56 RCP<ParameterList> pList =
57 getParametersFromXmlFile(
"Tempus_BDF2_SinCos.xml");
60 RCP<ParameterList> scm_pl = sublist(pList,
"SinCosModel",
true);
61 auto model = rcp(
new SinCosModel<double> (scm_pl));
63 RCP<ParameterList> tempusPL = sublist(pList,
"Tempus",
true);
67 RCP<Tempus::IntegratorBasic<double> > integrator =
68 Tempus::createIntegratorBasic<double>(tempusPL, model);
70 RCP<ParameterList> stepperPL = sublist(tempusPL,
"Default Stepper",
true);
71 RCP<const ParameterList> defaultPL =
72 integrator->getStepper()->getValidParameters();
73 bool pass = haveSameValuesSorted(*stepperPL, *defaultPL,
true);
76 out <<
"stepperPL -------------- \n" << *stepperPL << std::endl;
77 out <<
"defaultPL -------------- \n" << *defaultPL << std::endl;
84 RCP<Tempus::IntegratorBasic<double> > integrator =
85 Tempus::createIntegratorBasic<double>(model, std::string(
"BDF2"));
87 RCP<ParameterList> stepperPL = sublist(tempusPL,
"Default Stepper",
true);
88 RCP<const ParameterList> defaultPL =
89 integrator->getStepper()->getValidParameters();
91 bool pass = haveSameValuesSorted(*stepperPL, *defaultPL,
true);
94 out <<
"stepperPL -------------- \n" << *stepperPL << std::endl;
95 out <<
"defaultPL -------------- \n" << *defaultPL << std::endl;
107 std::vector<std::string> options;
108 options.push_back(
"Default Parameters");
109 options.push_back(
"ICConsistency and Check");
111 for(
const auto& option: options) {
114 RCP<ParameterList> pList =
115 getParametersFromXmlFile(
"Tempus_BDF2_SinCos.xml");
116 RCP<ParameterList> pl = sublist(pList,
"Tempus",
true);
119 RCP<ParameterList> scm_pl = sublist(pList,
"SinCosModel",
true);
121 auto model = rcp(
new SinCosModel<double>(scm_pl));
125 stepper->setModel(model);
126 if ( option ==
"ICConsistency and Check") {
127 stepper->setICConsistency(
"Consistent");
128 stepper->setICConsistencyCheck(
true);
130 stepper->initialize();
134 ParameterList tscPL = pl->sublist(
"Default Integrator")
135 .sublist(
"Time Step Control");
136 timeStepControl->setInitIndex(tscPL.get<
int> (
"Initial Time Index"));
137 timeStepControl->setInitTime (tscPL.get<
double>(
"Initial Time"));
138 timeStepControl->setFinalTime(tscPL.get<
double>(
"Final Time"));
139 timeStepControl->setInitTimeStep(dt);
140 timeStepControl->initialize();
143 auto inArgsIC = model->getNominalValues();
144 auto icSolution = rcp_const_cast<Thyra::VectorBase<double> > (inArgsIC.get_x());
146 icState->setTime (timeStepControl->getInitTime());
147 icState->setIndex (timeStepControl->getInitIndex());
148 icState->setTimeStep(0.0);
149 icState->setOrder (stepper->getOrder());
154 solutionHistory->setName(
"Forward States");
156 solutionHistory->setStorageLimit(3);
157 solutionHistory->addState(icState);
160 stepper->setInitialConditions(solutionHistory);
163 RCP<Tempus::IntegratorBasic<double> > integrator =
164 Tempus::createIntegratorBasic<double>();
165 integrator->setStepper(stepper);
166 integrator->setTimeStepControl(timeStepControl);
167 integrator->setSolutionHistory(solutionHistory);
169 integrator->initialize();
173 bool integratorStatus = integrator->advanceTime();
174 TEST_ASSERT(integratorStatus)
178 double time = integrator->getTime();
179 double timeFinal =pl->sublist(
"Default Integrator")
180 .sublist(
"Time Step Control").get<
double>(
"Final Time");
181 TEST_FLOATING_EQUALITY(time, timeFinal, 1.0e-14);
184 RCP<Thyra::VectorBase<double> > x = integrator->getX();
185 RCP<const Thyra::VectorBase<double> > x_exact =
186 model->getExactSolution(time).get_x();
189 RCP<Thyra::VectorBase<double> > xdiff = x->clone_v();
190 Thyra::V_StVpStV(xdiff.ptr(), 1.0, *x_exact, -1.0, *(x));
193 out <<
" Stepper = " << stepper->description()
194 <<
"\n with " << option << std::endl;
195 out <<
" =========================" << std::endl;
196 out <<
" Exact solution : " << get_ele(*(x_exact), 0) <<
" "
197 << get_ele(*(x_exact), 1) << std::endl;
198 out <<
" Computed solution: " << get_ele(*(x ), 0) <<
" "
199 << get_ele(*(x ), 1) << std::endl;
200 out <<
" Difference : " << get_ele(*(xdiff ), 0) <<
" "
201 << get_ele(*(xdiff ), 1) << std::endl;
202 out <<
" =========================" << std::endl;
203 TEST_FLOATING_EQUALITY(get_ele(*(x), 0), 0.839732, 1.0e-4 );
204 TEST_FLOATING_EQUALITY(get_ele(*(x), 1), 0.542663, 1.0e-4 );
213 RCP<Tempus::IntegratorBasic<double> > integrator;
214 std::vector<RCP<Thyra::VectorBase<double>>> solutions;
215 std::vector<RCP<Thyra::VectorBase<double>>> solutionsDot;
216 std::vector<double> StepSize;
219 RCP<ParameterList> pList = getParametersFromXmlFile(
"Tempus_BDF2_SinCos.xml");
221 double dt = pList->sublist(
"Tempus")
222 .sublist(
"Default Integrator")
223 .sublist(
"Time Step Control").get<
double>(
"Initial Time Step");
227 RCP<ParameterList> scm_pl = sublist(pList,
"SinCosModel",
true);
228 const int nTimeStepSizes = scm_pl->get<
int>(
"Number of Time Step Sizes", 7);
229 std::string output_file_string =
230 scm_pl->get<std::string>(
"Output File Name",
"Tempus_BDF2_SinCos");
231 std::string output_file_name = output_file_string +
".dat";
232 std::string ref_out_file_name = output_file_string +
"-Ref.dat";
233 std::string err_out_file_name = output_file_string +
"-Error.dat";
235 for (
int n=0; n<nTimeStepSizes; n++) {
237 auto model = rcp(
new SinCosModel<double>(scm_pl));
242 RCP<ParameterList> tempusPL =
243 getParametersFromXmlFile(
"Tempus_BDF2_SinCos.xml");
244 RCP<ParameterList> pl = sublist(tempusPL,
"Tempus",
true);
245 pl->sublist(
"Default Integrator")
246 .sublist(
"Time Step Control").set(
"Initial Time Step", dt);
247 integrator = Tempus::createIntegratorBasic<double>(pl, model);
253 RCP<Thyra::VectorBase<double> > x0 =
254 model->getNominalValues().get_x()->clone_v();
255 integrator->initializeSolutionHistory(0.0, x0);
258 bool integratorStatus = integrator->advanceTime();
259 TEST_ASSERT(integratorStatus)
262 time = integrator->getTime();
263 double timeFinal = pl->sublist(
"Default Integrator")
264 .sublist(
"Time Step Control").get<
double>(
"Final Time");
265 TEST_FLOATING_EQUALITY(time, timeFinal, 1.0e-14);
269 RCP<const SolutionHistory<double> > solutionHistory =
270 integrator->getSolutionHistory();
274 for (
int i=0; i<solutionHistory->getNumStates(); i++) {
275 double time_i = (*solutionHistory)[i]->getTime();
278 model->getExactSolution(time_i).get_x()),
280 model->getExactSolution(time_i).get_x_dot()));
281 state->setTime((*solutionHistory)[i]->getTime());
282 solnHistExact->addState(state);
288 StepSize.push_back(dt);
289 auto solution = Thyra::createMember(model->get_x_space());
290 Thyra::copy(*(integrator->getX()),solution.ptr());
291 solutions.push_back(solution);
292 auto solutionDot = Thyra::createMember(model->get_x_space());
293 Thyra::copy(*(integrator->getXDot()),solutionDot.ptr());
294 solutionsDot.push_back(solutionDot);
295 if (n == nTimeStepSizes-1) {
296 StepSize.push_back(0.0);
297 auto solutionExact = Thyra::createMember(model->get_x_space());
298 Thyra::copy(*(model->getExactSolution(time).get_x()),solutionExact.ptr());
299 solutions.push_back(solutionExact);
300 auto solutionDotExact = Thyra::createMember(model->get_x_space());
301 Thyra::copy(*(model->getExactSolution(time).get_x_dot()),
302 solutionDotExact.ptr());
303 solutionsDot.push_back(solutionDotExact);
308 if (nTimeStepSizes > 1) {
310 double xDotSlope = 0.0;
311 std::vector<double> xErrorNorm;
312 std::vector<double> xDotErrorNorm;
313 RCP<Tempus::Stepper<double> > stepper = integrator->getStepper();
314 double order = stepper->getOrder();
317 solutions, xErrorNorm, xSlope,
318 solutionsDot, xDotErrorNorm, xDotSlope);
320 TEST_FLOATING_EQUALITY( xSlope, order, 0.01 );
321 TEST_FLOATING_EQUALITY( xDotSlope, order, 0.01 );
322 TEST_FLOATING_EQUALITY( xErrorNorm[0], 5.13425e-05, 1.0e-4 );
323 TEST_FLOATING_EQUALITY( xDotErrorNorm[0], 5.13425e-05, 1.0e-4 );
326 Teuchos::TimeMonitor::summarize();
334 RCP<Tempus::IntegratorBasic<double> > integrator;
335 std::vector<RCP<Thyra::VectorBase<double>>> solutions;
336 std::vector<RCP<Thyra::VectorBase<double>>> solutionsDot;
337 std::vector<double> StepSize;
340 RCP<ParameterList> pList =
341 getParametersFromXmlFile(
"Tempus_BDF2_SinCos_AdaptDt.xml");
343 double dt = pList->sublist(
"Tempus")
344 .sublist(
"Default Integrator")
345 .sublist(
"Time Step Control").get<
double>(
"Initial Time Step");
349 RCP<ParameterList> scm_pl = sublist(pList,
"SinCosModel",
true);
350 const int nTimeStepSizes = scm_pl->get<
int>(
"Number of Time Step Sizes", 7);
351 std::string output_file_string =
352 scm_pl->get<std::string>(
"Output File Name",
"Tempus_BDF2_SinCos");
353 std::string output_file_name = output_file_string +
".dat";
354 std::string err_out_file_name = output_file_string +
"-Error.dat";
356 for (
int n=0; n<nTimeStepSizes; n++) {
358 auto model = rcp(
new SinCosModel<double>(scm_pl));
362 RCP<ParameterList> tempusPL =
363 getParametersFromXmlFile(
"Tempus_BDF2_SinCos_AdaptDt.xml");
364 RCP<ParameterList> pl = sublist(tempusPL,
"Tempus",
true);
367 pl->sublist(
"Default Integrator")
368 .sublist(
"Time Step Control").set(
"Initial Time Step", dt/4.0);
371 pl->sublist(
"Default Integrator")
372 .sublist(
"Time Step Control").set(
"Maximum Time Step", dt);
374 pl->sublist(
"Default Integrator")
375 .sublist(
"Time Step Control").set(
"Minimum Time Step", dt/4.0);
377 pl->sublist(
"Default Integrator")
378 .sublist(
"Time Step Control")
379 .sublist(
"Time Step Control Strategy")
380 .set(
"Minimum Value Monitoring Function", dt*0.99);
381 integrator = Tempus::createIntegratorBasic<double>(pl, model);
387 RCP<Thyra::VectorBase<double> > x0 =
388 model->getNominalValues().get_x()->clone_v();
389 integrator->initializeSolutionHistory(0.0, x0);
392 bool integratorStatus = integrator->advanceTime();
393 TEST_ASSERT(integratorStatus)
396 time = integrator->getTime();
397 double timeFinal = pl->sublist(
"Default Integrator")
398 .sublist(
"Time Step Control").get<
double>(
"Final Time");
399 TEST_FLOATING_EQUALITY(time, timeFinal, 1.0e-14);
402 RCP<Thyra::VectorBase<double> > x = integrator->getX();
403 RCP<const Thyra::VectorBase<double> > x_exact =
404 model->getExactSolution(time).get_x();
408 std::ofstream ftmp(output_file_name);
410 FILE *gold_file = fopen(
"Tempus_BDF2_SinCos_AdaptDt_gold.dat",
"r");
411 RCP<const SolutionHistory<double> > solutionHistory =
412 integrator->getSolutionHistory();
413 RCP<const Thyra::VectorBase<double> > x_exact_plot;
414 for (
int i=0; i<solutionHistory->getNumStates(); i++) {
415 char time_gold_char[100];
416 fgets(time_gold_char, 100, gold_file);
418 sscanf(time_gold_char,
"%lf", &time_gold);
419 RCP<const SolutionState<double> > solutionState = (*solutionHistory)[i];
420 double time_i = solutionState->getTime();
422 TEST_FLOATING_EQUALITY( time_i, time_gold, 1.0e-5 );
423 RCP<const Thyra::VectorBase<double> > x_plot = solutionState->getX();
424 x_exact_plot = model->getExactSolution(time_i).get_x();
425 ftmp << time_i <<
" "
426 << get_ele(*(x_plot), 0) <<
" "
427 << get_ele(*(x_plot), 1) <<
" "
428 << get_ele(*(x_exact_plot), 0) <<
" "
429 << get_ele(*(x_exact_plot), 1) << std::endl;
435 StepSize.push_back(dt);
436 auto solution = Thyra::createMember(model->get_x_space());
437 Thyra::copy(*(integrator->getX()),solution.ptr());
438 solutions.push_back(solution);
439 auto solutionDot = Thyra::createMember(model->get_x_space());
440 Thyra::copy(*(integrator->getXDot()),solutionDot.ptr());
441 solutionsDot.push_back(solutionDot);
442 if (n == nTimeStepSizes-1) {
443 StepSize.push_back(0.0);
444 auto solutionExact = Thyra::createMember(model->get_x_space());
445 Thyra::copy(*(model->getExactSolution(time).get_x()),solutionExact.ptr());
446 solutions.push_back(solutionExact);
447 auto solutionDotExact = Thyra::createMember(model->get_x_space());
448 Thyra::copy(*(model->getExactSolution(time).get_x_dot()),
449 solutionDotExact.ptr());
450 solutionsDot.push_back(solutionDotExact);
455 if (nTimeStepSizes > 1) {
457 double xDotSlope = 0.0;
458 std::vector<double> xErrorNorm;
459 std::vector<double> xDotErrorNorm;
460 RCP<Tempus::Stepper<double> > stepper = integrator->getStepper();
464 solutions, xErrorNorm, xSlope,
465 solutionsDot, xDotErrorNorm, xDotSlope);
467 TEST_FLOATING_EQUALITY( xSlope, 1.932, 0.01 );
468 TEST_FLOATING_EQUALITY( xDotSlope, 1.932, 0.01 );
469 TEST_FLOATING_EQUALITY( xErrorNorm[0], 0.000192591, 1.0e-4 );
470 TEST_FLOATING_EQUALITY( xDotErrorNorm[0], 0.000192591, 1.0e-4 );
473 Teuchos::TimeMonitor::summarize();
482 RCP<Epetra_Comm> comm;
483#ifdef Tempus_ENABLE_MPI
484 comm = rcp(
new Epetra_MpiComm(MPI_COMM_WORLD));
486 comm = rcp(
new Epetra_SerialComm);
489 RCP<Tempus::IntegratorBasic<double> > integrator;
490 std::vector<RCP<Thyra::VectorBase<double>>> solutions;
491 std::vector<RCP<Thyra::VectorBase<double>>> solutionsDot;
492 std::vector<double> StepSize;
495 RCP<ParameterList> pList =
496 getParametersFromXmlFile(
"Tempus_BDF2_CDR.xml");
499 RCP<ParameterList> pl = sublist(pList,
"Tempus",
true);
500 double dt = pl->sublist(
"Demo Integrator")
501 .sublist(
"Time Step Control").get<
double>(
"Initial Time Step");
503 RCP<ParameterList> model_pl = sublist(pList,
"CDR Model",
true);
505 const int nTimeStepSizes = model_pl->get<
int>(
"Number of Time Step Sizes", 5);
507 for (
int n=0; n<nTimeStepSizes; n++) {
510 const int num_elements = model_pl->get<
int>(
"num elements");
511 const double left_end = model_pl->get<
double>(
"left end");
512 const double right_end = model_pl->get<
double>(
"right end");
513 const double a_convection = model_pl->get<
double>(
"a (convection)");
514 const double k_source = model_pl->get<
double>(
"k (source)");
516 auto model = rcp(
new Tempus_Test::CDR_Model<double>(comm,
524 ::Stratimikos::DefaultLinearSolverBuilder builder;
526 auto p = rcp(
new ParameterList);
527 p->set(
"Linear Solver Type",
"Belos");
528 p->set(
"Preconditioner Type",
"None");
529 builder.setParameterList(p);
531 RCP< ::Thyra::LinearOpWithSolveFactoryBase<double> >
532 lowsFactory = builder.createLinearSolveStrategy(
"");
534 model->set_W_factory(lowsFactory);
540 pl->sublist(
"Demo Integrator")
541 .sublist(
"Time Step Control").set(
"Initial Time Step", dt);
542 integrator = Tempus::createIntegratorBasic<double>(pl, model);
545 bool integratorStatus = integrator->advanceTime();
546 TEST_ASSERT(integratorStatus)
549 double time = integrator->getTime();
550 double timeFinal =pl->sublist(
"Demo Integrator")
551 .sublist(
"Time Step Control").get<
double>(
"Final Time");
552 double tol = 100.0 * std::numeric_limits<double>::epsilon();
553 TEST_FLOATING_EQUALITY(time, timeFinal, tol);
556 StepSize.push_back(dt);
557 auto solution = Thyra::createMember(model->get_x_space());
558 Thyra::copy(*(integrator->getX()),solution.ptr());
559 solutions.push_back(solution);
560 auto solutionDot = Thyra::createMember(model->get_x_space());
561 Thyra::copy(*(integrator->getXDot()),solutionDot.ptr());
562 solutionsDot.push_back(solutionDot);
566 if ((n == nTimeStepSizes-1) && (comm->NumProc() == 1)) {
567 std::ofstream ftmp(
"Tempus_BDF2_CDR.dat");
568 ftmp <<
"TITLE=\"BDF2 Solution to CDR\"\n"
569 <<
"VARIABLES=\"z\",\"T\"\n";
570 const double dx = std::fabs(left_end-right_end) /
571 static_cast<double>(num_elements);
572 RCP<const SolutionHistory<double> > solutionHistory =
573 integrator->getSolutionHistory();
574 int nStates = solutionHistory->getNumStates();
575 for (
int i=0; i<nStates; i++) {
576 RCP<const SolutionState<double> > solutionState = (*solutionHistory)[i];
577 RCP<const Thyra::VectorBase<double> > x = solutionState->getX();
578 double ttime = solutionState->getTime();
579 ftmp <<
"ZONE T=\"Time="<<ttime<<
"\", I="
580 <<num_elements+1<<
", F=BLOCK\n";
581 for (
int j = 0; j < num_elements+1; j++) {
582 const double x_coord = left_end +
static_cast<double>(j) * dx;
583 ftmp << x_coord <<
" ";
586 for (
int j=0; j<num_elements+1; j++) ftmp << get_ele(*x, j) <<
" ";
594 if (nTimeStepSizes > 2) {
596 double xDotSlope = 0.0;
597 std::vector<double> xErrorNorm;
598 std::vector<double> xDotErrorNorm;
599 RCP<Tempus::Stepper<double> > stepper = integrator->getStepper();
600 double order = stepper->getOrder();
603 solutions, xErrorNorm, xSlope,
604 solutionsDot, xDotErrorNorm, xDotSlope);
605 TEST_FLOATING_EQUALITY( xSlope, order, 0.35 );
606 TEST_COMPARE(xSlope, >, 0.95);
607 TEST_FLOATING_EQUALITY( xDotSlope, order, 0.35 );
608 TEST_COMPARE(xDotSlope, >, 0.95);
610 TEST_FLOATING_EQUALITY( xErrorNorm[0], 0.0145747, 1.0e-4 );
611 TEST_FLOATING_EQUALITY( xDotErrorNorm[0], 0.0563621, 1.0e-4 );
616 if (comm->NumProc() == 1) {
617 RCP<ParameterList> pListCDR =
618 getParametersFromXmlFile(
"Tempus_BDF2_CDR.xml");
619 RCP<ParameterList> model_pl_CDR = sublist(pListCDR,
"CDR Model",
true);
620 const int num_elements = model_pl_CDR->get<
int>(
"num elements");
621 const double left_end = model_pl_CDR->get<
double>(
"left end");
622 const double right_end = model_pl_CDR->get<
double>(
"right end");
626 std::ofstream ftmp(
"Tempus_BDF2_CDR-Solution.dat");
627 for (
int n = 0; n < num_elements+1; n++) {
628 const double dx = std::fabs(left_end-right_end) /
629 static_cast<double>(num_elements);
630 const double x_coord = left_end +
static_cast<double>(n) * dx;
631 ftmp << x_coord <<
" " << Thyra::get_ele(x,n) << std::endl;
636 Teuchos::TimeMonitor::summarize();
644 std::vector<RCP<Thyra::VectorBase<double>>> solutions;
645 std::vector<double> StepSize;
646 std::vector<double> ErrorNorm;
649 RCP<ParameterList> pList =
650 getParametersFromXmlFile(
"Tempus_BDF2_VanDerPol.xml");
653 RCP<ParameterList> pl = sublist(pList,
"Tempus",
true);
654 double dt = pl->sublist(
"Demo Integrator")
655 .sublist(
"Time Step Control").get<
double>(
"Initial Time Step");
658 RCP<ParameterList> vdpm_pl = sublist(pList,
"VanDerPolModel",
true);
659 const int nTimeStepSizes = vdpm_pl->get<
int>(
"Number of Time Step Sizes", 3);
663 for (
int n=0; n<nTimeStepSizes; n++) {
666 auto model = rcp(
new VanDerPolModel<double>(vdpm_pl));
670 if (n == nTimeStepSizes-1) dt /= 10.0;
673 pl->sublist(
"Demo Integrator")
674 .sublist(
"Time Step Control").set(
"Initial Time Step", dt);
675 RCP<Tempus::IntegratorBasic<double> > integrator =
676 Tempus::createIntegratorBasic<double>(pl, model);
677 order = integrator->getStepper()->getOrder();
680 bool integratorStatus = integrator->advanceTime();
681 TEST_ASSERT(integratorStatus)
684 double time = integrator->getTime();
685 double timeFinal =pl->sublist(
"Demo Integrator")
686 .sublist(
"Time Step Control").get<
double>(
"Final Time");
687 double tol = 100.0 * std::numeric_limits<double>::epsilon();
688 TEST_FLOATING_EQUALITY(time, timeFinal, tol);
691 auto solution = Thyra::createMember(model->get_x_space());
692 Thyra::copy(*(integrator->getX()),solution.ptr());
693 solutions.push_back(solution);
694 StepSize.push_back(dt);
698 if ((n == 0) || (n == nTimeStepSizes-1)) {
699 std::string fname =
"Tempus_BDF2_VanDerPol-Ref.dat";
700 if (n == 0) fname =
"Tempus_BDF2_VanDerPol.dat";
701 std::ofstream ftmp(fname);
702 RCP<const SolutionHistory<double> > solutionHistory =
703 integrator->getSolutionHistory();
704 int nStates = solutionHistory->getNumStates();
705 for (
int i=0; i<nStates; i++) {
706 RCP<const SolutionState<double> > solutionState = (*solutionHistory)[i];
707 RCP<const Thyra::VectorBase<double> > x = solutionState->getX();
708 double ttime = solutionState->getTime();
709 ftmp << ttime <<
" " << get_ele(*x, 0) <<
" " << get_ele(*x, 1)
718 auto ref_solution = solutions[solutions.size()-1];
719 std::vector<double> StepSizeCheck;
720 for (std::size_t i=0; i < (solutions.size()-1); ++i) {
721 auto tmp = solutions[i];
722 Thyra::Vp_StV(tmp.ptr(), -1.0, *ref_solution);
723 const double L2norm = Thyra::norm_2(*tmp);
724 StepSizeCheck.push_back(StepSize[i]);
725 ErrorNorm.push_back(L2norm);
728 if (nTimeStepSizes > 2) {
730 double slope = computeLinearRegressionLogLog<double>(StepSizeCheck,ErrorNorm);
731 out <<
" Stepper = BDF2" << std::endl;
732 out <<
" =========================" << std::endl;
733 out <<
" Expected order: " << order << std::endl;
734 out <<
" Observed order: " << slope << std::endl;
735 out <<
" =========================" << std::endl;
736 TEST_FLOATING_EQUALITY( slope, order, 0.10 );
737 out <<
"\n\n ** Slope on BDF2 Method = " << slope
738 <<
"\n" << std::endl;
743 std::ofstream ftmp(
"Tempus_BDF2_VanDerPol-Error.dat");
744 double error0 = 0.8*ErrorNorm[0];
745 for (std::size_t n = 0; n < StepSizeCheck.size(); n++) {
746 ftmp << StepSizeCheck[n] <<
" " << ErrorNorm[n] <<
" "
747 << error0*(pow(StepSize[n]/StepSize[0],order)) << std::endl;
752 Teuchos::TimeMonitor::summarize();
SolutionHistory is basically a container of SolutionStates. SolutionHistory maintains a collection of...