Stokhos Package Browser (Single Doxygen Collection) Version of the Day
Loading...
Searching...
No Matches
MPAssembly/HexElement.hpp
Go to the documentation of this file.
1/*
2//@HEADER
3// ************************************************************************
4//
5// Kokkos: Manycore Performance-Portable Multidimensional Arrays
6// Copyright (2012) Sandia Corporation
7//
8// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
9// the U.S. Government retains certain rights in this software.
10//
11// Redistribution and use in source and binary forms, with or without
12// modification, are permitted provided that the following conditions are
13// met:
14//
15// 1. Redistributions of source code must retain the above copyright
16// notice, this list of conditions and the following disclaimer.
17//
18// 2. Redistributions in binary form must reproduce the above copyright
19// notice, this list of conditions and the following disclaimer in the
20// documentation and/or other materials provided with the distribution.
21//
22// 3. Neither the name of the Corporation nor the names of the
23// contributors may be used to endorse or promote products derived from
24// this software without specific prior written permission.
25//
26// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
27// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
30// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37//
38// Questions? Contact H. Carter Edwards (hcedwar@sandia.gov)
39//
40// ************************************************************************
41//@HEADER
42*/
43
44#ifndef KOKKOS_HEXELEMENT_HPP
45#define KOKKOS_HEXELEMENT_HPP
46
47namespace Kokkos {
48namespace Example {
49
50template< unsigned NodeCount >
51class HexElement_TensorData ;
52
53template< unsigned NodeCount , class Device >
54class HexElement_TensorEval ;
55
56//----------------------------------------------------------------------------
58template<>
59class HexElement_TensorData< 8 > {
60public:
61
62 static const unsigned element_node_count = 8 ;
63 static const unsigned spatial_dimension = 3 ;
64 static const unsigned integration_count_1d = 2 ;
65 static const unsigned function_count_1d = 2 ;
66
67 double values_1d [ function_count_1d ][ integration_count_1d ];
68 double derivs_1d [ function_count_1d ][ integration_count_1d ];
69 double weights_1d[ integration_count_1d ];
70
71 unsigned char eval_map[ element_node_count ][4] ;
72
73 static double eval_value_1d( const unsigned jf , const double x )
74 {
75 return 0 == jf ? 0.5 * ( 1.0 - x ) : (
76 1 == jf ? 0.5 * ( 1.0 + x ) : 0 );
77 }
78
79 static double eval_deriv_1d( const unsigned jf , const double )
80 {
81 return 0 == jf ? -0.5 : (
82 1 == jf ? 0.5 : 0 );
83 }
84
86 {
87 const unsigned char tmp_map[ element_node_count ][ spatial_dimension ] =
88 { { 0 , 0 , 0 },
89 { 1 , 0 , 0 },
90 { 1 , 1 , 0 },
91 { 0 , 1 , 0 },
92 { 0 , 0 , 1 },
93 { 1 , 0 , 1 },
94 { 1 , 1 , 1 },
95 { 0 , 1 , 1 } };
96
97 weights_1d[0] = 1 ;
98 weights_1d[1] = 1 ;
99
100 const double points_1d[ integration_count_1d ] =
101 { -0.577350269189623 , 0.577350269189623 };
102
103 for ( unsigned i = 0 ; i < element_node_count ; ++i ) {
104 eval_map[i][0] = tmp_map[i][0];
105 eval_map[i][1] = tmp_map[i][1];
106 eval_map[i][2] = tmp_map[i][2];
107 }
108
109 for ( unsigned xp = 0 ; xp < integration_count_1d ; ++xp ) {
110 for ( unsigned xf = 0 ; xf < function_count_1d ; ++xf ) {
111 values_1d[xp][xf] = eval_value_1d( xf , points_1d[xp] );
112 derivs_1d[xp][xf] = eval_deriv_1d( xf , points_1d[xp] );
113 }}
114 }
115};
116
117//----------------------------------------------------------------------------
118
119template<>
120class HexElement_TensorData< 27 > {
121public:
122
123 static const unsigned element_node_count = 27 ;
124 static const unsigned spatial_dimension = 3 ;
125 static const unsigned integration_count_1d = 3 ;
126 static const unsigned function_count_1d = 3 ;
127
128 double values_1d [ function_count_1d ][ integration_count_1d ];
129 double derivs_1d [ function_count_1d ][ integration_count_1d ];
130 double weights_1d[ integration_count_1d ];
131
132 unsigned char eval_map[ element_node_count ][4] ;
133
134 // sizeof(EvaluateElementHex) = 111 bytes =
135 // sizeof(double) * 9 +
136 // sizeof(double) * 9 +
137 // sizeof(double) * 3 +
138 // sizeof(char) * 27
139
140 static double eval_value_1d( const unsigned jf , const double p )
141 {
142 return 0 == jf ? 0.5 * p * ( p - 1 ) : (
143 1 == jf ? 1.0 - p * p : (
144 2 == jf ? 0.5 * p * ( p + 1 ) : 0 ));
145 }
146
147 static double eval_deriv_1d( const unsigned jf , const double p )
148 {
149 return 0 == jf ? p - 0.5 : (
150 1 == jf ? -2.0 * p : (
151 2 == jf ? p + 0.5 : 0 ));
152 }
153
155 {
156 const unsigned char tmp_map[ element_node_count ][ spatial_dimension ] =
157 { { 0 , 0 , 0 },
158 { 2 , 0 , 0 },
159 { 2 , 2 , 0 },
160 { 0 , 2 , 0 },
161 { 0 , 0 , 2 },
162 { 2 , 0 , 2 },
163 { 2 , 2 , 2 },
164 { 0 , 2 , 2 },
165 { 1 , 0 , 0 },
166 { 2 , 1 , 0 },
167 { 1 , 2 , 0 },
168 { 0 , 1 , 0 },
169 { 0 , 0 , 1 },
170 { 2 , 0 , 1 },
171 { 2 , 2 , 1 },
172 { 0 , 2 , 1 },
173 { 1 , 0 , 2 },
174 { 2 , 1 , 2 },
175 { 1 , 2 , 2 },
176 { 0 , 1 , 2 },
177 { 1 , 1 , 1 },
178 { 1 , 1 , 0 },
179 { 1 , 1 , 2 },
180 { 0 , 1 , 1 },
181 { 2 , 1 , 1 },
182 { 1 , 0 , 1 },
183 { 1 , 2 , 1 } };
184
185 // Interval [-1,1]
186
187 weights_1d[0] = 0.55555555555556 ;
188 weights_1d[1] = 0.88888888888889 ;
189 weights_1d[2] = 0.55555555555556 ;
190
191 const double points_1d[3] = { -0.774596669241483 ,
192 0.000000000000000 ,
193 0.774596669241483 };
194
195 for ( unsigned i = 0 ; i < element_node_count ; ++i ) {
196 eval_map[i][0] = tmp_map[i][0];
197 eval_map[i][1] = tmp_map[i][1];
198 eval_map[i][2] = tmp_map[i][2];
199 }
200
201 for ( unsigned xp = 0 ; xp < integration_count_1d ; ++xp ) {
202 for ( unsigned xf = 0 ; xf < function_count_1d ; ++xf ) {
203 values_1d[xp][xf] = eval_value_1d( xf , points_1d[xp] );
204 derivs_1d[xp][xf] = eval_deriv_1d( xf , points_1d[xp] );
205 }}
206 }
207};
208
209//----------------------------------------------------------------------------
210
211template< unsigned NodeCount >
212class HexElement_Data {
213public:
214 static const unsigned spatial_dimension = 3 ;
215 static const unsigned element_node_count = NodeCount ;
216 static const unsigned integration_count = NodeCount ;
217 static const unsigned function_count = NodeCount ;
218
219 double weights[ integration_count ] ;
222
224 {
225 HexElement_TensorData< NodeCount > tensor_data ;
226
227 for ( unsigned ip = 0 ; ip < integration_count ; ++ip ) {
228
229 const unsigned ipx = tensor_data.eval_map[ip][0] ;
230 const unsigned ipy = tensor_data.eval_map[ip][1] ;
231 const unsigned ipz = tensor_data.eval_map[ip][2] ;
232
233 weights[ip] = tensor_data.weights_1d[ ipx ] *
234 tensor_data.weights_1d[ ipy ] *
235 tensor_data.weights_1d[ ipz ] ;
236
237 for ( unsigned jf = 0 ; jf < function_count ; ++jf ) {
238
239 const unsigned jfx = tensor_data.eval_map[jf][0] ;
240 const unsigned jfy = tensor_data.eval_map[jf][1] ;
241 const unsigned jfz = tensor_data.eval_map[jf][2] ;
242
243 values[ip][jf] = tensor_data.values_1d[ ipx ][ jfx ] *
244 tensor_data.values_1d[ ipy ][ jfy ] *
245 tensor_data.values_1d[ ipz ][ jfz ] ;
246
247 gradients[ip][0][jf] = tensor_data.derivs_1d[ ipx ][ jfx ] *
248 tensor_data.values_1d[ ipy ][ jfy ] *
249 tensor_data.values_1d[ ipz ][ jfz ] ;
250
251 gradients[ip][1][jf] = tensor_data.values_1d[ ipx ][ jfx ] *
252 tensor_data.derivs_1d[ ipy ][ jfy ] *
253 tensor_data.values_1d[ ipz ][ jfz ] ;
254
255 gradients[ip][2][jf] = tensor_data.values_1d[ ipx ][ jfx ] *
256 tensor_data.values_1d[ ipy ][ jfy ] *
257 tensor_data.derivs_1d[ ipz ][ jfz ] ;
258 }
259 }
260 }
261};
262
263//----------------------------------------------------------------------------
264
265} /* namespace Example */
266} /* namespace Kokkos */
267
268#endif /* #ifndef KOKKOS_HEXELEMENT_HPP */
269
270
double values[integration_count][function_count]
double gradients[integration_count][spatial_dimension][function_count]
static double eval_deriv_1d(const unsigned jf, const double p)
static double eval_value_1d(const unsigned jf, const double p)
static double eval_deriv_1d(const unsigned jf, const double)
static double eval_value_1d(const unsigned jf, const double x)