User Documentation for KINSOL v7.1.1
SUNDIALS v7.1.1

Alan C. Hindmarsh!, Radu Serban®, Cody J. Balos!,
David J. Gardner', Daniel R. Reynolds?, and Carol S. Woodward*

LCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory
2Department of Mathematics, Southern Methodist University

June 26, 2024

aials

<
S

(Vo)

UCRL-SM-208116

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The current SUNDIALS
team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R. Reynolds, and Carol S. Woodward.
We thank Radu Serban for significant and critical past contributions.

Other contributors to SUNDIALS include: James Almgren-Bell, Lawrence E. Banks, Peter N. Brown, George Byrne,
Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee, Shelby L. Lockhart, John Loffeld,
Daniel McGreer, Yu Pan, Slaven Peles, Cosmin Petra, Steven B. Roberts, H. Hunter Schwartz, Jean M. Sexton, Dan
Shumaker, Steve G. Smith, Shahbaj Sohal, Allan G. Taylor, Hilari C. Tiedeman, Chris White, Ting Yan, and Ulrike M.
Yang.

Contents

1 Introduction 1
1.1 Historical Background e 1
1.2 Changes to SUNDIALS inrelease 7.1.0 o i 2
1.3 Reading this User Guide 0 i e e e e e e e 2
1.4 SUNDIALS License and Notices ittt ettt e e e 3
1.5 Acknowledgments e 4
2 Mathematical Considerations 5
2.1 Basic Newtoniteration e e e 5
2.2 Newtonmethod variants L e 6
2.3 Jacobian information update strategy o e 6
24 Scaling e e e 7
2.5 Globalization Strategy v v i e 7
2.6 Nonlinear iteration stopping criteria L e e e e 8
2.7 Additional constraints L. L Lo e e e e e e e 8
2.8 Residual monitoring for Modified Newton method 8
2.9 Stopping criteria for iterative linear solvers Lo oo o 9
2.10 Difference quotient Jacobian approximations Lo e e 9
2.11 Basic Fixed Pointiteration L e e 10
2.12 Anderson Acceleration L. e e e e 10
2.13 Anderson Acceleration QR Factorization 11
2.14 Fixed-point - Anderson Acceleration Stopping Criterion 12
2.15 Picard - Anderson Acceleration Stopping Criterion 0oL 12
3 Code Organization 13
4 Getting Started 15
4.1 DataTypes o v v e e e e e e e e e e e e e e 16
4.2 The SUNContext Type e e 18
43 ErrorChecking L 23
4.4 Status and Error Logging e e e e e e e e e e 26
4.5 Performance Profiling e e 30
4.6 Getting Version Information o oL 33
477 Fortran Interface L L e e e e e e 34
4.8 Features for GPU Accelerated Computing o e 43
5 Using KINSOL for the Solution of Nonlinear Systems 47
5.1 Accesstolibrary and header files Lo L 47
5.2 Askeleton of the user’s main programol e e e e 48
5.3 User-callable functions L e e 50
5.4 User-supplied functions e e e e e e e 74
5.5 A parallel band-block-diagonal preconditioner module 0., 78
5.6 Alternative to KINSOL for difficult systems 82

6 Vector Data Structures

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20

Description of the NVECTOR Modules it
Description of the NVECTOR operations
NVECTOR functionsused by KINSOL
The NVECTOR_SERIAL Module e it
The NVECTOR_PARALLEL Module
The NVECTOR_OPENMP Module e
The NVECTOR_PTHREADS Module
The NVECTOR_PARHYPModule
The NVECTOR_PETSCModule i
The NVECTOR_CUDA Modulettt e e e e e
The NVECTOR_HIP Module e
The NVECTOR_SYCL Module e
The NVECTOR_RAJAModule e
The NVECTOR_KOKKOS Module e et
The NVECTOR_OPENMPDEV Module
The NVECTOR_TRILINOS Module i
The NVECTOR_MANYVECTOR Module
The NVECTOR_MPIMANYVECTOR Module
The NVECTOR_MPIPLUSX Module e et s
NVECTOR Examples oo o e e e e e e e e

Matrix Data Structures

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

Description of the SUNMATRIX Modules
Description of the SUNMATRIX operations
The SUNMATRIX_DENSE Module i
The SUNMATRIX_MAGMADENSEModule
The SUNMATRIX_ONEMKLDENSEModule
The SUNMATRIX BAND Module i
The SUNMATRIX_CUSPARSEModule
The SUNMATRIX_SPARSEModule i
The SUNMATRIX_SLUNRLOC Module i o
The SUNMATRIX_GINKGO Module
The SUNMATRIX_KOKKOSDENSE Module
SUNMATRIX Examples o o o e e e e e e e e e e
SUNMatrix functions used by KINSOL e

Linear Algebraic Solvers

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16

The SUNLinearSolver APL e e
KINSOL SUNLinearSolver interface i i i ..
The SUNLinSol_Band Module e
The SUNLinSol_Dense Module e e
The SUNLinSol_KLU Module e e e d e et e
The SUNLinSol_LapackBand Module
The SUNLinSol_LapackDense Module
The SUNLinSol_MagmaDense Module
The SUNLinSol_OneMklDense Module i i it
The SUNLinSol_PCG Module e e e e e e e e
The SUNLinSol_SPBCGS Module et e e e
The SUNLinSol_SPFGMR Module ittt e e
The SUNLinSol_SPGMR Module e e e e e e e
The SUNLinSol_SPTFQMR Module e e e e e e e e
The SUNLinSol_SuperLUDIST Module ittt
The SUNLinSol_SuperLUMT Module

ii

8.17 The SUNLinSol_cuSolverSp_batchQR Module
8.18 The SUNLINEARSOLVER_GINKGO Module
8.19 The SUNLINEARSOLVER_KOKKOSDENSE Module
8.20 SUNLinearSolver Examples L e

9 Tools for Memory Management
9.1 The SUNMemoryHelper API e
9.2 The SUNMemoryHelper_Cuda Implementation
9.3 The SUNMemoryHelper_Hip Implementation
9.4 The SUNMemoryHelper_Sycl Implementation

10 Acquiring SUNDIALS

11 Building and Installing with CMake
11.1 Configuring, building, and installing on Unix-like systems
11.2 Configuration options o e e e e e e
11.3 Configuration examples L e e e e
11.4 Working with external Libraries
11.5 Testing the build and installation e e
11.6 Building and Running Examples L o
11.7 Configuring, building, and installing on Windows
11.8 Installed libraries and exported header files
11.9 Using SUNDIALS in your project v v v v v v vttt e e e e e e e e e e e e e e e
11.10 Using SUNDIALS as a Third Party Library in other CMake Projects
11.11 Table of SUNDIALS libraries and headerfiles
11.12 Installing SUNDIALS on HPC Clusters ittt ...
11.13 Building with SUNDIALS Addons i et e

12 KINSOL Constants
12.1 KINSOL input CONStants v v v v v i it e e e e e e e e e e e e e e e e e
12.2 KINSOL output constants v v vt v vt e it e e e e e e e e e e e e e

13 Release History

14 Changelog
14.1 Changes to SUNDIALS inrelease 7.1.1 i e e
14.2 Changes to SUNDIALS inrelease 7.1.0
14.3 Changes to SUNDIALS inrelease 7.0.0 o o
14.4 Changes to SUNDIALS inrelease 6.7.0 o it
14.5 Changes to SUNDIALS inrelease 6.6.2 0 i i it e it e e e e
14.6 Changes to SUNDIALS inrelease 6.6.1 i it e
147 Changes to SUNDIALS inrelease 6.6.0
14.8 Changes to SUNDIALS inrelease 6.5.1 o i i e
14.9 Changes to SUNDIALS inrelease 6.5.0 i
14.10 Changes to SUNDIALS inrelease 6.4.1 o ittt
14.11 Changes to SUNDIALS inrelease 6.4.0 o i i i ittt e e e e
14.12 Changes to SUNDIALS inrelease 6.3.0
14.13 Changes to SUNDIALS inrelease 6.2.0
14.14 Changes to SUNDIALS inrelease 6.1.1 i
14.15 Changes to SUNDIALS inrelease 6.1.0 oo
14.16 Changes to SUNDIALS inrelease 6.0.0 i it e
14.17 Changes to SUNDIALS inrelease 5.8.0 i i et
14.18 Changes to SUNDIALS inrelease 5.7.0
14.19 Changes to SUNDIALS inrelease 5.6.1
14.20 Changes to SUNDIALS inrelease 5.6.0 i

261
261
266
268
270

273

275
275
279
291
292
297
297
297
298
298
299
300
303
304

305
305
306

309

311
311
311
313
316
317
317
317
318
318
319
319
320
321
324
324
324
330
331
331
331

iii

14.21 Changes to SUNDIALS inrelease 5.5.0 o i 332

14.22 Changes to SUNDIALS inrelease 5.4.0 0 i i ittt e e e 332
14.23 Changes to SUNDIALS inrelease 5.3.0 i i et 334
14.24 Changes to SUNDIALS inrelease 5.2.0 335
14.25 Changes to SUNDIALS inrelease 5.1.0 o oo 336
14.26 Changes to SUNDIALS inrelease 5.0.0 o 337
14.27 Changes to SUNDIALS inrelease 4.1.0 i et 340
14.28 Changes to SUNDIALS inrelease 4.0.2 0 i it ittt e e e 341
14.29 Changes to SUNDIALS inrelease 4.0.1 341
14.30 Changes to SUNDIALS inrelease 4.0.0 oo 341
14.31 Changes to SUNDIALS inrelease 3.2.1 o o ittt e e 344
14.32 Changes to SUNDIALS inrelease 3.2.0 o it 344
14.33 Changes to SUNDIALS inrelease 3.1.2 0 i i e et 345
14.34 Changes to SUNDIALS inrelease 3.1.1 345
14.35 Changes to SUNDIALS inrelease 3.1.0 346
14.36 Changes to SUNDIALS inrelease 3.0.0 346
14.37 Changes to SUNDIALS inrelease 2.7.0 o i ittt 348
14.38 Changes to SUNDIALS inrelease 2.6.2 0 0 v i it i et e e e e e e 350
14.39 Changes to SUNDIALS inrelease 2.6.1 i ittt 350
14.40 Changes to SUNDIALS inrelease 2.6.0 351
14.41 Changes to SUNDIALS inrelease 2.5.0 o 352
14.42 Changes to SUNDIALS inrelease 2.4.0 o i ittt 353
14.43 Changes to SUNDIALS inrelease 2.3.0 i ittt e e e e 354
14.44 Changes to SUNDIALS inrelease 2.2.0 0 i i ittt it e e 354
14.45 Changes to SUNDIALS inrelease 2.1.1 355
14.46 Changes to SUNDIALS inrelease 2.1.0 o o 355
14.47 Changes to SUNDIALS inrelease 2.0.2 o ittt 355
14.48 Changes to SUNDIALS inrelease 2.0.1 oo o i 355
14.49 Changes to SUNDIALS inrelease 2.0.0 i i et e 356
Bibliography 357
Index 361

iv

Chapter 1

Introduction

KINSOL is part of a software family called SUNDIALS: SUite of Nonlinear and DIfferential/AL gebraic equation
Solvers [33]. This suite consists of CVODE, ARKODE, KINSOL, and IDA, and variants of these with sensitivity
analysis capabilities.

KINSOL is a general-purpose nonlinear system solver based on Newton-Krylov solver technology. A fixed point iter-
ation is also included with the release of KINSOL v.2.8.0 and higher.

1.1 Historical Background

The first nonlinear solver packages based on Newton-Krylov methods were written in Fortran. In particular, the NKSOL
package, written at LLNL, was the first Newton-Krylov solver package written for solution of systems arising in the
solution of partial differential equations [17]. This Fortran code made use of Newton’s method to solve the discrete
nonlinear systems and applied a preconditioned Krylov linear solver for solution of the Jacobian system at each non-
linear iteration. The key to the Newton-Krylov method was that the matrix-vector multiplies required by the Krylov
method could effectively be approximated by a finite difference of the nonlinear system-defining function, avoiding a
requirement for the formation of the actual Jacobian matrix. Significantly less memory was required for the solver as
a result.

In the late 1990s, there was a push at LLNL to rewrite the nonlinear solver in C and port it to distributed memory
parallel machines. Both Newton and Krylov methods are easily implemented in parallel, and this effort gave rise to the
KINSOL package. KINSOL is similar to NKSOL in functionality, except that it provides for more options in the choice
of linear system methods and tolerances, and has a more modular design to provide flexibility for future enhancements.

At present, KINSOL may utilize a variety of Krylov methods provided in SUNDIALS. These methods include the GM-
RES (Generalized Minimal RESidual) [46], FGMRES (Flexible Generalized Minimum RESidual) [45], Bi-CGStab
(Bi-Conjugate Gradient Stabilized) [51], TFQMR (Transpose-Free Quasi-Minimal Residual) [28], and PCG (Precon-
ditioned Conjugate Gradient) [32] linear iterative methods. As Krylov methods, these require little matrix storage
for solving the Newton equations as compared to direct methods. However, the algorithms allow for a user-supplied
preconditioner, and, for most problems, preconditioning is essential for an efficient solution. For very large nonlinear
algebraic systems, the Krylov methods are preferable over direct linear solver methods, and are often the only feasible
choice. Among the Krylov methods in SUNDIALS, we recommend GMRES as the best overall choice. However, users
are encouraged to compare all options, especially if encountering convergence failures with GMRES. Bi-CGStab and
TFQMR have an advantage in storage requirements, in that the number of workspace vectors they require is fixed, while
that number for GMRES depends on the desired Krylov subspace size. FGMRES has an advantage in that it is designed
to support preconditioners that vary between iterations (e.g., iterative methods). PCG exhibits rapid convergence and
minimal workspace vectors, but only works for symmetric linear systems.

User Documentation for KINSOL, v7.1.1

For the sake of completeness in functionality, direct linear system solvers are included in KINSOL. These include
methods for both dense and banded linear systems, with Jacobians that are either user-supplied or generated internally
by difference quotients. KINSOL also includes interfaces to sparse direct solvers, including KLU [4, 20] and the
threaded sparse direct solver, SuperLU_MT [9, 22, 40], among others (see Chapter §8 for further details).

In the process of translating NKSOL into C, the overall KINSOL organization has been changed considerably. One key
feature of the KINSOL organization is that a separate module devoted to vector operations was created. This module
facilitated extension to multiprosessor environments with minimal impact on the rest of the solver. The vector module
design is shared across the SUNDIALS suite. This N_Vector module is written in terms of abstract vector operations
with the actual routines attached by a particular implementation (such as serial or parallel) of N_Vector. This abstrac-
tion allows writing the SUNDIALS solvers in a manner independent of the actual N_Vector implementation (which
can be user-supplied), as well as allowing more than one N_Vector module linked into an executable file. SUNDIALS
(and thus KINSOL) is supplied with serial, MPI-parallel, OpenMP and Pthreads thread-parallel N_Vector implemen-
tations, as well as multiple N_Vector implementations designed to leverage GPU architectures (see Chapter §6 for
further details).

There are several motivations for choosing the C language for KINSOL. First, a general movement away from Fortran
and toward C in scientific computing was apparent. Second, the pointer, structure, and dynamic memory allocation
features in C are extremely useful in software of this complexity, with the great variety of method options offered.
Finally, we prefer C over C++ for KINSOL because of the wider availability of C compilers, the potentially greater
efficiency of C, and the greater ease of interfacing the solver to applications written in Fortran.

1.2 Changes to SUNDIALS in release 7.1.0

Bug Fixes
Fixed a bug in v7.1.0 with the SYCL N_Vector N_VSpace function.
For changes in prior versions of SUNDIALS see §14.

1.3 Reading this User Guide

This user guide is a combination of general usage instructions and specific examples. We expect that some readers will
want to concentrate on the general instructions, while others will refer mostly to the examples, and the organization is
intended to accommodate both styles.

There are different possible levels of usage of KINSOL. The most casual user, with a small nonlinear system, can get by
with reading all of Chapter §2, then Chapter :numref:KINSOL.Usage.CC through §5 only, and looking at examples in
[19]. In a different direction, a more expert user with a nonlinear system may want to (a) use a package preconditioner
(§5.5), (b) supply his/her own Jacobian or preconditioner routines (§5.4), (c) supply a new N_Vector module (Chapter
§6), or even (d) supply a different linear solver module (§5.3.2 and Chapter §8).

The structure of this document is as follows:

¢ In Chapter §2, we provide short descriptions of the numerical methods implemented by KINSOL for the solution
of nonlinear systems.

* The following chapter describes the software organization of the KINSOL solver (§3).

 Chapter :numref:KINSOL.Usage.CC is the main usage document for KINSOL for C applications. It includes a
complete description of the user interface for the solution of nonlinear algebraic systems.

» Chapter §6 gives a brief overview of the generic N_Vector module shared among the various components of
SUNDIALS, and details on the four N_Vector implementations provided with SUNDIALS.

2 Chapter 1. Introduction

https://github.com/LLNL/sundials/pull/523

User Documentation for KINSOL, v7.1.1

» Chapter §7 gives a brief overview of the generic SUNMatrix module shared among the various components of
SUNDIALS, and details on the SUNMatrix implementations provided with SUNDIALS.

» Chapter §8 gives a brief overview of the generic SUNLinearSolver module shared among the various compo-
nents of SUNDIALS. This chapter contains details on the SUNLinearSolver implementations provided with
SUNDIALS. The chapter also contains details on the SUNLinearSolver implementations provided with SUN-
DIALS that interface with external linear solver libraries.

* Finally, in the appendices, we provide detailed instructions for the installation of KINSOL, within the structure
of SUNDIALS (Appendix §10), as well as a list of all the constants used for input to and output from KINSOL
functions (Appendix §12).

Finally, the reader should be aware of the following notational conventions in this user guide: program listings and
identifiers (such as KINInit) within textual explanations appear in typewriter type style; fields in C structures (such as
content) appear in italics; and packages or modules are written in all capitals. Usage and

1.4 SUNDIALS License and Notices

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an additional
notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUNDIALS
packages.

Note: If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, SuperLU_MT,
PETSc, or hypre), be sure to review the respective license of the package as that license may have more restrictive terms
than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked KLU, the build is
subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not the SUNDIALS
BSD license anymore.

1.4.1 BSD 3-Clause License

Copyright (c) 2002-2024, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

1.4. SUNDIALS License and Notices 3

User Documentation for KINSOL, v7.1.1

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.4.2 Additional Notice
This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

1.4.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)

1.5 Acknowledgments

We wish to acknowledge the contributions to previous versions of the KINSOL code and user guide by Allan G. Taylor.

4 Chapter 1. Introduction

Chapter 2

Mathematical Considerations

KINSOL solves nonlinear algebraic systems in real /N-space.

Using Newton’s method, or the Picard iteration, one can solve
F(u)=0, F:RY RN, .1)

given an initial guess ug. Using a fixed-point iteration, the convergence of which can be improved with Anderson
acceleration, one can solve

Gu)=u, G:RYN -RY, (2.2)

given an initial guess uyg.

2.1 Basic Newton iteration

Depending on the linear solver used, KINSOL can employ either an Inexact Newton method [15, 17, 21, 23, 36], or a
Modified Newton method. At the highest level, KINSOL implements the following iteration scheme:

1. Set up = an initial guess

2. Forn = 0,1, 2, ... until convergence do:
a. Solve J(up)d, = —F(uy)
b. Set tpi41 = up + A6, 0 <A <1
c. Test for convergence

Here, u,, is the nth iterate to u, and J(u) = F’(u) is the system Jacobian. At each stage in the iteration process, a
scalar multiple of the step 6,,, is added to w,, to produce a new iterate, u, 1. A test for convergence is made before the
iteration continues.

User Documentation for KINSOL, v7.1.1

2.2 Newton method variants

For solving the linear system given in step (2a), KINSOL provides several choices, including the option of a user-
supplied linear solver module. The linear solver modules distributed with SUNDIALS are organized in two families,
a direct family comprising direct linear solvers for dense, banded, or sparse matrices and a spils family comprising
scaled preconditioned iterative (Krylov) linear solvers. The methods offered through these modules are as follows:

* dense direct solvers, using either an internal implementation or a BLAS/LAPACK implementation (serial or
threaded vector modules only),

* band direct solvers, using either an internal implementation or a BLAS/LAPACK implementation (serial or
threaded vector modules only),

* sparse direct solver interfaces to various libraries, including KLU [4, 20], SuperLU_MT [9, 22, 40], SuperLU_-
Dist [8, 30, 41, 42], and cuSPARSE [7] [Note that users will need to download and install the relevant external
packages independent of KINSOL],

* SPGMR, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver,

* SPFGMR, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method) solver,

* SPBCQG, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

* SPTFQMR, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method) solver, or
* PCQG, a scaled preconditioned CG (Conjugate Gradient method) solver.

When using a direct linear solver, the linear system in 2a is solved exactly, thus resulting in a Modified Newton method
(the Jacobian matrix is normally out of date; see below). Note that KINSOL allows the user to enforce a Jacobian
evaluation at each iteration thus allowing for an Exact Newton iteration. Note that each direct linear solver is only
compatible with a subset of vector representations (see §8.1.7 for details).

When using an iterative linear solver, the linear system in (2a) is solved only approximately, thus resulting in an Inexact
Newton method. Here right preconditioning is available by way of the preconditioning setup and solve routines supplied
by the user, in which case the iterative method is applied to the linear systems (JP~1)(Pd§) = —F, where P denotes
the right preconditioning matrix.

Additionally, it is possible for users to supply a matrix-based iterative linear solver to KINSOL, resulting in a Modified
Inexact Newton method. As with the direct linear solvers, the Jacobian matrix is updated infrequently; similarly as with
iterative linear solvers the linear system is solved only approximately.

2.3 Jacobian information update strategy

In general, unless specified otherwise by the user, KINSOL strives to update Jacobian information (the actual system
Jacobian J in the case of matrix-based linear solvers, and the preconditioner matrix P in the case of iterative linear
solvers) as infrequently as possible to balance the high costs of matrix operations against other costs. Specifically, these
updates occur when:

* the problem is initialized,

[AGn—1]

D..,00 > 1.5 (Inexact Newton only),
* mbset= 10 nonlinear iterations have passed since the last update,

* the linear solver failed recoverably with outdated Jacobian information,

the global strategy failed with outdated Jacobian information, or

[IA0n]l D, 00 < steptol with outdated Jacobian or preconditioner information,

6 Chapter 2. Mathematical Considerations

User Documentation for KINSOL, v7.1.1

where the norm || - || p, o is defined below in (2.3).

KINSOL allows, through optional solver inputs, changes to the above strategy. Indeed, the user can disable the initial
Jacobian information evaluation or change the default value of mbset, the number of nonlinear iterations after which
a Jacobian information update is enforced.

2.4 Scaling

To address the case of ill-conditioned nonlinear systems, KINSOL allows users to prescribe scaling factors both for
the solution vector and for the residual vector. For scaling to be used, the user should supply values D,,, which are
diagonal elements of the scaling matrix such that D, u,, has all components roughly the same magnitude when u,, is
close to a solution, and D, which are diagonal scaling matrix elements such that D F' has all components roughly
the same magnitude when ., is not too close to a solution. Based on these scaling matrices, we define the following
scaled norms:

I2lp. = 1Duzll2, [zllpr = [[Drzll2, [I2lDy.co = [Duzlloc, and [|2[|pp 00 = [[Drzlle 23)

where || - || is the max norm. When scaling values are provided for the solution vector, these values are automati-
cally incorporated into the calculation of the perturbations used for the default difference quotient approximations for
Jacobian information; see (2.6) and (2.8) below.

2.5 Globalization strategy

Two methods of applying a computed step d,, to the previously computed solution vector are implemented. The first
and simplest is the standard Newton strategy which applies step 2(b) as above with A\ always set to 1. The other
method is a global strategy, which attempts to use the direction implied by d,, in the most efficient way for furthering
convergence of the nonlinear problem. This technique is implemented in the second strategy, called Linesearch. This
option employs both the « and 3 conditions of the Goldstein-Armijo linesearch given in [23] for step 2(b), where A is
chosen to guarantee a sufficient decrease in F' relative to the step length as well as a minimum step length relative to
the initial rate of decrease of F'. One property of the algorithm is that the full Newton step tends to be taken close to
the solution.

KINSOL implements a backtracking algorithm to first find a value A such that u,, + A\d,, satisfies the sufficient decrease
condition (or a-condition)

F(un + Mop) < F(uy) +aVF(u,)' A6,

where o = 10~*. Although backtracking in itself guarantees that the step is not too small, KINSOL secondly relaxes
A to satisfy the so-called S-condition (equivalent to Wolfe’s curvature condition):

F(up 4+ A6y) > Fuy) + BVF (un) Ao,
where 5 = 0.9. During this second phase,) is allowed to vary in the interval [Ayin, Amaz] Where

I steptol o 5
e ||5n||oo ’ " 1/D{L + |u3| ’

and A, corresponds to the maximum feasible step size at the current iteration (typically A\p,q = stepmaz/||6, | p,,)-
In the above expressions, v’/ denotes the jth component of a vector v.

For more details, the reader is referred to [23].

2.4. Scaling 7

User Documentation for KINSOL, v7.1.1

2.6 Nonlinear iteration stopping criteria

Stopping criteria for the Newton method are applied to both of the nonlinear residual and the step length. For the
former, the Newton iteration must pass a stopping test

|1 F'(tn) || Dpr,00 < ftol,

where ftol is an input scalar tolerance with a default value of U1/3. Here U is the machine unit roundoff. For the latter,
the Newton method will terminate when the maximum scaled step is below a given tolerance

[IA0n]l D, 00 < steptol,

where steptol is an input scalar tolerance with a default value of U2/3. Only the first condition (small residual) is
considered a successful completion of KINSOL. The second condition (small step) may indicate that the iteration is
stalled near a point for which the residual is still unacceptable.

2.7 Additional constraints

As a user option, KINSOL permits the application of inequality constraints, u* > 0 and u* < 0, as well as u* > 0 and
u® < 0, where 1 is the ith component of 1. Any such constraint, or no constraint, may be imposed on each component.
KINSOL will reduce step lengths in order to ensure that no constraint is violated. Specifically, if a new Newton iterate
will violate a constraint, the maximum step length along the Newton direction that will satisfy all constraints is found,
and d,, in Step 2(b) is scaled to take a step of that length.

2.8 Residual monitoring for Modified Newton method

When using a matrix-based linear solver, in addition to the strategy described above for the update of the Jacobian
matrix, KINSOL also provides an optional nonlinear residual monitoring scheme to control when the system Jacobian
is updated. Specifically, a Jacobian update will also occur when mbsetsub=5 nonlinear iterations have passed since
the last update and

1E(un) |l > W[F(um)l[Dy

where u,, is the current iterate and w,, is the iterate at the last Jacobian update. The scalar w is given by

max(0,p—1)

w = min (wmm e ,wmam) , 2.4)

with p defined as

P ()l
ftol ’

where ftol is the input scalar tolerance discussed before. Optionally, a constant value w,, s+ can be used for the param-
eter w.

The constants controlling the nonlinear residual monitoring algorithm can be changed from their default values through
optional inputs to KINSOL. These include the parameters wyy,;, and w4z, the constant value weq,s:, and the threshold
mbsetsub.

8 Chapter 2. Mathematical Considerations

User Documentation for KINSOL, v7.1.1

2.9 Stopping criteria for iterative linear solvers

When using an Inexact Newton method (i.e. when an iterative linear solver is used), the convergence of the overall
nonlinear solver is intimately coupled with the accuracy with which the linear solver in 2(a) above is solved. KINSOL
provides three options for stopping criteria for the linear system solver, including the two algorithms of Eisenstat and
Walker [26]. More precisely, the Krylov iteration must pass a stopping test

1760 + Fllpe < (nn + U)|FllDp

where 7, is one of:

Eisenstat and Walker Choice 1

N Fun)llpe = I1F(un—1) + J(un—1)0n Dy |
n — b
[1F (un—1)llDp

Eisenstat and Walker Choice 2

__(NF@)lpe *
”"‘”(|F<un_1>||Dp) !

where default values of v and « are 0.9 and 2, respectively.

Constant n
7Ny, = constant,

with 0.1 as the default.

The default strategy is “Eisenstat and Walker Choice 1. For both options 1 and 2, appropriate safeguards are incorpo-
rated to ensure that 77 does not decrease too quickly [26].

2.10 Difference quotient Jacobian approximations

With the SUNMATRIX_DENSE and SUNMATRIX_BAND matrix modules, the Jacobian may be supplied by a user
routine, or approximated by difference quotients, at the user’s option. In the latter case, we use the usual approximation

JU = [F'(u+oje’) — F'(u)]/a; . (2.5)
The increments o; are given by
o; = VU max {|u’|,1/Di} . (2.6)

In the dense case, this scheme requires N evaluations of F', one for each column of J. In the band case, the columns
of J are computed in groups, by the Curtis-Powell-Reid algorithm, with the number of F' evaluations equal to the
bandwidth. The parameter U above can (optionally) be replaced by a user-specified value, relfunc.

We note that with sparse and user-supplied matrix-based linear solvers, the Jacobian must be supplied by a user routine,
i.e. it is not approximated internally within KINSOL.

In the case of a matrix-free iterative linear solver, Jacobian information is needed only as matrix-vector products Juv.
If a routine for Jv is not supplied, these products are approximated by directional difference quotients as

J(u)v = [F(u+ ov) — F(u)]/o, 2.7

2.9. Stopping criteria for iterative linear solvers 9

User Documentation for KINSOL, v7.1.1

where w is the current approximation to a root of (2.1), and o is a scalar. The choice of o is taken from [17] and is
given by

max{|ulv|, u?yp|v|}
0113

where u,,,, is a vector of typical values for the absolute values of the solution (and can be taken to be inverses of the
scale factors given for u as described below). This formula is suitable for scaled vectors v and v, and so is applied to
D,u and D,v. The parameter U above can (optionally) be replaced by a user-specified value, rel func. Convergence
of the Newton method is maintained as long as the value of o remains appropriately small, as shown in [15].

sign(uTv)VU , (2.8)

ag =

2.11 Basic Fixed Point iteration

The basic fixed-point iteration scheme implemented in KINSOL is given by:
1. Setup = an initial guess
2. Forn = 0,1, 2, ... until convergence do:
o Setupy1 = (1 — B)un + SG(uy).
* Test for convergence.

Here, u,, is the n-th iterate to u. At each stage in the iteration process, the function G is applied to the current iterate
with the damping parameter 3 to produce a new iterate, u, 1. A test for convergence is made before the iteration
continues.

For Picard iteration, as implemented in KINSOL, we consider a special form of the nonlinear function F, such that
F(u) = Lu — N(u), where L is a constant nonsingular matrix and N is (in general) nonlinear. Then the fixed-point
function G is defined as G(u) = u — L~ F(u). The Picard iteration is given by:

1. Setup = an initial guess

2. Forn =0,1,2, ... until convergence do:
e Setupi1 = (1 — B)un, + BG(uy) where G(uy) = u, — L7 (uy,).
e Test F'(uy+1) for convergence.

Here, u,, is the n-th iterate to w. Within each iteration, the Picard step is computed then added to w,, with the damping
parameter /3 to produce the new iterate. Next, the nonlinear residual function is evaluated at the new iterate, and
convergence is checked. Noting that L=!N(u) = u — L~1F(u), the above iteration can be written in the same form
as a Newton iteration except that here, L is in the role of the Jacobian. Within KINSOL, however, we leave this in a
fixed-point form as above. For more information, see page 182 of [44].

2.12 Anderson Acceleration

The Picard and fixed point methods can be significantly accelerated using Anderson’s method [11, 27, 43, 52]. Ander-
son acceleration can be formulated as follows:

1. Setup = an initial guess and m > 1

2. Setu; = G(ug)

3. Forn = 1,2, ... until convergence do:
a. Setm, = min{m,n}

b. Set F, = (fr—my,s---, [n), Where f; = G(u;) — u;

10 Chapter 2. Mathematical Considerations

User Documentation for KINSOL, v7.1.1

c. Determine o) = (a(()"), e ,oz;?,)l) that solves min || F;,a™'||5 such that Z a; =1
i=0
d. Setu,,1 =0 Z agn)G(un_mn_H) +(1-p) Z agn)un_mnﬂ-
i=0 =0

e. Test for convergence

It has been implemented in KINSOL by turning the constrained linear least-squares problem in step 3c into an uncon-
strained one leading to the algorithm given below:

1. Set uy = an initial guess and m > 1

2. Setu; = G(up)

3. Forn = 1,2, ... until convergence do:
a. Setm,, = min{m,n}

b. Set AFn = (Afn,mn, ey Afnfl), where Afl = fi+1 — fz and fz = G(’LLZ) — U;

c. Determine (") = (fy(g"), e ,%(2_1) that solves min || f,, — AF, 7" |2
v
My —1 my,—1
d. Set upi1 = G(uy) — Z %’(n)AgnfmnH = (1= B)(f(un) — Z 'Yin)Afnfanri) with Ag; =

1=0 =0
G(uit1) — G(uy)

e. Test for convergence

The least-squares problem in 3c is solved by applying a QR factorization to AF,, = Q,, R, and solving R,y = QL f,,.
By default the damping is disabled i.e., 5 = 1.0.

The Anderson acceleration implementation includes an option to delay the start of acceleration until after a given
number of initial fixed-point or Picard iterations have been completed. This delay can be beneficial when the underlying
method has strong global convergence properties as the initial iterations may help bring the iterates closer to a solution
before starting the acceleration.

2.13 Anderson Acceleration QR Factorization

The default QR factorization routine used in Anderson acceleration is Modified Gram-Schmidet, a stable orthogonaliza-
tion routine that requires an increasing number of synchronizations per iteration dependent upon the number of vectors
being orthgonalized against. While practical use of Anderson acceleration only requires a small number of vectors to be
used in the QR factorization, this linearly scaling number of synchronizations per iteration can yield poor performance
when Anderson acceleration is performed in a parallel setting. To combat this poor performance, low synchronization
QR routines are available to the user, in particular: Inverse Compact WY Modified Gram-Schmidt [10], along with
variants of Classical Gram-Schmidt with Reorthogonalization [31]. While all of these QR factorization routines are
mathematically equivalent, they do not exhibit the same stability when performed with floating point arithmetic or in
a parallel setting.

Inverse Compact WY Modified Gram-Schmidt, which is based on triangular solve variants of Gram-Schmidt that were
developed within the context of GMRES, is an option that only requires two synchronizations per iteration. Addition-
ally, it adds a lower triangular solve at every iteration, but this generally does not affect performance due to the system
solve being small i.e., the number of vectors being orthgonalized against.

The remaining orthogonalization options are based on and include Classical Gram-Schmidt with Reorthogonalization
(CGS-2). CGS-2 only requires three synchronizations per iteration, but does not exhibit the same stability as Modified
Gram-Schmidt. Classical Gram-Schmidt with Delayed Reorthogolonization has the same stability as CGS-2, but it
reduces the number of synchronizations per iteration to two.

2.13. Anderson Acceleration QR Factorization 11

User Documentation for KINSOL, v7.1.1

2.14 Fixed-point - Anderson Acceleration Stopping Criterion

The default stopping criterion is
Uni1 — UnllDp 0o < gtol,
where D is a user-defined diagonal matrix that can be the identity or a scaling matrix chosen so that the components of

Dp(G(u) — u) have roughly the same order of magnitude. Note that when using Anderson acceleration, convergence
is checked after the acceleration is applied.

2.15 Picard - Anderson Acceleration Stopping Criterion

The default stopping criterion is

| F(tns1)|| D00 < ftol,

where D is a user-defined diagonal matrix that can be the identity or a scaling matrix chosen so that the components
of Dy F(u) have roughly the same order of magnitude. Note that when using Anderson acceleration, convergence is
checked after the acceleration is applied.

12 Chapter 2. Mathematical Considerations

Chapter 3

Code Organization

The KINSOL package is written in ANSI C. The following summarizes the basic structure of the package, although
knowledge of this structure is not necessary for its use.

SUNDIALS

KINSOL

v

KINLS
Linear Solver Interface

Vector | Matrix | Linear Solver

A 4

Preconditioner Modules

KINBBDPRE

Fig. 3.1: Overall structure diagram of the KINSOL package. Components specific to KINSOL begin with “KIN-
SOL” (KINLS and KINSOLBBDPRE), all other items correspond to generic SUNDIALS vector, matrix, and solver
interfaces.

The overall organization of the KINSOL package is shown in Fig. 3.1. KINSOL utilizes generic linear solvers defined
by the SUNLinearSolver (see §8). As such, KINSOL has no knowledge of the method being used to solve the linear
and nonlinear systems that arise. For any given user problem, there exists a single nonlinear solver interface and, if
necessary, one of the linear system solver interfaces is specified, and invoked as needed during the integration.

KINSOL has a single unified linear solver interface, KINSOLLS, supporting both direct and iterative linear solvers built
using the generic SUNLinearSolver interface (see §8). These solvers may utilize a SUNMatrix object (see §7) for
storing Jacobian information, or they may be matrix-free. Since KINSOL can operate on any valid SUNLinearSolver,
the set of linear solver modules available to KINSOL will expand as new SUNLinearSolver implementations are
developed.

For users employing SUNMATRIX_DENSE or SUNMATRIX_BAND Jacobian matrices, KINSOL includes algorithms

13

User Documentation for KINSOL, v7.1.1

for their approximation through difference quotients, although the user also has the option of supplying a routine to
compute the Jacobian (or an approximation to it) directly. This user-supplied routine is required when using sparse or
user-supplied Jacobian matrices.

For users employing matrix-free iterative linear solvers, KINSOL includes an algorithm for the approximation by dif-
ference quotients of the product Jv. Again, the user has the option of providing routines for this operation, in two
phases: setup (preprocessing of Jacobian data) and multiplication.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again in two phases: setup and
solve. While there is no default choice of preconditioner analogous to the difference-quotient approximation in the
direct case, the references [16, 18], together with the example and demonstration programs included with KINSOL,
offer considerable assistance in building preconditioners.

KINSOL’s linear solver interface consists of four primary phases, devoted to (1) memory allocation and initialization,
(2) setup of the matrix data involved, (3) solution of the system, and (4) freeing of memory. The setup and solution
phases are separate because the evaluation of Jacobians and preconditioners is done only periodically during the inte-
gration, and only as required to achieve convergence. The call list within the central KINSOL module to each of the
four associated functions is fixed, thus allowing the central module to be completely independent of the linear system
method.

KINSOL also provides a preconditioner module, for use with any of the Krylov iterative linear solvers. It works in
conjunction with the NVECTOR_PARALLEL and generates a preconditioner that is a block-diagonal matrix with each
block being a banded matrix.

All state information used by KINSOL to solve a given problem is stored in N_Vector instances. There is no global
data in the KINSOL package, and so, in this respect, it is reentrant. State information specific to the linear and nonlinear
solver are saved in the SUNLinearSolver and SUNNonlinearSolver instances respectively. The reentrancy of KIN-
SOL enables the setting where two or more problems are solved by intermixed or parallel calls to different instances of
the package from within a single user program.

14 Chapter 3. Code Organization

Chapter 4

Getting Started

The packages that make up SUNDIALS are built upon shared classes for vectors, matrices, and algebraic solvers. In
addition, the packages all leverage some other common infrastructure, which we discuss in this section.

SUNDIALS

v

v v

v v

[CVODE]

[CVODES] [ARKODE] [

IDA

] [KINSOL]

!
1]

.

)

[
[
[
[
[
[
[
[

[]
[)

Trilinos

Matrix-fre

[

)

—

SPTFQMR SPBCG]

Fig. 4.1: High-level diagram of the SUNDIALS suite.

Vectors Matrices Linear Solvers Nonlinear Solvers
Serial] [Parallel (MPI)] [Dense] [Band] Matrix-based rton] [Fixed Point
ervesce) (_opanite | |(sweme) (S | |LLoeree J[[_we]
LAPACK LAPACK
OpenMP DEV] [CUDA] [cuSPARSE] [MAGMA Dense] [Dense][Band]
SuperLU
HIP] [RAJA] [Ginkgo Dense] [oneMKL Dense] KLY
Kokkos] [syYcL] [s“,;g‘f,'.'u][CuSOLVER]
ManyVector][MPI ManyVector] [MAGMA Dense][Ginkgo]
MPI + X] Rarkhyp [oneMKL Dense] [Kokkok Kernel]

15

User Documentation for KINSOL, v7.1.1

4.1 Data Types

SUNDIALS defines several data types in the header file sundials_types.h. These types are used in the SUNDIALS
API and internally in SUNDIALS. It is not necessary to use these types in your application, but the type must be
compatible with the SUNDIALS types in the API when calling SUNDIALS functions. The types that are defined are:

* sunrealtype — the floating-point type used by the SUNDIALS packages
» sunindextype — the integer type used for vector and matrix indices

* sunbooleantype — the type used for logic operations within SUNDIALS
* SUNOutputFormat — an enumerated type for SUNDIALS output formats

* SUNComm — a simple typedef to an int when SUNDIALS is built without MPI, or a MPI_Comm when built with
MPL

4.1.1 Floating point types

type sunrealtype

The type sunrealtype can be float, double, or long double, with the default being double. The user can
change the precision of the arithmetic used in the SUNDIALS solvers at the configuration stage (see SUNDIALS_-
PRECISION).

Additionally, based on the current precision, sundials_types.h defines SUN_BIG_REAL to be the largest value rep-
resentable as a sunrealtype, SUN_SMALL_REAL to be the smallest value representable as a sunrealtype, and SUN_-
UNIT_ROUNDOFF to be the difference between 1.0 and the minimum sunrealtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called SUN_RCONST. It is this macro that needs the ability
to branch on the definition of sunrealtype. In ANSI C, a floating-point constant with no suffix is stored as a double.
Placing the suffix “F” at the end of a floating point constant makes it a float, whereas using the suffix “L” makes it a
long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a long double
constant equal to 1.0. The macro call SUN_RCONST(1.0) automatically expands to 1.0 if sunrealtype is double,
to 1.0F if sunrealtype is float, or to 1.0L if sunrealtype is long double. SUNDIALS uses the SUN_RCONST
macro internally to declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g., fabs, sqrt, exp, etc.
in sundials_math.h. The macros are prefixed with SUNR and expand to the appropriate C function based on the
sunrealtype. For example, the macro SUNRabs expands to the C function fabs when sunrealtype is double,
fabsf when sunrealtype is float, and fabsl when sunrealtype is long double.

A user program which uses the type sunrealtype, the SUN_RCONST macro, and the SUNR mathematical function
macros is precision-independent except for any calls to precision-specific library functions. Our example programs use
sunrealtype, SUN_RCONST, and the SUNR macros. Users can, however, use the type double, float, or long double
in their code (assuming that this usage is consistent with the typedef for sunrealtype) and call the appropriate math
library functions directly. Thus, a previously existing piece of C or C++ code can use SUNDIALS without modifying
the code to use sunrealtype, SUN_RCONST, or the SUNR macros so long as the SUNDIALS libraries are built to use
the corresponding precision (see §11.2).

16 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.1

4.1.2 Integer types used for indexing

type sunindextype

The type sunindextype is used for indexing array entries in SUNDIALS modules as well as for storing the total
problem size (e.g., vector lengths and matrix sizes). During configuration sunindextype may be selected to be
either a 32- or 64-bit signed integer with the default being 64-bit (see SUNDIALS_INDEX_SIZE).

When using a 32-bit integer the total problem size is limited to 23! — 1 and with 64-bit integers the limit is 263 — 1.
For users with problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype (see SUNDIALS_INDEX_TYPE).

A user program which uses sunindextype to handle indices will work with both index storage types except for any calls
to index storage-specific external libraries. Our C and C++ example programs use sunindextype. Users can, however,
use any compatible type (e.g., int, long int, int32_t, int64_t, or long long int) in their code, assuming that
this usage is consistent with the typedef for sunindextype on their architecture. Thus, a previously existing piece of
C or C++ code can use SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS
libraries use the appropriate index storage type (for details see §11.2).

4.1.3 Boolean type

type sunbooleantype

As ANSI C89 (ISO C90) does not have a built-in boolean data type, SUNDIALS defines the type sunboolean-
type as an int.

The advantage of using the name sunbooleantype (instead of int) is an increase in code readability. It also allows the
programmer to make a distinction between int and boolean data. Variables of type sunbooleantype are intended to
have only the two values: SUNFALSE or SUNTRUE.

SUNFALSE
False (0)

SUNTRUE
True (1)

4.1.4 Output formatting type

enum SUNOutputFormat
The enumerated type SUNOutputFormat defines the enumeration constants for SUNDIALS output formats
enumerator SUN_OUTPUTFORMAT_TABLE

The output will be a table of values

enumerator SUN_OUTPUTFORMAT_CSV
The output will be a comma-separated list of key and value pairs e.g., keyl,valuel,key2,value2,...

Note: The file scripts/sundials_csv.py provides python utility functions to read and output the data from
a SUNDIALS CSV output file using the key and value pair format.

4.1. Data Types 17

User Documentation for KINSOL, v7.1.1

4.1.5 MPI types

type SUNComm

A simple typedef to an int when SUNDIALS is built without MPI, or a MPI_Comm when built with MPI. This
type exists solely to ensure SUNDIALS can support MPI and non-MPI builds.

SUN_COMM_NULL
A macro defined as ® when SUNDIALS is built without MPI, or as MPI_COMM_NULL when built with MPI.

4.2 The SUNContext Type

Added in version 6.0.0.

All of the SUNDIALS objects (vectors, linear and nonlinear solvers, matrices, etc.) that collectively form a SUNDIALS
simulation, hold a reference to a common simulation context object defined by the SUNContext class.

type SUNContext

An opaque pointer used by SUNDIALS objects for error handling, logging, profiling, etc.
Users should create a SUNContext object prior to any other calls to SUNDIALS library functions by calling:
SUNErrCode SUNContext_Create (SUNComm comm, SUNContext *sunctx)

Creates a SUNContext object associated with the thread of execution. The data of the SUNContext class is

private.
Parameters
» comm — the MPI communicator or SUN_COMM_NULL if not using MPL
* sunctx — [in,out] upon successful exit, a pointer to the newly created SUNContext object.
Returns

SUNErrCode indicating success or failure.

The created SUNContext object should be provided to the constructor routines for different SUNDIALS
classes/modules e.g.,

SUNContext sunctx;
void* package_mem;
N_Vector x;

SUNContext_Create(SUN_COMM_NULL, &sunctx);

package_mem = CVodeCreate(..., sunctx);
package_mem = IDACreate(..., sunctx);
package_mem = KINCreate(..., sunctx);
package_mem = ARKStepCreate(..., sunctx);
X = N_VNew_<SomeVector>(..., sunctx);

After all other SUNDIALS code, the SUNContext object should be freed with a call to:

SUNErrCode SUNContext_Free(SUNContext *sunctx)
Frees the SUNContext object.

Parameters

* sunctx — pointer to a valid SUNContext object, NULL upon successful return.

18 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.1

Returns
SUNErrCode indicating success or failure.

Warning: When MPI is being used, the SUNContext_Free () must be called prior to MPI_Finalize.

The SUNContext API further consists of the following functions:

SUNErrCode SUNContext_GetLastError (SUNContext sunctx)
Gets the last error code set by a SUNDIALS function call. The function then resets the last error code to SUN_-
SUCCESS.

Parameters
* sunctx — a valid SUNContext object.

Returns
the last SUNErrCode recorded.

SUNErrCode SUNContext_PeekLastError (SUNContext sunctx)
Gets the last error code set by a SUNDIALS function call. The function does not reset the last error code to
SUN_SUCCESS.

Parameters

* sunctx — a valid SUNContext object.

Returns
the last SUNErrCode recorded.

SUNErrCode SUNContext_PushErrHandler (SUNContext sunctx, SUNErrHandlerFn err_fn, void
*err_user_data)

Pushes a new SUNErrHandlerFn onto the error handler stack so that it is called when an error occurs inside of
SUNDIALS.

Parameters
* sunctx — a valid SUNContext object.

» err_fn - a callback function of type SUNErrHandlerFn to be pushed onto the error handler
stack.

* err_user_data — a pointer that will be passed back to the callback function when it is
called.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_PopErrHandler (SUNContext sunctx)
Pops the last SUNErrHandlerFn off of the error handler stack.
Parameters

* sunctx — a valid SUNContext object.

Returns
SUNErrCode indicating success or failure.
SUNErrCode SUNContext_ClearErrHandlers (SUNContext sunctx)

Clears the entire error handler stack. After doing this it is important to push an error handler onto the stack with
SUNContext_PushErrHandler otherwise errors will be ignored.

4.2. The SUNContext Type 19

User Documentation for KINSOL, v7.1.1

Parameters
* sunctx — a valid SUNContext object.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_GetProfiler (SUNContext sunctx, SUNProfiler *profiler)
Gets the SUNProfiler object associated with the SUNContext object.

Parameters
* sunctx — a valid SUNContext object.

» profiler — [in,out] a pointer to the SUNProfiler object associated with this context; will
be NULL if profiling is not enabled.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_SetProfiler (SUNContext sunctx, SUNProfiler profiler)
Sets the SUNProfiler object associated with the SUNContext object.

Parameters
* sunctx — a valid SUNContext object.

» profiler — a SUNProfiler object to associate with this context; this is ignored if profiling
is not enabled.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_SetLogger (SUNContext sunctx, SUNLogger logger)
Sets the SUNLogger object associated with the SUNContext object.

Parameters
* sunctx — a valid SUNContext object.

* logger — a SUNLogger object to associate with this context; this is ignored if logging is not
enabled.

Returns
SUNErrCode indicating success or failure.

Added in version 6.2.0.

SUNErrCode SUNContext_GetLogger (SUNContext sunctx, SUNLogger *logger)
Gets the SUNLogger object associated with the SUNContext object.

Parameters
* sunctx — a valid SUNContext object.

* logger - [in,out] a pointer to the SUNLogger object associated with this context; will be
NULL if logging is not enabled.

Returns
SUNErrCode indicating success or failure.

Added in version 6.2.0.

20 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.1

4.2.1 Implications for task-based programming and multi-threading

Applications that need to have concurrently initialized SUNDIALS simulations need to take care to understand the
following:

#. A SUNContext object must only be associated with one SUNDIALS simulation (a solver object and its associated
vectors etc.) at a time.

* Concurrently initialized is not the same as concurrently executing. Even if two SUNDIALS simulations execute
sequentially, if both are initialized at the same time with the same SUNContext, behavior is undefined.

e Itis OK to reuse a SUNContext object with another SUNDIALS simulation after the first simulation has com-
pleted and all of the simulation’s associated objects (vectors, matrices, algebraic solvers, etc.) have been de-
stroyed.

#. The creation and destruction of a SUNContext object is cheap, especially in comparison to the cost of creat-
ing/destroying a SUNDIALS solver object.

The following (incomplete) code examples demonstrate these points using CVODE as the example SUNDIALS pack-
age.

SUNContext sunctxs[num_threads];
int cvode_initialized[num_threads];
void* cvode_mem[num_threads];

// Create

for (int i = 0; i1 < num_threads; i++) {
sunctxs[i] = SUNContext_Create(...);
cvode_mem[i] = CVodeCreate(..., sunctxs[i]);
cvode_initialized[i] = 0; // not yet initialized
// set optional cvode inputs...

}

// Solve

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;
int tid = omp_get_thread_num();
if (!cvode_initialized[tid]) {

retval = CVodeInit(cvode_mem[tid], ...);
cvode_initialized[tid] = 1;
} else {
retval = CVodeReInit(cvode_mem[tid], ...);
}
CVode(cvode_mem[i], ...);
}
// Destroy

for (int i = 0; i < num_threads; i++) {
// get optional cvode outputs...
CVodeFree(&cvode_mem[i]);
SUNContext_Free(&sunctxs[i]);

3

Since each thread has its own unique CVODE and SUNContext object pair, there should be no thread-safety issues.
Users should be sure that you apply the same idea to the other SUNDIALS objects needed as well (e.g. an N_Vector).

4.2. The SUNContext Type 21

User Documentation for KINSOL, v7.1.1

The variation of the above code example demonstrates another possible approach:

// Create, Solve, Destroy

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;
void* cvode_mem;
SUNContext sunctx;

sunctx = SUNContext_Create(...);
cvode_mem = CVodeCreate(..., sunctx);
retval = CVodeInit(cvode_mem, ...);
// set optional cvode inputs...
CVode(cvode_mem, ...);

// get optional cvode outputs...

CVodeFree (&cvode_mem) ;
SUNContext_Free(&sunctx) ;

So long as the overhead of creating/destroying the CVODE object is small compared to the cost of solving the ODE,
this approach is a fine alternative to the first approach since SUNContext_Create() and SUNContext_Free() are

much cheaper than the CVODE create/free routines.

4.2.2 Convenience class for C++ Users

For C++ users a RAII safe class, sundials: :Context, is provided:

namespace sundials {

class Context : public sundials::ConvertibleTo<SUNContext>
{
public:
explicit Context(SUNComm comm = SUN_COMM_NULL)
{
sunctx_ = std::make_unique<SUNContext>();
SUNContext_Create(comm, sunctx_.get());

}

/% disallow copy, but allow move construction */
Context(const Context&) = delete;
Context (Context&&) = default;

/% disallow copy, but allow move operators */
Context& operator=(const Context&) = delete;
Context& operator=(Context&&) = default;

SUNContext Convert() override

{

return “sunctx_.get();

(continues on next page)

22

Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.1

¥

SUNContext Convert() const override

{

return “sunctx_.get();

}

operator SUNContext() override

{

return “sunctx_.get();

}

operator SUNContext() const override

{

return “sunctx_.get();

}

~Context()
{

if (sunctx_) SUNContext_Free(sunctx_.get());

¥

private:
std: :unique_ptr<SUNContext> sunctx_;
};

} // namespace sundials

4.3 Error Checking

Added in version 7.0.0.

(continued from previous page)

Until version 7.0.0, error reporting and handling was inconsistent throughout SUNDIALS. Starting with version 7.0.0
all of SUNDIALS (the core, implementations of core modules, and packages) reports error mesages through the SUN-
Logger API. Furthermore, functions in the SUNDIALS core API (i.e., SUN or N_V functions only) either return a
SUNErrCode, or (if they don’t return a SUNErrCode) they internally record an error code (if an error occurs) within
the SUNContext for the execution stream. This “last error” is accessible via the SUNContext_GetLastError() or

SUNContext_PeekLastError() functions.

typedef int SUNErrCode

Thus, in user code, SUNDIALS core API functions can be checked for errors in one of two ways:

SUNContext sunctx;
SUNErrCode sunerr;
N_Vector v;

int length;
sunrealtype dotprod;

// Every code that uses SUNDIALS must create a SUNContext.

sunctx = SUNContext_Create(...);

// Create a SUNDIALS serial vector.

// Some functions do not return an error code.

(continues on next page)

4.3. Error Checking

23

User Documentation for KINSOL, v7.1.1

(continued from previous page)
// We have to check for errors in these functions using SUNContext_GetLastError.
length = 2;
v = N_VNew_Serial(length, sunctx);
sunerr = SUNContext_GetLastError(sunctx);
if (sunerr) { /* an error occured, do something */ }

// If the function returns a SUNErrCode, we can check it directly
sunerr = N_VLinearCombination(...);
if (sunerr) { /* an error occured, do something */ }

// Another function that does not return a SUNErrCode.
dotprod = N_VDotProd(...);
SUNContext_GetLastError(sunctx);
if (sunerr) {
/* an error occured, do something */
} else {
print("dotprod = %.2f\n", dotprod);
}

The function SUNGetErrMsg () can be used to get a message describing the error code.

const char *SUNGetErrMsg (SUNErrCode code)

Returns a message describing the error code.
Parameters
* code — the error code

Returns
a message describing the error code.

Note: It is recommended in most cases that users check for an error after calling SUNDIALS functions. However,
users concerned with getting the most performance might choose to exclude or limit these checks.

Warning: If a function returns a SUNErrCode then the return value is the only place the error is available i.e., these
functions do not store their error code as the “last error” so it is invalid to use SUNContext_GetLastError() to
check these functions for errors.

4.3.1 Error Handler Functions

When an error occurs in SUNDIALS, it calls error handler functions that have been pushed onto the error handler
stack in last-in first-out order. Specific error handlers can be enabled by pushing them onto the error handler stack with
the function SUNContext_PushErrHandler (). They may disabled by calling SUNContext_PopErrHandler() or
SUNContext_ClearErrHandlers (). A SUNDIALS error handler function has the type

typedef void (*SUNErrHandlerFn)(int line, const char *func, const char *file, const char *msg, SUNErrCode
err_code, void *err_user_data, SUNContext sunctx)

SUNDIALS provides a few different error handlers that can be used, or a custom one defined by the user can be
provided (useful for linking SUNDIALS errors to your application’s error handling). The default error handler is
SUNLogErrHandlerFn() which logs an error to a specified file or stderr if no file is specified.

24 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.1

The error handlers provided in SUNDIALS are:

void SUNLogErrHandlerFn(int line, const char *func, const char *file, const char *msg, SUNErrCode err_code,
void *err_user_data, SUNContext sunctx)

Logs the error that occurred using the SUNLogger from sunctx. This is the default error handler.
Parameters
¢ line - the line number at which the error occured
 func - the function in which the error occured
o file - the file in which the error occured

* msg — the message to log, if this is NULL then the default error message for the error code
will be used

* err_code - the error code for the error that occured
* err_user_data - the user pointer provided to SUNContext_PushErrHandler ()
* sunctx — pointer to a valid SUNContext object

Returns
void

void SUNAbortErrHandlerFn(int line, const char *func, const char *file, const char *msg, SUNErrCode err_code,
void *err_user_data, SUNContext sunctx)

Logs the error and aborts the program if an error occured.
Parameters

¢ line - the line number at which the error occured
 func - the function in which the error occured
e file - the file in which the error occured
* msg — this parameter is ignored
e err_code - the error code for the error that occured
» err_user_data — the user pointer provided to SUNContext_PushErrHandler ()
* sunctx — pointer to a valid SUNContext object

Returns
void

void SUNMPIAbortErrHandlerFn(int line, const char *func, const char *file, const char *msg, SUNErrCode
err_code, void *err_user_data, SUNContext sunctx)

Logs the error and calls MPI_Abort if an error occured.
Parameters
* line - the line number at which the error occured
 func - the function in which the error occured
e file - the file in which the error occured
* msg — this parameter is ignored
» err_code - the error code for the error that occured

* err_user_data - the user pointer provided to SUNContext_PushErrHandler ()

4.3. Error Checking 25

User Documentation for KINSOL, v7.1.1

* sunctx — pointer to a valid SUNContext object

Returns
void

4.4 Status and Error Logging

Added in version 6.2.0.

SUNDIALS includes a built-in logging functionality which can be used to direct error messages, warning messages,
informational output, and debugging output to specified files. This capability requires enabling both build-time and
run-time options to ensure the best possible performance is achieved.

4.4.1 Enabling Logging

To enable logging, the CMake option SUNDTALS_LOGGING_LEVEL must be set to a value greater than ® when configur-
ing SUNDIALS. This option specifies the maximum desired output level. See the documentation entry for SUNDIALS_ -
LOGGING_LEVEL for the numeric values correspond to errors, warnings, info output, and debug output where errors <
warnings < info output < debug output < extra debug output. More details in regards to configuring SUNDIALS with
CMake can be found in §10.

Note: As of version 7.0.0, enabling MPI in SUNDIALS enables MPI-aware logging.

When SUNDIALS is built with logging enabled, then the default logger (stored in the SUNContext object) may be
configured through environment variables without any changes to user code. The available environment variables are:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

These environment variables may be set to a filename string. There are two special filenames: stdout and stderr.
These two filenames will result in output going to the standard output file and standard error file. The different variables
may all be set to the same file, or to distinct files, or some combination there of. To disable output for one of the streams,
then do not set the environment variable, or set it to an empty string.

Warning: A non-default logger should be created prior to any other SUNDIALS calls in order to capture all log
events.

Note: If SUNDIALS_LOGGING_LEVEL was set to 1 (corresponding to error-level output) at build-time, then setting the
environment variable SUNLOGGER_INFO_FILENAME will do nothing.

Note: Extra debugging output is turned on by setting SUNDIALS_LOGGING_LEVEL to 5. This extra output includes
vector-values (so long as the N_Vector used supports printing).

26 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.1

4.4.2 Logger API

The central piece of the Logger API is the SUNLogger type:
type SUNLogger

An opaque pointer containing logging information.

When SUNDIALS is built with logging enabled, a default logging object is stored in the SUNContext object and can
be accessed with a call to SUNContext_GetLogger ().

The enumerated type SUNLogLevel is used by some of the logging functions to identify the output level or file.
enum SUNLogLevel
The SUNDIALS logging level
enumerator SUN_LOGLEVEL_ALL
Represents all output levels
enumerator SUN_LOGLEVEL_NONE
Represents none of the output levels
enumerator SUN_LOGLEVEL_ERROR
Represents error-level logging messages
enumerator SUN_LOGLEVEL_WARNING
Represents warning-level logging messages
enumerator SUN_LOGLEVEL_INFO
Represents info-level logging messages
enumerator SUN_LOGLEVEL_DEBUG
Represents deubg-level logging messages
The SUNLogger class provides the following methods.
int SUNLogger_Create (SUNComm comm, int output_rank, SUNLogger *logger)
Creates a new SUNLogger object.
Arguments:
e comm — the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.
* output_rank — the MPI rank used for output (can be -1 to print to all ranks).

¢ logger — [in,out] On input this is a pointer to a
SUNLogger, on output it will point to a new SUNLogger instance.

Returns:
e Returns zero if successful, or non-zero if an error occurred.
int SUNLogger_CreateFromEnv (SUNComm comm, SUNLogger *logger)

Creates a new SUNLogger object and opens the output streams/files from the environment variables:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

Arguments:

4.4. Status and Error Logging 27

User Documentation for KINSOL, v7.1.1

e comm — the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.

¢ logger - [in,out] On input this is a pointer to a
SUNLogger, on output it will point to a new SUNLogger instance.

Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetErrorFilename (SUNLogger logger, const char *error_filename)

Sets the filename for error output.
Arguments:

* logger — a SUNLogger object.

e error_filename — the name of the file to use for error output.
Returns:

e Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetWarningFilename (SUNLogger logger, const char *warning_filename)

Sets the filename for warning output.
Arguments:

* logger —a SUNLogger object.

* warning_filename — the name of the file to use for warning output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetInfoFilename (SUNLogger logger, const char *info_filename)

Sets the filename for info output.
Arguments:

* logger —a SUNLogger object.

¢ info_filename — the name of the file to use for info output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetDebugFilename (SUNLogger logger, const char *debug_filename)
Sets the filename for debug output.

Arguments:

* logger — a SUNLogger object.

* debug_filename — the name of the file to use for debug output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_QueueMsg (SUNLogger logger, SUNLogLevel 1vl, const char *scope, const char *label, const char
*msg_txt, ...)

Queues a message to the output log level.

Arguments:

28 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.1

* logger —a SUNLogger object.
e 1v1 - the message log level (i.e. error, warning, info, debug).
* scope — the message scope (e.g. the function name).
¢ label - the message label.
* msg_txt — the message text itself.
e ... —the format string arguments
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

Warning: When compiling for ANSI C / C89 / C90 (and without compiler extensions), it is dangerous to
pass any user input to this function because it falls back to using sprintf with a fixed buffer size.

It is highly recommended to compile with C99 or newer if your compiler does not support snprint £ through
extensions.

int SUNLogger_Flush(SUNLogger logger, SUNLogLevel 1v1)

Flush the message queue(s).
Arguments:

* logger —a SUNLogger object.

¢ 1vl — the message log level (i.e. error, warning, info, debug or all).
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_GetOutputRank (SUNLogger logger, int *output_rank)
Get the output MPI rank for the logger.

Arguments:
* logger — a SUNLogger object.

e output_rank — [in,out] On input this is a pointer to an int, on output it points to the int holding the
output rank.

Returns:
¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_Destroy (SUNLogger *logger)
Free the memory for the SUNLogger object.

Arguments:
* logger — a pointer to the SUNLogger object.
Returns:

¢ Returns zero if successful, or non-zero if an error occur.

4.4. Status and Error Logging 29

User Documentation for KINSOL, v7.1.1

4.4.3 Example Usage

As previously mentioned, if it is enabled at build time, there is a default SUNLogger attached to a SUNContext instance
when it is created. This logger can be configured using the environment variables, e.g.,

SUNDIALS_INFO_FILENAME=stdout ./examples/cvode/serial/cvKrylovDemo_1ls

SUNDIALS also includes several example codes that demonstrate how to use the logging interface via the C APIL.

examples/arkode/CXX_serial/ark_analytic_sys.cpp
examples/cvode/serial/cvAdvDiff_bnd.c
examples/cvode/parallel/cvAdvDiff diag_p.c
examples/kinsol/CXX_parallel/kin_em_p.cpp
examples/kinsol/CUDA_mpi/kin_em_mpicuda.cpp

4.5 Performance Profiling

Added in version 6.0.0.

SUNDIALS includes a lightweight performance profiling layer that can be enabled at compile-time. Optionally, this
profiling layer can leverage Caliper [14] for more advanced instrumentation and profiling. By default, only SUNDIALS
library code is profiled. However, a public profiling API can be utilized to leverage the SUNDIALS profiler to time
user code regions as well (see §4.5.2).

4.5.1 Enabling Profiling

To enable profiling, SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_PROFILING set to
ON. To utilize Caliper support, the CMake option ENABLE_CALIPER must also be set to ON. More details in regards to
configuring SUNDIALS with CMake can be found in §10.

When SUNDIALS is built with profiling enabled and without Caliper, then the environment variable SUNPROFILER_-
PRINT can be utilized to enable/disable the printing of profiler information. Setting SUNPROFILER_PRINT=1 will cause
the profiling information to be printed to stdout when the SUNDIALS simulation context is freed. Setting SUNPRO-
FILER_PRINT=0 will result in no profiling information being printed unless the SUNProfiler_Print () function is
called explicitly. By default, SUNPROFILER_PRINT is assumed to be 8. SUNPROFILER_PRINT can also be set to a file
path where the output should be printed.

If Caliper is enabled, then users should refer to the Caliper documentation for information on getting profiler output.
In most cases, this involves setting the CALI_CONFIG environment variable.

Note: The SUNDIALS profiler requires POSIX timers or the Windows profileapi.h timers.

Warning: While the SUNDIALS profiling scheme is relatively lightweight, enabling profiling can still negatively
impact performance. As such, it is recommended that profiling is enabled judiciously.

30 Chapter 4. Getting Started

https://software.llnl.gov/Caliper/

User Documentation for KINSOL, v7.1.1

4.5.2 Profiler API

The primary way of interacting with the SUNDIALS profiler is through the following macros:

SUNDIALS_MARK_FUNCTION_BEGIN(profobj)
SUNDIALS_MARK_FUNCTION_END (profobj)
SUNDIALS_WRAP_STATEMENT (profobj, name, stmt)
SUNDIALS_MARK_BEGIN(profobj, name)
SUNDTIALS_MARK_END (profobj, name)

Additionally, in C++ applications, the follow macro is available:

SUNDIALS_CXX_MARK_FUNCTION (profobj)

These macros can be used to time specific functions or code regions. When using the *_BEGIN macros, it is important
that a matching *_END macro is placed at all exit points for the scope/function. The SUNDIALS_CXX_MARK_FUNCTION
macro only needs to be placed at the beginning of a function, and leverages RAII to implicitly end the region.

The profobj argument to the macro should be a SUNProfiler object, i.e.

type SUNProfiler
An opaque pointer containing profiling information.

When SUNDIALS is built with profiling, a default profiling object is stored in the SUNContext object and can be
accessed with a call to SUNContext_GetProfiler().

The name argument should be a unique string indicating the name of the region/function. It is important that the name
given to the *_BEGIN macros matches the name given to the *_END macros.

In addition to the macros, the following methods of the SUNProfiler class are available.

int SUNProfiler_Create(SUNComm comm, const char *title, SUNProfiler *p)
Creates a new SUNProfiler object.

Arguments:
e comm — the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.
* title — atitle or description of the profiler

* p—[in,out] On input this is a pointer to a SUNProfiler, on output it will point to a new SUNProfiler
instance

Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Free (SUNProfiler *p)
Frees a SUNProfiler object.

Arguments:

* p — [in,out] On input this is a pointer to a SUNProfiler, on output it will be NULL
Returns:

e Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Begin(SUNProfiler p, const char *name)
Starts timing the region indicated by the name.

Arguments:

4.5. Performance Profiling 31

User Documentation for KINSOL, v7.1.1

* p—a SUNProfiler object
* name — a name for the profiling region
Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_End (SUNProfiler p, const char *name)

Ends the timing of a region indicated by the name.
Arguments:
* p—a SUNProfiler object
* name — a name for the profiling region
Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_GetElapsedTime (SUNProfiler p, const char *name, double *time)
Get the elapsed time for the timer “name” in seconds.

Arguments:

* p—a SUNProfiler object

* name — the name for the profiling region of interest

* time — upon return, the elapsed time for the timer
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_GetTimerResolution(SUNProfiler p, double *resolution)
Get the timer resolution in seconds.

Arguments:

* p—a SUNProfiler object

e resolution — upon return, the resolution for the timer
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Print (SUNProfiler p, FILE *fp)

Prints out a profiling summary. When constructed with an MPI comm the summary will include the average and
maximum time per rank (in seconds) spent in each marked up region.

Arguments:
* p—a SUNProfiler object
e fp — the file handler to print to
Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Reset (SUNProfiler p)

Resets the region timings and counters to zero.

Arguments:

32 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.1

* p—a SUNProfiler object
Returns:

e Returns zero if successful, or non-zero if an error occurred

4.5.3 Example Usage

The following is an excerpt from the CVODE example code examples/cvode/serial/cvAdvDiff_bnd.c. It is
applicable to any of the SUNDIALS solver packages.

SUNContext ctx;
SUNProfiler profobj;

/* Create the SUNDIALS context */
retval = SUNContext_Create(SUN_COMM_NULL, &ctx);

/% Get a reference to the profiler */
retval SUNContext_GetProfiler(ctx, &profobj);

/:!‘ 7':/

SUNDTIALS_MARK_BEGIN(profobj, "Integration loop");

umax = N_VMaxNorm(uw);

PrintHeader(reltol, abstol, umax);

for(iout=1, tout=T1l; iout <= NOUT; iout++, tout += DTOUT) {
retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
umax = N_VMaxNorm(u);
retval = CVodeGetNumSteps(cvode_mem, &nst);
PrintOutput(t, umax, nst);

}
SUNDIALS_MARK_END(profobj, "Integration loop");
PrintFinalStats(cvode_mem); /* Print some final statistics 74

4.5.4 Other Considerations

If many regions are being timed, it may be necessary to increase the maximum number of profiler entries (the default
is 2560). This can be done by setting the environment variable SUNPROFILER_MAX_ENTRIES.

4.6 Getting Version Information

SUNDIALS provides additional utilities to all packages, that may be used to retrieve SUNDIALS version information
at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:
* version — character array to hold the SUNDIALS version information.
¢ len — allocated length of the version character array.

Return value:

4.6. Getting Version Information 33

User Documentation for KINSOL, v7.1.1

* (if successful
* -1 if the input string is too short to store the SUNDIALS version

Notes:
An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber (int *major, int *minor, int *patch, char *label, int len)

This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the
release label if applicable.

Arguments:
* major — SUNDIALS release major version number.
» minor — SUNDIALS release minor version number.
e patch — SUNDIALS release patch version number.
e label — string to hold the SUNDIALS release label.
* len — allocated length of the label character array.
Return value:
* 0 if successful
* -1 if the input string is too short to store the SUNDIALS label

Notes:
An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

4.7 Fortran Interface

SUNDIALS provides modern, Fortran 2003 based, interfaces as Fortran modules to most of the C API including:
* The SUNDIALS core types, utilities, and data structures via the fsundials_core_mod module.
 All of the time-stepping modules in ARKODE:

— The farkode_arkstep_mod, farkode_erkstep_mod, farkode_mristep_mod, and farkode_sprk-
step_mod modules provide interfaces to the ARKStep, ERKStep, MRIStep, and SPRKStep integrators
respectively.

— The farkode_mod module interfaces to the components of ARKODE which are shared by the time-
stepping modules.

CVODE via the fcvode_mod module.
CVODES via the fcvodes_mod module.

¢ IDA via the fida_mod module.
¢ IDAS via the fidas_mod module.
¢ KINSOL via the fkinsol_mod module.

Additionally, all of the SUNDIALS base classes (N_Vector, SUNMatrix, and SUNLinearSolver) include Fortran
interface modules. A complete list of class implementations with Fortran 2003 interface modules is given in Table 4.1.

An interface module can be accessed with the use statement, e.g.

34 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.1

use fsundials_core_mod
use fcvode_mod
use fnvector_openmp_mod

! this is needed to access core SUNDIALS types, utilities, and data structures
! this is needed to access CVODE functions and types
! this is needed to access the OpenMP implementation of the N_Vector class

and by linking to the Fortran 2003 library in addition to the C library, e.g. 1ibsundials_fcore_mod.<so|a>, lib-
sundials_core.<so|a>, libsundials_fnvecpenmp_mod.<so|a>, libsundials_nvecopenmp.<so|a>, lib-
sundials_fcvode_mod.<so|a> and libsundials_cvode.<so|a>. The use statements mirror the #include
statements needed when using the C APL

The Fortran 2003 interfaces leverage the iso_c_binding module and the bind(C) attribute to closely follow the
SUNDIALS C API (modulo language differences). The SUNDIALS classes, e.g. N_Vector, are interfaced as Fortran
derived types, and function signatures are matched but with an F prepending the name, e.g. FN_VConst instead of
N_VConst () or FCVodeCreate instead of CVodeCreate. Constants are named exactly as they are in the C APL
Accordingly, using SUNDIALS via the Fortran 2003 interfaces looks just like using it in C. Some caveats stemming
from the language differences are discussed in §4.7.2. A discussion on the topic of equivalent data types in C and
Fortran 2003 is presented in §4.7.1.

Further information on the Fortran 2003 interfaces specific to the N_Vector, SUNMatrix, SUNLinearSolver, and
SUNNonlinearSolver classes is given alongside the C documentation. For details on where the Fortran 2003 module
(.mod) files and libraries are installed see §10.

The Fortran 2003 interface modules were generated with SWIG Fortran [35], a fork of SWIG. Users who are interested
in the SWIG code used in the generation process should contact the SUNDIALS development team.

Table 4.1: List of SUNDIALS Fortran 2003 interface modules

Class/Module Fortran 2003 Module Name
SUNDIALS core fsundials_core_mode
ARKODE farkode_mod

ARKODE::ARKSTEP
ARKODE::ERKSTEP
ARKODE::MRISTEP
ARKODE::SPRKSTEP

CVODE

CVODES

IDA

IDAS

KINSOL

NVECTOR_SERIAL
NVECTOR_OPENMP
NVECTOR_PTHREADS
NVECTOR_PARALLEL
NVECTOR_PARHYP
NVECTOR_PETSC
NVECTOR_CUDA
NVECTOR_RAJA
NVECTOR_SYCL
NVECTOR_MANVECTOR
NVECTOR_MPIMANVECTOR
NVECTOR_MPIPLUSX
SUNMATRIX_BAND
SUNMATRIX_DENSE
SUNMATRIX_MAGMADENSE
SUNMATRIX_ONEMKLDENSE

farkode_arkstep_mod
farkode_erkstep_mod
farkode_mristep_mod
farkode_sprkstep_mod
fcvode_mod
fcvodes_mod

fida_mod

fidas_mod

fkinsol_mod
fnvector_serial_mod
fnvector_openmp_mod
fnvector_pthreads_mod
fnvector_parallel_mod
Not interfaced

Not interfaced

Not interfaced

Not interfaced

Not interfaced
fnvector_manyvector_mod
fnvector_mpimanyvector_mod
fnvector_mpiplusx_mod
fsunmatrix_band_mod
fsunmatrix_dense_mod
Not interfaced

Not interfaced

continues on next page

4.7. Fortran Interface

35

https://sundials.readthedocs.io/en/v7.1.1/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinearSolver

User Documentation for KINSOL, v7.1.1

Table 4.1 — continued from previous page

Class/Module

Fortran 2003 Module Name

SUNMATRIX_SPARSE
SUNLINSOL_BAND
SUNLINSOL_DENSE
SUNLINSOL_LAPACKBAND
SUNLINSOL_LAPACKDENSE
SUNLINSOL_MAGMADENSE
SUNLINSOL_ONEMKLDENSE
SUNLINSOL_KLU
SUNLINSOL_SLUMT
SUNLINSOL_SLUDIST
SUNLINSOL_SPGMR
SUNLINSOL_SPFGMR
SUNLINSOL_SPBCGS
SUNLINSOL_SPTFQMR
SUNLINSOL_PCG
SUNNONLINSOL_NEWTON

SUNNONLINSOL_FIXEDPOINT

SUNNONLINSOL_PETSCSNES

fsunmatrix_sparse_mod
fsunlinsol_band_mod
fsunlinsol_dense_mod

Not interfaced

Not interfaced

Not interfaced

Not interfaced
fsunlinsol_klu_mod

Not interfaced

Not interfaced
fsunlinsol_spgmr_mod
fsunlinsol_spfgmr_mod
fsunlinsol_spbcgs_mod
fsunlinsol_sptfgmr_mod
fsunlinsol_pcg_mof
fsunnonlinsol_newton_mod
fsunnonlinsol_fixedpoint_mod
Not interfaced

4.7.1 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive types map to
the iso_c_binding type equivalent. SUNDIALS classes map to a Fortran derived type. However, the handling of
pointer types is not always clear as they can depend on the parameter direction. Table 4.2 presents a summary of the

type equivalencies with the parameter direction in mind.

Warning: Currently, the Fortran 2003 interfaces are only compatible with SUNDIALS builds where the sunre-
altype is double-precision.

Changed in version 7.1.0: The Fortran interfaces can now be built with 32-bit sunindextype in addition to 64-bit

sunindextype.
Table 4.2: C/Fortran-2003 Equivalent Types

C Type Parameter Direction Fortran 2003 type

SUNComm in, inout, out, return integer(c_int)

SUNErrCode in, inout, out, return integer(c_int)

double in, inout, out, return real (c_double)

int in, inout, out, return integer(c_int)

long in, inout, out, return integer(c_long)

sunbooleantype in, inout, out, return integer(c_int)

sunrealtype in, inout, out, return real (c_double)

sunindextype in, inout, out, return integer(c_long)

double* in, inout, out real (c_double), dimension(*)

double* return real (c_double), pointer, dimension(:)

int* in, inout, out real(c_int), dimension(*)

int* return real(c_int), pointer, dimension(:)

long* in, inout, out real(c_long), dimension(*)

continues on next page

36 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.1

Table 4.2 — continued from previous page

C Type Parameter Direction Fortran 2003 type

long* return real(c_long), pointer, dimension(:)
sunrealtype*® in, inout, out real (c_double), dimension(*)
sunrealtype*® return real (c_double), pointer, dimension(:)
sunindextype* in, inout, out real(c_long), dimension(*)
sunindextype* return real(c_long), pointer, dimension(:)
sunrealtype[] in, inout, out real (c_double), dimension(*)
sunindextypel[] in, inout, out integer(c_long), dimension(*)
N_Vector in, inout, out type(N_Vector)

N_Vector return type(N_Vector), pointer

SUNMatrix in, inout, out type (SUNMatrix)

SUNMatrix return type(SUNMatrix), pointer
SUNLinearSolver in, inout, out type(SUNLinearSolver)
SUNLinearSolver return type(SUNLinearSolver), pointer
SUNNonlinearSolver in, inout, out type (SUNNonlinearSolver)
SUNNonlinearSolver return type(SUNNonlinearSolver), pointer
FILE* in, inout, out, return type(c_ptr)

void* in, inout, out, return type(c_ptr)

TP in, inout, out, return type(c_ptr)

TPEsEses in, inout, out, return type(c_ptr)

TS in, inout, out, return type(c_ptr)

4.7.2 Notable Fortran/C usage differences

While the Fortran 2003 interface to SUNDIALS closely follows the C API, some differences are inevitable due to the
differences between Fortran and C. In this section, we note the most critical differences. Additionally, §4.7.1 discusses
equivalencies of data types in the two languages.

4.7.2.1 Creating generic SUNDIALS objects

In the C API a SUNDIALS class, such as an N_Vector, is actually a pointer to an underlying C struct. However,
in the Fortran 2003 interface, the derived type is bound to the C struct, not the pointer to the struct. For example,
type(N_Vector) is bound to the C struct _generic_N_Vector not the N_Vector type. The consequence of this is
that creating and declaring SUNDIALS objects in Fortran is nuanced. This is illustrated in the code snippets below:

C code:

N_Vector x;
X = N_VNew_Serial (N, sunctx);

Fortran code:

type(N_Vector), pointer :: x
x => FN_VNew_Serial (N, sunctx)

Note that in the Fortran declaration, the vector is a type(N_Vector), pointer, and that the pointer assignment
operator is then used.

4.7. Fortran Interface 37

User Documentation for KINSOL, v7.1.1

4.7.2.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when they are return values
versus arguments to a function. Additionally, pointers which are meant to be out parameters, not arrays, in the C API
must still be declared as a rank-1 array in Fortran. The reason for this is partially due to the Fortran 2003 standard for
C bindings, and partially due to the tool used to generate the interfaces. Regardless, the code snippets below illustrate

the differences.

C code:

N_Vector x;
sunrealtype* xdata;
long int leniw, lenrw;

/% create a new serial vector */
X = N_VNew_Serial (N, sunctx);

/* capturing a returned array/pointer */
xdata = N_VGetArrayPointer(x)

/% passing array/pointer to a function */
N_VSetArrayPointer(xdata, x)

/* pointers that are out-parameters */
N_VSpace(x, &leniw, &lenrw);

Fortran code:

type(N_Vector), pointer :: x

real(c_double), pointer :: xdataptr(:)

real (c_double) 11 xdata(N)
integer(c_long) :: leniw(1l), lenrw(l)

! create a new serial vector
x => FN_VNew_Serial(x, sunctx)

! capturing a returned array/pointer
xdataptr => FN_VGetArrayPointer (x)

! passing array/pointer to a function
call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters
call FN_VSpace(x, leniw, lenrw)

38

Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.1

4.7.2.3 Passing procedure pointers and user data

Since functions/subroutines passed to SUNDIALS will be called from within C code, the Fortran procedure must
have the attribute bind (C). Additionally, when providing them as arguments to a Fortran 2003 interface routine, it is
required to convert a procedure’s Fortran address to C with the Fortran intrinsic c_funloc.

Typically when passing user data to a SUNDIALS function, a user may simply cast some custom data structure as a
void*. When using the Fortran 2003 interfaces, the same thing can be achieved. Note, the custom data structure does
not have to be bind (C) since it is never accessed on the C side.

C code:

MyUserData *udata;
void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);

Fortran code:

type(MyUserData) :: udata
type(c_ptr) :: arkode_mem

ierr = FARKStepSetUserData(arkode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem parameters, within
modules, and thus do not need the SUNDIALS-provided user_data pointers to pass such data back to user-supplied
functions. These users should supply the c_null_ptr input for user_data arguments to the relevant SUNDIALS
functions.

4.7.2.4 Passing NULL to optional parameters

In the SUNDIALS C API some functions have optional parameters that a caller can pass as NULL. If the optional
parameter is of a type that is equivalent to a Fortran type(c_ptr) (see §4.7.1), then a Fortran user can pass the
intrinsic c_null_ptr. However, if the optional parameter is of a type that is not equivalent to type (c_ptr), then a
caller must provide a Fortran pointer that is dissociated. This is demonstrated in the code example below.

C code:

SUNLinearSolver LS;
N_Vector x, b;

/* SUNLinSolSolve expects a SUNMatrix or NULL as the second parameter. */
ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:

type(SUNLinearSolver), pointer :: LS
type(SUNMatrix), pointer 1 A
type(N_Vector), pointer it x, b

! Disassociate A
A => nullQ

! SUNLinSolSolve expects a type(SUNMatrix), pointer as the second parameter.

(continues on next page)

4.7. Fortran Interface 39

User Documentation for KINSOL, v7.1.1

(continued from previous page)

! Therefore, we cannot pass a c_null ptr, rather we pass a disassociated A.
ierr = FSUNLinSolSolve(LS, A, x, b)

4.7.2.5 Working with N_Vector arrays

Arrays of N_Vector objects are interfaced to Fortran 2003 as an opaque type(c_ptr). As such, it is not possible to
directly index an array of N_Vector objects returned by the N_Vector “VectorArray” operations, or packages with sen-
sitivity capabilities (CVODES and IDAS). Instead, SUNDIALS provides a utility function FN_VGetVecAtIndexVec-
torArray wrapping N_VGetVecAtIndexVectorArray (). The example below demonstrates accessing a vector in a
vector array.

C code:

N_Vector x;
N_Vector* vecs;

/* Create an array of N_Vectors */
vecs = N_VCloneVectorArray(count, Xx);

/* Fill each array with ones */
for (int i = 0; i < count; ++i)
N_VConst(vecs[i], 1.0);

Fortran code:

type(N_Vector), pointer :: x, xi
type(c_ptr) 11 vecs

! Create an array of N_Vectors
vecs = FN_VCloneVectorArray(count, X)

! Fill each array with ones

do index = 0,count-1
xi => FN_VGetVecAtIndexVectorArray(vecs, index)
call FN_VConst(xi, 1.d0)

enddo

SUNDIALS also provides the functions N_VSetVecAtIndexVectorArray () and N_VNewVectorArray () for work-
ing with N_Vector arrays, that have corresponding Fortran interfaces FN_VSetVecAtIndexVectorArray and FN_-
VNewVectorArray, respectively. These functions are particularly useful for users of the Fortran interface to the NVEC-
TOR_MANYVECTOR or NVECTOR_MPIMANYVECTOR when creating the subvector array. Both of these functions
along with N_VGetVecAtIndexVectorArray() (wrapped as FN_VGetVecAtIndexVectorArray) are further de-
scribed in §6.1.1.

40 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.1

4.7.2.6 Providing file pointers

There are a few functions in the SUNDIALS C API which take a FILE* argument. Since there is no portable way to
convert between a Fortran file descriptor and a C file pointer, SUNDIALS provides two utility functions for creating a
FILE* and destroying it. These functions are defined in the module fsundials_core_mod.

SUNErrCode SUNDIALSFileOpen(const char *filename, const char *mode, FILE **fp)

The function allocates a FILE* by calling the C function fopen with the provided filename and I/O mode.
Parameters

» filename - the path to the file, that should have Fortran type character (kind=C_CHAR,
len=*). There are two special filenames: stdout and stderr — these two filenames will
result in output going to the standard output file and standard error file, respectively.

* mode - the I/O mode to use for the file. This should have the Fortran type charac-
ter (kind=C_CHAR, len=*). The string begins with one of the following characters:

r to open a text file for reading

T+ to open a text file for reading/writing

w to truncate a text file to zero length or create it for writing

w+ to open a text file for reading/writing or create it if it does
not exist

a to open a text file for appending, see documentation of fopen for
your system/compiler

a+ to open a text file for reading/appending, see documentation for
fopen for your system/compiler

» fp — The FILE* that will be open when the function returns. This should be a type(c_ptr) in
the Fortran.

Returns
A SUNErrCode

Usage example:
type(c_ptr) :: fp

! Open up the file output.log for writing
ierr = FSUNDIALSFileOpen("output.log", "w+", £p)

! The C function ARKStepPrintMem takes void* arkode_mem and FILE* fp as arguments
call FARKStepPrintMem(arkode_mem, fp)

! Close the file
ierr = FSUNDIALSFileClose(fp)

Changed in version 7.0.0: The function signature was updated to return a SUNErrCode and take a FILE** as
the last input parameter rather then return a FILE*.

SUNErrCode SUNDIALSFileClose (FILE **fp)

The function deallocates a C FILE* by calling the C function fclose with the provided pointer.

Parameters

4.7. Fortran Interface 41

20

21

22

23

24

25

User Documentation for KINSOL, v7.1.1

» fp — the C FILE* that was previously obtained from fopen. This should have the Fortran
type type(c_ptr). Note that if either stdout or stderr were opened using SUNDIALS-
FileOpen()

Returns
A SUNErrCode

Changed in version 7.0.0: The function signature was updated to return a SUNErrCode and the fp parameter was
changed from FILE* to FILE**.

4.7.3 Important notes on portability

The SUNDIALS Fortran 2003 interface should be compatible with any compiler supporting the Fortran 2003 ISO
standard.

Upon compilation of SUNDIALS, Fortran module (.mod) files are generated for each Fortran 2003 interface. These
files are highly compiler specific, and thus it is almost always necessary to compile a consuming application with the
same compiler that was used to generate the modules.

4.7.4 Common Issues

In this subsection, we list some common issues users run into when using the Fortran interfaces.
Strange Segmentation Fault in User-Supplied Functions

One common issue we have seen trip up users (and even ourselves) has the symptom of segmentation fault in a user-
supplied function (such as the RHS) when trying to use one of the callback arguments. For example, in the following
RHS function, we will get a segfault on line 21:

integer(c_int) function ff(t, yvec, ydotvec, user_data) &
result(ierr) bind(C)

use, intrinsic :: iso_c_binding
use fsundials_nvector_mod
implicit none

real(c_double) :: t ! <===== Missing value attribute
type(N_Vector) :: yvec
type(N_Vector) :: ydotvec

type(c_ptr) :: user_data
real(c_double) :: e

real(c_double) :: u, v
real(c_double) :: tmpl, tmp2

real (c_double), pointer :: yarr(:)

real (c_double), pointer :: ydotarr(:)

! get N_Vector data arrays
yarr => FN_VGetArrayPointer(yvec)
ydotarr => FN_VGetArrayPointer(ydotvec) ! <===== SEGFAULTS HERE

! extract variables
u = yarr(l)
v yarr(2)

(continues on next page)

42 Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.1

(continued from previous page)

! fill in the RHS function:

P[0 0]*[(-1+ur2-r(t))/(2*w] + [0]
I [e -1] [(-2+vA2-5(t))/(2*Vv)] [sdot(t)/(2*vtrue(t))]
tmpl = (-ONE+u*u-r(t))/(TWO*u)

tmp2 = (-TWO+v*v-s(t))/(TWO*v)

ydotarr(1l) = ZERO

ydotarr(2) = e*tmpl - tmp2 + sdot(t)/(TWO*vtrue(t))

! return success
ierr = 0
return

end function

The subtle bug in the code causing the segfault is on line 8. It should read real (c_double), value :: t instead
of real(c_double) :: t (notice the value attribute). Fundamental types that are passed by value in C need the
value attribute.

4.8 Features for GPU Accelerated Computing

In this section, we introduce the SUNDIALS GPU programming model and highlight SUNDIALS GPU features. The
model leverages the fact that all of the SUNDIALS packages interact with simulation data either through the shared
vector, matrix, and solver APIs or through user-supplied callback functions. Thus, under the model, the overall structure
of the user’s calling program, and the way users interact with the SUNDIALS packages is similar to using SUNDIALS
in CPU-only environments.

4.8.1 SUNDIALS GPU Programming Model

As described in [13], within the SUNDIALS GPU programming model, all control logic executes on the CPU, and
all simulation data resides wherever the vector or matrix object dictates as long as SUNDIALS is in control of the
program. That is, SUNDIALS will not migrate data (explicitly) from one memory space to another. Except in the most
advanced use cases, it is safe to assume that data is kept resident in the GPU-device memory space. The consequence
of this is that, when control is passed from the user’s calling program to SUNDIALS, simulation data in vector or
matrix objects must be up-to-date in the device memory space. Similarly, when control is passed from SUNDIALS to
the user’s calling program, the user should assume that any simulation data in vector and matrix objects are up-to-date
in the device memory space. To put it succinctly, it is the responsibility of the user’s calling program to manage data
coherency between the CPU and GPU-device memory spaces unless unified virtual memory (UVM), also known as
managed memory, is being utilized. Typically, the GPU-enabled SUNDIALS modules provide functions to copy data
from the host to the device and vice-versa as well as support for unmanaged memory or UVM. In practical terms, the
way SUNDIALS handles distinct host and device memory spaces means that users need to ensure that the user-supplied
functions, e.g. the right-hand side function, only operate on simulation data in the device memory space otherwise extra
memory transfers will be required and performance will suffer. The exception to this rule is if some form of hybrid
data partitioning (achievable with the NVECTOR_MANY VECTOR, see §6.17) is utilized.

SUNDIALS provides many native shared features and modules that are GPU-enabled. Currently, these include the
NVIDIA CUDA platform [5], AMD ROCm/HIP [2], and Intel oneAPI [3]. Table 4.3-Table 4.5 summarize the shared
SUNDIALS modules that are GPU-enabled, what GPU programming environments they support, and what class of
memory they support (unmanaged or UVM). Users may also supply their own GPU-enabled N_Vector, SUNMatrix, or
SUNLinearSolver implementation, and the capabilties will be leveraged since SUNDIALS operates on data through
these APIs.

4.8. Features for GPU Accelerated Computing 43

User Documentation for KINSOL, v7.1.1

In addition, SUNDIALS provides a memory management helper module (see §9) to support applications which imple-
ment their own memory management or memory pooling.

Table 4.3: List of SUNDIALS GPU-enabled N_Vector Modules

oneAPI Unmanaged Memory UVM

Module CUDA ROCn/HIP
NVECTOR_CUDA X

NVECTOR_HIP X X
NVECTOR_SYCL X3 X3
NVECTOR_RAJA X X
NVECTOR_KOKKOS X X
NVECTOR_OPENMPDEV X X2

X XX

KR X R

KR X R

Table 4.4: List of SUNDIALS GPU-enabled SUNMatrix Modules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNMATRIX_CUSPARSE X X X
SUNMATRIX_ONEMKLDENSE X3 X3 X X X
SUNMATRIX_MAGMADENSE X X X X
SUNMATRIX_GINKGO X X X X
SUNMATRIX_KOKKOSDENSE X X X X

Table 4.5: List of SUNDIALS GPU-enabled SUNLinearSolver Mod-

ules
Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNLINSOL_CUSOLVERSP X X X
SUNLINSOL_ONEMKLDENSE X3 X3 X X X
SUNLINSOL_MAGMADENSE X X X
SUNLINSOL_GINKGO X X X X
SUNLINSOL_KOKKOSDENSE X X X X
SUNLINSOL_SPGMR X! X! X! X! X!
SUNLINSOL_SPFGMR X! X! X! X! X!
SUNLINSOL_SPTFQMR X! X! X! x! X!
SUNLINSOL_SPBCGS X! X! X! X! X!
SUNLINSOL_PCG X! X! X! X! X!

Notes regarding the above tables:

In addition, note that implicit UVM (i.e. malloc returning UVM) is not accounted for.

1. This module inherits support from the NVECTOR module used

2. Support for ROCm/HIP and oneAPI are currently untested.

3. Support for CUDA and ROCm/HIP are currently untested.

44

Chapter 4. Getting Started

User Documentation for KINSOL, v7.1.1

4.8.2 Steps for Using GPU Accelerated SUNDIALS

For any SUNDIALS package, the generalized steps a user needs to take to use GPU accelerated SUNDIALS are:

1. Utilize a GPU-enabled N_Vector implementation. Initial data can be loaded on the host, but must be in the
device memory space prior to handing control to SUNDIALS.

Utilize a GPU-enabled SUNLinearSolver linear solver (if applicable).
Utilize a GPU-enabled SUNMatrix implementation (if using a matrix-based linear solver).

Utilize a GPU-enabled SUNNonlinearSolver nonlinear solver (if applicable).

A

Write user-supplied functions so that they use data only in the device memory space (again, unless an atypical
data partitioning is used). A few examples of these functions are the right-hand side evaluation function, the
Jacobian evalution function, or the preconditioner evaulation function. In the context of CUDA and the right-
hand side function, one way a user might ensure data is accessed on the device is, for example, calling a CUDA
kernel, which does all of the computation, from a CPU function which simply extracts the underlying device data
array from the N_Vector object that is passed from SUNDIALS to the user-supplied function.

Users should refer to the above tables for a complete list of GPU-enabled native SUNDIALS modules.

4.8. Features for GPU Accelerated Computing 45

User Documentation for KINSOL, v7.1.1

46 Chapter 4. Getting Started

Chapter 5

Using KINSOL for the Solution of
Nonlinear Systems

This section is concerned with the use of KINSOL for the solution of nonlinear systems.

The following sections treat the header files and the layout of the user’s main program, and provide descriptions of
the KINSOL user-callable functions and user-supplied functions. The sample programs described in the companion
document [19] may also be helpful. Those codes may be used as templates (with the removal of some lines used in
testing) and are included in the KINSOL package.

KINSOL uses various constants for both input and output. These are defined as needed in this chapter, but for conve-
nience are also listed separately in §12.

The user should be aware that not all SUNLinearSolver and SUNMatrix objects are compatible with all N_Vector
implementations. Details on compatibility are given in the documentation for each SUNMatrix (Chapter §7) and
SUNLinearSolver (Chapter §8) implementation. For example, NVECTOR_PARALLEL is not compatible with the dense,
banded, or sparse SUNMatrix types, or with the corresponding dense, banded, or sparse SUNLinearSolver objects.
Please check Chapters §7 and §8 to verify compatibility between these objects. In addition to that documentation,
we note that the KINBBDPRE preconditioner can only be used with NVECTOR_PARALLEL. It is not recommended to
use a threaded vector object with SuperLU_MT unless it is the NVECTOR_OPENMP module, and SuperLU_MT is also
compiled with OpenMP.

5.1 Access to library and header files

At this point, it is assumed that the installation of KINSOL, following the procedure described in §10, has been com-
pleted successfully. In the proceeding text, the directories 1ibdir and incdir are the installation library and include
directories, respectively. For a default installation, these are instdir/lib and instdir/include, respectively, where
instdir is the directory where SUNDIALS was installed.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by KINSOL. KINSOL symbols are found
inlibdir/libsundials_kinsol.1lib. Thus, in addition to linking to 1ibdir/libsundials_core.1lib, KINSOL
users need to link to the KINSOL library. Symbols for additional SUNDIALS modules, vectors and algebraic solvers,
are found in

<libdir>/libsundials_nvec®*.1lib
<libdir>/libsundials_sunmat®.lib
<libdir>/libsundials_sunlinsol®*.1lib

(continues on next page)

47

User Documentation for KINSOL, v7.1.1

(continued from previous page)

<libdir>/libsundials_sunnonlinsol®*.1lib
<libdir>/libsundials_sunmem*.1lib

The file extension .1ib is typically .so for shared libraries and . a for static libraries.
The relevant header files for KINSOL are located in the subdirectories incdir/include/kinsol. To use KINSOL
the application needs to include the header file for KINSOL in addition to the SUNDIALS core header file:

#include <sundials/sundials_core.h> // Provides core SUNDIALS types
#include <kinsol/kinsol.h> // KINSOL provides methods for solving nonlinear systems

The calling program must also include an N_Vector implementation header file, of the form nvector/nvector_*.h.
See §6 for the appropriate name.

If using a Newton or Picard nonlinear solver that requires the solution of a linear system, the calling program must
also include a SUNLinearSolver implementation header file, of the from sunlinsol/sunlinsol_%*.h where * is
the name of the linear solver (see Chapter §8 for more information).

If the linear solver is matrix-based, the linear solver header will also include a header file of the from sunmatrix/
sunmatrix_*.h where * is the name of the matrix implementation compatible with the linear solver. (see Chapter §7
for more information).

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the example kinFood-
Web_kry_p (see [19]), preconditioning is done with a block-diagonal matrix. For this, even though the SUNLINSOL_-
SPGMR linear solver is used, the header sundials/sundials_dense.his included for access to the underlying generic
dense matrix arithmetic routines.

5.2 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the solution of a nonlinear system
problem.. Most of the steps are independent of the N_Vector, SUNMatrix, and SUNLinearSolver implementations
used. For the steps that are not, refer to §6, §7, and §8 for the specific name of the function to be called or macro to be
referenced.

1. Initialize parallel or multi-threaded environment (if appropriate)
For example, call MPI_Init to initialize MPI if used.
2. Create the SUNDIALS context object
Call SUNContext_Create() to allocate the SUNContext object.
3. Set the problem dimensions etc.
This generally includes the problem size N, and may include the local vector length Nlocal.
4. Create the vector with the initial guess

Construct an N_Vector of initial guess values using the appropriate functions defined by the particular N_Vector
implementation (see §6 for details).

For native SUNDIALS vector implementations, use a call of the form y® = N_VMake_***(..., ydata) if
the array containing the initial values of y already exists. Otherwise, create a new vector by making a call of
the form N_VNew_***(...), and then set its elements by accessing the underlying data with a call of the form
ydata = N_VGetArrayPointer(y0). Here, *** is the name of the vector implementation.

For hypre, PETSc, and Trilinos vector wrappers, first create and initialize the underlying vector, and then create
an N_Vector wrapper with a call of the form y® = N_VMake_***(yvec), where yvec is a hypre, PETSc, or

48 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.1

10.

11.

12.

13.

14.

Trilinos vector. Note that calls like N_VNew_***(...) and N_VGetArrayPointer(...) are not available for
these vector wrappers.

Create matrix object (if appropriate)

If a linear solver is required (e.g., when using the default Newton solver) and the linear solver will be a matrix-
based linear solver, then a template Jacobian matrix must be created by calling the appropriate constructor defined
by the particular SUNMatrix implementation.

For the native SUNDIALS SUNMatrix implementations, the matrix object may be created using a call of the

form SUN***Matrix(...) where *** is the name of the matrix (see §7 for details).
Create linear solver object (if appropriate)

If alinear solver is required (e.g., when using the default Newton solver), then the desired linear solver object must
be created by calling the appropriate constructor defined by the particular SUNLinearSolver implementation.

For any of the native SUNDIALS SUNLinearSolver implementations, the linear solver object may be created
using a call of the form SUNLinearSolver LS = SUNLinSol_***(...); where *** is the name of the linear
solver (see §8 for details).

Create KINSOL object

Call KINCreate() to create the KINSOL solver object.
Initialize KINSOL solver

Call KINInit() to allocate internal memory.

Attach the linear solver (if appropriate)

If a linear solver was created above, initialize the KINLS linear solver interface by attaching the linear solver
object (and matrix object, if applicable) with KINSetLinearSolver().

Set linear solver optional inputs (if appropriate)
See Table 5.1 for KINLS optional inputs and Chapter §8 for linear solver specific optional inputs.
Set optional inputs

Call KINSet*** functions to change any optional inputs that control the behavior of KINSOL from their default
values. See §5.3.4 for details.

Solve problem

Call ier = KINSol(...) to solve the nonlinear problem for a given initial guess.
See KINSol () for details.

Get optional outputs

Call KINGet*** functions to obtain optional output. See §5.3.5 for details.
Deallocate memory

Upon completion of the integration call the following, as necessary, to free any objects or memory allocated
above:

* Call N_VDestroy() to free vector objects.

» Call SUNMatDestroy () to free matrix objects.

Call SUNLinSolFree() to free linear solvers objects.

Call SUNNonlinSolFree() to free nonlinear solvers objects.

L]

Call KINFree() to free the memory allocated by KINSOL.

5.2. A skeleton of the user’s main program 49

https://sundials.readthedocs.io/en/v7.1.1/sunnonlinsol/SUNNonlinSol_API_link.html#c.SUNNonlinSolFree

User Documentation for KINSOL, v7.1.1

» Call SUNContext_Free() to free the SUNContext object
15. Finalize MPI, if used

Call MPI_Finalize to terminate MPI.

5.3 User-callable functions

This section describes the KINSOL functions that are called by the user to setup and then solve an IVP. Some of these
are required. However, starting with §5.3.4, the functions listed involve optional inputs/outputs or restarting, and those
paragraphs may be skipped for a casual use of KINSOL. In any case, refer to §5.2 for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to the error handler routine,
which prints the message on stderr by default. However, the user can set a file as error output or can provide his own
error handler function (see §5.3.4).

5.3.1 KINSOL initialization and deallocation functions

void KINCreate (SUNContext sunctx)
The function KINCreate () instantiates a KINSOL solver object.

Arguments:
* sunctx —the SUNContext object (see §4.2)
Return value:
e void
int KINInit (void *kin_mem, KINSysFn func, N_Vector tmpl)

The function KINInit () specifies the problem-defining function, allocates internal memory, and initializes KIN-
SOL.

Arguments:
e kin_mem — pointer to the KINSOL memory block returned by KINCreate ().

* func - is the CC function which computes the system function F'(u) (or G(u) for fixed-point iteration)
in the nonlinear problem. This function has the form func(u, fval, user_data). (For full details
see §5.4.1).

e tmpl — is any N_Vector (e.g. the initial guess vector u) which is used as a template to create (by
cloning) necessary vectors in kin_mem.

Return value:
e KIN_SUCCESS — The call to KINInit () was successful.

e KIN_MEM_NULL — The KINSOL memory block was not initialized through a previous call to KINCre-
ate().

e KIN_MEM_FAIL — A memory allocation request has failed.
e KIN_ILL_INPUT — An input argument to KINInit () has an illegal value.

Notes:
If an error occurred, KINInit () sends an error message to the error handler function.

50 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.1

void KINFree (void **kin_mem)

The function KINFree () frees the pointer allocated by a previous call to KINCreate().
Arguments:

* kin_mem — pointer to the KINSOL solver object.
Return value:

e void

5.3.2 Linear solver specification functions

As previously explained, Newton and Picard iterations require the solution of linear systems of the form J§ = —F.
Solution of these linear systems is handled using the KINLS linear solver interface. This interface supports all valid
SUNLinearSolver modules. Here, matrix-based SUNLinearSolver modules utilize SUNMatrix objects to store
the Jacobian matrix J = F”’(u) and factorizations used throughout the solution process. Conversely, matrix-free
SUNLinearSolver modules instead use iterative methods to solve the linear systems of equations, and only require
the action of the Jacobian on a vector, Jv.

With most iterative linear solvers, preconditioning can be done on the left only, on the right only, on both the left and
the right, or not at all. However, only right preconditioning is supported within KINLS. If preconditioning is done,
user-supplied functions define the linear operator corresponding to a right preconditioner matrix P, which should
approximate the system Jacobian matrix J. For the specification of a preconditioner, see the iterative linear solver
sections in §5.3.4 and §5.4. A preconditioner matrix P must approximate the Jacobian .J, at least crudely.

To specify a generic linear solver to KINSOL, after the call to KINCreate () but before any calls to KINSoI (), the
user’s program must create the appropriate SUNLinearSolver object and call the function KINSetLinearSolver(),
as documented below. To create the SUNLinearSolver object, the user may call one of the SUNDIALS-packaged
SUNLinearSolver module constructor routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

For a current list of such constructor routines see §8.

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use of each of the
generic linear solvers involves certain constants, functions and possibly some macros, that are likely to be needed
in the user code. These are available in the corresponding header file associated with the specific SUNMatrix or
SUNLinearSolver module in question, as described in Chapters §7 and §8.

Once this solver object has been constructed, the user should attach it to KINSOL via a call to KINSetLinear-
Solver(). The first argument passed to this function is the KINSOL memory pointer returned by KINCreate();
the second argument is the desired SUNLinearSolver object to use for solving Newton or Picard systems. The third
argument is an optional SUNMatrix object to accompany matrix-based SUNLinearSolver inputs (for matrix-free lin-
ear solvers, the third argument should be NULL). A call to this function initializes the KINLS linear solver interface,
linking it to the main KINSOL solver, and allows the user to specify additional parameters and routines pertinent to
their choice of linear solver.

int KINSetLinearSolver (void *kin_mem, SUNLinearSolver LS, SUNMatrix J)

The function KINSetLinearSolver () attaches a generic SUNLinSol object LS and corresponding template
Jacobian SUNMatrix object J (if applicable) to KINSOL, initializing the KINLS linear solver interface.

Arguments:
e kin_mem — pointer to the KINSOL memory block.
* LS — SUNLINSOL object to use for solving Newton linear systems.
¢ J - SUNMATRIX object for used as a template for the Jacobian (or NULL if not applicable).

5.3. User-callable functions 51

User Documentation for KINSOL, v7.1.1

Return value:

Notes:

KINLS_SUCCESS — The KINLS initialization was successful.
KINLS_MEM_NULL — The kin_mem pointer is NULL.

KINLS_ILL_INPUT — The KINLS interface is not compatible with the LS or J input objects or is
incompatible with the current NVECTOR module.

KINLS_SUNLS_FATIL — A call to the LS object failed.
KINLS_MEM_FAIL — A memory allocation request failed.

If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process,
so if additional storage is required within the SUNMatrix object (e.g. for factorization of a banded ma-
trix), ensure that the input object is allocated with sufficient size (see the documentation of the particular
SUNMatrix type in Chapter §7 for further information).

Added in version 4.0.0: Replaces the deprecated functions KIND1sSetLinearSolver and KINSpilsSetLin-
earSolver.

5.3.3 KINSOL solver function

This is the central step in the solution process, the call to solve the nonlinear algebraic system.

int KINSol (void *kin_mem, N_Vector u, int strategy, N_Vector u_scale, N_Vector f_scale)

The function KINSol () computes an approximate solution to the nonlinear system.

Arguments:

kin_mem — pointer to the KINSOL memory block.

u — vector set to initial guess by user before calling KINSol () , but which upon return contains an
approximate solution of the nonlinear system F'(u) = 0.

strategy — strategy used to solve the nonlinear system. It must be of the following:

KIN_NONE basic Newton iteration

KIN_LINESEARCH Newton with globalization

KIN_FP fixed-point iteration with Anderson Acceleration (no linear solver needed)

KIN_PICARD Picard iteration with Anderson Acceleration (uses a linear solver)

u_scale — vector containing diagonal elements of scaling matrix D,, for vector u chosen so that the
components of D,, u (as a matrix multiplication) all have roughly the same magnitude when u is close
to a root of F'(u).

f_scale - vector containing diagonal elements of scaling matrix D for F'(u) chosen so that the
components of D F(u) (as a matrix multiplication) all have roughly the same magnitude when u is
not too near a root of F'(u). In the case of a fixed-point iteration, consider F(u) = G(u) — u.

Return value:

KIN_SUCCESS - KINSol () succeeded; the scaled norm of F'(u) is less than fnormtol.

KIN_INITIAL_GUESS_OK — The guess u = ug satisfied the system F'(u) = 0 within the tolerances
specified (the scaled norm of F'(ug) is less than §.01*fnormtol).

KIN_STEP_LT_STPTOL — KINSOL stopped based on scaled step length. This means that the current
iterate may be an approximate solution of the given nonlinear system, but it is also quite possible that

52

Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.1

the algorithm is “stalled” (making insufficient progress) near an invalid solution, or that the scalar sc-
steptol is too large (see KINSetScaledStepTol () in §5.3.4 to change scsteptol from its default
value).

e KIN_MEM_NULL — The KINSOL memory block pointer was NULL.

e KIN_ILL_INPUT — An input parameter was invalid.

e KIN_NO_MALLOC — The KINSOL memory was not allocated by a call to KINCreate().
e KIN_MEM_FAIL — A memory allocation failed.

e KIN_LINESEARCH_NONCONV — The line search algorithm was unable to find an iterate sufficiently dis-
tinct from the current iterate, or could not find an iterate satisfying the sufficient decrease condition.
Failure to satisfy the sufficient decrease condition could mean the current iterate is “close” to an ap-
proximate solution of the given nonlinear system, the difference approximation of the matrix-vector
product J(u) v is inaccurate, or the real scalar scsteptol is too large.

e KIN_MAXITER_REACHED — The maximum number of nonlinear iterations has been reached.

e KIN_MXNEWT_5X_EXCEEDED — Five consecutive steps have been taken that satisfy the inequality
IDupllr2 > 0.99 mxnewtstep , where p denotes the current step and mxnewtstep is a scalar up-
per bound on the scaled step length. Such a failure may mean that ||DpF(u)| 2 asymptotes from
above to a positive value, or the real scalar mxnewtstep is too small.

e KIN_LINESEARCH_BCFAIL — The line search algorithm was unable to satisfy the “beta-condition”
for MXNBCF+1 nonlinear iterations (not necessarily consecutive), which may indicate the algorithm is
making poor progress.

e KIN_LINSOLV_NO_RECOVERY — The user-supplied routine psolve encountered a recoverable error,
but the preconditioner is already current.

e KIN_LINIT_FAIL — The KINLS initialization routine (1init) encountered an error.

e KIN_LSETUP_FAIL — The KINLS setup routine (1setup) encountered an error; e.g., the user-supplied
routine pset (used to set up the preconditioner data) encountered an unrecoverable error.

¢ KIN_LSOLVE_FAIL — The KINLS solve routine (1solve) encountered an error; e.g., the user-supplied
routine psolve (used to to solve the preconditioned linear system) encountered an unrecoverable error.

* KIN_SYSFUNC_FAIL — The system function failed in an unrecoverable manner.
* KIN_FIRST_SYSFUNC_ERR — The system function failed recoverably at the first call.

e KIN_REPTD_SYSFUNC_ERR — The system function had repeated recoverable errors. No recovery is
possible.

Notes:
The components of vectors u_scale and f_scale should be strictly positive. KIN_SUCCESS=0, KIN_INI-
TIAL_GUESS_OK=1, and KIN_STEP_LT_STPTOL=2. All remaining return values are negative and therefore
atest flag < 0 will trap all KINSol () failures.

5.3. User-callable functions 53

User Documentation for KINSOL, v7.1.1

5.3.4 Optional input functions

There are numerous optional input parameters that control the behavior of the KINSOL solver. KINSOL provides
functions that can be used to change these from their default values. Table 5.1 lists all optional input functions in
KINSOL which are then described in detail in the remainder of this section, beginning with those for the main KINSOL
solver and continuing with those for the KINLS linear solver interface.

‘We note that, on error return, all of these functions also send an error message to the error handler function. We also
note that all error return values are negative, so a test retval < 0 will catch any error.

int KINSetUserData (void *kin_mem, void *user_data)

Table 5.1: Optional inputs for KINSOL and KINLS

Optional input Function name Default
KINSOL main solver

Data for problem-defining function KINSetUserData() NULL

Max. number of nonlinear iterations KINSetNumMaxIters() 200

No initial matrix setup KINSetNoInitSetup() SUNFALSE

No residual monitoring KINSetNoResMon() SUNFALSE
Max. iterations without matrix setup KINSetMaxSetupCalls() 10

Max. iterations without residual check KINSetMaxSubSetupCalls() S

Form of 7 coeflicient KINSetEtaForm() KIN_ETACHOICE1
Constant value of KINSetEtaConstValue () 0.1

Values of v and « KINSetEtaParams () 0.9 and 2.0
Values of Wy, and wy,qz KINSetResMonParams () 0.00001 and 0.9
Constant value of w KINSetResMonConstValue() 0.9

Lower bound on € KINSetNoMinEps () SUNFALSE
Max. scaled length of Newton step KINSetMaxNewtonStep() 1000| D, up)2
Max. number of S-condition failures KINSetMaxBetaFails() 10

Rel. error for D.Q. Jv KINSetRelErrFunc() v/uround
Function-norm stopping tolerance KINSetFuncNormTol () uround!/3
Scaled-step stopping tolerance KINSetScaledStepTol () uround?/?
Inequality constraints on solution KINSetConstraints() NULL
Nonlinear system function KINSetSysFunc() none

Return the newest fixed point iteration KINSetReturnNewest () SUNFALSE
Fixed point/Picard damping parameter KINSetDamping () 1.0

Anderson Acceleration subspace size KINSetMAA() 0

Anderson Acceleration damping parameter KINSetDampingAA() 1.0

Anderson Acceleration delay KINSetDelayAA() 0

Anderson Acceleration orthogonalization routine KINSetOrthAA() KIN_ORTH_MGS
KINLS linear solver interface

Jacobian function KINSetJacFn() DQ

Preconditioner functions and data

Jacobian-times-vector function and data

Jacobian-times-vector system function

KINSetPreconditioner()
KINSetJacTimesVecFn()
KINSetJacTimesVecSysFn()

NULL, NULL, NULL
internal DQ, NULL
NULL

The function KINSetUserData () specifies the pointer to user-defined memory that is to be passed to all user-

supplied functions.

Arguments:

* kin_mem — pointer to the KINSOL memory block.

e user_data — pointer to the user-defined memory.

54

Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.1

Return value:
e KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

Notes:

If specified, the pointer to user_data is passed to all user-supplied functions that have it as an argument.
Otherwise, a NULL pointer is passed.

Warning: If user_data is needed in user linear solver or preconditioner functions, the call to KINSe-
tUserData () must be made before the call to specify the linear solver module.

int KINSetNumMaxIters (void *kin_mem, long int mxiter)

The function KINSetNumMaxIters () specifies the maximum number of nonlinear iterations allowed.
Arguments:

e kin_mem — pointer to the KINSOL memory block.

* mxiter — maximum number of nonlinear iterations.
Return value:

* KIN_SUCCESS — The optional value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT — The maximum number of iterations was non-positive.

Notes:
The default value for mxiter is MXITER_DEFAULT = 200.

int KINSetNoInitSetup (void *kin_mem, sunbooleantype nolnitSetup)

The function KINSetNoInitSetup() specifies whether an initial call to the preconditioner or Jacobian setup
function should be made or not.

Arguments:
e kin_mem — pointer to the KINSOL memory block.

* noInitSetup — flag controlling whether an initial call to the preconditioner or Jacobian setup function
is made (pass SUNFALSE) or not made (pass SUNTRUE).

Return value:
¢ KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

Notes:
The default value for noInitSetup is SUNFALSE, meaning that an initial call to the preconditioner or
Jacobian setup function will be made. A call to this function is useful when solving a sequence of problems,
in which the final preconditioner or Jacobian value from one problem is to be used initially for the next
problem.

int KINSetNoResMon (void *kin_mem, sunbooleantype noNNIResMon)

The function KINSetNoResMon () specifies whether or not the nonlinear residual monitoring scheme is used to

control Jacobian updating

Arguments:

e kin_mem — pointer to the KINSOL memory block.

5.3. User-callable functions 55

User Documentation for KINSOL, v7.1.1

* noNNIResMon — flag controlling whether residual monitoring is used (pass SUNFALSE) or not used
(pass SUNTRUE).

Return value:
¢ KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

Notes:
When using a direct solver, the default value for noNNIResMon is SUNFALSE, meaning that the nonlinear
residual will be monitored.

Warning: Residual monitoring is only available for use with matrix-based linear solver modules.

int KINSetMaxSetupCalls(void *kin_mem, long int msbset)

The function KINSetMaxSetupCalls () specifies the maximum number of nonlinear iterations that can be per-
formed between calls to the preconditioner or Jacobian setup function.

Arguments:
e kin_mem — pointer to the KINSOL memory block.

* msbset — maximum number of nonlinear iterations without a call to the preconditioner or Jacobian
setup function. Pass 0 to indicate the default.

Return value:
¢ KIN_SUCCESS - The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT — The argument msbset was negative.

Notes:
The default value for msbset is MSBSET_DEFAULT=10. The value of msbset should be a multiple of
msbsetsub (see KINSetMaxSubSetupCalls()).

int KINSetMaxSubSetupCalls(void *kin_mem, long int msbsetsub)

The function KINSetMaxSubSetupCalls() specifies the maximum number of nonlinear iterations between
checks by the residual monitoring algorithm.

Arguments:
e kin_mem — pointer to the KINSOL memory block.

* msbsetsub — maximum number of nonlinear iterations without checking the nonlinear residual. Pass
0 to indicate the default.

Return value:
¢ KIN_SUCCESS - The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT — The argument msbsetsub was negative.

Notes:
The default value for msbsetsub is MSBSET_SUB_DEFAULT = 5. The value of msbset (see KINSet-
MaxSetupCalls()) should be a multiple of msbsetsub.

56 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.1

Warning: Residual monitoring is only available for use with matrix-based linear solver modules.

int KINSetEtaForm(void *kin_mem, int etachoice)

The function KINSetEtaForm() specifies the method for computing the value of the 7 coefficient used in the
calculation of the linear solver convergence tolerance.

Arguments:
e kin_mem — pointer to the KINSOL memory block.

* etachoice —flag indicating the method for computing 7). The value must be one of KIN_ETACHOICE1
, KIN_ETACHOICE2 , or KIN_ETACONSTANT (see Chapter §2 for details).

Return value:
* KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT — The argument etachoice had an illegal value.

Notes:

The default value for etachoice is KIN_ETACHOICE1l. When using either KIN_ETACHOICE1L or KIN_-
ETACHOICE2 the safeguard

Tn = max(nn, nsafe)

is applied when 7gf > 0.1. For KIN_ETACHOICE1

S

1+
R 2
Tsafe = 71,1

and for KIN_ETACHOICE2

Tsafe = ’7772—1
where v and « can be set with KINSetEtaParams ().

The following safeguards are always applied when using either KIN_ETACHOICE1 or KIN_ETACHOICE2 so
that min < 7n < Tmax

Nn = maX(nm 77min>
Nn = min(nn, nmax)
where Npin = 107 and e = 0.9.

int KINSetEtaConstValue (void *kin_mem, sunrealtype eta)

The function KINSetEtaConstValue () specifies the constant value for 7 in the case etachoice = KIN_-
ETACONSTANT.

Arguments:
e kin_mem — pointer to the KINSOL memory block.
* eta — constant value for 7. Pass 0.0 to indicate the default.
Return value:
* KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT — The argument eta had an illegal value

5.3. User-callable functions 57

User Documentation for KINSOL, v7.1.1

Notes:
The default value for eta is 0.1. The legal values are 0.0 < eta < 1.0.

int KINSetEtaParams (void *kin_mem, sunrealtype egamma, sunrealtype ealpha)

The function KINSetEtaParams () specifies the parameters + and « in the formula for 7, in the case etachoice
= KIN_ETACHOICE2.

Arguments:
e kin_mem — pointer to the KINSOL memory block.
* egamma — value of the « parameter. Pass 0.0 to indicate the default.
* ealpha — value of the o parameter. Pass 0.0 to indicate the default.
Return value:
* KIN_SUCCESS — The optional values have been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT — One of the arguments egamma or ealpha had an illegal value.

Notes:
The default values for egamma and ealpha are 0.9 and 2.0, respectively. The legal values are 0.0 < egamma
< 1.0 and 1.0 < ealpha < 2.0.

int KINSetResMonConstValue (void *kin_mem, sunrealtype omegaconst)
The function KINSetResMonConstValue () specifies the constant value for w when using residual monitoring.

Arguments:

e kin_mem — pointer to the KINSOL memory block.

* omegaconst — constant value for w. Passing 0.0 results in using Eqn. (2.4).
Return value:

¢ KIN_SUCCESS - The optional value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT — The argument omegaconst had an illegal value

Notes:
The default value for omegaconst is 0.9. The legal values are 0.0 < omegaconst < 1.0.

int KINSetResMonParams (void *kin_mem, sunrealtype omegamin, sunrealtype omegamax)

The function KINSetResMonParams () specifies the parameters wy;, and w4, in the formula (2.4) for w.
Arguments:

* kin_mem — pointer to the KINSOL memory block.

* omegamin — value of the w,,;, parameter. Pass 0.0 to indicate the default.

* omegamax — value of the w4, parameter. Pass 0.0 to indicate the default.
Return value:

* KIN_SUCCESS — The optional values have been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT — One of the arguments omegamin or omegamax had an illegal value.

58 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.1

Notes:
The default values for omegamin and omegamax are 0.00001 and 0.9, respectively. The legal values are
0.0 < omegamin < omegamax < 1.0.

Warning: Residual monitoring is only available for use with matrix-based linear solver modules.

int KINSetNoMinEps (void *kin_mem, sunbooleantype noMinEps)

The function KINSetNoMinEps () specifies a flag that controls whether or not the value of ¢, the scaled linear
residual tolerance, is bounded from below.

Arguments:
* kin_mem — pointer to the KINSOL memory block.

* noMinEps — flag controlling the bound on €. If SUNFALSE is passed the value of € is constrained and
if SUNTRUE is passed then ¢ is not constrained.

Return value:
e KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

Notes:
The default value for noMinEps is SUNFALSE, meaning that a positive minimum value, equal to 0.01° *
“fnormtol‘, is applied to € (see KINSetFuncNormTol () below).

int KINSetMaxNewtonStep (void *kin_mem, sunrealtype mxnewtstep)
The function KINSetMaxNewtonStep () specifies the maximum allowable scaled length of the Newton step.

Arguments:

e kin_mem — pointer to the KINSOL memory block.

* mxnewtstep — maximum scaled step length (> 0.0). Pass 0.0 to indicate the default.
Return value:

¢ KIN_SUCCESS - The optional value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT — The input value was negative.

Notes:

The default value of mxnewtstep is 1000 |luo||p,,,» Where ug is the initial guess.

int KINSetMaxBetaFails (void *kin_mem, sunrealtype mxnbcf)

The function KINSetMaxBetaFails () specifies the maximum number of 3-condition failures in the linesearch
algorithm.

Arguments:

* kin_mem — pointer to the KINSOL memory block.

e mxnbcf — maximum number of 5 -condition failures. Pass 0.0 to indicate the default.
Return value:

e KIN_SUCCESS — The optional value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT — mxnbcf was negative.

5.3. User-callable functions 59

User Documentation for KINSOL, v7.1.1

Notes:
The default value of mxnbcf is MXNBCF_DEFAULT = 10.

int KINSetRelErrFunc (void *kin_mem, sunrealtype relfunc)

The function KINSetRelErrFunc() specifies the relative error in computing F'(u), which is used in the differ-
ence quotient approximation to the Jacobian matrix [see Eq. (2.6)] or the Jacobian-vector product [see Eq. (2.8)
]. The value stored is v/relfunc.

Arguments:

e kin_mem — pointer to the KINSOL memory block.

* relfunc - relative error in F'(u) (relfunc > 0.0). Pass 0.0 to indicate the default.
Return value:

* KIN_SUCCESS — The optional value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT - The relative error was negative.

Notes:
The default value for relfunc is U = unit roundoff.

int KINSetFuncNormTol (void *kin_mem, sunrealtype fnormtol)

The function KINSetFuncNormTol () specifies the scalar used as a stopping tolerance on the scaled maximum
norm of the system function F'(u).

Arguments:
e kin_mem — pointer to the KINSOL memory block.

» fnormtol - tolerance for stopping based on scaled function norm (> 0.0). Pass 0.0 to indicate the
default.

Return value:
¢ KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT - The tolerance was negative.

Notes:
The default value for fnormtol is (unit roundoff) /3.

int KINSetScaledStepTol (void *kin_mem, sunrealtype scsteptol)

The function KINSetScaledStepTol () specifies the scalar used as a stopping tolerance on the minimum scaled
step length.

Arguments:
* kin_mem — pointer to the KINSOL memory block.

+ scsteptol — tolerance for stopping based on scaled step length (> 0.0). Pass 0.0 to indicate the
default.

Return value:
* KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT - The tolerance was non-positive.

60 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.1

Notes:

The default value for scsteptol is (unit roundoff) 2/3.
int KINSetConstraints (void *kin_mem, N_Vector constraints)

The function KINSetConstraints () specifies a vector that defines inequality constraints for each component
of the solution vector w.

Arguments:
¢ kin_mem — pointer to the KINSOL memory block.

* constraints — vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on ;.

1.0 then u; will be constrained to be u; > 0.0.

—1.0 then u; will be constrained to be u; < 0.0.

2.0 then wu; will be constrained to be u; > 0.0.

—2.0 then u; will be constrained to be u; < 0.0.

Return value:

* KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT — The constraint vector contains illegal values.

Notes:

The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint check-
ing to be performed. If a NULL vector is supplied, constraint checking will be disabled. The function
creates a private copy of the constraints vector. Consequently, the user-supplied vector can be freed after
the function call, and the constraints can only be changed by calling this function.

int KINSetSysFunc (void *kin_mem, KINSysFn func)

The function KINSetSysFunc () specifies the user-provided function that evaluates the nonlinear system func-
tion F'(u) or G(u).

Arguments:
* kin_mem — pointer to the KINSOL memory block.

* func — user-supplied function that evaluates F'(u) (or G(u) for fixed-point iteration).
Return value:

e KIN_SUCCESS — The optional value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT — The argument func was NULL.
Notes:

The nonlinear system function is initially specified through KINInit (). The option of changing the system

function is provided for a user who wishes to solve several problems of the same size but with different
functions.

int KINSetReturnNewest (void *kin_mem, sunbooleantype ret_newest)

The function KINSetReturnNewest () specifies if the fixed point iteration should return the newest iteration or
the iteration consistent with the last function evaluation.

Arguments:

5.3. User-callable functions 61

User Documentation for KINSOL, v7.1.1

e kin_mem — pointer to the KINSOL memory block.

e ret_newest — SUNTRUE — return the newest iteration. SUNFALSE — return the iteration consistent with
the last function evaluation.

Return value:
* KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

Notes:
The default value of ret_newest is SUNFALSE.

int KINSetDamping (void *kin_mem, sunrealtype beta)

The function KINSetDamping () specifies the value of the damping parameter in the fixed point or Picard itera-
tion.

Arguments:
e kin_mem — pointer to the KINSOL memory block.
* beta — the damping parameter value 0 < beta < 1.0.
Return value:
e KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT — The argument beta was zero or negative.

Notes:
This function sets the damping parameter value, which needs to be greater than zero and less than one
if damping is to be used. A value > 1 disables damping. The default value of beta is 1.0, indicating no
damping. To set the damping parameter used in Anderson acceleration see KINSetDampingAA (). With the
fixed point iteration the difference between successive iterations is used to determine convergence. As such,
when damping is enabled, the tolerance used to stop the fixed point iteration is scaled by beta to account
for the effects of damping. If beta is extremely small (close to zero), this can lead to an excessively tight
tolerance.

int KINSetMAA (void *kin_mem, long int maa)

The function KINSetMAA() specifies the size of the subspace used with Anderson acceleration in conjunction

with Picard or fixed-point iteration.

Arguments:

* kin_mem — pointer to the KINSOL memory block.

* maa — subspace size for various methods. A value of 0 means no acceleration, while a positive value
means acceleration will be done.

Return value:
e KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT — The argument maa was negative.

Notes:
This function sets the subspace size, which needs to be > 0 if Anderson Acceleration is to be used. It
also allocates additional memory necessary for Anderson Acceleration. The default value of maa is O,
indicating no acceleration. The value of maa should always be less than mxiter. This function MUST be

62 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.1

called before calling KINInit (). If the user calls the function KINSetNumMaxlters, that call should be
made before the call to KINSetMAA, as the latter uses the value of mxiter.

int KINSetDampingAA (void *kin_mem, sunrealtype beta)
The function KINSetDampingAA () specifies the value of the Anderson acceleration damping paramter.

Arguments:
e kin_mem — pointer to the KINSOL memory block.
* beta — the damping parameter value 0 < beta < 1.0.
Return value:
* KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_ILL_INPUT — The argument beta was zero or negative.

Notes:
This function sets the damping parameter value, which needs to be greater than zero and less than one if
damping is to be used. A value > 1 disables damping. The default value of beta is 1.0, indicating no
damping. When delaying the start of Anderson acceleration with KINSetDelayAA(), use KINSetDamp-
ing () to set the damping parameter in the fixed point or Picard iterations before Anderson acceleration
begins. When using Anderson acceleration without delay, the value provided to KINSetDampingAA() is
applied to all iterations and any value provided to KINSetDamping () is ignored.

int KINSetDelayAA (void *kin_mem, long int delay)

The function KINSetDelayAA () specifies the number of iterations to delay the start of Anderson acceleration.
Arguments:

e kin_mem — pointer to the KINSOL memory block.

* delay — the number of iterations to delay Anderson acceleration.
Return value:

* KIN_SUCCESS — The optional value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT — The argument delay was less than zero.

Notes:
The default value of delay is 0, indicating no delay.

int KINSetOrthAA (void *kin_mem, int orthaa)

The function KINSetOrthAA () specifies the orthogonalization routine to be used in the QR factorization portion
of Anderson acceleration.

Arguments:
e kin_mem — pointer to the KINSOL memory block.

¢ orthaa - the orthogonalization routine parameter. Can be set to any of
the following

KIN_ORTH_MGS — Modified Gram Schmidt (default)

KIN_ORTH_ICWY — Inverse Compact WY Modified Gram Schmidt

KIN_ORTH_CGS2 — Classical Gram Schmidt with Reorthogonalization (CGS2)

KIN_ORTH_DCGS2 — Classical Gram Schmidt with Delayed Reorthogonlization

5.3. User-callable functions 63

User Documentation for KINSOL, v7.1.1

Return value:
e KIN_SUCCESS — The optional value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

e KIN_ILL_INPUT — The argument orthaa was not one of the predefined orthogonalization routines
defined in KINSOL.

Note: This function must be called before calling KINInit ().

An example of how to use this function can be found in examples/kinsol/serial/kinAnalytic_fp.c

5.3.4.1 Linear solver interface optional input functions

For matrix-based linear solver modules, the KINLS solver interface needs a function to compute an approximation
to the Jacobian matrix J(u). This function must be of type KINLsJacFn. The user can supply a Jacobian function,
or if using the SUNMATRIX_DENSE or SUNMATRIX_BAND modules for J can use the default internal difference
quotient approximation that comes with the KINLS solver. To specify a user-supplied Jacobian function jac, KINLS
provides the function KINSetJacFn (). The KINLS interface passes the pointer user_data to the Jacobian function.
This allows the user to create an arbitrary structure with relevant problem data and access it during the execution of the
user-supplied Jacobian function, without using global data in the program. The pointer user_data may be specified
through KINSetUserData().

int KINSetJacFn(void *kin_mem, KINLsJacFn jac)
The function KINSetJacFn () specifies the Jacobian approximation function to be used for a matrix-based solver
within the KINLS interface.
Arguments:
e kin_mem — pointer to the KINSOL solver object.
* jac —user-defined Jacobian approximation function. See KINLsJacFn for more details.
Return value:
e KINLS_SUCCESS — The optional value has been successfully set.
e KINLS_MEM_NULL — The kin_mem pointer is NULL.
e KINLS_LMEM_NULL — The KINLS linear solver interface has not been initialized.

Notes:
This function must be called after the KINLS linear solver interface has been initialized through a call to
KINSetLinearSolver(). By default, KINLS uses an internal difference quotient function for the SUN-
MATRIX_DENSE and SUNMATRIX_BAND modules. If NULL is passed to jac, this default function is
used. An error will occur if no jac is supplied when using other matrix types.

Added in version 4.0.0: Replaces the deprecated function KIND1sSetJacFn.

When using matrix-free linear solver modules, the KINLS linear solver interface requires a function to compute an
approximation to the product between the Jacobian matrix J(u) and a vector v. The user can supply his/her own
Jacobian-times-vector approximation function, or use the internal difference quotient approximation that comes with
the KINLS solver interface.

A user-defined Jacobian-vector function must be of type KINLsJacTimesVecFn and can be specified through a call
to KINSetJacTimesVecFn() (see §5.4.3 for specification details). The pointer user_data received through KINSe-
tUserData() (or a pointer to NULL if user_data was not specified) is passed to the Jacobian-times-vector function
jtimes each time it is called. This allows the user to create an arbitrary structure with relevant problem data and access
it during the execution of the user-supplied functions without using global data in the program.

64 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.1

int KINSetJacTimesVecFn (void *kin_mem, KINLsJacTimesVecFn jtimes)
The function KINSetJacTimesVecFn () specifies the Jacobian-vector product function.

Arguments:
* kin_mem — pointer to the KINSOL memory block.
* jtimes — user-defined Jacobian-vector product function.
Return value:
e KINLS_SUCCESS — The optional value has been successfully set.
e KINLS_MEM_NULL — The kin_mem pointer is NULL.
e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.

e KINLS_SUNLS_FAIL — An error occurred when setting up the system matrix-times-vector routines in
the SUNLINSOL object used by the KINLS interface.

Notes:
The default is to use an internal difference quotient for jtimes. If NULL is passed as jtimes, this default
is used. This function must be called after the KINLS linear solver interface has been initialized through a
call to KINSetLinearSolver (). The function type KINLsJacTimesVecFn is described in §5.4.3.

Added in version 4.0.0: Replaces the deprecated function KINSpilsSetJacTimesVecFn.

When using the internal difference quotient the user may optionally supply an alternative system function for use in
the Jacobian-vector product approximation by calling KINSetJacTimesVecSysFn(). The alternative system func-
tion should compute a suitable (and differentiable) approximation of the system function provided to KINInit (). For
example, as done in [24] when solving the nonlinear systems that arise in the implicit integration of ordinary differ-
ential equations, the alternative function may use lagged values when evaluating a nonlinearity to avoid differencing a
potentially non-differentiable factor.

int KINSetJacTimesVecSysFn(void *kin_mem, K/INSysFn jtimesSysFn)

The function KINSetJacTimesVecSysFn() specifies an alternative system function for use in the internal
Jacobian-vector product difference quotient approximation.

Arguments:
* kin_mem — pointer to the KINSOL memory block.

* jtimesSysFn - is the CC function which computes the alternative system function to use in Jacobian-
vector product difference quotient approximations. This function has the form func(u, fval,
user_data). (For full details see §5.4.1.)

Return value:
* KINLS_SUCCESS — The optional value has been successfully set.
e KINLS_MEM_NULL — The kin_mem pointer is NULL.
e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.
e KINLS_ILL_INPUT - The internal difference quotient approximation is disabled.

Notes:
The default is to use the system function provided to KINInit () in the internal difference quotient. If the
input system function is NULL, the default is used. This function must be called after the KINLS linear
solver interface has been initialized through a call to KINSetLinearSolver().

When using an iterative linear solver, the user may supply a preconditioning operator to aid in solution of the system.
This operator consists of two user-supplied functions, psetup and psolve, that are supplied to KINLS using the
function KINSetPreconditioner(). The psetup function supplied to this routine should handle evaluation and

5.3. User-callable functions 65

User Documentation for KINSOL, v7.1.1

preprocessing of any Jacobian data needed by the user’s preconditioner solve function, psolve. Both of these functions
are fully specified in §5.4. The user data pointer received through KINSetUserData() (or a pointer to NULL if user
data was not specified) is passed to the psetup and psolve functions. This allows the user to create an arbitrary
structure with relevant problem data and access it during the execution of the user-supplied preconditioner functions
without using global data in the program.

int KINSetPreconditioner (void *kin_mem, KINLsPrecSetupFn psetup, KINLsPrecSolveFn psolve)

The function KINSetPreconditioner () specifies the preconditioner setup and solve functions.
Arguments:
* kin_mem — pointer to the KINSOL solver object.

* psetup —user-defined function to set up the preconditioner. See KINLsPrecSetupFn for more details.
Pass NULL if no setup is necessary.

* psolve —user-defined preconditioner solve function. See KINLsPrecSolveFn for more details.
Return value:

e KINLS_SUCCESS - The optional values have been successfully set.

e KINLS_MEM_NULL — The kin_mem pointer is NULL.

e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.

e KINLS_SUNLS_FAIL — An error occurred when setting up preconditioning in the SUNLinearSolver
object used by the KINLS interface.

Notes:
The default is NULL for both arguments (i.e., no preconditioning). This function must be called after the
KINLS linear solver interface has been initialized through a call to KINSetLinearSolver().

Added in version 4.0.0: Replaces the deprecated function KINSpilsSetPreconditioner.

5.3.5 Optional output functions

KINSOL provides an extensive list of functions that can be used to obtain solver performance information. Table
5.2 lists all optional output functions in KINSOL, which are then described in detail in the remainder of this section,
beginning with those for the main KINSOL solver and continuing with those for the KINLS linear solver interface.
Where the name of an output from a linear solver module would otherwise conflict with the name of an optional output
from the main solver, a suffix LS (for Linear Solver) has been added here (e.g., lenrwLS).

66 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.1

Table 5.2: Optional outputs from KINSOL and KINLS

Optional output

Function name

KINSOL main solver

Size of KINSOL real and integer workspaces
Number of function evaluations

Number of nonlinear iterations

Number of (3-condition failures

Number of backtrack operations

Scaled norm of F

Scaled norm of the step

User data pointer

Print all statistics

Name of constant associated with a return flag
KINLS linear solver interface

Stored Jacobian of the nonlinear system
Nonlinear iteration number at which the Jacobian was evaluated
Size of real and integer workspaces

No. of Jacobian evaluations

. of F calls for D.Q. Jacobian[-vector] evals.
. of linear iterations

. of linear convergence failures

. of preconditioner evaluations

. of preconditioner solves

No. of Jacobian-vector product evaluations
Last return from a KINLS function

Name of constant associated with a return flag

KINGetWorkSpace ()
KINGetNumFuncEvals()
KINGetNumNonlinSolvIters()
KINGetNumBetaCondFails()
KINGetNumBacktrackOps()
KINGetFuncNorm()
KINGetStepLength()
KINGetUserData()
KINPrintAllStats()
KINGetReturnFlagName ()

KINGetJac()
KINGetJacNumIters()
KINGetLinWorkSpace ()
KINGetNumJacEvals()
KINGetNumLinFuncEvals()
KINGetNumLinIters()
KINGetNumLinConvFails ()
KINGetNumPrecEvals()
KINGetNumPrecSolves()
KINGetNumJtimesEvals()
KINGetLastLinFlag()
KINGetLinReturnFlagName ()

5.3.5.1 Main solver optional output functions

KINSOL provides several user-callable functions that can be used to obtain different quantities that may be of interest
to the user, such as solver workspace requirements and solver performance statistics. These optional output functions
are described next.

int KINGetWorkSpace (void *kin_mem, long int *lenrw, long int *leniw)
The function KINGetWorkSpace () returns the KINSOL integer and real workspace sizes.

Arguments:
e kin_mem — pointer to the KINSOL memory block.
e lenrw — the number of sunrealtype values in the KINSOL workspace.
* leniw — the number of integer values in the KINSOL workspace.
Return value:
* KIN_SUCCESS — The optional output values have been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

Notes:
KINSOL solver In terms of the problem size N, the actual size of the real workspace is 17 + 5N sunre-
altype words. The real workspace is increased by an additional N words if constraint checking is enabled
(see KINSetConstraints()).

5.3. User-callable functions 67

User Documentation for KINSOL, v7.1.1

The actual size of the integer workspace (without distinction between int and long int) is 22 + 5N
(increased by NV if constraint checking is enabled).

int KINGetNumFuncEvals (void *kin_mem, long int *nfevals)
The function KINGetNumFuncEvals () returns the number of evaluations of the system function.

Arguments:

e kin_mem — pointer to the KINSOL memory block.

» nfevals — number of calls to the user-supplied function that evaluates F'(u).
Return value:

* KIN_SUCCESS — The optional output value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

int KINGetNumNonlinSolvIters (void *kin_mem, long int *nniters)
The function KINGetNumNonlinSolvIters() returns the number of nonlinear iterations.

Arguments:
* kin_mem — pointer to the KINSOL memory block.
e nniters — number of nonlinear iterations.
Return value:
* KIN_SUCCESS — The optional output value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

int KINGetNumBetaCondFails (void *kin_mem, long int *nbcfails)

The function KINGetNumBetaCondFails () returns the number of 5-condition failures.
Arguments:

e kin_mem — pointer to the KINSOL memory block.

¢ nbcfails — number of [-condition failures.
Return value:

* KIN_SUCCESS — The optional output value has been successfully set.

e KIN_MEM_NULL — The kin_mem pointer is NULL.

int KINGetNumBacktrackOps (void *kin_mem, long int *nbacktr)

The function KINGetNumBacktrackOps () returns the number of backtrack operations (step length adjustments)
performed by the line search algorithm.

Arguments:
e kin_mem — pointer to the KINSOL memory block.
* nbacktr — number of backtrack operations.
Return value:
* KIN_SUCCESS — The optional output value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

68 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.1

int KINGetFuncNorm(void *kin_mem, sunrealtype *fnorm)

The function KINGetFuncNorm() returns the scaled Euclidean /5 norm of the nonlinear system function F'(u)
evaluated at the current iterate.

Arguments:
* kin_mem — pointer to the KINSOL memory block.
 fnorm - current scaled norm of F'(u).
Return value:
* KIN_SUCCESS — The optional output value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

int KINGetStepLength (void *kin_mem, sunrealtype *steplength)

The function KINGetStepLength() returns the scaled Euclidean /5 norm of the step used during the previous
iteration.

Arguments:
* kin_mem — pointer to the KINSOL memory block.
¢ steplength — scaled norm of the Newton step.
Return value:
* KIN_SUCCESS — The optional output value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

int KINGetUserData (void *kin_mem, void **user_data)
The function KINGetUserData () returns the user data pointer provided to KINSetUserData().

Arguments:
e kin_mem — pointer to the KINSOL memory block.
* user_data — memory reference to a user data pointer.

Return value:
* KIN_SUCCESS — The optional output value has been successfully set.
e KIN_MEM_NULL — The kin_mem pointer is NULL.

Added in version 6.3.0.

int KINPrintAllStats (void *cvode_mem, FILE *outfile, SUNOutputFormat fmt)

The function KINPrintAllStats() outputs all of the nonlinear solver, linear solver, and other statistics.
Arguments:
e kin_mem — pointer to the KINSOL memory block.
* outfile — pointer to output file.
e fmt — the output format:
— SUN_OUTPUTFORMAT_TABLE — prints a table of values

— SUN_OUTPUTFORMAT_CSV — prints a comma-separated list of key and value pairs e.g., keyl,
valuel,key2,value2,...

Return value:

* KIN_SUCCESS — The output was successfully.

5.3. User-callable functions 69

User Documentation for KINSOL, v7.1.1

e KIN_MEM_NULL — The kin_mem pointer is NULL.
e KIN_TILL_INPUT — An invalid formatting option was provided.

Note: The file scripts/sundials_csv.py provides python utility functions to read and output the data from
a SUNDIALS CSV output file using the key and value pair format.

Added in version 6.2.0.

char *KINGetReturnFlagName (int flag)
The function KINGetReturnFlagName () returns the name of the KINSOL constant corresponding to flag.

Arguments:
e flag - return flag from a KINSOL function.

Return value:

* A string containing the name of the corresponding constant

5.3.5.2 KINLS linear solver interface optional output functions

The following optional outputs are available from the KINLS modules:

int KINGetJac (void *kin_mem, SUNMatrix *J])
Returns the internally stored copy of the Jacobian matrix of the nonlinear system function.

Parameters
* kin_mem — the KINSOL solver object
* J — the Jacobian matrix
Return values
* KINLS_SUCCESS - the output value has been successfully set
e KINLS_MEM_NULL — kin_mem was NULL
* KINLS_LMEM_NULL - the linear solver interface has not been initialized

Warning: With linear solvers that overwrite the input Jacobian matrix as part of the linear solver setup (e.g.,
performing an in-place LU factorization) the matrix returned by KINGetJac () may differ from the matrix
returned by the last Jacobian evaluation.

Warning: This function is provided for debugging purposes and the values in the returned matrix should
not be altered.

int KINGetJacNumIters (void *kin_mem, sunrealtype *nni_J)
Returns the nonlinear iteration number at which the Jacobian was evaluated.

Parameters
e kin_mem — the KINSOL memory structure

e nni_J — the nonlinear iteration number

70 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.1

Return values
* KINLS_SUCCESS - the output value has been successfully set
e KINLS_MEM_NULL — kin_mem was NULL
» KINLS_LMEM_NULL - the linear solver interface has not been initialized

int KINGetLinWorkSpace (void *kin_mem, long int *lenrwLS, long int *leniwLS)

The function KINGetLinlWorkSpace () returns the sizes of the real and integer workspaces used by the KINLS
linear solver interface.

Arguments:

e kin_mem — pointer to the KINSOL solver object.

* lenrwLS — the number of real values in the KINLS workspace.

* leniwLS — the number of integer values in the KINLS workspace.
Return value:

e KINLS_SUCCESS — The optional output value has been successfully set.

e KINLS_MEM_NULL — The kin_mem pointer is NULL.

e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian
matrix allocated by the user outside of KINLS is not included in this report.

Added in version 4.0.0: Replaces the deprecated function KINDlsGetWorkspace and KINSpilsGet-
Workspace.

int KINGetNumJacEvals (void *kin_mem, long int *njevals)

The function KINGetNumJacEvals () returns the cumulative number of calls to the KINLS Jacobian approxi-
mation function.

Arguments:

» kin_mem — pointer to the KINSOL solver object.

* njevals — the cumulative number of calls to the Jacobian function total so far.
Return value:

e KINLS_SUCCESS — The optional output value has been successfully set.

e KINLS_MEM_NULL — The kin_mem pointer is NULL.

e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.
Added in version 4.0.0: Replaces the deprecated function KIND1sGetNumJacEvals.

int KINGetNumLinFuncEvals (void *kin_mem, long int *nrevalsLS)

The function KINGetNumLinFuncEvals () returns the cumulative number of calls to the user residual function
due to the finite difference Jacobian approximation or finite difference Jacobian-vector product approximation.

Arguments:
e kin_mem — pointer to the KINSOL solver object.
e nrevalsLS — the cumulative number of calls to the user residual function.

Return value:

5.3. User-callable functions 71

User Documentation for KINSOL, v7.1.1

» KINLS_SUCCESS — The optional output value has been successfully set.
e KINLS_MEM_NULL — The kin_mem pointer is NULL.
e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.

Notes:
The value nrevalsLS is incremented only if one of the default internal difference quotient functions is
used.

Added in version 4.0.0: Replaces the deprecated functions KIND1sGetNumRhsEvals and KINSpilsGetNum-
RhsEvals.

int KINGetNumLinIters (void *kin_mem, long int *nliters)

The function KINGetNumLinIters () returns the cumulative number of linear iterations.
Arguments:
* kin_mem — pointer to the KINSOL solver object.
* nliters — the current number of linear iterations.
Return value:
e KINLS_SUCCESS — The optional output value has been successfully set.
e KINLS_MEM_NULL — The kin_mem pointer is NULL.
e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.
Added in version 4.0.0: Replaces the deprecated function KINSpilsGetNumLinIters.

int KINGetNumLinConvFails (void *kin_mem, long int *nlcfails)

The function KINGetNumLinConvFails () returns the cumulative number of linear convergence failures.
Arguments:
* kin_mem — pointer to the KINSOL solver object.
e nlcfails — the current number of linear convergence failures.
Return value:
* KINLS_SUCCESS - The optional output value has been successfully set.
e KINLS_MEM_NULL — The kin_mem pointer is NULL.
e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.
Added in version 4.0.0: Replaces the deprecated function KINSpilsGetNumConvFails.

int KINGetNumPrecEvals (void *kin_mem, long int *npevals)

The function KINGetNumPrecEvals() returns the cumulative number of preconditioner evaluations, i.e., the
number of calls made to psetup.

Arguments:
* kin_mem — pointer to the KINSOL solver object.
e npevals — the cumulative number of calls to psetup.
Return value:
e KINLS_SUCCESS — The optional output value has been successfully set.
e KINLS_MEM_NULL — The kin_mem pointer is NULL.
* KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.

72 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.1

Added in version 4.0.0: Replaces the deprecated function KINSpilsGetNumPrecEvals.

int KINGetNumPrecSolves (void *kin_mem, long int *npsolves)

The function KINGe tNumPrecSolves () returns the cumulative number of calls made to the preconditioner solve
function, psolve.

Arguments:
e kin_mem — pointer to the KINSOL solver object.
¢ npsolves — the cumulative number of calls to psolve.
Return value:
* KINLS_SUCCESS - The optional output value has been successfully set.
e KINLS_MEM_NULL — The kin_mem pointer is NULL.
e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.
Added in version 4.0.0: Replaces the deprecated function KINSpilsGetNumPrecSolves.

int KINGetNumJtimesEvals (void *kin_mem, long int *njvevals)

The function KINGetNumJtimesEvals () returns the cumulative number of calls made to the Jacobian-vector
product function, jtimes.

Arguments:
* kin_mem — pointer to the KINSOL solver object.
e njvevals — the cumulative number of calls to jtimes.
Return value:
» KINLS_SUCCESS — The optional output value has been successfully set.
e KINLS_MEM_NULL — The kin_mem pointer is NULL.
e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.
Added in version 4.0.0: Replaces the deprecated function KINSpilsGetNumJtimesEvals.

int KINGetLastLinFlag(void *kin_mem, long int *1sflag)
The function KINGetLastLinFlag () returns the last return value from an KINLS routine.

Arguments:
* kin_mem — pointer to the KINSOL solver object.
¢ 1sflag — the value of the last return flag from an KINLS function.
Return value:
* KINLS_SUCCESS — The optional output value has been successfully set.
e KINLS_MEM_NULL — The kin_mem pointer is NULL.
e KINLS_LMEM_NULL — The KINLS linear solver has not been initialized.

Notes:
If the KINLS setup function failed (i.e., KINSol () returned KIN_LSETUP_FAIL) when using the SUN-
LINSOL_DENSE or SUNLINSOL_BAND modules, then the value of 1sflag is equal to the column index
(numbered from one) at which a zero diagonal element was encountered during the LU factorization of the
(dense or banded) Jacobian matrix.

If the KINLS setup function failed when using another SUNLinearSolver object, then 1sflag will be
SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FATL_UNREC, or SUN_ERR_EXT_FATL.

5.3. User-callable functions 73

User Documentation for KINSOL, v7.1.1

If the KINLS solve function failed (KINSol () returned KIN_LSOLVE_FAIL), 1sflag contains the error
return flag from the SUNLinearSolver object, which will be one of: SUN_ERR_ARG_CORRUPTRRUPT,
indicating that the SUNLinearSolver memory is NULL; SUNLS_ATIMES_FAIL_UNREC, indicating an un-
recoverable failure in the J * v function; SUNLS_PSOLVE_FAIL_UNREC, indicating that the preconditioner
solve function psolve failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt
procedure (generated only in SPGMR or SPFGMR); SUNLS_QRSOL_FAIL, indicating that the matrix R
was found to be singular during the QR solve phase (SPGMR and SPFGMR only); or SUN_ERR_EXT_-
FATIL, indicating an unrecoverable failure in an external iterative linear solver package.

Added in version 4.0.0: Replaces the deprecated functions KIND1sGetLastFlag and KINSpilsGetLastFlag.

char *KINGetLinReturnFlagName (long int Isflag)

The function KINGetLinReturnFIlagName () returns the name of the KINLS constant corresponding to 1sflag.
Arguments:

e flag - the flag returned by a call to an KINSOL function
Return value:

e char* — the flag name string or if 1 < 1sflag < N (LU factorization failed), this function returns
“NONE”.

Added in version 4.0.0: Replaces the deprecated functions KIND1sGetReturnFlagName and KINSpilsGetRe-
turnFlagName.

5.4 User-supplied functions

The user-supplied functions consist of one function defining the nonlinear system, (optionally) a function that handles
error and warning messages, (optionally) a function that handles informational messages, (optionally) one or two func-
tions that provides Jacobian-related information for the linear solver, and (optionally) one or two functions that define
the preconditioner for use in any of the Krylov iterative algorithms.

5.4.1 Problem defining function

The user must provide a function of type KINSysFn defined as follows:

typedef int (FKINSysFn)(N_Vector u, N_Vector fval, void *user_data)

This function computes the F'(u) (or G(u) for fixed-point iteration and Anderson acceleration) for a given value
of the vector u.

Arguments:
e u —is the current value of the dependent variable vector, u
 fval — is the output vector F'(u)

e user_data —is a pointer to user data, the same as the user_data pointer parameter passed to KIN-
SetUserData()

Return value:
An KINSysFn function type should return a value of 0 if successful, a positive value if a recoverable error
occurred (in which case KINSOL will attempt to correct), or a negative value if a nonrecoverable error
occurred. In the last case, the integrator halts. If a recoverable error occurred, the integrator will attempt
to correct and retry.

Notes:
Allocation of memory for fval is handled within KINSOL.

74

Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.1

5.4.2 Jacobian construction (matrix-based linear solvers)

If a matrix-based linear solver module is used (i.e. a non-NULL SUNMatrix object was supplied to KINSetLinear-
Solver()), the user may provide a function of type KINLsJacFn defined as follows:

typedef int (*KINLsJacFn)(N_Vector u, N_Vector fu, SUNMatrix J, void *user_data, N_Vector tmpl, N_Vector

tmp2)

This function computes the Jacobian matrix J(u) (or an approximation to it).

Arguments:

e u —is the current (unscaled) iterate.
 fu —is the current value of the vector, F'(u).
* J —is the output (approximate) Jacobian matrix (of type SUNMatrix), F”(u).

* user_data - is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

e tmpl, tmp2, — are pointers to memory allocated for variables of type N_Vector which can be used by
KINLsJacFn function as temporary storage or work space.

Return value:

An KINLsJacFn should return O if successful, or a non-zero value otherwise.

Notes:

Information regarding the structure of the specific SUNMatrix structure (e.g. number of rows, upper/lower
bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMatrix interface
functions (see Chapter §7 for details).

With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER_DIRECT), the Jacobian matrix
J(u) is zeroed out prior to calling the user-supplied Jacobian function so only nonzero elements need to be
loaded into J.

If the user’s KINLsJacFn function uses difference quotient approximations, it may need to access quantities
not in the call list. These quantities may include the scale vectors and the unit roundoff. To obtain the scale
vectors, the user will need to add to user_data pointers to u_scale and/or £_scale as needed. The unit
roundoff can be accessed as SUN_UNIT_ROUNDOFF defined in sundials_types.h.

dense:

A user-supplied dense Jacobian function must load the N x N dense matrix J with an approximation to
the Jacobian matrix J(u) at the point (u). The accessor macros SM_ELEMENT_D and SM_COLUMN_D allow
the user to read and write dense matrix elements without making explicit references to the underlying
representation of the SUNMATRIX_DENSE type. SM_ELEMENT_D(J, i, j) references the (i, j)-th element
of the dense matrix J (with i, j= 0...N—1). This macro is meant for small problems for which efficiency
of access is not a major concern. Thus, in terms of the indices m and n ranging from 1 to N, the Jacobian
element J,, ,, can be set using the statement SM_ELEMENT_D(J, m-1, n-1) =J,, ,. Alternatively, SM_-
COLUMN_D(J, j) returns a pointer to the first element of the j-th column of J (with j=0...N — 1), and
the elements of the j-th column can then be accessed using ordinary array indexing. Consequently, J,, »,
can be loaded using the statements col_n = SM_COLUMN_D(J, n-1); col_n[m-1] = J,, ,. For large
problems, it is more efficient to use SM_COLUMN_D than to use SM_ELEMENT_D. Note that both of these
macros number rows and columns starting from 0. The SUNMATRIX_DENSE type and accessor macros are
documented in §7.3.

banded:

A user-supplied banded Jacobian function must load the N x N banded matrix J with an approximation
to the Jacobian matrix J(u) at the point (u). The accessor macros SM_ELEMENT_B, SM_COLUMN_B, and
SM_COLUMN_ELEMENT_B allow the user to read and write banded matrix elements without making specific

5.4. User-supplied functions 75

User Documentation for KINSOL, v7.1.1

references to the underlying representation of the SUNMATRIX_BAND type. SM_ELEMENT_B(J, i, j) ref-
erences the (i, j)-th element of the banded matrix J, counting from 0. This macro is meant for use in
small problems for which efficiency of access is not a major concern. Thus, in terms of the indices m and
n ranging from 1 to N with (m, n) within the band defined by mupper and mlower, the Jacobian element
Jm n can be loaded using the statement SM_ELEMENT_B(J, m-1, n-1) =J,, ,. The elements within the
band are those with -mupper < m-n < mlower. Alternatively, SM_COLUMN_B(J, j) returns a pointer to
the diagonal element of the j-th column of J, and if we assign this address to sunrealtype *col_j, then
the i-th element of the j-th column is given by SM_COLUMN_ELEMENT_B(col_j, i, j), counting from
0. Thus, for (m,n) within the band, J,, ,, can be loaded by setting col_n = SM_COLUMN_B(J, n-1);
and SM_COLUMN_ELEMENT_B(col_n, m-1, n-1) =J,, ,. The elements of the j-th column can also be
accessed via ordinary array indexing, but this approach requires knowledge of the underlying storage for a
band matrix of type SUNMATRIX_BAND. The array col_n can be indexed from —mupper to mlower. For
large problems, it is more efficient to use SM_COLUMN_B and SM_COLUMN_ELEMENT_B than to use the SM_-
ELEMENT_B macro. As in the dense case, these macros all number rows and columns starting from 0. The
SUNMATRIX_BAND type and accessor macros are documented in §7.6.

sparse:

A user-supplied sparse Jacobian function must load the N x N compressed-sparse-column or compressed-
sparse-row matrix J with an approximation to the Jacobian matrix J(u) at the point (u). Storage for J
already exists on entry to this function, although the user should ensure that sufficient space is allocated
in J to hold the nonzero values to be set; if the existing space is insufficient the user may reallocate the
data and index arrays as needed. The amount of allocated space in a SUNMATRIX_SPARSE object may
be accessed using the macro SM_NNZ_S or the routine SUNSparseMatrix_NNZ. The SUNMATRIX_SPARSE
type and accessor macros are documented in §7.8.

Added in version 4.0.0: Replaces the deprecated type KIND1sJacFn.

5.4.3 Jacobian-vector product (matrix-free linear solvers)

If a matrix-free linear solver is to be used (i.e., a NULL-valued SUNMatrix was supplied to KINSetLinearSolver()),
the user may provide a function of type KINLsJacTimesVecFn in the following form, to compute matrix-vector prod-
ucts Jv. If such a function is not supplied, the default is a difference quotient approximation to these products.

typedef int (*KINLsJacTimesVecFn)(N_Vector v, N_Vector Jv, N_Vector u, sunbooleantype *new_u, void
*user_data)

This function computes the product Jv (or an approximation to it).
Arguments:
* v —is the vector by which the Jacobian must be multplied to the right.
e Jv —is the computed output vector.
* u—is the current value of the dependent variable vector.

e user_data —is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

Return value:
The value returned by the Jacobian-times-vector function should be 0 if successful. If a recoverable failure
occurred, the return value should be positive. In this case, KINSOL will attempt to correct by calling the
preconditioner setup function. If this information is current, KINSOL halts. If the Jacobian-times-vector
function encounters an unrecoverable error, it should return a negative value, prompting KINSOL to halt.

Notes:
If a user-defined routine is not given, then an internal jtimes function, using a difference quotient approx-
imation, is used.

76

Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.1

This function must return a value of J * v that uses the current value of .J, i.e. as evaluated at the current

u.

If the user’s KINLsJacTimesVecFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These might include the scale vectors and the unit roundoff. To obtain the
scale vectors, the user will need to add to user_data pointers to u_scale and/or £_scale as needed. The
unit roundoff can be accessed as SUN_UNIT_ROUNDOFF defined in sundials_types.h.

Added in version 4.0.0: Replaces the deprecated type KINSpilsJacTimesVecFn.

5.4.4 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLinearSolver solver module, then the user must provide a
function to solve the linear system Pz = r where P is the preconditioner matrix which approximates (at least crudely)
the Jacobian matrix J = F’(u). This function must be of type KINLsPrecSolveFn, defined as follows:

typedef int (*KINLsPrecSolveFn)(N_Vector u, N_Vector uscale, N_Vector tval, N_Vector fscale, N_Vector v, void

*user_data)

This function solves the preconditioning system Pz = r.

Arguments:

u — is the current (unscaled) value of the iterate.

uscale —is a vector containing diagonal elements of the scaling matrix u

fval — is the vector F'(u) evaluated at u

fscale —is a vector containing diagonal elements of the scaling matrix for fval

v — on inpuut, v is set to the right-hand side vector of the linear system, r. On output, v must contain
the solution z of the linear system Pz = r

user_data —is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

Return value:
The value returned by the preconditioner solve function should be 0 if successful, positive for a recoverable
error, or negative for an unrecoverable error.

Notes:

If the preconditioner solve function fails recoverably and if the preconditioner information (set by the pre-
conditioner setup function) is out of date, KINSOL attempts to correct by calling the setup function. If the
preconditioner data is current, KINSOL halts.

5.4.5 Preconditioner setup (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed, then this needs to be
done in a user-supplied function of type KINLsPrecSetupFn, defined as follows:

typedef int (*KINLsPrecSetupFn)(N_Vector u, N_Vector uscale, N_Vector fval, N_Vector fscale, void *user_data)

This function evaluates and/or preprocesses Jacobian-related data needed by the preconditioner solve function.

Arguments:

u — is the current (unscaled) value of the iterate.
uscale —is a vector containing diagonal elements of the scaling matrix u

fval — is the vector F'(u) evaluated at u

5.4. User-supplied functions 77

User Documentation for KINSOL, v7.1.1

e fscale —is a vector containing diagonal elements of the scaling matrix for fval

* user_data —is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

Return value:
The value returned by the preconditioner setup function should be 0 if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Notes:
The user-supplied preconditioner setup subroutine should compute the right preconditioner matrix P
(stored in the memory block referenced by the user_data pointer) used to form the scaled preconditioned
linear system

(DpJ(u)P~'*D; Y (D,Px) = —DpF(u),

where D,, and D denote the diagonal scaling matrices whose diagonal elements are stored in the vectors
uscale and fscale, respectively.

The preconditioner setup routine will not be called prior to every call made to the preconditioner solve
function, but will instead be called only as often as necessary to achieve convergence of the Newton iteration.

If the user’s KINLsPrecSetupFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These might include the scale vectors and the unit roundoff. To obtain the
scale vectors, the user will need to add to user_data pointers to u_scale and/or £_scale as needed. The
unit roundoff can be accessed as SUN_UNIT_ROUNDOFF defined in sundials_types.h.

If the preconditioner solve routine requires no preparation, then a preconditioner setup function need not
be given.

5.5 A parallel band-block-diagonal preconditioner module

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced through precon-
ditioning. For problems in which the user cannot define a more effective, problem-specific preconditioner, KINSOL
provides a band-block-diagonal preconditioner module KINBBDPRE, to be used with the parallel N_Vector module
described in §6.5.

This module provides a preconditioner matrix for KINSOL that is block-diagonal with banded blocks. The blocking
corresponds to the distribution of the dependent variable vector « amongst the processes. Each preconditioner block
is generated from the Jacobian of the local part (associated with the current process) of a given function G(u) ap-
proximating F'(u) (G = F is allowed). The blocks are generated by each process via a difference quotient scheme,
utilizing a specified band structure. This structure is given by upper and lower half-bandwidths, mudq and m1dq, defined
as the number of non-zero diagonals above and below the main diagonal, respectively. However, from the resulting
approximate Jacobain blocks, only a matrix of bandwidth mukeep + mlkeep +1 is retained.

Neither pair of parameters need be the true half-bandwidths of the Jacobian of the local block of G, if smaller values
provide a more efficient preconditioner. Such an efficiency gain may occur if the couplings in the system outside a
certain bandwidth are considerably weaker than those within the band. Reducing mukeep and mlkeep while keeping
mudq and mldq at their true values, discards the elements outside the narrower band. Reducing both pairs has the
additional effect of lumping the outer Jacobian elements into the computed elements within the band, and requires
more caution and experimentation to see whether the lower cost of narrower band matrices offsets the loss of accuracy
in the blocks.

The KINBBDPRE module calls two user-provided functions to construct P: a required function Gloc (of type KINBBD-
LocalFn) which approximates the nonlinear system function G(u) ~ F(u) and which is computed locally, and an

78 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.1

optional function Gcomm (of type KINBBDCommFn) which performs all interprocess communication necessary to eval-
uate the approximate function G. These are in addition to the user-supplied nonlinear system function that evaluates
F(u). Both functions take as input the same pointer user_data as that passed by the user to KINSetUserData() and
passed to the user’s function func, and neither function has a return value. The user is responsible for providing space
(presumably within user_data) for components of u that are communicated by Gcomm from the other processes, and
that are then used by Gloc, which should not do any communication.

typedef int (*KINBBDLocalFn)(sunindextype Nlocal, N_Vector u, N_Vector gval, void *user_data)
This Gloc function computes G(u), and outputs the resulting vector as gval.

Arguments:
* Nlocal —is the local vector length.
* u — is the current value of the iterate.
* gval - is the output vector.

* user_data —is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

Return value:
An KINBBDLocalFn function type should return O to indicate success, or non-zero if an error occured.

Notes:
This function must assume that all inter-processor communication of data needed to calculate gval has
already been done, and this data is accessible within user_data.

The case where G is mathematically identical to F' is allowed.

typedef int (*KINBBDCommFn)(sunindextype Nlocal, N_Vector u, void *user_data)

This Gcomm function performs all inter-processor communications necessary for the execution of the Gloc func-
tion above, using the input vectors u.

Arguments:
* Nlocal —is the local vector length.
* u —is the current value of the iterate.

* user_data —is a pointer to user data, the same as the user_data parameter passed to KINSetUser-
Data().

Return value:
An KINBBDLocalFn function type should return 0 to indicate success, or non-zero if an error occured.

Notes:
The Gcomm function is expected to save communicated data in space defined within the structure user_-
data.

Each call to the Gcomm function is preceded by a call to the residual function func with the same u argu-
ment. Thus Gcomm can omit any communications done by func if relevant to the evaluation of Gloc. If
all necessary communication was done in func, then Gcomm = NULL can be passed in the call to KINBB-
DPrecInit().

Besides the header files required for the integration of the DAE problem (see §5.1), to use the KINBBDPRE module,
the main program must include the header file kin_bbdpre.h which declares the needed function prototypes.

The following is a summary of the usage of this module and describes the sequence of calls in the user main program.
Steps that are unchanged from the user main program presented in §5.2 are not bold.

1. Initialize parallel or multi-threaded environment (if appropriate)

2. Create the SUNDIALS context object

5.5. A parallel band-block-diagonal preconditioner module 79

User Documentation for KINSOL, v7.1.1

A

10.
11.

12.

13.
14.
15.

16.
17.

Set the problem dimensions etc.

Create the vector with the initial guess
Create matrix object (if appropriate)
Create linear solver object (if appropriate)

When creating the iterative linear solver object, specify the use of right preconditioning (SUN_PREC_RIGHT) as
KINSOL only supports right preconditioning.

Create nonlinear solver object (if appropriate)
Create KINSOL object

Initialize KINSOL solver

Attach the linear solver (if appropriate)

Set linear solver optional inputs (if appropriate)

Note that the user should not overwrite the preconditioner setup function or solve function through calls to
KINSetPreconditioner () optional input function.

Initialize the KINBBDPRE preconditioner module

Call KINBBDPrecInit() to allocate memory and initialize the internal preconditioner data. The last two argu-
ments of KINBBDPrecInit () are the two user-supplied functions described above.

Set optional inputs
Solve problem
Get optional outputs

Additional optional outputs associated with KINBBDPRE are available by way of two routines described below,
KINBBDPrecGetWorkSpace () and KINBBDPrecGetNumGfnEvals().

Deallocate memory

Finalize MPI, if used

The user-callable functions that initialize or re-initialize the KINBBDPRE preconditioner module are described next.

int KINBBDPrecInit (void *kin_mem, sunindextype Nlocal, sunindextype mudq, sunindextype mldq, sunindextype

mukeep, sunindextype mlkeep, sunrealtype dq_rel_u, KINBBDLocalFn Gloc,
KINBBDCommFn Gcomm)

The function KINBBDPrecInit () initializes and allocates memory for the KINBBDPRE preconditioner.
Arguments:

e kin_mem — pointer to the KINSOL memory block.

¢ Nlocal —local vector length.

* mudg — upper half-bandwidth to be used in the difference-quotient Jacobian approximation.

* mldqg — lower half-bandwidth to be used in the difference-quotient Jacobian approximation.

» mukeep — upper half-bandwidth of the retained banded approximate Jacobian block.

* mlkeep — lower half-bandwidth of the retained banded approximate Jacobian block.

* dg_rel_u - the relative increment in components of u used in the difference quotient approximations.
The default is dg_rel_u = +/unit roundoff , which can be specified by passing dq_rel_u= 0.0.

* Gloc — the CC function which computes the approximation G(u) = F'(u).

80

Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

User Documentation for KINSOL, v7.1.1

* Gcomm — the optional CC function which performs all interprocess communication required for the
computation of G(u).

Return value:
e KINLS_SUCCESS — The call to KINBBDPrecInit () was successful.
e KINLS_MEM_NULL — The kin_mem pointer was NULL.
* KINLS_MEM_FAIL — A memory allocation request has failed.
e KINLS_LMEM_NULL — The KINLS linear solver interface has not been initialized.

e KINLS_ILL_INPUT — The supplied vector implementation was not compatible with the block band
preconditioner.

Notes:
If one of the half-bandwidths mudq or mldq to be used in the difference-quotient calculation of the approx-
imate Jacobian is negative or exceeds the value Nlocal-1, it is replaced with 0 or Nlocal-1 accordingly.

The half-bandwidths mudg and m1dq need not be the true half-bandwidths of the Jacobian of the local block
of G, when smaller values may provide greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate Jacobian block may be
even smaller, to reduce storage and computation costs further.

For all four half-bandwidths, the values need not be the same for every process.
The following two optional output functions are available for use with the KINBBDPRE module:

int KINBBDPrecGetWorkSpace (void *kin_mem, long int *lenrwBBDP, long int *leniwBBDP)

The function KINBBDPrecGetliorkSpace() returns the local sizes of the KINBBDPRE real and integer
workspaces.

Arguments:

e kin_mem — pointer to the KINSOL solver object.

e lenrwBBDP — local number of real values in the KINBBDPRE workspace.

* leniwBBDP — local number of integer values in the KINBBDPRE workspace.
Return value:

» KINLS_SUCCESS — The optional output value has been successfully set.

e KINLS_MEM_NULL — The kin_mem pointer was NULL.

e KINLS_PMEM_NULL — The KINBBDPRE preconditioner has not been initialized.

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within the
KINBBDPRE module (the banded matrix approximation, banded SUNLinearSolver object, temporary
vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding KINGetLin-
WorkSpace () function.

int KINBBDPrecGetNumGfnEvals (void *kin_mem, long int *ngevalsBBDP)

The function KINBBDPrecGetNumGfnEvals () returns the cuamulative number of calls to the user Gres function
due to the finite difference approximation of the Jacobian blocks used within KINBBDPRE’s preconditioner setup
function.

Arguments:

e kin_mem — pointer to the KINSOL solver object.

5.5. A parallel band-block-diagonal preconditioner module 81

User Documentation for KINSOL, v7.1.1

¢ ngevalsBBDP — the cumulative number of calls to the user Gres function.
Return value:

* KINLS_SUCCESS - The optional output value has been successfully set.

e KINLS_MEM_NULL — The kin_mem pointer was NULL.

e KINLS_PMEM_NULL — The KINBBDPRE preconditioner has not been initialized.

In addition to the ngevalsBBDP evaluations of Gres, the costs associated with KINBBDPRE also includes nlin-
setups LU factorizations, nlinsetups calls to Gcomm, npsolves banded backsolve calls, and nrevalsLS residual
function evaluations, where nlinsetups is an optional KINSOL output (see §5.3.5.1), and npsolves and nrevalsLS
are linear solver optional outputs (see §5.3.5.2).

5.6 Alternative to KINSOL for difficult systems

A nonlinear system F'(u) = 0 may be difficult to solve with KINSOL (or any other nonlinear system solver) for a
variety of reasons. The possible reasons include high nonlinearity, small region of convergence, and lack of a good
initial guess. For systems with such difficulties, there is an alternative approach that may be more successful. This is
an old idea, but deserves some new attention.

If the nonlinear system is F'(u) = 0, consider instead the ODE system du/dt = —M ~' F(u), where M is a nonsingular
matrix that is an approximation (even a crude approximation) to the system Jacobian F,, = dF'/du. Whatever M is, if
this ODE is solved until it reaches a steady state u*, then u* is a zero of the right-hand side of the ODE, and hence a
solution to F'(u) = 0. There is no issue of having a close enough initial guess.

A further basis for this choice of ODE is the following: If M approximates F,,, then the Jacobian of the ODE system,
—~M~1F,, is approximately equal to —I where I is the identity matrix. This means that (in a local approximation
sense) the solution modes of the ODE behave like exp(—t), and that asymptotically the approach to the steady state
goes as exp(—t). Of course, the closer M is to Fy,, the better this basis applies.

Using (say) CVODE to solve the above ODE system requires, in addition to the objective function F'(u), the calculation
of a suitable matrix M and its inverse, or at least a routine that solves linear systems Max = b. This is similar to the
KINSOL requirement of supplying the system Jacobian J (or solutions to Jx = b), but differs in that M may be
simpler than J and hence easier to deal with. Depending on the nature of M, this may be handled best with a direct
solver, or with a preconditioned Krylov solver. The latter calls for the use of a preconditioner P that may be a crude
approximation to /M, hence even easier to solve. Note if using ARKODE, the ODE system may be posed in the linearly
implicit from Mdu/dt = —F(u) where M is the “mass matrix” for the system. This use case requires supplying
ARKODE with a function to evaluate M or to compute its action on a vector (Mv = w) and attaching a linear solver
(direct or iterative) to solve the linear systems Mz = b.

The solution of the ODE may be made easier by solving instead the equivalent DAE, Mdu/dt + F(u) = 0. Applying
IDA to this system requires solutions to linear systems whose matrix is the DAE system Jacobian, J = F,+aM, where
ais the scalar coefficient c; supplied to the user’s Jacobian or preconditioner routine. Selecting a preconditioned Krylov
method requires an approximation to this Jacobian as preconditioner P. Given that M approximates F,, (possibly
crudely), the appropriate approximation to J is P = M + aM = (1 + «)M. Again the user must supply a routine
that solves linear systems Px = b, or Mx = b/(1 + «). If M is too difficult to solve, than an approximation M’ that
is easier can be substituted, as long as it achieves convergence. As always, there is a trade-off between the expense of
solving M and the difficulty of achieving convergence in the linear solver.

For the solution of either the ODE or DAE system above, the chances for convergence can be improved with a piecewise
constant choice for M. Specifically, starting from an initial guess uo, an initial choice for M might be My = F,(ug),
or some approximation to this Jacobian. Then one could integrate Mydu/dt + F(u) = 0 from¢ = 0tot = T for
some sizable value T, evaluate I, (u(T")), and take M; to be an approximation to that Jacobian. Then integrate using
M from t = T to t = 27, and repeat the process until it converges to a steady state.

82 Chapter 5. Using KINSOL for the Solution of Nonlinear Systems

Chapter 6

Vector Data Structures

The SUNDIALS library comes packaged with a variety of NVECTOR implementations, designed for simulations in
serial, shared-memory parallel, and distributed-memory parallel environments, as well as interfaces to vector data
structures used within external linear solver libraries. All native implementations assume that the process-local data is
stored contiguously, and they in turn provide a variety of standard vector algebra operations that may be performed on
the data.

In addition, SUNDIALS provides a simple interface for generic vectors (akin to a C++ abstract base class). All of the
major SUNDIALS solvers (CVODE(s), IDA(s), KINSOL, ARKODE) in turn are constructed to only depend on these
generic vector operations, making them immediately extensible to new user-defined vector objects. The only exceptions
to this rule relate to the dense, banded and sparse-direct linear system solvers, since they rely on particular data storage
and access patterns in the NVECTORS used.

6.1 Description of the NVECTOR Modules

SUNDIALS solvers are written in a data-independent manner. They all operate on generic vectors (of type N_Vector)
through a set of operations defined by, and specific to, the particular vector implementation. Users can provide a
custom vector implementation or use one provided with SUNDIALS. The generic operations are described below. In
the sections following, the implementations provided with SUNDIALS are described.

An N_Vector is a pointer to the _generic_N_Vector structure:
typedef struct _generic_N_Vector *N_Vector
struct _generic_N_Vector

The structure defining the SUNDIALS vector class.

void *content
Pointer to vector-specific member data.

N_Vector_Ops ops
A virtual table of vector operations provided by a specific implementation.

SUNContext sunctx
The SUNDIALS simulation context

The virtual table structure is defined as

typedef _generic_N_Vector_Ops *N_Vector_Ops

83

User Documentation for KINSOL, v7.1.1

struct _generic_N_Vector_Ops
The structure defining N_Vector operations.
N_Vector_ID (*nvgetvectorid)(N_Vecror)
The function implementing N_VGetVectorID()
N_Vector (*nvclone)(N_Vector)
The function implementing N_VCIone ()

N_Vector (*nvcloneempty)(N_Vector)
The function implementing N_VCIoneEmpty ()

void (*nvdestroy)(N_Vector)
The function implementing N_VDestroy ()
void (*nvspace)(N_Vector, sunindextype*, sunindextype*)
The function implementing N_VSpace ()
sunrealtype *(*nvgetarraypointer)(N_Vector)
The function implementing N_VGetArrayPointer()
sunrealtype *(*nvgetdevicearraypointer)(N_Vector)
The function implementing N_VGetDeviceArrayPointer ()
void (*nvsetarraypointer)(sunrealtype*, N_Vector)
The function implementing N_VSetArrayPointer()
SUNComm (*nvgetcommunicator)(N_Vecror)
The function implementing N_VGetCommunicator()
sunindextype (*nvgetlength)(N_Vector)
The function implementing N_VGetLength()
sunindextype (*nvgetlocallength)(N_Vecror)
The function implementing N_VGetLocalLength()
void (*nvlinearsum)(sunrealtype, N_Vector, sunrealtype, N_Vector, N_Vector)
The function implementing N_VLinearSum()
void (*nvconst)(sunrealtype, N_Vector)
The function implementing N_VConst ()
void (*nvprod)(N_Vector, N_Vector, N_Vector)
The function implementing N_VProd ()
void (*nvdiv)(N_Vector, N_Vector, N_Vector)
The function implementing N_VDiv ()
void (*nvscale)(sunrealtype, N_Vector, N_Vector)
The function implementing N_VScale ()
void (*nvabs)(N_Vector, N_Vector)
The function implementing N_VAbs ()
void (*nvinv)(N_Vector, N_Vector)

The function implementing N_VInv()

84 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.1

void (*nvaddconst)(N_Vector, sunrealtype, N_Vector)
The function implementing N_VAddConst ()
sunrealtype (*nvdotprod)(N_Vector, N_Vector)
The function implementing N_VDotProd()
sunrealtype (*nvmaxnorm)(N_Vector)
The function implementing N_VMaxNorm()
sunrealtype (*nvwrmsnorm)(N_Vector, N_Vector)
The function implementing N_ViirmsNorm()
sunrealtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector)
The function implementing N_ViirmsNormMask ()
sunrealtype (*nvmin)(N_Vector)
The function implementing N_VMin ()
sunrealtype (*nvwl2norm)(N_Vector, N_Vector)
The function implementing N_VWL2Norm()
sunrealtype (*nvl1lnorm)(N_Vector)
The function implementing N_VL INorm()
void (*nvcompare)(sunrealtype, N_Vector, N_Vector)
The function implementing N_VCompare ()
sunbooleantype (*nvinvtest)(N_Vector, N_Vector)
The function implementing N_VInvTest ()
sunbooleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector)
The function implementing N_VConstrMask ()
sunrealtype (*nvminquotient)(N_Vector, N_Vector)
The function implementing N_VMinQuotient ()
SUNErrCode (*nvlinearcombination)(int, sunrealtype*, N_Vector*, N_Vector)
The function implementing N_VLinearCombination()
SUNErrCode (*nvscaleaddmulti)(int, sunrealtype®, N_Vector, N_Vector*, N_Vector*)
The function implementing N_VScaleAddMulti ()
SUNErrCode (*nvdotprodmulti)(int, N_Vector, N_Vector*, sunrealtype*)
The function implementing N_VDotProdMulti ()

SUNErrCode (*nvlinearsumvectorarray)(int, sunrealtype, N_Vector*, sunrealtype, N_Vector*,
N_Vector¥)

The function implementing N_VLinearSumVectorArray ()

SUNErrCode (*nvscalevectorarray)(int, sunrealtype*, N_Vector*, N_Vector*)
The function implementing N_VScaleVectorArray ()

SUNErrCode (*nvconstvectorarray)(int, sunrealtype, N_Vector¥)
The function implementing N_VConstVectorArray ()

SUNErrCode (*nvwrmsnormvectorarray)(int, N_Vector*, N_Vector*, sunrealtype*)
The function implementing N_ViirmsNormVectorArray ()

6.1. Description of the NVECTOR Modules

85

User Documentation for KINSOL, v7.1.1

SUNErrCode (*nvwrmsnormmaskvectorarray)(int, N_Vector*, N_Vector*, N_Vector, sunrealtype*)

The function implementing N_ViirmsNormMaskVectorArray ()

SUNErrCode (*nvscaleaddmultivectorarray)(int, int, sunrealtype®, N_Vector*, N_Vector**,
N_Vector**)

The function implementing N_VScaleAddMultiVectorArray ()
SUNErrCode (*nvlinearcombinationvectorarray)(int, int, sunrealtype®, N_Vector**, N_Vector*)
The function implementing N_VLinearCombinationVectorArray ()
sunrealtype (*nvdotprodlocal)(N_Vector, N_Vector)
The function implementing N_VDotProdLocal ()
sunrealtype (*nvmaxnormlocal)(N_Vector)
The function implementing N_VMaxNormLocal ()
sunrealtype (*nvminlocal)(N_Vector)
The function implementing N_VMinLocal ()
sunrealtype (*nvl1lnormlocal)(N_Vector)
The function implementing N_VL1NormLocal ()
sunbooleantype (*nvinvtestlocal)(N_Vector, N_Vector)
The function implementing N_VInvTestLocal ()
sunbooleantype (*nvconstrmasklocal)(N_Vector, N_Vector, N_Vector)
The function implementing N_VConstrMaskLocal ()
sunrealtype (*nvminquotientlocal)(N_Vector, N_Vector)
The function implementing N_VMinQuotientLocal ()
sunrealtype (*nvwsqrsumlocal)(N_Vector, N_Vector)
The function implementing N_ViWSqrSumLocal ()
sunrealtype (*nvwsqrsummasklocal)(N_Vector, N_Vector, N_Vector)
The function implementing N_VIWSqrSumMaskLocal ()
SUNErrCode (*nvdotprodmultilocal)(int, N_Vector, N_Vector*, sunrealtype*)
The function implementing N_VDotProdMultiLocal ()
SUNErrCode (*nvdotprodmul tiallreduce)(int, N_Vector, sunrealtype*)
The function implementing N_VDotProdMultiAlIReduce ()
SUNErrCode (*nvbufsize)(N_Vector, sunindextype*)
The function implementing N_VBufSize ()
SUNErrCode (*nvbufpack)(N_Vector, void*)
The function implementing N_VBufPack ()
SUNErrCode (*nvbufunpack)(N_Vector, void*)
The function implementing N_VBufUnpack ()
void (*nvprint)(N_Vector)
The function implementing N_VPrint ()

86 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.1

void (*nvprintfile)(N_Vector, FILE*)
The function implementing N_VPrintFile ()

The generic NVECTOR module defines and implements the vector operations acting on a N_Vector. These routines
are nothing but wrappers for the vector operations defined by a particular NVECTOR implementation, which are
accessed through the ops field of the N_Vector structure. To illustrate this point we show below the implementation
of a typical vector operation from the generic NVECTOR module, namely N_VScale, which performs the operation
z +— cx for vectors = and z and a scalar c:

void N_VScale(sunrealtype c, N_Vector x, N_Vector z) {
z->ops->nvscale(c, x, z);

}

§6.2 contains a complete list of all standard vector operations defined by the generic NVECTOR module. §6.2.2,
§6.2.3,§6.2.4, §6.2.5, and §6.2.6 list optional fused, vector array, local reduction, single buffer reduction, and exchange
operations, respectively.

Fused and vector array operations (see §6.2.2 and §6.2.3) are intended to increase data reuse, reduce parallel communi-
cation on distributed memory systems, and lower the number of kernel launches on systems with accelerators. If a par-
ticular NVECTOR implementation defines a fused or vector array operation as NULL, the generic NVECTOR module
will automatically call standard vector operations as necessary to complete the desired operation. In all SUNDIALS-
provided NVECTOR implementations, all fused and vector array operations are disabled by default. However, these
implementations provide additional user-callable functions to enable/disable any or all of the fused and vector array
operations. See the following sections for the implementation specific functions to enable/disable operations.

Local reduction operations (see §6.2.4) are similarly intended to reduce parallel communication on distributed memory
systems, particularly when NVECTOR objects are combined together within an NVECTOR_MANY VECTOR object
(see §6.17). If a particular NVECTOR implementation defines a local reduction operation as NULL, the NVECTOR_-
MANYVECTOR module will automatically call standard vector reduction operations as necessary to complete the
desired operation. All SUNDIALS-provided NVECTOR implementations include these local reduction operations,
which may be used as templates for user-defined implementations.

The single buffer reduction operations (§6.2.5) are used in low-synchronization methods to combine separate reductions
into one MPI_Allreduce call.

The exchange operations (see §6.2.6) are intended only for use with the XBraid library for parallel-in-time integration
(accessible from ARKODE) and are otherwise unused by SUNDIALS packages.

6.1.1 NVECTOR Utility Functions

The generic NVECTOR module also defines several utility functions to aid in creation and management of arrays of
N_Vector objects —these functions are particularly useful for Fortran users to utilize the NVECTOR_MANY VECTOR
or SUNDIALS’ sensitivity-enabled packages CVODES and IDAS.

The functions N_VCloneVectorArray () and N_VCloneVectorArrayEmpty () create (by cloning) an array of count
variables of type N_Vector, each of the same type as an existing N_Vector input:

N_Vector *N_VCloneVectorArray (int count, N_Vector w)

Clones an array of count N_Vector objects, allocating their data arrays (similar to N_VClone()).
Arguments:

* count — number of N_Vector objects to create.

* w—template N_Vector to clone.
Return value:

* pointer to a new N_Vector array on success.

6.1. Description of the NVECTOR Modules 87

User Documentation for KINSOL, v7.1.1

* NULL pointer on failure.

N_Vector *N_VCloneVectorArrayEmpty (int count, N_Vector w)

Clones an array of count N_Vector objects, leaving their data arrays unallocated (similar to N_-
VCloneEmpty()).

Arguments:
e count — number of N_Vector objects to create.
* w—template N_Vector to clone.
Return value:
* pointer to a new N_Vector array on success.
* NULL pointer on failure.
An array of variables of type N_Vector can be destroyed by calling N_VDestroyVectorArray():

void N_VDestroyVectorArray (N_Vector *vs, int count)

Destroys an array of count N_Vector objects.
Arguments:
e vs — N_Vector array to destroy.
e count — number of N_Vector objects in vs array.

Notes:
This routine will internally call the N_Vector implementation-specific N_VDestroy () operation.

If vs was allocated using N_VCIloneVectorArray () then the data arrays for each N_Vector object will
be freed; if vs was allocated using N_VCIloneVectorArrayEmpty () then it is the user’s responsibility to
free the data for each N_Vector object.

Finally, we note that users of the Fortran 2003 interface may be interested in the additional utility functions N_VNewVec-
torArray (), N_VGetVecAtIndexVectorArray(), and N_VSetVecAtIndexVectorArray (), that are wrapped as
FN_NewVectorArray, FN_VGetVecAtIndexVectorArray, and FN_VSetVecAtIndexVectorArray, respectively.
These functions allow a Fortran 2003 user to create an empty vector array, access a vector from this array, and set a
vector within this array:

N_Vector *N_VNewVectorArray (int count, SUNContext sunctx)

Creates an array of count N_Vector objects, the pointers to each are initialized as NULL.
Arguments:
e count — length of desired N_Vector array.
* sunctx —a SUNContext object
Return value:
* pointer to a new N_Vector array on success.
* NULL pointer on failure.
Changed in version 7.0.0: The function signature was updated to add the SUNContext argument.

N_Vector *N_VGetVecAtIndexVectorArray (N _Vector *vs, int index)

Accesses the N_Vector at the location index within the N_Vector array vs.
Arguments:

* vs — N_Vector array.

88 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.1

* index — desired N_Vector to access from within vs.
Return value:

* pointer to the indexed N_Vector on success.

e NULL pointer on failure (index < 0 or vs == NULL).

Notes:
This routine does not verify that index is within the extent of vs, since vs is a simple N_Vector array that
does not internally store its allocated length.

void N_VSetVecAtIndexVectorArray(N_Vector *vs, int index, N_Vector w)

Sets a pointer to w at the location index within the vector array vs.
Arguments:
* vs — N_Vector array.
* index — desired location to place the pointer to w within vs.
* w— N_Vector to set within vs.

Notes:
This routine does not verify that index is within the extent of vs, since vs is a simple N_Vector array that
does not internally store its allocated length.

6.1.2 Implementing a custom NVECTOR

A particular implementation of the NVECTOR module must:
 Specify the content field of the N_Vector structure.

 Define and implement the vector operations. Note that the names of these routines should be unique to that im-
plementation in order to permit using more than one NVECTOR module (each with different N_Vector internal
data representations) in the same code.

* Define and implement user-callable constructor and destructor routines to create and free an N_Vector with the
new content field and with ops pointing to the new vector operations.

 Optionally, define and implement additional user-callable routines acting on the newly-defined N_Vector (e.g.,
a routine to print the content for debugging purposes).

* Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly-defined N_Vector.

To aid in the creation of custom NVECTOR modules, the generic NVECTOR module provides two utility functions N_-
VNewEmpty () and N_VCopyOps (). When used in custom NVECTOR constructors and clone routines these functions
will ease the introduction of any new optional vector operations to the NVECTOR API by ensuring that only required
operations need to be set, and that all operations are copied when cloning a vector.

N_Vector N_VNewEmpty (SUNContext sunctx)
This allocates a new generic N_Vector object and initializes its content pointer and the function pointers in the

operations structure to NULL.

Return value: If successful, this function returns an N_Vector object. If an error occurs when allocating the
object, then this routine will return NULL.

void N_VFreeEmpty(N_Vector v)

This routine frees the generic N_Vector object, under the assumption that any implementation-specific data that
was allocated within the underlying content structure has already been freed. It will additionally test whether the
ops pointer is NULL, and, if it is not, it will free it as well.

6.1. Description of the NVECTOR Modules 89

User Documentation for KINSOL, v7.1.1

Arguments:
e v —an N_Vector object

SUNErrCode N_VCopyOps (N_Vector w, N_Vector v)
This function copies the function pointers in the ops structure of w into the ops structure of v.

Arguments:
* w — the vector to copy operations from
* v — the vector to copy operations to
Return value: Returns a SUNErrCode.

enum N_Vector_ID

Each N_Vector implementation included in SUNDIALS has a unique identifier specified in enumeration and
shown in Table 6.1. It is recommended that a user supplied NVECTOR implementation use the SUNDIALS_-
NVEC_CUSTON identifier.

Table 6.1: Vector Identifications associated with vector kernels supplied

with SUNDIALS

Vector ID Vector type ID Value
SUNDIALS_NVEC_SERIAL Serial 0
SUNDIALS_NVEC_PARALLEL Distributed memory parallel (MPI) 1
SUNDIALS_NVEC_OPENMP OpenMP shared memory parallel 2
SUNDIALS_NVEC_PTHREADS PThreads shared memory parallel 3
SUNDIALS_NVEC_PARHYP hypre ParHyp parallel vector 4
SUNDIALS_NVEC_PETSC PETSc parallel vector 5
SUNDIALS_NVEC_CUDA CUDA vector 6
SUNDIALS_NVEC_HIP HIP vector 7
SUNDIALS_NVEC_SYCL SYCL vector 8
SUNDIALS_NVEC_RAJA RAIJA vector 9
SUNDIALS_NVEC_OPENMPDEV OpenMP vector with device offloading 10
SUNDIALS_NVEC_TRILINOS Trilinos Tpetra vector 11
SUNDIALS NVEC_MANYVECTOR “Many Vector” vector 12
SUNDIALS_NVEC_MPIMANYVECTOR MPI-enabled ‘“Many Vector” vector 13
SUNDIALS_NVEC_MPIPLUSX MPI+X vector 14
SUNDIALS_NVEC_CUSTOM User-provided custom vector 15

6.1.3 Support for complex-valued vectors

While SUNDIALS itself is written under an assumption of real-valued data, it does provide limited support for complex-
valued problems. However, since none of the built-in NVECTOR modules supports complex-valued data, users must
provide a custom NVECTOR implementation for this task. Many of the NVECTOR routines described in the subsection
§6.2 naturally extend to complex-valued vectors; however, some do not. To this end, we provide the following guidance:

e N_VMin() and N_VMinLocal () should return the minimum of all real components of the vector, i.e., m =
min real(x;).
0<i<n (i)

e N_VConst () (and similarly N_VConstVectorArray ()) should set the real components of the vector to the input
constant, and set all imaginary components to zero, i.e., z; = ¢+ 05 for 0 <7 < n.

* N_VAddConst () should only update the real components of the vector with the input constant, leaving all imag-
inary components unchanged.

90 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.1

e N_VWrmsNorm(), N_VWrmsNormMask (), N_VWSqrSumLocal () and N_VWSqrSumMaskLocal () should assume
that all entries of the weight vector w and the mask vector id are real-valued.

* N_VDotProd() should mathematically return a complex number for complex-valued vectors; as this is not pos-
sible with SUNDIALS’ current sunrealtype, this routine should be set to NULL in the custom NVECTOR
implementation.

e N_VCompare(), N_VConstrMask(), N_VMinQuotient (), N_VConstrMaskLocal() and N_VMinQuotient-
Local () are ill-defined due to the lack of a clear ordering in the complex plane. These routines should be set to
NULL in the custom NVECTOR implementation.

While many SUNDIALS solver modules may be utilized on complex-valued data, others cannot. Specifically, although
each package’s linear solver interface (e.g., ARKLS or CVLS) may be used on complex-valued problems, none of the
built-in SUNMatrix or SUNLinearSolver modules will work (all of the direct linear solvers must store complex-valued
data, and all of the iterative linear solvers require N_VDotProd()). Hence a complex-valued user must provide custom
linear solver modules for their problem. At a minimum this will consist of a custom SUNLinearSolver implementation
(see §8.1.8), and optionally a custom SUNMatrix as well. The user should then attach these modules as normal to the
package’s linear solver interface.

Finally, constraint-handling features of each package cannot be used for complex-valued data, due to the issue of order-
ing in the complex plane discussed above with N_VCompare (), N_VConstrMask (), N_VMinQuotient (), N_VCon-
strMaskLocal () and N_VMinQuotientLocal().

We provide a simple example of a complex-valued example problem, including a custom complex-valued Fortran
2003 NVECTOR module, in the files examples/arkode/F2003_custom/ark_analytic_complex_£2003.£90,
examples/arkode/F2003_custom/fnvector_complex_mod.f90, and examples/arkode/F2003_custom/
test_fnvector_complex_mod. £90.

6.2 Description of the NVECTOR operations

6.2.1 Standard vector operations
The standard vector operations defined by the generic N_Vector module are defined as follows. For each of these

operations, we give the name, usage of the function, and a description of its mathematical operations below.

N_Vector ID N_VGetVectorID(N Vector w)

Returns the vector type identifier for the vector w. It is used to determine the vector implementation type (e.g.
serial, parallel, ...) from the abstract N_Vector interface. Returned values are given in Table 6.1.

Usage:

id = N_VGetVectorID(w);

N_Vector N_VClone (N_Vector w)

Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not copy the
vector, but rather allocates storage for the new vector.

Usage:

v = N_VClone(w);

N_Vector N_VCloneEmpty (N_Vector w)

Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not allocate
storage for the new vector’s data.

Usage:

6.2. Description of the NVECTOR operations 91

User Documentation for KINSOL, v7.1.1

v = N VCloneEmpty(w);

void N_VDestroy(N_Vector v)

Destroys the N_Vector v and frees memory allocated for its internal data.

Usage:

N_VDestroy(v);

void N_VSpace (N_Vector v, sunindextype *lrw, sunindextype *liw)

Returns storage requirements for the N_Vector v:
¢ [rw contains the number of sunrealtype words
* [iw contains the number of integer words.

This function is advisory only, for use in determining a user’s total space requirements; it could be a dummy
function in a user-supplied NVECTOR module if that information is not of interest.

Usage:

N_VSpace(nvSpec, &lrw, &liw);

sunrealtype *N_VGetArrayPointer (N_Vector v)

Returns a pointer to a sunrealtype array from the N_Vector v. Note that this assumes that the internal data in
the N_Vector is a contiguous array of sunrealtype and is accesible from the CPU.

This routine is only used in the solver-specific interfaces to the dense and banded (serial) linear solvers, and in
the interfaces to the banded (serial) and band-block-diagonal (parallel) preconditioner modules provided with
SUNDIALS.

Usage:

vdata = N_VGetArrayPointer(v);

sunrealtype *N_VGetDeviceArrayPointer (N_Vector v)

Returns a device pointer to a sunrealtype array from the N_Vector v. Note that this assumes that the internal
data in N_Vector is a contiguous array of sunrealtype and is accessible from the device (e.g., GPU).

This operation is optional except when using the GPU-enabled direct linear solvers.

Usage:

vdata = N_VGetArrayPointer(v);

void N_VSetArrayPointer (sunrealtype *vdata, N_Vector v)

Replaces the data array pointer in an N_Vector with a given array of sunrealtype. Note that this assumes
that the internal data in the N_Vector is a contiguous array of sunrealtype. This routine is only used in the
interfaces to the dense (serial) linear solver, hence need not exist in a user-supplied NVECTOR module.

Usage:

N_VSetArrayPointer(vdata,v);

SUNComm N_VGetCommunicator (N_Vector v)

Returns the SUNComm (which is just an MPI_Comm when SUNDIALS is built with MPI, otherwise it is an int)
associated with the vector (if applicable). For MPI-unaware vector implementations, this should return SUN_-
COMM_NULL.

92 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.1

Usage:

MPI_Comm comm = N_VGetCommunicator(v); // Works if MPI is enabled
int comm = N_VGetCommunicator(v); // Works if MPI is disabled
SUNComm comm = N_VGetCommunicator(v); // Works with or without MPI

sunindextype N_VGetLength(N_Vector v)

Returns the global length (number of “active” entries) in the NVECTOR v. This value should be cumulative
across all processes if the vector is used in a parallel environment. If v contains additional storage, e.g., for
parallel communication, those entries should not be included.

Usage:
global_length = N_VGetLength(v);

sunindextype N_VGetLocalLength(N_Vector v)

Returns the local length (number of “active” entries) in the NVECTOR v. This value should be the length of the
array returned by N_VGetArrayPointer () or N_VGetDeviceArrayPointer().

Usage:
local_length = N_VGetLocalLength(v);

void N_VLinearSum(sunrealtype a, N_Vector X, sunrealtype b, N_Vector y, N_Vector z)

Performs the operation z = ax + by, where a and b are sunrealtype scalars and x and y are of type N_Vector:
zi=ax; +by;, 1=0,...,n—1.

The output vector z can be the same as either of the input vectors (x or y).

Usage:

N_VLinearSum(a, x, b, y, z);

void N_VConst (sunrealtype c, N_Vector z)

Sets all components of the N_Vector z to sunrealtype c:

Usage:
N_VConst(c, z);
void N_VProd(N_Vector x, N_Vector'y, N_Vector z)
Sets the N_Vector z to be the component-wise product of the N_Vector inputs x and y:
zi=xY, t=0,...,n—1
Usage:
N_VProd(x, y, 2);
void N_VDiv (N_Vector x, N_Vector 'y, N_Vector z)

Sets the N_Vector z to be the component-wise ratio of the N_Vector inputs x and y:

T .
zi=—, t=0,...,n—1.
Yi

6.2. Description of the NVECTOR operations 93

User Documentation for KINSOL, v7.1.1

The y; may not be tested for O values. It should only be called with a y that is guaranteed to have all nonzero
components.

Usage:

N_VDiv(x, y, z);

void N_VScale (sunrealtype c, N_Vector X, N_Vector z)

Scales the N_Vector x by the sunrealtype scalar ¢ and returns the result in z:
zi=czr;, 1=0,...,n—1.
Usage:

N_VScale(c, x, 2);

void N_VAbs (\NV_Vector x, N_Vector z)

Sets the components of the N_Vector z to be the absolute values of the components of the N_Vector x:
Zl:|$l‘, i=0,...,n—1.
Usage:

N_VAbs(x, z);

void N_VInv(N_Vector x, N_Vector z)

Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x:

This routine may not check for division by 0. It should be called only with an x which is guaranteed to have all
nonzero components.

Usage:

N_VInv(x, 2);

void N_VAddConst (N_Vector X, sunrealtype b, N_Vector z)

Adds the sunrealtype scalar b to all components of x and returns the result in the N_Vector z:
zi=x;+b, 1=0,...,n—1.
Usage:

N_VAddConst(x, b, z);

sunrealtype N_VDotProd (N_Vector x, N_Vector z)

Returns the value of the dot-product of the vectors x and y:

n—1
=0

Usage:

94 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.1

d = N_VDotProd(x, y);
sunrealtype N_VMaxNorm(N_Vector x)
Returns the value of the [, norm of the N_Vector x:

m = max |z;|.
0<i<n

Usage:

m = N_VMaxNorm(x);

sunrealtype N_VWrmsNorm(N_Vector x, N_Vector w)
Returns the weighted root-mean-square norm of the N_Vector x with (positive) sunrealtype weight vector w:

m= (i(xzwlP) /n

=0

Usage:
m = N_VWrmsNorm(x, w);
sunrealtype N_VWrmsNormMask (N_Vector x, N_Vector w, N_Vector id)

Returns the weighted root mean square norm of the N_Vector x with sunrealtype weight vector w built using
only the elements of x corresponding to positive elements of the N_Vector id:

m = (Z(xlle(zdl)P) /n,

=0

1 >0
where H(a) = “ .
0 a<0
Usage:
m = N_VWrmsNormMask(x, w, id);
sunrealtype N_VMin(N_Vector X)

Returns the smallest element of the N_Vector x:

m = min x;.
0<i<n

Usage:

m = N_VMin(x);

sunrealtype N_VWL2Norm(N_Vector x, N_Vector w)
Returns the weighted Euclidean /5 norm of the N_Vector x with sunrealtype weight vector w:

Usage:

6.2. Description of the NVECTOR operations 95

User Documentation for KINSOL, v7.1.1

m = N_VWL2Norm(x, w);

sunrealtype N_VLINorm(N_Vector x)
Returns the /1 norm of the N_Vector x:

n—1
m = Z ||
i=0

Usage:
m = N_VL1Norm(x) ;

void N_VCompare (sunrealtype ¢, N_Vector X, N_Vector z)

Compares the components of the N_Vector x to the sunreal type scalar ¢ and returns an N_Vector z such that
forall0 <7 < n,

1.0 if |z;] > ¢,
Zi = .
‘ 0.0 otherwise
Usage:
N_VCompare(c, x, z);
sunbooleantype N_VInvTest (N_Vector x, N_Vector z)

Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x, with prior
testing for zero values:

This routine returns a boolean assigned to SUNTRUE if all components of x are nonzero (successful inversion)
and returns SUNFALSE otherwise.

Usage:

t = N_VInvTest(x, z);

sunbooleantype N_VConstrMask (N_Vector ¢, N_Vector x, N_Vector m)

Performs the following constraint tests based on the values in ¢;:

z, > 0 if ¢ =2,
ZT; > 0 if C; = 1,
r, < 0 if ¢ =-2

There is no constraint on z; if ¢; = 0. This routine returns a boolean assigned to SUNFALSE if any element failed
the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m, with elements equal to 1.0
where the constraint test failed, and 0.0 where the test passed. This routine is used only for constraint checking.

Usage:

t = N_VConstrMask(c, x, m);

96 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.1

sunrealtype N_VMinQuotient (N_Vector num, N_Vector denom)

This routine returns the minimum of the quotients obtained by termwise dividing the elements of n by the ele-
ments in d:

. numy
min —.
0<i<n denom;

A zero element in denom will be skipped. If no such quotients are found, then the large value SUN_BIG_REAL
(defined in the header file sundials_types.h) is returned.

Usage:

ming = N_VMinQuotient(num, denom) ;

6.2.2 Fused operations

The following fused vector operations are optional. These operations are intended to increase data reuse, reduce parallel
communication on distributed memory systems, and lower the number of kernel launches on systems with accelerators.
If a particular NVECTOR implementation defines one of the fused vector operations as NULL, the NVECTOR interface
will call one of the above standard vector operations as necessary. As above, for each operation, we give the name,
usage of the function, and a description of its mathematical operations below.

SUNErrCode N_VLinearCombination(int nv, sunrealtype *c, N_Vector *X, N_Vector z)
This routine computes the linear combination of nv vectors with n elements:

nv—1

Zi = E CiTjiy i=0,...,n—1,
Jj=0

where c is an array of nv scalars, x; is a vector in the vector array X, and z is the output vector. If the output
vector z is one of the vectors in X, then it must be the first vector in the vector array. The operation returns a
SUNErrCode.

Usage:
retval = N_VLinearCombination(nv, c, X, z);
SUNErrCode N_VScaleAddMulti (int nv, sunrealtype *c, N_Vector x, N_Vector *Y, N_Vector *Z)
This routine scales and adds one vector to nv vectors with n elements:
Zji=¢jT; +yji, j=0,...,nu—1 ¢=0,...,n—1,

where ¢ is an array of scalars, x is a vector, y; is a vector in the vector array Y, and z; is an output vector in the
vector array Z. The operation returns a SUNErrCode.

Usage:
retval = N_VScaleAddMulti(nv, c, x, Y, Z);

SUNErrCode N_VDotProdMulti (int nv, N_Vector x, N_Vector *Y, sunrealtype *d)
This routine computes the dot product of a vector with nv vectors having n elements:

n—1
dj:inyj,ia j:(),...77’L’l)—].,
=0

where d is an array of scalars containing the computed dot products, x is a vector, and y; is a vector the vector
array Y. The operation returns a SUNErrCode.

Usage:

6.2. Description of the NVECTOR operations 97

User Documentation for KINSOL, v7.1.1

retval = N_VDotProdMulti(nv, x, Y, d);

6.2.3 Vector array operations

The following vector array operations are also optional. As with the fused vector operations, these are intended to
increase data reuse, reduce parallel communication on distributed memory systems, and lower the number of kernel
launches on systems with accelerators. If a particular NVECTOR implementation defines one of the fused or vector
array operations as NULL, the NVECTOR interface will call one of the above standard vector operations as necessary.
As above, for each operation, we give the name, usage of the function, and a description of its mathematical operations
below.

SUNErrCode N_VLinearSumVectorArray (int nv, sunrealtype a, N_Vector X, sunrealtype b, N_Vector *Y,
N_Vector *7.)

This routine computes the linear sum of two vector arrays of nv vectors with n elements:

zj7i:amj,i+byj7i, Z‘ZO,...,TLfl j:(),...,nl}*l,

where a and b are scalars, x; and y; are vectors in the vector arrays X and Y respectively, and z; is a vector in
the output vector array Z. The operation returns a SUNErrCode.

Usage:
retval = N_VLinearSumVectorArray(nv, a, X, b, Y, Z);

SUNErrCode N_VScaleVectorArray (int nv, sunrealtype *c, N_Vector *X, N_Vector *Z.)

This routine scales each element in a vector of n elements in a vector array of nv vectors by a potentially different
constant:

zj; =cjzrj;, t=0,...,n—1 j7=0,...,nv—1,

where c is an array of scalars, x; is a vector in the vector array X, and z; is a vector in the output vector array Z.
The operation returns a SUNErrCode.

Usage:
retval = N_VScaleVectorArray(nv, c, X, Z);

SUNErrCode N_VConstVectorArray (int nv, sunrealtype c, N_Vector *7.)

This routine sets each element in a vector of n elements in a vector array of nv vectors to the same value:
zjs=c¢ 1=0,....n—1 j=0,...,nv—1,

where c is a scalar and z; is a vector in the vector array Z. The operation returns a SUNErrCode.

Usage:

retval = N_VConstVectorArray(nv, c, Z);

SUNErrCode N_VWrmsNormVectorArray (int nv, N_Vector *X, N_Vector ¥*W, sunrealtype *m)

This routine computes the weighted root mean square norm of each vector in a vector array:

1 ne1 1/2
mj = (n > (Jﬂj,iwj,i)2> v J=0,...,nv—1

=0

98 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.1

where x; is a vector in the vector array X, w; is a weight vector in the vector array W, and m is the output array
of scalars containing the computed norms. The operation returns a SUNErrCode.

Usage:

retval = N_VWrmsNormVectorArray(nv, X, W, m);

SUNErrCode N_VWrmsNormMaskVectorArray (int nv, N_Vector *X, N_Vector *W, N_Vector id, sunrealtype *m)
This routine computes the masked weighted root mean square norm of each vector in a vector array:

n—1
1

1/2
m; = (n > (in,iwj,iH(idi))2> v J=0, v =1,

=0

where H (id;) = 1if id; > 0 and is zero otherwise, x; is a vector in the vector array X, w; is a weight vector
in the vector array W, id is the mask vector, and m is the output array of scalars containing the computed norms.
The operation returns a SUNErrCode.

Usage:
retval = N_VWrmsNormMaskVectorArray(nv, X, W, id, m);

SUNErrCode N_VScaleAddMultiVectorArray (int nv, int nsum, sunrealtype *c, N_Vector *X, N_Vector **YY,
N Vector **77)

This routine scales and adds a vector array of nv vectors to nsum other vector arrays:
Zkji = CkTji+ Ykji» 1=0,...,n—1 j=0,....,.nv—-1, k=0,...,nsum—1
where c is an array of scalars, z; is a vector in the vector array X, yy, ; is a vector in the array of vector arrays YY,
and zj, ; is an output vector in the array of vector arrays ZZ. The operation returns a SUNErrCode.
Usage:
retval = N_VScaleAddMultiVectorArray(nv, nsum, c, x, YY, ZZ);
SUNErrCode N_VLinearCombinationVectorArray (int nv, int nsum, sunrealtype *c, N_Vector **XX, N_Vector
*7)
This routine computes the linear combination of nsum vector arrays containing nv vectors:

nsum—1

Zj; = E CpTr i, t=0,...,n—1 j7=0,...,nv—1,
k=0

where c is an array of scalars, xy, ; is a vector in array of vector arrays XX, and z; ; is an output vector in the
vector array Z. If the output vector array is one of the vector arrays in XX, it must be the first vector array in XX.
The operation returns a SUNErrCode.

Usage:

retval = N_VLinearCombinationVectorArray(nv, nsum, c, XX, Z);

6.2. Description of the NVECTOR operations 99

User Documentation for KINSOL, v7.1.1

6.2.4 Local reduction operations

The following local reduction operations are also optional. As with the fused and vector array operations, these are
intended to reduce parallel communication on distributed memory systems. If a particular NVECTOR implementation
defines one of the local reduction operations as NULL, the NVECTOR interface will call one of the above standard vector
operations as necessary. As above, for each operation, we give the name, usage of the function, and a description of its
mathematical operations below.

sunrealtype N_VDotProdLocal (N_Vector x, N_Vector y)
This routine computes the MPI task-local portion of the ordinary dot product of x and y:

Niocal —1
d= E ZiYi,
=0

where nj,cq; corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

d = N_VDotProdLocal(x, y);

sunrealtype N_VMaxNormLocal (N_Vector x)
This routine computes the MPI task-local portion of the maximum norm of the NVECTOR x:

m= max |z,
0<i<niocal

where 1ny,¢4; corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

m = N_VMaxNormLocal(x);

sunrealtype N_VMinLocal (\V_Vector x)
This routine computes the smallest element of the MPI task-local portion of the NVECTOR x:

m= min x;,
0<i<niocal

where 1,4 corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

m = N_VMinLocal(x);

sunrealtype N_VL1NormLocal (N_Vector x)
This routine computes the MPI task-local portion of the /; norm of the N_Vector x:

Niocal —1

n=) el

=0

where ny,cq; corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

100 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.1

n = N_VLINormLocal (x);

sunrealtype N_VWSqrSumLocal (N_Vector x, N_Vector w)

This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with weight
vector w:

Niocal —1

s= > (zw)

=0

where 1,4 corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

s = N_VWSqrSumLocal(x, w);

sunrealtype N_VWSqrSumMaskLocal (N_Vector x, N_Vector w, N_Vector id)

This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with weight
vector w built using only the elements of x corresponding to positive elements of the NVECTOR id:

Niocal —1
m= Y (zwH(id;))?,
i=0
where
1 0
H(a) = a >
0 a<0

and nyeeqr corresponds to the number of components in the vector on this MPI task (or njycq; = n for MPI-
unaware applications).

Usage:

s = N_VWSqrSumMaskLocal(x, w, id);

sunbooleantype N_VInvTestLocal (N_Vector x)
This routine sets the MPI task-local components of the NVECTOR z to be the inverses of the components of the
NVECTOR x, with prior testing for zero values:

1 .
zi=—,1=0,...,npcar — 1
L

where 1y,cq; corresponds to the number of components in the vector on this MPI task (or nj4cq; = n for MPI-
unaware applications). This routine returns a boolean assigned to SUNTRUE if all task-local components of x are
nonzero (successful inversion) and returns SUNFALSE otherwise.

Usage:
t = N_VInvTestLocal(x);

sunbooleantype N_VConstrMaskLocal (N_Vector ¢, N_Vector X, N_Vector m)
Performs the following constraint tests based on the values in ¢;:

z, > 0 if ¢ =2,
ZT; > 0 if C; = 1,
x, < 0 if C; = —2,

6.2. Description of the NVECTOR operations 101

User Documentation for KINSOL, v7.1.1

for all MPI task-local components of the vectors. This routine returns a boolean assigned to SUNFALSE if any
task-local element failed the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m,
with elements equal to 1.0 where the constraint test failed, and 0.0 where the test passed. This routine is used
only for constraint checking.

Usage:

t = N_VConstrMaskLocal(c, x, m);

sunrealtype N_VMinQuotientLocal (N_Vector num, N_Vector denom)

This routine returns the minimum of the quotients obtained by term-wise dividing num; by denom;, for all MPI
task-local components of the vectors. A zero element in denom will be skipped. If no such quotients are found,
then the large value SUN_BIG_REAL (defined in the header file sundials_types.h) is returned.

Usage:

ming = N_VMinQuotientLocal (num, denom);

6.2.5 Single Buffer Reduction Operations

The following optional operations are used to combine separate reductions into a single MPI call by splitting the local
computation and communication into separate functions. These operations are used in low-synchronization orthogo-
nalization methods to reduce the number of MPI Allreduce calls. If a particular NVECTOR implementation does
not define these operations additional communication will be required.

SUNErrCode N_VDotProdMultiLocal (int nv, N_Vector x, N_Vector *Y, sunrealtype *d)
This routine computes the MPI task-local portion of the dot product of a vector x with nv vectors y;:

Niocal —1
dj: E xiyj,ia j=0,...,m}—1,
=0

where d is an array of scalars containing the computed dot products, x is a vector, y; is a vector in the vector array
Y, and ny,cq; corresponds to the number of components in the vector on this MPI task. The operation returns a
SUNErrCode.

Usage:
retval = N_VDotProdMultilocal(nv, x, Y, d);
SUNErrCode N_VDotProdMultiAllReduce (int nv, N_Vector X, sunrealtype *d)
This routine combines the MPI task-local portions of the dot product of a vector x with nv vectors:

retval = MPI_Allreduce(MPI_IN_PLACE, d, nv, MPI_SUNREALTYPE, MPI_SUM, comm)

where d is an array of nv scalars containing the local contributions to the dot product and comm is the MPI
communicator associated with the vector x. The operation returns a SUNErrCode.

Usage:

retval = N_VDotProdMultiAllReduce(nv, x, d);

102 Chapter 6. Vector Data Structures

User Documentation for KINSOL, v7.1.1

6.2.6 Exchange operations

The following vector exchange operations are also optional and are intended only for use when interfacing with the
XBraid library for parallel-in-time integration. In that setting these operations are required but are otherwise unused
by SUNDIALS packages and may be set to NULL. For each operation, we give the function signature, a description of
the expected behavior, and an example of the function usage.

SUNErrCode N_VBufSize (N_Vector X, sunindextype *size)

This routine returns the buffer size need to exchange in the data in the vector x between computational nodes.

Usage:

flag = N_VBufSize(x, &buf_size)

SUNErrCode N_VBufPack (N _Vector x, void *buf)

This routine fills the exchange buffer buf with the vector data in x.

Usage:

flag = N_VBufPack(x, &buf)

SUNErrCode N_VBufUnpack (N_Vector x, void *buf)

This routine unpacks the data in the exchange buffer buf into the vector x.

Usage:

flag = N_VBufUnpack(x, buf)

6.2.7 Output operations

The following optional vector operations are for writing vector data either to stdout or to a given file.

void N_VPrint (N _Vector x)

This routine prints vector data to stdout

Usage:

N_VPrint(x);

void N_VPrintFile(N_Vecror x, FILE *file)

This routine writes vector data to the given file pointer.

Usage:

FILE* fp = fopen('vector_data.txt", "w");
N_VPrintFile(x, fp);
fclose(fp);

6.2. Description of the NVECTOR operations 103

User Documentation for KINSOL, v7.1.1

6.3 NVECTOR functions used by KINSOL

In Table 6.2 below, we list the vector functions used in the N_Vector module used by the KINSOL package. The table
also shows, for each function, which of the code modules uses the function. The KINSOL column shows function
usage within the main integrator module, while the remaining columns show function usage within the KINLS linear

solvers interface, and the KINBBDPRE preconditioner module.

At this point, we should emphasize that the KINSOL user does not need to know anything about the usage of vector
functions