ROL
Public Member Functions | Private Types | Private Member Functions | Private Attributes | List of all members
ROL::RieszPrimalVector< Real > Class Template Reference

#include <ROL_RieszVector.hpp>

+ Inheritance diagram for ROL::RieszPrimalVector< Real >:

Public Member Functions

 RieszPrimalVector (const ROL::Ptr< V > &v, const ROL::Ptr< OP > &op, Real tol=std::sqrt(ROL_EPSILON< Real >()))
 
virtual ~RieszPrimalVector ()
 
virtual Real dot (const V &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
 
virtual ROL::Ptr< Vclone () const
 Clone to make a new (uninitialized) vector.
 
virtual const Vdual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
 
void applyUnary (const Elementwise::UnaryFunction< Real > &f)
 
void applyBinary (const Elementwise::BinaryFunction< Real > &f, const V &x)
 
Real reduce (const Elementwise::ReductionOp< Real > &r) const
 
void setScalar (const Real C)
 Set \(y \leftarrow C\) where \(C\in\mathbb{R}\).
 
void randomize (const Real l=0.0, const Real u=1.0)
 Set vector to be uniform random between [l,u].
 
ROL::Ptr< VgetVector (void)
 
ROL::Ptr< const VgetVector (void) const
 
- Public Member Functions inherited from ROL::ElementwiseVector< Real >
virtual ~ElementwiseVector ()
 
void plus (const Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
 
virtual Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\).
 
void axpy (const Real alpha, const Vector< Real > &x)
 Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\).
 
void zero ()
 Set to zero vector.
 
void set (const Vector< Real > &x)
 Set \(y \leftarrow x\) where \(y = \mathtt{*this}\).
 
- Public Member Functions inherited from ROL::Vector< Real >
virtual ~Vector ()
 
virtual ROL::Ptr< Vectorbasis (const int i) const
 Return i-th basis vector.
 
virtual int dimension () const
 Return dimension of the vector space.
 
virtual Real apply (const Vector< Real > &x) const
 Apply \(\mathtt{*this}\) to a dual vector. This is equivalent to the call \(\mathtt{this->dot(x.dual())}\).
 
virtual void print (std::ostream &outStream) const
 
virtual std::vector< Real > checkVector (const Vector< Real > &x, const Vector< Real > &y, const bool printToStream=true, std::ostream &outStream=std::cout) const
 Verify vector-space methods.
 

Private Types

using V = Vector<Real>
 
using DualVector = RieszDualVector<Real>
 
using OP = LinearOperator<Real>
 

Private Member Functions

void initialize_dual (void) const
 

Private Attributes

const ROL::Ptr< Vv_
 
ROL::Ptr< DualVectordual_
 
const ROL::Ptr< OPop_
 
Real tol_
 
bool isDualInitialized_
 

Detailed Description

template<class Real>
class ROL::RieszPrimalVector< Real >

Definition at line 77 of file ROL_RieszVector.hpp.

Member Typedef Documentation

◆ V

template<class Real >
using ROL::RieszPrimalVector< Real >::V = Vector<Real>
private

Definition at line 79 of file ROL_RieszVector.hpp.

◆ DualVector

template<class Real >
using ROL::RieszPrimalVector< Real >::DualVector = RieszDualVector<Real>
private

Definition at line 80 of file ROL_RieszVector.hpp.

◆ OP

template<class Real >
using ROL::RieszPrimalVector< Real >::OP = LinearOperator<Real>
private

Definition at line 81 of file ROL_RieszVector.hpp.

Constructor & Destructor Documentation

◆ RieszPrimalVector()

template<class Real >
ROL::RieszPrimalVector< Real >::RieszPrimalVector ( const ROL::Ptr< V > & v,
const ROL::Ptr< OP > & op,
Real tol = std::sqrt(ROL_EPSILON<Real>()) )
inline

Definition at line 101 of file ROL_RieszVector.hpp.

◆ ~RieszPrimalVector()

template<class Real >
virtual ROL::RieszPrimalVector< Real >::~RieszPrimalVector ( )
inlinevirtual

Definition at line 107 of file ROL_RieszVector.hpp.

Member Function Documentation

◆ initialize_dual()

template<class Real >
void ROL::RieszPrimalVector< Real >::initialize_dual ( void ) const
inlineprivate

◆ dot()

template<class Real >
virtual Real ROL::RieszPrimalVector< Real >::dot ( const V & x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

   @param[in]      x  is the vector that forms the dot product with \f$\mathtt{*this}\f$.
   @return         The number equal to \f$\langle \mathtt{*this}, x \rangle\f$.

   ---

Reimplemented from ROL::ElementwiseVector< Real >.

Definition at line 109 of file ROL_RieszVector.hpp.

References ROL::RieszPrimalVector< Real >::dual_, ROL::RieszPrimalVector< Real >::getVector(), ROL::RieszPrimalVector< Real >::initialize_dual(), and ROL::RieszPrimalVector< Real >::isDualInitialized_.

◆ clone()

template<class Real >
virtual ROL::Ptr< V > ROL::RieszPrimalVector< Real >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

   @return         A reference-counted pointer to the cloned vector.

   Provides the means of allocating temporary memory in ROL.

   ---             

Implements ROL::Vector< Real >.

Definition at line 118 of file ROL_RieszVector.hpp.

References ROL::RieszPrimalVector< Real >::op_, ROL::RieszPrimalVector< Real >::tol_, and ROL::RieszPrimalVector< Real >::v_.

◆ dual()

template<class Real >
virtual const V & ROL::RieszPrimalVector< Real >::dual ( void ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 122 of file ROL_RieszVector.hpp.

References ROL::RieszPrimalVector< Real >::dual_, ROL::RieszPrimalVector< Real >::initialize_dual(), and ROL::RieszPrimalVector< Real >::isDualInitialized_.

◆ applyUnary()

template<class Real >
void ROL::RieszPrimalVector< Real >::applyUnary ( const Elementwise::UnaryFunction< Real > & f)
inlinevirtual

◆ applyBinary()

template<class Real >
void ROL::RieszPrimalVector< Real >::applyBinary ( const Elementwise::BinaryFunction< Real > & f,
const V & x )
inlinevirtual

◆ reduce()

template<class Real >
Real ROL::RieszPrimalVector< Real >::reduce ( const Elementwise::ReductionOp< Real > & r) const
inlinevirtual

◆ setScalar()

template<class Real >
void ROL::RieszPrimalVector< Real >::setScalar ( const Real C)
inlinevirtual

Set \(y \leftarrow C\) where \(C\in\mathbb{R}\).

   @param[in]      C     is a scalar.

   On return \f$\mathtt{*this} = C\f$.
   Uses #applyUnary methods for the computation.
   Please overload if a more efficient implementation is needed.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 142 of file ROL_RieszVector.hpp.

References ROL::RieszPrimalVector< Real >::v_.

◆ randomize()

template<class Real >
void ROL::RieszPrimalVector< Real >::randomize ( const Real l = 0.0,
const Real u = 1.0 )
inlinevirtual

Set vector to be uniform random between [l,u].

   @param[in]      l     is a the lower bound.
   @param[in]      u     is a the upper bound.

   On return the components of \f$\mathtt{*this}\f$ are uniform
   random numbers on the interval \f$[l,u]\f$.
         The default implementation uses #applyUnary methods for the
         computation. Please overload if a more efficient implementation is
   needed.

   ---

Reimplemented from ROL::Vector< Real >.

Definition at line 146 of file ROL_RieszVector.hpp.

References ROL::RieszPrimalVector< Real >::v_.

◆ getVector() [1/2]

template<class Real >
ROL::Ptr< V > ROL::RieszPrimalVector< Real >::getVector ( void )
inline

◆ getVector() [2/2]

template<class Real >
ROL::Ptr< const V > ROL::RieszPrimalVector< Real >::getVector ( void ) const
inline

Definition at line 154 of file ROL_RieszVector.hpp.

References ROL::RieszPrimalVector< Real >::v_.

Member Data Documentation

◆ v_

template<class Real >
const ROL::Ptr<V> ROL::RieszPrimalVector< Real >::v_
private

◆ dual_

template<class Real >
ROL::Ptr<DualVector> ROL::RieszPrimalVector< Real >::dual_
mutableprivate

◆ op_

template<class Real >
const ROL::Ptr<OP> ROL::RieszPrimalVector< Real >::op_
private

◆ tol_

template<class Real >
Real ROL::RieszPrimalVector< Real >::tol_
mutableprivate

◆ isDualInitialized_

template<class Real >
bool ROL::RieszPrimalVector< Real >::isDualInitialized_
mutableprivate

The documentation for this class was generated from the following file: