
An Advanced Introduction to GnuPG

Neal H. Walfield

August 18, 2017

2

Copyright © 2017 g10 Code GmbH.
This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Contents

I Main Matter 5

1 MUA Integration 7
1.1 Integration . 9
1.2 Key Creation . 10

1.2.1 Revocation Certificate 12
1.3 Expiration . 13
1.4 Sending Mail . 13

1.4.1 Encryption Keys . 15
1.4.2 BCC Recipients . 16
1.4.3 Saving Drafts . 17
1.4.4 Sent Mails . 17
1.4.5 Attaching Keys . 17

1.5 Reading Mail . 18
1.5.1 Verifying Messages . 18
1.5.2 Multi-part Emails . 21
1.5.3 Unencrypted Cache 22

1.6 Key Management . 22
1.6.1 Key Discovery . 23
1.6.2 Key Verification . 27
1.6.3 TOFU Conflict Resolution 29
1.6.4 Address Book Integration 30

3

4 CONTENTS

Part I

Main Matter

5

Chapter 1

MUA Integration

This chapter contains guidelines on integrating GnuPG into a mail user
agent (MUA). Other good sources of information on this topic are exist-
ing MUAs, in particular, KMail and Enigmail, which probably have the
best GnuPG integration. This is not to say that our recommendations or
what KMail and Enigmail implement are optimal. Far from it. A common
criticism of GnuPG is how difficult it is to use. We acknowledge these crit-
icisms, and we particularly welcome help in this area. Nevertheless, we
suspect that some of the user interactions cannot be significantly simplified
without compromising the security of the system, which has traditionally
been designed to protect the user from an active adversary.

Most people do not have active adversaries. This is particularly true
in democratic countries. People who live in these places primarily turn to
a technology like GnuPG to protect their privacy, thwart phishing excur-
sions, or fight mass surveillance. These users do not have the same secu-
rity requirements as journalists, activists, or lawyers operating in regimes
where civil rights are not respected, and a single unencrypted message can
result in jail time, or worse.

Given these different classes of users, it is entirely reasonable to simplify
some of the proposed interaction patterns for those who are only interested
in protecting their privacy by using encryption opportunistically [1]. This is
precisely what the Autocrypt project is trying to accomplish. Their hope is
that trading protection from active adversaries for increased ease of use will
result in greater adoption of encrypted email by people looking to protect
their privacy, and fight mass surveillance, but don’t want to be bothered
with security issues [2].

7

8 CHAPTER 1. MUA INTEGRATION

Simplifying user interactions needs to be done carefully. People cur-
rently associate GnuPG and related tools as providing high levels of pro-
tection, and may assume that because these new interfaces use GnuPG that
they provide the same level of protection. As such, we recommend the
MUA make clear to users what level of protection the interface can offer.
This could be done using a warning, but text that resembles an EULA is un-
likely to be read [3]. Another approach to this problem is to ask the user to
choose a profile that best matches their needs (i.e., their threat model), and
then adjust defaults accordingly. This is the approach that the Tor Browser
Bundle takes. This has the added benefit of causing users to think about
risk assessment. The MUA need not support all of the profiles that it shows.
Then, if the MUA does not support the user’s threat model, the user should
be warned.

In the GnuPG context, three profiles appear to be called for:

• Very Strong Security: Some users turn to GnuPG, because they fear
targeted attacks from a nation state adversary including rubber-hose
cryptoanalysis (i.e., the use of torture to recover passwords). These
users should almost certainly use a security token, which the MUA
should help them configure, HTML should be disabled, and all op-
erations that could leak sensitive information should require explicit
confirmation. The MUA should also help these users implement for-
ward secrecy (by regularly rotating subkeys), provide a mechanism
to automatically purge old emails, and disable indexing encrypted
emails.

• Strong Security: Some users need protection from less sophisticated
adversaries. For instance, lawyers worry that their communication
with their clients may be spied on by criminal groups or corrupt gov-
ernment organizations. Although these users rely on encryption to
protect sensitive communication, they also send and receive a lot of
unencrypted email, and they don’t want to be overly inconvenienced
when processing those messages. Consequently, these users should
have to confirm sending unencrypted mails when keys appear to be
available, and using unverified keys should require confirmation.

• Privacy Preserving: Many people, especially those living in function-
ing democracies, aren’t particularly worried about their safety. In-
stead, they turn to a tool like GnuPG, because they are concerned

1.1. INTEGRATION 9

about their privacy, and mass surveillance. Other reasons include the
need to occasionally send a password by email, and a desire for pro-
tection from drive-by phishing expeditions (although since few or-
ganizations currently sign their email, this is more wishful thinking
than practical protection).

With few exceptions, the MUA should avoid interrupting these users
with security questions. One exception is when the user follows up
to an encrypted email, but the reply won’t be sent in an encrypted
manner. Since the sender encrypted the email, it might be for a good
reason and, consistent with the do no harm principle, the user should
not accidentally endanger her communication partner, or the subject
of the mail.

This doesn’t mean that the encryption should entirely disappear into
the background. The MUA should still help the user understand
what is going on, and allow the user to provide input, if desired.
For instance, like a web browser, the MUA should indicate whether a
message is secure. And, if the user clicks on the icon, she should get
more information, and have the option to verify her communication
partner’s identity. In other words, security should largely be opt-in.

The trade off that these profiles make is straightforward: someone who
requires more security is more sensitive to a mistake, and is more willing
to interact with the system to ensure this security. For people who have
lower security requirements, not only are these interactions annoying, they
can actually hurt security elsewhere: showing dialog boxes that are simply
clicked away results in habituation [4, 3].

Communication, of course, necessarily involves multiple parties. Thus,
if a user with high security requirements communicates with a user with
low security requirements, the casual user could accidentally compromise
the careful user by forgetting to encrypt an email. Thus, consistent with
the do-no-harm principle, it is important that even an implementation de-
signed for users with low security requirements not be too lax.

1.1 Integration

There are two basic ways to add GnuPG support to a MUA: it can be added
natively, or it can be added via a plug-in. KMail, and Claws are examples

10 CHAPTER 1. MUA INTEGRATION

of MUAs that have native GnuPG support; Enigmail, GPGTools, and gpgol
are examples of plug-ins.

One approach isn’t necessarily better than the other. But, the develop-
ment of plug-ins tends to be highly divorced from the actual development
of the MUA with the practical result that the needs of the plug-in are often
not sufficiently taken into account by the MUA developers. This has been
a problem for the Enigmail developers, for instance.

One common problem is controlling how messages are rendered: the
GnuPG support code needs a lot of control over this. This control is nec-
essary to prevent mimicry attacks. For instance, it is necessary to not only
show when a message is verified, but also prevent an attacker from craft-
ing a message that appears to be verified. One way to accomplish this is to
style not only the message, but also the chrome around the message.

The things that need to be added to a MUA for reasonable GnuPG sup-
port is not long: there needs to be a way to create a key, encrypt messages,
verify messages, and do some basic key management. But, all of these
things have numerous gotchas that can negatively impact both the user ex-
perience, and the security of the system. The point of this chapter is to
point out these issues to avoid making developers—or worse, their users—
rediscover these problems the hard way.

1.2 Key Creation

When a GnuPG-enabled MUA is started, it would seem logical to prompt
the user to create or import a key if the user has not already done so. This
behavior is reasonable if the user has explicitly enabled GnuPG support by
installing a plug-in. However, if the MUA has native GnuPG support, and
it is not certain that all users want to use GnuPG, it may be best to wait to
avoid overwhelming the user during the initial setup.

If a key is not generated immediately, this doesn’t mean that the
GnuPG-related functionality should somehow be hidden or disabled. Even
without a key, it is still possible to verify signatures, and show unsigned
messages as being insecure. Then, if a user clicks on such a security notice,
the MUA can explain why the message is considered insecure, and provide
an option for the user to configure the GnuPG support. Similarly, it is rea-
sonable to present an option to encrypt a message before a key has been
created. If the user selects this option, and there is no key associated with

1.2. KEY CREATION 11

the sending email address, then the MUA should show the key creation
wizard. This significantly improves discoverability.

The key generation wizard should not only allow the user to generate
a new key, but also provide an option to import an existing one. When the
user enters or selects a user ID, the wizard should look for an existing key
with that email address both in the appropriate WKD, and on any config-
ured key servers. If there is a matching key, the wizard should ask the user
if she wants to import the key or really create a new one. Importing the key
might not be possible if the key is a fake, or if the user lost access to the key,
e.g., by formatting the computer, or forgetting the key’s passphrase. Both
are unfortunately rather common for novice users.

When the key generation wizard starts, the user ID should default
to the current identity. For instance, if the user has the email addresses
alice@posteo.de and alice@gnupg.net, and clicks on encrypt while
composing an email from alice@gnupg.net, the wizard should default
to creating a key for alice@gnupg.net. If Alice selects a different iden-
tity, then the wizard should explain why the key won’t be usable for the
email she is currently composing.

If the user already has a key, but not one for the current identity, it is
reasonable for the key creation wizard to offer to add the identity to the
existing key. However, current thinking in the GnuPG project is that users
require less training when there is a one-to-one mapping of keys and email
addresses than when multiple user IDs are associated with a single key.
For instance, if the MUA offers to add the user ID to an existing key, it
becomes necessary to explain why this might be undesirable, e.g., most
people probably want separate keys for their private, and their work email.
And later, if the user retires her email address, it will become necessary to
explain the difference between revoking the key and revoking a user ID. Of
course, since many users do use keys with multiple user IDs, it is necessary
for the MUA to support such keys, and explain their meaning when signing
keys, for instance.

The key generation wizard should make key creation as easy as possi-
ble by prompting the user for as little information as reasonable. In par-
ticular, the user should not have the option to enter a comment; adding
a comment is almost always inappropriate [5]. Likewise, key generation
parameters should not be configurable. But, the user should be allowed
to choose whether the key is published on the Internet. This requires an
explanation, which can be made by simile: publishing a key on the Inter-

12 CHAPTER 1. MUA INTEGRATION

net is like publishing a telephone number in a phone book, and no one is
checking the submitted entries.

If it is deemed absolutely necessary that the user be able to tweak key
parameters, then the options should be hidden unless the user explicitly
enables some sort of expert mode. The reason is simple: for the most part
changing these parameters doesn’t actually improve the overall security.
For instance, using a 2048-bit RSA key is currently considered sufficiently
secure by multiple authorities [6]. If more security is really needed, then
the user should start by improving their weakest defense, which is almost
certainly their opsec and not the cryptography. Bruce Schneier, for instance,
argues that the Snowden leaks provide strong evidence that the NSA has
not broken strong cryptography. Instead, the NSA appears to get the infor-
mation they want by compromising infrastructure and endpoints [7]. The
easiest and probably most effective measure is to use a smartcard instead
of storing the private key material on the computer.

There are also practical reasons for not using an overly large key. Per-
haps the most important one is simply based on performance: it does not
take twice as long to verify a signature generated with a 4096-bit RSA key
than one generated with a 2048-bit RSA key, but about an order of magni-
tude longer. This performance penalty becomes particularly noticeable for
16,384-bit keys.

1.2.1 Revocation Certificate

After creating a key, the wizard should prompt the user to save the key’s
revocation certificate, or offer to print it out (or both!). For users with low
security requirements, it is also reasonable to send the revocation certificate
to the user in an email (along with an explanation of what a revocation cer-
tificate is, and how to publish it). This is the easiest way to make sure the
revocation certificate is stored in multiple places, but it has the disadvan-
tage that it gives anyone who can access the user’s mail the power to revoke
her key. This weakness is problematic, but it is not disastrous: that person
would be able to perform a denial of service attack (other people would
no longer be able to send encrypted messages to the user, and signatures
generated by the key would no longer be considered valid), but could not
assume the user’s identity, or read encrypted messages. And, creating a
new key is straightforward. So, the potential damage is limited, and for
most users probably represents a net win given the benefits of being able to

1.3. EXPIRATION 13

revoke a lost or inaccessible key.

1.3 Expiration

When GnuPG 2.1 creates a new key, the default is to set the key to expire in
two years. Just because a key expires does not mean that the user needs a
new key: the expiration is just an emergency brake if the user loses access to
her key, and can’t publish a revocation certificate. Consequently, the MUA
should support extending a key’s expiration date. This can be done when
the MUA starts. But, since many users rarely restart their MUA, it may be
better to check whenever the key is used.

If the key is about to expire (within, say, three months), the MUA should
extend the expiration. Once the expiration is extended, the key needs to be
uploaded to the key servers or otherwise distributed to the user’s com-
munication partners so that their OpenPGP implementation can take the
change into account.

Since extending a key’s expiry requires making a self-signature, the user
will need to unlock the secret key. This interaction can be hidden by piggy
backing the operation onto some other operation that requires the user to
unlock the key.

For security sensitive users, it may make sense to ask the user if this is
desired. For very high risk users, there should also be an option to rotate
the keys.

1.4 Sending Mail

The mail composition window should have a toggle to "secure" or "en-
crypt" the current message. When active, this toggle should actually cause
the message to be encrypted and signed. There should not be a sep-
arate toggle for signing the message. As explained previously in Sec-
tion sec:option-pgp-encryption, most users assume that encrypting
includes signing, and don’t understand signing at all.

The button may have a menu that becomes visible after, for instance,
a long press, which allows the user to select between "Encrypt and Sign",
"Sign-only", "Encrypt-only" and "No protection." However this menu is ac-
tivated, it should be reserved for advanced users, which justifies the poor

14 CHAPTER 1. MUA INTEGRATION

discoverability of this feature: needing to only encrypt or only sign a mes-
sage is relatively specialized, and these users can be expected to have had
training; normal users should only have to choose between a secure, and
an insecure option.

The Mailpile MUA always signs messages, even if they are not en-
crypted. To avoid confusing users who do not have an OpenPGP capa-
ble MUA, Mailpile uses inline signatures when possible, because, with the
exception of one line, the signature shows up at the bottom of the mes-
sage, and users have learned to ignore mumbo jumbo at the end of mes-
sages. Anecdotal evidence suggests that this approach doesn’t impose any
cognative load on users whose MUAs don’t support OpenPGP. When an
inline signature can’t be used, Mailpile exports the signature as an ASCII-
armored blob, adds a description explaining the purpose of the signature,
and names the attachment signature.asc.html. The naming is essen-
tial: if a recipient open the attachment, she sees the explanation, and knows
that she can ignore it. Anecdotal evidence suggests that this also signifi-
cantly reduces the amount of confusion that signatures typically cause.

For users with high security requirements, it makes sense to always en-
able encryption by default, and then require that the user explicitly disable
it if encryption is not desired. This avoids mistakenly sending a message
unencrypted when it should have been encrypted. However, this default
can be annoying for users who do not normally encrypt their mail.

As mentioned earlier, a MUA can deal with this dilemma by setting ap-
propriate defaults for the user’s threat model. But even for low security
users, there are cases in which it is clear that encryption should be enabled
by default. For instance, if the user is replying to an encrypted message,
then encryption should be enabled. In fact, if the user tries to disable en-
cryption, it is reasonable to show a warning of the form: "you are reply-
ing to an encrypted message, do you really want to disable encryption for
your reply?" Similarly, if a recipient consistently sends encrypted mail, or
there is a verified key available, then encryption should probably be turned
on. Although it is appealing to encrypt whenever possible, encryption can
sometimes decrease usability. This is particularly the case for users who
process email on multiple devices, but only a subset of them are able to
decrypt the messages.

An appropriate default can be more difficult to find when there are mul-
tiple recipients. For instance, when a user replies to an encrypted message,
she might not have keys for all of the recipients. But, the application can

1.4. SENDING MAIL 15

help the user find the keys, and, in this case, finding appropriate keys is
actually straightforward: due to the way that OpenPGP encrypts data, the
long key ID of the sender and any recipients will normally be embedded
in the message (specifically, in the PK-ESK packets). Unfortunately, the
key IDs are subject to tampering, but since this requires a more determined
adversary, they are almost certainly much more reliable than simply search-
ing a key server for keys with a particular email address. It is also possible
to try and find the key using WKD, which provides a basic verification
check. Another reason to avoid key servers is that using a key found on a
key server may cause more problems than it solves: the message may be
encrypted, but because it is the wrong key, the intended recipient can’t de-
crypt it. Making decryption unreliable is a sure way to discourage the use
of encryption. Key discovery is covered in more detail in Section 1.6.1.

Sometimes mails include keys as attachments, or references to them. In
such cases, the MUA should either import them automatically or provide
a button to allow the user to import them. But, the keys should always
be imported if they are already available locally: the keys might contain
updates, such as new subkeys, an extended expiration, or a revocation cer-
tificate. This topic is discussed further in Section 1.6.1.

1.4.1 Encryption Keys

To make it clear whether there is a key for a particular recipient, the MUA
should add a small icon, e.g., a padlock, next to each email address. As
usual, to improve discoverability, and provide a reminder to encrypt, this
should always be done, even if encryption for a draft has not yet been en-
abled. In that case, the padlock should also be crossed out. The coloring
and the icon should vary according to the degree to which the key is ver-
ified. (It is important to not only change the color to support colorblind
users.)

We recommend that the UI distinguish between the different degrees of
verification. The web of trust provides three verification levels: a key can
either by fully verified, marginally verified or not verified. (Note: for his-
torical reasons, GnuPG uses the term "trusted" here instead of "verified." To
reduce confusion in this document, we reserve the term trusted for when a
key is not just verified to be controlled by the stated entity, but may act as an
introducer. MUAs should do the same.) And, the TOFU trust model pro-
vides even finer grained verification levels. These distinctions are impor-

16 CHAPTER 1. MUA INTEGRATION

tant for security conscious users, and, as a rule of thumb, marginally veri-
fied keys should not be shown as having the same level of security as fully
verified keys. Instead, fully verified keys should be shown in, say, green,
and partially verified keys should be shown in, say, yellow. If it is somehow
desirable that marginally verified keys have the same security level as fully
verified keys, then the user should explicitly set the marginals-needed
option in her gpg.conf file to 1. In the very least, the UI should distin-
guish between fully verified keys, and not fully verified keys, i.e., if the UI
only shows two states, it should show marginally verified keys the same
way it shows completely unverified keys.

If the TOFU trust model is enabled, the number of days on which a
message has been encrypted to the key plus the number of days on which
a message signed by the key has been verified should be shown next to the
icon. This can be shown in a small bubble subscripting the icon, which is
similar to what Twitter does for showing counts. For large numbers, it is
reasonable to show approximate numbers (e.g., rounding 1132 to 1.1k).

Showing these statistics is important to help users to detect mimicry
attacks, which are often employed by phishers. For instance, if a bank nor-
mally signs their emails, then users hopefully become used to seeing the
count slowly increase. Then, if they get an email that appears to be from
their bank, but the count is 0, they will hopefully become suspicious.

If the user hovers the mouse over the padlock icon or clicks on it, the
MUA should show a short, tweet-length message explaining why the key is
considered verified (or not). If the key is not fully verified, an option to start
a key verification wizard should be provided. If there is a TOFU conflict,
there should be an option to start a TOFU conflict resolution wizard. And, if
there is no key associated with the email address, there should be an option
to start a key discovery wizard. (The wizards are described in Section 1.6.)

1.4.2 BCC Recipients

When sending a mail, if there are any bcc recipients, the MUA should cre-
ate a separate mail for each bcc recipient, and one for the rest. This avoids
having the OpenPGP implementation leak the bcc recipients to the other
recipients. Although it is possible to hide a recipient’s key ID in a message
by using a speculative key ID (e.g., using gpg ’s --throw-keyids option),
this still reveals to the recipients that the message was probably encrypted
to other people. Using separate emails avoids this leak.

1.4. SENDING MAIL 17

1.4.3 Saving Drafts

In general, when a draft—whether it has been marked to be encrypted or
not—is saved on the IMAP server, it should be encrypted to the user. It
should not be encrypted to any recipients; they should only be able to de-
crypt the final version.

It is important to encrypt all drafts even if they that have not been
marked for encryption, because the user’s intent is only known once the
mail has been sent. It may be reasonable to relax this requirement in cases
where it is clear that the user is only using the encryption for privacy pur-
poses. But a safer way to avoid using the private key to decrypt the drafts
is to also either save the session key or an unencrypted copy locally.

1.4.4 Sent Mails

When sending a mail, it is important to also encrypt the mail to the user.
Given the near universal prevalence of a sent folder in MUAs, most users
clearly expect to occasionally be able to later read the mails that they send.
This can be done using gpg ’s encrypt-to option, or, when encrypting
an email, the sender can be specified explicitly.

1.4.5 Attaching Keys

To make it easier for a recipient to reply to a message in an encrypted man-
ner, the MUA should provide an option to attach all public keys she would
need to do so.

Receiving a key can be surprising to users who don’t use or know about
GnuPG. But, if you are encrypting, this is not a concern: you know the
recipient’s MUA understands OpenPGP messages. As such, in these cases,
the keys can be attached automatically.

When attaching a key, it is reasonable to just include a minimal version
of the key. In particular, it doesn’t need to include any certifications, be-
cause once the recipient has the key, it is easy to get the rest of the data
from a key server. A minimal key can be created by providing the op-
tion --export-options export-minimalwhen exporting a key using
gpg.

The user’s key should also always be specified in the OpenPGP header [8].
This is the case whether the mail is encrypted or not. This provides a strong
hint to recipients that the user can work with OpenPGP messages.

18 CHAPTER 1. MUA INTEGRATION

1.5 Reading Mail

When the user opens an email message, it is necessary to identify if the
message is encrypted or signed and to act accordingly. This is relatively
straightforward, but does require a robust MIME parser to to handle all
email. In particular, emails that have been transformed during transport
can be problematic. The more challenging issue is making sure the user un-
derstands whether a message has been transferred securely. As a general
rule of thumb, it is better to be conservative, and indicate that a message
has been transferred insecurely than to incorrectly claim that a message has
been transferred securely when that might not be the case. For instance, in-
stead of attempting to interpret all possible structures, it is better to white
list acceptable structures, and treat deviations as being insecure. Other is-
sues include avoiding unnecessary passphrase prompts, and searching en-
crypted email.

1.5.1 Verifying Messages

Figure 1.1: Padlock icons shown by Firefox and Chromium when a website
is transferred securely.

When a user views an email, it is important to communicate whether
the contents were transferred in a secure fashion. In web browsers, this
type of information is usually shown using a small padlock icon in the
address bar.

Firefox, for instance, shows a green padlock if it transferred the website
in an encrypted manner, and it could authenticate the end-point. It uses a
gray padlock with a yellow warning triangle if some—but not all—of the
content was encrypted, and eavesdropping was possible, or if the website
used a self-signed certificate. It uses a gray padlock with red strikethrough
if a man-in-the-middle attack was possible. And it just shows a neutral,

1.5. READING MAIL 19

"more information" icon if TLS was not used at all [9]. There are two im-
portant issues with this scheme.

The first issue is that this scheme conflates encryption and authentica-
tion. Although it might be reasonable to demand that websites that use au-
thentication also use encryption to be considered secure—it simplifies user
training, and doesn’t impose a significant deployment cost—this argument
doesn’t apply in an email setting. Consider, for instance, a company that
wants to sign all of its outgoing emails to help mitigate phishing. In this
scenario, encryption is more of a hindrance than a help: requiring encryp-
tion would mean that the company would have to somehow find the right
encryption key for each of its correspondents. When only providing an
authentication mechanism, not only are the customers’ keys not required,
the customers don’t even need to have a key: they just need the ability to
validate the signature.

The second problem is that a TLS connection that can’t be authenticated
is shown to be worse than a connection that is completely insecure. For in-
stance, until the recent introduction of Let’s Encrypt, website operators who
wanted to offer an encrypted connection to their website, but didn’t want
to pay for a certificate could use a self-signed certificate. Although data
protected by such certificates is not secure in the sense that the end point
can’t be authenticated without user intervention, such certificates enable
encryption, which does protect users from passive surveillance. In other
words, self-signed certificates provide more protection than nothing at all,
but websites that use self-signed certificates are shown as being less secure
than sites that use no protection at all! (Although encrypting is better than
not encrypting, we nevertheless recommend that MUAs show encrypted
and unsigned mails in the same way that they show unencrypted and un-
signed mails to avoid confusing users.)

Happily, at least the Chrome browser does not make this distinction.
And, like Chrome, we strongly recommend that whatever mechanism is
used to show that a mail can’t be authenticated be used for both unsigned
mails, and mails with a signature that can’t be verified. Specifically, we rec-
ommend considering an unencrypted and unsigned email to be the base-
line, and that an email is never displayed in such a way that the user would
consider it to be less secure than the baseline, unless there is strong evi-
dence of an attack.

It is reasonable to show unverified messages, and unsigned messages
in a neutral manner, and to show verified messages in a positive man-

20 CHAPTER 1. MUA INTEGRATION

ner. However, it may also be reasonable to show unverified messages,
and unsigned messages in a negative manner. This is how MS Outlook
behaves when S/MIME is enabled. This has the added advantage that it
may prompt the user to learn why the MUA showed the message as being
unsafe.

The first step to checking whether a message is authentic is to check
whether the signing key is verified according to some trust model, e.g., the
web of trust. When verifying an email, another step is required: it is also
necessary to make sure the key is controlled by the sender. This can be done
by checking that the email address in the email’s From header actually ap-
pears in one of the key’s verified user IDs. This is necessary to prevent
an attacker from reusing a message in a different context. For instance,
assuming Romeo trusts his father, his father could write an email that ap-
pears to come from Juliet, but sign it with his own key. If the MUA doesn’t
check that the From header and the signer field agree, then the MUA would
show Romeo that the message is verified. Unfortunately, some mailing lists
rewrite the From header, which will cause this test to gratuitously fail. One
reason for doing this is to improve DMARC compatibility.

Just checking that the sender matches a verified user ID is not actu-
ally enough to prevent all replay and mimicry attacks. It is also neces-
sary to make sure the embedded timestamp is similar to (i.e., within a few
hours of) the email’s timestamp. If the timestamp in the email is years
later than the one embedded in the signature, then the email may be part
of an attempted replay attack. Similarly, it is possible to change the re-
cipient. For instance, Juliet might send the following signed message to
Paris: "Go away, I do not love you!" But, Paris, realizing that Romeo and
Juliet are in love, and hoping to trick Romeo, might simply send a copy
of the message to him with the From header set to Juliet. These types of
attacks can be mitigated by also verifying the mail headers. The Memory
Hole project was started to do exactly this [10]. Unfortunately, the standard
isn’t finished, and work on it appears to have stalled. Nevertheless, there
is enough information to understand the intent, and several mail clients
including Enigmail and Mailpile implement it.

Sometimes, a message may include multiple signatures. Any signatures
from keys that match the email address in the From header should be used
for verification purposes. Other keys may be listed when showing the ver-
ification details.

If the TOFU trust model is enabled, then the TOFU statistics should be

1.5. READING MAIL 21

shown as in the encryption case.

1.5.2 Multi-part Emails

Thanks to inline signatures, it is trivial to make a message that is only par-
tially verifiable.

For simplicity’s sake—we don’t want to confuse the user—it is tempt-
ing to treat such messages as insecure like web browsers do. However,
some companies, and some mailing lists automatically append a footer to
all messages. This modification would change a message that is otherwise
completely verifiable to one that contains a part that isn’t signed. Thus,
messages coming from these sources would never show up as secure.

A straightforward technical solution is to show each section individu-
ally. This can be done using a frame. The frame should be part of the
MUAs chrome and not the message to avoid mimicry attacks. Further, each
part should have an icon, e.g., a padlock, that shows information about the
part’s verification (the degree to which it is verified, and the key’s TOFU
statistics), and that, when clicked, shows a menu allowing the user to get
more information, and find the key if it is missing, verify the key if it is
present, or resolve a TOFU conflict, as appropriate.

To further distinguish between verified and unverified parts, a special
background can be used. Ideally, the background should be unique for
each user to further frustrate any attempt at a mimicry attack.

Unfortunately, this information rich technical solution may overwhelm
many users. An alternative is to show a single icon at the top that shows the
minimum security level of the individual parts. Since some corporations
and mailing lists attach a small footer to all mails, this should be excluded
from the calculation, but it should not be shown as verified.

The issues raised so far are manageable. Unfortunately, MIME makes
things much more complicated: MIME can not only encode multi-part doc-
uments, but it can also encode rich content that logically consists of mul-
tiple MIME parts only some of which are signed, such as an HTML docu-
ment and images that it references.

If a message includes at least one verified part, then the MUA should
only show those parts that are verified, and warn the user that the message
contained unverified content that is hidden. It is reasonable for the warning
to include an option to show the unverified parts anyway. At that point the
message should be displayed as insecure.

22 CHAPTER 1. MUA INTEGRATION

This suggestion conflicts with our earlier suggestion of showing un-
signed messages in the same way as unverified messages. The best sug-
gestion we have is to show a warning along the lines of "this message is
unverified, show anyway" for unsigned messages. But, since most users
will primarily deal with unsigned mail, this warning will very quickly get
annoying, and lose its value. If security profiles are supported, this op-
tion should only be enabled for users who have very high security require-
ments.

1.5.3 Unencrypted Cache

The OpenPGP email workflow assumes that messages are stored on an un-
trusted server, and thus continue to need protection even after the mail has
been delivered. Supporting this type of workflow is one of the primary rea-
sons that OpenPGP doesn’t provide forward secrecy. There are two major
consequences of this workflow.

First, every time a message is accessed, it needs to be decrypted. This
can lead to many passphrase prompts. These can be largely mitigated by
increasing the amount of time gpg-agent caches passphrases, or by using
a password manager. But, it is also annoying for smartcard users who need
to basically always leave their smartcard inserted, which effectively nulli-
fies a nice security property of smartcards: the user can observe operations,
because they can only be done when the card is inserted.

Second, it is not possible to search encrypted mails. This is a major
usability problem, particularly when the subject line is also obscured as it
should be to avoid accidentally leaking the message’s contents.

Both of these issues can be largely mitigated by caching the unen-
crypted version of each message locally. This assumes, of course, that the
local device is secure. At a minimum, the user should have the mail stored
on an encrypted partition.

1.6 Key Management

There are three main aspects to key management: key discovery, key veri-
fication, and key organization.

1.6. KEY MANAGEMENT 23

1.6.1 Key Discovery

The first requirement for encrypting or verifying a message is having the
appropriate key. There are several ways to find the right key. Unfortu-
nately, most of them make no guarantee that the key that is returned is
the correct key. But some are significantly more difficult for an adversary
to corrupt than others making them at least appropriate for opportunistic
encryption.

Exchanging Fingerprints in Person

The most secure way to find a person’s key is to get it from that person di-
rectly. If a physical meeting is possible, this can be done by exchanging fin-
gerprints in person. At least in the business world, the cost of this exchange
can be driven to zero: because exchanging business cards is a common
practice in this world, adding your fingerprint to your business card makes
securely exchange fingerprints a free byproduct of a well-established ritual.

Having a fingerprint on a business card is not quite enough to use it:
it still needs to be entered into the system. The key discovery wizard can
make this process easier by suggesting possible matches based on what the
user has entered so far. (Possible matches can be found by querying a key
server.)

We recommend having the user enter at least 64-bits worth of the fin-
gerprint before enabling auto completion to ensure that the user checked a
minimal amount of the fingerprint. For instance, it is possible to create a
key with a specific 32-bit key ID in just a few seconds on modern desktop
computers [11].

If the email address is known (and it is probably reasonable to first ask
the user to specify a contact if this is not clear from the context), and there
is at least one matching key, an alternative approach is to show a series
of buttons with fragments of the matching fingerprints, and have the user
select the matching fragments. This idea is illustrated below:

[8F17] [5200] [18A3]
[3DDA] [6396] [8723]
[AACB] [6388] [0BAD]

[None of the above]

24 CHAPTER 1. MUA INTEGRATION

The "none of the above" option is useful if the right key is not on the
key servers, for whatever reason.

A more user-friendly technique could use a webcam and OCR to read
in the fingerprint. From an implementation perspective, this is more de-
manding than scanning a QR code, for instance, but there are many fewer
people who add a QR code containing their fingerprint to their business
card than those who add their fingerprint. But, providing an option to dis-
play a public key using a QR code on screen can be helpful: someone could
scan it.

Picking up the Phone

Exchanging keys in person requires that people actually meet face to face.
This is often not practical. The next best alternative is to pick up the phone.
This approach is appropriate for all but those people who have the high-
est security concerns—those whose threat model includes a real-time voice
imitator. Although this has been technically feasible for years. It requires
precise timing that only a nation-state adversary could afford.

Again, assuming the email address is known, the button grid can be
used to facilitate transcription of the fingerprint.

Searching a Website

Calling someone is not always possible or desirable. In this case, it is some-
times possible to find the person’s key on her website. The caveats are that
even a relatively unsophisticated attacker can often own a website or spoof
it, and because there hasn’t traditionally been a standard place to publish
keys, the MUA can’t actually help the user find it.

In 2016, the GnuPG project published a new key discovery protocol
called the web key directory (WKD). WKD automates, and hardens this key
discovery process. The basic idea is that to find romeo@posteo.de ’s key,
Juliet looks for the key associated with romeo@posteo.de in a database
on posteo.de [12]. This protocol relies on the security of TLS, and the
mail provider. The mail provider can currently be held in check by peri-
odically auditing the database, e.g., periodically fetching your own key via
Tor and making sure it hasn’t been replaced. Eventually, something like
certificate transparency [13] could be added to catch abuse or detect things
like national security letters. The reliance on TLS and its centralized infras-

1.6. KEY MANAGEMENT 25

tructure goes against the philosophy of OpenPGP, but it is acceptable for
people whose threat model is limited to privacy violations, and phishing
excursions.

Currently, the only commercial mail provider that supports WKD is
Posteo, but, as of 2017, there are discussions underway with other mail
providers to add support for this feature.

Searching Key Servers

A seemingly convenient way to find someone’s key is to search for it us-
ing that person’s email address on a public key server. Unfortunately, this
method has very bad security properties: anyone can upload a key to a key
server with any user ID. It is trivial to forge a user ID. In fact, in 2014, all
known keys were cloned with identical short key IDs [11]. But, even if you
are only interested in the privacy aspects of encryption, the key servers are
a bad place to look for keys. Because many people forget their passphrase
or forget to migrate their key to a new computer, the key servers are littered
with seemingly valid keys that are practically unusable. Since someone
searching the key servers doesn’t know what key is correct, these people of-
ten get emails that they can’t decrypt. This is annoying, and causes people
to avoid encryption. Consequently, if a MUA decides to provide support
for looking up keys by their user ID, we strongly advise adding a promi-
nent warning about the possible problems. Further, if this approach must
be used, it is better to encrypt to all matching keys. When the recipient
replies, it is then possible to narrow down the set of potential keys based
on the signature or the PK-ESK packets—assuming there was no man in
the middle attack.

Note: these problems don’t mean that key servers are completely use-
less. Far from it. The problem with key servers is that user IDs are not
authoritative. But, if you have already verified someone’s key, then key
servers are the perfect place to get any updates (e.g., new signatures, re-
vocation certificates, etc.), because cryptography can be used to determine
whether the information really belongs to the key in question.

Exploiting Context and Hints

There are two main places where context can be used to discover poten-
tially useful keys: a signed message indicates what key was used to sign

26 CHAPTER 1. MUA INTEGRATION

it, and an encrypted message usually includes the key IDs of the sender
and other recipients in the PK-ESK packets. Emails also sometimes include
hints about the right keys to use. For instance, some people attach either
their key to the emails that they send (pEp does this by default), or the keys
of all recipients in order to make it easier for people to reply in a multi-party
discuss. Another hint can sometimes be found among a mail’s headers: the
OpenPGP header allows the sender to advertise a key [8].

In theory, there is no reason to not import these keys. Simply importing
a key will not cause it to be considered verified: whether a key is considered
to be verified, is determined exclusively by the trust model, not whether
it happens to be available locally. But, having what is probably the right
key available locally is useful for opportunistic encryption. And, used in
conjunction with the TOFU trust model, it is even possible to bootstrap
some trust over time.

Unfortunately, in practice there are two important issues with harvest-
ing keys.

The first issue is that automatically fetching keys via the network can
be used as a back channel. A sophisticated attacker could create a new key
for each message. When a user fetches the key, the attacker can potentially
learn not only that the user opened the message, but also the user’s IP ad-
dress. This attack can be mitigated by routing this type of traffic via Tor (to
do this, Tor must be installed and GnuPG configured to use it by adding
use-tor to dirmngr.conf). Using Tor not only hides the user’s IP ad-
dress, but also requires the attacker to actually control the user’s preferred
key servers to observe the fetch. This is only feasible by an adversary with
a lot of resources.

Even if automatically fetching keys is disabled, the MUA can still har-
vest this information, and save it in a local database. Then when the user
explicitly searches for the key associated with an email address, say, the
hints can be exploited.

The second issue is that GnuPG doesn’t handle very large key rings
(those with thousands of keys) very well. This manifests itself in two
ways. It shows up as longer random access times: gpg does a linear scan
of the key ring the first time it is accessed. Also, GnuPG’s trust calcula-
tions are done on demand when gpg starts. These calculations can take
minutes on large key rings. And, they are done whenever a new key
or signature is imported, or a key expires or is revoked. When harvest-
ing keys, this can happen very often. Happily, the trust calculations can

1.6. KEY MANAGEMENT 27

be deferred by setting no-auto-check-trustdb in gpg.conf and then
running gpg --check-trustdb periodically, e.g., from something like
cron. But obviously, this means the trust model may not be completely up
to date. However, the only long-term fix is to improve the way that keys
are stored on disk.

Note: gpg can automatically fetch keys needed for verifying signa-
tures by setting the auto-key-retrieve option in gpg.conf, and for
encrypting messages by setting the auto-key-locate option. These op-
tions have the disadvantage that they can potentially block the gpg process
for a relatively long time. Consequently, it is often more appropriate to at-
tempt to fetch the key in the background. In the verification case, the mes-
sage can be rerendered if the key becomes available. And, in the encryp-
tion case, a key should be located in the background when the recipient is
added, not when the message is sent.

Taking Advantage of Trusted Introducers

Designating someone as a trusted introducer means that the user trusts
that person to correctly verify others. Since friends of friends are likely to
be friends as well, it makes sense to proactively fetch any keys that trusted
introducers have signed.

gpg does not do this itself. And, unfortunately, the key servers do not
provide a mechanism to find all keys signed by a particular key. But, since
verification is usually mutual, it is possible to approximate this by fetch-
ing all keys that signed a trusted introducer’s key. The MUA can do this
periodically in the background.

1.6.2 Key Verification

Key verification is essential to the security of the system. Although peo-
ple who are primarily interested in preserving their privacy will not spend
much time on this task, it is essential that the key verification support is
robust for those who depend on it for its security properties.

This requirement first means that it should be easy to start the key ver-
ification wizard in appropriate contexts. For instance, when the user adds
a recipient to an email, as explained above, an icon should be displayed
showing whether there is a key associated with the contact, and, if so, the
degree to which the key is considered verified. Clicking on the icon should

28 CHAPTER 1. MUA INTEGRATION

allow the user to verify the key.
When the key verification wizard is started, it should not just prompt

the user to check the fingerprint, but actually guide the user through the
different ways to obtain a fingerprint. For instance, the following is a bad
idea:

Certify this key?

8F17 7771 18A3 3DDA 9BA4 8E62 AACB 3243 6300 52D9

[Ok] [Cancel]

Instead, the key verification wizard should ask the user how she wants
to confirm the key: using a business card or other printout, or via phone.
This approach educates the user without being patronizing: the user learns
how to verify a fingerprint, and that it is not okay to just click verify without
actually verifying the key.

To prevent the user from simply clicking okay without checking the
fingerprint, we recommend requiring that the user enter at least part of
the fingerprint. This can be done by using the buttons with the fingerprint
fragments, as described above.

Ownertrust

It is strongly recommended that an option to set a key’s ownertrust be
well hidden relative to the key verification option. In fact, it should only
be possible to set the ownertrust if the key in question is already fully
verified (e.g., directly signed). Also, even though there are a few rare cases
where it makes sense, it shouldn’t be possible to set a key to be ultimately
trusted if no secret key material is available.

When the ownertrust option is shown, it must be well explained that
this option is not only about trusting the person, but also trusting how she
verifies keys. For instance, I might trust my best friend when he introduces
me to people in the physical world, but without understanding how he ver-
ifies keys (does he just click on yes to make the padlock green?), I probably
should not set him as a trusted introducer. In practice, the latter is gener-
ally much more difficult for people to judge, because they don’t understand
the process very well themselves, and, given how hard it is to get people

1.6. KEY MANAGEMENT 29

to exchange fingerprints, it is unlikely that we will ever convince them to
discuss their security practices.

Publishing Signatures

The key verification wizard should provide an option to publish the sig-
nature. This should be accompanied by an explanation of what this means
and why this is useful (people who trust you won’t need to manually verify
this fingerprint).

It is also reasonable to provide an option to make a trusted signature
instead of a simple certification. Again, this requires an explanation. This
option should probably only be hidden unless expert mode is enabled.

1.6.3 TOFU Conflict Resolution

Like the web of trust, TOFU is a trust model. The major difference between
the two is that the web of trust provides strong guarantees, but requires
a lot of upfront verification work whereas TOFU builds up trust slowly
over time and is only secure in an asymptotic sense, but requires little user
support. The tofu+pgp trust model should be the default for users with
low security requirements. For backwards compatibility reasons, TOFU
has not been made the default in GnuPG.

Normally, the user only needs to interact with the TOFU trust model to
resolve conflicts—when multiple valid keys have the same email address.
A conflict is a strong sign that a man-in-the-middle attack is underway.
But, it can also just be because the user replaced a key that she could no
longer access or revoke. The only way to resolve this is by asking the user
to verify the key. (When creating a new key, a conflict can be avoided by
either promptly revoking the old one or cross signing the two keys.)

When the user starts the conflict resolution wizard, the wizard should
explain what a conflict is, show the conflicting keys and their statistics, and
explain how to resolve the problem (ideally, the user should call the contact
to verify the fingerprint). Because the user might not be able to resolve the
conflict immediately, it is better to provide a resolve later option, which is
the default, rather than have the user simply accept the key without vali-
dating it.

Note: just because a key has a lot of past usage does not mean that it
is the right key: the man in the middle might just have failed to intercept

30 CHAPTER 1. MUA INTEGRATION

the most recent message. Likewise, the new key is not necessarily the right
one: the man in the middle might just have started the attack.

1.6.4 Address Book Integration

A key ring is effectively a backwards address book: instead of names be-
ing the primary keys, and OpenPGP keys being associated with contacts,
a key ring reverses this. This unusual arrangement can cause novice users
significant confusion. As such, it is better to avoid the key ring as much as
possible, and instead directly integrate keys into the user’s address book.

If the address book supports identities with multiple email addresses,
then it should be possible to associate each email address with a different
key. Also, it should be possible to force messages sent to a particular contact
to be encrypted to multiple keys. This is useful in the case where an email
address acts as an exploder.

It is also useful to keep track of users who appear to use GnuPG. A re-
cent encrypted or signed email is the best indicator, but the presence of the
OpenPGP mail header is also an excellent hint. The presence of a key with
the user’s email address is, however, not sufficient proof that the user can
use GnuPG. This functionality can also be exposed as an option: "always
encrypt to this user."

Bibliography

[1] V. Dukhovni. Opportunistic Security: Some Protection Most of the
Time. RFC 7435, RFC Editor, December 2014. https://www.
rfc-editor.org/rfc/rfc7435.txt.

[2] Holger P. Krekel, Danial Kahn Gillmor, et al. Autocrypt level 1.
https://autocrypt.readthedocs.io/en/latest/.

[3] Rainer Böhme and Stefan Köpsell. Trained to accept?: A field exper-
iment on consent dialogs. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’10, pages 2403–2406, New
York, NY, USA, 2010. ACM.

[4] Rainer Böhme and Jens Grossklags. The security cost of cheap user in-
teraction. In Proceedings of the 2011 Workshop on New Security Paradigms
Workshop, NSPW ’11, pages 67–82, New York, NY, USA, 2011. ACM.

[5] Daniel Kahn Gillmor. Openpgp user id comments considered
harmful. https://debian-administration.org/users/dkg/
weblog/97, May 2013.

[6] Damien Giry. Keylength - cryptographic key length recommendation.
https://www.keylength.com/. Last accessed: July 25, 2017.

[7] Bruce Schneier. NSA surveillance: A guide to staying se-
cure. https://www.theguardian.com/world/2013/sep/05/
nsa-how-to-remain-secure-surveillance, September 2013.

[8] Atom Smasher and Simon Josefsson. The "OpenPGP"
mail and news header field. Internet-Draft draft-
josefsson-openpgp-mailnews-header-07, IETF Secretariat,
August 2014. https://tools.ietf.org/html/
draft-josefsson-openpgp-mailnews-header-07.

31

https://www.rfc-editor.org/rfc/rfc7435.txt
https://www.rfc-editor.org/rfc/rfc7435.txt
https://autocrypt.readthedocs.io/en/latest/
https://debian-administration.org/users/dkg/weblog/97
https://debian-administration.org/users/dkg/weblog/97
https://www.keylength.com/
https://www.theguardian.com/world/2013/sep/05/nsa-how-to-remain-secure-surveillance
https://www.theguardian.com/world/2013/sep/05/nsa-how-to-remain-secure-surveillance
https://tools.ietf.org/html/draft-josefsson-openpgp-mailnews-header-07
https://tools.ietf.org/html/draft-josefsson-openpgp-mailnews-header-07

32 BIBLIOGRAPHY

[9] mozilla support. How do i tell if my connection to a web-
site is secure? https://support.mozilla.org/en-US/
kb/how-do-i-tell-if-my-connection-is-secure. Last ac-
cessed: July 23, 2017.

[10] Daniel Kahn Gillmor et al. Memory hole. http://modernpgp.org/
memoryhole/, https://github.com/ModernPGP/memoryhole.
Last accessed: July 23, 2017.

[11] Richard Klafter and Eric Swanson. Evil 32: Check your gpg
fingerprints. https://evil32.com/, https://www.defcon.
org/html/defcon-22/dc-22-speakers.html#Klafter, Au-
gust 2014. Last accessed: July 28, 2017.

[12] Werner Koch. OpenPGP Web Key Service. Internet-
Draft draft-koch-openpgp-webkey-service-02, IETF Secre-
tariat, October 2016. https://tools.ietf.org/id/
draft-koch-openpgp-webkey-service-02.txt.

[13] Ben Laurie, Adan Langley, and Emilia Kasper. Certifi-
cate Transparency. RFC 6962, RFC Editor, June 2013.
https://www.rfc-editor.org/rfc/rfc6962.txt, https:
//www.certificate-transparency.org/.

https://support.mozilla.org/en-US/kb/how-do-i-tell-if-my-connection-is-secure
https://support.mozilla.org/en-US/kb/how-do-i-tell-if-my-connection-is-secure
http://modernpgp.org/memoryhole/
http://modernpgp.org/memoryhole/
https://github.com/ModernPGP/memoryhole
https://evil32.com/
https://www.defcon.org/html/defcon-22/dc-22-speakers.html#Klafter
https://www.defcon.org/html/defcon-22/dc-22-speakers.html#Klafter
https://tools.ietf.org/id/draft-koch-openpgp-webkey-service-02.txt
https://tools.ietf.org/id/draft-koch-openpgp-webkey-service-02.txt
https://www.rfc-editor.org/rfc/rfc6962.txt
https://www.certificate-transparency.org/
https://www.certificate-transparency.org/

	I Main Matter
	MUA Integration
	Integration
	Key Creation
	Revocation Certificate

	Expiration
	Sending Mail
	Encryption Keys
	BCC Recipients
	Saving Drafts
	Sent Mails
	Attaching Keys

	Reading Mail
	Verifying Messages
	Multi-part Emails
	Unencrypted Cache

	Key Management
	Key Discovery
	Key Verification
	TOFU Conflict Resolution
	Address Book Integration

