base-compat-0.14.1: A compatibility layer for base
Safe HaskellSafe-Inferred
LanguageHaskell2010

Numeric.Compat

Documentation

showBin :: Integral a => a -> ShowS #

readBin :: (Eq a, Num a) => ReadS a #

class Fractional a => Floating a where #

Minimal complete definition

pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh

Methods

pi :: a #

exp :: a -> a #

log :: a -> a #

sqrt :: a -> a #

(**) :: a -> a -> a #

logBase :: a -> a -> a #

sin :: a -> a #

cos :: a -> a #

tan :: a -> a #

asin :: a -> a #

acos :: a -> a #

atan :: a -> a #

sinh :: a -> a #

cosh :: a -> a #

tanh :: a -> a #

asinh :: a -> a #

acosh :: a -> a #

atanh :: a -> a #

log1p :: a -> a #

expm1 :: a -> a #

log1pexp :: a -> a #

log1mexp :: a -> a #

Instances

Instances details
Floating CDouble 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Methods

pi :: CDouble #

exp :: CDouble -> CDouble #

log :: CDouble -> CDouble #

sqrt :: CDouble -> CDouble #

(**) :: CDouble -> CDouble -> CDouble #

logBase :: CDouble -> CDouble -> CDouble #

sin :: CDouble -> CDouble #

cos :: CDouble -> CDouble #

tan :: CDouble -> CDouble #

asin :: CDouble -> CDouble #

acos :: CDouble -> CDouble #

atan :: CDouble -> CDouble #

sinh :: CDouble -> CDouble #

cosh :: CDouble -> CDouble #

tanh :: CDouble -> CDouble #

asinh :: CDouble -> CDouble #

acosh :: CDouble -> CDouble #

atanh :: CDouble -> CDouble #

log1p :: CDouble -> CDouble #

expm1 :: CDouble -> CDouble #

log1pexp :: CDouble -> CDouble #

log1mexp :: CDouble -> CDouble #

Floating CFloat 
Instance details

Defined in GHC.Internal.Foreign.C.Types

Methods

pi :: CFloat #

exp :: CFloat -> CFloat #

log :: CFloat -> CFloat #

sqrt :: CFloat -> CFloat #

(**) :: CFloat -> CFloat -> CFloat #

logBase :: CFloat -> CFloat -> CFloat #

sin :: CFloat -> CFloat #

cos :: CFloat -> CFloat #

tan :: CFloat -> CFloat #

asin :: CFloat -> CFloat #

acos :: CFloat -> CFloat #

atan :: CFloat -> CFloat #

sinh :: CFloat -> CFloat #

cosh :: CFloat -> CFloat #

tanh :: CFloat -> CFloat #

asinh :: CFloat -> CFloat #

acosh :: CFloat -> CFloat #

atanh :: CFloat -> CFloat #

log1p :: CFloat -> CFloat #

expm1 :: CFloat -> CFloat #

log1pexp :: CFloat -> CFloat #

log1mexp :: CFloat -> CFloat #

Floating Double 
Instance details

Defined in GHC.Internal.Float

Floating Float 
Instance details

Defined in GHC.Internal.Float

RealFloat a => Floating (Complex a) 
Instance details

Defined in Data.Complex

Methods

pi :: Complex a #

exp :: Complex a -> Complex a #

log :: Complex a -> Complex a #

sqrt :: Complex a -> Complex a #

(**) :: Complex a -> Complex a -> Complex a #

logBase :: Complex a -> Complex a -> Complex a #

sin :: Complex a -> Complex a #

cos :: Complex a -> Complex a #

tan :: Complex a -> Complex a #

asin :: Complex a -> Complex a #

acos :: Complex a -> Complex a #

atan :: Complex a -> Complex a #

sinh :: Complex a -> Complex a #

cosh :: Complex a -> Complex a #

tanh :: Complex a -> Complex a #

asinh :: Complex a -> Complex a #

acosh :: Complex a -> Complex a #

atanh :: Complex a -> Complex a #

log1p :: Complex a -> Complex a #

expm1 :: Complex a -> Complex a #

log1pexp :: Complex a -> Complex a #

log1mexp :: Complex a -> Complex a #

Floating a => Floating (Identity a) 
Instance details

Defined in GHC.Internal.Data.Functor.Identity

Floating a => Floating (Op a b) 
Instance details

Defined in Data.Functor.Contravariant

Methods

pi :: Op a b #

exp :: Op a b -> Op a b #

log :: Op a b -> Op a b #

sqrt :: Op a b -> Op a b #

(**) :: Op a b -> Op a b -> Op a b #

logBase :: Op a b -> Op a b -> Op a b #

sin :: Op a b -> Op a b #

cos :: Op a b -> Op a b #

tan :: Op a b -> Op a b #

asin :: Op a b -> Op a b #

acos :: Op a b -> Op a b #

atan :: Op a b -> Op a b #

sinh :: Op a b -> Op a b #

cosh :: Op a b -> Op a b #

tanh :: Op a b -> Op a b #

asinh :: Op a b -> Op a b #

acosh :: Op a b -> Op a b #

atanh :: Op a b -> Op a b #

log1p :: Op a b -> Op a b #

expm1 :: Op a b -> Op a b #

log1pexp :: Op a b -> Op a b #

log1mexp :: Op a b -> Op a b #

Floating a => Floating (Const a b) 
Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

pi :: Const a b #

exp :: Const a b -> Const a b #

log :: Const a b -> Const a b #

sqrt :: Const a b -> Const a b #

(**) :: Const a b -> Const a b -> Const a b #

logBase :: Const a b -> Const a b -> Const a b #

sin :: Const a b -> Const a b #

cos :: Const a b -> Const a b #

tan :: Const a b -> Const a b #

asin :: Const a b -> Const a b #

acos :: Const a b -> Const a b #

atan :: Const a b -> Const a b #

sinh :: Const a b -> Const a b #

cosh :: Const a b -> Const a b #

tanh :: Const a b -> Const a b #

asinh :: Const a b -> Const a b #

acosh :: Const a b -> Const a b #

atanh :: Const a b -> Const a b #

log1p :: Const a b -> Const a b #

expm1 :: Const a b -> Const a b #

log1pexp :: Const a b -> Const a b #

log1mexp :: Const a b -> Const a b #

Floating (f (g a)) => Floating (Compose f g a) 
Instance details

Defined in Data.Functor.Compose

Methods

pi :: Compose f g a #

exp :: Compose f g a -> Compose f g a #

log :: Compose f g a -> Compose f g a #

sqrt :: Compose f g a -> Compose f g a #

(**) :: Compose f g a -> Compose f g a -> Compose f g a #

logBase :: Compose f g a -> Compose f g a -> Compose f g a #

sin :: Compose f g a -> Compose f g a #

cos :: Compose f g a -> Compose f g a #

tan :: Compose f g a -> Compose f g a #

asin :: Compose f g a -> Compose f g a #

acos :: Compose f g a -> Compose f g a #

atan :: Compose f g a -> Compose f g a #

sinh :: Compose f g a -> Compose f g a #

cosh :: Compose f g a -> Compose f g a #

tanh :: Compose f g a -> Compose f g a #

asinh :: Compose f g a -> Compose f g a #

acosh :: Compose f g a -> Compose f g a #

atanh :: Compose f g a -> Compose f g a #

log1p :: Compose f g a -> Compose f g a #

expm1 :: Compose f g a -> Compose f g a #

log1pexp :: Compose f g a -> Compose f g a #

log1mexp :: Compose f g a -> Compose f g a #

floatToDigits :: RealFloat a => Integer -> a -> ([Int], Int) #

showFloat :: RealFloat a => a -> ShowS #

showSigned :: Real a => (a -> ShowS) -> Int -> a -> ShowS #

showHex :: Integral a => a -> ShowS #

showIntAtBase :: Integral a => a -> (Int -> Char) -> a -> ShowS #

readDec :: (Eq a, Num a) => ReadS a #

readHex :: (Eq a, Num a) => ReadS a #

readInt :: Num a => a -> (Char -> Bool) -> (Char -> Int) -> ReadS a #

readOct :: (Eq a, Num a) => ReadS a #

readSigned :: Real a => ReadS a -> ReadS a #

showInt :: Integral a => a -> ShowS #

showOct :: Integral a => a -> ShowS #

showBin :: Integral a => a -> ShowS #

readBin :: (Eq a, Num a) => ReadS a #