Np>& __x)
3029  {
3030  alignas(memory_alignment_v<native_simd<_Tp>>) _Tp __mem[_Np];
3031  __x.copy_to(__mem, vector_aligned);
3032  return {__mem, vector_aligned};
3033  }
3034 
3035 template <typename _Tp, size_t _Np>
3036  _GLIBCXX_SIMD_INTRINSIC
3037  enable_if_t<(_Np == native_simd_mask<_Tp>::size()), native_simd_mask<_Tp>>
3038  to_native(const fixed_size_simd_mask<_Tp, _Np>& __x)
3039  {
3040  return native_simd_mask<_Tp>([&](auto __i) constexpr { return __x[__i]; });
3041  }
3042 
3043 // to_compatible {{{2
3044 template <typename _Tp, size_t _Np>
3045  _GLIBCXX_SIMD_INTRINSIC enable_if_t<(_Np == simd<_Tp>::size()), simd<_Tp>>
3046  to_compatible(const simd<_Tp, simd_abi::fixed_size<_Np>>& __x)
3047  {
3048  alignas(memory_alignment_v<simd<_Tp>>) _Tp __mem[_Np];
3049  __x.copy_to(__mem, vector_aligned);
3050  return {__mem, vector_aligned};
3051  }
3052 
3053 template <typename _Tp, size_t _Np>
3054  _GLIBCXX_SIMD_INTRINSIC
3055  enable_if_t<(_Np == simd_mask<_Tp>::size()), simd_mask<_Tp>>
3056  to_compatible(const simd_mask<_Tp, simd_abi::fixed_size<_Np>>& __x)
3057  { return simd_mask<_Tp>([&](auto __i) constexpr { return __x[__i]; }); }
3058 
3059 // masked assignment [simd_mask.where] {{{1
3060 
3061 // where_expression {{{1
3062 // const_where_expression<M, T> {{{2
3063 template <typename _M, typename _Tp>
3064  class const_where_expression
3065  {
3066  using _V = _Tp;
3067  static_assert(is_same_v<_V, __remove_cvref_t<_Tp>>);
3068 
3069  struct _Wrapper { using value_type = _V; };
3070 
3071  protected:
3072  using _Impl = typename _V::_Impl;
3073 
3074  using value_type =
3075  typename conditional_t<is_arithmetic_v<_V>, _Wrapper, _V>::value_type;
3076 
3077  _GLIBCXX_SIMD_INTRINSIC friend const _M&
3078  __get_mask(const const_where_expression& __x)
3079  { return __x._M_k; }
3080 
3081  _GLIBCXX_SIMD_INTRINSIC friend const _Tp&
3082  __get_lvalue(const const_where_expression& __x)
3083  { return __x._M_value; }
3084 
3085  const _M& _M_k;
3086  _Tp& _M_value;
3087 
3088  public:
3089  const_where_expression(const const_where_expression&) = delete;
3090  const_where_expression& operator=(const const_where_expression&) = delete;
3091 
3092  _GLIBCXX_SIMD_INTRINSIC const_where_expression(const _M& __kk, const _Tp& dd)
3093  : _M_k(__kk), _M_value(const_cast<_Tp&>(dd)) {}
3094 
3095  _GLIBCXX_SIMD_INTRINSIC _V
3096  operator-() const&&
3097  {
3098  return {__private_init,
3099  _Impl::template _S_masked_unary<negate>(__data(_M_k),
3100  __data(_M_value))};
3101  }
3102 
3103  template <typename _Up, typename _Flags>
3104  [[nodiscard]] _GLIBCXX_SIMD_INTRINSIC _V
3105  copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
3106  {
3107  return {__private_init,
3108  _Impl::_S_masked_load(__data(_M_value), __data(_M_k),
3109  _Flags::template _S_apply<_V>(__mem))};
3110  }
3111 
3112  template <typename _Up, typename _Flags>
3113  _GLIBCXX_SIMD_INTRINSIC void
3114  copy_to(_LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
3115  {
3116  _Impl::_S_masked_store(__data(_M_value),
3117  _Flags::template _S_apply<_V>(__mem),
3118  __data(_M_k));
3119  }
3120  };
3121 
3122 // const_where_expression<bool, T> {{{2
3123 template <typename _Tp>
3124  class const_where_expression<bool, _Tp>
3125  {
3126  using _M = bool;
3127  using _V = _Tp;
3128 
3129  static_assert(is_same_v<_V, __remove_cvref_t<_Tp>>);
3130 
3131  struct _Wrapper { using value_type = _V; };
3132 
3133  protected:
3134  using value_type =
3135  typename conditional_t<is_arithmetic_v<_V>, _Wrapper, _V>::value_type;
3136 
3137  _GLIBCXX_SIMD_INTRINSIC friend const _M&
3138  __get_mask(const const_where_expression& __x)
3139  { return __x._M_k; }
3140 
3141  _GLIBCXX_SIMD_INTRINSIC friend const _Tp&
3142  __get_lvalue(const const_where_expression& __x)
3143  { return __x._M_value; }
3144 
3145  const bool _M_k;
3146  _Tp& _M_value;
3147 
3148  public:
3149  const_where_expression(const const_where_expression&) = delete;
3150  const_where_expression& operator=(const const_where_expression&) = delete;
3151 
3152  _GLIBCXX_SIMD_INTRINSIC const_where_expression(const bool __kk, const _Tp& dd)
3153  : _M_k(__kk), _M_value(const_cast<_Tp&>(dd)) {}
3154 
3155  _GLIBCXX_SIMD_INTRINSIC _V operator-() const&&
3156  { return _M_k ? -_M_value : _M_value; }
3157 
3158  template <typename _Up, typename _Flags>
3159  [[nodiscard]] _GLIBCXX_SIMD_INTRINSIC _V
3160  copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
3161  { return _M_k ? static_cast<_V>(__mem[0]) : _M_value; }
3162 
3163  template <typename _Up, typename _Flags>
3164  _GLIBCXX_SIMD_INTRINSIC void
3165  copy_to(_LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
3166  {
3167  if (_M_k)
3168  __mem[0] = _M_value;
3169  }
3170  };
3171 
3172 // where_expression<M, T> {{{2
3173 template <typename _M, typename _Tp>
3174  class where_expression : public const_where_expression<_M, _Tp>
3175  {
3176  using _Impl = typename const_where_expression<_M, _Tp>::_Impl;
3177 
3178  static_assert(!is_const<_Tp>::value,
3179  "where_expression may only be instantiated with __a non-const "
3180  "_Tp parameter");
3181 
3182  using typename const_where_expression<_M, _Tp>::value_type;
3183  using const_where_expression<_M, _Tp>::_M_k;
3184  using const_where_expression<_M, _Tp>::_M_value;
3185 
3186  static_assert(
3187  is_same<typename _M::abi_type, typename _Tp::abi_type>::value, "");
3188  static_assert(_M::size() == _Tp::size(), "");
3189 
3190  _GLIBCXX_SIMD_INTRINSIC friend _Tp& __get_lvalue(where_expression& __x)
3191  { return __x._M_value; }
3192 
3193  public:
3194  where_expression(const where_expression&) = delete;
3195  where_expression& operator=(const where_expression&) = delete;
3196 
3197  _GLIBCXX_SIMD_INTRINSIC where_expression(const _M& __kk, _Tp& dd)
3198  : const_where_expression<_M, _Tp>(__kk, dd) {}
3199 
3200  template <typename _Up>
3201  _GLIBCXX_SIMD_INTRINSIC void operator=(_Up&& __x) &&
3202  {
3203  _Impl::_S_masked_assign(__data(_M_k), __data(_M_value),
3204  __to_value_type_or_member_type<_Tp>(
3205  static_cast<_Up&&>(__x)));
3206  }
3207 
3208 #define _GLIBCXX_SIMD_OP_(__op, __name) \
3209  template <typename _Up> \
3210  _GLIBCXX_SIMD_INTRINSIC void operator __op##=(_Up&& __x)&& \
3211  { \
3212  _Impl::template _S_masked_cassign( \
3213  __data(_M_k), __data(_M_value), \
3214  __to_value_type_or_member_type<_Tp>(static_cast<_Up&&>(__x)), \
3215  [](auto __impl, auto __lhs, auto __rhs) constexpr { \
3216  return __impl.__name(__lhs, __rhs); \
3217  }); \
3218  } \
3219  static_assert(true)
3220  _GLIBCXX_SIMD_OP_(+, _S_plus);
3221  _GLIBCXX_SIMD_OP_(-, _S_minus);
3222  _GLIBCXX_SIMD_OP_(*, _S_multiplies);
3223  _GLIBCXX_SIMD_OP_(/, _S_divides);
3224  _GLIBCXX_SIMD_OP_(%, _S_modulus);
3225  _GLIBCXX_SIMD_OP_(&, _S_bit_and);
3226  _GLIBCXX_SIMD_OP_(|, _S_bit_or);
3227  _GLIBCXX_SIMD_OP_(^, _S_bit_xor);
3228  _GLIBCXX_SIMD_OP_(<<, _S_shift_left);
3229  _GLIBCXX_SIMD_OP_(>>, _S_shift_right);
3230 #undef _GLIBCXX_SIMD_OP_
3231 
3232  _GLIBCXX_SIMD_INTRINSIC void operator++() &&
3233  {
3234  __data(_M_value)
3235  = _Impl::template _S_masked_unary<__increment>(__data(_M_k),
3236  __data(_M_value));
3237  }
3238 
3239  _GLIBCXX_SIMD_INTRINSIC void operator++(int) &&
3240  {
3241  __data(_M_value)
3242  = _Impl::template _S_masked_unary<__increment>(__data(_M_k),
3243  __data(_M_value));
3244  }
3245 
3246  _GLIBCXX_SIMD_INTRINSIC void operator--() &&
3247  {
3248  __data(_M_value)
3249  = _Impl::template _S_masked_unary<__decrement>(__data(_M_k),
3250  __data(_M_value));
3251  }
3252 
3253  _GLIBCXX_SIMD_INTRINSIC void operator--(int) &&
3254  {
3255  __data(_M_value)
3256  = _Impl::template _S_masked_unary<__decrement>(__data(_M_k),
3257  __data(_M_value));
3258  }
3259 
3260  // intentionally hides const_where_expression::copy_from
3261  template <typename _Up, typename _Flags>
3262  _GLIBCXX_SIMD_INTRINSIC void
3263  copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) &&
3264  {
3265  __data(_M_value)
3266  = _Impl::_S_masked_load(__data(_M_value), __data(_M_k),
3267  _Flags::template _S_apply<_Tp>(__mem));
3268  }
3269  };
3270 
3271 // where_expression<bool, T> {{{2
3272 template <typename _Tp>
3273  class where_expression<bool, _Tp> : public const_where_expression<bool, _Tp>
3274  {
3275  using _M = bool;
3276  using typename const_where_expression<_M, _Tp>::value_type;
3277  using const_where_expression<_M, _Tp>::_M_k;
3278  using const_where_expression<_M, _Tp>::_M_value;
3279 
3280  public:
3281  where_expression(const where_expression&) = delete;
3282  where_expression& operator=(const where_expression&) = delete;
3283 
3284  _GLIBCXX_SIMD_INTRINSIC where_expression(const _M& __kk, _Tp& dd)
3285  : const_where_expression<_M, _Tp>(__kk, dd) {}
3286 
3287 #define _GLIBCXX_SIMD_OP_(__op) \
3288  template <typename _Up> \
3289  _GLIBCXX_SIMD_INTRINSIC void operator __op(_Up&& __x)&& \
3290  { if (_M_k) _M_value __op static_cast<_Up&&>(__x); }
3291 
3292  _GLIBCXX_SIMD_OP_(=)
3293  _GLIBCXX_SIMD_OP_(+=)
3294  _GLIBCXX_SIMD_OP_(-=)
3295  _GLIBCXX_SIMD_OP_(*=)
3296  _GLIBCXX_SIMD_OP_(/=)
3297  _GLIBCXX_SIMD_OP_(%=)
3298  _GLIBCXX_SIMD_OP_(&=)
3299  _GLIBCXX_SIMD_OP_(|=)
3300  _GLIBCXX_SIMD_OP_(^=)
3301  _GLIBCXX_SIMD_OP_(<<=)
3302  _GLIBCXX_SIMD_OP_(>>=)
3303  #undef _GLIBCXX_SIMD_OP_
3304 
3305  _GLIBCXX_SIMD_INTRINSIC void operator++() &&
3306  { if (_M_k) ++_M_value; }
3307 
3308  _GLIBCXX_SIMD_INTRINSIC void operator++(int) &&
3309  { if (_M_k) ++_M_value; }
3310 
3311  _GLIBCXX_SIMD_INTRINSIC void operator--() &&
3312  { if (_M_k) --_M_value; }
3313 
3314  _GLIBCXX_SIMD_INTRINSIC void operator--(int) &&
3315  { if (_M_k) --_M_value; }
3316 
3317  // intentionally hides const_where_expression::copy_from
3318  template <typename _Up, typename _Flags>
3319  _GLIBCXX_SIMD_INTRINSIC void
3320  copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) &&
3321  { if (_M_k) _M_value = __mem[0]; }
3322  };
3323 
3324 // where {{{1
3325 template <typename _Tp, typename _Ap>
3326  _GLIBCXX_SIMD_INTRINSIC where_expression<simd_mask<_Tp, _Ap>, simd<_Tp, _Ap>>
3327  where(const typename simd<_Tp, _Ap>::mask_type& __k, simd<_Tp, _Ap>& __value)
3328  { return {__k, __value}; }
3329 
3330 template <typename _Tp, typename _Ap>
3331  _GLIBCXX_SIMD_INTRINSIC
3332  const_where_expression<simd_mask<_Tp, _Ap>, simd<_Tp, _Ap>>
3333  where(const typename simd<_Tp, _Ap>::mask_type& __k,
3334  const simd<_Tp, _Ap>& __value)
3335  { return {__k, __value}; }
3336 
3337 template <typename _Tp, typename _Ap>
3338  _GLIBCXX_SIMD_INTRINSIC
3339  where_expression<simd_mask<_Tp, _Ap>, simd_mask<_Tp, _Ap>>
3340  where(const remove_const_t<simd_mask<_Tp, _Ap>>& __k,
3341  simd_mask<_Tp, _Ap>& __value)
3342  { return {__k, __value}; }
3343 
3344 template <typename _Tp, typename _Ap>
3345  _GLIBCXX_SIMD_INTRINSIC
3346  const_where_expression<simd_mask<_Tp, _Ap>, simd_mask<_Tp, _Ap>>
3347  where(const remove_const_t<simd_mask<_Tp, _Ap>>& __k,
3348  const simd_mask<_Tp, _Ap>& __value)
3349  { return {__k, __value}; }
3350 
3351 template <typename _Tp>
3352  _GLIBCXX_SIMD_INTRINSIC where_expression<bool, _Tp>
3353  where(_ExactBool __k, _Tp& __value)
3354  { return {__k, __value}; }
3355 
3356 template <typename _Tp>
3357  _GLIBCXX_SIMD_INTRINSIC const_where_expression<bool, _Tp>
3358  where(_ExactBool __k, const _Tp& __value)
3359  { return {__k, __value}; }
3360 
3361  template <typename _Tp, typename _Ap>
3362  void where(bool __k, simd<_Tp, _Ap>& __value) = delete;
3363 
3364  template <typename _Tp, typename _Ap>
3365  void where(bool __k, const simd<_Tp, _Ap>& __value) = delete;
3366 
3367 // proposed mask iterations {{{1
3368 namespace __proposed {
3369 template <size_t _Np>
3370  class where_range
3371  {
3372  const bitset<_Np> __bits;
3373 
3374  public:
3375  where_range(bitset<_Np> __b) : __bits(__b) {}
3376 
3377  class iterator
3378  {
3379  size_t __mask;
3380  size_t __bit;
3381 
3382  _GLIBCXX_SIMD_INTRINSIC void __next_bit()
3383  { __bit = __builtin_ctzl(__mask); }
3384 
3385  _GLIBCXX_SIMD_INTRINSIC void __reset_lsb()
3386  {
3387  // 01100100 - 1 = 01100011
3388  __mask &= (__mask - 1);
3389  // __asm__("btr %1,%0" : "+r"(__mask) : "r"(__bit));
3390  }
3391 
3392  public:
3393  iterator(decltype(__mask) __m) : __mask(__m) { __next_bit(); }
3394  iterator(const iterator&) = default;
3395  iterator(iterator&&) = default;
3396 
3397  _GLIBCXX_SIMD_ALWAYS_INLINE size_t operator->() const
3398  { return __bit; }
3399 
3400  _GLIBCXX_SIMD_ALWAYS_INLINE size_t operator*() const
3401  { return __bit; }
3402 
3403  _GLIBCXX_SIMD_ALWAYS_INLINE iterator& operator++()
3404  {
3405  __reset_lsb();
3406  __next_bit();
3407  return *this;
3408  }
3409 
3410  _GLIBCXX_SIMD_ALWAYS_INLINE iterator operator++(int)
3411  {
3412  iterator __tmp = *this;
3413  __reset_lsb();
3414  __next_bit();
3415  return __tmp;
3416  }
3417 
3418  _GLIBCXX_SIMD_ALWAYS_INLINE bool operator==(const iterator& __rhs) const
3419  { return __mask == __rhs.__mask; }
3420 
3421  _GLIBCXX_SIMD_ALWAYS_INLINE bool operator!=(const iterator& __rhs) const
3422  { return __mask != __rhs.__mask; }
3423  };
3424 
3425  iterator begin() const
3426  { return __bits.to_ullong(); }
3427 
3428  iterator end() const
3429  { return 0; }
3430  };
3431 
3432 template <typename _Tp, typename _Ap>
3433  where_range<simd_size_v<_Tp, _Ap>>
3434  where(const simd_mask<_Tp, _Ap>& __k)
3435  { return __k.__to_bitset(); }
3436 
3437 } // namespace __proposed
3438 
3439 // }}}1
3440 // reductions [simd.reductions] {{{1
3441 template <typename _Tp, typename _Abi, typename _BinaryOperation = plus<>>
3442  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp
3443  reduce(const simd<_Tp, _Abi>& __v,
3444  _BinaryOperation __binary_op = _BinaryOperation())
3445  { return _Abi::_SimdImpl::_S_reduce(__v, __binary_op); }
3446 
3447 template <typename _M, typename _V, typename _BinaryOperation = plus<>>
3448  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3449  reduce(const const_where_expression<_M, _V>& __x,
3450  typename _V::value_type __identity_element,
3451  _BinaryOperation __binary_op)
3452  {
3453  if (__builtin_expect(none_of(__get_mask(__x)), false))
3454  return __identity_element;
3455 
3456  _V __tmp = __identity_element;
3457  _V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp),
3458  __data(__get_lvalue(__x)));
3459  return reduce(__tmp, __binary_op);
3460  }
3461 
3462 template <typename _M, typename _V>
3463  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3464  reduce(const const_where_expression<_M, _V>& __x, plus<> __binary_op = {})
3465  { return reduce(__x, 0, __binary_op); }
3466 
3467 template <typename _M, typename _V>
3468  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3469  reduce(const const_where_expression<_M, _V>& __x, multiplies<> __binary_op)
3470  { return reduce(__x, 1, __binary_op); }
3471 
3472 template <typename _M, typename _V>
3473  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3474  reduce(const const_where_expression<_M, _V>& __x, bit_and<> __binary_op)
3475  { return reduce(__x, ~typename _V::value_type(), __binary_op); }
3476 
3477 template <typename _M, typename _V>
3478  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3479  reduce(const const_where_expression<_M, _V>& __x, bit_or<> __binary_op)
3480  { return reduce(__x, 0, __binary_op); }
3481 
3482 template <typename _M, typename _V>
3483  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3484  reduce(const const_where_expression<_M, _V>& __x, bit_xor<> __binary_op)
3485  { return reduce(__x, 0, __binary_op); }
3486 
3487 template <typename _Tp, typename _Abi>
3488  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp
3489  hmin(const simd<_Tp, _Abi>& __v) noexcept
3490  {
3491  return _Abi::_SimdImpl::_S_reduce(__v, __detail::_Minimum());
3492  }
3493 
3494 template <typename _Tp, typename _Abi>
3495  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp
3496  hmax(const simd<_Tp, _Abi>& __v) noexcept
3497  {
3498  return _Abi::_SimdImpl::_S_reduce(__v, __detail::_Maximum());
3499  }
3500 
3501 template <typename _M, typename _V>
3502  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3503  typename _V::value_type
3504  hmin(const const_where_expression<_M, _V>& __x) noexcept
3505  {
3506  using _Tp = typename _V::value_type;
3507  constexpr _Tp __id_elem =
3508 #ifdef __FINITE_MATH_ONLY__
3509  __finite_max_v<_Tp>;
3510 #else
3511  __value_or<__infinity, _Tp>(__finite_max_v<_Tp>);
3512 #endif
3513  _V __tmp = __id_elem;
3514  _V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp),
3515  __data(__get_lvalue(__x)));
3516  return _V::abi_type::_SimdImpl::_S_reduce(__tmp, __detail::_Minimum());
3517  }
3518 
3519 template <typename _M, typename _V>
3520  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3521  typename _V::value_type
3522  hmax(const const_where_expression<_M, _V>& __x) noexcept
3523  {
3524  using _Tp = typename _V::value_type;
3525  constexpr _Tp __id_elem =
3526 #ifdef __FINITE_MATH_ONLY__
3527  __finite_min_v<_Tp>;
3528 #else
3529  [] {
3530  if constexpr (__value_exists_v<__infinity, _Tp>)
3531  return -__infinity_v<_Tp>;
3532  else
3533  return __finite_min_v<_Tp>;
3534  }();
3535 #endif
3536  _V __tmp = __id_elem;
3537  _V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp),
3538  __data(__get_lvalue(__x)));
3539  return _V::abi_type::_SimdImpl::_S_reduce(__tmp, __detail::_Maximum());
3540  }
3541 
3542 // }}}1
3543 // algorithms [simd.alg] {{{
3544 template <typename _Tp, typename _Ap>
3545  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
3546  min(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
3547  { return {__private_init, _Ap::_SimdImpl::_S_min(__data(__a), __data(__b))}; }
3548 
3549 template <typename _Tp, typename _Ap>
3550  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
3551  max(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
3552  { return {__private_init, _Ap::_SimdImpl::_S_max(__data(__a), __data(__b))}; }
3553 
3554 template <typename _Tp, typename _Ap>
3555  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3556  pair<simd<_Tp, _Ap>, simd<_Tp, _Ap>>
3557  minmax(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
3558  {
3559  const auto pair_of_members
3560  = _Ap::_SimdImpl::_S_minmax(__data(__a), __data(__b));
3561  return {simd<_Tp, _Ap>(__private_init, pair_of_members.first),
3562  simd<_Tp, _Ap>(__private_init, pair_of_members.second)};
3563  }
3564 
3565 template <typename _Tp, typename _Ap>
3566  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
3567  clamp(const simd<_Tp, _Ap>& __v, const simd<_Tp, _Ap>& __lo,
3568  const simd<_Tp, _Ap>& __hi)
3569  {
3570  using _Impl = typename _Ap::_SimdImpl;
3571  return {__private_init,
3572  _Impl::_S_min(__data(__hi),
3573  _Impl::_S_max(__data(__lo), __data(__v)))};
3574  }
3575 
3576 // }}}
3577 
3578 template <size_t... _Sizes, typename _Tp, typename _Ap,
3579  typename = enable_if_t<((_Sizes + ...) == simd<_Tp, _Ap>::size())>>
3580  inline tuple<simd<_Tp, simd_abi::deduce_t<_Tp, _Sizes>>...>
3581  split(const simd<_Tp, _Ap>&);
3582 
3583 // __extract_part {{{
3584 template <int _Index, int _Total, int _Combine = 1, typename _Tp, size_t _Np>
3585  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_CONST
3586  _SimdWrapper<_Tp, _Np / _Total * _Combine>
3587  __extract_part(const _SimdWrapper<_Tp, _Np> __x);
3588 
3589 template <int Index, int Parts, int _Combine = 1, typename _Tp, typename _A0,
3590  typename... _As>
3591  _GLIBCXX_SIMD_INTRINSIC auto
3592  __extract_part(const _SimdTuple<_Tp, _A0, _As...>& __x);
3593 
3594 // }}}
3595 // _SizeList {{{
3596 template <size_t _V0, size_t... _Values>
3597  struct _SizeList
3598  {
3599  template <size_t _I>
3600  static constexpr size_t _S_at(_SizeConstant<_I> = {})
3601  {
3602  if constexpr (_I == 0)
3603  return _V0;
3604  else
3605  return _SizeList<_Values...>::template _S_at<_I - 1>();
3606  }
3607 
3608  template <size_t _I>
3609  static constexpr auto _S_before(_SizeConstant<_I> = {})
3610  {
3611  if constexpr (_I == 0)
3612  return _SizeConstant<0>();
3613  else
3614  return _SizeConstant<
3615  _V0 + _SizeList<_Values...>::template _S_before<_I - 1>()>();
3616  }
3617 
3618  template <size_t _Np>
3619  static constexpr auto _S_pop_front(_SizeConstant<_Np> = {})
3620  {
3621  if constexpr (_Np == 0)
3622  return _SizeList();
3623  else
3624  return _SizeList<_Values...>::template _S_pop_front<_Np - 1>();
3625  }
3626  };
3627 
3628 // }}}
3629 // __extract_center {{{
3630 template <typename _Tp, size_t _Np>
3631  _GLIBCXX_SIMD_INTRINSIC _SimdWrapper<_Tp, _Np / 2>
3632  __extract_center(_SimdWrapper<_Tp, _Np> __x)
3633  {
3634  static_assert(_Np >= 4);
3635  static_assert(_Np % 4 == 0); // x0 - x1 - x2 - x3 -> return {x1, x2}
3636 #if _GLIBCXX_SIMD_X86INTRIN // {{{
3637  if constexpr (__have_avx512f && sizeof(_Tp) * _Np == 64)
3638  {
3639  const auto __intrin = __to_intrin(__x);
3640  if constexpr (is_integral_v<_Tp>)
3641  return __vector_bitcast<_Tp>(_mm512_castsi512_si256(
3642  _mm512_shuffle_i32x4(__intrin, __intrin,
3643  1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40)));
3644  else if constexpr (sizeof(_Tp) == 4)
3645  return __vector_bitcast<_Tp>(_mm512_castps512_ps256(
3646  _mm512_shuffle_f32x4(__intrin, __intrin,
3647  1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40)));
3648  else if constexpr (sizeof(_Tp) == 8)
3649  return __vector_bitcast<_Tp>(_mm512_castpd512_pd256(
3650  _mm512_shuffle_f64x2(__intrin, __intrin,
3651  1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40)));
3652  else
3653  __assert_unreachable<_Tp>();
3654  }
3655  else if constexpr (sizeof(_Tp) * _Np == 32 && is_floating_point_v<_Tp>)
3656  return __vector_bitcast<_Tp>(
3657  _mm_shuffle_pd(__lo128(__vector_bitcast<double>(__x)),
3658  __hi128(__vector_bitcast<double>(__x)), 1));
3659  else if constexpr (sizeof(__x) == 32 && sizeof(_Tp) * _Np <= 32)
3660  return __vector_bitcast<_Tp>(
3661  _mm_alignr_epi8(__hi128(__vector_bitcast<_LLong>(__x)),
3662  __lo128(__vector_bitcast<_LLong>(__x)),
3663  sizeof(_Tp) * _Np / 4));
3664  else
3665 #endif // _GLIBCXX_SIMD_X86INTRIN }}}
3666  {
3667  __vector_type_t<_Tp, _Np / 2> __r;
3668  __builtin_memcpy(&__r,
3669  reinterpret_cast<const char*>(&__x)
3670  + sizeof(_Tp) * _Np / 4,
3671  sizeof(_Tp) * _Np / 2);
3672  return __r;
3673  }
3674  }
3675 
3676 template <typename _Tp, typename _A0, typename... _As>
3677  _GLIBCXX_SIMD_INTRINSIC
3678  _SimdWrapper<_Tp, _SimdTuple<_Tp, _A0, _As...>::_S_size() / 2>
3679  __extract_center(const _SimdTuple<_Tp, _A0, _As...>& __x)
3680  {
3681  if constexpr (sizeof...(_As) == 0)
3682  return __extract_center(__x.first);
3683  else
3684  return __extract_part<1, 4, 2>(__x);
3685  }
3686 
3687 // }}}
3688 // __split_wrapper {{{
3689 template <size_t... _Sizes, typename _Tp, typename... _As>
3690  auto
3691  __split_wrapper(_SizeList<_Sizes...>, const _SimdTuple<_Tp, _As...>& __x)
3692  {
3693  return split<_Sizes...>(
3694  fixed_size_simd<_Tp, _SimdTuple<_Tp, _As...>::_S_size()>(__private_init,
3695  __x));
3696  }
3697 
3698 // }}}
3699 
3700 // split<simd>(simd) {{{
3701 template <typename _V, typename _Ap,
3702  size_t Parts = simd_size_v<typename _V::value_type, _Ap> / _V::size()>
3703  enable_if_t<simd_size_v<typename _V::value_type, _Ap> == Parts * _V::size()
3704  && is_simd_v<_V>, array<_V, Parts>>
3705  split(const simd<typename _V::value_type, _Ap>& __x)
3706  {
3707  using _Tp = typename _V::value_type;
3708  if constexpr (Parts == 1)
3709  {
3710  return {simd_cast<_V>(__x)};
3711  }
3712  else if (__x._M_is_constprop())
3713  {
3714  return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
3715  auto __i) constexpr {
3716  return _V([&](auto __j) constexpr {
3717  return __x[__i * _V::size() + __j];
3718  });
3719  });
3720  }
3721  else if constexpr (
3722  __is_fixed_size_abi_v<_Ap>
3723  && (is_same_v<typename _V::abi_type, simd_abi::scalar>
3724  || (__is_fixed_size_abi_v<typename _V::abi_type>
3725  && sizeof(_V) == sizeof(_Tp) * _V::size() // _V doesn't have padding
3726  )))
3727  {
3728  // fixed_size -> fixed_size (w/o padding) or scalar
3729 #ifdef _GLIBCXX_SIMD_USE_ALIASING_LOADS
3730  const __may_alias<_Tp>* const __element_ptr
3731  = reinterpret_cast<const __may_alias<_Tp>*>(&__data(__x));
3732  return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
3733  auto __i) constexpr {
3734  return _V(__element_ptr + __i * _V::size(), vector_aligned);
3735  });
3736 #else
3737  const auto& __xx = __data(__x);
3738  return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
3739  auto __i) constexpr {
3740  [[maybe_unused]] constexpr size_t __offset
3741  = decltype(__i)::value * _V::size();
3742  return _V([&](auto __j) constexpr {
3743  constexpr _SizeConstant<__j + __offset> __k;
3744  return __xx[__k];
3745  });
3746  });
3747 #endif
3748  }
3749  else if constexpr (is_same_v<typename _V::abi_type, simd_abi::scalar>)
3750  {
3751  // normally memcpy should work here as well
3752  return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
3753  auto __i) constexpr { return __x[__i]; });
3754  }
3755  else
3756  {
3757  return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
3758  auto __i) constexpr {
3759  if constexpr (__is_fixed_size_abi_v<typename _V::abi_type>)
3760  return _V([&](auto __j) constexpr {
3761  return __x[__i * _V::size() + __j];
3762  });
3763  else
3764  return _V(__private_init,
3765  __extract_part<decltype(__i)::value, Parts>(__data(__x)));
3766  });
3767  }
3768  }
3769 
3770 // }}}
3771 // split<simd_mask>(simd_mask) {{{
3772 template <typename _V, typename _Ap,
3773  size_t _Parts
3774  = simd_size_v<typename _V::simd_type::value_type, _Ap> / _V::size()>
3775  enable_if_t<is_simd_mask_v<_V> && simd_size_v<typename
3776  _V::simd_type::value_type, _Ap> == _Parts * _V::size(), array<_V, _Parts>>
3777  split(const simd_mask<typename _V::simd_type::value_type, _Ap>& __x)
3778  {
3779  if constexpr (is_same_v<_Ap, typename _V::abi_type>)
3780  return {__x};
3781  else if constexpr (_Parts == 1)
3782  return {__proposed::static_simd_cast<_V>(__x)};
3783  else if constexpr (_Parts == 2 && __is_sse_abi<typename _V::abi_type>()
3784  && __is_avx_abi<_Ap>())
3785  return {_V(__private_init, __lo128(__data(__x))),
3786  _V(__private_init, __hi128(__data(__x)))};
3787  else if constexpr (_V::size() <= __CHAR_BIT__ * sizeof(_ULLong))
3788  {
3789  const bitset __bits = __x.__to_bitset();
3790  return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>([&](
3791  auto __i) constexpr {
3792  constexpr size_t __offset = __i * _V::size();
3793  return _V(__bitset_init, (__bits >> __offset).to_ullong());
3794  });
3795  }
3796  else
3797  {
3798  return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>([&](
3799  auto __i) constexpr {
3800  constexpr size_t __offset = __i * _V::size();
3801  return _V(
3802  __private_init, [&](auto __j) constexpr {
3803  return __x[__j + __offset];
3804  });
3805  });
3806  }
3807  }
3808 
3809 // }}}
3810 // split<_Sizes...>(simd) {{{
3811 template <size_t... _Sizes, typename _Tp, typename _Ap, typename>
3812  _GLIBCXX_SIMD_ALWAYS_INLINE
3813  tuple<simd<_Tp, simd_abi::deduce_t<_Tp, _Sizes>>...>
3814  split(const simd<_Tp, _Ap>& __x)
3815  {
3816  using _SL = _SizeList<_Sizes...>;
3817  using _Tuple = tuple<__deduced_simd<_Tp, _Sizes>...>;
3818  constexpr size_t _Np = simd_size_v<_Tp, _Ap>;
3819  constexpr size_t _N0 = _SL::template _S_at<0>();
3820  using _V = __deduced_simd<_Tp, _N0>;
3821 
3822  if (__x._M_is_constprop())
3823  return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>([&](
3824  auto __i) constexpr {
3825  using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>;
3826  constexpr size_t __offset = _SL::_S_before(__i);
3827  return _Vi([&](auto __j) constexpr { return __x[__offset + __j]; });
3828  });
3829  else if constexpr (_Np == _N0)
3830  {
3831  static_assert(sizeof...(_Sizes) == 1);
3832  return {simd_cast<_V>(__x)};
3833  }
3834  else if constexpr // split from fixed_size, such that __x::first.size == _N0
3835  (__is_fixed_size_abi_v<
3836  _Ap> && __fixed_size_storage_t<_Tp, _Np>::_S_first_size == _N0)
3837  {
3838  static_assert(
3839  !__is_fixed_size_abi_v<typename _V::abi_type>,
3840  "How can <_Tp, _Np> be __a single _SimdTuple entry but __a "
3841  "fixed_size_simd "
3842  "when deduced?");
3843  // extract first and recurse (__split_wrapper is needed to deduce a new
3844  // _Sizes pack)
3845  return tuple_cat(make_tuple(_V(__private_init, __data(__x).first)),
3846  __split_wrapper(_SL::template _S_pop_front<1>(),
3847  __data(__x).second));
3848  }
3849  else if constexpr ((!is_same_v<simd_abi::scalar,
3850  simd_abi::deduce_t<_Tp, _Sizes>> && ...)
3851  && (!__is_fixed_size_abi_v<
3852  simd_abi::deduce_t<_Tp, _Sizes>> && ...))
3853  {
3854  if constexpr (((_Sizes * 2 == _Np) && ...))
3855  return {{__private_init, __extract_part<0, 2>(__data(__x))},
3856  {__private_init, __extract_part<1, 2>(__data(__x))}};
3857  else if constexpr (is_same_v<_SizeList<_Sizes...>,
3858  _SizeList<_Np / 3, _Np / 3, _Np / 3>>)
3859  return {{__private_init, __extract_part<0, 3>(__data(__x))},
3860  {__private_init, __extract_part<1, 3>(__data(__x))},
3861  {__private_init, __extract_part<2, 3>(__data(__x))}};
3862  else if constexpr (is_same_v<_SizeList<_Sizes...>,
3863  _SizeList<2 * _Np / 3, _Np / 3>>)
3864  return {{__private_init, __extract_part<0, 3, 2>(__data(__x))},
3865  {__private_init, __extract_part<2, 3>(__data(__x))}};
3866  else if constexpr (is_same_v<_SizeList<_Sizes...>,
3867  _SizeList<_Np / 3, 2 * _Np / 3>>)
3868  return {{__private_init, __extract_part<0, 3>(__data(__x))},
3869  {__private_init, __extract_part<1, 3, 2>(__data(__x))}};
3870  else if constexpr (is_same_v<_SizeList<_Sizes...>,
3871  _SizeList<_Np / 2, _Np / 4, _Np / 4>>)
3872  return {{__private_init, __extract_part<0, 2>(__data(__x))},
3873  {__private_init, __extract_part<2, 4>(__data(__x))},
3874  {__private_init, __extract_part<3, 4>(__data(__x))}};
3875  else if constexpr (is_same_v<_SizeList<_Sizes...>,
3876  _SizeList<_Np / 4, _Np / 4, _Np / 2>>)
3877  return {{__private_init, __extract_part<0, 4>(__data(__x))},
3878  {__private_init, __extract_part<1, 4>(__data(__x))},
3879  {__private_init, __extract_part<1, 2>(__data(__x))}};
3880  else if constexpr (is_same_v<_SizeList<_Sizes...>,
3881  _SizeList<_Np / 4, _Np / 2, _Np / 4>>)
3882  return {{__private_init, __extract_part<0, 4>(__data(__x))},
3883  {__private_init, __extract_center(__data(__x))},
3884  {__private_init, __extract_part<3, 4>(__data(__x))}};
3885  else if constexpr (((_Sizes * 4 == _Np) && ...))
3886  return {{__private_init, __extract_part<0, 4>(__data(__x))},
3887  {__private_init, __extract_part<1, 4>(__data(__x))},
3888  {__private_init, __extract_part<2, 4>(__data(__x))},
3889  {__private_init, __extract_part<3, 4>(__data(__x))}};
3890  // else fall through
3891  }
3892 #ifdef _GLIBCXX_SIMD_USE_ALIASING_LOADS
3893  const __may_alias<_Tp>* const __element_ptr
3894  = reinterpret_cast<const __may_alias<_Tp>*>(&__x);
3895  return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>([&](
3896  auto __i) constexpr {
3897  using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>;
3898  constexpr size_t __offset = _SL::_S_before(__i);
3899  constexpr size_t __base_align = alignof(simd<_Tp, _Ap>);
3900  constexpr size_t __a
3901  = __base_align - ((__offset * sizeof(_Tp)) % __base_align);
3902  constexpr size_t __b = ((__a - 1) & __a) ^ __a;
3903  constexpr size_t __alignment = __b == 0 ? __a : __b;
3904  return _Vi(__element_ptr + __offset, overaligned<__alignment>);
3905  });
3906 #else
3907  return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>([&](
3908  auto __i) constexpr {
3909  using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>;
3910  const auto& __xx = __data(__x);
3911  using _Offset = decltype(_SL::_S_before(__i));
3912  return _Vi([&](auto __j) constexpr {
3913  constexpr _SizeConstant<_Offset::value + __j> __k;
3914  return __xx[__k];
3915  });
3916  });
3917 #endif
3918  }
3919 
3920 // }}}
3921 
3922 // __subscript_in_pack {{{
3923 template <size_t _I, typename _Tp, typename _Ap, typename... _As>
3924  _GLIBCXX_SIMD_INTRINSIC constexpr _Tp
3925  __subscript_in_pack(const simd<_Tp, _Ap>& __x, const simd<_Tp, _As>&... __xs)
3926  {
3927  if constexpr (_I < simd_size_v<_Tp, _Ap>)
3928  return __x[_I];
3929  else
3930  return __subscript_in_pack<_I - simd_size_v<_Tp, _Ap>>(__xs...);
3931  }
3932 
3933 // }}}
3934 // __store_pack_of_simd {{{
3935 template <typename _Tp, typename _A0, typename... _As>
3936  _GLIBCXX_SIMD_INTRINSIC void
3937  __store_pack_of_simd(char* __mem, const simd<_Tp, _A0>& __x0,
3938  const simd<_Tp, _As>&... __xs)
3939  {
3940  constexpr size_t __n_bytes = sizeof(_Tp) * simd_size_v<_Tp, _A0>;
3941  __builtin_memcpy(__mem, &__data(__x0), __n_bytes);
3942  if constexpr (sizeof...(__xs) > 0)
3943  __store_pack_of_simd(__mem + __n_bytes, __xs...);
3944  }
3945 
3946 // }}}
3947 // concat(simd...) {{{
3948 template <typename _Tp, typename... _As>
3949  inline _GLIBCXX_SIMD_CONSTEXPR
3950  simd<_Tp, simd_abi::deduce_t<_Tp, (simd_size_v<_Tp, _As> + ...)>>
3951  concat(const simd<_Tp, _As>&... __xs)
3952  {
3953  using _Rp = __deduced_simd<_Tp, (simd_size_v<_Tp, _As> + ...)>;
3954  if constexpr (sizeof...(__xs) == 1)
3955  return simd_cast<_Rp>(__xs...);
3956  else if ((... && __xs._M_is_constprop()))
3957  return simd<_Tp,
3958  simd_abi::deduce_t<_Tp, (simd_size_v<_Tp, _As> + ...)>>([&](
3959  auto __i) constexpr { return __subscript_in_pack<__i>(__xs...); });
3960  else
3961  {
3962  _Rp __r{};
3963  __store_pack_of_simd(reinterpret_cast<char*>(&__data(__r)), __xs...);
3964  return __r;
3965  }
3966  }
3967 
3968 // }}}
3969 // concat(array<simd>) {{{
3970 template <typename _Tp, typename _Abi, size_t _Np>
3971  _GLIBCXX_SIMD_ALWAYS_INLINE
3972  _GLIBCXX_SIMD_CONSTEXPR __deduced_simd<_Tp, simd_size_v<_Tp, _Abi> * _Np>
3973  concat(const array<simd<_Tp, _Abi>, _Np>& __x)
3974  {
3975  return __call_with_subscripts<_Np>(__x, [](const auto&... __xs) {
3976  return concat(__xs...);
3977  });
3978  }
3979 
3980 // }}}
3981 
3982 /// @cond undocumented
3983 // _SmartReference {{{
3984 template <typename _Up, typename _Accessor = _Up,
3985  typename _ValueType = typename _Up::value_type>
3986  class _SmartReference
3987  {
3988  friend _Accessor;
3989  int _M_index;
3990  _Up& _M_obj;
3991 
3992  _GLIBCXX_SIMD_INTRINSIC constexpr _ValueType _M_read() const noexcept
3993  {
3994  if constexpr (is_arithmetic_v<_Up>)
3995  return _M_obj;
3996  else
3997  return _M_obj[_M_index];
3998  }
3999 
4000  template <typename _Tp>
4001  _GLIBCXX_SIMD_INTRINSIC constexpr void _M_write(_Tp&& __x) const
4002  { _Accessor::_S_set(_M_obj, _M_index, static_cast<_Tp&&>(__x)); }
4003 
4004  public:
4005  _GLIBCXX_SIMD_INTRINSIC constexpr
4006  _SmartReference(_Up& __o, int __i) noexcept
4007  : _M_index(__i), _M_obj(__o) {}
4008 
4009  using value_type = _ValueType;
4010 
4011  _GLIBCXX_SIMD_INTRINSIC _SmartReference(const _SmartReference&) = delete;
4012 
4013  _GLIBCXX_SIMD_INTRINSIC constexpr operator value_type() const noexcept
4014  { return _M_read(); }
4015 
4016  template <typename _Tp,
4017  typename
4018  = _ValuePreservingOrInt<__remove_cvref_t<_Tp>, value_type>>
4019  _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator=(_Tp&& __x) &&
4020  {
4021  _M_write(static_cast<_Tp&&>(__x));
4022  return {_M_obj, _M_index};
4023  }
4024 
4025 #define _GLIBCXX_SIMD_OP_(__op) \
4026  template <typename _Tp, \
4027  typename _TT \
4028  = decltype(declval<value_type>() __op declval<_Tp>()), \
4029  typename = _ValuePreservingOrInt<__remove_cvref_t<_Tp>, _TT>, \
4030  typename = _ValuePreservingOrInt<_TT, value_type>> \
4031  _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference \
4032  operator __op##=(_Tp&& __x) && \
4033  { \
4034  const value_type& __lhs = _M_read(); \
4035  _M_write(__lhs __op __x); \
4036  return {_M_obj, _M_index}; \
4037  }
4038  _GLIBCXX_SIMD_ALL_ARITHMETICS(_GLIBCXX_SIMD_OP_);
4039  _GLIBCXX_SIMD_ALL_SHIFTS(_GLIBCXX_SIMD_OP_);
4040  _GLIBCXX_SIMD_ALL_BINARY(_GLIBCXX_SIMD_OP_);
4041 #undef _GLIBCXX_SIMD_OP_
4042 
4043  template <typename _Tp = void,
4044  typename
4045  = decltype(++declval<conditional_t<true, value_type, _Tp>&>())>
4046  _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator++() &&
4047  {
4048  value_type __x = _M_read();
4049  _M_write(++__x);
4050  return {_M_obj, _M_index};
4051  }
4052 
4053  template <typename _Tp = void,
4054  typename
4055  = decltype(declval<conditional_t<true, value_type, _Tp>&>()++)>
4056  _GLIBCXX_SIMD_INTRINSIC constexpr value_type operator++(int) &&
4057  {
4058  const value_type __r = _M_read();
4059  value_type __x = __r;
4060  _M_write(++__x);
4061  return __r;
4062  }
4063 
4064  template <typename _Tp = void,
4065  typename
4066  = decltype(--declval<conditional_t<true, value_type, _Tp>&>())>
4067  _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator--() &&
4068  {
4069  value_type __x = _M_read();
4070  _M_write(--__x);
4071  return {_M_obj, _M_index};
4072  }
4073 
4074  template <typename _Tp = void,
4075  typename
4076  = decltype(declval<conditional_t<true, value_type, _Tp>&>()--)>
4077  _GLIBCXX_SIMD_INTRINSIC constexpr value_type operator--(int) &&
4078  {
4079  const value_type __r = _M_read();
4080  value_type __x = __r;
4081  _M_write(--__x);
4082  return __r;
4083  }
4084 
4085  _GLIBCXX_SIMD_INTRINSIC friend void
4086  swap(_SmartReference&& __a, _SmartReference&& __b) noexcept(
4087  conjunction<
4088  is_nothrow_constructible<value_type, _SmartReference&&>,
4089  is_nothrow_assignable<_SmartReference&&, value_type&&>>::value)
4090  {
4091  value_type __tmp = static_cast<_SmartReference&&>(__a);
4092  static_cast<_SmartReference&&>(__a) = static_cast<value_type>(__b);
4093  static_cast<_SmartReference&&>(__b) = std::move(__tmp);
4094  }
4095 
4096  _GLIBCXX_SIMD_INTRINSIC friend void
4097  swap(value_type& __a, _SmartReference&& __b) noexcept(
4098  conjunction<
4099  is_nothrow_constructible<value_type, value_type&&>,
4100  is_nothrow_assignable<value_type&, value_type&&>,
4101  is_nothrow_assignable<_SmartReference&&, value_type&&>>::value)
4102  {
4103  value_type __tmp(std::move(__a));
4104  __a = static_cast<value_type>(__b);
4105  static_cast<_SmartReference&&>(__b) = std::move(__tmp);
4106  }
4107 
4108  _GLIBCXX_SIMD_INTRINSIC friend void
4109  swap(_SmartReference&& __a, value_type& __b) noexcept(
4110  conjunction<
4111  is_nothrow_constructible<value_type, _SmartReference&&>,
4112  is_nothrow_assignable<value_type&, value_type&&>,
4113  is_nothrow_assignable<_SmartReference&&, value_type&&>>::value)
4114  {
4115  value_type __tmp(__a);
4116  static_cast<_SmartReference&&>(__a) = std::move(__b);
4117  __b = std::move(__tmp);
4118  }
4119  };
4120 
4121 // }}}
4122 // __scalar_abi_wrapper {{{
4123 template <int _Bytes>
4124  struct __scalar_abi_wrapper
4125  {
4126  template <typename _Tp> static constexpr size_t _S_full_size = 1;
4127  template <typename _Tp> static constexpr size_t _S_size = 1;
4128  template <typename _Tp> static constexpr size_t _S_is_partial = false;
4129 
4130  template <typename _Tp, typename _Abi = simd_abi::scalar>
4131  static constexpr bool _S_is_valid_v
4132  = _Abi::template _IsValid<_Tp>::value && sizeof(_Tp) == _Bytes;
4133  };
4134 
4135 // }}}
4136 // __decay_abi metafunction {{{
4137 template <typename _Tp>
4138  struct __decay_abi { using type = _Tp; };
4139 
4140 template <int _Bytes>
4141  struct __decay_abi<__scalar_abi_wrapper<_Bytes>>
4142  { using type = simd_abi::scalar; };
4143 
4144 // }}}
4145 // __find_next_valid_abi metafunction {{{1
4146 // Given an ABI tag A<N>, find an N2 < N such that A<N2>::_S_is_valid_v<_Tp> ==
4147 // true, N2 is a power-of-2, and A<N2>::_S_is_partial<_Tp> is false. Break
4148 // recursion at 2 elements in the resulting ABI tag. In this case
4149 // type::_S_is_valid_v<_Tp> may be false.
4150 template <template <int> class _Abi, int _Bytes, typename _Tp>
4151  struct __find_next_valid_abi
4152  {
4153  static constexpr auto _S_choose()
4154  {
4155  constexpr int _NextBytes = std::__bit_ceil(_Bytes) / 2;
4156  using _NextAbi = _Abi<_NextBytes>;
4157  if constexpr (_NextBytes < sizeof(_Tp) * 2) // break recursion
4158  return _Abi<_Bytes>();
4159  else if constexpr (_NextAbi::template _S_is_partial<_Tp> == false
4160  && _NextAbi::template _S_is_valid_v<_Tp>)
4161  return _NextAbi();
4162  else
4163  return __find_next_valid_abi<_Abi, _NextBytes, _Tp>::_S_choose();
4164  }
4165 
4166  using type = decltype(_S_choose());
4167  };
4168 
4169 template <int _Bytes, typename _Tp>
4170  struct __find_next_valid_abi<__scalar_abi_wrapper, _Bytes, _Tp>
4171  { using type = simd_abi::scalar; };
4172 
4173 // _AbiList {{{1
4174 template <template <int> class...>
4175  struct _AbiList
4176  {
4177  template <typename, int> static constexpr bool _S_has_valid_abi = false;
4178  template <typename, int> using _FirstValidAbi = void;
4179  template <typename, int> using _BestAbi = void;
4180  };
4181 
4182 template <template <int> class _A0, template <int> class... _Rest>
4183  struct _AbiList<_A0, _Rest...>
4184  {
4185  template <typename _Tp, int _Np>
4186  static constexpr bool _S_has_valid_abi
4187  = _A0<sizeof(_Tp) * _Np>::template _S_is_valid_v<
4188  _Tp> || _AbiList<_Rest...>::template _S_has_valid_abi<_Tp, _Np>;
4189 
4190  template <typename _Tp, int _Np>
4191  using _FirstValidAbi = conditional_t<
4192  _A0<sizeof(_Tp) * _Np>::template _S_is_valid_v<_Tp>,
4193  typename __decay_abi<_A0<sizeof(_Tp) * _Np>>::type,
4194  typename _AbiList<_Rest...>::template _FirstValidAbi<_Tp, _Np>>;
4195 
4196  template <typename _Tp, int _Np>
4197  static constexpr auto _S_determine_best_abi()
4198  {
4199  static_assert(_Np >= 1);
4200  constexpr int _Bytes = sizeof(_Tp) * _Np;
4201  if constexpr (_Np == 1)
4202  return __make_dependent_t<_Tp, simd_abi::scalar>{};
4203  else
4204  {
4205  constexpr int __fullsize = _A0<_Bytes>::template _S_full_size<_Tp>;
4206  // _A0<_Bytes> is good if:
4207  // 1. The ABI tag is valid for _Tp
4208  // 2. The storage overhead is no more than padding to fill the next
4209  // power-of-2 number of bytes
4210  if constexpr (_A0<_Bytes>::template _S_is_valid_v<
4211  _Tp> && __fullsize / 2 < _Np)
4212  return typename __decay_abi<_A0<_Bytes>>::type{};
4213  else
4214  {
4215  using _Bp =
4216  typename __find_next_valid_abi<_A0, _Bytes, _Tp>::type;
4217  if constexpr (_Bp::template _S_is_valid_v<
4218  _Tp> && _Bp::template _S_size<_Tp> <= _Np)
4219  return _Bp{};
4220  else
4221  return
4222  typename _AbiList<_Rest...>::template _BestAbi<_Tp, _Np>{};
4223  }
4224  }
4225  }
4226 
4227  template <typename _Tp, int _Np>
4228  using _BestAbi = decltype(_S_determine_best_abi<_Tp, _Np>());
4229  };
4230 
4231 // }}}1
4232 
4233 // the following lists all native ABIs, which makes them accessible to
4234 // simd_abi::deduce and select_best_vector_type_t (for fixed_size). Order
4235 // matters: Whatever comes first has higher priority.
4236 using _AllNativeAbis = _AbiList<simd_abi::_VecBltnBtmsk, simd_abi::_VecBuiltin,
4237  __scalar_abi_wrapper>;
4238 
4239 // valid _SimdTraits specialization {{{1
4240 template <typename _Tp, typename _Abi>
4241  struct _SimdTraits<_Tp, _Abi, void_t<typename _Abi::template _IsValid<_Tp>>>
4242  : _Abi::template __traits<_Tp> {};
4243 
4244 // __deduce_impl specializations {{{1
4245 // try all native ABIs (including scalar) first
4246 template <typename _Tp, size_t _Np>
4247  struct __deduce_impl<
4248  _Tp, _Np, enable_if_t<_AllNativeAbis::template _S_has_valid_abi<_Tp, _Np>>>
4249  { using type = _AllNativeAbis::_FirstValidAbi<_Tp, _Np>; };
4250 
4251 // fall back to fixed_size only if scalar and native ABIs don't match
4252 template <typename _Tp, size_t _Np, typename = void>
4253  struct __deduce_fixed_size_fallback {};
4254 
4255 template <typename _Tp, size_t _Np>
4256  struct __deduce_fixed_size_fallback<_Tp, _Np,
4257  enable_if_t<simd_abi::fixed_size<_Np>::template _S_is_valid_v<_Tp>>>
4258  { using type = simd_abi::fixed_size<_Np>; };
4259 
4260 template <typename _Tp, size_t _Np, typename>
4261  struct __deduce_impl : public __deduce_fixed_size_fallback<_Tp, _Np> {};
4262 
4263 //}}}1
4264 /// @endcond
4265 
4266 // simd_mask {{{
4267 template <typename _Tp, typename _Abi>
4268  class simd_mask : public _SimdTraits<_Tp, _Abi>::_MaskBase
4269  {
4270  // types, tags, and friends {{{
4271  using _Traits = _SimdTraits<_Tp, _Abi>;
4272  using _MemberType = typename _Traits::_MaskMember;
4273 
4274  // We map all masks with equal element sizeof to a single integer type, the
4275  // one given by __int_for_sizeof_t<_Tp>. This is the approach
4276  // [[gnu::vector_size(N)]] types take as well and it reduces the number of
4277  // template specializations in the implementation classes.
4278  using _Ip = __int_for_sizeof_t<_Tp>;
4279  static constexpr _Ip* _S_type_tag = nullptr;
4280 
4281  friend typename _Traits::_MaskBase;
4282  friend class simd<_Tp, _Abi>; // to construct masks on return
4283  friend typename _Traits::_SimdImpl; // to construct masks on return and
4284  // inspect data on masked operations
4285  public:
4286  using _Impl = typename _Traits::_MaskImpl;
4287  friend _Impl;
4288 
4289  // }}}
4290  // member types {{{
4291  using value_type = bool;
4292  using reference = _SmartReference<_MemberType, _Impl, value_type>;
4293  using simd_type = simd<_Tp, _Abi>;
4294  using abi_type = _Abi;
4295 
4296  // }}}
4297  static constexpr size_t size() // {{{
4298  { return __size_or_zero_v<_Tp, _Abi>; }
4299 
4300  // }}}
4301  // constructors & assignment {{{
4302  simd_mask() = default;
4303  simd_mask(const simd_mask&) = default;
4304  simd_mask(simd_mask&&) = default;
4305  simd_mask& operator=(const simd_mask&) = default;
4306  simd_mask& operator=(simd_mask&&) = default;
4307 
4308  // }}}
4309  // access to internal representation (optional feature) {{{
4310  _GLIBCXX_SIMD_ALWAYS_INLINE explicit
4311  simd_mask(typename _Traits::_MaskCastType __init)
4312  : _M_data{__init} {}
4313  // conversions to internal type is done in _MaskBase
4314 
4315  // }}}
4316  // bitset interface (extension to be proposed) {{{
4317  // TS_FEEDBACK:
4318  // Conversion of simd_mask to and from bitset makes it much easier to
4319  // interface with other facilities. I suggest adding `static
4320  // simd_mask::from_bitset` and `simd_mask::to_bitset`.
4321  _GLIBCXX_SIMD_ALWAYS_INLINE static simd_mask
4322  __from_bitset(bitset<size()> bs)
4323  { return {__bitset_init, bs}; }
4324 
4325  _GLIBCXX_SIMD_ALWAYS_INLINE bitset<size()>
4326  __to_bitset() const
4327  { return _Impl::_S_to_bits(_M_data)._M_to_bitset(); }
4328 
4329  // }}}
4330  // explicit broadcast constructor {{{
4331  _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
4332  simd_mask(value_type __x)
4333  : _M_data(_Impl::template _S_broadcast<_Ip>(__x)) {}
4334 
4335  // }}}
4336  // implicit type conversion constructor {{{
4337  #ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4338  // proposed improvement
4339  template <typename _Up, typename _A2,
4340  typename = enable_if_t<simd_size_v<_Up, _A2> == size()>>
4341  _GLIBCXX_SIMD_ALWAYS_INLINE explicit(sizeof(_MemberType)
4342  != sizeof(typename _SimdTraits<_Up, _A2>::_MaskMember))
4343  simd_mask(const simd_mask<_Up, _A2>& __x)
4344  : simd_mask(__proposed::static_simd_cast<simd_mask>(__x)) {}
4345  #else
4346  // conforming to ISO/IEC 19570:2018
4347  template <typename _Up, typename = enable_if_t<conjunction<
4348  is_same<abi_type, simd_abi::fixed_size<size()>>,
4349  is_same<_Up, _Up>>::value>>
4350  _GLIBCXX_SIMD_ALWAYS_INLINE
4351  simd_mask(const simd_mask<_Up, simd_abi::fixed_size<size()>>& __x)
4352  : _M_data(_Impl::_S_from_bitmask(__data(__x), _S_type_tag)) {}
4353  #endif
4354 
4355  // }}}
4356  // load constructor {{{
4357  template <typename _Flags>
4358  _GLIBCXX_SIMD_ALWAYS_INLINE
4359  simd_mask(const value_type* __mem, _Flags)
4360  : _M_data(_Impl::template _S_load<_Ip>(
4361  _Flags::template _S_apply<simd_mask>(__mem))) {}
4362 
4363  template <typename _Flags>
4364  _GLIBCXX_SIMD_ALWAYS_INLINE
4365  simd_mask(const value_type* __mem, simd_mask __k, _Flags)
4366  : _M_data{}
4367  {
4368  _M_data
4369  = _Impl::_S_masked_load(_M_data, __k._M_data,
4370  _Flags::template _S_apply<simd_mask>(__mem));
4371  }
4372 
4373  // }}}
4374  // loads [simd_mask.load] {{{
4375  template <typename _Flags>
4376  _GLIBCXX_SIMD_ALWAYS_INLINE void
4377  copy_from(const value_type* __mem, _Flags)
4378  {
4379  _M_data = _Impl::template _S_load<_Ip>(
4380  _Flags::template _S_apply<simd_mask>(__mem));
4381  }
4382 
4383  // }}}
4384  // stores [simd_mask.store] {{{
4385  template <typename _Flags>
4386  _GLIBCXX_SIMD_ALWAYS_INLINE void
4387  copy_to(value_type* __mem, _Flags) const
4388  { _Impl::_S_store(_M_data, _Flags::template _S_apply<simd_mask>(__mem)); }
4389 
4390  // }}}
4391  // scalar access {{{
4392  _GLIBCXX_SIMD_ALWAYS_INLINE reference
4393  operator[](size_t __i)
4394  {
4395  if (__i >= size())
4396  __invoke_ub("Subscript %d is out of range [0, %d]", __i, size() - 1);
4397  return {_M_data, int(__i)};
4398  }
4399 
4400  _GLIBCXX_SIMD_ALWAYS_INLINE value_type
4401  operator[](size_t __i) const
4402  {
4403  if (__i >= size())
4404  __invoke_ub("Subscript %d is out of range [0, %d]", __i, size() - 1);
4405  if constexpr (__is_scalar_abi<_Abi>())
4406  return _M_data;
4407  else
4408  return static_cast<bool>(_M_data[__i]);
4409  }
4410 
4411  // }}}
4412  // negation {{{
4413  _GLIBCXX_SIMD_ALWAYS_INLINE simd_mask
4414  operator!() const
4415  { return {__private_init, _Impl::_S_bit_not(_M_data)}; }
4416 
4417  // }}}
4418  // simd_mask binary operators [simd_mask.binary] {{{
4419  #ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4420  // simd_mask<int> && simd_mask<uint> needs disambiguation
4421  template <typename _Up, typename _A2,
4422  typename
4423  = enable_if_t<is_convertible_v<simd_mask<_Up, _A2>, simd_mask>>>
4424  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4425  operator&&(const simd_mask& __x, const simd_mask<_Up, _A2>& __y)
4426  {
4427  return {__private_init,
4428  _Impl::_S_logical_and(__x._M_data, simd_mask(__y)._M_data)};
4429  }
4430 
4431  template <typename _Up, typename _A2,
4432  typename
4433  = enable_if_t<is_convertible_v<simd_mask<_Up, _A2>, simd_mask>>>
4434  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4435  operator||(const simd_mask& __x, const simd_mask<_Up, _A2>& __y)
4436  {
4437  return {__private_init,
4438  _Impl::_S_logical_or(__x._M_data, simd_mask(__y)._M_data)};
4439  }
4440  #endif // _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4441 
4442  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4443  operator&&(const simd_mask& __x, const simd_mask& __y)
4444  {
4445  return {__private_init, _Impl::_S_logical_and(__x._M_data, __y._M_data)};
4446  }
4447 
4448  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4449  operator||(const simd_mask& __x, const simd_mask& __y)
4450  {
4451  return {__private_init, _Impl::_S_logical_or(__x._M_data, __y._M_data)};
4452  }
4453 
4454  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4455  operator&(const simd_mask& __x, const simd_mask& __y)
4456  { return {__private_init, _Impl::_S_bit_and(__x._M_data, __y._M_data)}; }
4457 
4458  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4459  operator|(const simd_mask& __x, const simd_mask& __y)
4460  { return {__private_init, _Impl::_S_bit_or(__x._M_data, __y._M_data)}; }
4461 
4462  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4463  operator^(const simd_mask& __x, const simd_mask& __y)
4464  { return {__private_init, _Impl::_S_bit_xor(__x._M_data, __y._M_data)}; }
4465 
4466  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask&
4467  operator&=(simd_mask& __x, const simd_mask& __y)
4468  {
4469  __x._M_data = _Impl::_S_bit_and(__x._M_data, __y._M_data);
4470  return __x;
4471  }
4472 
4473  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask&
4474  operator|=(simd_mask& __x, const simd_mask& __y)
4475  {
4476  __x._M_data = _Impl::_S_bit_or(__x._M_data, __y._M_data);
4477  return __x;
4478  }
4479 
4480  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask&
4481  operator^=(simd_mask& __x, const simd_mask& __y)
4482  {
4483  __x._M_data = _Impl::_S_bit_xor(__x._M_data, __y._M_data);
4484  return __x;
4485  }
4486 
4487  // }}}
4488  // simd_mask compares [simd_mask.comparison] {{{
4489  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
4490  operator==(const simd_mask& __x, const simd_mask& __y)
4491  { return !operator!=(__x, __y); }
4492 
4493  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
4494  operator!=(const simd_mask& __x, const simd_mask& __y)
4495  { return {__private_init, _Impl::_S_bit_xor(__x._M_data, __y._M_data)}; }
4496 
4497  // }}}
4498  // private_init ctor {{{
4499  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
4500  simd_mask(_PrivateInit, typename _Traits::_MaskMember __init)
4501  : _M_data(__init) {}
4502 
4503  // }}}
4504  // private_init generator ctor {{{
4505  template <typename _Fp, typename = decltype(bool(declval<_Fp>()(size_t())))>
4506  _GLIBCXX_SIMD_INTRINSIC constexpr
4507  simd_mask(_PrivateInit, _Fp&& __gen)
4508  : _M_data()
4509  {
4510  __execute_n_times<size()>([&](auto __i) constexpr {
4511  _Impl::_S_set(_M_data, __i, __gen(__i));
4512  });
4513  }
4514 
4515  // }}}
4516  // bitset_init ctor {{{
4517  _GLIBCXX_SIMD_INTRINSIC simd_mask(_BitsetInit, bitset<size()> __init)
4518  : _M_data(
4519  _Impl::_S_from_bitmask(_SanitizedBitMask<size()>(__init), _S_type_tag))
4520  {}
4521 
4522  // }}}
4523  // __cvt {{{
4524  // TS_FEEDBACK:
4525  // The conversion operator this implements should be a ctor on simd_mask.
4526  // Once you call .__cvt() on a simd_mask it converts conveniently.
4527  // A useful variation: add `explicit(sizeof(_Tp) != sizeof(_Up))`
4528  struct _CvtProxy
4529  {
4530  template <typename _Up, typename _A2,
4531  typename
4532  = enable_if_t<simd_size_v<_Up, _A2> == simd_size_v<_Tp, _Abi>>>
4533  operator simd_mask<_Up, _A2>() &&
4534  {
4535  using namespace std::experimental::__proposed;
4536  return static_simd_cast<simd_mask<_Up, _A2>>(_M_data);
4537  }
4538 
4539  const simd_mask<_Tp, _Abi>& _M_data;
4540  };
4541 
4542  _GLIBCXX_SIMD_INTRINSIC _CvtProxy
4543  __cvt() const
4544  { return {*this}; }
4545 
4546  // }}}
4547  // operator?: overloads (suggested extension) {{{
4548  #ifdef __GXX_CONDITIONAL_IS_OVERLOADABLE__
4549  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
4550  operator?:(const simd_mask& __k, const simd_mask& __where_true,
4551  const simd_mask& __where_false)
4552  {
4553  auto __ret = __where_false;
4554  _Impl::_S_masked_assign(__k._M_data, __ret._M_data, __where_true._M_data);
4555  return __ret;
4556  }
4557 
4558  template <typename _U1, typename _U2,
4559  typename _Rp = simd<common_type_t<_U1, _U2>, _Abi>,
4560  typename = enable_if_t<conjunction_v<
4561  is_convertible<_U1, _Rp>, is_convertible<_U2, _Rp>,
4562  is_convertible<simd_mask, typename _Rp::mask_type>>>>
4563  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend _Rp
4564  operator?:(const simd_mask& __k, const _U1& __where_true,
4565  const _U2& __where_false)
4566  {
4567  _Rp __ret = __where_false;
4568  _Rp::_Impl::_S_masked_assign(
4569  __data(static_cast<typename _Rp::mask_type>(__k)), __data(__ret),
4570  __data(static_cast<_Rp>(__where_true)));
4571  return __ret;
4572  }
4573 
4574  #ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4575  template <typename _Kp, typename _Ak, typename _Up, typename _Au,
4576  typename = enable_if_t<
4577  conjunction_v<is_convertible<simd_mask<_Kp, _Ak>, simd_mask>,
4578  is_convertible<simd_mask<_Up, _Au>, simd_mask>>>>
4579  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
4580  operator?:(const simd_mask<_Kp, _Ak>& __k, const simd_mask& __where_true,
4581  const simd_mask<_Up, _Au>& __where_false)
4582  {
4583  simd_mask __ret = __where_false;
4584  _Impl::_S_masked_assign(simd_mask(__k)._M_data, __ret._M_data,
4585  __where_true._M_data);
4586  return __ret;
4587  }
4588  #endif // _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4589  #endif // __GXX_CONDITIONAL_IS_OVERLOADABLE__
4590 
4591  // }}}
4592  // _M_is_constprop {{{
4593  _GLIBCXX_SIMD_INTRINSIC constexpr bool
4594  _M_is_constprop() const
4595  {
4596  if constexpr (__is_scalar_abi<_Abi>())
4597  return __builtin_constant_p(_M_data);
4598  else
4599  return _M_data._M_is_constprop();
4600  }
4601 
4602  // }}}
4603 
4604  private:
4605  friend const auto& __data<_Tp, abi_type>(const simd_mask&);
4606  friend auto& __data<_Tp, abi_type>(simd_mask&);
4607  alignas(_Traits::_S_mask_align) _MemberType _M_data;
4608  };
4609 
4610 // }}}
4611 
4612 /// @cond undocumented
4613 // __data(simd_mask) {{{
4614 template <typename _Tp, typename _Ap>
4615  _GLIBCXX_SIMD_INTRINSIC constexpr const auto&
4616  __data(const simd_mask<_Tp, _Ap>& __x)
4617  { return __x._M_data; }
4618 
4619 template <typename _Tp, typename _Ap>
4620  _GLIBCXX_SIMD_INTRINSIC constexpr auto&
4621  __data(simd_mask<_Tp, _Ap>& __x)
4622  { return __x._M_data; }
4623 
4624 // }}}
4625 /// @endcond
4626 
4627 // simd_mask reductions [simd_mask.reductions] {{{
4628 template <typename _Tp, typename _Abi>
4629  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4630  all_of(const simd_mask<_Tp, _Abi>& __k) noexcept
4631  {
4632  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4633  {
4634  for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i)
4635  if (!__k[__i])
4636  return false;
4637  return true;
4638  }
4639  else
4640  return _Abi::_MaskImpl::_S_all_of(__k);
4641  }
4642 
4643 template <typename _Tp, typename _Abi>
4644  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4645  any_of(const simd_mask<_Tp, _Abi>& __k) noexcept
4646  {
4647  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4648  {
4649  for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i)
4650  if (__k[__i])
4651  return true;
4652  return false;
4653  }
4654  else
4655  return _Abi::_MaskImpl::_S_any_of(__k);
4656  }
4657 
4658 template <typename _Tp, typename _Abi>
4659  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4660  none_of(const simd_mask<_Tp, _Abi>& __k) noexcept
4661  {
4662  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4663  {
4664  for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i)
4665  if (__k[__i])
4666  return false;
4667  return true;
4668  }
4669  else
4670  return _Abi::_MaskImpl::_S_none_of(__k);
4671  }
4672 
4673 template <typename _Tp, typename _Abi>
4674  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4675  some_of(const simd_mask<_Tp, _Abi>& __k) noexcept
4676  {
4677  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4678  {
4679  for (size_t __i = 1; __i < simd_size_v<_Tp, _Abi>; ++__i)
4680  if (__k[__i] != __k[__i - 1])
4681  return true;
4682  return false;
4683  }
4684  else
4685  return _Abi::_MaskImpl::_S_some_of(__k);
4686  }
4687 
4688 template <typename _Tp, typename _Abi>
4689  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4690  popcount(const simd_mask<_Tp, _Abi>& __k) noexcept
4691  {
4692  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4693  {
4694  const int __r = __call_with_subscripts<simd_size_v<_Tp, _Abi>>(
4695  __k, [](auto... __elements) { return ((__elements != 0) + ...); });
4696  if (__builtin_is_constant_evaluated() || __builtin_constant_p(__r))
4697  return __r;
4698  }
4699  return _Abi::_MaskImpl::_S_popcount(__k);
4700  }
4701 
4702 template <typename _Tp, typename _Abi>
4703  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4704  find_first_set(const simd_mask<_Tp, _Abi>& __k)
4705  {
4706  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4707  {
4708  constexpr size_t _Np = simd_size_v<_Tp, _Abi>;
4709  const size_t _Idx = __call_with_n_evaluations<_Np>(
4710  [](auto... __indexes) { return std::min({__indexes...}); },
4711  [&](auto __i) { return __k[__i] ? +__i : _Np; });
4712  if (_Idx >= _Np)
4713  __invoke_ub("find_first_set(empty mask) is UB");
4714  if (__builtin_constant_p(_Idx))
4715  return _Idx;
4716  }
4717  return _Abi::_MaskImpl::_S_find_first_set(__k);
4718  }
4719 
4720 template <typename _Tp, typename _Abi>
4721  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4722  find_last_set(const simd_mask<_Tp, _Abi>& __k)
4723  {
4724  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4725  {
4726  constexpr size_t _Np = simd_size_v<_Tp, _Abi>;
4727  const int _Idx = __call_with_n_evaluations<_Np>(
4728  [](auto... __indexes) { return std::max({__indexes...}); },
4729  [&](auto __i) { return __k[__i] ? int(__i) : -1; });
4730  if (_Idx < 0)
4731  __invoke_ub("find_first_set(empty mask) is UB");
4732  if (__builtin_constant_p(_Idx))
4733  return _Idx;
4734  }
4735  return _Abi::_MaskImpl::_S_find_last_set(__k);
4736  }
4737 
4738 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4739 all_of(_ExactBool __x) noexcept
4740 { return __x; }
4741 
4742 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4743 any_of(_ExactBool __x) noexcept
4744 { return __x; }
4745 
4746 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4747 none_of(_ExactBool __x) noexcept
4748 { return !__x; }
4749 
4750 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4751 some_of(_ExactBool) noexcept
4752 { return false; }
4753 
4754 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4755 popcount(_ExactBool __x) noexcept
4756 { return __x; }
4757 
4758 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4759 find_first_set(_ExactBool)
4760 { return 0; }
4761 
4762 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4763 find_last_set(_ExactBool)
4764 { return 0; }
4765 
4766 // }}}
4767 
4768 /// @cond undocumented
4769 // _SimdIntOperators{{{1
4770 template <typename _V, typename _Impl, bool>
4771  class _SimdIntOperators {};
4772 
4773 template <typename _V, typename _Impl>
4774  class _SimdIntOperators<_V, _Impl, true>
4775  {
4776  _GLIBCXX_SIMD_INTRINSIC const _V& __derived() const
4777  { return *static_cast<const _V*>(this); }
4778 
4779  template <typename _Tp>
4780  _GLIBCXX_SIMD_INTRINSIC static _GLIBCXX_SIMD_CONSTEXPR _V
4781  _S_make_derived(_Tp&& __d)
4782  { return {__private_init, static_cast<_Tp&&>(__d)}; }
4783 
4784  public:
4785  _GLIBCXX_SIMD_CONSTEXPR friend _V& operator%=(_V& __lhs, const _V& __x)
4786  { return __lhs = __lhs % __x; }
4787 
4788  _GLIBCXX_SIMD_CONSTEXPR friend _V& operator&=(_V& __lhs, const _V& __x)
4789  { return __lhs = __lhs & __x; }
4790 
4791  _GLIBCXX_SIMD_CONSTEXPR friend _V& operator|=(_V& __lhs, const _V& __x)
4792  { return __lhs = __lhs | __x; }
4793 
4794  _GLIBCXX_SIMD_CONSTEXPR friend _V& operator^=(_V& __lhs, const _V& __x)
4795  { return __lhs = __lhs ^ __x; }
4796 
4797  _GLIBCXX_SIMD_CONSTEXPR friend _V& operator<<=(_V& __lhs, const _V& __x)
4798  { return __lhs = __lhs << __x; }
4799 
4800  _GLIBCXX_SIMD_CONSTEXPR friend _V& operator>>=(_V& __lhs, const _V& __x)
4801  { return __lhs = __lhs >> __x; }
4802 
4803  _GLIBCXX_SIMD_CONSTEXPR friend _V& operator<<=(_V& __lhs, int __x)
4804  { return __lhs = __lhs << __x; }
4805 
4806  _GLIBCXX_SIMD_CONSTEXPR friend _V& operator>>=(_V& __lhs, int __x)
4807  { return __lhs = __lhs >> __x; }
4808 
4809  _GLIBCXX_SIMD_CONSTEXPR friend _V operator%(const _V& __x, const _V& __y)
4810  {
4811  return _SimdIntOperators::_S_make_derived(
4812  _Impl::_S_modulus(__data(__x), __data(__y)));
4813  }
4814 
4815  _GLIBCXX_SIMD_CONSTEXPR friend _V operator&(const _V& __x, const _V& __y)
4816  {
4817  return _SimdIntOperators::_S_make_derived(
4818  _Impl::_S_bit_and(__data(__x), __data(__y)));
4819  }
4820 
4821  _GLIBCXX_SIMD_CONSTEXPR friend _V operator|(const _V& __x, const _V& __y)
4822  {
4823  return _SimdIntOperators::_S_make_derived(
4824  _Impl::_S_bit_or(__data(__x), __data(__y)));
4825  }
4826 
4827  _GLIBCXX_SIMD_CONSTEXPR friend _V operator^(const _V& __x, const _V& __y)
4828  {
4829  return _SimdIntOperators::_S_make_derived(
4830  _Impl::_S_bit_xor(__data(__x), __data(__y)));
4831  }
4832 
4833  _GLIBCXX_SIMD_CONSTEXPR friend _V operator<<(const _V& __x, const _V& __y)
4834  {
4835  return _SimdIntOperators::_S_make_derived(
4836  _Impl::_S_bit_shift_left(__data(__x), __data(__y)));
4837  }
4838 
4839  _GLIBCXX_SIMD_CONSTEXPR friend _V operator>>(const _V& __x, const _V& __y)
4840  {
4841  return _SimdIntOperators::_S_make_derived(
4842  _Impl::_S_bit_shift_right(__data(__x), __data(__y)));
4843  }
4844 
4845  template <typename _VV = _V>
4846  _GLIBCXX_SIMD_CONSTEXPR friend _V operator<<(const _V& __x, int __y)
4847  {
4848  using _Tp = typename _VV::value_type;
4849  if (__y < 0)
4850  __invoke_ub("The behavior is undefined if the right operand of a "
4851  "shift operation is negative. [expr.shift]\nA shift by "
4852  "%d was requested",
4853  __y);
4854  if (size_t(__y) >= sizeof(declval<_Tp>() << __y) * __CHAR_BIT__)
4855  __invoke_ub(
4856  "The behavior is undefined if the right operand of a "
4857  "shift operation is greater than or equal to the width of the "
4858  "promoted left operand. [expr.shift]\nA shift by %d was requested",
4859  __y);
4860  return _SimdIntOperators::_S_make_derived(
4861  _Impl::_S_bit_shift_left(__data(__x), __y));
4862  }
4863 
4864  template <typename _VV = _V>
4865  _GLIBCXX_SIMD_CONSTEXPR friend _V operator>>(const _V& __x, int __y)
4866  {
4867  using _Tp = typename _VV::value_type;
4868  if (__y < 0)
4869  __invoke_ub(
4870  "The behavior is undefined if the right operand of a shift "
4871  "operation is negative. [expr.shift]\nA shift by %d was requested",
4872  __y);
4873  if (size_t(__y) >= sizeof(declval<_Tp>() << __y) * __CHAR_BIT__)
4874  __invoke_ub(
4875  "The behavior is undefined if the right operand of a shift "
4876  "operation is greater than or equal to the width of the promoted "
4877  "left operand. [expr.shift]\nA shift by %d was requested",
4878  __y);
4879  return _SimdIntOperators::_S_make_derived(
4880  _Impl::_S_bit_shift_right(__data(__x), __y));
4881  }
4882 
4883  // unary operators (for integral _Tp)
4884  _GLIBCXX_SIMD_CONSTEXPR _V operator~() const
4885  { return {__private_init, _Impl::_S_complement(__derived()._M_data)}; }
4886  };
4887 
4888 //}}}1
4889 /// @endcond
4890 
4891 // simd {{{
4892 template <typename _Tp, typename _Abi>
4893  class simd : public _SimdIntOperators<
4894  simd<_Tp, _Abi>, typename _SimdTraits<_Tp, _Abi>::_SimdImpl,
4895  conjunction<is_integral<_Tp>,
4896  typename _SimdTraits<_Tp, _Abi>::_IsValid>::value>,
4897  public _SimdTraits<_Tp, _Abi>::_SimdBase
4898  {
4899  using _Traits = _SimdTraits<_Tp, _Abi>;
4900  using _MemberType = typename _Traits::_SimdMember;
4901  using _CastType = typename _Traits::_SimdCastType;
4902  static constexpr _Tp* _S_type_tag = nullptr;
4903  friend typename _Traits::_SimdBase;
4904 
4905  public:
4906  using _Impl = typename _Traits::_SimdImpl;
4907  friend _Impl;
4908  friend _SimdIntOperators<simd, _Impl, true>;
4909 
4910  using value_type = _Tp;
4911  using reference = _SmartReference<_MemberType, _Impl, value_type>;
4912  using mask_type = simd_mask<_Tp, _Abi>;
4913  using abi_type = _Abi;
4914 
4915  static constexpr size_t size()
4916  { return __size_or_zero_v<_Tp, _Abi>; }
4917 
4918  _GLIBCXX_SIMD_CONSTEXPR simd() = default;
4919  _GLIBCXX_SIMD_CONSTEXPR simd(const simd&) = default;
4920  _GLIBCXX_SIMD_CONSTEXPR simd(simd&&) noexcept = default;
4921  _GLIBCXX_SIMD_CONSTEXPR simd& operator=(const simd&) = default;
4922  _GLIBCXX_SIMD_CONSTEXPR simd& operator=(simd&&) noexcept = default;
4923 
4924  // implicit broadcast constructor
4925  template <typename _Up,
4926  typename = enable_if_t<!is_same_v<__remove_cvref_t<_Up>, bool>>>
4927  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR
4928  simd(_ValuePreservingOrInt<_Up, value_type>&& __x)
4929  : _M_data(
4930  _Impl::_S_broadcast(static_cast<value_type>(static_cast<_Up&&>(__x))))
4931  {}
4932 
4933  // implicit type conversion constructor (convert from fixed_size to
4934  // fixed_size)
4935  template <typename _Up>
4936  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR
4937  simd(const simd<_Up, simd_abi::fixed_size<size()>>& __x,
4938  enable_if_t<
4939  conjunction<
4940  is_same<simd_abi::fixed_size<size()>, abi_type>,
4941  negation<__is_narrowing_conversion<_Up, value_type>>,
4942  __converts_to_higher_integer_rank<_Up, value_type>>::value,
4943  void*> = nullptr)
4944  : simd{static_cast<array<_Up, size()>>(__x).data(), vector_aligned} {}
4945 
4946  // explicit type conversion constructor
4947 #ifdef _GLIBCXX_SIMD_ENABLE_STATIC_CAST
4948  template <typename _Up, typename _A2,
4949  typename = decltype(static_simd_cast<simd>(
4950  declval<const simd<_Up, _A2>&>()))>
4951  _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
4952  simd(const simd<_Up, _A2>& __x)
4953  : simd(static_simd_cast<simd>(__x)) {}
4954 #endif // _GLIBCXX_SIMD_ENABLE_STATIC_CAST
4955 
4956  // generator constructor
4957  template <typename _Fp>
4958  _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
4959  simd(_Fp&& __gen, _ValuePreservingOrInt<decltype(declval<_Fp>()(
4960  declval<_SizeConstant<0>&>())),
4961  value_type>* = nullptr)
4962  : _M_data(_Impl::_S_generator(static_cast<_Fp&&>(__gen), _S_type_tag)) {}
4963 
4964  // load constructor
4965  template <typename _Up, typename _Flags>
4966  _GLIBCXX_SIMD_ALWAYS_INLINE
4967  simd(const _Up* __mem, _Flags)
4968  : _M_data(
4969  _Impl::_S_load(_Flags::template _S_apply<simd>(__mem), _S_type_tag))
4970  {}
4971 
4972  // loads [simd.load]
4973  template <typename _Up, typename _Flags>
4974  _GLIBCXX_SIMD_ALWAYS_INLINE void
4975  copy_from(const _Vectorizable<_Up>* __mem, _Flags)
4976  {
4977  _M_data = static_cast<decltype(_M_data)>(
4978  _Impl::_S_load(_Flags::template _S_apply<simd>(__mem), _S_type_tag));
4979  }
4980 
4981  // stores [simd.store]
4982  template <typename _Up, typename _Flags>
4983  _GLIBCXX_SIMD_ALWAYS_INLINE void
4984  copy_to(_Vectorizable<_Up>* __mem, _Flags) const
4985  {
4986  _Impl::_S_store(_M_data, _Flags::template _S_apply<simd>(__mem),
4987  _S_type_tag);
4988  }
4989 
4990  // scalar access
4991  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR reference
4992  operator[](size_t __i)
4993  { return {_M_data, int(__i)}; }
4994 
4995  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR value_type
4996  operator[]([[maybe_unused]] size_t __i) const
4997  {
4998  if constexpr (__is_scalar_abi<_Abi>())
4999  {
5000  _GLIBCXX_DEBUG_ASSERT(__i == 0);
5001  return _M_data;
5002  }
5003  else
5004  return _M_data[__i];
5005  }
5006 
5007  // increment and decrement:
5008  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd&
5009  operator++()
5010  {
5011  _Impl::_S_increment(_M_data);
5012  return *this;
5013  }
5014 
5015  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
5016  operator++(int)
5017  {
5018  simd __r = *this;
5019  _Impl::_S_increment(_M_data);
5020  return __r;
5021  }
5022 
5023  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd&
5024  operator--()
5025  {
5026  _Impl::_S_decrement(_M_data);
5027  return *this;
5028  }
5029 
5030  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
5031  operator--(int)
5032  {
5033  simd __r = *this;
5034  _Impl::_S_decrement(_M_data);
5035  return __r;
5036  }
5037 
5038  // unary operators (for any _Tp)
5039  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR mask_type
5040  operator!() const
5041  { return {__private_init, _Impl::_S_negate(_M_data)}; }
5042 
5043  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
5044  operator+() const
5045  { return *this; }
5046 
5047  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
5048  operator-() const
5049  { return {__private_init, _Impl::_S_unary_minus(_M_data)}; }
5050 
5051  // access to internal representation (suggested extension)
5052  _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
5053  simd(_CastType __init) : _M_data(__init) {}
5054 
5055  // compound assignment [simd.cassign]
5056  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
5057  operator+=(simd& __lhs, const simd& __x)
5058  { return __lhs = __lhs + __x; }
5059 
5060  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
5061  operator-=(simd& __lhs, const simd& __x)
5062  { return __lhs = __lhs - __x; }
5063 
5064  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
5065  operator*=(simd& __lhs, const simd& __x)
5066  { return __lhs = __lhs * __x; }
5067 
5068  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
5069  operator/=(simd& __lhs, const simd& __x)
5070  { return __lhs = __lhs / __x; }
5071 
5072  // binary operators [simd.binary]
5073  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5074  operator+(const simd& __x, const simd& __y)
5075  { return {__private_init, _Impl::_S_plus(__x._M_data, __y._M_data)}; }
5076 
5077  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5078  operator-(const simd& __x, const simd& __y)
5079  { return {__private_init, _Impl::_S_minus(__x._M_data, __y._M_data)}; }
5080 
5081  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5082  operator*(const simd& __x, const simd& __y)
5083  { return {__private_init, _Impl::_S_multiplies(__x._M_data, __y._M_data)}; }
5084 
5085  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5086  operator/(const simd& __x, const simd& __y)
5087  { return {__private_init, _Impl::_S_divides(__x._M_data, __y._M_data)}; }
5088 
5089  // compares [simd.comparison]
5090  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5091  operator==(const simd& __x, const simd& __y)
5092  { return simd::_S_make_mask(_Impl::_S_equal_to(__x._M_data, __y._M_data)); }
5093 
5094  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5095  operator!=(const simd& __x, const simd& __y)
5096  {
5097  return simd::_S_make_mask(
5098  _Impl::_S_not_equal_to(__x._M_data, __y._M_data));
5099  }
5100 
5101  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5102  operator<(const simd& __x, const simd& __y)
5103  { return simd::_S_make_mask(_Impl::_S_less(__x._M_data, __y._M_data)); }
5104 
5105  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5106  operator<=(const simd& __x, const simd& __y)
5107  {
5108  return simd::_S_make_mask(_Impl::_S_less_equal(__x._M_data, __y._M_data));
5109  }
5110 
5111  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5112  operator>(const simd& __x, const simd& __y)
5113  { return simd::_S_make_mask(_Impl::_S_less(__y._M_data, __x._M_data)); }
5114 
5115  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5116  operator>=(const simd& __x, const simd& __y)
5117  {
5118  return simd::_S_make_mask(_Impl::_S_less_equal(__y._M_data, __x._M_data));
5119  }
5120 
5121  // operator?: overloads (suggested extension) {{{
5122 #ifdef __GXX_CONDITIONAL_IS_OVERLOADABLE__
5123  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5124  operator?:(const mask_type& __k, const simd& __where_true,
5125  const simd& __where_false)
5126  {
5127  auto __ret = __where_false;
5128  _Impl::_S_masked_assign(__data(__k), __data(__ret), __data(__where_true));
5129  return __ret;
5130  }
5131 
5132 #endif // __GXX_CONDITIONAL_IS_OVERLOADABLE__
5133  // }}}
5134 
5135  // "private" because of the first arguments's namespace
5136  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
5137  simd(_PrivateInit, const _MemberType& __init)
5138  : _M_data(__init) {}
5139 
5140  // "private" because of the first arguments's namespace
5141  _GLIBCXX_SIMD_INTRINSIC
5142  simd(_BitsetInit, bitset<size()> __init) : _M_data()
5143  { where(mask_type(__bitset_init, __init), *this) = ~*this; }
5144 
5145  _GLIBCXX_SIMD_INTRINSIC constexpr bool
5146  _M_is_constprop() const
5147  {
5148  if constexpr (__is_scalar_abi<_Abi>())
5149  return __builtin_constant_p(_M_data);
5150  else
5151  return _M_data._M_is_constprop();
5152  }
5153 
5154  private:
5155  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR static mask_type
5156  _S_make_mask(typename mask_type::_MemberType __k)
5157  { return {__private_init, __k}; }
5158 
5159  friend const auto& __data<value_type, abi_type>(const simd&);
5160  friend auto& __data<value_type, abi_type>(simd&);
5161  alignas(_Traits::_S_simd_align) _MemberType _M_data;
5162  };
5163 
5164 // }}}
5165 /// @cond undocumented
5166 // __data {{{
5167 template <typename _Tp, typename _Ap>
5168  _GLIBCXX_SIMD_INTRINSIC constexpr const auto&
5169  __data(const simd<_Tp, _Ap>& __x)
5170  { return __x._M_data; }
5171 
5172 template <typename _Tp, typename _Ap>
5173  _GLIBCXX_SIMD_INTRINSIC constexpr auto&
5174  __data(simd<_Tp, _Ap>& __x)
5175  { return __x._M_data; }
5176 
5177 // }}}
5178 namespace __float_bitwise_operators { //{{{
5179 template <typename _Tp, typename _Ap>
5180  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
5181  operator^(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
5182  {
5183  return {__private_init,
5184  _Ap::_SimdImpl::_S_bit_xor(__data(__a), __data(__b))};
5185  }
5186 
5187 template <typename _Tp, typename _Ap>
5188  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
5189  operator|(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
5190  {
5191  return {__private_init,
5192  _Ap::_SimdImpl::_S_bit_or(__data(__a), __data(__b))};
5193  }
5194 
5195 template <typename _Tp, typename _Ap>
5196  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
5197  operator&(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
5198  {
5199  return {__private_init,
5200  _Ap::_SimdImpl::_S_bit_and(__data(__a), __data(__b))};
5201  }
5202 } // namespace __float_bitwise_operators }}}
5203 /// @endcond
5204 
5205 /// @}
5206 _GLIBCXX_SIMD_END_NAMESPACE
5207 
5208 #endif // __cplusplus >= 201703L
5209 #endif // _GLIBCXX_EXPERIMENTAL_SIMD_H
5210 
5211 // vim: foldmethod=marker foldmarker={{{,}}}
constexpr duration< __common_rep_t< _Rep1, __disable_if_is_duration< _Rep2 > >, _Period > operator%(const duration< _Rep1, _Period > &__d, const _Rep2 &__s)
Definition: chrono:729
constexpr time_point< _Clock, typename common_type< duration< _Rep1, _Period1 >, _Dur2 >::type > operator+(const duration< _Rep1, _Period1 > &__lhs, const time_point< _Clock, _Dur2 > &__rhs)
Adjust a time point forwards by the given duration.
Definition: chrono:1016
constexpr duration< __common_rep_t< _Rep2, _Rep1 >, _Period > operator*(const _Rep1 &__s, const duration< _Rep2, _Period > &__d)
Definition: chrono:700
constexpr common_type< duration< _Rep1, _Period1 >, duration< _Rep2, _Period2 > >::type operator-(const duration< _Rep1, _Period1 > &__lhs, const duration< _Rep2, _Period2 > &__rhs)
The difference between two durations.
Definition: chrono:660
constexpr duration< __common_rep_t< _Rep1, __disable_if_is_duration< _Rep2 > >, _Period > operator/(const duration< _Rep1, _Period > &__d, const _Rep2 &__s)
Definition: chrono:706
typename remove_reference< _Tp >::type remove_reference_t
Alias template for remove_reference.
Definition: type_traits:1645
typename make_unsigned< _Tp >::type make_unsigned_t
Alias template for make_unsigned.
Definition: type_traits:1980
void void_t
A metafunction that always yields void, used for detecting valid types.
Definition: type_traits:2607
integral_constant< bool, true > true_type
The type used as a compile-time boolean with true value.
Definition: type_traits:83
typename conditional< _Cond, _Iftrue, _Iffalse >::type conditional_t
Alias template for conditional.
Definition: type_traits:2589
typename remove_pointer< _Tp >::type remove_pointer_t
Alias template for remove_pointer.
Definition: type_traits:2055
integral_constant< bool, false > false_type
The type used as a compile-time boolean with false value.
Definition: type_traits:86
typename remove_const< _Tp >::type remove_const_t
Alias template for remove_const.
Definition: type_traits:1576
typename enable_if< _Cond, _Tp >::type enable_if_t
Alias template for enable_if.
Definition: type_traits:2585
constexpr auto tuple_cat(_Tpls &&... __tpls) -> typename __tuple_cat_result< _Tpls... >::__type
tuple_cat
Definition: tuple:1736
auto declval() noexcept -> decltype(__declval< _Tp >(0))
Definition: type_traits:2364
constexpr std::remove_reference< _Tp >::type && move(_Tp &&__t) noexcept
Convert a value to an rvalue.
Definition: move.h:104
void swap(any &__x, any &__y) noexcept
Exchange the states of two any objects.
Definition: any:428
_Tp * end(valarray< _Tp > &__va) noexcept
Return an iterator pointing to one past the last element of the valarray.
Definition: valarray:1237
_Tp * begin(valarray< _Tp > &__va) noexcept
Return an iterator pointing to the first element of the valarray.
Definition: valarray:1215
constexpr const _Tp & clamp(const _Tp &, const _Tp &, const _Tp &)
Returns the value clamped between lo and hi.
Definition: stl_algo.h:3656
constexpr const _Tp & max(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:254
constexpr pair< const _Tp &, const _Tp & > minmax(const _Tp &, const _Tp &)
Determines min and max at once as an ordered pair.
Definition: stl_algo.h:3301
constexpr const _Tp & min(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:230
constexpr _Tp reduce(_InputIterator __first, _InputIterator __last, _Tp __init, _BinaryOperation __binary_op)
Calculate reduction of values in a range.
Definition: numeric:278
std::basic_istream< _CharT, _Traits > & operator>>(std::basic_istream< _CharT, _Traits > &__is, bitset< _Nb > &__x)
Global I/O operators for bitsets.
Definition: bitset:1472
bitset< _Nb > operator^(const bitset< _Nb > &__x, const bitset< _Nb > &__y) noexcept
Global bitwise operations on bitsets.
Definition: bitset:1453
std::basic_ostream< _CharT, _Traits > & operator<<(std::basic_ostream< _CharT, _Traits > &__os, const bitset< _Nb > &__x)
Global I/O operators for bitsets.
Definition: bitset:1540
bitset< _Nb > operator|(const bitset< _Nb > &__x, const bitset< _Nb > &__y) noexcept
Global bitwise operations on bitsets.
Definition: bitset:1444
bitset< _Nb > operator&(const bitset< _Nb > &__x, const bitset< _Nb > &__y) noexcept
Global bitwise operations on bitsets.
Definition: bitset:1435
constexpr auto size(const _Container &__cont) noexcept(noexcept(__cont.size())) -> decltype(__cont.size())
Return the size of a container.
Definition: range_access.h:245
constexpr auto data(_Container &__cont) noexcept(noexcept(__cont.data())) -> decltype(__cont.data())
Return the data pointer of a container.
Definition: range_access.h:290