
Silicon Graphics, Inc.

November 2006

XFS Slides 11 - Repair

XFS Overview & Internals
11 - Repair

November 2006 Page 2| |XFS Slides 11 - Repair

Repairing Filesystems

• Filesystems can be corrupted by
– Hardware errors

• Media errors are common
• Disks are getting bigger and bigger

– To a muhc lesser degree, bugs in the filesystem

• Filesystems are able to “repair” themselves since they consist of lists, links and
reference counts that can be validated

– But not all information is always recovered, inodes that do not have a parent
directory is common due to the directory structure being corrupted

November 2006 Page 3| |XFS Slides 11 - Repair

xfs_check

• xfs_check is a script that runs xfs_db to do a filesystem check.

• The "check" command in xfs_db scans all the metadata structures for
inconsistency

• xfs_check uses a different codebase to xfs_repair
– xfs_check and xfs_repair can be used to cross check each other

• xfs_check vs xfs_repair -n)

November 2006 Page 4| |XFS Slides 11 - Repair

xfs_repair

• xfs_repair scans the filesystem and corrects any problems encountered.

• xfs_repair performs a scan and repair in seven phases.

• Each phase relies on the previous phase to fix a certain class of potential errors.

• xfs_repair uses libxfs which is a partial port of the XFS kernel code to user-
space.

November 2006 Page 5| |XFS Slides 11 - Repair

xfs_repair – Phase 1

• Find, verify and fix superblocks.

• If a superblock is not found, xfs_repair will stop.

• Sets up a virtual mount structure for the common XFS code base (libxfs) to work
from.

November 2006 Page 6| |XFS Slides 11 - Repair

xfs_repair – Phase 2

• Checks the AG header structures (AGI, AGF and AGFL) and scans the AGF
and AGI btrees.

November 2006 Page 7| |XFS Slides 11 - Repair

xfs_repair – Phase 3

• Using the AGI btree from phase2, scan the inode tree, processing the unlinked
list for deleted inodes and finding possible missing inode clusters.

• Walk all the found inodes, recording used filesytem blocks (extents).

• For directory inodes, scan the directory structure for more lost inodes.

• Any bad inodes are trashed including unrecoverable corrupted directories.

November 2006 Page 8| |XFS Slides 11 - Repair

xfs_repair – Phase 4

• Scan inode extents again. Any inode with an extent covering used data is
trashed.

November 2006 Page 9| |XFS Slides 11 - Repair

xfs_repair – Phase 5

• Rebuild AG headers and structures including the AGI btree, AGF btrees and
AGFL regardless whether any errors have been found or not.

• Realtime inodes are also reconstructed.

November 2006 Page 10| |XFS Slides 11 - Repair

xfs_repair – Phase 6

• At this stage, the filesytem is in a mountable state.

• Scan the directories analysing all data.
– Any directories with any corruption are rebuilt with whatever entries can be

recovered.

– A missing root directory is recreated.

– All inodes that are in a directory are marked reached.

• At the end, any unreached inodes are put into lost+found.

November 2006 Page 11| |XFS Slides 11 - Repair

xfs_repair – Phase 7

• nlinks for inodes are corrected based on the data collected in phase 6.

November 2006 Page 12| |XFS Slides 11 - Repair

Triaging xfs_check and xfs_repair problems

• Most of the time, inode information is required:

> inode <inode number>
> print

• The root inode number can be derived from the superblock:

> sb 0
> print rootino

• For directories, we can also dump the contents from the extent list shown in the inode:

> dblock <file offset in blocks>
> print

• Directories have file offsets typically starting at 0, 8388608 and 16777216. Each of these offsets stores
different information for a directory.

• The filename and inode numbers at 0, hash values at 8388608 and free space information at
16777216.

November 2006 Page 13| |XFS Slides 11 - Repair

xfs_repair and xfs_check should agree

• If one of the tools reports a problem when
the other passed the filesystem, there is a
problem with one of the tools

– most likely xfs_repair

• http://oss.sgi.com/bugzilla/show_bug.cgi?id
=723

• xfs_check finds some errors on the
filesystem:

link count mismatch for inode
387655 (name ?), nlink 0,
counted 2

link count mismatch for inode
13313696 (name ?), nlink 0,
counted 2

link count mismatch for inode
17197100 (name ?), nlink 0,
counted 2

• xfs_repair reports no problems:

Phase 1 - find and verify superblock...
Phase 2 - using internal log
 - zero log...
 - scan filesystem freespace and inode maps...
 - found root inode chunk
Phase 3 - for each AG...
 - scan and clear agi unlinked lists...
 - process known inodes and perform inode discovery...
 - agno = 0
 - agno = 1
 - agno = 2
 - agno = 3
 - agno = 4
- process newly discovered inodes...
Phase 4 - check for duplicate blocks...
 - setting up duplicate extent list...
 - clear lost+found (if it exists) ...
 - clearing existing "lost+found" inode
 - marking entry "lost+found" to be deleted
 - check for inodes claiming duplicate blocks...
 - agno = 0
 - agno = 1
 - agno = 2
 - agno = 3
 - agno = 4
 - Phase 5 - rebuild AG headers and trees...
 - reset superblock...
Phase 6 - check inode connectivity...
 - resetting contents of realtime bitmap and summary

inodes
 - ensuring existence of lost+found directory
 - traversing filesystem starting at / ...
rebuilding directory inode 128
 - traversal finished ...
 - traversing all unattached subtrees ...
 - traversals finished ...
 - moving disconnected inodes to lost+found ...
Phase 7 - verify and correct link counts...
done

November 2006 Page 14| |XFS Slides 11 - Repair

Dump the offending inodes…

xfs_db -c "inode 387655" -c "print" /dev/sda6
core.magic = 0x494e
core.mode = 040755
core.version = 1
core.format = 1 (local)
core.nlinkv1 = 0
...
core.size = 6
core.nblocks = 0
core.extsize = 0
core.nextents = 0
...
next_unlinked = null
u.sfdir2.hdr.count = 0
u.sfdir2.hdr.i8count = 0
u.sfdir2.hdr.parent.i4 = 135

November 2006 Page 15| |XFS Slides 11 - Repair

Mount and Repair Fails – Corrupted Log

• If the log is corrupted you will see an error like:
mount <filesystem>
mount: Unknown error 990
dmesg | tail -20
Filesystem “<filesystem>": xfs_inode_recover: Bad inode magic number . . .
Filesystem "dm-0": XFS internal error xlog_recover_do_inode_trans(1) at line 2352 of file fs/xfs/xfs_log_recover.c.

Caller 0xffffffff88307729
XFS: log mount/recovery failed: error 990
XFS: log mount failed

xfs_repair <device>
 Phase 1 - find and verify superblock...

 Phase 2 - using internal log
 - zero log...
 ERROR: The filesystem has valuable metadata changes in a log which needs to
 be replayed. Mount the filesystem to replay the log, and unmount it before
 re-running xfs_repair. If you are unable to mount the filesystem, then use
 the -L option to destroy the log and attempt a repair.
 Note that destroying the log may cause corruption -- please attempt a mount
 of the filesystem before doing this.

• Useful information can be collected for triage:
/usr/sbin/xfs_logprint –C <filename> <device>
/usr/sbin/xfs_logprint -t <device>

• But in this case, the only option may be to throw the log away:
xfs_repair -L

November 2006 Page 16| |XFS Slides 11 - Repair

