
PVFS2 MPI Based Requests

Design Notes

PVFS Development Team

march 2002

1 PVFS Requests

PVFS user programs can construct a data structure that represents a specifc set of non-contiguous data

that is to be read from or written to a PVFS file. The PVFS library includes a set of routines for creating

these structures in a controlled manner. These routines produce an opaque type the PVFS Request which

is actually a pointer to an internal structure, the PINT Request.

typedef struct PINT_Request *PVFS_Request; /* user type for requests */

int PVFS_Request_contiguous(int count, PVFS_Request oldreq,

PVFS_Request *newreq);

int PVFS_Request_vector(int count, int blocklength, int stride,

PVFS_Request oldreq, PVFS_Request *newreq);

int PVFS_Request_hvector(int count, int blocklength, int64_t stride,

PVFS_Request oldreq, PVFS_Request *newreq);

int PVFS_Request_indexed(int count, int *blocklengths,

int *displacements, PVFS_Request oldreq, PVFS_Request *newreq);

int PVFS_Request_hindexed(int count, int *blocklengths, int64_t *displacements,

PVFS_Request oldreq, PVFS_Request *newreq);

int PVFS_Request_struct(int count, int *blocklengths, int64_t *displacements,

PVFS_Request *oldreqs, PVFS_Request *newreq);

1



int PVFS_Address(void* location, int64_t *address);

int PVFS_Request_extent(PVFS_Request request, int64_t *extent);

int PVFS_Request_size(PVFS_Request request, int *size);

int PVFS_Request_lb(PVFS_Request request, int64_t* displacement);

int PVFS_Request_ub(PVFS_Request request, int64_t* displacement);

These routines are based directly on the MPI datatype constructor routines of similar name and have the

same semantics.

2 Request Data Structures

The PINT Request is designed to represent any data layout that can be specified using MPI’s MPI Datatype

constructors. The PINT Request state is a structure that indicates how much of a request has actually been

processed. Using these structures it is possible to process part of a PVFS request, stop, and then resume

processing at a later time when resources become available. This document outlines these structures and

the algorithms for using them.

The PINT Request

typedef struct PINT_Request {

PVFS_offset offset; /* offset from start of last set of elements */

int32_t num_ereqs; /* number of ereqs in a block */

PVFS_size stride; /* stride between blocks in bytes */

int32_t num_blocks; /* number of blocks */

PVFS_offset ub; /* upper bound of the type in bytes */

PVFS_offset lb; /* lower bound of the type in bytes */

PVFS_size aggregate_size; /* amount of aggregate data in bytes */

int32_t depth; /* number of levels of nesting */

int32_t num_contig_chunks; /* number of contiguous data chunks */

struct PINT_Request *ereq; /* element type */

struct PINT_Request *sreq; /* sequence type */

} PINT_Request;

A single PINT Request structure represents num blocks blocks of num ereqs elements separated by stride

bytes, beginning offest bytes from the logical start of the file, and followed by an arbitrary data layout

2



described by the sequence type. The elements are of an arbitrary data layout described by the element

type. The ub, lb, aggregate size, depth, and num contig chunks fields are statistics of the entire data area

beginning with the current PINT Request struct and including the element and sequence types. Depth

records the maximum depth of the element type chain. Calls to MPI Type contiguous, MPI Type vector,

and MPI Type hvector can be constructed with a single PINT Request struct and the PINT Request struct

passed in as the element type. Calls to MPI Type indexed, MPI Type hindexed, and MPI Type struct

generally utilize the sequence type chain.

Example Requests

The following are a few examples of how request patterns would be represented using the PVFS Request

structure.

SIZE

OFFSET

OFFSET

ESIZE

OFFSET

COUNT

ESIZE

COUNT

ELEMENTS

STRIDE

ETYPE

A)

B)

C)

3



Single Contiguous Region Requests

A single contiguous region is represented by a single structure. The region can be specified as SIZE bytes

at location OFFSET as in figure A:

PTYPE:

offset = OFFSET

num_ereqs = SIZE

stride = 1

num_blocks = 1

ub = SIZE

lb = 0

aggregate_size = SIZE

depth = 1

num_contig_chunks = 1

etype = PVFS_Request_byte

stype = NULL

Or can be specified as an array of COUNT integers as in figure B:

PTYPE:

offset = OFFSET

num_ereqs = COUNT

stride = 1

num_blocks = 1

ub = COUNT * 4

lb = 0

aggregate_size = COUNT * 4

depth = 1

num_contig_chunks = 1

etype = PVFS_Request_int

stype = NULL

PVFS_Request_int:

offset = 0

num_ereqs = 4

stride = 1

num_blocks = 1

ub = 4

lb = 0

aggregate_size = 4

4



depth = 0

num_contig_chunks = 1

etype = NULL

stype = NULL

Note that default PVFS Request exist for standard data types including: PVFS Request byte, PVFS Request char,

PVFS Request short, PVFS Request int, PVFS Request long, PVFS Request float, PVFS Request double.

Each of these standard types is defined with an etype of NULL which indicates that the region is contigu-

ous regardless of the other parameters.

Strided Region Requests

A data area made up of regular strided groups of contiguous elements can also be represented with a single

PINT Request structure. A region consisting of GROUPS groups of ELEMENTS items of type ETYPE

with a size of ESIZE each with a stride between the first element of each group of STRIDE bytes would

be as in figure C:

PTYPE:

offset = OFFSET

num_ereqs = ELEMENTS

stride = STRIDE

num_blocks = GROUPS

ub = ((GROUPS - 1) * STRIDE) + (ELEMENTS * ESIZE)

lb = 0

aggregate_size = GROUPS * ELEMENTS * ESIZE

depth = 1

num_contig_chunks = GROUPS

etype = ETYPE

stype = NULL

Once again this assumes that ETYPE is a contiguous type.

5



OFFSET

D) OFFSET+40

PVFS_Request_float * 6

OFFSET+760

INNER−PTYPE

E)

OFFSET

Sequential Requests

A data area may consist of a region that conforms to one type, followed by a region that conforms to

another. Example might include a strided region where one wants to begin and/or end in the middle of a

group, rather than have a integral number of whole groups, or may be two unrelated segments of data. For

this, a sequence of PINT Request structures is specified using the stype field to determine the sequence.

The offset is specified relative to the beginning of the data area.

In this example we have a strided region shown in D. We want to start 8 bytes into the first group (yellow),

then have 15 whole groups (blue), and finally end 4 bytes into the last group (green). Each group is 6

elements, and each element is a float (4 bytes). The stride between groups is 48 bytes (12 floats).

FIRST-PTYPE:

offset = OFFSET

num_ereqs = 4

stride = 1

num_blocks = 1

ub = 764

lb = 0

aggregate_size = 380

depth = 1

num_contig_chunks = 17

etype = PVFS_Request_float

stype = NEXT-PTYPE

6



NEXT-PTYPE:

offset = OFFSET + 40

num_ereqs = 6

stride = 48

num_blocks = 15

ub = 764

lb = 40

aggregate_size = 364

depth = 1

num_contig_chunks = 16

etype = PVFS_Request_float

stype = LAST-PTYPE

LAST-PTYPE:

offset = OFFSET + 760

num_ereqs = 1

stride = 1

num_blocks = 1

ub = 764

lb = 760

aggregate_size = 4

depth = 1

num_contig_chunks = 1

etype = PVFS_Request_float

stype = NULL

Note that ub, lb, aggregate size, depth, and num contig chunks always refers to the region represented

down stream of the current PINT Request record, and not the whole region, however ub and lb are still

expressed in terms of the entire data area.

Nested Types

Any request can be built on top of another request. When the base request is contiguous the result is as

above, but when the base request is not contiguous things are more complicated. Examples include nested

strided regions and vectors of records that are only partially accessed.

The following is a nested strided region. There are 4 groups of two ”elements,” with a stride of 8 elements.

Each element consts of 2 groups of 6 integers (one element shown in green), with a stride of 48 bytes.

OUTER-PTYPE:

offset = OFFSET

7



num_ereqs = 2

stride = 768

num_blocks = 4

ub = 3264

lb = 0

aggregate_size = 384

depth = 2

num_contig_chunks = 16

etype = INNER-PTYPE

stype = NULL

INNER-PTYPE:

offset = 0

num_ereqs = 6

stride = 48

num_blocks = 2

ub = 96

lb = 0

aggregate_size = 48

depth = 1

num_contig_chunks = 2

etype = PVFS_Request_int

stype = NULL

Note that the offset, ub, and lb are in terms of the inner elements and not of the entire buffer, thus the

offset is the offset from the beginning of that element to the first bit of data in that element.

3 The PINT Request state

When processing a request described with a PVFS Request the following structures are used to keep track

of how much of the request has been processed.

typedef struct PINT_reqstack {

int32_t el; /* number of element being processed */

int32_t maxel; /* total number of these elements to process */

PINT_Request *rq; /* pointer to request structure */

PINT_Request *rqbase; /* pointer to first request is sequence chain */

int32_t blk; /* number of block being processed */

PVFS_offset chunk_offset; /* offset of beginning of current contiguous

} PINT_reqstack;

8



typedef struct PINT_Request_state {

struct PINT_reqstack *cur; /* request element chain stack */

int32_t lvl; /* level in element chain */

PVFS_size bytes; /* bytes in current contiguous chunk processed

PVFS_offset buf_offset; /* byte offset in user buffer */

} PINT_Request_state;

The PINT Request state utilizes a stack to keep up with each level in the element type chain. For each

level, a stack element records which block and which element within the block is being processed as well

as which PVFS Request record in the sequence chain is being processed. The maxel and dtbase fields are

used to reset each level each time it is entered. The PINT Request state records the level being processed

and a function used to process each contiguous block of data. The bytes field is used to record the results

of a partial processing of bytes so the processing can be paused and resumed later.

4 PINT Process request interface

Requests and distributions are processed using the interface described here. The caller allocates an array of

SEGMAX offsets and an array of SEGMAX segment sizes. These are passed to the PINT Process request

function allong with an initialized PINT Request state, a PVFS Request, a PVFS Request file data struct

which includes distribution, distribution parameters, metadata, and an EXTEND FLAG that indicates if

the routine should stop at the current end of file (if the value is zero) or should extend the local file to

the size needed to complete the request (if the value is non-zero) in the even that the file ends before

the end of the request. A read will typically have a zero value and a write will typically have a one

value. Other arguments to PINT Process request include the maximum number of segments to process

SEGMAX, a maximum number of bytes to transfer BYTEMAX, and a starting offset START OFFSET,

and EOF FLAG argument returns whether the end of the request is at or beyond the end of file.

typedef struct PINT_Request_file_data {

PVFS_size fsize; /* actual size of local storage object */

int32_t server_nr; /* ordinal number of THIS server for this file */

int32_t server_ct; /* number of servers for this file */

PVFS_Distribution *dist;

PVFS_Dist_parm *dparm;

PVFS_boolean extend_flag;

} PINT_Request_file_data;

PINT Process request fills in up to SEGMAX array entries, updates SEGMAX to indicate the number

of segments processed, updates BYTEMAX to indicate the number of bytes processed, and updates

9



START OFFSET and the PINT Reqest state to indicate the last point in the request procssed. The func-

tion attempts to process BYTEMAX bytes, but cannot process more than SEGMAX contiguous regions.

The code is expected to be optimized for the case where START OFFSET is equal to the value returned

the last time the function was called with the same PINT Request state.

int PINT_Process_request(PINT_Request_state *req,

PINT_Request_file_data *rfdata, int32_t *segmax,

PVFS_offset *offset_array, PVFS_size *size_array,

PVFS_offset *start_offset, PVFS_size *bytemax,

PVFS_boolean *eof_flag, int mode);

The MODE tells the request processor whether to process the request in terms of the local file offsets on

a server or local buffer offsets on a client. Clients should set this to PVFS CLIENT to indicate that the

data will be read into a contiguous buffer. Servers should set to PVFS SERVER to indicate that the offsets

computed by the distribution module should be used as the local file offsets. A third mode PVFS CKSIZE

indicates that the routine should count how many bytes up to BYTEMAX are left in the request, but does

not alter the requset state or update the SIZE ARRAY or OFFSET ARRAY.

Before calling PINT Process request for a given request for the first time, the caller needs to allocate

a PINT Request state structure. This is done by calling PINT New request passing in a pointer to the

request. Theoretically multiple request states can exist for the same request, thought there is really no

need to do such a thing.

struct PINT_Request_state *PINT_New_request_state (PINT_Request *request);

The new request state is positioned at the beginning of the request. The caller must also allocate a

64-bit start offset, as well as the offset and size arrays, eof flag, segmax, and bytemax. Each time

PINT Process request is called, the segmax, bytemax, and eof flag should be reset to the proper val-

ues, as the function returns results in these variables as well as taking inputs from them. The offset and

size arrays are overwritten each time PINT Process state is called. The start offset variable is normally

NOT reset between calls as the caller normally wishes to continue translating the request from the point

left off previously. After completing the processing of the request, the caller is also responsible for freeing

the request state structure with a call to PINT Free request.

void PINT_Free_request_state (PINT_Request_state *req);

The following is a sample of code calling the request processing routines. It processes an entire request

using no more than SEGMAX contiguous sements at a time and no more than BYTEMAX bytes at a

time.

10



#include <pvfs-types.h>

#include <pint_distribution.h>

#define SEGMAX 32

#define BYTEMAX 250

do_a_request(PINT_Request *req,

PVFS_Distribution *dist,

PVFS_Dist_parm *dparm,

PVFS_Meta meta)

{

int i;

// PVFS_Process_request arguments

PINT_Request_state *reqs;

PINT_Request_file_data rfdata;

PVFS_offset offset_array[SEGMAX];

PVFS_size size_array[SEGMAX];

PVFS_offset offset;

PVFS_size bytemax;

int32_t segmax;

PVFS_boolean extend_flag;

PVFS_boolean eof_flag;

reqs = PINT_New_request_state(req);

rfdata.server_nr = 0;

rfdata.server_ct = 1;

rfdata.fsize = 10000000;

rfdata.dist = dist

rfdata.dparm = dparm

rfdata.extend_flag = 0;

eof_flag = 0;

offset = 0;

do {

segmax = SEGMAX;

bytemax = BYTEMAX;

PINT_Process_request(reqs, &rfdata, &segmax, offset_array,

size_array, &offset, &bytemax, &eof_flag, PINT_SERVER);

printf("processed %lld bytes in %d segments\n", bytemax, segmax);

for (i = 0; i < segmax; i++)

{

printf("segment %d: offset=%lld size=%lld\n", i,

offset_array[i], size_array[i]);

11



}

} while (offset != -1);

}

12


