module Distribution.SPDX.Extra (
License,
LicenseExpression,
SimpleLicenseExpression,
LicenseId,
LicenseExceptionId,
satisfies,
equivalent,
) where
import Control.Monad.SAT
import qualified Data.Map.Strict as Map
import Control.Monad.Trans.Class (lift)
import Data.Map.Strict (Map)
import Control.Monad.Trans.State
import Data.Maybe (isNothing)
import Distribution.SPDX
(License (..), LicenseExceptionId, LicenseExpression (..), LicenseId,
SimpleLicenseExpression (..))
satisfies :: License
-> License
-> Bool
satisfies :: License -> License -> Bool
satisfies License
a License
b = Maybe () -> Bool
forall a. Maybe a -> Bool
isNothing (Maybe () -> Bool) -> Maybe () -> Bool
forall a b. (a -> b) -> a -> b
$ (forall s. SAT s ()) -> Maybe ()
forall a. (forall s. SAT s a) -> Maybe a
runSATMaybe ((forall s. SAT s ()) -> Maybe ())
-> (forall s. SAT s ()) -> Maybe ()
forall a b. (a -> b) -> a -> b
$ (StateT (Map Lic (Lit s)) (SAT s) ()
-> Map Lic (Lit s) -> SAT s ())
-> Map Lic (Lit s)
-> StateT (Map Lic (Lit s)) (SAT s) ()
-> SAT s ()
forall a b c. (a -> b -> c) -> b -> a -> c
flip StateT (Map Lic (Lit s)) (SAT s) () -> Map Lic (Lit s) -> SAT s ()
forall (m :: * -> *) s a. Monad m => StateT s m a -> s -> m a
evalStateT Map Lic (Lit s)
forall k a. Map k a
Map.empty (StateT (Map Lic (Lit s)) (SAT s) () -> SAT s ())
-> StateT (Map Lic (Lit s)) (SAT s) () -> SAT s ()
forall a b. (a -> b) -> a -> b
$ do
a' <- License -> StateT (Map Lic (Lit s)) (SAT s) (Prop s)
forall s. License -> StateT (Map Lic (Lit s)) (SAT s) (Prop s)
exprToProp License
a StateT (Map Lic (Lit s)) (SAT s) (Prop s)
-> (Prop s -> StateT (Map Lic (Lit s)) (SAT s) (Lit s))
-> StateT (Map Lic (Lit s)) (SAT s) (Lit s)
forall a b.
StateT (Map Lic (Lit s)) (SAT s) a
-> (a -> StateT (Map Lic (Lit s)) (SAT s) b)
-> StateT (Map Lic (Lit s)) (SAT s) b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= SAT s (Lit s) -> StateT (Map Lic (Lit s)) (SAT s) (Lit s)
forall (m :: * -> *) a.
Monad m =>
m a -> StateT (Map Lic (Lit s)) m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (SAT s (Lit s) -> StateT (Map Lic (Lit s)) (SAT s) (Lit s))
-> (Prop s -> SAT s (Lit s))
-> Prop s
-> StateT (Map Lic (Lit s)) (SAT s) (Lit s)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Prop s -> SAT s (Lit s)
forall s. Prop s -> SAT s (Lit s)
addDefinition
b' <- exprToProp b >>= lift . addDefinition
lift $ addProp $ neg $ lit b' --> lit a'
lift solve_
equivalent :: License -> License -> Bool
equivalent :: License -> License -> Bool
equivalent License
a License
b = Maybe () -> Bool
forall a. Maybe a -> Bool
isNothing (Maybe () -> Bool) -> Maybe () -> Bool
forall a b. (a -> b) -> a -> b
$ (forall s. SAT s ()) -> Maybe ()
forall a. (forall s. SAT s a) -> Maybe a
runSATMaybe ((forall s. SAT s ()) -> Maybe ())
-> (forall s. SAT s ()) -> Maybe ()
forall a b. (a -> b) -> a -> b
$ (StateT (Map Lic (Lit s)) (SAT s) ()
-> Map Lic (Lit s) -> SAT s ())
-> Map Lic (Lit s)
-> StateT (Map Lic (Lit s)) (SAT s) ()
-> SAT s ()
forall a b c. (a -> b -> c) -> b -> a -> c
flip StateT (Map Lic (Lit s)) (SAT s) () -> Map Lic (Lit s) -> SAT s ()
forall (m :: * -> *) s a. Monad m => StateT s m a -> s -> m a
evalStateT Map Lic (Lit s)
forall k a. Map k a
Map.empty (StateT (Map Lic (Lit s)) (SAT s) () -> SAT s ())
-> StateT (Map Lic (Lit s)) (SAT s) () -> SAT s ()
forall a b. (a -> b) -> a -> b
$ do
a' <- License -> StateT (Map Lic (Lit s)) (SAT s) (Prop s)
forall s. License -> StateT (Map Lic (Lit s)) (SAT s) (Prop s)
exprToProp License
a StateT (Map Lic (Lit s)) (SAT s) (Prop s)
-> (Prop s -> StateT (Map Lic (Lit s)) (SAT s) (Lit s))
-> StateT (Map Lic (Lit s)) (SAT s) (Lit s)
forall a b.
StateT (Map Lic (Lit s)) (SAT s) a
-> (a -> StateT (Map Lic (Lit s)) (SAT s) b)
-> StateT (Map Lic (Lit s)) (SAT s) b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= SAT s (Lit s) -> StateT (Map Lic (Lit s)) (SAT s) (Lit s)
forall (m :: * -> *) a.
Monad m =>
m a -> StateT (Map Lic (Lit s)) m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (SAT s (Lit s) -> StateT (Map Lic (Lit s)) (SAT s) (Lit s))
-> (Prop s -> SAT s (Lit s))
-> Prop s
-> StateT (Map Lic (Lit s)) (SAT s) (Lit s)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Prop s -> SAT s (Lit s)
forall s. Prop s -> SAT s (Lit s)
addDefinition
b' <- exprToProp b >>= lift . addDefinition
lift $ addProp $ neg $ lit a' <-> lit b'
lift solve_
data Lic = Lic !SimpleLicenseExpression !(Maybe LicenseExceptionId)
deriving (Lic -> Lic -> Bool
(Lic -> Lic -> Bool) -> (Lic -> Lic -> Bool) -> Eq Lic
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: Lic -> Lic -> Bool
== :: Lic -> Lic -> Bool
$c/= :: Lic -> Lic -> Bool
/= :: Lic -> Lic -> Bool
Eq, Eq Lic
Eq Lic =>
(Lic -> Lic -> Ordering)
-> (Lic -> Lic -> Bool)
-> (Lic -> Lic -> Bool)
-> (Lic -> Lic -> Bool)
-> (Lic -> Lic -> Bool)
-> (Lic -> Lic -> Lic)
-> (Lic -> Lic -> Lic)
-> Ord Lic
Lic -> Lic -> Bool
Lic -> Lic -> Ordering
Lic -> Lic -> Lic
forall a.
Eq a =>
(a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
$ccompare :: Lic -> Lic -> Ordering
compare :: Lic -> Lic -> Ordering
$c< :: Lic -> Lic -> Bool
< :: Lic -> Lic -> Bool
$c<= :: Lic -> Lic -> Bool
<= :: Lic -> Lic -> Bool
$c> :: Lic -> Lic -> Bool
> :: Lic -> Lic -> Bool
$c>= :: Lic -> Lic -> Bool
>= :: Lic -> Lic -> Bool
$cmax :: Lic -> Lic -> Lic
max :: Lic -> Lic -> Lic
$cmin :: Lic -> Lic -> Lic
min :: Lic -> Lic -> Lic
Ord)
exprToProp :: License -> StateT (Map Lic (Lit s)) (SAT s) (Prop s)
exprToProp :: forall s. License -> StateT (Map Lic (Lit s)) (SAT s) (Prop s)
exprToProp License
NONE = Prop s -> StateT (Map Lic (Lit s)) (SAT s) (Prop s)
forall a. a -> StateT (Map Lic (Lit s)) (SAT s) a
forall (m :: * -> *) a. Monad m => a -> m a
return Prop s
forall s. Prop s
false
exprToProp (License LicenseExpression
lic) = LicenseExpression -> StateT (Map Lic (Lit s)) (SAT s) (Prop s)
forall s.
LicenseExpression -> StateT (Map Lic (Lit s)) (SAT s) (Prop s)
licToProp LicenseExpression
lic
licToProp :: LicenseExpression -> StateT (Map Lic (Lit s)) (SAT s) (Prop s)
licToProp :: forall s.
LicenseExpression -> StateT (Map Lic (Lit s)) (SAT s) (Prop s)
licToProp (EAnd LicenseExpression
a LicenseExpression
b) = do
a' <- LicenseExpression -> StateT (Map Lic (Lit s)) (SAT s) (Prop s)
forall s.
LicenseExpression -> StateT (Map Lic (Lit s)) (SAT s) (Prop s)
licToProp LicenseExpression
a
b' <- licToProp b
return (a' /\ b')
licToProp (EOr LicenseExpression
a LicenseExpression
b) = do
a' <- LicenseExpression -> StateT (Map Lic (Lit s)) (SAT s) (Prop s)
forall s.
LicenseExpression -> StateT (Map Lic (Lit s)) (SAT s) (Prop s)
licToProp LicenseExpression
a
b' <- licToProp b
return (a' \/ b')
licToProp (ELicense SimpleLicenseExpression
lic Maybe LicenseExceptionId
exc) = do
let k :: Lic
k = SimpleLicenseExpression -> Maybe LicenseExceptionId -> Lic
Lic SimpleLicenseExpression
lic Maybe LicenseExceptionId
exc
s <- StateT (Map Lic (Lit s)) (SAT s) (Map Lic (Lit s))
forall (m :: * -> *) s. Monad m => StateT s m s
get
case Map.lookup k s of
Just Lit s
l -> Prop s -> StateT (Map Lic (Lit s)) (SAT s) (Prop s)
forall a. a -> StateT (Map Lic (Lit s)) (SAT s) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Lit s -> Prop s
forall s. Lit s -> Prop s
lit Lit s
l)
Maybe (Lit s)
Nothing -> do
l <- SAT s (Lit s) -> StateT (Map Lic (Lit s)) (SAT s) (Lit s)
forall (m :: * -> *) a.
Monad m =>
m a -> StateT (Map Lic (Lit s)) m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift SAT s (Lit s)
forall s. SAT s (Lit s)
newLit
put (Map.insert k l s)
return (lit l)