
python-engineio Documentation

Miguel Grinberg

Sep 15, 2022

CONTENTS

1 Getting Started 3
1.1 What is Engine.IO? . 3
1.2 Client Examples . 3
1.3 Client Features . 4
1.4 Server Examples . 4
1.5 Server Features . 5

2 The Engine.IO Client 7
2.1 Installation . 7
2.2 Creating a Client Instance . 7
2.3 Defining Event Handlers . 8
2.4 Connecting to a Server . 8
2.5 Sending Messages . 9
2.6 Disconnecting from the Server . 9
2.7 Managing Background Tasks . 9
2.8 Debugging and Troubleshooting . 10

3 The Engine.IO Server 11
3.1 Installation . 11
3.2 Creating a Server Instance . 11
3.3 Serving Static Files . 12
3.4 Defining Event Handlers . 13
3.5 Sending Messages . 14
3.6 User Sessions . 14
3.7 Disconnecting a Client . 15
3.8 Managing Background Tasks . 16
3.9 Debugging and Troubleshooting . 16
3.10 Deployment Strategies . 17

3.10.1 aiohttp . 17
3.10.2 Tornado . 17
3.10.3 Sanic . 18
3.10.4 Uvicorn, Daphne, and other ASGI servers . 18
3.10.5 Eventlet . 18
3.10.6 Eventlet with Gunicorn . 19
3.10.7 Gevent . 19
3.10.8 Gevent with Gunicorn . 20
3.10.9 uWSGI . 20
3.10.10 Standard Threads . 20
3.10.11 Scalability Notes . 21

3.11 Cross-Origin Controls . 21

i

4 API Reference 23
4.1 Client class . 23
4.2 AsyncClient class . 25
4.3 Server class . 27
4.4 AsyncServer class . 30
4.5 WSGIApp class . 34
4.6 ASGIApp class . 35
4.7 Middleware class (deprecated) . 35

Python Module Index 37

Index 39

ii

python-engineio Documentation

This project implements Python based Engine.IO client and server that can run standalone or integrated with a variety
of Python web frameworks and applications.

CONTENTS 1

python-engineio Documentation

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

1.1 What is Engine.IO?

Engine.IO is a lightweight transport protocol that enables real-time bidirectional event-based communication between
clients (typically, though not always, web browsers) and a server. The official implementations of the client and server
components are written in JavaScript. This package provides Python implementations of both, each with standard and
asyncio variants.

The Engine.IO protocol is extremely simple. Once a connection between a client and a server is established, either side
can send “messages” to the other side. Event handlers provided by the applications on both ends are invoked when a
message is received, or when a connection is established or dropped.

1.2 Client Examples

The example that follows shows a simple Python client:

import engineio

eio = engineio.Client()

@eio.on('connect')
def on_connect():

print('connection established')

@eio.on('message')
def on_message(data):

print('message received with ', data)
eio.send({'response': 'my response'})

@eio.on('disconnect')
def on_disconnect():

print('disconnected from server')

eio.connect('http://localhost:5000')
eio.wait()

And here is a similar client written using the official Engine.IO Javascript client:

3

python-engineio Documentation

<script src="/path/to/engine.io.js"></script>
<script>

var socket = eio('http://localhost:5000');
socket.on('open', function() { console.log('connection established'); });
socket.on('message', function(data) {

console.log('message received with ' + data);
socket.send({response: 'my response'});

});
socket.on('close', function() { console.log('disconnected from server'); });

</script>

1.3 Client Features

• Can connect to other Engine.IO complaint servers besides the one in this package.

• Compatible with Python 3.6+.

• Two versions of the client, one for standard Python and another for asyncio.

• Uses an event-based architecture implemented with decorators that hides the details of the protocol.

• Implements HTTP long-polling and WebSocket transports.

1.4 Server Examples

The following application is a basic example that uses the Eventlet asynchronous server:

import engineio
import eventlet

eio = engineio.Server()
app = engineio.WSGIApp(eio, static_files={

'/': {'content_type': 'text/html', 'filename': 'index.html'}
})

@eio.on('connect')
def connect(sid, environ):

print("connect ", sid)

@eio.on('message')
def message(sid, data):

print("message ", data)
eio.send(sid, 'reply')

@eio.on('disconnect')
def disconnect(sid):

print('disconnect ', sid)

if __name__ == '__main__':
eventlet.wsgi.server(eventlet.listen(('', 5000)), app)

Below is a similar application, coded for asyncio and the Uvicorn web server:

4 Chapter 1. Getting Started

python-engineio Documentation

import engineio
import uvicorn

eio = engineio.AsyncServer()
app = engineio.ASGIApp(eio, static_files={

'/': {'content_type': 'text/html', 'filename': 'index.html'}
})

@eio.on('connect')
def connect(sid, environ):

print("connect ", sid)

@eio.on('message')
async def message(sid, data):

print("message ", data)
await eio.send(sid, 'reply')

@eio.on('disconnect')
def disconnect(sid):

print('disconnect ', sid)

if __name__ == '__main__':
uvicorn.run('127.0.0.1', 5000)

1.5 Server Features

• Can accept clients running other complaint Engine.IO clients besides the one in this package.

• Compatible with Python 3.6+.

• Two versions of the server, one for standard Python and another for asyncio.

• Supports large number of clients even on modest hardware due to being asynchronous.

• Can be hosted on any WSGI and ASGI web servers includind Gunicorn, Uvicorn, eventlet and gevent.

• Can be integrated with WSGI applications written in frameworks such as Flask, Django, etc.

• Can be integrated with aiohttp, sanic and tornado asyncio applications.

• Uses an event-based architecture implemented with decorators that hides the details of the protocol.

• Implements HTTP long-polling and WebSocket transports.

• Supports XHR2 and XHR browsers as clients.

• Supports text and binary messages.

• Supports gzip and deflate HTTP compression.

• Configurable CORS responses to avoid cross-origin problems with browsers.

1.5. Server Features 5

https://wsgi.readthedocs.io/en/latest/index.html
https://asgi.readthedocs.io/en/latest/
https://gunicorn.org/
https://github.com/encode/uvicorn
http://eventlet.net/
http://gevent.org
http://aiohttp.readthedocs.io/
http://sanic.readthedocs.io/
http://www.tornadoweb.org/

python-engineio Documentation

6 Chapter 1. Getting Started

CHAPTER

TWO

THE ENGINE.IO CLIENT

This package contains two Engine.IO clients:

• The engineio.Client() class creates a client compatible with the standard Python library.

• The engineio.AsyncClient() class creates a client compatible with the asyncio package.

The methods in the two clients are the same, with the only difference that in the asyncio client most methods are
implemented as coroutines.

2.1 Installation

To install the standard Python client along with its dependencies, use the following command:

pip install "python-engineio[client]"

If instead you plan on using the asyncio client, then use this:

pip install "python-engineio[asyncio_client]"

2.2 Creating a Client Instance

To instantiate an Engine.IO client, simply create an instance of the appropriate client class:

import engineio

standard Python
eio = engineio.Client()

asyncio
eio = engineio.AsyncClient()

7

python-engineio Documentation

2.3 Defining Event Handlers

To responds to events triggered by the connection or the server, event Handler functions must be defined using the on
decorator:

@eio.on('connect')
def on_connect():

print('I'm connected!')

@eio.on('message')
def on_message(data):

print('I received a message!')

@eio.on('disconnect')
def on_disconnect():

print('I'm disconnected!')

For the asyncio server, event handlers can be regular functions as above, or can also be coroutines:

@eio.on('message')
async def on_message(data):

print('I received a message!')

The argument given to the on decorator is the event name. The events that are supported are connect, message
and disconnect. Note that the disconnect handler is invoked for application initiated disconnects, server initiated
disconnects, or accidental disconnects, for example due to networking failures.

The data argument passed to the 'message' event handler contains application-specific data provided by the server
with the event.

2.4 Connecting to a Server

The connection to a server is established by calling the connect() method:

eio.connect('http://localhost:5000')

In the case of the asyncio client, the method is a coroutine:

await eio.connect('http://localhost:5000')

Upon connection, the server assigns the client a unique session identifier. The applicaction can find this identifier in
the sid attribute:

print('my sid is', eio.sid)

8 Chapter 2. The Engine.IO Client

python-engineio Documentation

2.5 Sending Messages

The client can send a message to the server using the send() method:

eio.send({'foo': 'bar'})

Or in the case of asyncio, as a coroutine:

await eio.send({'foo': 'bar'})

The single argument provided to the method is the data that is passed on to the server. The data can be of type str,
bytes, dict or list. The data included inside dictionaries and lists is also constrained to these types.

The send() method can be invoked inside an event handler as a response to a server event, or in any other part of the
application, including in background tasks.

2.6 Disconnecting from the Server

At any time the client can request to be disconnected from the server by invoking the disconnect() method:

eio.disconnect()

For the asyncio client this is a coroutine:

await eio.disconnect()

2.7 Managing Background Tasks

When a client connection to the server is established, a few background tasks will be spawned to keep the connection
alive and handle incoming events. The application running on the main thread is free to do any work, as this is not
going to prevent the functioning of the Engine.IO client.

If the application does not have anything to do in the main thread and just wants to wait until the connection ends, it
can call the wait() method:

eio.wait()

Or in the asyncio version:

await eio.wait()

For the convenience of the application, a helper function is provided to start a custom background task:

def my_background_task(my_argument)
do some background work here!
pass

eio.start_background_task(my_background_task, 123)

The arguments passed to this method are the background function and any positional or keyword arguments to invoke
the function with.

Here is the asyncio version:

2.5. Sending Messages 9

python-engineio Documentation

async def my_background_task(my_argument)
do some background work here!
pass

eio.start_background_task(my_background_task, 123)

Note that this function is not a coroutine, since it does not wait for the background function to end, but the background
function is.

The sleep() method is a second convenience function that is provided for the benefit of applications working with
background tasks of their own:

eio.sleep(2)

Or for asyncio:

await eio.sleep(2)

The single argument passed to the method is the number of seconds to sleep for.

2.8 Debugging and Troubleshooting

To help you debug issues, the client can be configured to output logs to the terminal:

import engineio

standard Python
eio = engineio.Client(logger=True)

asyncio
eio = engineio.AsyncClient(logger=True)

The logger argument can be set to True to output logs to stderr, or to an object compatible with Python’s logging
package where the logs should be emitted to. A value of False disables logging.

Logging can help identify the cause of connection problems, unexpected disconnections and other issues.

10 Chapter 2. The Engine.IO Client

CHAPTER

THREE

THE ENGINE.IO SERVER

This package contains two Engine.IO servers:

• The engineio.Server() class creates a server compatible with the standard Python library.

• The engineio.AsyncServer() class creates a server compatible with the asyncio package.

The methods in the two servers are the same, with the only difference that in the asyncio server most methods are
implemented as coroutines.

3.1 Installation

To install the Python Engine.IO server use the following command:

pip install "python-engineio"

In addition to the server, you will need to select an asynchronous framework or server to use along with it. The list of
supported packages is covered in the Deployment Strategies section.

3.2 Creating a Server Instance

An Engine.IO server is an instance of class engineio.Server. This instance can be transformed into a standard WSGI
application by wrapping it with the engineio.WSGIApp class:

import engineio

create a Engine.IO server
eio = engineio.Server()

wrap with a WSGI application
app = engineio.WSGIApp(eio)

For asyncio based servers, the engineio.AsyncServer class provides the same functionality, but in a coroutine
friendly format. If desired, The engineio.ASGIApp class can transform the server into a standard ASGI application:

create a Engine.IO server
eio = engineio.AsyncServer()

wrap with ASGI application
app = engineio.ASGIApp(eio)

11

python-engineio Documentation

These two wrappers can also act as middlewares, forwarding any traffic that is not intended to the Engine.IO server to
another application. This allows Engine.IO servers to integrate easily into existing WSGI or ASGI applications:

from wsgi import app # a Flask, Django, etc. application
app = engineio.WSGIApp(eio, app)

3.3 Serving Static Files

The Engine.IO server can be configured to serve static files to clients. This is particularly useful to deliver HTML, CSS
and JavaScript files to clients when this package is used without a companion web framework.

Static files are configured with a Python dictionary in which each key/value pair is a static file mapping rule. In its
simplest form, this dictionary has one or more static file URLs as keys, and the corresponding files in the server as
values:

static_files = {
'/': 'latency.html',
'/static/engine.io.js': 'static/engine.io.js',
'/static/style.css': 'static/style.css',

}

With this example configuration, when the server receives a request for / (the root URL) it will return the contents of
the file latency.html in the current directory, and will assign a content type based on the file extension, in this case
text/html.

Files with the .html, .css, .js, .json, .jpg, .png, .gif and .txt file extensions are automatically recognized
and assigned the correct content type. For files with other file extensions or with no file extension, the application/
octet-stream content type is used as a default.

If desired, an explicit content type for a static file can be given as follows:

static_files = {
'/': {'filename': 'latency.html', 'content_type': 'text/plain'},

}

It is also possible to configure an entire directory in a single rule, so that all the files in it are served as static files:

static_files = {
'/static': './public',

}

In this example any files with URLs starting with /staticwill be served directly from the public folder in the current
directory, so for example, the URL /static/index.htmlwill return local file ./public/index.html and the URL
/static/css/styles.css will return local file ./public/css/styles.css.

If a URL that ends in a / is requested, then a default filename of index.html is appended to it. In the previous
example, a request for the /static/ URL would return local file ./public/index.html. The default filename to
serve for slash-ending URLs can be set in the static files dictionary with an empty key:

static_files = {
'/static': './public',
'': 'image.gif',

}

12 Chapter 3. The Engine.IO Server

python-engineio Documentation

With this configuration, a request for /static/would return local file ./public/image.gif. A non-standard content
type can also be specified if needed:

static_files = {
'/static': './public',
'': {'filename': 'image.gif', 'content_type': 'text/plain'},

}

The static file configuration dictionary is given as the static_files argument to the engineio.WSGIApp or
engineio.ASGIApp classes:

for standard WSGI applications
eio = engineio.Server()
app = engineio.WSGIApp(eio, static_files=static_files)

for asyncio-based ASGI applications
eio = engineio.AsyncServer()
app = engineio.ASGIApp(eio, static_files=static_files)

The routing precedence in these two classes is as follows:

• First, the path is checked against the Engine.IO path.

• Next, the path is checked against the static file configuration, if present.

• If the path did not match the Engine.IO path or any static file, control is passed to the secondary application if
configured, else a 404 error is returned.

Note: static file serving is intended for development use only, and as such it lacks important features such as caching.
Do not use in a production environment.

3.4 Defining Event Handlers

To responds to events triggered by the connection or the client, event Handler functions must be defined using the on
decorator:

@eio.on('connect')
def on_connect(sid):

print('A client connected!')

@eio.on('message')
def on_message(sid, data):

print('I received a message!')

@eio.on('disconnect')
def on_disconnect(sid):

print('Client disconnected!')

For the asyncio server, event handlers can be regular functions as above, or can also be coroutines:

@eio.on('message')
async def on_message(sid, data):

print('I received a message!')

3.4. Defining Event Handlers 13

python-engineio Documentation

The argument given to the on decorator is the event name. The events that are supported are connect, message and
disconnect. Note that the disconnect handler is invoked for client initiated disconnects, server initiated disconnects,
or accidental disconnects, for example due to networking failures.

The sid argument passed into all the event handlers is a connection identifier for the client. All the events from a client
will use the same sid value.

The connect handler is the place where the server can perform authentication. The value returned by this handler is
used to determine if the connection is accepted or rejected. When the handler does not return any value (which is the
same as returning None) or when it returns True the connection is accepted. If the handler returns False or any JSON
compatible data type (string, integer, list or dictionary) the connection is rejected. A rejected connection triggers a
response with a 401 status code.

The data argument passed to the 'message' event handler contains application-specific data provided by the client
with the event.

3.5 Sending Messages

The server can send a message to any client using the send() method:

eio.send(sid, {'foo': 'bar'})

Or in the case of asyncio, as a coroutine:

await eio.send(sid, {'foo': 'bar'})

The first argument provided to the method is the connection identifier for the recipient client. The second argument is
the data that is passed on to the server. The data can be of type str, bytes, dict or list. The data included inside
dictionaries and lists is also constrained to these types.

The send() method can be invoked inside an event handler as a response to a client event, or in any other part of the
application, including in background tasks.

3.6 User Sessions

The server can maintain application-specific information in a user session dedicated to each connected client. Appli-
cations can use the user session to write any details about the user that need to be preserved throughout the life of the
connection, such as usernames or user ids.

The save_session() and get_session() methods are used to store and retrieve information in the user session:

@eio.on('connect')
def on_connect(sid, environ):

username = authenticate_user(environ)
eio.save_session(sid, {'username': username})

@eio.on('message')
def on_message(sid, data):

session = eio.get_session(sid)
print('message from ', session['username'])

For the asyncio server, these methods are coroutines:

14 Chapter 3. The Engine.IO Server

python-engineio Documentation

@eio.on('connect')
async def on_connect(sid, environ):

username = authenticate_user(environ)
await eio.save_session(sid, {'username': username})

@eio.on('message')
async def on_message(sid, data):

session = await eio.get_session(sid)
print('message from ', session['username'])

The session can also be manipulated with the session() context manager:

@eio.on('connect')
def on_connect(sid, environ):

username = authenticate_user(environ)
with eio.session(sid) as session:

session['username'] = username

@eio.on('message')
def on_message(sid, data):

with eio.session(sid) as session:
print('message from ', session['username'])

For the asyncio server, an asynchronous context manager is used:

@eio.on('connect')
def on_connect(sid, environ):

username = authenticate_user(environ)
async with eio.session(sid) as session:

session['username'] = username

@eio.on('message')
def on_message(sid, data):

async with eio.session(sid) as session:
print('message from ', session['username'])

Note: the contents of the user session are destroyed when the client disconnects.

3.7 Disconnecting a Client

At any time the server can disconnect a client from the server by invoking the disconnect() method and passing the
sid value assigned to the client:

eio.disconnect(sid)

For the asyncio client this is a coroutine:

await eio.disconnect(sid)

3.7. Disconnecting a Client 15

python-engineio Documentation

3.8 Managing Background Tasks

For the convenience of the application, a helper function is provided to start a custom background task:

def my_background_task(my_argument)
do some background work here!
pass

eio.start_background_task(my_background_task, 123)

The arguments passed to this method are the background function and any positional or keyword arguments to invoke
the function with.

Here is the asyncio version:

async def my_background_task(my_argument)
do some background work here!
pass

eio.start_background_task(my_background_task, 123)

Note that this function is not a coroutine, since it does not wait for the background function to end, but the background
function is.

The sleep() method is a second convenience function that is provided for the benefit of applications working with
background tasks of their own:

eio.sleep(2)

Or for asyncio:

await eio.sleep(2)

The single argument passed to the method is the number of seconds to sleep for.

3.9 Debugging and Troubleshooting

To help you debug issues, the server can be configured to output logs to the terminal:

import engineio

standard Python
eio = engineio.Server(logger=True)

asyncio
eio = engineio.AsyncServer(logger=True)

The logger argument can be set to True to output logs to stderr, or to an object compatible with Python’s logging
package where the logs should be emitted to. A value of False disables logging.

Logging can help identify the cause of connection problems, 400 responses, bad performance and other issues.

16 Chapter 3. The Engine.IO Server

python-engineio Documentation

3.10 Deployment Strategies

The following sections describe a variety of deployment strategies for Engine.IO servers.

3.10.1 aiohttp

aiohttp provides a framework with support for HTTP and WebSocket, based on asyncio.

Instances of class engineio.AsyncServer will automatically use aiohttp for asynchronous operations if the library
is installed. To request its use explicitly, the async_mode option can be given in the constructor:

eio = engineio.AsyncServer(async_mode='aiohttp')

A server configured for aiohttp must be attached to an existing application:

app = web.Application()
eio.attach(app)

The aiohttp application can define regular routes that will coexist with the Engine.IO server. A typical pattern is to add
routes that serve a client application and any associated static files.

The aiohttp application is then executed in the usual manner:

if __name__ == '__main__':
web.run_app(app)

3.10.2 Tornado

Tornado is a web framework with support for HTTP and WebSocket. Only Tornado version 5 and newer are supported,
thanks to its tight integration with asyncio.

Instances of class engineio.AsyncServer will automatically use tornado for asynchronous operations if the library
is installed. To request its use explicitly, the async_mode option can be given in the constructor:

eio = engineio.AsyncServer(async_mode='tornado')

A server configured for tornado must include a request handler for Engine.IO:

app = tornado.web.Application(
[

(r"/engine.io/", engineio.get_tornado_handler(eio)),
],
... other application options

)

The tornado application can define other routes that will coexist with the Engine.IO server. A typical pattern is to add
routes that serve a client application and any associated static files.

The tornado application is then executed in the usual manner:

app.listen(port)
tornado.ioloop.IOLoop.current().start()

3.10. Deployment Strategies 17

http://aiohttp.readthedocs.io/
http://www.tornadoweb.org//

python-engineio Documentation

3.10.3 Sanic

Sanic is a very efficient asynchronous web server for Python.

Instances of class engineio.AsyncServerwill automatically use Sanic for asynchronous operations if the framework
is installed. To request its use explicitly, the async_mode option can be given in the constructor:

eio = engineio.AsyncServer(async_mode='sanic')

A server configured for Sanic must be attached to an existing application:

app = Sanic()
eio.attach(app)

The Sanic application can define regular routes that will coexist with the Engine.IO server. A typical pattern is to add
routes that serve a client application and any associated static files to this application.

The Sanic application is then executed in the usual manner:

if __name__ == '__main__':
app.run()

It has been reported that the CORS support provided by the Sanic extension sanic-cors is incompatible with this pack-
age’s own support for this protocol. To disable CORS support in this package and let Sanic take full control, initialize
the server as follows:

eio = engineio.AsyncServer(async_mode='sanic', cors_allowed_origins=[])

On the Sanic side you will need to enable the CORS_SUPPORTS_CREDENTIALS setting in addition to any other
configuration that you use:

app.config['CORS_SUPPORTS_CREDENTIALS'] = True

3.10.4 Uvicorn, Daphne, and other ASGI servers

The engineio.ASGIApp class is an ASGI compatible application that can forward Engine.IO traffic to an engineio.
AsyncServer instance:

eio = engineio.AsyncServer(async_mode='asgi')
app = engineio.ASGIApp(eio)

The application can then be deployed with any ASGI compatible web server.

3.10.5 Eventlet

Eventlet is a high performance concurrent networking library for Python 2 and 3 that uses coroutines, enabling code
to be written in the same style used with the blocking standard library functions. An Engine.IO server deployed with
eventlet has access to the long-polling and WebSocket transports.

Instances of class engineio.Server will automatically use eventlet for asynchronous operations if the library is
installed. To request its use explicitly, the async_mode option can be given in the constructor:

eio = engineio.Server(async_mode='eventlet')

A server configured for eventlet is deployed as a regular WSGI application using the provided engineio.WSGIApp:

18 Chapter 3. The Engine.IO Server

http://sanic.readthedocs.io/
https://github.com/ashleysommer/sanic-cors
http://eventlet.net/

python-engineio Documentation

app = engineio.WSGIApp(eio)
import eventlet
eventlet.wsgi.server(eventlet.listen(('', 8000)), app)

3.10.6 Eventlet with Gunicorn

An alternative to running the eventlet WSGI server as above is to use gunicorn, a fully featured pure Python web server.
The command to launch the application under gunicorn is shown below:

$ gunicorn -k eventlet -w 1 module:app

Due to limitations in its load balancing algorithm, gunicorn can only be used with one worker process, so the -w 1
option is required. Note that a single eventlet worker can handle a large number of concurrent clients.

Another limitation when using gunicorn is that the WebSocket transport is not available, because this transport it
requires extensions to the WSGI standard.

Note: Eventlet provides a monkey_patch() function that replaces all the blocking functions in the standard library
with equivalent asynchronous versions. While python-engineio does not require monkey patching, other libraries such
as database drivers are likely to require it.

3.10.7 Gevent

Gevent is another asynchronous framework based on coroutines, very similar to eventlet. An Engine.IO server deployed
with gevent has access to the long-polling transport. If project gevent-websocket is installed, the WebSocket transport
is also available. Note that when using the uWSGI server, the native WebSocket implementation of uWSGI can be used
instead of gevent-websocket (see next section for details on this).

Instances of class engineio.Server will automatically use gevent for asynchronous operations if the library is in-
stalled and eventlet is not installed. To request gevent to be selected explicitly, the async_mode option can be given in
the constructor:

gevent alone or with gevent-websocket
eio = engineio.Server(async_mode='gevent')

A server configured for gevent is deployed as a regular WSGI application using the provided engineio.WSGIApp:

from gevent import pywsgi
app = engineio.WSGIApp(eio)
pywsgi.WSGIServer(('', 8000), app).serve_forever()

If the WebSocket transport is installed, then the server must be started as follows:

from gevent import pywsgi
from geventwebsocket.handler import WebSocketHandler
app = engineio.WSGIApp(eio)
pywsgi.WSGIServer(('', 8000), app,

handler_class=WebSocketHandler).serve_forever()

3.10. Deployment Strategies 19

gunicorn.org
http://gevent.org
https://bitbucket.org/Jeffrey/gevent-websocket/

python-engineio Documentation

3.10.8 Gevent with Gunicorn

An alternative to running the gevent WSGI server as above is to use gunicorn, a fully featured pure Python web server.
The command to launch the application under gunicorn is shown below:

$ gunicorn -k gevent -w 1 module:app

Or to include WebSocket:

$ gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker -w 1 module: app

Same as with eventlet, due to limitations in its load balancing algorithm, gunicorn can only be used with one worker
process, so the -w 1 option is required. Note that a single gevent worker can handle a large number of concurrent
clients.

Note: Gevent provides a monkey_patch() function that replaces all the blocking functions in the standard library with
equivalent asynchronous versions. While python-engineio does not require monkey patching, other libraries such as
database drivers are likely to require it.

3.10.9 uWSGI

When using the uWSGI server in combination with gevent, the Engine.IO server can take advantage of uWSGI’s native
WebSocket support.

Instances of class engineio.Server will automatically use this option for asynchronous operations if both gevent
and uWSGI are installed and eventlet is not installed. To request this asynchoronous mode explicitly, the async_mode
option can be given in the constructor:

gevent with uWSGI
eio = engineio.Server(async_mode='gevent_uwsgi')

A complete explanation of the configuration and usage of the uWSGI server is beyond the scope of this documentation.
The uWSGI server is a fairly complex package that provides a large and comprehensive set of options. It must be
compiled with WebSocket and SSL support for the WebSocket transport to be available. As way of an introduction,
the following command starts a uWSGI server for the latency.py example on port 5000:

$ uwsgi --http :5000 --gevent 1000 --http-websockets --master --wsgi-file latency.py --
↪→callable app

3.10.10 Standard Threads

While not comparable to eventlet and gevent in terms of performance, the Engine.IO server can also be configured to
work with multi-threaded web servers that use standard Python threads. This is an ideal setup to use with development
servers such as Werkzeug.

Instances of class engineio.Server will automatically use the threading mode if neither eventlet nor gevent are not
installed. To request the threading mode explicitly, the async_mode option can be given in the constructor:

eio = engineio.Server(async_mode='threading')

A server configured for threading is deployed as a regular web application, using any WSGI complaint multi-threaded
server. The example below deploys an Engine.IO application combined with a Flask web application, using Flask’s
development web server based on Werkzeug:

20 Chapter 3. The Engine.IO Server

gunicorn.org
http://werkzeug.pocoo.org

python-engineio Documentation

eio = engineio.Server(async_mode='threading')
app = Flask(__name__)
app.wsgi_app = engineio.WSGIApp(eio, app.wsgi_app)

... Engine.IO and Flask handler functions ...

if __name__ == '__main__':
app.run()

The example that follows shows how to start an Engine.IO application using Gunicorn’s threaded worker class:

$ gunicorn -w 1 --threads 100 module:app

With the above configuration the server will be able to handle up to 100 concurrent clients.

When using standard threads, WebSocket is supported through the simple-websocket package, which must be installed
separately. This package provides a multi-threaded WebSocket server that is compatible with Werkzeug and Gunicorn’s
threaded worker. Other multi-threaded web servers are not supported and will not enable the WebSocket transport.

3.10.11 Scalability Notes

Engine.IO is a stateful protocol, which makes horizontal scaling more difficult. To deploy a cluster of Engine.IO
processes hosted on one or multiple servers the following conditions must be met:

• Each Engine.IO server process must be able to handle multiple requests concurrently. This is required because
long-polling clients send two requests in parallel. Worker processes that can only handle one request at a time
are not supported.

• The load balancer must be configured to always forward requests from a client to the same process. Load bal-
ancers call this sticky sessions, or session affinity.

3.11 Cross-Origin Controls

For security reasons, this server enforces a same-origin policy by default. In practical terms, this means the following:

• If an incoming HTTP or WebSocket request includes the Origin header, this header must match the scheme and
host of the connection URL. In case of a mismatch, a 400 status code response is returned and the connection is
rejected.

• No restrictions are imposed on incoming requests that do not include the Origin header.

If necessary, the cors_allowed_origins option can be used to allow other origins. This argument can be set to a
string to set a single allowed origin, or to a list to allow multiple origins. A special value of '*' can be used to instruct
the server to allow all origins, but this should be done with care, as this could make the server vulnerable to Cross-Site
Request Forgery (CSRF) attacks.

3.11. Cross-Origin Controls 21

https://github.com/miguelgrinberg/simple-websocket

python-engineio Documentation

22 Chapter 3. The Engine.IO Server

CHAPTER

FOUR

API REFERENCE

4.1 Client class

class engineio.Client(logger=False, json=None, request_timeout=5, http_session=None, ssl_verify=True)
An Engine.IO client.

This class implements a fully compliant Engine.IO web client with support for websocket and long-polling trans-
ports.

Parameters

• logger – To enable logging set to True or pass a logger object to use. To disable logging
set to False. The default is False. Note that fatal errors are logged even when logger is
False.

• json – An alternative json module to use for encoding and decoding packets. Custom json
modules must have dumps and loads functions that are compatible with the standard library
versions.

• request_timeout – A timeout in seconds for requests. The default is 5 seconds.

• http_session – an initialized requests.Session object to be used when sending re-
quests to the server. Use it if you need to add special client options such as proxy servers,
SSL certificates, custom CA bundle, etc.

• ssl_verify – True to verify SSL certificates, or False to skip SSL certificate verification,
allowing connections to servers with self signed certificates. The default is True.

connect(url, headers=None, transports=None, engineio_path='engine.io')
Connect to an Engine.IO server.

Parameters

• url – The URL of the Engine.IO server. It can include custom query string parameters if
required by the server.

• headers – A dictionary with custom headers to send with the connection request.

• transports – The list of allowed transports. Valid transports are 'polling' and
'websocket'. If not given, the polling transport is connected first, then an upgrade to
websocket is attempted.

• engineio_path – The endpoint where the Engine.IO server is installed. The default value
is appropriate for most cases.

Example usage:

23

python-engineio Documentation

eio = engineio.Client()
eio.connect('http://localhost:5000')

create_event(*args, **kwargs)
Create an event object.

create_queue(*args, **kwargs)
Create a queue object.

disconnect(abort=False)
Disconnect from the server.

Parameters abort – If set to True, do not wait for background tasks associated with the con-
nection to end.

on(event, handler=None)
Register an event handler.

Parameters

• event – The event name. Can be 'connect', 'message' or 'disconnect'.

• handler – The function that should be invoked to handle the event. When this parameter
is not given, the method acts as a decorator for the handler function.

Example usage:

as a decorator:
@eio.on('connect')
def connect_handler():

print('Connection request')

as a method:
def message_handler(msg):

print('Received message: ', msg)
eio.send('response')

eio.on('message', message_handler)

send(data)
Send a message to a client.

Parameters data – The data to send to the client. Data can be of type str, bytes, list or
dict. If a list or dict, the data will be serialized as JSON.

sleep(seconds=0)
Sleep for the requested amount of time.

start_background_task(target, *args, **kwargs)
Start a background task.

This is a utility function that applications can use to start a background task.

Parameters

• target – the target function to execute.

• args – arguments to pass to the function.

• kwargs – keyword arguments to pass to the function.

This function returns an object compatible with the Thread class in the Python standard library. The start()
method on this object is already called by this function.

24 Chapter 4. API Reference

python-engineio Documentation

transport()
Return the name of the transport currently in use.

The possible values returned by this function are 'polling' and 'websocket'.

wait()
Wait until the connection with the server ends.

Client applications can use this function to block the main thread during the life of the connection.

4.2 AsyncClient class

class engineio.AsyncClient(logger=False, json=None, request_timeout=5, http_session=None,
ssl_verify=True)

An Engine.IO client for asyncio.

This class implements a fully compliant Engine.IO web client with support for websocket and long-polling trans-
ports, compatible with the asyncio framework on Python 3.5 or newer.

Parameters

• logger – To enable logging set to True or pass a logger object to use. To disable logging
set to False. The default is False. Note that fatal errors are logged even when logger is
False.

• json – An alternative json module to use for encoding and decoding packets. Custom json
modules must have dumps and loads functions that are compatible with the standard library
versions.

• request_timeout – A timeout in seconds for requests. The default is 5 seconds.

• http_session – an initialized aiohttp.ClientSession object to be used when sending
requests to the server. Use it if you need to add special client options such as proxy servers,
SSL certificates, etc.

• ssl_verify – True to verify SSL certificates, or False to skip SSL certificate verification,
allowing connections to servers with self signed certificates. The default is True.

async connect(url, headers=None, transports=None, engineio_path='engine.io')
Connect to an Engine.IO server.

Parameters

• url – The URL of the Engine.IO server. It can include custom query string parameters if
required by the server.

• headers – A dictionary with custom headers to send with the connection request.

• transports – The list of allowed transports. Valid transports are 'polling' and
'websocket'. If not given, the polling transport is connected first, then an upgrade to
websocket is attempted.

• engineio_path – The endpoint where the Engine.IO server is installed. The default value
is appropriate for most cases.

Note: this method is a coroutine.

Example usage:

eio = engineio.Client()
await eio.connect('http://localhost:5000')

4.2. AsyncClient class 25

python-engineio Documentation

create_event()
Create an event object.

create_queue()
Create a queue object.

async disconnect(abort=False)
Disconnect from the server.

Parameters abort – If set to True, do not wait for background tasks associated with the con-
nection to end.

Note: this method is a coroutine.

on(event, handler=None)
Register an event handler.

Parameters

• event – The event name. Can be 'connect', 'message' or 'disconnect'.

• handler – The function that should be invoked to handle the event. When this parameter
is not given, the method acts as a decorator for the handler function.

Example usage:

as a decorator:
@eio.on('connect')
def connect_handler():

print('Connection request')

as a method:
def message_handler(msg):

print('Received message: ', msg)
eio.send('response')

eio.on('message', message_handler)

async send(data)
Send a message to a client.

Parameters data – The data to send to the client. Data can be of type str, bytes, list or
dict. If a list or dict, the data will be serialized as JSON.

Note: this method is a coroutine.

async sleep(seconds=0)
Sleep for the requested amount of time.

Note: this method is a coroutine.

start_background_task(target, *args, **kwargs)
Start a background task.

This is a utility function that applications can use to start a background task.

Parameters

• target – the target function to execute.

• args – arguments to pass to the function.

• kwargs – keyword arguments to pass to the function.

26 Chapter 4. API Reference

python-engineio Documentation

This function returns an object compatible with the Thread class in the Python standard library. The start()
method on this object is already called by this function.

Note: this method is a coroutine.

transport()
Return the name of the transport currently in use.

The possible values returned by this function are 'polling' and 'websocket'.

async wait()
Wait until the connection with the server ends.

Client applications can use this function to block the main thread during the life of the connection.

Note: this method is a coroutine.

4.3 Server class

class engineio.Server(async_mode=None, ping_interval=25, ping_timeout=20,
max_http_buffer_size=1000000, allow_upgrades=True, http_compression=True,
compression_threshold=1024, cookie=None, cors_allowed_origins=None,
cors_credentials=True, logger=False, json=None, async_handlers=True,
monitor_clients=None, **kwargs)

An Engine.IO server.

This class implements a fully compliant Engine.IO web server with support for websocket and long-polling
transports.

Parameters

• async_mode – The asynchronous model to use. See the Deployment section in the doc-
umentation for a description of the available options. Valid async modes are “threading”,
“eventlet”, “gevent” and “gevent_uwsgi”. If this argument is not given, “eventlet” is tried
first, then “gevent_uwsgi”, then “gevent”, and finally “threading”. The first async mode that
has all its dependencies installed is the one that is chosen.

• ping_interval – The interval in seconds at which the server pings the client. The default is
25 seconds. For advanced control, a two element tuple can be given, where the first number
is the ping interval and the second is a grace period added by the server.

• ping_timeout – The time in seconds that the client waits for the server to respond before
disconnecting. The default is 20 seconds.

• max_http_buffer_size – The maximum size of a message when using the polling trans-
port. The default is 1,000,000 bytes.

• allow_upgrades – Whether to allow transport upgrades or not. The default is True.

• http_compression – Whether to compress packages when using the polling transport. The
default is True.

• compression_threshold – Only compress messages when their byte size is greater than
this value. The default is 1024 bytes.

• cookie – If set to a string, it is the name of the HTTP cookie the server sends back tot he
client containing the client session id. If set to a dictionary, the 'name' key contains the
cookie name and other keys define cookie attributes, where the value of each attribute can
be a string, a callable with no arguments, or a boolean. If set to None (the default), a cookie
is not sent to the client.

4.3. Server class 27

python-engineio Documentation

• cors_allowed_origins – Origin or list of origins that are allowed to connect to this server.
Only the same origin is allowed by default. Set this argument to '*' to allow all origins, or
to [] to disable CORS handling.

• cors_credentials – Whether credentials (cookies, authentication) are allowed in requests
to this server. The default is True.

• logger – To enable logging set to True or pass a logger object to use. To disable logging
set to False. The default is False. Note that fatal errors are logged even when logger is
False.

• json – An alternative json module to use for encoding and decoding packets. Custom json
modules must have dumps and loads functions that are compatible with the standard library
versions.

• async_handlers – If set to True, run message event handlers in non-blocking threads. To
run handlers synchronously, set to False. The default is True.

• monitor_clients – If set to True, a background task will ensure inactive clients are closed.
Set to False to disable the monitoring task (not recommended). The default is True.

• kwargs – Reserved for future extensions, any additional parameters given as keyword argu-
ments will be silently ignored.

create_event(*args, **kwargs)
Create an event object using the appropriate async model.

This is a utility function that applications can use to create an event without having to worry about using
the correct call for the selected async mode.

create_queue(*args, **kwargs)
Create a queue object using the appropriate async model.

This is a utility function that applications can use to create a queue without having to worry about using
the correct call for the selected async mode.

disconnect(sid=None)
Disconnect a client.

Parameters sid – The session id of the client to close. If this parameter is not given, then all
clients are closed.

generate_id()
Generate a unique session id.

get_queue_empty_exception()
Return the queue empty exception for the appropriate async model.

This is a utility function that applications can use to work with a queue without having to worry about using
the correct call for the selected async mode.

get_session(sid)
Return the user session for a client.

Parameters sid – The session id of the client.

The return value is a dictionary. Modifications made to this dictionary are not guaranteed to be preserved
unless save_session() is called, or when the session context manager is used.

handle_request(environ, start_response)
Handle an HTTP request from the client.

28 Chapter 4. API Reference

python-engineio Documentation

This is the entry point of the Engine.IO application, using the same interface as a WSGI application. For
the typical usage, this function is invoked by the Middleware instance, but it can be invoked directly when
the middleware is not used.

Parameters

• environ – The WSGI environment.

• start_response – The WSGI start_response function.

This function returns the HTTP response body to deliver to the client as a byte sequence.

on(event, handler=None)
Register an event handler.

Parameters

• event – The event name. Can be 'connect', 'message' or 'disconnect'.

• handler – The function that should be invoked to handle the event. When this parameter
is not given, the method acts as a decorator for the handler function.

Example usage:

as a decorator:
@eio.on('connect')
def connect_handler(sid, environ):

print('Connection request')
if environ['REMOTE_ADDR'] in blacklisted:

return False # reject

as a method:
def message_handler(sid, msg):

print('Received message: ', msg)
eio.send(sid, 'response')

eio.on('message', message_handler)

The handler function receives the sid (session ID) for the client as first argument. The 'connect' event
handler receives the WSGI environment as a second argument, and can return False to reject the connec-
tion. The 'message' handler receives the message payload as a second argument. The 'disconnect'
handler does not take a second argument.

save_session(sid, session)
Store the user session for a client.

Parameters

• sid – The session id of the client.

• session – The session dictionary.

send(sid, data)
Send a message to a client.

Parameters

• sid – The session id of the recipient client.

• data – The data to send to the client. Data can be of type str, bytes, list or dict. If a
list or dict, the data will be serialized as JSON.

session(sid)
Return the user session for a client with context manager syntax.

4.3. Server class 29

python-engineio Documentation

Parameters sid – The session id of the client.

This is a context manager that returns the user session dictionary for the client. Any changes that are made
to this dictionary inside the context manager block are saved back to the session. Example usage:

@eio.on('connect')
def on_connect(sid, environ):

username = authenticate_user(environ)
if not username:

return False
with eio.session(sid) as session:

session['username'] = username

@eio.on('message')
def on_message(sid, msg):

with eio.session(sid) as session:
print('received message from ', session['username'])

sleep(seconds=0)
Sleep for the requested amount of time using the appropriate async model.

This is a utility function that applications can use to put a task to sleep without having to worry about using
the correct call for the selected async mode.

start_background_task(target, *args, **kwargs)
Start a background task using the appropriate async model.

This is a utility function that applications can use to start a background task using the method that is com-
patible with the selected async mode.

Parameters

• target – the target function to execute.

• args – arguments to pass to the function.

• kwargs – keyword arguments to pass to the function.

This function returns an object compatible with the Thread class in the Python standard library. The start()
method on this object is already called by this function.

transport(sid)
Return the name of the transport used by the client.

The two possible values returned by this function are 'polling' and 'websocket'.

Parameters sid – The session of the client.

4.4 AsyncServer class

class engineio.AsyncServer(async_mode=None, ping_interval=25, ping_timeout=20,
max_http_buffer_size=1000000, allow_upgrades=True, http_compression=True,
compression_threshold=1024, cookie=None, cors_allowed_origins=None,
cors_credentials=True, logger=False, json=None, async_handlers=True,
monitor_clients=None, **kwargs)

An Engine.IO server for asyncio.

This class implements a fully compliant Engine.IO web server with support for websocket and long-polling
transports, compatible with the asyncio framework on Python 3.5 or newer.

30 Chapter 4. API Reference

python-engineio Documentation

Parameters

• async_mode – The asynchronous model to use. See the Deployment section in the documen-
tation for a description of the available options. Valid async modes are “aiohttp”, “sanic”,
“tornado” and “asgi”. If this argument is not given, “aiohttp” is tried first, followed by
“sanic”, “tornado”, and finally “asgi”. The first async mode that has all its dependencies
installed is the one that is chosen.

• ping_interval – The interval in seconds at which the server pings the client. The default is
25 seconds. For advanced control, a two element tuple can be given, where the first number
is the ping interval and the second is a grace period added by the server.

• ping_timeout – The time in seconds that the client waits for the server to respond before
disconnecting. The default is 20 seconds.

• max_http_buffer_size – The maximum size of a message when using the polling trans-
port. The default is 1,000,000 bytes.

• allow_upgrades – Whether to allow transport upgrades or not.

• http_compression – Whether to compress packages when using the polling transport.

• compression_threshold – Only compress messages when their byte size is greater than
this value.

• cookie – If set to a string, it is the name of the HTTP cookie the server sends back tot he
client containing the client session id. If set to a dictionary, the 'name' key contains the
cookie name and other keys define cookie attributes, where the value of each attribute can
be a string, a callable with no arguments, or a boolean. If set to None (the default), a cookie
is not sent to the client.

• cors_allowed_origins – Origin or list of origins that are allowed to connect to this server.
Only the same origin is allowed by default. Set this argument to '*' to allow all origins, or
to [] to disable CORS handling.

• cors_credentials – Whether credentials (cookies, authentication) are allowed in requests
to this server.

• logger – To enable logging set to True or pass a logger object to use. To disable logging
set to False. Note that fatal errors are logged even when logger is False.

• json – An alternative json module to use for encoding and decoding packets. Custom json
modules must have dumps and loads functions that are compatible with the standard library
versions.

• async_handlers – If set to True, run message event handlers in non-blocking threads. To
run handlers synchronously, set to False. The default is True.

• kwargs – Reserved for future extensions, any additional parameters given as keyword argu-
ments will be silently ignored.

attach(app, engineio_path='engine.io')
Attach the Engine.IO server to an application.

create_event(*args, **kwargs)
Create an event object using the appropriate async model.

This is a utility function that applications can use to create an event without having to worry about using
the correct call for the selected async mode. For asyncio based async modes, this returns an instance of
asyncio.Event.

create_queue(*args, **kwargs)
Create a queue object using the appropriate async model.

4.4. AsyncServer class 31

python-engineio Documentation

This is a utility function that applications can use to create a queue without having to worry about using
the correct call for the selected async mode. For asyncio based async modes, this returns an instance of
asyncio.Queue.

async disconnect(sid=None)
Disconnect a client.

Parameters sid – The session id of the client to close. If this parameter is not given, then all
clients are closed.

Note: this method is a coroutine.

generate_id()
Generate a unique session id.

get_queue_empty_exception()
Return the queue empty exception for the appropriate async model.

This is a utility function that applications can use to work with a queue without having to worry about using
the correct call for the selected async mode. For asyncio based async modes, this returns an instance of
asyncio.QueueEmpty.

async get_session(sid)
Return the user session for a client.

Parameters sid – The session id of the client.

The return value is a dictionary. Modifications made to this dictionary are not guaranteed to be preserved.
If you want to modify the user session, use the session context manager instead.

async handle_request(*args, **kwargs)
Handle an HTTP request from the client.

This is the entry point of the Engine.IO application. This function returns the HTTP response to deliver to
the client.

Note: this method is a coroutine.

on(event, handler=None)
Register an event handler.

Parameters

• event – The event name. Can be 'connect', 'message' or 'disconnect'.

• handler – The function that should be invoked to handle the event. When this parameter
is not given, the method acts as a decorator for the handler function.

Example usage:

as a decorator:
@eio.on('connect')
def connect_handler(sid, environ):

print('Connection request')
if environ['REMOTE_ADDR'] in blacklisted:

return False # reject

as a method:
def message_handler(sid, msg):

print('Received message: ', msg)
eio.send(sid, 'response')

eio.on('message', message_handler)

32 Chapter 4. API Reference

python-engineio Documentation

The handler function receives the sid (session ID) for the client as first argument. The 'connect' event
handler receives the WSGI environment as a second argument, and can return False to reject the connec-
tion. The 'message' handler receives the message payload as a second argument. The 'disconnect'
handler does not take a second argument.

async save_session(sid, session)
Store the user session for a client.

Parameters

• sid – The session id of the client.

• session – The session dictionary.

async send(sid, data)
Send a message to a client.

Parameters

• sid – The session id of the recipient client.

• data – The data to send to the client. Data can be of type str, bytes, list or dict. If a
list or dict, the data will be serialized as JSON.

Note: this method is a coroutine.

session(sid)
Return the user session for a client with context manager syntax.

Parameters sid – The session id of the client.

This is a context manager that returns the user session dictionary for the client. Any changes that are made
to this dictionary inside the context manager block are saved back to the session. Example usage:

@eio.on('connect')
def on_connect(sid, environ):

username = authenticate_user(environ)
if not username:

return False
with eio.session(sid) as session:

session['username'] = username

@eio.on('message')
def on_message(sid, msg):

async with eio.session(sid) as session:
print('received message from ', session['username'])

async sleep(seconds=0)
Sleep for the requested amount of time using the appropriate async model.

This is a utility function that applications can use to put a task to sleep without having to worry about using
the correct call for the selected async mode.

Note: this method is a coroutine.

start_background_task(target, *args, **kwargs)
Start a background task using the appropriate async model.

This is a utility function that applications can use to start a background task using the method that is com-
patible with the selected async mode.

Parameters

4.4. AsyncServer class 33

python-engineio Documentation

• target – the target function to execute.

• args – arguments to pass to the function.

• kwargs – keyword arguments to pass to the function.

The return value is a asyncio.Task object.

transport(sid)
Return the name of the transport used by the client.

The two possible values returned by this function are 'polling' and 'websocket'.

Parameters sid – The session of the client.

4.5 WSGIApp class

class engineio.WSGIApp(engineio_app, wsgi_app=None, static_files=None, engineio_path='engine.io')
WSGI application middleware for Engine.IO.

This middleware dispatches traffic to an Engine.IO application. It can also serve a list of static files to the client,
or forward unrelated HTTP traffic to another WSGI application.

Parameters

• engineio_app – The Engine.IO server. Must be an instance of the engineio.Server
class.

• wsgi_app – The WSGI app that receives all other traffic.

• static_files – A dictionary with static file mapping rules. See the documentation for
details on this argument.

• engineio_path – The endpoint where the Engine.IO application should be installed. The
default value is appropriate for most cases.

Example usage:

import engineio
import eventlet

eio = engineio.Server()
app = engineio.WSGIApp(eio, static_files={

'/': {'content_type': 'text/html', 'filename': 'index.html'},
'/index.html': {'content_type': 'text/html',

'filename': 'index.html'},
})
eventlet.wsgi.server(eventlet.listen(('', 8000)), app)

34 Chapter 4. API Reference

python-engineio Documentation

4.6 ASGIApp class

class engineio.ASGIApp(engineio_server, other_asgi_app=None, static_files=None, engineio_path='engine.io',
on_startup=None, on_shutdown=None)

ASGI application middleware for Engine.IO.

This middleware dispatches traffic to an Engine.IO application. It can also serve a list of static files to the client,
or forward unrelated HTTP traffic to another ASGI application.

Parameters

• engineio_server – The Engine.IO server. Must be an instance of the engineio.
AsyncServer class.

• static_files – A dictionary with static file mapping rules. See the documentation for
details on this argument.

• other_asgi_app – A separate ASGI app that receives all other traffic.

• engineio_path – The endpoint where the Engine.IO application should be installed. The
default value is appropriate for most cases.

• on_startup – function to be called on application startup; can be coroutine

• on_shutdown – function to be called on application shutdown; can be coroutine

Example usage:

import engineio
import uvicorn

eio = engineio.AsyncServer()
app = engineio.ASGIApp(eio, static_files={

'/': {'content_type': 'text/html', 'filename': 'index.html'},
'/index.html': {'content_type': 'text/html',

'filename': 'index.html'},
})
uvicorn.run(app, '127.0.0.1', 5000)

4.7 Middleware class (deprecated)

class engineio.Middleware(engineio_app, wsgi_app=None, engineio_path='engine.io')
This class has been renamed to WSGIApp and is now deprecated.

• genindex

• modindex

• search

4.6. ASGIApp class 35

python-engineio Documentation

36 Chapter 4. API Reference

PYTHON MODULE INDEX

e
engineio, 23

37

python-engineio Documentation

38 Python Module Index

INDEX

A
ASGIApp (class in engineio), 35
AsyncClient (class in engineio), 25
AsyncServer (class in engineio), 30
attach() (engineio.AsyncServer method), 31

C
Client (class in engineio), 23
connect() (engineio.AsyncClient method), 25
connect() (engineio.Client method), 23
create_event() (engineio.AsyncClient method), 25
create_event() (engineio.AsyncServer method), 31
create_event() (engineio.Client method), 24
create_event() (engineio.Server method), 28
create_queue() (engineio.AsyncClient method), 26
create_queue() (engineio.AsyncServer method), 31
create_queue() (engineio.Client method), 24
create_queue() (engineio.Server method), 28

D
disconnect() (engineio.AsyncClient method), 26
disconnect() (engineio.AsyncServer method), 32
disconnect() (engineio.Client method), 24
disconnect() (engineio.Server method), 28

E
engineio

module, 23

G
generate_id() (engineio.AsyncServer method), 32
generate_id() (engineio.Server method), 28
get_queue_empty_exception() (en-

gineio.AsyncServer method), 32
get_queue_empty_exception() (engineio.Server

method), 28
get_session() (engineio.AsyncServer method), 32
get_session() (engineio.Server method), 28

H
handle_request() (engineio.AsyncServer method), 32

handle_request() (engineio.Server method), 28

M
Middleware (class in engineio), 35
module

engineio, 23

O
on() (engineio.AsyncClient method), 26
on() (engineio.AsyncServer method), 32
on() (engineio.Client method), 24
on() (engineio.Server method), 29

S
save_session() (engineio.AsyncServer method), 33
save_session() (engineio.Server method), 29
send() (engineio.AsyncClient method), 26
send() (engineio.AsyncServer method), 33
send() (engineio.Client method), 24
send() (engineio.Server method), 29
Server (class in engineio), 27
session() (engineio.AsyncServer method), 33
session() (engineio.Server method), 29
sleep() (engineio.AsyncClient method), 26
sleep() (engineio.AsyncServer method), 33
sleep() (engineio.Client method), 24
sleep() (engineio.Server method), 30
start_background_task() (engineio.AsyncClient

method), 26
start_background_task() (engineio.AsyncServer

method), 33
start_background_task() (engineio.Client method),

24
start_background_task() (engineio.Server method),

30

T
transport() (engineio.AsyncClient method), 27
transport() (engineio.AsyncServer method), 34
transport() (engineio.Client method), 24
transport() (engineio.Server method), 30

39

python-engineio Documentation

W
wait() (engineio.AsyncClient method), 27
wait() (engineio.Client method), 25
WSGIApp (class in engineio), 34

40 Index

	Getting Started
	What is Engine.IO?
	Client Examples
	Client Features
	Server Examples
	Server Features

	The Engine.IO Client
	Installation
	Creating a Client Instance
	Defining Event Handlers
	Connecting to a Server
	Sending Messages
	Disconnecting from the Server
	Managing Background Tasks
	Debugging and Troubleshooting

	The Engine.IO Server
	Installation
	Creating a Server Instance
	Serving Static Files
	Defining Event Handlers
	Sending Messages
	User Sessions
	Disconnecting a Client
	Managing Background Tasks
	Debugging and Troubleshooting
	Deployment Strategies
	aiohttp
	Tornado
	Sanic
	Uvicorn, Daphne, and other ASGI servers
	Eventlet
	Eventlet with Gunicorn
	Gevent
	Gevent with Gunicorn
	uWSGI
	Standard Threads
	Scalability Notes

	Cross-Origin Controls

	API Reference
	Client class
	AsyncClient class
	Server class
	AsyncServer class
	WSGIApp class
	ASGIApp class
	Middleware class (deprecated)

	Python Module Index
	Index

