The X Keyboard Extension:
Protocol Specification

Protocol Version 1.0 / Document Revision 1.0
X Consortium Standard

X Version 11, Release 6.4

Erik Fortune
Silicon Graphics, Inc.

Copyright © 1995, 1996 X Consortium Inc.

Copyright © 1995, 1996 Silicon Graphics Inc.
Copyright © 1995, 1996 Hewlett-Packard Company
Copyright © 1995, 1996 Digital EqQuipment Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
S0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the names of the X Consortium, Silicon Graphics Inc.,
Hewlett-Packard Company, and Digital Equipment Corporation shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Software without prior written authori-
zation.

Acknowledgments

| am grateful for all of the comments and suggestions | have received over the years. | could not
possibly list everyone who has helped, but a few people have gone well above and beyond the call
of duty and simply must be listed here.

My managers here at SGI, Tom Paquin (now at Netscape) and Gianni Mariani were wonderful.
Rather than insisting on some relatively quick, specialized proprietary solution to the keyboard
problems we were having, both Tom and Gianni understood the importance of solving them in a
general way and for the community as a whole. That was a difficult position to take and it was
even harder to maintain when the scope of the project expanded beyond anything we imagined
was possible. Gianni and Tom were unflagging in their support and their desire to “do the right
thing” despite the schedule and budget pressure that intervened from time to time.

Will Walker, at Digital Equipment Corporation, has been a longtime supporter of XKB. His help
and input was essential to ensure that the extension as a whole fits and works together well. His
focus was AccessX but the entire extension has benefited from his input and hard work. Without
his unflagging good cheer and willingness to lend a hand, XKB would not be where it is today.

Matt Landau, at the X Consortium, stood behind XKB during some tough spots in the release and
standardization process. Without Matt’s support, XKB would likely not be a standard for a long
time to come. When it became clear that we had too much to do for the amount of time we had
remaining, Matt did a fantastic job of finding people to help finish the work needed for standard-
ization.

One of those people was George Sachs, at Hewlett-Packard, who jumped in to help out. His help
was essential in getting the extension into this release. Another was Donna Converse, who helped
figure out how to explain all of this stuff to someone who hadn’'t had their head buried in it for
years.

Amber Benson and Gary Aitken were simply phenomenal. They jumped into a huge and compli-
cated project with good cheer and unbelievable energy. They were “up to speed” and contributing
within days. | stand in awe of the amount that they managed to achieve in such a short time.
Thanks to Gary and Amber, the XKB library specification is a work of art and a thousand times
easier to use and more useful than it would otherwise be.

| truly cannot express my gratitude to all of you, without whom this would not have been possible.
Erik Fortune

Silicon Graphics, Inc.
5 February 1996

The X Keyboard Extension Protocol Specification

O T O Y=Y oY1= PR 1
1.1 Conventions and ASSUMPLIONSuuuviriiiieeeeeeeiis st e e e ee e e s s s sssanrrr e e e e e e e e e e s assnnrrrrrrrraeeeees 1
2.0 KEYDOAIT SEALEeuueiiiiii et e e e e e e eeeaaee 2
21 Locking and Latching Modifiers and GrOUPSccooruriiieiiiiiiieeiiiee e 2
2.2 Fundamental Components of XKB Keyboard Statecoocccvviiieiiiiie s, 2
2.2.1 Computing Effective Modifier and Groupoccueeieiiiiiiiieiniiiee e 3
2.2.2 Computing A State Field from an XKB Stateccccccccovvvvvviiieieeeeee e 3
2.3 Derived Components of XKB Keyboard State...........coooiiiiiiiiiiiiiiieeiiiiieeeeee e 3
2.3.1 Server Internal Modifiers and Ignore Locks Behavior...............cooevvviiiviviviininennn. 4
2.4 Compatibility Components of Keyboard State............oooiiiieiiiiiiieiiieceee e 4
3L Y (] ¢ (U= VN 1Y/ [T [1T £ 5
3.1 MOAIfIEr DEFINITIONS ...t e e e e e e e e e e e e s e e e 6
3.1.1 Inactive Modifier DefiNitiONScccuiiiiiiiiiiiiee e 7
3.2 Virtual Modifier MaPPINGoveeeeeeii e 7
4.0 Global Keyboard CONrolSooviiiiiiiiiiiiii e e e e e e e e e e e e e e eeaanens 7
4.1 The RepeatKeys CONLIOloooi it e e e e e e 7
4.1.1 The PerKeyRepeat CONLrolueiiiiiiiiiiiiiiiiieeie e 8
4.1.2 Detectable AULOIEPEAL..... ..o 8
4.2 THE SIOWKEYS CONIOL ...ceiiiiiiiiiee ittt e e e s sann e e s 8
4.3 The BouNCEKEYS CONLIOluiiiiiiiiiiiee e e e e e e e e s s s s arreeaeaeeeeeeanns 8
4.4 The StCKYKEYS CONLIOLo e aeaaerereee 9
4.5 The MOUSEKEYS CONIOL....cciiiiiiiieiiiiiie ettt e e e e e s nnneeeas 9
4.6 The MOUSEKEYSACCEI CONIOLuiiiiiiiiieee e e e e e e e e eae s 10
4.6.1 Relative POINtEr MOIONcoiiuiiiiiiiiiiiee st sareee e 10
4.6.2 Absolute POINtEr MOLION.........oiiiiiiiiieei e 10
4.7 The ACCeSSXKEYS CONIOL.......ccci i e ae s 10
4.8 The AccessSXTIMEOUt CONLIOL........cccueiiiiiiiiii e e e 11
49 The AccessSXFeedbDack CONLIOL..........oiueiii i e e 11
4.10 The Overlayl and Overlay2 CONtrolSuvvuiiiiiiiiiiiiieie e 12
411 “Boolean” Controls and The EnabledControls Control.............cccueveeeiieeeiiiiiiciiiiiceeeeeenn 12
412 Automatic Reset 0f BOOIeaN CONIOIS..........uuviiiiiiiiiee et 12
5.0 Key EVeNnt ProCeSSING OVEIVIEW.......uuuiiiiieieeeeeeieeeieeeiiiiiiiiees s e e e e e e e e e eeeeeeeaneennnnns 13
6.0 Key Event Processing in the SErVer ... 14
6.1 Applying Global CoNtrolSccuviiiiiii e e ee e 14
6.2 LGS}V == 4 F= 1Y/ o 14
6.3 KBY ACTIONS ...ttt ettt e et e e s et e e e bt e e e e e e nres 15
6.4 Delivering a Key or Button Event to @ ClieNt...........coooiciiiiiiiiiccc e 22
6.4.1 XKB Interactions With Core Protocol Grabsccocuveiiiiiiiiiii e 22
7.0 Key Event Processing in the CleNt..........ooooo i 23
7.1 NoOtation and TEIMINOIOGY........uueiieiiiiit ettt e e e 23
7.2 Determining the KeySym Associated with a Key Event..........ccccccvvvveveeeiiiiicciiiieeeeeee, 24
T.2. 1 KEBY TS ittt ettt ettt e e et e e e e e e e e r e e et e e e e e e 24
7.2.2 Key SYMBOI MAP ...cviiiiiiiieciiii et e e e e e r e e e e e e e e e nnnnes 25
7.3 Transforming the KeySym Associated with a Key Eventccccovvviviiiiiiiiiiiiieeeeeeeeee, 26
7.4 Client Map EXamPIe.....ee e 27

11/6/97 Protocol Version 1.0/Document Revision 1.0 TOC-1

The X Keyboard Extension Protocol Specification

8.0
9.0

10.0

11.0

12.0

13.0

14.0
15.0

SYMDBDONIC NAIMES ...ttt e e e e e e e e e e e e e e e s e 28
Keyboard INQICALOrSuuuuiiiiii e e e e e e e 29
9.1 Global Information ADOUL INAICALOISueiiiiiiiieiii e 29
9.2 Per-Indicator INfOrmMatioN ... 30
9.2.1 INAICALOTN IMBPS ...eteieee ittt et e e e b e e e e anb e e e nees 30
Keyboard BelIS..........ooooeiiiiiiiie it 33
10.1 Client Notification 0f BellS ... 33
10.2 Disabling Server Generated BellSoooiiiiiiiiiiiiiie e 33
10.3 Generating Named BeIISoooiiiiiiiieiieeee e e e ae s 33
10.4 Generating Optional Named BellSoooiiiiiiiiii e 33
10.5 Forcing a Server Generated Belleiiiiiiiiiii i 34
Keyboard GEOMELIYccooiiiieeeeee et e e e e e e e e e e e e eenare e 34
111 Shapes anNd OULIINESueiiiiiiiee et e e e e e e e e s eeeees 35
11.2 Y= Tox 1T 1T PPPRTPPR 35
11.3 D ToToTo F= 1o £ 3PP OUPPPPRPTPPRRN 36
114 Keyboard Geometry EXamMPIEcooieiiiiiiiiieeie et 37
Interactions Between XKB and the Core ProtoColcccceeeiiiiiiiieieiiiiiiieeiciiinns 38
12.1 Group CompatiDIlity IMAPeeeveeieeeeeeee e e e s e e e e e e e e s s e e e e e e e e e e e e ann 38
12.1.1 Setting a Passive Grab for an XKB State..........cccccvveeiieeeii i 39
12.2 Changing the Keyboard Mapping Using the Core ProtocCol............oooouiiiiiiiiiiiiiiinis 39
12.2.1 Explicit Keyboard Mapping COMPONENTS.uueiiiiiiieeeiiiiiiiiiieeeee e e e e 39
12.2.2 AsSIgNING SYMDOIS TO GrOUPS ...eeeeeiiiieeeiiiiiieiiie et e et 40
12.2.3 Assigning Types To Groups of Symbols for a Key..........cccceveiiiiiiiiiiiiieeennnnn, 41
12.2.4 AsSIgNING ACHIONS TO KEYS... oottt 42
12.2.5 Updating Everything EISe ... 43
12.3 Effects of XKB on Core ProtoCOl EVENLS........cooiiiiiiiiiiiiiieeeee e 43
12.4 Effect of XKB on Core ProtoCol REQUESES.........uiiiiiieeiiiiiiiiiieeir e e e e e e s ssvnaeeee e e e e e e e 44
12.5 Sending EVENES t0 ClENTS......uuiiiii i e e e e e e e e e e e e e e e aaaeaeaees 45
The Server Database of Keyboard CoOmponentscccccvveeieiiiiiiiiiiiiiiiiiiiin 45
13.1 (070 g T oToT 0 T=T 0|l N\ F= T 0 0= RUSTR 45
13.2 Partial Components and Combining Multiple Components...........ccccvvveieeiieieiniininiiiiie, 46
13.3 COMPONENT HINES....eiiiiiieie e e s e s e b e e e anb e e e e e e nnnes a7
13.4 (=) o To T= 1o I @Fo] '] oo =T o1 £ S S 47
13.4.1 The Keycodes COMPONENT.......uuiiiiiiiiiiiie ittt ettt et e e e e s sbeeeeessnneeees 47
13.4.2 The TYPes COMPONENTcccceeiiiiieiieeee e e e se et rr e e e e e e s s s s e e e aeeesessennnneneeeees a7
13.4.3 The Compatibility Map COMPONENL........cccoiiiiiiiiiiiiiee e 48
13.4.4 The SymboIlS COMPONENL.......cccoiiiiiiiiiiiie e e e e s e ae e e e an 48
13.4.5 The Geometry COMPONENL......cciiiiiiieiiiiiiie ettt et s e e e e e sneeeas 48
135 COMPIELE KEYMEAPS ...ttt ettt et e e e e e e s e s bbbt e e e e e e e e e e e e annnbneeees 49
Replacing the Keyboard “On-the-FIy” ... 49
Interactions Between XKB and the X Input EXteNSIoNuviiiiiiiiiieeeeeeenn, 49
15.1 Using XKB Functions with Input Extension Keyboardsccccvviiieiiiiiiiiininiiiiieeee, 50
15.2 Pointer and Device BULtON ACLIONScc.uuiiiiiiiiiiee et ee e e e e e e e e e sneees 50
15.3 Indicator Maps for EXtENSION DEVICESuuviiiiiiiiiiiciiiieeieee e e e e e e e e eee s 51
15.4 Indicator Names for EXtENSION DEVICESccuiiiiiiiiiiiiiiiieiieet et 51

11/6/97 Protocol Version 1.0/Document Revision 1.0 TOC-2

The X Keyboard Extension Protocol Specification

16.0 XKB ProtOCOI REQUESTScceiiiieiiiiiiiiiiiiiee e e e e e e e e e ettt ss s s e e e e e e e e e e e eeeeeeensnnnnns 51
16.1 (0] £ PP PP PR PPPPTPPPR 51
G700 O R (=) Vo o T o I A o) £ PP 52
16.1.2 Side-EffeCtS Of EITOrS......oiiiiiiiiii e 52
16.2 COMIMON TYPES. ittt e e e et e e e e e e e e et ettt e ettt eeaeae e ee b e bbb s e e n e e e e e e e e eeaeeaeeenees 52
16.3 REQUESTS ...ttt e e e et e e e e e e e et e e e e e e 56
16.3.1 Initializing the X Keyboard EXIENSION.........coocuiiiiiiiiiiieeiiiee e 56
16.3.2 SelECHNG EVENIS ..ottt 57
16.3.3 Generating Named Keyboard BellScoccueiiiiiiiiiiiiiii e 58
16.3.4 Querying and Changing Keyboard Stateccccceiiiiiiiiniiiiieee e 59
16.3.5 Querying and Changing Keyboard CONtrolS...........cccovcuvvieeiiiiieiieniiiieee e 61
16.3.6 Querying and Changing the Keyboard Mappingcccceecvereeiniiieeeeiniiiee e 66
16.3.7 Querying and Changing the Compatibility Map.........c.cccoovviiiiieiiiiiieiiiiieeeene 72
16.3.8 Querying and Changing INAICALOrSc.ueeiiiiiiiiei e 74
16.3.9 Querying and Changing Symbolic Names............cccoviiiiiieiiiiiieieieeee e 78
16.3.10 Querying and Changing Keyboard GEOMELtrYcccveeeiiiiiieeeniiiiieeeeiiieeee e 82
16.3.11 Querying and Changing Per-Client FIagscccoeoviiiiiiiiiiiiee e 84
16.3.12 Using the Server’s Database of Keyboard Components............ccceveevviveeeeenninnen. 85
16.3.13 Querying and Changing Input EXtension DeVICeS............cccveeeriiiiireenniiieee e 89
16.3.14 Debugging the X Keyboard EXIENSIONcceiiiiiiiiieiiiiiie e 92
16.4 Y=Y] R 93
16.4.1 Tracking Keyboard ReplaCement..........cuvieeeiiiiiiiciiiiiiicece e e e e e e 93
16.4.2 Tracking Keyboard Mapping Changesccccviiiiiiiieeeiin e e e e e s 95
16.4.3 Tracking Keyboard State ChangesS.........cuvvveeeiiiiiiiiiiiiiieiee e eer e e e e e 96
16.4.4 Tracking Keyboard Control Changes..........cceeeeiiiiiciiiiieiiieeie e ee e 97
16.4.5 Tracking Keyboard Indicator State Changesccccccevveeeii i 98
16.4.6 Tracking Keyboard Indicator Map Changes.........ccccvevveeeeei i iiciiiiiiieeeee e 98
16.4.7 Tracking Keyboard Name Changescccoviviiiiiiiiieiiee s ccsiieveeee e e e 99
16.4.8 Tracking Compatibility Map ChangesS........ccceevviiiiiiiiiiieiiieeee e 100
16.4.9 Tracking Application Bell REQUESESuviiiiiiieeeeeiiiicieeee e 101
16.4.10 Tracking Messages Generated by Key ACtiONScevvvveeeiiiiiiiciiiiieinieeeeeen 102
16.4.11 Tracking Changes to AccessX State and KEYSccceevvviviviiiiriiriieeeeeesiniiiinnns 102
16.4.12 Tracking Changes To EXtension DEVICES...........cccccvviiiirieieee st eeae e 103

Appendix A. Default Symbol Transformations A-1

1.0 Interpreting the Control MOAIfIer............uuuueiiiiiii e A-1
2.0 Interpreting the LOCK MOAIfIEF.........ccooviiiiiiciie e A-1
21 Locale-Sensitive CapitaliZationeeiiiiiiiiieiiiiie e A-1
2.2 Locale-Insensitive CapitaliZationccviieeeiiiiiciiiieiieee e A-1

2.2.1 Capitalization Rules for Latin-1 KeYSYMS.........cuvveiiiieieeeiiniiiiinieeeeeeee e e e A-2

2.2.2 Capitalization Rules for Latin-2 KEYSYMS.........cccuveeiiieeeeeiiniiciiinieeeee e e e e e A-2

2.2.3 Capitalization Rules for Latin-3 KEYSYMS........cccvveiiiieeeeeiisiiiiineeeeeee e e e A-2

2.2.4 Capitalization Rules for Latin-4 KeYSYMS........cccuvuviiiireeeeiisiiiiiinieeeeee e e e e A-2

2.2.5 Capitalization Rules for Cyrillic KEYSYMScoovviiivriiiiiieieee e cecivieeee e A-3

2.2.6 Capitalization Rules for Greek KEYSYMS.......ccccoviviiiiiiiiiiiieiiee s e e A-3

2.2.7 Capitalization Rules for Other KEYSYMSceuvvvieeiiiiiiiiiiiiieeeee e A-4

Appendix B. Canonical Key Types B-1

1.0 CanoniCal KEY TYPEScccoiiiiiieeeeiiet et e e e e e ettt s e s e e e e e e e e e e e e eeeeesseannnas B-1
The ONE_LEVEL KEY TYPEecvviririiiiieieieieieieiss ettt B-1

1.1

11/6/97

Protocol Version 1.0/Document Revision 1.0 TOC-3

The X Keyboard Extension Protocol Specification

1.2 The TWO_LEVEL KEY Ty P, .ttt B-1
1.3 The ALPHABETIC KEY TYPE . .uitiiiiiiiiiiee ittt e e e ettt eee e e e e e e e e s s snnnbnneeeeaeaeens B-1
14 The KEYPAD KEY TYPE ..uuutiiiiiiiiiee e e e ieeeiiiiieeee et e e e e s e s ssstatteeeeeaaaaeeesssansnstnaneeeeeeaeeesesannnnnns B-1

Appendix C. New KeySyms C-1

1.0 NEW K BY SYIMIS ...ttt ettt e et e e e et e e e et e e e et e e e et e e e eaaneeeees C-1
1.1 KeySyms Used by the ISO9995 Standard..............oooiviiiiiiiiiiiiiiircre e C-1
1.2 KeySyms Used to Control The Core POINLETcoociiviiiiiiiiiceiee e C-2
1.3 KeySyms Used to Change Keyboard ControlS.........ccceeveveeeiiiiiiiiiiiiieeeee e C-2
1.4 KeySyms Used TO CoNtrol T SEIVETuvuuuiiiiiie e C-3
15 KeySyms for Non-Spacing DiacritiCal KEYS..........occuueiiiiiiiiiiieiiiieee e C-3

Appendix D. Protocol Encoding D-1

1.0 SYNACHC CONVENTIONS.....uuiiiiiiiiiiiiiiieeee e e e e e e e e e e e r e e e e e e e e e e e e e e e e e e e aaans D-1
2.0 (7o) 01 00T 0 T 1Y/ 013 PP D-2
3.0 1 0] £ TP D-7
O I = V! 1 0] I T PP PPPPPPPPP D-8
5.0 KEY BENAVIOIS.....cccoiiiieeeeee e ———————— D-12
6.0 REQUESTS ... e et D-13
7.0 Y] PPN D-32

11/6/97 Protocol Version 1.0/Document Revision 1.0 TOC-4

The X Keyboard Extension Protocol Specification

1.0 Overview

This extension provides a number of new capabilities and controls for text keyboards.

The core X protocol specifies the ways that$hgt , Control andLock modifi-

ers and the modifiers bound to tMede_switch or Num_Lock keysyms interact to

generate keysyms and characters. The core protocol also allows users to specify that a
key affects one or more modifiers. This behavior is simple and fairly flexible, but it

has a number of limitations that make it difficult or impossible to properly support

many common varieties of keyboard behavior. The limitations of core protocol sup-
port for keyboards include:

» Use of a single, uniform, four-symbol mapping for all keyboard keys makes it difficult
to properly support keyboard overlays, PC-style break keys or keyboards that comply
with 1ISO9995 or a host of other national and international standards.

» Use of a modifier to specify a second keyboard group has side-effects that wreak havoc
with client grabs and X toolkit translations and limit us to two keyboard groups.

» Poorly specified locking key behavior requires X servers to look for a few “magic” key-
syms to determine which keys should lock when pressed. This leads to incompatibili-
ties between X servers with no way for clients to detect implementation differences.

» Poorly specified capitalization and control behavior requires modifications to X library
source code to support new character sets or locales and can lead to incompatibilities
between system-wide and X library capitalization behavior.

» Limited interactions between modifiers specified by the core protocol make many com-
mon keyboard behaviors difficult or impossible to implement. For example, there is no
reliable way to indicate whether or not using shift should “cancel” the lock modifier.

» The lack of any explicit descriptions for indicators, most modifiers and other aspects of
the keyboard appearance requires clients that wish to clearly describe the keyboard to a
user to resort to a mishmash of prior knowledge and heuristics.

This extension makes it possible to clearly and explicitly specify most aspects of key-
board behavior on a per-key basis. It adds the notion of a numeric keyboard group to
the global keyboard state and provides mechanisms to more closely track the logical
and physical state of the keyboard. For keyboard control clients, this extension pro-
vides descriptions and symbolic names for many aspects of keyboard appearance and
behavior. It also includes a number of keyboard controls designed to make keyboards
more accessible to people with movement impairments.

The X Keyboard Extension essentially replaces the core protocol definition of a key-
board. The following sections describe the new capabilities of the extension and the
effect of the extension on core protocol requests, events and errors.

1.1 Conventions and Assumptions
This document uses the syntactic conventions, common types, and errors defined in
sections two through four of the specification of the X Window System Protocol. This
document assumes familiarity with the fundamental concepts of X, especially those
related to the way that X handles keyboards. Readers who are not familiar with the
meaning or use of keycodes, keysyms or modifiers should consult (at least) the first
five chapters of the protocol specification of the X Window System before continuing.

11/6/97 Protocol Version 1.0/Document Revision 1.0 1

The X Keyboard Extension Protocol Specification

2.0

2.1

2.2

Keyboard State

The core protocol description of keyboard state consists of migdhifiers(Shift
Lock , Control , andMod1-Mod5). A modifier reports the state of one or modifier
keys, which are similar to qualifier keys as defined by the ISO9995 standard:

Qualifier key A key whose operation has no immediate effect, but which, for as long as it is
held down, modifies the effect of other keys. A qualifier key may be, for
example, a shift key or a control key.

Whenever a modifier key is physically or logically depressed, the modifier it controls
is set in the keyboard state. The protocol implies that certain modifier keys lock (i.e.
affect modifier state after they have been physically released) but does not explicitly
discuss locking keys or their behavior. The current modifier state is reported to clients
in a number of core protocol events and can be determined usiQgéing-

Pointer request.

The XKB extension retains the eight “real” modifiers defined by the core protocol but
extends the core protocol notionkafyboard statéo include up to foukeysym groups
as defined by the 1ISO9995 standard:

Group: A logical state of a keyboard providing access to a collection of characters. A
group usually contains a set of characters which logically belong together and
which may be arranged on several shift levels within that group.

For example, keyboard group can be used to select between multiple alphabets on a
single keyboard, or to access less-commonly used symbols within a character set.

Locking and Latching Modifiers and Groups

With the core protocol, there is no way to tell whether a modifier is set due to a lock or
because the user is actually holding down a key; this can make for a clumsy user-inter-
face as locked modifiers or group state interfere with accelerators and translations.

XKB adds explicit support for locking and latching modifiers and groups. Locked
modifiers or groups apply to all future key events until they are explicitly changed.
Latched modifiers or groups apply only to the next key event that does not change
keyboard state.

Fundamental Components of XKB Keyboard State
The fundamental components of XKB keyboard state include:

The locked modifiers and group

The latched modifiers and group

The base modifiers and group (for which keys are physically or logically down)

The effective modifiers and group (the cumulative effect of the base, locked and latched
modifier and group states).

» State of the core pointer buttons.

The latched and locked state of modifiers and groups can be changed in response to
keyboard activity or under application control using XtéLatchLockState

request. The base modifier, base group and pointer button states always reflect the log-
ical state of the keyboard and pointer and chamyein response to keyboard or

pointer activity.

11/6/97

Protocol Version 1.0/Document Revision 1.0 2

The X Keyboard Extension Protocol Specification

221

2.2.2

2.3

Computing Effective Modifier and Group

The effective modifiers and group report the cumulative effects of the base, latched
and locked modifiers and group respectively, and cannot be directly changed. Note
that the effective modifiers and effective group are computed differently.

The effective modifiers are simply the bitwise union of the base, latched and locked
modifiers.

The effective group is the arithmetic sum of the base, latched and locked groups. The
locked and effective keyboard group must fall in the raaigeipl -Group4 , so they
are adjusted into range as specified by the gl@balipsWrap control as follows:

» If the RedirectintoRange flag is set, the four least significant bits of the groups
wrap control specify the index of a group to which all illegal groups correspond. If the
specified group is also out of range, all illegal groups m&roopl .

» If the ClampintoRange flag is set, out-of-range groups correspond to the nearest
legal group. Effective groups larger than the highest supported group are mapped to the
highest supported group; effective groups less @raupl are mapped tGroupl .

For example, a key with two groups of symbols Besup2 type and symbols if the
global effective group is eith&roup3 or Group4 .

» If neither flag is set, group is wrapped into range using integer modulus. For example, a
key with two groups of symbols for which groups wrap Besupl symbols if the
global effective group i&roup3 or Group2 symbols if the global effective group is
Group4 .

The base and latched keyboard groups are unrestricted eight-bit integer values and are
not affected by th&roupsWrap control.

Computing A State Field from an XKB State

Many events report the keyboard state in a sisgitefield. Using XKB, a state field
combines modifiers, group and the pointer button state into a single sixteen bit value
as follows:

» Bits 0 through 7 (the least significant eight bits) of the effective state comprise a mask
of type KEYMASK which reports the state modifiers.

» Bits 8 through 12 comprise a mask of type BUTMASK which reports pointer button
state.

» Bits 13 and 14 are interpreted as a two-bit unsigned numeric value and report the state
keyboard group.

» Bit 15 (the most significant bit) is reserved and must be zero.

It is possible to assemble a state field from any of the components of the XKB key-
board state. For example, the effective keyboard state would be assembled as
described above using the effective keyboard group, the effective keyboard modifiers
and the pointer button state.

Derived Components of XKB Keyboard State

In addition to the fundamental state components, XKB keeps track of and reports a
number of state components which are derived from the fundamental components but
stored and reported separately to make it easier to track changes in the keyboard state.
These derived components are updated automatically whenever any of the fundamen-
tal components change but cannot be changed directly.

11/6/97

Protocol Version 1.0/Document Revision 1.0 3

The X Keyboard Extension Protocol Specification

23.1

2.4

The first pair of derived state components control the way that passive grabs are acti-
vated and the way that modifiers are reported in core protocol events that report state.
The server uses ttgerverinternalModifiers , IgnoreLocksModifiers
andlgnoreGroupLock controls, described in section 2.3.1, to derive these two
states as follows:

» The lookup state is the state used to determine the symbols associated with a key event
and consists of the effective state minus any server internal modifiers.

e The grab state is the state used to decide whether a particular event triggers a passive
grab and consists of the lookup state minus any members of the ignore locks modifiers
that are not either latched or logically depressed. If the ignore group locks control is
set, the grab state does not include the effects of any locked groups.

Server Internal Modifiers and Ignore Locks Behavior
The core protocol does not provide any way to exclude certain modifiers from client
events, so there is no way to set up a modifier which affects only the server.

The modifiers specified in the mask of finéernalMods control are not reported

in any core protocol events, are not used to determine grabs and are not used to calcu-
late compatibility state for XKB-unaware clients. Server internal modifiers affect only
the action applied when a key is pressed.

The core protocol does not provide any way to exclude certain modifiers from grab
calculations, so locking modifiers often have unanticipated and unfortunate side-
effects. XKB provides another mask which can help avoid some of these problems.

The locked state of the modifiers specified in mask ofghereLockMods control

is not reported in most core protocol events and is not used to activate grabs. The only
core events which include the locked state of the modifiers in the ignore locks mask
are key press and release events that do not activate a passive grab and which do not
occur while a grab is active. If thgnoreGroupLock control is set, the locked

state of the keyboard group is not considered when activating passive grabs.

Without XKB, the passive grab set by a translation @ligrtKeyPress>space)

does not trigger if any modifiers other than those specified by the translation are set,
with the result that many user interface components do not react when either Num
Lock or when the secondary keyboard group are active. The ignore locks mask and the
ignore group locks control make it possible to avoid this behavior without exhaus-
tively grabbing every possible modifier combination.

Compatibility Components of Keyboard State

The core protocol interpretation of keyboard modifiers does not include direct support
for multiple groups, so XKB reports the effective keyboard group to XKB-aware cli-
ents using some of the reserved bits in the state field of some core protocol events, as
described in section 2.2.2.

This modified state field would not be interpreted correctly by XKB-unaware clients,
so XKB provides group compatibility mappingsee section 12.1) which remaps the
keyboard group into a core modifier mask that has similar effects, when possible.
XKB maintains three compatibility state components that are used to make non-XKB
clients work as well as possible:

» Thecompatibility statecorresponds to the effective modifier and effective group state.

11/6/97

Protocol Version 1.0/Document Revision 1.0 4

The X Keyboard Extension Protocol Specification

3.0

» Thecompatibility lookup statés the core-protocol equivalent of the lookup state.
» Thecompatibility grab statés the nearest core-protocol equivalent of the grab state.

Compatibility states are essentially the corresponding XKB state, but with keyboard
group possibly encoded as one or more modifiers; section 12.1 describes the group
compatibility map, which specifies the modifier(s) that correspond to each keyboard

group.

The compatibility state reported to XKB-unaware clients for any given core protocol
event is computed from the modifier state that XKB-capable clients would see for that
same event. For example, if the ignore group locks control is set and group 2 is locked,
the modifier bound tMode_switch is not reported in any event except (Device)Key-
Press and (Device)KeyRelease events that do not trigger a passive grab.

Note Referring to clients as “XKB-capable” is somewhat misleading in this context. The
sample implementation of XKB invisibly extends the X library to use the keyboard
extension if it is present. This means that most clients can take advantage of all of
XKB without modification, but it also means that the XKB state can be reported to cli-
ents that have not explicitly requested the keyboard extension. Cliendg¢iaty
interpret the state field of core protocol events or that interpret the keymap directly
may be affected by some of the XKB differences; clients that use library or toolkit
routines to interpret keyboard events automatically use all of the XKB features.

XKB-aware clients can query the keyboard state at any time or request immediate
notification of a change to any of the fundamental or derived components of the key-
board state.

Virtual Modifiers

The core protocol specifies that certain keysyms, when bound to modifiers, affect the
rules of keycode to keysym interpretation for all keys; for example, When Lock

is bound to some modifier, that modifier is used to choose shifted or unshifted state for
the numeric keypad keys. The core protocol does not provide a convenient way to
determine the mapping of modifier bits, in particiard1 throughMod5, to keysyms

such aNum_Lock andMode_switch. Clients must retrieve and search the modifier

map to determine the keycodes bound to each modifier, and then retrieve and search
the keyboard mapping to determine the keysyms bound to the keycodes. They must
repeat this process for all modifiers whenever any part of the modifier mapping is
changed.

XKB provides a set of sixteen named virtual modifiers, each of which can be bound to
any set of the eight “real” modifierSkift , Lock , Control andModl1-Mod5 as

reported in the keyboard state). This makes it easier for applications and keyboard lay-
out designers to specify to the function a modifier key or data structure should fulfill
without having to worry about which modifier is bound to a particular keysym.

The use of a single, server-driven mechanism for reporting changes to all data struc-
tures makes it easier for clients to stay synchronized. For example, the core protocol
specifies a special interpretation for the modifier bound toitime_Lock key. When-

ever any keys or modifiers are rebound, every application has to check the keyboard
mapping to make sure that the bindingNlom_Lock has not changed. Mum_Lock is
remapped when XKB is in use, the keyboard description is automatically updated to

11/6/97

Protocol Version 1.0/Document Revision 1.0 5

The X Keyboard Extension Protocol Specification

3.1

reflect the new binding, and clients are notified immediately and explicitly if there is a
change they need to consider.

The separation of function from physical modifier bindings also makes it easier to
specify more clearly the intent of a binding. X servers do not all assign modifiers the
same way — for exampl&lum_Lock might be bound t&od2 for one vendor and to
Mod4 for another. This makes it cumbersome to automatically remap the keyboard to
a desired configuration without some kind of prior knowledge about the keyboard lay-
out and bindings. With XKB, applications simply use virtual modifiers to specify the
behavior they want, without regard for the actual physical bindings in effect.

XKB puts most aspects of the keyboard under user or program control, so it is even
more important to clearly and uniformly refer to modifiers by function.

Modifier Definitions

Use anXKB modifier definitiorio specify the modifiers affected by any XKB control

or data structure. An XKB modifier definition consists of a set of real modifiers, a set
of virtual modifiers, and an effective mask. The mask is derived from the real and vir-
tual modifiers and cannot be explicitly changed — it contains all of the real modifiers
specified in the definitioplus any real modifiers that are bound to the virtual modifi-
ers specified in the definition. For example, this modifier definition specifies the
numeric lock modifier if th&lum_Lock keysym is not bound to any real modifier:

{ real_mods= None, virtual_mods= NumLock, mask= None }
If we assignMod2 to theNum_Lock key, the definition changes to:
{ real_mods= None, virtual_mods= NumLock, mask= Mod2 }

Using this kind of modifier definition makes it easy to specify the desired behavior in
such a way that XKB can automatically update all of the data structures that make up a
keymap to reflect user or application specified changes in any one aspect of the key-
map.

The use of modifier definitions also makes it possible to unambiguously specify the
reason that a modifier is of interest. On a system for whichltl@dMeta keysyms
are bound to the same modifier, the following definitions behave identically:

{ real_mods= None, virtual_mods= Alt, mask= Mod1 }
{ real_mods= None, virtual_mods= Meta, mask= Mod1 }

If we rebind one of the modifiers, the modifier definitions automatically reflect the
change:

{ real_mods= None, virtual_mods= Alt, mask= Mod1 }
{ real_mods= None, virtual_mods= Meta, mask= Mod4 }

Without the level of indirection provided by virtual modifier maps and modifier defi-
nitions, we would have no way to tell which of the two definitions is concerned with
Alt and which is concerned wiMeta.

11/6/97

Protocol Version 1.0/Document Revision 1.0 6

The X Keyboard Extension Protocol Specification

3.1.1

3.2

4.0

4.1

Inactive Modifier Definitions
Some XKB structures ignore modifier definitions in which the virtual modifiers are
unbound. Consider this example:

if (state matches { Shift }) Do OneThing;
if (state matches { Shift+NumLock }) Do Another;

If the NumLock virtual modifier is not bound to any real modifiers, these effective
masks for these two cases are identical (i.e. they contairbbifty). When it is
essential to distinguish between OneThing and Another, XKB considers only those
modifier definitions for which all virtual modifiers are bound.

Virtual Modifier Mapping

XKB maintains avirtual modifier mappingwhich lists the virtual modifiers associ-

ated with each key. The real modifiers bound to a virtual modifier always include all
of the modifiers bound to any of the keys that specify that virtual modifier in their vir-
tual modifier mapping.

For example, iMod3is bound to thé&lum_Lock key by the core protocol modifier
mapping, and thsBlumLock virtual modifier is bound to theljum_Lock key by the
virtual modifier mappingMod3 is added to the set of modifiers associated with the
NumLock virtual modifier.

The virtual modifier mapping is normally updated automatically whenever actions are
assigned to keys (see section 12.2 for details) and few applications should need to
change the virtual modifier mapping explicitly.

Global Keyboard Controls

The X Keyboard Extension supports a numbeglobal key controlswhich affect the

way that XKB handles the keyboard as a whole. Many of these controls make the key-
board rréore accessible to the physically impaired and are based on the AccessDOS
package.

The RepeatKeys Control

The core protocol only allows control over whether or not the entire keyboard or indi-
vidual keys should autorepeat when held down.Répeatkeys control extends this
capability by adding control over the delay until a key begins to repeat and the rate at
which it repeatsRepeatKeys is also coupled with the core autorepeat control,
changes to one are always reflected in the other.

TheRepeatKeys control has two parameters. Tégtorepeat delagpecifies the

delay between the initial press of an autorepeating key and the first generated repeat
event in milliseconds. Thautorepeat intervaspecifies the delay between all subse-
guent generated repeat events in milliseconds.

1. AccessDOS provides access to the DOS operating system for people with physical impairments and was devel-
oped by the Trace R&D Center at the University of Wisconsin. For more information on AccessDOS, contact the
Trace R&D Center, Waisman Center and Department of Industrial Engineering, University of Wisconsin-Madison
WI 53705-2280. Phone: 608-262-6966. e-mail: info@trace.wisc.edu.

11/6/97

Protocol Version 1.0/Document Revision 1.0 7

The X Keyboard Extension Protocol Specification

41.1

4.1.2

4.2

4.3

The PerKeyRepeat Control

WhenRepeatKeys are active, th®erKeyRepeat control specifies whether or
not individual keys should autorepeat when held down. XKB provideRdheey-
Repeat for convenience only, and it always parallelsdbéo-repeatdield of the
core protocolGetKeyboardControl request — changes to one are always
reflected in the other.

Detectable Autorepeat

The X server usually generates both press and release events whenever an autorepeat-
ing key is held down. If an XKB-aware client enablesDiatectableAutore-

peat per-client option for a keyboard, the server sends that client a key release event
only when the key iphysicallyreleased. For example, holding down a key to generate
three characters without detectable autorepeat yields:

Press— Release- Press— Release- Press- Release
If detectable autorepeat is enabled, the client instead receives:
Press- Press- Press- Release

Note that only clients that request detectable autorepeat are affected; other clients con-
tinue to receive both press and release events for autorepeating keys. Also note that
support for detectable autorepeat is optional; servers are not required to support detect-
able autorepeat, but they must correctly report whether or not it is supported.

Section 16.3.11 describes tkkbPerClientFlags request, which reports or
changes values for all of the per-client flags, and which lists the per-client flags that
are supported.

The SlowKeys Control

Some users often bump keys accidentally while moving their hand or typing stick
toward the key they want. Usually, the keys that are bumped accidentally are hit only
for a very short period of time. TI8owKeys control helps filter these accidental

bumps by telling the server to wait a specified period, calle8ltheKeys acceptance

delay, before delivering key events. If the key is released before this period elapses, no
key events are generated. The user can then bump any number of keys on their way to
the one they want without generating unwanted characters. Once they have reached
the key they want, they can then hold it long enouglsfowKeys to accept it.

TheSlowKeys control has one parameter; $lew keys delagpecifies the length of
time, in milliseconds, that a key must be held down before it is accepted.

WhenSlowKeys are active, the X Keyboard Extension reports the initial press,
acceptance, rejection or release of any key to interested clientsdusiegs XNo-
tify events. ThéccessXNotify event is described in more detail in section
16.4.

The BounceKeys Control

Some people with physical impairments accidentally “bounce” on a key when they
press it. That is, they press it once, then accidentally press it again immediately. The
BounceKeys control temporarily disables a key after it has been pressed, effectively
“debouncing” the keyboard.

11/6/97

Protocol Version 1.0/Document Revision 1.0 8

The X Keyboard Extension Protocol Specification

TheBounceKeys has a single parameter. TBeunceKeys delagpecifies the period
of time, in milliseconds, that the key is disabled after it is pressed.

WhenBounceKeys are active, the server reports the acceptance or rejection of any
key to interested clients by sendingfAgtessXNotify event. TheAccessXNo-
tify eventis described in more detail in section 16.4.

4.4 The StickyKeys Control
Some people find it difficult or impossible to press two keys at onceSiitle
yKeys control makes it easier for them to type by changing the behavior of the modi-
fier keys. WhersstickyKeys are enabled, a modifier is latched when the user
presses it just once, so the user can first press a modifier, release it, then press another
key. For example, to get an exclamation point (!) on a PC-style keyboard, the user can
press theshift key, release it, then press thkey.

By default,StickyKeys also allows users to lock modifier keys without requiring
special locking keys. The user can press a modifier twice in a row to lock it, and then
unlock it by pressing it one more time.

Modifiers are automatically unlatched when the user presses a non-modifier key. For
instance, to enter the sequeisdeft +Ctrl +Z the user could press and release the
Shift key to latch thé&hift modifier, then press and release @ key to latch the
Control modifier — theCtrl key is a modifier key, so pressing it does not unlatch
theShift modifier, but leaves both tf&hift andControl modifiers latched,

instead. When the user presseszley, it will be as though the user pressed

Shift +Ctrl +Z simultaneously. Thg key is not a modifier key, so tighift and
Control modifiers are unlatched after the event is generated.

A locked a modifier remains in effect until the user unlocks it. For example, to enter
the sequence (“XKB”) on a PC-style keyboard with a typical US/ASCII layout, the
user could press and release $hét key twice to lock th&hift modifier. Then,

when the user presses the, x, k, b, ‘, and0 keys in sequence, it will generate
(“XKB”). To unlock theShift modifier, the user can press and releasstiifekey.

Two option flags modify the behavior of tB¢ickyKeys control:
If the XkbAX_TwoKeys flag is set, XKB automatically turi&ickyKeys off if the
user presses two or more keys at once. This serves to automatically disable StickyKeys
when a user who does not require sticky keys is using the keyboard.

» TheXkbAX_LatchToLock controls the locking behavior 8tickyKeys ; the
StickyKeys control only locks modifiers as described above if the
XkbAX_LatchToLock flag is set.

4.5 The MouseKeys Control
The MouseKeys control lets a user control all the mouse functions from the key-
board. WherMouseKeys are enabled, all keys witlouseKeys actions bound to
them generate core pointer events instead of normal key press and release events.

TheMouseKeys control has a single parameter, theuse keys default buttomhich
specifies the core pointer button to be used by mouse keys actions that do not explic-
itly specify a button.

11/6/97 Protocol Version 1.0/Document Revision 1.0 9

The X Keyboard Extension Protocol Specification

4.6

4.6.1

4.6.2

4.7

The MouseKeysAccel Control

If the MouseKeysAccel control is enabled, the effect of a pointer motion action
changes as a key is held down. Tineuse keys delapecifies the amount of time
between the initial key press and the first repeated motion evenndlse keys inter-

val specifies the amount of time between repeated mouse keys evergeght®
maximum acceleratiofield specifies the total number of events before the key is trav-
elling at maximum speed. Tmeaximum acceleratiofield specifies the maximum
acceleration. Theurveparameter controls the ramp used to reach maximum accelera-
tion.

WhenMouseKeys are active and 8A_MovePtr key action (see section 6.3) is
activated, a pointer motion event is generated immediaté¥jouiseKeysAccel is

enabled and if acceleration is enabled for the key in question, a second event is gener-
ated aftemouse keys delayilliseconds, and additional events are generated every
mouse keys intervatilliseconds for as long as the key is held down.

Relative Pointer Motion

If the SA_MovePtr action specifies relative motion, events are generated as follows:
The initial event always moves the cursor the distance specified in the action; after
steps to maximum acceleratiements have been generated, all subsequent events
move the pointer the distance specified in the action timesdxenum acceleration.
Events after the first but before maximum acceleration has been achieved are acceler-
ated according to the formula:

d(step = action_deltax u max_accel O

% urveFactor
Qﬁteps to mas¥rveFactof] steff

Whereaction_deltais the offset specified by the mouse keys acheg_acceand
steps_to_maare parameters to tivouseKeysAccel ctrl, and the curveFactor is
computed using thelouseKeysAccel curveparameter as follows:

rv
curveFactor(curveF % curve

1000

With the result that aurveof O causes the distance moved to increase linearly from
action_deltato (max_accek action_delfe, and the minimum legalurveof -1000 causes

all events after the first move mitax_accel A negativecurvecauses an initial sharp
increase in acceleration which tapers off, while a positive curve yields a slower initial
increase in acceleration followed by a sharp increase as the number of pointer events
generated by the action approackiEeps_to_max

Absolute Pointer Motion

If an SA_MovePtr action specifies an absolute position for one of the coordinates

but still allows acceleration, all repeated events contain any absolute coordinates spec-
ified in the action.

The AccessXKeys Control
If AccessXKeys is enabled many controls can also be turned on or off from the key-
board by entering the following standard key sequences:

» Holding down a shift key by itself for eight seconds togglesSibe/Keys control.

11/6/97

Protocol Version 1.0/Document Revision 1.0 10

The X Keyboard Extension Protocol Specification

4.8

4.9

» Pressing and releasing a shift key five times in a row without any intervening key
events and with less than 30 seconds delay between consecutive presses toggles the
state of theStickyKeys control.

e Simultaneously operating two or more modifier keys deactivateStitie/Keys
control.

Some of these key sequences optionally generate audible feedback of the change in
state, as described in section 4.9, or caikd\ccessXNotify events as described
in section 16.4.

The AccessXTimeout Control

In environments where computers are shared, features s8tbwdseys present a
problem: ifSlowKeys is on, the keyboard can appear to be unresponsive because
keys have no effect unless they are held for a certain period of time. To help address
this problem, XKB provides aAccessXTimeout control to automatically change

the value of any global controls or AccessX options if the keyboard is idle for a speci-
fied period of time.

The AccessXTimeout control has a number of parameters which affect the duration of
the timeout and the features changed when the timeout expires.

TheAccessX Timeotield specifies the number of seconds the keyboard must be idle
before the global controls and AccessX options are modifiedAtbessX Options
Maskfield specifies which values in tifecessX Optioneld are to be changed, and
the AccessX Options Valuéigld specifies the new values for those options. The
AccessX Controls Masleld specifies which controls are to be changed in the global
set ofenabled controlsand theAccessX Controls Valudigld specifies the new val-

ues for those controls.

The AccessXFeedback Control

If AccessXFeedback is enabled, special beep-codes indicate changes in keyboard
controls (or some key events whglowKeys or StickyKeys are active). Many

beep codes sound as multiple tones, but XKB reports a s{kbiBellNotify

event for the entire sequence of tones.

All feedback tones are governed by thalibleBell control. Individual feedback
tones can be explicitly enabled or disabled usingttessX options mask set to
deactivate after an idle period using #oeessX timeout options ma3KB defines
the following feedback tones:

Feedback Name Bell Name Default Sound Indicates
FeatureFB AX_FeatureOn rising tone Keyboard control enabled
AX_FeatureOff falling tone Keyboard control disabled
AX_FeatureChange two tones Several controls changed state
IndicatorFB AX_IndicatorOn high tone Indicator Lit
AX_IndicatorOff low tone Indicator Extinguished
AX_IndicatorChange two high tones Several indicators changed state
SlowWarnFB AX_SlowKeysWarning three high tones Shift key held for four seconds
SKPressFB AX_SlowKeyPress single tone Key press vBlbevKeys are on
SKReleaseFB AX_SlowKeyRelease single tone Key release GlulgKeys are on
SKAcceptFB AX_SlowKeyAccept single tone Key event accepte8lbwKeys
SKRejectFB AX_SlowKeyReject low tone Key event rejectedSlpwKeys

11/6/97

Protocol Version 1.0/Document Revision 1.0 11

The X Keyboard Extension Protocol Specification

4.10

411

412

Feedback Name Bell Name Default Sound Indicates
StickyKeysFB ~ AX_StickyLatch low tone thenModifier latched byStickyKeys
high tone
AX_StickyLock high tone Modifier locked b8tickyKeys
AX_StickyUnlock low tone Modifier unlocked b$tickyKeys

BKRejectFB AX_BounceKeysReject lowtone Key event rejecteBdynceKeys

Implementations that cannot generate continuous tones may generate multiple beeps
instead of falling and rising tones; for example, they can generate a high-pitched beep
followed by a low-pitched beep instead of a continuous falling tone.

If the physical keyboard bell is not very capable, attempts to simulate a continuous
tone with multiple bells can sound horrible. SetfhanbBellFB AccessX option to
inform the server that the keyboard bell is not very capable and that XKB should use
only simple bell combinations. Keyboard capabilities vary wildly, so the sounds gen-
erated for the individual bells when tBeimbBellFB option is set are implementa-

tion specific.

The Overlayl and Overlay2 Controls

A keyboard overlay allows some subset of the keyboard to report alternate keycodes
when the overlay is enabled. For example a keyboard overlay can be used to simulate
a numeric or editing keypad on keyboard that does not actually have one by generating
alternate of keycodes for some keys when the overlay is enabled. This technique is
very common on portable computers and embedded systems with small keyboards.

XKB includes direct support for two keyboard overlays, usingherlayl and

Overlay2 controls. WherDverlayl is enabled, all of the keys that are members

of the first keyboard overlay generate an alternate keycode. ®Aemtay2 is

enabled, all of the keys that are members of the second keyboard overlay generate an
alternate keycode.

To specify the overlay to which a key belongs and the alternate keycode it should gen-
erate when that overlay is enabled, assign it eithekBheéOverlayl or
KB_Overlay2 key behaviors, as described in section 6.2.

“Boolean” Controls and The EnabledControls Control

All of the controls described above, along with gwelibleBell control (described

in section 10.2) and thgnoreGroupLock control (described in section 2.3.1)
comprise théoolean controlsin addition to any parameters listed in the descriptions
of the individual controls, the boolean controls can be individually enabled or disabled
by changing the value of tlienabledControls control.

The followingnon-boolearcontrols are always active and cannot be changed using
theEnabledControls control or specified in any context that accepts only bool-
ean controlsGroupsWrap (section 2.2.1)}nabledControls , InternalMods
(section 2.3.1), anlfjnoreLockMods (section 2.3.1) anBerKeyRepeat (sec-

tion 4.1)

Automatic Reset of Boolean Controls

Theauto-reset controlare a per-client value which consist of two masks that can con-
tain any of the boolean controls (see section 4.11). Whenever the client exits for any
reason, any boolean controls specified inah-reset maséire set to the correspond-

11/6/97

Protocol Version 1.0/Document Revision 1.0 12

The X Keyboard Extension Protocol Specification

5.0

ing value from theauto-reset valuemask. This makes it possible for clients to “clean
up after themselves” automatically, even if abnormally terminated.

For example, a client that replace the keyboard bell with some other audible cue might
want to turn off theAudibleBell control (section 10.2) to prevent the server from
also generating a sound and thus avoid cacophony. If the client were to exit without
resetting theAudibleBell control, the user would be left without any feedback at

all. SettingAudibleBell in both the auto-reset mask and auto-reset values guaran-
tees that the audible bell will be turned back on when the client exits.

Key Event Processing Overview

There are three steps to processing each key event in the X server, and at least three in
the client. This section describes each of these steps briefly; the following sections
describe each step in more detail.

1. First, the server applies global keyboard controls to determine whether the key event
should be processed immediately, deferred, or ignored. For examfiowiceys
control can cause a key event to be deferred until the slow keys delay has elapsed while
theRepeatKeys control can cause multiple X events from a single physical key press
if the key is held down for an extended period. The global keyboard controls affect all
of the keys on the keyboard and are described in section 4.0.

2. Next, the server applies per-key behavior. Per key-behavior can be used to simulate or indi-
cate some special kinds of key behavior. For example, keyboard overlays, in which a key
generates an alternate keycode under certain circumstances, can be implemented using per-
key behavior. Every key has a single behavior, so the effect of key behavior does not
depend on keyboard modifier or group state, though it might depend on global keyboard
controls. Per-key behaviors are described in detail in section 6.2.

3. Finally, the server applies key actions. Logically, every keysym on the keyboard has some
action associated with it. The key action tells the server what to do when an event which
yields the corresponding keysym is generated. Key actions might change or suppress the
event, generate some other event, or change some aspect of the server. Key actions are
described in section 6.3.

If the global controls, per-key behavior and key action combine to cause a key event,
the client which receives the event processes it in several steps.

1. First the client extracts the effective keyboard group and a set of modifiers from the
state field of the event. See section 2.2.2 for details.

2. Using the modifiers and effective keyboard group, the client selects a symbol from the list
of keysyms bound to the key. Section 7.2 discusses symbol selection.

3. If necessary, the client transforms the symbol and resulting string using any modifiers that
are “left over” from the process of looking up a symbol. For example, ifable modifier
is left over, the resulting keysym is capitalized according to the capitalization rules speci-
fied by the system. See section 7.3 for a more detailed discussion of the transformations
defined by XKB.

4. Finally, the client uses the keysym and remaining modifiers in an application-specific way.
For example, applications based on the X toolkit might apply translations based on the
symbol and modifiers reported by the first three steps.

11/6/97

Protocol Version 1.0/Document Revision 1.0 13

The X Keyboard Extension Protocol Specification

6.0

6.1

6.2

Key Event Processing in the Server

This section describes the steps involved in processing a key event within the server
when XKB is present. Key events can be generated due to keyboard activity and
passed to XKB by the DDX layer, or they can be synthesized by another extension,
such as XTEST.

Applying Global Controls

When the X Keyboard Extension receives a key event, it first checks the global key
controls to decide whether to process the event immediately or at all. The global key
controls which might affect the event, in descending order of priority, are:

» If a key is pressed while tlBounceKeys control is enabled, the extension generates
the event only if the key is active. When a key is released, the server deactivates the key
and starts &ounce keys timeawith an interval specified by the debounce delay.

If the bounce keys timer expires or if some other key is pressed before the timer
expires, the server reactivates the corresponding key and deactivates the timer. Neither
expiration nor deactivation of a bounce keys timer causes an event.

» If the SlowKeys control is enabled, the extension sestoav keys timewith an inter-
val specified by the slow keys delay, but does not process the key event im