tesseract 5.2.0
Loading...
Searching...
No Matches
normalis.cpp
Go to the documentation of this file.
1/**********************************************************************
2 * File: normalis.cpp (Formerly denorm.c)
3 * Description: Code for the DENORM class.
4 * Author: Ray Smith
5 *
6 * (C) Copyright 1992, Hewlett-Packard Ltd.
7 ** Licensed under the Apache License, Version 2.0 (the "License");
8 ** you may not use this file except in compliance with the License.
9 ** You may obtain a copy of the License at
10 ** http://www.apache.org/licenses/LICENSE-2.0
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 *
17 **********************************************************************/
18
19#include "normalis.h"
20
21#include <allheaders.h>
22#include "blobs.h"
23#include "helpers.h"
24#include "matrix.h"
25#include "ocrblock.h"
26#include "unicharset.h"
27#include "werd.h"
28
29#include <cfloat> // for FLT_MAX
30#include <cstdlib>
31
32namespace tesseract {
33
34// Tolerance in pixels used for baseline and xheight on non-upper/lower scripts.
35const int kSloppyTolerance = 4;
36// Final tolerance in pixels added to the computed xheight range.
37const float kFinalPixelTolerance = 0.125f;
38
40 Init();
41}
42
44 rotation_ = nullptr;
45 *this = src;
46}
47
49 Clear();
50 inverse_ = src.inverse_;
51 predecessor_ = src.predecessor_;
52 pix_ = src.pix_;
53 block_ = src.block_;
54 if (src.rotation_ == nullptr) {
55 rotation_ = nullptr;
56 } else {
57 rotation_ = new FCOORD(*src.rotation_);
58 }
59 x_origin_ = src.x_origin_;
60 y_origin_ = src.y_origin_;
61 x_scale_ = src.x_scale_;
62 y_scale_ = src.y_scale_;
63 final_xshift_ = src.final_xshift_;
64 final_yshift_ = src.final_yshift_;
65 return *this;
66}
67
69 Clear();
70}
71
72// Initializes the denorm for a transformation. For details see the large
73// comment in normalis.h.
74// Arguments:
75// block: if not nullptr, then this is the first transformation, and
76// block->re_rotation() needs to be used after the Denorm
77// transformation to get back to the image coords.
78// rotation: if not nullptr, apply this rotation after translation to the
79// origin and scaling. (Usually a classify rotation.)
80// predecessor: if not nullptr, then predecessor has been applied to the
81// input space and needs to be undone to complete the inverse.
82// The above pointers are not owned by this DENORM and are assumed to live
83// longer than this denorm, except rotation, which is deep copied on input.
84//
85// x_origin: The x origin which will be mapped to final_xshift in the result.
86// y_origin: The y origin which will be mapped to final_yshift in the result.
87// Added to result of row->baseline(x) if not nullptr.
88//
89// x_scale: scale factor for the x-coordinate.
90// y_scale: scale factor for the y-coordinate. Ignored if segs is given.
91// Note that these scale factors apply to the same x and y system as the
92// x-origin and y-origin apply, ie after any block rotation, but before
93// the rotation argument is applied.
94//
95// final_xshift: The x component of the final translation.
96// final_yshift: The y component of the final translation.
97void DENORM::SetupNormalization(const BLOCK *block, const FCOORD *rotation,
98 const DENORM *predecessor, float x_origin, float y_origin,
99 float x_scale, float y_scale, float final_xshift,
100 float final_yshift) {
101 Clear();
102 block_ = block;
103 if (rotation == nullptr) {
104 rotation_ = nullptr;
105 } else {
106 rotation_ = new FCOORD(*rotation);
107 }
108 predecessor_ = predecessor;
109 x_origin_ = x_origin;
110 y_origin_ = y_origin;
111 x_scale_ = x_scale;
112 y_scale_ = y_scale;
113 final_xshift_ = final_xshift;
114 final_yshift_ = final_yshift;
115}
116
117// Helper for SetupNonLinear computes an image of shortest run-lengths from
118// the x/y edges provided.
119// Based on "A nonlinear normalization method for handprinted Kanji character
120// recognition -- line density equalization" by Hiromitsu Yamada et al.
121// Eg below is an O in a 1-pixel margin-ed bounding box and the corresponding
122// ______________ input x_coords and y_coords.
123// | _________ | <empty>
124// | | _ | | 1, 6
125// | | | | | | 1, 3, 4, 6
126// | | | | | | 1, 3, 4, 6
127// | | | | | | 1, 3, 4, 6
128// | | |_| | | 1, 3, 4, 6
129// | |_________| | 1, 6
130// |_____________| <empty>
131// E 1 1 1 1 1 E
132// m 7 7 2 7 7 m
133// p 6 p
134// t 7 t
135// y y
136// The output image contains the min of the x and y run-length (distance
137// between edges) at each coordinate in the image thus:
138// ______________
139// |7 1_1_1_1_1 7|
140// |1|5 5 1 5 5|1|
141// |1|2 2|1|2 2|1|
142// |1|2 2|1|2 2|1|
143// |1|2 2|1|2 2|1|
144// |1|2 2|1|2 2|1|
145// |1|5_5_1_5_5|1|
146// |7_1_1_1_1_1_7|
147// Note that the input coords are all integer, so all partial pixels are dealt
148// with elsewhere. Although it is nice for outlines to be properly connected
149// and continuous, there is no requirement that they be as such, so they could
150// have been derived from a flaky source, such as greyscale.
151// This function works only within the provided box, and it is assumed that the
152// input x_coords and y_coords have already been translated to have the bottom-
153// left of box as the origin. Although an output, the minruns should have been
154// pre-initialized to be the same size as box. Each element will contain the
155// minimum of x and y run-length as shown above.
156static void ComputeRunlengthImage(const TBOX &box,
157 const std::vector<std::vector<int>> &x_coords,
158 const std::vector<std::vector<int>> &y_coords,
159 GENERIC_2D_ARRAY<int> *minruns) {
160 int width = box.width();
161 int height = box.height();
162 ASSERT_HOST(minruns->dim1() == width);
163 ASSERT_HOST(minruns->dim2() == height);
164 // Set a 2-d image array to the run lengths at each pixel.
165 for (int ix = 0; ix < width; ++ix) {
166 int y = 0;
167 for (auto y_coord : y_coords[ix]) {
168 int y_edge = ClipToRange(y_coord, 0, height);
169 int gap = y_edge - y;
170 // Every pixel between the last and current edge get set to the gap.
171 while (y < y_edge) {
172 (*minruns)(ix, y) = gap;
173 ++y;
174 }
175 }
176 // Pretend there is a bounding box of edges all around the image.
177 int gap = height - y;
178 while (y < height) {
179 (*minruns)(ix, y) = gap;
180 ++y;
181 }
182 }
183 // Now set the image pixels the MIN of the x and y runlengths.
184 for (int iy = 0; iy < height; ++iy) {
185 int x = 0;
186 for (auto x_coord : x_coords[iy]) {
187 int x_edge = ClipToRange(x_coord, 0, width);
188 int gap = x_edge - x;
189 while (x < x_edge) {
190 if (gap < (*minruns)(x, iy)) {
191 (*minruns)(x, iy) = gap;
192 }
193 ++x;
194 }
195 }
196 int gap = width - x;
197 while (x < width) {
198 if (gap < (*minruns)(x, iy)) {
199 (*minruns)(x, iy) = gap;
200 }
201 ++x;
202 }
203 }
204}
205// Converts the run-length image (see above to the edge density profiles used
206// for scaling, thus:
207// ______________
208// |7 1_1_1_1_1 7| = 5.28
209// |1|5 5 1 5 5|1| = 3.8
210// |1|2 2|1|2 2|1| = 5
211// |1|2 2|1|2 2|1| = 5
212// |1|2 2|1|2 2|1| = 5
213// |1|2 2|1|2 2|1| = 5
214// |1|5_5_1_5_5|1| = 3.8
215// |7_1_1_1_1_1_7| = 5.28
216// 6 4 4 8 4 4 6
217// . . . . . . .
218// 2 4 4 0 4 4 2
219// 8 8
220// Each profile is the sum of the reciprocals of the pixels in the image in
221// the appropriate row or column, and these are then normalized to sum to 1.
222// On output hx, hy contain an extra element, which will eventually be used
223// to guarantee that the top/right edge of the box (and anything beyond) always
224// gets mapped to the maximum target coordinate.
225static void ComputeEdgeDensityProfiles(const TBOX &box, const GENERIC_2D_ARRAY<int> &minruns,
226 std::vector<float> &hx, std::vector<float> &hy) {
227 int width = box.width();
228 int height = box.height();
229 hx.clear();
230 hx.resize(width + 1);
231 hy.clear();
232 hy.resize(height + 1);
233 double total = 0.0;
234 for (int iy = 0; iy < height; ++iy) {
235 for (int ix = 0; ix < width; ++ix) {
236 int run = minruns(ix, iy);
237 if (run == 0) {
238 run = 1;
239 }
240 float density = 1.0f / run;
241 hx[ix] += density;
242 hy[iy] += density;
243 }
244 total += hy[iy];
245 }
246 // Normalize each profile to sum to 1.
247 if (total > 0.0) {
248 for (int ix = 0; ix < width; ++ix) {
249 hx[ix] /= total;
250 }
251 for (int iy = 0; iy < height; ++iy) {
252 hy[iy] /= total;
253 }
254 }
255 // There is an extra element in each array, so initialize to 1.
256 hx[width] = 1.0f;
257 hy[height] = 1.0f;
258}
259
260// Sets up the DENORM to execute a non-linear transformation based on
261// preserving an even distribution of stroke edges. The transformation
262// operates only within the given box.
263// x_coords is a collection of the x-coords of vertical edges for each
264// y-coord starting at box.bottom().
265// y_coords is a collection of the y-coords of horizontal edges for each
266// x-coord starting at box.left().
267// Eg x_coords[0] is a collection of the x-coords of edges at y=bottom.
268// Eg x_coords[1] is a collection of the x-coords of edges at y=bottom + 1.
269// The second-level vectors must all be sorted in ascending order.
270// See comments on the helper functions above for more details.
271void DENORM::SetupNonLinear(const DENORM *predecessor, const TBOX &box, float target_width,
272 float target_height, float final_xshift, float final_yshift,
273 const std::vector<std::vector<int>> &x_coords,
274 const std::vector<std::vector<int>> &y_coords) {
275 Clear();
276 predecessor_ = predecessor;
277 // x_map_ and y_map_ store a mapping from input x and y coordinate to output
278 // x and y coordinate, based on scaling to the supplied target_width and
279 // target_height.
280 x_map_ = new std::vector<float>;
281 y_map_ = new std::vector<float>;
282 // Set a 2-d image array to the run lengths at each pixel.
283 int width = box.width();
284 int height = box.height();
285 GENERIC_2D_ARRAY<int> minruns(width, height, 0);
286 ComputeRunlengthImage(box, x_coords, y_coords, &minruns);
287 // Edge density is the sum of the inverses of the run lengths. Compute
288 // edge density projection profiles.
289 ComputeEdgeDensityProfiles(box, minruns, *x_map_, *y_map_);
290 // Convert the edge density profiles to the coordinates by multiplying by
291 // the desired size and accumulating.
292 (*x_map_)[width] = target_width;
293 for (int x = width - 1; x >= 0; --x) {
294 (*x_map_)[x] = (*x_map_)[x + 1] - (*x_map_)[x] * target_width;
295 }
296 (*y_map_)[height] = target_height;
297 for (int y = height - 1; y >= 0; --y) {
298 (*y_map_)[y] = (*y_map_)[y + 1] - (*y_map_)[y] * target_height;
299 }
300 x_origin_ = box.left();
301 y_origin_ = box.bottom();
302 final_xshift_ = final_xshift;
303 final_yshift_ = final_yshift;
304}
305
306// Transforms the given coords one step forward to normalized space, without
307// using any block rotation or predecessor.
308void DENORM::LocalNormTransform(const TPOINT &pt, TPOINT *transformed) const {
309 FCOORD src_pt(pt.x, pt.y);
310 FCOORD float_result;
311 LocalNormTransform(src_pt, &float_result);
312 transformed->x = IntCastRounded(float_result.x());
313 transformed->y = IntCastRounded(float_result.y());
314}
315void DENORM::LocalNormTransform(const FCOORD &pt, FCOORD *transformed) const {
316 FCOORD translated(pt.x() - x_origin_, pt.y() - y_origin_);
317 if (x_map_ != nullptr && y_map_ != nullptr) {
318 int x = ClipToRange(IntCastRounded(translated.x()), 0, static_cast<int>(x_map_->size() - 1));
319 translated.set_x((*x_map_)[x]);
320 int y = ClipToRange(IntCastRounded(translated.y()), 0, static_cast<int>(y_map_->size() - 1));
321 translated.set_y((*y_map_)[y]);
322 } else {
323 translated.set_x(translated.x() * x_scale_);
324 translated.set_y(translated.y() * y_scale_);
325 if (rotation_ != nullptr) {
326 translated.rotate(*rotation_);
327 }
328 }
329 transformed->set_x(translated.x() + final_xshift_);
330 transformed->set_y(translated.y() + final_yshift_);
331}
332
333// Transforms the given coords forward to normalized space using the
334// full transformation sequence defined by the block rotation, the
335// predecessors, deepest first, and finally this. If first_norm is not nullptr,
336// then the first and deepest transformation used is first_norm, ending
337// with this, and the block rotation will not be applied.
338void DENORM::NormTransform(const DENORM *first_norm, const TPOINT &pt, TPOINT *transformed) const {
339 FCOORD src_pt(pt.x, pt.y);
340 FCOORD float_result;
341 NormTransform(first_norm, src_pt, &float_result);
342 transformed->x = IntCastRounded(float_result.x());
343 transformed->y = IntCastRounded(float_result.y());
344}
345void DENORM::NormTransform(const DENORM *first_norm, const FCOORD &pt, FCOORD *transformed) const {
346 FCOORD src_pt(pt);
347 if (first_norm != this) {
348 if (predecessor_ != nullptr) {
349 predecessor_->NormTransform(first_norm, pt, &src_pt);
350 } else if (block_ != nullptr) {
351 FCOORD fwd_rotation(block_->re_rotation().x(), -block_->re_rotation().y());
352 src_pt.rotate(fwd_rotation);
353 }
354 }
355 LocalNormTransform(src_pt, transformed);
356}
357
358// Transforms the given coords one step back to source space, without
359// using to any block rotation or predecessor.
360void DENORM::LocalDenormTransform(const TPOINT &pt, TPOINT *original) const {
361 FCOORD src_pt(pt.x, pt.y);
362 FCOORD float_result;
363 LocalDenormTransform(src_pt, &float_result);
364 original->x = IntCastRounded(float_result.x());
365 original->y = IntCastRounded(float_result.y());
366}
367
368void DENORM::LocalDenormTransform(const FCOORD &pt, FCOORD *original) const {
369 FCOORD rotated(pt.x() - final_xshift_, pt.y() - final_yshift_);
370 if (x_map_ != nullptr && y_map_ != nullptr) {
371 auto pos = std::upper_bound(x_map_->begin(), x_map_->end(), rotated.x());
372 if (pos > x_map_->begin()) {
373 --pos;
374 }
375 auto x = pos - x_map_->begin();
376 original->set_x(x + x_origin_);
377 pos = std::upper_bound(y_map_->begin(), y_map_->end(), rotated.y());
378 if (pos > y_map_->begin()) {
379 --pos;
380 }
381 auto y = pos - y_map_->begin();
382 original->set_y(y + y_origin_);
383 } else {
384 if (rotation_ != nullptr) {
385 FCOORD inverse_rotation(rotation_->x(), -rotation_->y());
386 rotated.rotate(inverse_rotation);
387 }
388 original->set_x(rotated.x() / x_scale_ + x_origin_);
389 float y_scale = y_scale_;
390 original->set_y(rotated.y() / y_scale + y_origin_);
391 }
392}
393
394// Transforms the given coords all the way back to source image space using
395// the full transformation sequence defined by this and its predecessors
396// recursively, shallowest first, and finally any block re_rotation.
397// If last_denorm is not nullptr, then the last transformation used will
398// be last_denorm, and the block re_rotation will never be executed.
399void DENORM::DenormTransform(const DENORM *last_denorm, const TPOINT &pt, TPOINT *original) const {
400 FCOORD src_pt(pt.x, pt.y);
401 FCOORD float_result;
402 DenormTransform(last_denorm, src_pt, &float_result);
403 original->x = IntCastRounded(float_result.x());
404 original->y = IntCastRounded(float_result.y());
405}
406void DENORM::DenormTransform(const DENORM *last_denorm, const FCOORD &pt, FCOORD *original) const {
407 LocalDenormTransform(pt, original);
408 if (last_denorm != this) {
409 if (predecessor_ != nullptr) {
410 predecessor_->DenormTransform(last_denorm, *original, original);
411 } else if (block_ != nullptr) {
412 original->rotate(block_->re_rotation());
413 }
414 }
415}
416
417// Normalize a blob using blob transformations. Less accurate, but
418// more accurately copies the old way.
419void DENORM::LocalNormBlob(TBLOB *blob) const {
420 ICOORD translation(-IntCastRounded(x_origin_), -IntCastRounded(y_origin_));
421 blob->Move(translation);
422 if (y_scale_ != 1.0f) {
423 blob->Scale(y_scale_);
424 }
425 if (rotation_ != nullptr) {
426 blob->Rotate(*rotation_);
427 }
428 translation.set_x(IntCastRounded(final_xshift_));
429 translation.set_y(IntCastRounded(final_yshift_));
430 blob->Move(translation);
431}
432
433// Fills in the x-height range accepted by the given unichar_id, given its
434// bounding box in the usual baseline-normalized coordinates, with some
435// initial crude x-height estimate (such as word size) and this denoting the
436// transformation that was used.
437void DENORM::XHeightRange(int unichar_id, const UNICHARSET &unicharset, const TBOX &bbox,
438 float *min_xht, float *max_xht, float *yshift) const {
439 // Default return -- accept anything.
440 *yshift = 0.0f;
441 *min_xht = 0.0f;
442 *max_xht = FLT_MAX;
443
444 if (!unicharset.top_bottom_useful()) {
445 return;
446 }
447
448 // Clip the top and bottom to the limit of normalized feature space.
449 int top = ClipToRange<int>(bbox.top(), 0, kBlnCellHeight - 1);
450 int bottom = ClipToRange<int>(bbox.bottom(), 0, kBlnCellHeight - 1);
451 // A tolerance of yscale corresponds to 1 pixel in the image.
452 double tolerance = y_scale();
453 // If the script doesn't have upper and lower-case characters, widen the
454 // tolerance to allow sloppy baseline/x-height estimates.
455 if (!unicharset.script_has_upper_lower()) {
456 tolerance = y_scale() * kSloppyTolerance;
457 }
458
459 int min_bottom, max_bottom, min_top, max_top;
460 unicharset.get_top_bottom(unichar_id, &min_bottom, &max_bottom, &min_top, &max_top);
461
462 // Calculate the scale factor we'll use to get to image y-pixels
463 double midx = (bbox.left() + bbox.right()) / 2.0;
464 double ydiff = (bbox.top() - bbox.bottom()) + 2.0;
465 FCOORD mid_bot(midx, bbox.bottom()), tmid_bot;
466 FCOORD mid_high(midx, bbox.bottom() + ydiff), tmid_high;
467 DenormTransform(nullptr, mid_bot, &tmid_bot);
468 DenormTransform(nullptr, mid_high, &tmid_high);
469
470 // bln_y_measure * yscale = image_y_measure
471 double yscale = tmid_high.pt_to_pt_dist(tmid_bot) / ydiff;
472
473 // Calculate y-shift
474 int bln_yshift = 0, bottom_shift = 0, top_shift = 0;
475 if (bottom < min_bottom - tolerance) {
476 bottom_shift = bottom - min_bottom;
477 } else if (bottom > max_bottom + tolerance) {
478 bottom_shift = bottom - max_bottom;
479 }
480 if (top < min_top - tolerance) {
481 top_shift = top - min_top;
482 } else if (top > max_top + tolerance) {
483 top_shift = top - max_top;
484 }
485 if ((top_shift >= 0 && bottom_shift > 0) || (top_shift < 0 && bottom_shift < 0)) {
486 bln_yshift = (top_shift + bottom_shift) / 2;
487 }
488 *yshift = bln_yshift * yscale;
489
490 // To help very high cap/xheight ratio fonts accept the correct x-height,
491 // and to allow the large caps in small caps to accept the xheight of the
492 // small caps, add kBlnBaselineOffset to chars with a maximum max, and have
493 // a top already at a significantly high position.
494 if (max_top == kBlnCellHeight - 1 && top > kBlnCellHeight - kBlnBaselineOffset / 2) {
495 max_top += kBlnBaselineOffset;
496 }
497 top -= bln_yshift;
498 int height = top - kBlnBaselineOffset;
499 double min_height = min_top - kBlnBaselineOffset - tolerance;
500 double max_height = max_top - kBlnBaselineOffset + tolerance;
501
502 // We shouldn't try calculations if the characters are very short (for example
503 // for punctuation).
504 if (min_height > kBlnXHeight / 8 && height > 0) {
505 float result = height * kBlnXHeight * yscale / min_height;
506 *max_xht = result + kFinalPixelTolerance;
507 result = height * kBlnXHeight * yscale / max_height;
508 *min_xht = result - kFinalPixelTolerance;
509 }
510}
511
512// Prints the content of the DENORM for debug purposes.
513void DENORM::Print() const {
514 if (pix_ != nullptr) {
515 tprintf("Pix dimensions %d x %d x %d\n", pixGetWidth(pix_), pixGetHeight(pix_),
516 pixGetDepth(pix_));
517 }
518 if (inverse_) {
519 tprintf("Inverse\n");
520 }
521 if (block_ && block_->re_rotation().x() != 1.0f) {
522 tprintf("Block rotation %g, %g\n", block_->re_rotation().x(), block_->re_rotation().y());
523 }
524 tprintf("Input Origin = (%g, %g)\n", x_origin_, y_origin_);
525 if (x_map_ != nullptr && y_map_ != nullptr) {
526 tprintf("x map:\n");
527 for (auto x : *x_map_) {
528 tprintf("%g ", x);
529 }
530 tprintf("\ny map:\n");
531 for (auto y : *y_map_) {
532 tprintf("%g ", y);
533 }
534 tprintf("\n");
535 } else {
536 tprintf("Scale = (%g, %g)\n", x_scale_, y_scale_);
537 if (rotation_ != nullptr) {
538 tprintf("Rotation = (%g, %g)\n", rotation_->x(), rotation_->y());
539 }
540 }
541 tprintf("Final Origin = (%g, %g)\n", final_xshift_, final_xshift_);
542 if (predecessor_ != nullptr) {
543 tprintf("Predecessor:\n");
544 predecessor_->Print();
545 }
546}
547
548// ============== Private Code ======================
549
550// Free allocated memory and clear pointers.
551void DENORM::Clear() {
552 delete x_map_;
553 x_map_ = nullptr;
554 delete y_map_;
555 y_map_ = nullptr;
556 delete rotation_;
557 rotation_ = nullptr;
558}
559
560// Setup default values.
561void DENORM::Init() {
562 inverse_ = false;
563 pix_ = nullptr;
564 block_ = nullptr;
565 rotation_ = nullptr;
566 predecessor_ = nullptr;
567 x_map_ = nullptr;
568 y_map_ = nullptr;
569 x_origin_ = 0.0f;
570 y_origin_ = 0.0f;
571 x_scale_ = 1.0f;
572 y_scale_ = 1.0f;
573 final_xshift_ = 0.0f;
574 final_yshift_ = static_cast<float>(kBlnBaselineOffset);
575}
576
577} // namespace tesseract
#define ASSERT_HOST(x)
Definition: errcode.h:54
const int kSloppyTolerance
Definition: normalis.cpp:35
void tprintf(const char *format,...)
Definition: tprintf.cpp:41
int IntCastRounded(double x)
Definition: helpers.h:168
const int kBlnXHeight
Definition: normalis.h:33
const float kFinalPixelTolerance
Definition: normalis.cpp:37
T ClipToRange(const T &x, const T &lower_bound, const T &upper_bound)
Definition: helpers.h:103
const int kBlnCellHeight
Definition: normalis.h:32
const int kBlnBaselineOffset
Definition: normalis.h:34
TDimension x
Definition: blobs.h:89
TDimension y
Definition: blobs.h:90
void Move(const ICOORD vec)
Definition: blobs.cpp:431
void Scale(float factor)
Definition: blobs.cpp:438
void Rotate(const FCOORD rotation)
Definition: blobs.cpp:424
void Print() const
Definition: normalis.cpp:513
const DENORM * predecessor() const
Definition: normalis.h:255
float y_scale() const
Definition: normalis.h:262
void SetupNormalization(const BLOCK *block, const FCOORD *rotation, const DENORM *predecessor, float x_origin, float y_origin, float x_scale, float y_scale, float final_xshift, float final_yshift)
Definition: normalis.cpp:97
void NormTransform(const DENORM *first_norm, const TPOINT &pt, TPOINT *transformed) const
Definition: normalis.cpp:338
void XHeightRange(int unichar_id, const UNICHARSET &unicharset, const TBOX &bbox, float *min_xht, float *max_xht, float *yshift) const
Definition: normalis.cpp:437
void DenormTransform(const DENORM *last_denorm, const TPOINT &pt, TPOINT *original) const
Definition: normalis.cpp:399
void SetupNonLinear(const DENORM *predecessor, const TBOX &box, float target_width, float target_height, float final_xshift, float final_yshift, const std::vector< std::vector< int > > &x_coords, const std::vector< std::vector< int > > &y_coords)
Definition: normalis.cpp:271
void LocalDenormTransform(const TPOINT &pt, TPOINT *original) const
Definition: normalis.cpp:360
void LocalNormTransform(const TPOINT &pt, TPOINT *transformed) const
Definition: normalis.cpp:308
void LocalNormBlob(TBLOB *blob) const
Definition: normalis.cpp:419
const BLOCK * block() const
Definition: normalis.h:265
float x_scale() const
Definition: normalis.h:259
DENORM & operator=(const DENORM &)
Definition: normalis.cpp:48
FCOORD re_rotation() const
Definition: ocrblock.h:129
integer coordinate
Definition: points.h:36
void set_x(TDimension xin)
rewrite function
Definition: points.h:67
void set_y(TDimension yin)
rewrite function
Definition: points.h:71
void set_y(float yin)
rewrite function
Definition: points.h:217
float pt_to_pt_dist(const FCOORD &pt) const
Distance between pts.
Definition: points.h:241
void set_x(float xin)
rewrite function
Definition: points.h:213
void rotate(const FCOORD vec)
Definition: points.h:712
float y() const
Definition: points.h:209
float x() const
Definition: points.h:206
TDimension left() const
Definition: rect.h:82
TDimension height() const
Definition: rect.h:118
TDimension width() const
Definition: rect.h:126
TDimension top() const
Definition: rect.h:68
TDimension right() const
Definition: rect.h:89
TDimension bottom() const
Definition: rect.h:75
bool script_has_upper_lower() const
Definition: unicharset.h:951
void get_top_bottom(UNICHAR_ID unichar_id, int *min_bottom, int *max_bottom, int *min_top, int *max_top) const
Definition: unicharset.h:586
bool top_bottom_useful() const
Definition: unicharset.h:555