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Chapter 1

OpenPGP

GnuPG is an implementation of OpenPGP, an encryption standard pub-
lished by the Internet Engineering Task Force (IETF). The IETF’s main ac-
tivity is the development and promotion of standards related to the Inter-
net. Since its formation in 1986, the IETF has standardized many ubiqui-
tous Internet protocols including the HyperText Transfer Protocol (HTTP),
and the Transport Layer Security (TLS) protocol. Each standard is managed
by a working group, and anyone can participate by joining the appropriate
mailing list. The working group responsible for OpenPGP is fittingly called
The OpenPGP Working Group.

OpenPGP consists of three main parts. First, OpenPGP specifies a col-
lection of cryptographic algorithms for encrypting and decrypting data,
generating and verifying digital signatures, and deriving keys from pass-
words (so-called key derivication functions or KDFs). These are built on
top of more basic cryptographic building blocks like SHA-1 (a hash algo-
rithm), AES (a symmetric cipher), and RSA (an asymmetric cipher, which
is also known as a public-key algorithm). For the most part, the specifi-
cation does not define these algorithms; it simply says which algorithms
should be used where and how to use them. Second, OpenPGP defines a
packet-based message format. This format is used not only for exchang-
ing encrypted messages, but also for transferring keys and key meta-data.
Finally, OpenPGP includes functionality to help manage keys. This func-
tionality includes the ability to revoke a key, and to sign keys.

The first version of the OpenPGP protocol was published in 1996 as
RFC 1991. (Although, at that point it was still known as the PGP prototcol.)
Since then, the protocol has undergone two major revisions. The most re-
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8 CHAPTER 1. OPENPGP

cent version was published in 2007 as RFC 4880. In 2015, the OpenPGP
community again reformed the OpenPGP working group to update the
specification [1].

The major goals for the next version are: the deprecation of some old
cryptographic algorithms like SHA-1, the introduction of some new cryp-
tographic algorithms based on elliptic curves, the addition of modern mes-
sage integrity protection in the form of something like Authenticated En-
cryption with Associated Data (AEAD), and an updated fingerprint format.

From an application programmer or user’s perspective, the working
group is not considering any major changes to the existing functionality;
they are primarily tightening the standard’s security and cleaning up a few
issues. This is true even of OpenPGP’s use of SHA-1, which, although
SHA-1 has many flaws, is still considered safe in the way that OpenPGP
uses it. That is, the changes are mostly to proactively—not reactively—
address weaknesses. In the words of the cryptographer Peter Gutmann,
"OpenPGP is still too good enough, there’s lots of things there that you can
nitpick but nothing really fatal, or even close to fatal" [2].

1.1 Data at Rest

OpenPGP is used to protect both data at rest as well as data in motion.
Whereas data at rest refers to data that is stored, e.g., on a hard drive, data
in motion refers to data that is transferred, e.g., via HTTP. Thus, an encryp-
tion scheme that only protects data in motion, such as TLS, removes the
encryption on receipt; the data is only protected on the wire. Another way
to think about the difference between data at rest and data in motion is that
encryption that protects data at rest protects it in time and space whereas
encryption that protects data in motion only protects it in space. Yet an-
other way to think about the difference is that data at rest is to the tar or
zip tools as data in motion is to HTTP or XMPP.

The decision to protect not only data in motion, but also data at rest
using the same scheme significantly constrains the solution space. In par-
ticular, because data at rest may be accessed asynchronously with respect
to the encryption, there is no possibility to negociate parameters on the fly.

Consider an encrypted backup. When you encrypt the data, you can
only use the strongest encryption that is available at the time of the encryp-
tion. When you access the data 10 years later, your implementation needs
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to support that now old encryption algorithm; there is no way to go back
in time and say to your former self, "could you use this implementation
instead?"

An additional consequence is that upgrading the cryptography be-
comes very difficult. It is not possible to completely deprecate old algo-
rithms, because old messages (like our backup) still need to be decrypted.
Similarly, since people continue to use old software, we often cannot use
the latest and greatest encryption scheme, because they might not be able
to decrypt the data!

Another result of this decision to protect data at rest is that enabling for-
ward secrecy is not possible. Forward secrecy is an oft-lauded encryption
property, which prevents old encrypted messages from being decrypted if
the private key material is somehow compromised. Forward secrecy works
by mutating the key material in time. This scheme is fine if you never need
to decrypt old messages (as is typically the case for data transferred via
HTTPS, say), but doesn’t work at all for data at rest: if you want to decrypt
some data a week later, nevermind 10 years later, then you won’t be able to
if you’ve destroyed the private key material needed to decrypt it!

Perfect secrecy becomes even more complicated when a user has mul-
tiple devices, and all devices should be able to decrypt all messages.
OpenPGP doesn’t require that those devices somehow synchronize their
state after the private key is copied. But, some type of synchronization is
necessary for forward secrecy.

This raises the question: why have a single algorithm for both data in
motion and data at rest? The reason is that OpenPGP messages are often
not stored on a trusted host or even processed on a trusted host before being
stored. Consider email. Email is normally stored on a mail server. Even
after the mail is read, it remains on the mail server so that it can be read
later—potentially years later—on a different device. Thus, even assuming
that we could harden the security of the transport layer, it is not clear that
when the data is on a mail server, it is any less vulnerable than when it
is on the wire. In fact, data breaches at huge companies entrusted with
highly personal information from millions or even billions of users, such as
Yahoo! and Adult Friend Finder, are evidence that this is not the case.
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1.2 Unbuffered Message Processing

OpenPGP is designed to allow unbuffered message processing. This is par-
tially achieved by mandating that message packets be sorted topologically.
That is, if a packet has a dependency, that dependency precedes it in the
message.

This property is important for several reasons. First, it allows an
OpenPGP implementation to run on memory constrainted systems while
being confident that the implementation can in practice process arbitrarily
large messages. Second, it ensures that streaming tools can be used, e.g.,
something like ... | gpg -e -r key | ssh .... Finally, this prop-
erty helps avoid some denial of service attacks, which might otherwise be
possible by crafting a malicious message.

In practice, there are some limitations to the degree to which buffering
can be avoided. Consider a pipeline in which a message is verified, and the
output of the message is somehow processed. Because the OpenPGP im-
plementation requires the whole message to verify it, to process this mes-
sage in a streaming fashion, the OpenPGP implementation has to output
the data before it has been verified. Now, if the consumer can’t process
the output in a way that can be reverted in the case of a validation failure,
the consumer must first buffer the data. But, even if it is possible for the
consumer to recover from a validation failure, it’s probably error prone if
only because code on an error path is rarely tested. Thus, although the
OpenPGP implementation could avoid buffering data in this situation, it
has merely shifted the burden.

Now, there are some more advanced cryptographic constructs, such as
hash chaining, that make it possible to verify the data bit-by-bit. These tech-
niques would help ensure that the consumer only processes verified data,
which is an improvement over the status quo. But, they don’t completely
solve the problem, because they can’t protect against message truncation.

1.3 OpenPGP Messages

An OpenPGP message is basically a sequences of packets. OpenPGP de-
fines 17 different packet types that are used to not only encrypt and sign
messages, but also to transfer keys and key signatures or certifications,
which are used in the web of trust. The format is extensible, and this has
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already been used to add new features.
An example of a packet type is the symmetrically encrypted data (SED)

packet. A SED packet contains data that has been encrypted using a sym-
metric algorithm, such as AES. The contents of the packet are zero or more
OpenPGP packets. That is, OpenPGP messages are nested; a SED packet is
a container. Typically, a SED contains either a signature packet or a com-
pressed data packet, which in turns holds a literal data packet, but the spec-
ification doesn’t impose any limitations.

This flexibility in message composition is referred to as agility. It has
both advantages and disadvantages.

A useful advantage that this flexibility offers is that the format can be
used in unforeseen situations. For instance, the web key directory (WKD)
uses the non-standard sign+encrypt+sign pattern to facilitate spam detec-
tion prior to decryption.

Two important disadvantages of this flexibility are that parsing OpenPGP
messages is more complicated, and assigning meaning to unusual struc-
tures can be difficult. As an example of the latter, consider a message with
two literal data packets, the first of which is signed. Assuming the sig-
nature is valid, should an implementation report that the message is valid?
Probably not. The second part could have been forged. Alternatively a mail
program could show both parts and indicate that only the first part is au-
thentic. But, this requires educating the user to understand these nuances.
Unfortunately educating users is known to be extremely difficult.

1.4 Encryption

Most lay people and even many technical people assume that encryption
includes both an integrity check and authentication. In reality, encryption
by itself provides neither. This assumption perhaps arises due to condition-
ing from web browsers that not only conflate the two concepts, but treat a
connection secured with a self-signed certificate (which provides encryp-
tion, but not authentication), worse than those that use neither encryption
nor authentication. Additionally, in recent years, the term end-to-end en-
cryption has entered the mainstream. Although authentication is as impor-
tant as encryption in such systems, only encryption is mentioned. Be that
as it may, in OpenPGP, encryption and signing are separate, independent
operations.
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1.4.1 Hybrid Encryption

OpenPGP is a hybrid cryptosystem. A hybrid cryptosystem first encrypts
data using a symmetric encryption algorithm like AES with a random so-
called session key, and then encrypts the session key using the recipient’s
public key. The result is stored in a so-call public-key encrypted session key
(PK-ESK) packet.

There are two important reasons for doing this as well as several addi-
tional advantages.

First, public key encryption is thousands of times slower than symmet-
ric encryption. Since a session key is just a single block of data (which is
N bits for an N bit RSA key), but the data to encrypt could be megabytes or
even gigabytes large, this saves a lot of processing power.

Second, it is not unusual to encrypt a message to multiple recipients.
The most obvious example of this is in the context of email where an en-
crypted email is sent to multiple people. But even in other contexts, having
multiple recipients is not unusual. Specifically, when encrypting data to an-
other party, most programs will also encrypt the data to the person doing
the encryption so that the data remains readable and auditable.

An advantage of this approach is that it is possible to do message-based
key escrow. Thus, a company wouldn’t need to have access to each em-
ployee’s private key, but whenever the employee decrypted an email, the
session key could automatically be reencrypted with a special escrow key.

Similarly, if law enforcement forces you to reveal the encryption key for
some messages, it is sufficient to provide the session keys for decrypting the
subpoenaed messages. If you had instead provided your private key, law
enforcement could read any message that had been encrypted to you. (In
GnuPG, you can extract the session key using the --show-session-key
option.)

Finally, using hybrid encryption, it is possible to encrypt to both public
keys and passwords. To encrypt a message using a password, OpenPGP
specifies a key derivation function (S2K), which is used to generate a sym-
metric key. (This is saved in a so-called symmetric-key encrypted session key
(SK-ESK) packet.) OpenPGP allows the symmetric key to be used directly
as the session key, but it can just as well be used to encrypt a session key.
In practice, this is primarily interesting to ensure that the sender is able to
later decrypt the contents of the message by also encrypting the session key
to her public key.
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1.4.2 Algorithm

Encryption in OpenPGP is a more or less standard hybrid encryption
scheme:

1. A random session key is generated.

2. For each recipient, the OpenPGP implementation encrypts the ses-
sion key using the recipient’s public key, and emits a public-key en-
crypted session key (PK-ESK) packet.

3. If the data should be encrypted using a password, the same thing is
done, but instead of emitted a PK-ESK packet, a session-key encrypted
session key (SK-ESK) packet is emitted.

4. Encrypt the actual data using the session key.

OpenPGP supports multiple symmetric encryption algorithms. To de-
termine which one to use, the OpenPGP implementation selects one from
the intersection of the recipients’ preferred algorithms. This information
isn’t negotiated in real time with the recipients (even when this might
in theory be possible), but is stored alongside the recipient’s public key
(specifically, in a user ID’s self-signature). Typically, this is just a list of
the algorithms that the OpenPGP implementation that generated the key
supports at the time the key was created, but it can be updated to reflect
changes in the implementation, and may be customized by expert users.
Since all implementations are required to at least support TripleDES, and it
appears implicitly at the end of the list, the intersection is never empty.

1.4.3 An Encrypted Message

To better understand how messages are laid out, the following example
shows the innards of an encrypted message. This output was created
using GnuPG’s --list-packets option. hot dump, which is part of
hOpenPGP, and pgpdump can do something similar.

$ echo ’Let us sojourn in Mantua!’ | \
> gpg --encrypt -r juliet.capulet@gnupg.net | \
> gpg --list-packets
gpg: encrypted with 2048-bit RSA key, ID C1A010A1D38C4BB8, created 2017-07-07
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"Juliet Capulet <juliet.capulet@gnupg.net>"
gpg: encrypted with 2048-bit RSA key, ID 5B905AF0423ABB52, created 2017-07-07

"Romeo Montague <romeo.montague@gnupg.net>"
# off=0 ctb=85 tag=1 hlen=3 plen=268
:pubkey enc packet: version 3, algo 1, keyid C1A010A1D38C4BB8
data: [2046 bits]
# off=271 ctb=85 tag=1 hlen=3 plen=268
:pubkey enc packet: version 3, algo 1, keyid 5B905AF0423ABB52
data: [2046 bits]
# off=542 ctb=d2 tag=18 hlen=2 plen=85 new-ctb
:encrypted data packet:
length: 85
mdc_method: 2
# off=563 ctb=a3 tag=8 hlen=1 plen=0 indeterminate
:compressed packet: algo=2
# off=565 ctb=cb tag=11 hlen=2 plen=32 new-ctb
:literal data packet:
mode b (62), created 1499445579, name="",
raw data: 26 bytes

The example shows a message that Romeo encrypted to Juliet. (Due to
limitations of the OpenPGP format—OpenPGP only supports timestamps
between 1970 and 2106—Romeo forward dated the creation time of his
key.) The first thing that we notice is that even though Romeo only spec-
ified a single recipient (using the -r option), the message is encrypted to
two keys: his and Juliet’s. This is because Romeo has the encrypt-to op-
tion set in his gpg.conf file so that he can always read messages that he
encrypts to someone else.

Packet Metadata

After listing the recipients, gpg outputs each packet. Each packet starts
with a line preceded by a #. This line shows some meta-data and the
packet’s header. Specifically, off indicates the offset of the packet within
the stream (this may not be accurate if there are compressed packets); ctb
(Content Tag Byte) includes the type of the packet, and some information
about the length of the packet (if this is a new format packet, then new-ctb
will appear towards the end of the line); tag is the type of the packet as ex-



1.4. ENCRYPTION 15

tracted from the ctb; and, hlen and plen are the header and body lengths,
respectively.

Sometimes the length of a packet is not known apriori. In this case,
plen will be 0 and indeterminate or partial will appear towards the
end of the line. This can occur when the data is streamed. indeterminate
means that all data until the end of the message belongs to this packet;
partial means the packet uses a chunked encoding method to encode
the data. The mechanism is similar to HTTP’s chunked transfer encoding
method. These encoding schemes are essential for supporting unbuffered
operations. See Section 4.2.2.4 of RFC 4880 for more details.

The PK-ESK Packets

The first two packets in the message are PK-ESK packets. Each of these
holds the session key encrypted to a recipient. A PK-ESK packet also in-
cludes the 64-bit key ID of key that the session key was encrypt to.

If the key ID wasn’t included, then a recipient wouldn’t know whether
a given PK-ESK packet is encrypted with her or someone else’s key and
she would just have to try to decrypt them one by one. The obvious conse-
quence is that CPU cycles could be wasted. But, the more important reason
for avoiding a decryption attempt is that the user might have to unlock
multiple private keys. This can seriously impact an application’s usability.

Avoiding this UX annoyance by including the key ID in the PK-ESK has
a cost: it leaks meta-data. In practice, however, this information is exposed
in other places, e.g., at the SMTP level. Nevertheless, OpenPGP provides a
mechanism to hide this meta-data by setting the key ID to 0, which means
the key ID is speculative. Such key IDs are also referred to as wild card key
IDs.

A speculative key ID can be set in GnuPG by either specifying --throw-keyids
to clear the key ID field for all recipients, or --hidden-recipient in
place of --recipient to clear the key ID field for a particular recipient.

The Encrypted Data Packet

Immediately following the PK-ESK packets is an encrypted data packet.
This ordering is mandatory: it ensures that buffering is not required, be-
cause the key needed to decrypt the packet is stored prior to the data that
it decrypts. As already mentioned, an encrypted data packet is a container,



16 CHAPTER 1. OPENPGP

which contains 0 or more OpenPGP packets. This is not obvious from the
output of the --list-packets command, because it doesn’t show the
message’s tree structure. In this case, as is usually the case, the encrypted
data packet contains a single packet.

In OpenPGP, there are actually two types of encrypted data pack-
ets: Symmetrically Encrypted Data (SED) packets and Symmetrically En-
crypted Integrity Protected data (SEIP) packets. Although the former are
technically allowed by the standard, they are deprecated in practice due
to security concerns. For instance, it is possible to conduct an oracle at-
tack [3], and message extension and deletion attacks are also possible.
Consequently, when GnuPG encounters such a packet, it emits a warning.
GnuPG itself will not emit an encrypted packet without integrity protec-
tion.

We can see that the encrypted data packet includes integrity protec-
tion based on the packet’s tag (18 instead of 9), and the presence of the
mdc_method field in the above output.

1. Modification Detection Codes

MDC stands for Modification Detection Code. Like a message au-
thentication code (MAC), an MDC can verify a message’s integrity.
But, unlike a MAC, an MDC doesn’t say anything about its authen-
ticity. A common criticism leveled at the MDC system is that using an
HMAC would have been better since it is better understood. Ignoring
that the MDC system has proven to be sufficient for its intended pur-
pose, using an HMAC wasn’t really an option when the problem was
discussed: HMACs and MDCs were developed concurrently. (For
more historical notes, see [4].)

Prior to the introduction of the MDC system in RFC 4880, it was only
possible to reliably detect integrity violations using signatures. Signa-
tures, however, have the disadvantage that they expose the signer’s
identity, which is sometimes undesirable.

MDC works by computing the SHA-1 over the clear text and the head
of the MDC packet. (The rest of the MDC packet is the computed
hash.) That is, the hash effectively violates the packet framing. But,
this is exactly the behavior that is required to fully ensure the data’s
integrity: by also including the head of the MDC packet in the hash,
extension and removal attacks are mitigated. The following example
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illustrates how it works:

+------+-----------------------------------+-------------+
| SEIP | Data (e.g. a literal data packet) | MDC hash |
+------+-----------------------------------+-------------+

\ / ^
‘--------------------------------------’ |

SHA-1 -----------------------------’

The mdc_method parameter above seems to suggest that there are
multiple MDC methods. This is not the case, and was explicitly
avoided to prevent downgrade and cross-grade attacks; the value of
2 is simply SHA-1’s OpenPGP algorithm identifier. But even though
SHA-1 has since been broken, the relevant security properties for the
MDC system remain intact. Nevertheless, the working group is con-
sidering replacing the MDC system with one based on Authenticated
Encryption with Associated Data (AEAD), which has other useful
properties.

As a final note, the MDC packet is not shown in the output of
--list-packets. This is a technical limitation of GnuPG, which
has to do with the way the MDC packet is processed. But, given that
--list-packets is only a debugging interface and not intended for
programmatic use, this limitation is unlikely to be fixed.

Compressed Packet

The compressed packet is nested within the encrypted packet. RFC 4880
specifies three different compression algorithms—ZIP, ZLIB, and BZip2—but
notes that they are optional. But even though compression is not required,
the RFC recommends it as an operationally useful (even if not rigorous)
form of integrity protection. Unfortunately, it has been shown that com-
pressing data prior to encryption can enable a chosen plaintext attack as
demonstrated by the CRIME on TLS, and BREACH on HTTP attacks.

Literal Data

Nested within the compression packet is a literal data packet. A literal data
packet contains not only the cleartext, but also a bit of metadata. In partic-
ular, a literal packet includes a formatting field, which indicates whether
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the contents are binary data or text, and, in the latter case, whether the text
is believed to be UTF-8 formatted. The packet also contains a filename,
which is helpful when transferring a file, but is mostly ignored by GnuPG
in practice. And, it contains a timestamp. GnuPG sets the timestamp to the
current time when the packet is created (not the file’s mtime).

It is worth pointing out that when GnuPG is told to decrypt data
(gpg --decrypt), it doesn’t look for an encrypted message to decrypt,
but processes the message and tries to decrypt any encypted data that it
encounters. This subtle difference in behavior can be important, because if
GnuPG is told to decrypt a message with just a literal packet, it will simply
output the contents of the literal packet without warning the user that the
data was not actually encrypted. If a program uses the ability to decrypt a
message as an authentication check (e.g., in AutoCrypt’s Setup Message),
this behavior could lead to subtle attacks [5].

1.5 Signing

A signature provides cryptographic proof of both the signed data’s in-
tegrity and its authenticity—assuming the key used to sign the data is
trusted. That is, like a checksum, a signature can be used to make sure
that the data was not modified in transit. But unlike a checksum, a signa-
ture can also provide proof of the data’s origin (or at least, who signed off
on the message).

Note: the exact semantics of a signature are not defined by the standard.
This is done on purpose, and is viewed by the RFC editors as a feature, be-
cause, in the end, a signature’s meaning is determined by the actual human
users of the system—some will be more casual, and some will be more rig-
orous no matter what some standard says.

1.5.1 Multiple Signers

In OpenPGP, it is possible for a single message to include multiple signa-
tures created by different keys. This mechanism is useful when disparate
parties want to sign a document. For instance, multiple developers might
sign released software. Rather than providing each signature separately, it
is more useful to combine them into a single file.

In GnuPG, this can be done by specifying each of the keys on the com-
mand line. For instance:
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$ echo ’Good-bye cruel world!’ | gpg -s -u romeo -u juliet

A crippling disadvantage of this approach is that all keys must be avail-
able at the time that the signature is generated, which is rarely practical.

Although OpenPGP’s packetized message format makes combining
signatures relatively easy, GnuPG does not provide support for this. Never-
theless, in practice, writing an ad-hoc script is straightforward (some hints
are here: [6]). And, in the special case that the signatures in question are
detached signatures, combining them is actually trivial: they just need to be
concatenated together as shown below:

$ echo ’Romeo and Juliet forever!’ > note.txt
$ gpg --detach-sign -u romeo --output - note.txt > note.txt.romeo.sig
$ gpg --detach-sign -u juliet --output - note.txt > note.txt.juliet.sig
$ cat note.txt.romeo.sig note.txt.juliet.sig > note.txt.sig
$ gpg --verify note.txt.sig note.txt
gpg: Signature made Tue 11 Jul 2017 11:52:48 AM CEST
gpg: using RSA key D6636A9EB82A91E94DDEE5066B284A5BE2297415
gpg: issuer "romeo.montague@gnupg.net"
gpg: Good signature from "Romeo Montague <romeo.montague@gnupg.net>" [full]
gpg: Signature made Tue 11 Jul 2017 11:52:59 AM CEST
gpg: using RSA key E5156E507DCB8D63AC89E5334954FDC67A46B4C5
gpg: issuer "juliet.capulet@gnupg.net"
gpg: Good signature from "Juliet Capulet <juliet.capulet@gnupg.net>" [full]

In the above examples, the signatures are not nested. That is, they are
both only over the data, and one could remove either signature from the
OpenPGP message without impacting the validity of the other signature.

Sometimes, it can be useful to nest signatures. For instance, a notary
might want to not only notarize some document, but also the client’s sig-
nature over that document. OpenPGP also provides native support for this
type of signature. In fact, both types can be present in the same message.
GnuPG does not currently support nested signatures.

1.5.2 Algorithm

As in the encryption case, signing is a two-step process. First, the data to
be signed is hashed, and then the resulting hash is signed using public-
key cryptography. This two-step process is primarily motivated by perfor-
mance considerations.



20 CHAPTER 1. OPENPGP

The exact algorithm that is used is slightly different depending on
whether the signature should be inline or detached. We start by describ-
ing how an inline signature is created.

1. Emit a so-called One-Pass Signature (OPS) packet. An OPS packet con-
tains meta-data (what hash algorithm to use, etc.) as well as framing
information (specifically, whether the signature is nested or not).

2. Hash and emit the data to sign.

3. Emit a signature packet, which includes the computed hash and the
signature.

As its name and the implementation suggest, the OPS packet makes
it possible to both create a signature, and verify it without buffering any
data. Since detached signatures are separate from the main OpenPGP mes-
sage, and OPS packets are effectively redundant, to generate a detached
signature, we just skip the first step. A limitation of detached signatures is
that they are over the entire OpenPGP message. Thus, nesting them is not
possible.

1.5.3 Example

Using our above example with inline signatures, the resulting message has
the following packets:

$ echo ’Good-bye cruel world!’ \
> | gpg -s -u romeo -u juliet | gpg --list-packets
# off=0 ctb=a3 tag=8 hlen=1 plen=0 indeterminate
:compressed packet: algo=1
# off=2 ctb=90 tag=4 hlen=2 plen=13
:onepass_sig packet: keyid 4954FDC67A46B4C5
version 3, sigclass 0x00, digest 8, pubkey 1, last=0
# off=17 ctb=90 tag=4 hlen=2 plen=13
:onepass_sig packet: keyid 6B284A5BE2297415
version 3, sigclass 0x00, digest 8, pubkey 1, last=1
# off=32 ctb=cb tag=11 hlen=2 plen=28 new-ctb
:literal data packet:
mode b (62), created 1499772743, name="",
raw data: 22 bytes
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# off=62 ctb=89 tag=2 hlen=3 plen=333
:signature packet: algo 1, keyid 6B284A5BE2297415
version 4, created 1499772743, md5len 0, sigclass 0x00
digest algo 8, begin of digest 88 56
hashed subpkt 33 len 21 (issuer fpr v4 D6636A9EB82A91E94DDEE5066B284A5BE2297415)
hashed subpkt 2 len 4 (sig created 2017-07-11)
hashed subpkt 28 len 24 (signer’s user ID)
subpkt 16 len 8 (issuer key ID 6B284A5BE2297415)
data: [2048 bits]
# off=398 ctb=89 tag=2 hlen=3 plen=333
:signature packet: algo 1, keyid 4954FDC67A46B4C5
version 4, created 1499772743, md5len 0, sigclass 0x00
digest algo 8, begin of digest c5 e3
hashed subpkt 33 len 21 (issuer fpr v4 E5156E507DCB8D63AC89E5334954FDC67A46B4C5)
hashed subpkt 2 len 4 (sig created 2017-07-11)
hashed subpkt 28 len 24 (signer’s user ID)
subpkt 16 len 8 (issuer key ID 4954FDC67A46B4C5)
data: [2047 bits]

Compressed Packet

Again, we see that the message starts with a compression container. Since
the length of the data is not known apriori, the length is marked as
indeterminate, which means that the packet includes all of the data un-
til the end of the message.

One-Pass Signature Packets

The next two packets are OPS packets.
These packets include the hash algorithm that was used to generate

the signature. This information needs to be available beforehand so that
the signature can be verified in a streaming fashion. The hash algorithm,
which is also known as the message digest algorithm, is indicated by the
digest field in the output.

Another piece of information that is necessary to verify the data in a
streaming manner is how to interpret the data to sign. This is determined
by the signature’s class (sigclass). Normally, OPS packets are only used
with documents (as opposed to keys or user IDs, which are so small that
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buffering isn’t an issue). OpenPGP defines two types of documents: bi-
nary data and text data whose respective classes are 0 and 1. For binary
documents, the data is hashed as is; for text documents, the OpenPGP im-
plementation first converts line endings to <CR><LF> before hashing.

The OPS packets also include the signer’s key ID and the public key al-
gorithm used to generate the signature. This information is strictly speak-
ing redundant as it is also stored in the matching signature packet, but
it can help the implementation identify several common cases in which it
can’t verify the signature prior to actually computing the hash. Specifically,
the implementation can’t verify a signature if the signer’s public key is un-
available, or the public key algorithm used to compute the signature is not
supported (even if the hash algorithm is supported). In such cases, the im-
plementation can fail early, or just skip the hashing, which saves some CPU
cycles.

Finally, OPS packets include framing information. In GnuPG, this is
referred to as the last signature flag. In the above output, it is referred to
last. If last is 1, then the signature is over all of the following data up to
the OPS’s corresponding signature packet; if last is 0, then the signature
is not nested and is only over the data following the next OPS packet with
last equal to 1.

Given this definition of last, we see that the first signature in the above
example is not nested (last is 0), but the second is. Thus, both signatures
are over the data; the outer signature is not over the inner signature, just
the data.

To better understand how signatures nest, consider the following ex-
ample, which shows an OpenPGP message with three signatures. The first
three packets are OPS packets, the middle packet is a literal data packet,
and the last three packets are the OPS’ corresponding signature packets.

________________________________________________
,-----> / \

+-----------+-----------+-----------+------+---------+---------+---------+
| A, last=1 | B, last=0 | C, last=1 | Data | C’s sig | B’s sig | A’s sig |
+-----------+-----------+-----------+------+---------+---------+---------+

| ‘----> \____/
‘------------------^

Working our way in, we see that last is set for A’s signature. Thus,
A’s signature is over everything immediately following the OPS packet up



1.5. SIGNING 23

to the matching signature packet. That is, it is over not only the data, but
also over B and C’s signatures. In contrast, in B’s OPS packet, last is
clear. Thus, B’s signature is over everything following the next OPS packet
with last set to 1, i.e., everything follow C’s OPS packet, up to, but not
including, the signature packet matching C’s OPS packet. That is, like C’s
signature, B’s signature is only over the literal data packet, not the data
packet and C’s signature.

Literal Data

The literal data packet contains the document to be signed. Of course, if the
signatures are nested, then the signature may include other data as well.

Signature Packet

The last two packets are the signature packets that match the OPS packets
at the start of the message. Like braces in a programming language, the first
OPS packet matches the last signature packet, and the second OPS packet
matches the second to last signature packet.

Except for the nesting information, the signature packet includes every-
thing present in the OPS packet as well as some additional meta-data, and
the actual signature.

The additional meta-data usually includes a timestamp (the OpenPGP
Signature Creation Time subpacket), and the user ID that was used to make
the signature (the OpenPGP Issuer subpacket). There are several other
pieces of metadata that can be added, but they are not usually set in this
context.

The issuer is usually used by a mail user agent to make sure the alleged
sender matches the signer. For instance, Romeo might have verified his
father’s key, but his father might try to trick him by sending him an email
that appears to be from Juliet. Because he knows that Romeo always checks
a signature’s validity, he could just sign the message with his own key. If
the mail user agent only shows whether a signature is valid, then Romeo
might be tricked. Making sure the from header matches the issuer catches
this attack.
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1.6 Keys

As mentioned above, OpenPGP messages are not only used to transport
documents, but are also used to transport keys and key signatures.

In OpenPGP, a so-call key is a lot more than just a public and private
key pair. Modern OpenPGP keys normally include at least two key pairs
as well as a fair amount of meta-data.

1.6.1 Multiple Public and Private Key Pairs

OpenPGP supports multiple key pairs for several reasons.
First, although it is possible to use the same key pair for encryption

and signing, if you do, then the act of decrypting a message is equivalent
to signing it (and vice versa), which could be abused by an adversary. In
practice, this particular attack is prevented by the use of distinguishing
padding schemes. But, using separate keys avoids this problem and pre-
vents any issues that may be discovered in the future.

Second, having multiple keys makes it possible to largely separate iden-
tity from key lifetime. In particular, OpenPGP has the concept of primary
keys and subkeys. The primary key is used to identify the OpenPGP key.
That is, a key’s fingerprint is derived from this key, and is independent of
any subkeys. This makes it possible for a user to revoke individual subkeys
without changing her identity. For instance, each year you could generate
a new encryption and a new signing subkey, and revoke the old ones, and
there would be no need to create new business cards or even inform your
contacts that you have new keys, because, assuming their software is con-
figured to regularly refresh your key, their OpenPGP implementation will
automatically find the new subkeys since your primary key did not change.
In fact, this type of key rotation approximates forward secrecy [7].

To support an arbitrary number of keys, primary keys and subkeys are
marked with so-called capabilities. There are (perhaps surprisingly) four
capabilities:

1. Encryption

2. Signing

3. Certification

4. Authorization
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An encryption capable key can be used for encryption, and a signing
capable key can be used for signing documents. But, if a key does not have
the encryption capability, then it should not be used for encryption. The
certification capability indicates that a key can be used for signing keys (as
opposed to documents). Thus, since a subkey requires a signature to be
valid, only a certification-capable key can be used to create a new subkey.
Finally, the authorization capability is used for access control. This is pri-
marily useful for using an OpenPGP key with ssh.

It is entirely possible for a key to have multiple capabilities. As men-
tioned above, it is not advisable to use a key for both signing and encryp-
tion, but since mathematically certification is just signing, it is reasonable
to mark a key as both signing and certification capable.

Whether this is reasonable depends on how the user wants to manage
keys. For instance, if a signing-capable key is compromised, it is possi-
ble to recover without generating an entirely new OpenPGP key. But, if
a certification-capable key is compromised, then the attacker effectively
owns the identity, and the only way to recover is to completely revoke the
OpenPGP key and create a new one. This only works if users physically
separate the certification key from the signing key, e.g., by only storing the
certification key on an offline computer. Since most users don’t do this,
GnuPG defaults to making the primary key both certification capable and
signing capable.

An OpenPGP key can have multiple valid (i.e., not expired and not re-
voked) subkeys with the same capability. In this case, the RFC does not
specify which subkey should be used; it is up to the implementation.

If there are multiple encryption-capable keys, GnuPG uses the newest
valid subkey. But this is not the de facto standard. For instance, OpenKey-
chain encrypts a message to all valid encryption-capable keys.

The OpenKeychain behavior has the advantage that one can store dif-
ferent keys on different devices. Then if a particular device is compro-
mised, only the subkeys on that device need to be rotated. But, opera-
tionally, the advantages for encryption-capable subkeys are not that large,
since an encryption-capable key protects past traffic. That is, if an encryp-
tion key is compromised, all messages encrypted to it are compromised.
Thus, a message is compromised if any encryption key is compromised.
So, in this case, one might as well just use a single encryption key.

This line of logic does not apply to signing-capable keys. If a signing-
capable subkey is compromised, the attacker can forge messages. But, if
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the user has one signing-capable key per device and revokes just the single
signing-capable subkey that was compromised, then the attacker will be
thwarted and only signatures created using that key will fail to verify after
it has been revoked.

1.6.2 Self Signatures

As mentioned previously, an OpenPGP fingerprint is derived only from the
primary key, not the subkeys. This makes sense, since new subkeys can be
added at any time. Thus, some mechanism is needed to associate subkeys
with the corresponding primary key. Further, a mechanism is needed to as-
sociate meta-data with an OpenPGP key. Both of these problems are solved
using the same mechanism: self-signatures.

A self-signature is like a normal signature, but instead of being over a
document, the signature is over structured text, and it is stored alongside
the OpenPGP key. A self-signature can only be created (or rather, is only
honored if it was created) by a certification-capable key. Since the signature
can’t be forged, it effectively creates an unforgable binding between the
OpenPGP key and the data. Thus, to determine if a subkey really belongs
to a given OpenPGP key, it is sufficient to check whether there is a valid
self-signature.

Because OpenPGP packets can be combined in whatever way a user
wants, an attacker who controls a user’s network connection may not be
able to modify individual packets without detection, but can drop pack-
ets. Thus, if an attacker has compromised a user’s key, the user notices,
and revokes her key, she is still not safe if the attacker also controls the
network path, and filters out the revocation certificate thereby preventing
other users from learning that the key was compromised.

1.6.3 Example

The following example shows Romeo’s key. This key was created by
GnuPG using the default parameters. Thus, it has a primary key, which
is signing- and certification-capable, and a single subkey, which is encryp-
tion capable.

$ gpg --export romeo | gpg --list-packets
# off=0 ctb=99 tag=6 hlen=3 plen=269
:public key packet:
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version 4, algo 1, created 1499443140, expires 0
pkey[0]: [2048 bits]
pkey[1]: [17 bits]
keyid: 6B284A5BE2297415
# off=272 ctb=b4 tag=13 hlen=2 plen=41
:user ID packet: "Romeo Montague <romeo.montague@gnupg.net>"
# off=315 ctb=89 tag=2 hlen=3 plen=340
:signature packet: algo 1, keyid 6B284A5BE2297415
version 4, created 1499443140, md5len 0, sigclass 0x13
digest algo 8, begin of digest 71 f6
hashed subpkt 33 len 21 (issuer fpr v4 D6636A9EB82A91E94DDEE5066B284A5BE2297415)
hashed subpkt 2 len 4 (sig created 2017-07-07)
hashed subpkt 27 len 1 (key flags: 03)
hashed subpkt 9 len 4 (key expires after 2y0d0h0m)
hashed subpkt 11 len 4 (pref-sym-algos: 9 8 7 2)
hashed subpkt 21 len 5 (pref-hash-algos: 8 9 10 11 2)
hashed subpkt 22 len 3 (pref-zip-algos: 2 3 1)
hashed subpkt 30 len 1 (features: 01)
hashed subpkt 23 len 1 (keyserver preferences: 80)
subpkt 16 len 8 (issuer key ID 6B284A5BE2297415)
data: [2048 bits]
# off=658 ctb=b9 tag=14 hlen=3 plen=269
:public sub key packet:
version 4, algo 1, created 1499443140, expires 0
pkey[0]: [2048 bits]
pkey[1]: [17 bits]
keyid: 5B905AF0423ABB52
# off=930 ctb=89 tag=2 hlen=3 plen=310
:signature packet: algo 1, keyid 6B284A5BE2297415
version 4, created 1499443140, md5len 0, sigclass 0x18
digest algo 8, begin of digest 19 f8
hashed subpkt 33 len 21 (issuer fpr v4 D6636A9EB82A91E94DDEE5066B284A5BE2297415)
hashed subpkt 2 len 4 (sig created 2017-07-07)
hashed subpkt 27 len 1 (key flags: 0C)
subpkt 16 len 8 (issuer key ID 6B284A5BE2297415)
data: [2043 bits]
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Public Key Packet

The public key packet normally comes first. It just contains a minimum
amount of information: the public key algorithm (algo), the public key
parameters (pkey), the creation time (created), and the expiry time
(expires). Although the --list-packets output shows the key ID,
this is not included in the packet; it is shown as a matter of convenience.
Including it in the packet would be redundant, because it is derived from
the creation time and the public key parameters.

In the above listing, there is no self-signature for the public-key packet.
The parameters are, however, protected by the self-signature over each user
ID packet, which is over not only the user ID packet, but also the primary
key. It is possible to make signatures just over the primary key. But, this is
typically only used in the case of key revocation.

Not using a self-signature for the key means that meta-data like user
preferences needs to be stored someplace else. By convention, they are
stored in a user ID’s self-signature. Consequently, if you have multiple
user IDs, you could have multiple sets of conflicting preferences. This is
actually by design: the relevant preferences are determined by how the
key is addressed, which allows different sets of preferences for different
environments. So, if you have two user IDs, one for work, and one for
home, when someone uses your key to encrypt to your work email address,
the preferences are taken from the work user ID. If the caller just specifies
the key ID, then the preferences are taken from the so-called primary user
ID. (The primary user ID is the user ID with the primary user ID flag set in
its self-signature. If there are no user IDs that have this flag set or multiple
user IDs, then RFC 4880 recommends using the user ID with the newest
self-signature.) Thus, because it is reasonable to have different preferences
for different user IDs, if the intended user ID is known, it—and not the key
ID—should be used to address the key.

By convention, self-signatures immediately follow the packet that they
certify. As such, any direct key signatures would immediately follow the
public key prior to any user ID or subkey packets. In practice, this is not
always the case due to implementation bugs or malicious intent. Thus,
on import, GnuPG will attempt to fix any out-of-order packets. This can
involve some overhead, but this additional overhead is only incurred if the
packets are actually out of order.

When some meta-data is changed, a new self-signature is created. Since
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data that is publish can’t easily be deleted, OpenPGP treats the key as an
append-only log. The result is that a user ID packet, for instance, might
have multiple self signatures.

In general, if there are multiple self-signed packets for a given packet,
only the newest one is used. One important exception is for revocation cer-
tificates and any designated revoker settings: it is necessary to respect these
even if a later self signature would somehow override them, because this
capability could be used by an attacker to invalidate a revocation, which
would effectively make revocations of compromised keys impossible.

User ID Packet

User IDs are stored between the public key and any subkeys. In this exam-
ple, the key only contains a single user ID.

A user ID packet just contains a single value: a free-form string. By con-
vention (per the RFC), this string is an RFC 2822-style mailbox, i.e., a UTF-8
encoded string of the form Name <email@example.com> (Comment).

Normally, a user ID doesn’t require a comment, and, like Romeo’s
key, most keys don’t have one. Nevertheless, even though comments can
(rarely!) be useful for advanced users, it is recommended that most tools
not offer users the option to set it, because most people don’t understand
what they are for.

There are two main uses for comments: to distinguish security levels
and roles. Thus, if a user wants to have two OpenPGP keys associated
with a given email address, one for low-security communication, which
is stored directly on the device thereby allowing immediate decryption,
and one for high security communication, which is, say, stored on an air-
gapped computer and therefore may introduce a long delay if the user is
not near the air-gapped computer, comments along the lines of "day-to-day
key" and "high security key," respectively, might be appropriate. Similarly,
if a developer has a key that is only used for signing commits and releases,
a reasonable comment on that key could be "dist sig". Daniel Kahn Gill-
mor takes an even more conservative stance, and argues that even these
comments are probably unnecessary [8].

It is also possible to use an image as a user ID. In such cases, the image
is stored in a so-called user attribute packet. One problem with images
is that they can be fairly large. Since images like old signatures can’t be
deleted once they are published, and they are downloaded whenever a key
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is retrieved, it is currently recommended that images be limited to just a
few kilobytes of data.

Images can be useful since many people are able to more quickly as-
sociate a person with that person’s likeness than with her name. Thus, an
image could be shown in a Jabber client or a mail user agent. However,
this should probably only be done for validated keys to avoid suggesting
authenticity when there is no evidence thereof. Another possible use for
images is in a graphical depiction of a path in the web of trust.

User ID Self Signature

By convention, the user ID self-signature immediately follows the user ID.
In addition to binding the user ID to the primary key, it also contains ad-
ditional metadata. As noted above, there may be multiple self-signatures,
and normally only the newest is used.

The signature is self-describing. It includes the key that was used to
create the signature, the algorithm, etc. The sigclass subpacket is 0x13,
which means that this signature is over a user ID.

The signature includes a number of hashed subpackets. Hashed sub-
packets are effectively key-value pairs that are validated by the signature.
The OpenPGP specification includes 22 different subpackets including so-
called notation data, which can be used to store arbitrary data. (Notations
are describing towards the end of this chapter.)

In this example, there are 10 subpackets. Some of the subpackets
provide information about the signature itself. This is the case for the
issuer fpr, sig created and issuer key ID subpackets. Some of
them provide information about the primary key. This is the case for
the key flags, and key expires after subpackets. The key flags
subpacket is primarily used for indicating the primary key’s capabilities.
The key expires after subpacket indicates when the key expires. An
expiration can be extended by creating a new self-signature with a later ex-
piration time. Note: the expiration time is relative to the key’s—not the self-
signature’s—creation time. And, the remaining subpackets describe user
and implementation preferences. pref-sym-algos, pref-hash-algos,
and pref-zip-algos specify what symmetric, hash and compression al-
gorithms, respectively, the user’s OpenPGP implementation supports, and
the user wants when using this user ID. features describes what ad-
vanced features the OpenPGP implementation supports. Currently, there
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is only one flag defined, which indicates that the OpenPGP implementa-
tion supports the MDC system. And, keyserver preferences is a set
of flags indicating how the key server should handle the key.

With the exception of the issuer key ID, all of the subpackets are
prefixed with hashed. This indicates that this data is part of the signed
data. Subpackets that are not hashed are considered advisory, because an
attacker may modify them without detection in transit.

There is also a Preferred Key Server subpacket. But, to avoid leaking
metadata, GnuPG ignores this option by default.

Public Subkey Packet

The public subkey packets follow the user ID packets. Other than their
type, these packets are effectively identical to the public key packet.

Public Subkey Self Signature

Like user ID packets, a public subkey packet requires a self-signature to
validate the key and bind it to the primary key. Typically, a subkey packet
contains just a few pieces of meta-data, because preferences are stored in
user ID self signatures.

There are two minor differences, which are worth pointing out. First,
whereas the sigclass field for user ID is 0x13, the sigclass for public
subkeys is 0x18. Second, if the subkey is signing capable, then the self-
signature must also have a so-called back signature in an embedded signa-
ture subpacket created by the signing key over the primary key and the
subkey. Obviously, this back signature should not be created for an en-
cryption key based on the aforementioned attacks.

1.7 Key Signing

OpenPGP allows users to validate each other’s keys using signatures.
Thus, if Romeo is convinced that Juliet controls the key 0x4954FDC67A46B4C5,
then he could certify it (i.e., sign it) using his OpenPGP key. There are two
main reasons why Romeo would want to certify someone’s key.

First, a certification mechanism of this sort enables the OpenPGP imple-
mentation to determine whether a key is valid. This information is critical
when Romeo wants to verify a signed document. In that case, Romeo is
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not just interested in whether the signature is mathematically valid, and
the data has not be corrupted in transit, but he also wants to know whether
the signature was really created by Juliet. Unfortunately, there is no way
for computers to figure this out without some help from users. Likewise,
when Romeo sends an email to Juliet, he wants to be confident that he is
really using Juliet’s key. It is completely possible that Romeo could have a
key that allegedly belongs to Juliet without realizing it (anyone can create
a key with any user ID, and upload it to the key servers).

The other reason that a signature is useful is that it provides a mech-
anism for Romeo’s contacts to indirectly verify Juliet’s key. That is, when
Romeo shares this signature with others (e.g., by publishing it on a key
server), then people who trust him (and this is essential!) to validate other
people’s keys, i.e., to be a so-called trusted introducer, could use this signa-
ture to find a valid key for Juliet. The network induced on the signatures is
referred to as the web of trust although it would be more accurate to refer
to is as the web of verifications.

Unfortunately, publishing signatures has the unfortunate side-effect of
making the user’s social graph public. This can have grave implications
beyond the privacy concerns. For instance, it could be used to link a source
to a journalist.

1.7.1 Local Signatures

If a signature shouldn’t be published, it is possible to mark it as being un-
exportable. To do this, one would create a local signature. This is done in
GnuPG by using --lsign-key instead of --sign-key to sign the key. At
a technical level, this causes an Exportable Certification subpacket
to be included in the signature with the value of 0.

Unfortunately, using local signatures is not without problems: it is
possible to export local signatures and accidentally upload them to a key
server, and the key server implementations do not automatically strip local
signatures on import.

1.7.2 Confidence

When someone verifies a key, she doesn’t always have the same degree of
confidence that the verification is correct. For instance, when Romeo signs
Juliet’s key, he is almost certainly convinced that Juliet really controls the
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stated key. On the other hand, if Romeo is at the pub and meets Iago, and
he asks him to sign his key, Romeo is almost certainly less confident that
Iago controls the stated key. This is the case even if Iago shows him his
government issued identification papers. And, it is also the case if he sends
an encrypted email to the email address in Iago’s user ID, and receives a
signed reply with a shared secret code.

OpenPGP provides a mechanism for expressing different degrees of
confidence in the form of three confidence levels ranging from "the person
said she controls the key" to "I’m confident she controls the stated key" as
well as a generic, "no comment," level. Other than completely ignoring the
weakest certification level, this information is not included in web of trust
calculations by GnuPG. Thus, for all intents and purposes, it is just gratu-
itous meta-data. As such, it is better to always use a generic certification
level [9]. This is what GnuPG does by default.

1.7.3 Trusted Introducers

When signing a key, it is possible to indicate that the key holder should
be a trusted introducer. For instance, an organization may have a single
key, say pgp@company.com, that they use to sign all of their employees’
keys. If employees sign pgp@company.com using a trust signature, then
anyone who trusts, say, alice@company.com, will, as usual, consider
pgp@company.com to be not only verified, but, due to the trust signa-
ture, a trusted introducer. Consequently, that person will also consider any
keys that pgp@company.com signed to be verified, which, in this case, is
everyone in the company. The following example illustrates this idea:

juliet@ alice@ pgp@ bob
example -- tsign --> company -- tsign --> company -- sign --> @company
.org .com .com .com

In GnuPG, Juliet doesn’t actually have to use a trust signature to sign
alice@company.com’s key: she can just use a normal signature and then
set the ownertrust for alice@company.com appropriately.

Trust signatures are very powerful and can also be very dangerous. If
Romeo considers Juliet to be a trusted introducer, and Juliet has tsign ed
her father’s key, then any key that Juliet’s father signs will be considered
verified. Juliet’s father could abuse this fact to trick Romeo into trusting a
key that he forged for Juliet.
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Trust signatures can be constrained. For instance, in the above ex-
ample, Alice probably wants to limit the scope of her trust signature of
pgp@company.com’s key to just those user IDs associated with company.com.
To support this, OpenPGP allows a regular expression to be associated with
a trust signature.

A trust signature can also make not just immediate connections trusted,
but also indirect connections. This is extremely dangerous and proba-
bly only makes sense in very limited situations. For instance, in a very
large company, each department might have the equivalent of the above
pgp@company.com key, and there is a company-wide key that tsign s
each department’s key. In this case, Alice might sign the company-wide
key with a depth of 2 instead of 1. (When Alice uses a trust level of 1, she
means that anyone that the company verifies is considered verified. A trust
level of 0 is equivalent to a normal signature; it doesn’t create any trusted
introducers.)

In GnuPG, it is currently not easy to modify a signature. For instance
if you want to convert a normal signature into a trust signature, gpg will
complain that the key is already signed. To change a signature type or
modify a trust signature, it is first necessary to revoke the existing signature
using the revsig command in the --edit-key interface.

1.7.4 Non-Revocable Signatures

Occasionally, it can be useful to make a long-term commitment to a signa-
ture. This can be done by setting the non-revocable flag. In GnuPG, this is
done using the nrsign command in the --edit-key interface.

1.7.5 Example

The following example shows Juliet’s key including Romeo’s signature of
her key.

$ gpg --export juliet | gpg --list-packets
# off=0 ctb=99 tag=6 hlen=3 plen=269
:public key packet:
version 4, algo 1, created 1499443081, expires 0
pkey[0]: [2048 bits]
pkey[1]: [17 bits]
keyid: 4954FDC67A46B4C5
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# off=272 ctb=b4 tag=13 hlen=2 plen=41
:user ID packet: "Juliet Capulet <juliet.capulet@gnupg.net>"
# off=315 ctb=89 tag=2 hlen=3 plen=340
:signature packet: algo 1, keyid 4954FDC67A46B4C5
version 4, created 1499443081, md5len 0, sigclass 0x13
digest algo 8, begin of digest 59 1a
hashed subpkt 33 len 21 (issuer fpr v4 E5156E507DCB8D63AC89E5334954FDC67A46B4C5)
hashed subpkt 2 len 4 (sig created 2017-07-07)
hashed subpkt 27 len 1 (key flags: 03)
hashed subpkt 9 len 4 (key expires after 2y0d0h0m)
hashed subpkt 11 len 4 (pref-sym-algos: 9 8 7 2)
hashed subpkt 21 len 5 (pref-hash-algos: 8 9 10 11 2)
hashed subpkt 22 len 3 (pref-zip-algos: 2 3 1)
hashed subpkt 30 len 1 (features: 01)
hashed subpkt 23 len 1 (keyserver preferences: 80)
subpkt 16 len 8 (issuer key ID 4954FDC67A46B4C5)
data: [2047 bits]
# off=658 ctb=89 tag=2 hlen=3 plen=307
:signature packet: algo 1, keyid 6B284A5BE2297415
version 4, created 1499445515, md5len 0, sigclass 0x10
digest algo 8, begin of digest c6 a3
hashed subpkt 33 len 21 (issuer fpr v4 D6636A9EB82A91E94DDEE5066B284A5BE2297415)
hashed subpkt 2 len 4 (sig created 2017-07-07)
subpkt 16 len 8 (issuer key ID 6B284A5BE2297415)
data: [2046 bits]
# off=968 ctb=b9 tag=14 hlen=3 plen=269
:public sub key packet:
version 4, algo 1, created 1499443081, expires 0
pkey[0]: [2048 bits]
pkey[1]: [17 bits]
keyid: C1A010A1D38C4BB8
# off=1240 ctb=89 tag=2 hlen=3 plen=310
:signature packet: algo 1, keyid 4954FDC67A46B4C5
version 4, created 1499443081, md5len 0, sigclass 0x18
digest algo 8, begin of digest ee 3f
hashed subpkt 33 len 21 (issuer fpr v4 E5156E507DCB8D63AC89E5334954FDC67A46B4C5)
hashed subpkt 2 len 4 (sig created 2017-07-07)
hashed subpkt 27 len 1 (key flags: 0C)
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subpkt 16 len 8 (issuer key ID 4954FDC67A46B4C5)
data: [2047 bits]

The listing follows the usual format described above. The first packet
is the public key packet, which is followed by a user ID packet and its self
signature. And, at the end comes the subkey key and its self signature.

There is one small difference, however. In this listing, Juliet’s user
ID is followed by not one, but two signatures. And, the second one is
not a self-signature, but Romeo’s certification signature: we can see from
the issuer fpr subpacket that Romeo, not Juliet, created this signature.
There are two important things to observe here.

First, Romeo’s signature is associated with Juliet’s key, not his key. Once
it is clear that the signature says something about Juliet’s key and not
Romeo’s, this makes sense. Nevertheless, many beginners don’t under-
stand this and think that they somehow own the signature. Unfortunately,
this arrangement can lead to denial of service attacks. For instance, vandals
could create many signatures on a particular key so that it becomes so large
that it can’t be imported.

Second, certification signatures are associated with user IDs and not
with keys. This avoids bait-and-switch type attacks. Consider Paris who
convinces Romeo to sign his key. If Romeo signed the key, and not the
user ID, then Paris could simply revoke the user ID and replace it with
another, say, Juliet’s. Since Romeo would still consider the key to be valid,
Paris could possibly trick him into believing a message from the key is from
Juliet.

1.8 Revocations

If a key has been compromised or simply retired, it is essential to revoke it
so that other people don’t accidentally use it. It is also important to revoke
a user ID if the identity is no longer valid, e.g., when leaving an organiza-
tion, but keeping the same key. Occasionally, it can be useful to revoke a
user ID certification. For instance, you should revoke a certification if: you
find out that you signed the wrong key; the person who controlled the key
somehow lost control of it (e.g., he forgot the password, and doesn’t have a
revocation certificate); or, you find out that you signed an impostor’s key.

The following example shows what Juliet’s key looks like when she re-
vokes her own key (the output has been truncated):
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$ gpg --gen-revoke juliet | gpg --import
...
$ gpg --export juliet | gpg --list-packets
# off=0 ctb=99 tag=6 hlen=3 plen=269
:public key packet:
version 4, algo 1, created 1499443081, expires 0
pkey[0]: [2048 bits]
pkey[1]: [17 bits]
keyid: 4954FDC67A46B4C5
# off=272 ctb=89 tag=2 hlen=3 plen=310
:signature packet: algo 1, keyid 4954FDC67A46B4C5
version 4, created 1500052199, md5len 0, sigclass 0x20
digest algo 8, begin of digest 04 ca
hashed subpkt 33 len 21 (issuer fpr v4 E5156E507DCB8D63AC89E5334954FDC67A46B4C5)
hashed subpkt 2 len 4 (sig created 2017-07-14)
hashed subpkt 29 len 1 (revocation reason 0x02 ())
subpkt 16 len 8 (issuer key ID 4954FDC67A46B4C5)
data: [2048 bits]
# off=585 ctb=b4 tag=13 hlen=2 plen=41
:user ID packet: "Juliet Capulet <juliet.capulet@gnupg.net>"
...

The revocation is the second packet. It is a self signature on the pri-
mary key. We know that the packet is a revocation certificate based on the
sigclass (0x20) as well as the revocation reason subpacket. The
revocation reason allows the user to say why the key is revoked. Here,
the value is 0x2, which means that the key was compromised. This sub-
packet can also include a human-readable string. In this case, Juliet did not
provide any additional information. But, in the case that the key is being
rotated, it might be helpful to include the new key’s fingerprint. Of course,
this is of limited use, since it is not machine readable.

1.9 Notations

RFC 4880 allows signatures to contain arbitrary data. This mechanism can
be extremely useful for extending the OpenPGP system. But, despite its
availability, they aren’t generally used. One example of how they could
be used was considered by the Debian project, which thought about using
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notations to store additional information about how a developer’s identity
was checked [10].

Notations are key value pairs. The key must be of the form key@example.com.
The domain is included to avoid naming conflicts. Although the value can
be any arbitrary data, GnuPG currently only supports free-form strings.

One limitations of notations is that as they are stored in signature sub-
packets, they must fit into the 64 kilobytes of space available to signature
subpackets. (Strictly speaking, the hashed area is limited to 64 kilobytes of
subpackets and the unhashed area has the same limitation, but using the
unhashed area is not advisable.)

1.10 Summary

This chapter has presented the important details of the OpenPGP standard.
This introduction wasn’t intended for someone who is planning to write an
OpenPGP parser, but to provide a rough overview of the system. Many de-
tails have been omitted, as well as several minor features (yes, for better or
worse, OpenPGP is that feature rich). For those looking for more informa-
tion, the RFC is probably the best place to start: it is highly readable, and
this introduction should hopefully make it easy to navigate.
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